Sample records for ocean freshwater export

  1. The freshwater export from the Arctic Ocean and the circulation of liquid freshwater around Greenland - constraints, interactions & consequences

    NASA Astrophysics Data System (ADS)

    Rudels, Bert

    2010-05-01

    The freshwater added to the Arctic Ocean is stored as sea ice and as liquid freshwater residing primarily in the upper layers. This allows for simple zero order estimates of the liquid freshwater content and export based on rotationally controlled baroclinic flow. At present the freshwater outflow occurs on both sides of Greenland. In Fram Strait the sea ice export in the East Greenland Current is significantly larger than the liquid freshwater outflow, while the liquid freshwater export dominates in the Canadian Arctic Archipelago. Although the outflow in the upper layer and the freshwater export respond to short periodic wind events and longer periodic atmospheric circulation patterns, the long-term trend is controlled by the net freshwater supply - the freshwater input minus the ice export. As the ice formation and ice export are expected to diminish in a warmer climate the Canadian Arctic Archipelago, comprising several passages, should gradually carry more of the total Arctic Ocean freshwater outflow. However, the channels in the Canadian Arctic Archipelago discharge into the restricted Baffin, which also receives a part of the Fram Strait freshwater export via the West Greenland Current. In a situation with increased glacial melting and freshwater discharge from Greenland the density of the upper layer in Baffin Bay may decrease considerably. This would reduce the sea level difference between the Arctic Ocean and Baffin Bay and thus weaken the outflow through the Canadian Arctic Archipelago, in extreme cases perhaps even reverse the flow. This would shift the main Arctic Ocean liquid freshwater export from The Canadian Arctic Archipelago to Fram Strait. The zero order dynamics of the exchanges through the Canadian Arctic Archipelago and Baffin Bay are described and the possibility for a weakening of the outflow is examined.

  2. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Zeliang; Hamilton, James; Su, Jie

    2017-06-01

    Understanding the mechanisms that drive exchanges between the Arctic Ocean and adjacent oceans is critical to building our knowledge of how the Arctic is reacting to a warming climate, and how potential changes in Arctic Ocean freshwater export may impact the AMOC (Atlantic Meridional Overturning Circulation). Here, freshwater pathways from the Arctic Ocean to the North Atlantic are investigated using a 1 degree global model. An EOF analysis of modeled sea surface height (SSH) demonstrates that while the second mode accounts for only 15% of the variability, the associated geostrophic currents are strongly correlated with freshwater exports through CAA (Canadian Arctic Archipelago; r = 0.75), Nares Strait (r = 0.77) and Fram Strait (r = -0.60). Separation of sea level into contributing parts allows us to show that the EOF1 is primarily a barotropic mode reflecting variability in bottom pressure equivalent sea level, while the EOF2 mode reflects changes in steric height in the Arctic Basin. This second mode is linked to momentum wind driven surface current, and dominates the Arctic Ocean freshwater exports. Both the Arctic Oscillation and Arctic Dipole atmospheric indices are shown to be linked to Arctic Ocean freshwater exports, with the forcing associated with the Arctic Dipole reflecting the out-of-phase relationship between transports through the CAA and those through Fram Strait. Finally, observed freshwater transport variation through the CAA is found to be strongly correlated with tide gauge data from the Beaufort Sea coast (r = 0.81), and with the EOF2 mode of GRACE bottom pressure data (r = 0.85) on inter-annual timescales.

  3. Status and Impacts of Arctic Freshwater Export

    NASA Astrophysics Data System (ADS)

    Haine, T. W. N.

    2017-12-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980-2000, with an extra ≈5000 km3—about 25%—being stored. The sources of freshwater to the Arctic from precipitation and runoff have increased between these periods (most of the evidence comes from models). Despite flux increases from 2001 to 2011, it is uncertain if the marine freshwater source through Bering Strait for the 2000s has changed, as observations in the 1980s and 1990s are incomplete. The marine freshwater fluxes draining the Arctic through Fram and Davis straits are also insignificantly different. In this way, the balance of sources and sinks of freshwater to the Arctic, Canadian Arctic Archipelago (CAA), and Baffin Bay shifted to about 1200±730 km3yr-1 freshening the region, on average, during the 2000s. The observed accumulation of liquid freshwater is consistent with this increased supply and the loss of freshwater from sea ice (Figure, right). Evidence exists that such discharges can impact the Atlantic meridional overturning circulation, and hence Atlantic sector climate. Nevertheless, it appears that the observed AMOC variability since 2004, when high quality measurements began, is not attributable to anthropogenic influence. This work is based on, and updated from, Haine et al. (2015), Carmack et al. (2016), and Haine (2016). Haine, T. W. N. Ocean science: Vagaries of Atlantic overturning. Nature Geoscience, 9, 479-480, 10.1038/ngeo2748, 2016. T. W. N. Haine et al., Arctic Freshwater Export: Status, Mechanisms, and Prospects, Global Planetary Change, 125, 13-35, 10.1016/j.glopacha.2014.11.013, 2015. E. Carmack et al., Fresh water and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. G. Res. Biogeosciences, 10.1002/2015JG003140, 2016.

  4. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans

    NASA Astrophysics Data System (ADS)

    Carmack, E. C.; Yamamoto-Kawai, M.; Haine, T. W. N.; Bacon, S.; Bluhm, B. A.; Lique, C.; Melling, H.; Polyakov, I. V.; Straneo, F.; Timmermans, M.-L.; Williams, W. J.

    2016-03-01

    The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.

  5. The large-scale freshwater cycle of the Arctic

    NASA Astrophysics Data System (ADS)

    Serreze, Mark C.; Barrett, Andrew P.; Slater, Andrew G.; Woodgate, Rebecca A.; Aagaard, Knut; Lammers, Richard B.; Steele, Michael; Moritz, Richard; Meredith, Michael; Lee, Craig M.

    2006-11-01

    This paper synthesizes our understanding of the Arctic's large-scale freshwater cycle. It combines terrestrial and oceanic observations with insights gained from the ERA-40 reanalysis and land surface and ice-ocean models. Annual mean freshwater input to the Arctic Ocean is dominated by river discharge (38%), inflow through Bering Strait (30%), and net precipitation (24%). Total freshwater export from the Arctic Ocean to the North Atlantic is dominated by transports through the Canadian Arctic Archipelago (35%) and via Fram Strait as liquid (26%) and sea ice (25%). All terms are computed relative to a reference salinity of 34.8. Compared to earlier estimates, our budget features larger import of freshwater through Bering Strait and larger liquid phase export through Fram Strait. While there is no reason to expect a steady state, error analysis indicates that the difference between annual mean oceanic inflows and outflows (˜8% of the total inflow) is indistinguishable from zero. Freshwater in the Arctic Ocean has a mean residence time of about a decade. This is understood in that annual freshwater input, while large (˜8500 km3), is an order of magnitude smaller than oceanic freshwater storage of ˜84,000 km3. Freshwater in the atmosphere, as water vapor, has a residence time of about a week. Seasonality in Arctic Ocean freshwater storage is nevertheless highly uncertain, reflecting both sparse hydrographic data and insufficient information on sea ice volume. Uncertainties mask seasonal storage changes forced by freshwater fluxes. Of flux terms with sufficient data for analysis, Fram Strait ice outflow shows the largest interannual variability.

  6. Arctic Ocean Freshwater: How Robust are Model Simulations

    NASA Technical Reports Server (NTRS)

    Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; hide

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  7. Changing Arctic Ocean freshwater pathways.

    PubMed

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  8. Estimating the Cross-Shelf Export of Riverine Materials: Part 2. Estimates of Global Freshwater and Nutrient Export

    NASA Astrophysics Data System (ADS)

    Izett, Jonathan G.; Fennel, Katja

    2018-02-01

    Rivers deliver large amounts of fresh water, nutrients, and other terrestrially derived materials to the coastal ocean. Where inputs accumulate on the shelf, harmful effects such as hypoxia and eutrophication can result. In contrast, where export to the open ocean is efficient riverine inputs contribute to global biogeochemical budgets. Assessing the fate of riverine inputs is difficult on a global scale. Global ocean models are generally too coarse to resolve the relatively small scale features of river plumes. High-resolution regional models have been developed for individual river plume systems, but it is impractical to apply this approach globally to all rivers. Recently, generalized parameterizations have been proposed to estimate the export of riverine fresh water to the open ocean (Izett & Fennel, 2018, https://doi.org/10.1002/2017GB005667; Sharples et al., 2017, https://doi.org/10.1002/2016GB005483). Here the relationships of Izett and Fennel, https://doi.org/10.1002/2017GB005667 are used to derive global estimates of open-ocean export of fresh water and dissolved inorganic silicate, dissolved organic carbon, and dissolved organic and inorganic phosphorus and nitrogen. We estimate that only 15-53% of riverine fresh water reaches the open ocean directly in river plumes; nutrient export is even less efficient because of processing on continental shelves. Due to geographic differences in riverine nutrient delivery, dissolved silicate is the most efficiently exported to the open ocean (7-56.7%), while dissolved inorganic nitrogen is the least efficiently exported (2.8-44.3%). These results are consistent with previous estimates and provide a simple way to parameterize export to the open ocean in global models.

  9. Monitoring and Predicting the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Field Program

    NASA Astrophysics Data System (ADS)

    Exports Science Definition Team

    2016-04-01

    Ocean ecosystems play a critical role in the Earth's carbon cycle and its quantification on global scales remains one of the greatest challenges in global ocean biogeochemistry. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) science plan is to develop a predictive understanding of the export and fate of global ocean primary production and its implications for the Earth's carbon cycle in present and future climates. NASA's satellite ocean-color data record has revolutionized our understanding of global marine systems. EXPORTS is designed to advance the utility of NASA ocean color assets to predict how changes in ocean primary production will impact the global carbon cycle. EXPORTS will create a predictive understanding of both the export of organic carbon from the euphotic zone and its fate in the underlying "twilight zone" (depths of 500 m or more) where variable fractions of exported organic carbon are respired back to CO2. Ultimately, it is the sequestration of deep organic carbon transport that defines the impact of ocean biota on atmospheric CO2 levels and hence climate. EXPORTS will generate a new, detailed understanding of ocean carbon transport processes and pathways linking upper ocean phytoplankton processes to the export and fate of organic matter in the underlying twilight zone using a combination of field campaigns, remote sensing and numerical modeling. The overarching objective for EXPORTS is to ensure the success of future satellite missions by establishing mechanistic relationships between remotely sensed signals and carbon cycle processes. Through a process-oriented approach, EXPORTS will foster new insights on ocean carbon cycling that will maximize its societal relevance and be a key component in the U.S. investment to understand Earth as an integrated system.

  10. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Hudson, B. D.; Syvitski, J. P. M.; Mikkelsen, A. B.; Hasholt, B.; van den Broeke, M. R.; Noël, B. P. Y.; Morlighem, M.

    2017-11-01

    Limited measurements along Greenland's remote coastline hamper quantification of the sediment and associated nutrients draining the Greenland ice sheet, despite the potential influence of river-transported suspended sediment on phytoplankton blooms and carbon sequestration. Here we calibrate satellite imagery to estimate suspended sediment concentration for 160 proglacial rivers across Greenland. Combining these suspended sediment reconstructions with numerical calculations of meltwater runoff, we quantify the amount and spatial pattern of sediment export from the ice sheet. We find that, although runoff from Greenland represents only 1.1% of the Earth's freshwater flux, the Greenland ice sheet produces approximately 8% of the modern fluvial export of suspended sediment to the global ocean. Sediment loads are highly variable between rivers, consistent with observed differences in ice dynamics and thus with control by glacial erosion. Rivers that originate from deeply incised, fast-moving glacial tongues form distinct sediment-export hotspots: just 15% of Greenland's rivers transport 80% of the total sediment load of the ice sheet. We conclude that future acceleration of melt and ice sheet flow may increase sediment delivery from Greenland to its fjords and the nearby ocean.

  11. Plankton networks driving carbon export in the oligotrophic ocean

    PubMed Central

    Larhlimi, Abdelhalim; Roux, Simon; Darzi, Youssef; Audic, Stephane; Berline, Léo; Brum, Jennifer; Coelho, Luis Pedro; Espinoza, Julio Cesar Ignacio; Malviya, Shruti; Sunagawa, Shinichi; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Poulain, Julie; Searson, Sarah; Stemmann, Lars; Not, Fabrice; Hingamp, Pascal; Speich, Sabrina; Follows, Mick; Karp-Boss, Lee; Boss, Emmanuel; Ogata, Hiroyuki; Pesant, Stephane; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G.; Bork, Peer; de Vargas, Colomban; Iudicone, Daniele; Sullivan, Matthew B.; Raes, Jeroen; Karsenti, Eric; Bowler, Chris; Gorsky, Gabriel

    2015-01-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterised. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria, alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of just a few bacterial and viral genes can predict most of the variability in carbon export in these regions. PMID:26863193

  12. Plankton networks driving carbon export in the oligotrophic ocean

    NASA Astrophysics Data System (ADS)

    2016-04-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.

  13. Small phytoplankton and carbon export from the surface ocean.

    PubMed

    Richardson, Tammi L; Jackson, George A

    2007-02-09

    Autotrophic picoplankton dominate primary production over large oceanic regions but are believed to contribute relatively little to carbon export from surface layers. Using analyses of data from the equatorial Pacific Ocean and Arabian Sea, we show that the relative direct and indirect contribution of picoplankton to export is proportional to their total net primary production, despite their small size. We suggest that all primary producers, not just the large cells, can contribute to export from the surface layer of the ocean at rates proportional to their production rates.

  14. Atlantic freshwater balance in the hysteresis of the meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Gregory, J. M.; Saenko, O. A.

    2003-04-01

    We have studied the hysteresis behaviour of the Atlantic meridional overturning circulation (AMO) in the UVic climate model, which comprises an ocean GCM coupled to an energy-moisture balance atmosphere model and a dynamic-thermodynamic sea ice model, all with a resolution of 3.6x1.8 degrees. As with some other models, we find that a slowly increasing freshwater flux applied to the north Atlantic causes the AMO to collapse rapidly when it passes a threshold, and that it returns equally quickly when the freshwater forcing falls below a negative freshwater flux threshold. During the collapse, the Atlantic becomes less saline because of the import of about 80 Sv yr of freshwater by the ocean across 30S; during the switch-on this freshwater is exported again. These abrupt import and export of freshwater at 30S of the Atlantic are associated with, respectively, the appearance and disappearance of a shallower reverse overturning circulation south of the Equator. Qualitatively similar hysteresis behaviour, with the same salinity flip-flop, can be produced by an internal transfer of water within the Atlantic from low to high latitudes, with no net freshwater forcing input north of 30S.

  15. Transient sensitivities of sea ice export through the Canadian Arctic Archipelago inferred from a coupled ocean/sea-ice adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Losch, M.; Menemenlis, D.; Campin, J.; Hill, C.

    2008-12-01

    The sensitivity of sea-ice export through the Canadian Arctic Archipelago (CAA), measured in terms of its solid freshwater export through Lancaster Sound, to changes in various elements of the ocean and sea-ice state, and to elements of the atmospheric forcing fields through time and space is assessed by means of a coupled ocean/sea-ice adjoint model. The adjoint model furnishes full spatial sensitivity maps (also known as Lagrange multipliers) of the export metric to a variety of model variables at any chosen point in time, providing the unique capability to quantify major drivers of sea-ice export variability. The underlying model is the MIT ocean general circulation model (MITgcm), which is coupled to a Hibler-type dynamic/thermodynamic sea-ice model. The configuration is based on the Arctic face of the ECCO3 high-resolution cubed-sphere model, but coarsened to 36-km horizontal grid spacing. The adjoint of the coupled system has been derived by means of automatic differentiation using the software tool TAF. Finite perturbation simulations are performed to check the information provided by the adjoint. The sea-ice model's performance in the presence of narrow straits is assessed with different sea-ice lateral boundary conditions. The adjoint sensitivity clearly exposes the role of the model trajectory and the transient nature of the problem. The complex interplay between forcing, dynamics, and boundary condition is demonstrated in the comparison between the different calculations. The study is a step towards fully coupled adjoint-based ocean/sea-ice state estimation at basin to global scales as part of the ECCO efforts.

  16. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    NASA Astrophysics Data System (ADS)

    de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S. M.; Melling, H.; McLaughlin, F. A.; Kwok, R.; Smethie, W. M.; Schlosser, P.

    2013-09-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 upper ocean salinities in the Lincoln Sea returned to values similar to those prior to 2007. Throughout 2008-2010, the freshest surface waters in the western Lincoln Sea show water mass properties similar to fresh Canada Basin waters north of the Canadian Arctic Archipelago. In the northeastern Lincoln Sea fresh surface waters showed a strong link with those observed in the Makarov Basin near the North Pole. The freshening in the Lincoln Sea was associated with a return of a subsurface Pacific Water temperature signal although this was not as strong as observed in the early 1990s. Comparison of repeat stations from the 2000s with the data from the 1990s at 65°W showed an increase of the Atlantic temperature maximum which was associated with the arrival of warmer Atlantic water from the Eurasian Basin. Satellite-derived dynamic ocean topography of winter 2009 showed a ridge extending parallel to the Canadian Archipelago shelf as far as the Lincoln Sea, causing a strong flow toward Nares Strait and likely Fram Strait. The total volume of anomalous freshwater observed in the Lincoln Sea and exported by 2011 was close to 1100±250km3, approximately 13% of the total estimated FW increase in the Arctic in 2008.

  17. Freshwater fluxes in the Weddell Gyre: results from δ18O

    PubMed Central

    Brown, Peter J.; Meredith, Michael P.; Jullion, Loïc; Naveira Garabato, Alberto; Torres-Valdés, Sinhue; Holland, Paul; Leng, Melanie J.; Venables, Hugh

    2014-01-01

    Full-depth measurements of δ18O from 2008 to 2010 enclosing the Weddell Gyre in the Southern Ocean are used to investigate the regional freshwater budget. Using complementary salinity, nutrients and oxygen data, a four-component mass balance was applied to quantify the relative contributions of meteoric water (precipitation/glacial input), sea-ice melt and saline (oceanic) sources. Combination of freshwater fractions with velocity fields derived from a box inverse analysis enabled the estimation of gyre-scale budgets of both freshwater types, with deep water exports found to dominate the budget. Surface net sea-ice melt and meteoric contributions reach 1.8% and 3.2%, respectively, influenced by the summer sampling period, and −1.7% and +1.7% at depth, indicative of a dominance of sea-ice production over melt and a sizable contribution of shelf waters to deep water mass formation. A net meteoric water export of approximately 37 mSv is determined, commensurate with local estimates of ice sheet outflow and precipitation, and the Weddell Gyre is estimated to be a region of net sea-ice production. These results constitute the first synoptic benchmarking of sea-ice and meteoric exports from the Weddell Gyre, against which future change associated with an accelerating hydrological cycle, ocean climate change and evolving Antarctic glacial mass balance can be determined. PMID:24891394

  18. Trends in Arctic Ocean bottom pressure, sea surface height and freshwater content using GRACE and the ice-ocean model PIOMAS from 2008-2012

    NASA Astrophysics Data System (ADS)

    Peralta-Ferriz, Cecilia; Morison, James; Zhang, Jinlun; Bonin, Jennifer

    2014-05-01

    The variability of ocean bottom pressure (OBP) in the Arctic is dominated by the variations in sea surface height (SSH) from daily to monthly timescales. Conversely, OBP variability is dominated by the changes in the steric pressure (StP) at inter-annual timescales, particularly off the continental shelves. The combination of GRACE-derived ocean bottom pressure and ICESat altimetry-derived sea surface height variations in the Arctic Ocean have provided new means of identifying inter-annual trends in StP (StP = OBP-SSH) and associated freshwater content (FWC) of the Arctic region (Morison et al., 2012). Morison et al. (2012) showed that from 2004 to 2008, the FWC increased in the Beaufort Gyre and decreased in the Siberian and Central Arctic, resulting in a relatively small net basin-averaged FWC change. In this work, we investigate the inter-annual trends from 2008 to 2012 in OBP from GRACE, SSH from the state-of-the-art pan-Arctic ocean model PIOMAS -validated with tide and pressure gauges in the Arctic-, and compute the trends in StP and FWC from 2008-2012. We compare these results with the previous trends from 2005-2008 described in Morison et al. (2012). Our initial findings suggest increased salinity in the entire Arctic basin (relative to the climatological seasonal variation) from 2008-2012, compared to the preceding four years (2005-2008). We also find that the trends in OBP, SSH and StP from 2008-2012 present a different behavior during the spring-summer and fall-winter, unlike 2005-2008, in which the trends were generally consistent through all months of the year. It seems since 2009, when the Beaufort Gyre relaxed and the export of freshwater from the Canada Basin into the Canadian Archipelago and Fram Strait, via the Lincoln Sea, was anomalously large (de Steur et al., 2013), the Arctic Ocean has entered a new circulation regime. The causes of such changes in the inter-annual trends of OBP, SSH and StP -hence FWC-, associated with the changes in the

  19. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, R. D.

    2010-11-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  20. Plankton networks driving carbon export in the oligotrophic ocean

    NASA Astrophysics Data System (ADS)

    Guidi, L.; Chaffron, S.; Bittner, L.; Eveillard, D.; Raes, J.; Karsenti, E.; Bowler, C.; Gorsky, G.

    2016-02-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis that sinks to the deep ocean as particles where it is sequestered. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure and interactions driving the process remain largely uncharacterised. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of the underlying processes. We show that specific plankton communities correlate with carbon export and highlight unexpected and overlooked taxa such as Radiolaria, alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical oligotrophic ocean. Additionally, we show that the relative abundance of just a few bacterial and viral genes can predict most of the variability in carbon export in these regions. Together these results help elucidate ecosystem drivers of the biological carbon pump and present a case study for scaling from genes-to-ecosystems.

  1. The temperature-ballast hypothesis explains carbon export efficiency observations in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Britten, Gregory L.; Wakamatsu, Lael; Primeau, François W.

    2017-02-01

    Carbon export from the Southern Ocean exerts a strong control on the ocean carbon sink, yet recent observations from the region demonstrate poorly understood relationships in which carbon export efficiency is weakly related to temperature. These observations conflict with traditional theory where export efficiency increases in colder waters. A recently proposed "temperature-ballast hypothesis" suggests an explanatory mechanism where the effect of temperature-dependent respiration is masked by variation in particle-ballast as upwelling waters move northward from Antarctica. We use observations and statistical models to test this mechanism and find positive support for the hypothesized temperature-ballast interactions. Best fitting models indicate a significant relation between export efficiency and silica-ballast while simultaneously revealing the expected inverse effect of temperature once ballast is accounted for. These findings reconcile model predictions, metabolic theory, and carbon export observations in the Southern Ocean and have consequences for how the ocean carbon sink responds to climate change.

  2. Restricted Inter-ocean Exchange and Attenuated Biological Export Caused Enhanced Carbonate Preservation in the PETM Ocean

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Boudreau, B. P.; Dickens, G. R.; Sluijs, A.; Middelburg, J. J.

    2015-12-01

    Carbon dioxide (CO2) release during the Paleocene-Eocene Thermal Maximum (PETM, 55.8 Myr BP) acidified the oceans, causing a decrease in calcium carbonate (CaCO3) preservation. During the subsequent recovery from this acidification, the sediment CaCO3 content came to exceed pre-PETM values, known as over-deepening or over-shooting. Past studies claim to explain these trends, but have failed to reproduce quantitatively the time series of CaCO3 preservation. We employ a simple biogeochemical model to recreate the CaCO3 records preserved at Walvis Ridge of the Atlantic Ocean. Replication of the observed changes, both shallowing and the subsequent over-deepening, requires two conditions not previously considered: (1) limited deep-water exchange between the Indo-Atlantic and Pacific oceans and (2) a ~50% reduction in the export of CaCO3 to the deep sea during acidification. Contrary to past theories that attributed over-deepening to increased riverine alkalinity input, we find that over-deepening is an emergent property, generated at constant riverine input when attenuation of CaCO3 export causes an unbalanced alkalinity input to the deep oceans (alkalinization) and the development of deep super-saturation. Restoration of CaCO3 export, particularly in the super-saturated deep Indo-Atlantic ocean, later in the PETM leads to greater accumulation of carbonates, ergo over-shooting, which returns the ocean to pre-PETM conditions over a time scale greater than 200 kyr. While this feedback between carbonate export and the riverine input has not previously been considered, it appears to constitute an important modification of the classic carbonate compensation concept used to explain oceanic response to acidification.

  3. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean.

    PubMed

    Benitez-Nelson, Claudia R; Bidigare, Robert R; Dickey, Tommy D; Landry, Michael R; Leonard, Carrie L; Brown, Susan L; Nencioli, Francesco; Rii, Yoshimi M; Maiti, Kanchan; Becker, Jamie W; Bibby, Thomas S; Black, Wil; Cai, Wei-Jun; Carlson, Craig A; Chen, Feizhou; Kuwahara, Victor S; Mahaffey, Claire; McAndrew, Patricia M; Quay, Paul D; Rappé, Michael S; Selph, Karen E; Simmons, Melinda P; Yang, Eun Jin

    2007-05-18

    Mesoscale eddies may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-core cyclonic eddy off Hawaii. Eddy primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic coupling and inefficient organic export may be general characteristics of community perturbation responses in the warm waters of the Pacific Ocean.

  4. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean

    PubMed Central

    Lavery, Trish J.; Roudnew, Ben; Gill, Peter; Seymour, Justin; Seuront, Laurent; Johnson, Genevieve; Mitchell, James G.; Smetacek, Victor

    2010-01-01

    The iron-limited Southern Ocean plays an important role in regulating atmospheric CO2 levels. Marine mammal respiration has been proposed to decrease the efficiency of the Southern Ocean biological pump by returning photosynthetically fixed carbon to the atmosphere. Here, we show that by consuming prey at depth and defecating iron-rich liquid faeces into the photic zone, sperm whales (Physeter macrocephalus) instead stimulate new primary production and carbon export to the deep ocean. We estimate that Southern Ocean sperm whales defecate 50 tonnes of iron into the photic zone each year. Molar ratios of Cexport ∶Feadded determined during natural ocean fertilization events are used to estimate the amount of carbon exported to the deep ocean in response to the iron defecated by sperm whales. We find that Southern Ocean sperm whales stimulate the export of 4 × 105 tonnes of carbon per year to the deep ocean and respire only 2 × 105 tonnes of carbon per year. By enhancing new primary production, the populations of 12 000 sperm whales in the Southern Ocean act as a carbon sink, removing 2 × 105 tonnes more carbon from the atmosphere than they add during respiration. The ability of the Southern Ocean to act as a carbon sink may have been diminished by large-scale removal of sperm whales during industrial whaling. PMID:20554546

  5. Quantifying export production in the Southern Ocean: Implications for the Baxs proxy

    NASA Astrophysics Data System (ADS)

    Hernandez-Sanchez, Maria T.; Mills, Rachel A.; Planquette, HéLèNe; Pancost, Richard D.; Hepburn, Laura; Salter, Ian; Fitzgeorge-Balfour, Tania

    2011-12-01

    The water column and sedimentary Baxs distribution around the Crozet Plateau is used to decipher the controls and timing of barite formation and to evaluate how export production signals are recorded in sediments underlying a region of natural Fe fertilization within the Fe limited Southern Ocean. Export production estimated from preserved, vertical sedimentary Baxs accumulation rates are compared with published export fluxes assessed from an integrated study of the biological carbon pump to determine the validity of Baxs as a quantitative proxy under different Fe supply conditions typical of the Southern Ocean. Detailed assessment of the geochemical partitioning of Ba in sediments and the lithogenic end-member allows appropriate correction of the bulk Ba content and determination of the Baxs content of sediments and suspended particles. The upper water column distribution of Baxs is extremely heterogeneous spatially and temporally. Organic carbon/Baxs ratios in deep traps from the Fe fertilized region are similar to other oceanic settings allowing quantification of the inferred carbon export based on established algorithms. There appears to be some decoupling of POC and Ba export in the Fe limited region south of the Plateau. The export production across the Crozet Plateau inferred from the Baxs sedimentary proxy indicates that the Fe fertilized area to the north of the Plateau experiences enhanced export relative to equivalent Southern Ocean settings throughout the Holocene and that this influence may also have impacted the site to the south for significant periods. This interpretation is corroborated by alternative productivity proxies (opal accumulation, 231Paxs/230Thxs). Baxs can be used to quantify export production in complex settings such as naturally Fe-fertilized (volcanoclastic) areas, providing appropriate lithogenic correction is undertaken, and sediment focusing is corrected for along with evaluation of barite preservation.

  6. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  7. Global assessment of ocean carbon export by combining satellite observations and food-web models

    NASA Astrophysics Data System (ADS)

    Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.

    2014-03-01

    The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

  8. Export of dissolved inorganic nutrients to the northern Indian Ocean from the Indian monsoonal rivers during discharge period

    NASA Astrophysics Data System (ADS)

    Krishna, M. S.; Prasad, M. H. K.; Rao, D. B.; Viswanadham, R.; Sarma, V. V. S. S.; Reddy, N. P. C.

    2016-01-01

    Coastal regions are highly productive due to the nutrients largely supplied by rivers. To examine the contribution of dissolved inorganic nutrients (DIN) by Indian rivers to coastal waters, data were collected near the freshwater heads of 27 monsoonal rivers of peninsular India during three weeks in late July to mid-August, the middle of the principal runoff period of the southwest monsoon of 2011. Twelve researchers in four groups, equipped with car and portable laboratory equipment, sampled mid-stream of each estuary using mechanized boat, and filtered and partly analyzed the water in the evening. The estimated exports were 0.22 ± 0.05, 0.11 ± 0.03, and 1.03 ± 0.26 Tg yr-1 for dissolved inorganic nitrogen, phosphorus and silicate, respectively. Higher amounts of DIN reach the Bay of Bengal than the Arabian Sea due to the higher volume (∼76%) of discharge to the former. In contrast, the export of dissolved inorganic nitrogen is almost same to the Bay of Bengal (0.12 ± 0.03 Tg yr-1) and Arabian Sea (0.10 ± 0.02 Tg yr-1) principally due to the polluted Narmada and Tapti rivers in the northwest. Including input from the glacial rivers, Ganges, Brahmaputra and Indus, it is estimated that the northern Indian Ocean receives ∼1.84 ± 0.46, 0.28 ± 0.07 and 3.58 ± 0.89 Tg yr-1 of nitrate, phosphate and silicate, respectively, which are significantly lower than the earlier estimates of DIN export from the Indian rivers based on DIN measured in the mid or upstream rivers. Such low fluxes in this study were attributed to efficient retention/elimination of DIN (∼91%) before reaching the coastal ocean. Hence, this study suggests that the importance of sampling locations for estimating nutrient fluxes to the coastal ocean. Riverine DIN export of 1.84 ± 0.46 Tg yr-1 would support 12.2 ± 3.1 Tg C yr-1 of new production in coastal waters of the northern Indian Ocean that results in a removal of 12.2 ± 3.1 Tg atmospheric CO2 yr-1.

  9. Assessment of Export Efficiency Equations in the Southern Ocean Applied to Satellite-Based Net Primary Production

    NASA Astrophysics Data System (ADS)

    Arteaga, Lionel; Haëntjens, Nils; Boss, Emmanuel; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2018-04-01

    Carbon export efficiency (e-ratio) is defined as the fraction of organic carbon fixed through net primary production (NPP) that is exported out of the surface productive layer of the ocean. Recent observations for the Southern Ocean suggest a negative e-ratio versus NPP relationship, and a reduced dependency of export efficiency on temperature, different than in the global domain. In this study, we complement information from a passive satellite sensor with novel space-based lidar observations of ocean particulate backscattering to infer NPP over the entire annual cycle, and estimate Southern Ocean export rates from five different empirical models of export efficiency. Inferred Southern Ocean NPP falls within the range of previous studies, with a mean estimate of 15.8 (± 3.9) Pg C yr-1 for the region south of 30°S during the 2005-2016 period. We find that an export efficiency model that accounts for silica(Si)-ballasting, which is constrained by observations with a negative e-ratio versus NPP relationship, shows the best agreement with in situ-based estimates of annual net community production (annual export of 2.7 ± 0.6 Pg C yr-1 south of 30°S). By contrast, models based on the analysis of global observations with a positive e-ratio versus NPP relationship predict annually integrated export rates that are ˜ 33% higher than the Si-dependent model. Our results suggest that accounting for Si-induced ballasting is important for the estimation of carbon export in the Southern Ocean.

  10. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  11. Sensitivity of the Tropical Pacific Ocean to Precipitation Induced Freshwater Flux

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Schopf, Paul S.

    1999-01-01

    We have performed a series of experiments using an ocean model to study the sensitivity of tropical Pacific Ocean to variations in precipitation induced freshwater fluxes. Variations in these fluxes arise from natural causes on all time scales. In addition, estimates of these fluxes are uncertain because of differences among measurement techniques. The model used is a quasi-isopycnal model, covering the Pacific from 40 S to 40 N. The surface forcing is constructed from observed wind stress, evaporation, precipitation, and surface temperature (SST) fields. The heat flux is produced with an iterative technique so as to maintain the model close to the observed climatology, but with only a weak damping to that climatology. Climatological estimates of evaporation are combined with various estimates of precipitation to determine the net surface freshwater flux. Results indicate that increased freshwater input decreases salinity as expected, but increases temperatures in the upper ocean. Using the freshwater flux estimated from the Microwave Sounding Unit leads to a warming of up to 0.6 C in the western Pacific over a case with zero net freshwater flux. SST is sensitive to the discrepancies among different precipitation observations, with root-mean-square differences in SST on the order of 0.2-0.3 C. The change in SST is more pronounced in the eastern Pacific, with differences of over 1 C found among the various precipitation products. Interannual variation in precipitation during El Nino events leads to increased warming. During the winter of 1982-83, freshwater flux accounts for about 0.4 C (approximately 10-15% of the maximum warming) of the surface warming in the central-eastern Pacific. Thus, the error of SST caused by the discrepancies in precipitation products is more than half of the SST anomaly produced by the interannual variability of observed precipitation. Further experiments, in which freshwater flux anomalies are imposed in the western, central, and eastern

  12. Ocean export production and foraminiferal stable isotopes in the Antarctic Southern Ocean across the mid-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Hasenfratz, A. P.; Martinez-Garcia, A.; Jaccard, S.; Hodell, D. A.; Vance, D.; Bernasconi, S. M.; Greaves, M.; Haug, G. H.

    2014-12-01

    Changes in buoyancy forcing in the Antarctic Zone (AZ) of the Southern Ocean are believed to play an instrumental role in modulating atmospheric CO2 concentrations during glacial cycles by regulating the transfer of carbon between the ocean interior and the atmosphere. Indeed, a million-year-spanning high-resolution excess Barium record from the AZ of the South Atlantic (ODP 1094), which traces changes in export production, shows decreased export production during cold periods suggesting decreased overturning. Here, we extend this AZ export production record back to 1.6 Myr. In addition, we present new carbon and oxygen isotope records of benthic and planktic foraminifera from the same site, complemented by Mg/Ca measurements in some intervals. The interpretation of these new data in the context of other South Atlantic records contributes to a better understanding of Southern Ocean hydrography and its role in modulating glacial/interglacial cycles over the past 1.6 Myr.

  13. Changes in the Composition of the Fram Strait Freshwater Outflow

    NASA Astrophysics Data System (ADS)

    Dodd, Paul; Granskog, Mats; Fransson, Agneta; Chierici, Melissa; Stedmon, Colin

    2016-04-01

    Fram Strait is the largest gateway and only deep connection between the Arctic Ocean and the subpolar oceans. Monitoring the exchanges through Fram Strait allows us to detect and understand current changes occurring in the Arctic Ocean and to predict the effects of those changes on the Arctic and Subarctic climate and ecosystems. Polar water, recirculating Atlantic Water and deeper water masses exported from the Arctic Ocean through western Fram Strait are monitored year-round by an array of moored instruments along 78°50'N, continuously maintained by the Norwegian Polar Institute since the 1990s. Complimentary annual hydrographic sections have been repeated along the same latitude every September. This presentation will focus on biogeochemical tracer measurements collected along repeated sections from 1997-2015, which can be used to identify freshwater from different sources and reveal the causes of variations in total volume of freshwater exported e. g.: pulses of freshwater from the Pacific. Repeated tracer sections across Fram Strait reveal significant changes in the composition of the outflow in recent years, with recent sections showing positive fractions of sea ice meltwater at the surface near the core of the EGC, suggesting that more sea ice melts back into the surface than previously. The 1997-2015 time series of measurements reveals a strong anti-correlation between run-off and net sea ice meltwater inventories, suggesting that run-off and brine may be delivered to Fram Strait together from a common source. While the freshwater outflow at Fram Strait typically exhibits a similar run-off to net sea ice meltwater ratio to the central Arctic Ocean and Siberian shelves, we find that the ratio of run-off to sea ice meltwater at Fram Strait is decreasing with time, suggesting an increased surface input of sea ice meltwater in recent years. In 2014 and 2015 measurements of salinity, δ18O and total alkalinity were collected from sea ice cores as well as the

  14. 234Th-based export fluxes during a natural iron fertilization experiment in the Southern Ocean (KEOPS)

    NASA Astrophysics Data System (ADS)

    Savoye, N.; Trull, T. W.; Jacquet, S. H. M.; Navez, J.; Dehairs, F.

    2008-03-01

    Five iron-fertilization experiments in the Southern Ocean have clearly demonstrated that adding iron increases primary production, but the implications for carbon export to the ocean interior have been less clear. This reflects both observational limitations of short-term experiments and their uncertain relevance to quantifying ecosystem level processes that are likely to be structured differently under conditions of punctual versus persistent stimulation. To avoid these biases, KEOPS (KErguelen Ocean and Plateau compared Study) investigated the naturally iron-fertilized Kerguelen Plateau region in the Indian Sector of the Southern Ocean that exhibits an annual phytoplankton bloom. Here, we report particulate organic carbon (POC) and nitrogen export from this system based on the 234Th approach. Results indicate that the export fluxes were variable both on and off the Kerguelen Plateau (9.0-38.4 mmol C m -2 d -1 and 1.6-4.8 mmol N m -2 d -1) and were in the range of values reported for natural Southern Ocean ecosystems. Export fluxes were compared at two reference stations, one above and one outside the Plateau. The station above the plateau was characterized by higher iron supply and export fluxes compared to the station outside the plateau. The difference in the export flux between these two reference stations defines the export excess induced by iron fertilization. It was 10.8±4.9 mmol C m -2 d -1 and 0.9±0.7 mmol N m -2 d -1 at 100 m, and 14.2±7.7 mmol C m -2 d -1 and 2.0±1.3 mmol N m -2 d -1 at 200 m. This POC export excess was similar to those found during other studies of artificial (SOFeX) and natural (CROZEX) iron fertilization in the Southern Ocean. The examination of the export efficiency (defined as the ratio of export to primary production) revealed significant variability over the plateau related to the temporal decoupling of production and export during the demise of the bloom. On average, the export efficiency was lower over the plateau than in

  15. A Meteoric Water Budget for the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Alkire, Matthew B.; Morison, James; Schweiger, Axel; Zhang, Jinlun; Steele, Michael; Peralta-Ferriz, Cecilia; Dickinson, Suzanne

    2017-12-01

    A budget of meteoric water (MW = river runoff, net precipitation minus evaporation, and glacial meltwater) over four regions of the Arctic Ocean is constructed using a simple box model, regional precipitation-evaporation estimates from reanalysis data sets, and estimates of import and export fluxes derived from the literature with a focus on the 2003-2008 period. The budget indicates an approximate/slightly positive balance between MW imports and exports (i.e., no change in storage); thus, the observed total freshwater increase observed during this time period likely resulted primarily from changes in non-MW freshwater components (i.e., increases in sea ice melt or Pacific water and/or a decrease in ice export). Further, our analysis indicates that the MW increase observed in the Canada Basin resulted from a spatial redistribution of MW over the Arctic Ocean. Mean residence times for MW were estimated for the Western Arctic (5-7 years), Eastern Arctic (3-4 years), and Lincoln Sea (1-2 years). The MW content over the Siberian shelves was estimated (˜14,000 km3) based on a residence time of 3.5 years. The MW content over the entire Arctic Ocean was estimated to be ≥44,000 km3. The MW export through Fram Strait consisted mostly of water from the Eastern Arctic (3,237 ± 1,370 km3 yr-1) whereas the export through the Canadian Archipelago was nearly equally derived from both the Western Arctic (1,182 ± 534 km3 yr-1) and Lincoln Sea (972 ± 391 km3 yr-1).

  16. Latitudinal distributions of particulate carbon export across the North Western Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Puigcorbé, Viena; Roca-Martí, Montserrat; Masqué, Pere; Benitez-Nelson, Claudia; Rutgers van der Loeff, Michiel; Bracher, Astrid; Moreau, Sebastien

    2017-11-01

    234Th-derived carbon export fluxes were measured in the Atlantic Ocean under the GEOTRACES framework to evaluate basin-scale export variability. Here, we present the results from the northern half of the GA02 transect, spanning from the equator to 64°N. As a result of limited site-specific C/234Th ratio measurements, we further combined our data with previous work to develop a basin wide C/234Th ratio depth curve. While the magnitude of organic carbon fluxes varied depending on the C/234Th ratio used, latitudinal trends were similar, with sizeable and variable organic carbon export fluxes occurring at high latitudes and low to negligible fluxes occurring in oligotrophic waters. Our results agree with previous studies, except at the boundaries between domains, where fluxes were relatively enhanced. Three different models were used to obtain satellite-derived net primary production (NPP). In general, NPP estimates had similar trends along the transect, but there were significant differences in the absolute magnitude depending on the model used. Nevertheless, organic carbon export efficiencies were generally < 25%, with the exception of a few stations located in the transition area between the riverine and the oligotrophic domains and between the oligotrophic and the temperate domains. Satellite-derived organic carbon export models from Dunne et al. (2005) (D05), Laws et al. (2011) (L11) and Henson et al. (2011) (H11) were also compared to our 234Th-derived carbon exports fluxes. D05 and L11 provided estimates closest to values obtained with the 234Th approach (within a 3-fold difference), but with no clear trends. The H11 model, on the other hand, consistently provided lower export estimates. The large increase in export data in the Atlantic Ocean derived from the GEOTRACES Program, combined with satellite observations and modeling efforts continue to improve the estimates of carbon export in this ocean basin and therefore reduce uncertainty in the global carbon

  17. Coralline algal Barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability

    PubMed Central

    Hetzinger, S.; Halfar, J.; Zack, T.; Mecking, J. V.; Kunz, B. E.; Jacob, D. E.; Adey, W. H.

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes. PMID:23636135

  18. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    PubMed

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  19. Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans

    NASA Astrophysics Data System (ADS)

    Kemp, A. E. S.; Pearce, R. B.; Grigorov, I.; Rance, J.; Lange, C. B.; Quilty, P.; Salter, I.

    2006-12-01

    From a synthesis of recent oceanic observations and paleo-data it is evident that certain species of giant diatoms including Rhizosolenia spp. Thalassiothrix spp. and Ethmodiscus rex may become concentrated at oceanic frontal zones and subsequently form episodes of mass flux to the sediment. Within the nutrient bearing waters advecting towards frontal boundaries, these species are generally not dominant, but they appear selectively segregated at fronts, and thus may dominate the export flux. Ancient Thalassiothrix diatom mat deposits in the eastern equatorial Pacific and beneath the Polar Front in the Southern Ocean record the highest open ocean sedimentation rates ever documented and represent vast sinks of silica and carbon. Several of the species involved are adapted to a stratified water column and may thrive in Deep Chlorophyll Maxima. Thus in oceanic regions and/or at times prone to enhanced surface water stratification (e.g., during meltwater pulses) they provide a mechanism for generating substantial biomass at depth and its subsequent export with concomitant implications for Si export and C drawdown. This ecology has important implications for ocean biogeochemical models suggesting that more than one diatom "functional type" should be used. In spite of the importance of these giant diatoms for biogeochemical cycling, their large size coupled with the constraints of conventional oceanographic survey schemes and techniques means that they are undersampled. An improved insight into these key species will be an important prerequisite for enhancing our understanding of marine biogeochemical cycling and for assessing the impacts of climate change on ocean export production.

  20. Heat and Freshwater Convergence Anomalies in the Atlantic Ocean Inferred from Observations

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.; Drushka, K.; Thompson, L.

    2015-12-01

    Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean. An "unknown control" version of a Kalman filter in each of eight regions extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content. The model is run for 1993-2014. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding a spatially uniform, time-varying MHT derived from updated MHT estimates at 41N (Willis 2010). Estimated anomalies in MHT are comparable to those recently observed at the RAPID/MOCHA line at 26.5N. MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. MHT anomalies at 35S resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates in the Atlantic Ocean (67N to 35S) resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009). Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.

  1. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    NASA Astrophysics Data System (ADS)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  2. Sources of Meridional Heat and Freshwater Transport Anomalies in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.; Thompson, L.; Drushka, K.

    2016-02-01

    Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean for 1993-2014. A Kalman filter extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content in each of eight regions. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding an integration constant derived from updated MHT estimates at 41N (Willis 2010). MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. Anomalies in MHT are comparable to those observed at the RAPID/MOCHA line at 26.5N and show a continued recovery from the minimum in 2010 throughout the Atlantic. MHT anomalies resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates are also insensitive to choice of flux products. Interannual anomalies of FWC integrated from 67N to 35S resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009), whereas the trend is consistent with estimates of freshwater input from Greenland. Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.

  3. Enhanced POC export in the oligotrophic northwest Pacific Ocean after extreme weather events

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Shu; Hung, Chin-Chang; Gong, Gwo-Ching; Chou, Wen-Chen; Chung, Chih-Ching; Shih, Yung-Yen; Wang, Chau-Chang

    2013-11-01

    study effects of extreme weather events (EWEs, e.g., dust storm and typhoon) on the export of particulate organic carbon (POC) measured by a floating sediment trap in the oligotrophic ocean, eight sea-going expeditions were conducted in the oligotrophic northwest Pacific (NWP) in 2007 and 2008, covering all four seasons and the passage of several EWEs. Results of year-round field observations demonstrate that the POC export fluxes in the oligotrophic NWP did not exhibit apparent seasonal variations yielding an average flux of 36.9 ± 5.8 mg-C m-2 d-1 without EWE effects. With EWE effects, however, the POC export flux (51.7 ± 13.2 mg-C m-2 d-1) showed an approximately 40% increase compared to the average flux measured without EWE effects. These results suggest that EWEs can trigger elevated POC export from the euphotic zone in the oligotrophic ocean.

  4. Global patterns of organic carbon export and sequestration in the ocean (Arne Richter Award for Outstanding Young Scientists)

    NASA Astrophysics Data System (ADS)

    Henson, S.; Sanders, R.; Madsen, E.; Le Moigne, F.; Quartly, G.

    2012-04-01

    A major term in the global carbon cycle is the ocean's biological carbon pump which is dominated by sinking of small organic particles from the surface ocean to its interior. Here we examine global patterns in particle export efficiency (PEeff), the proportion of primary production that is exported from the surface ocean, and transfer efficiency (Teff), the fraction of exported organic matter that reaches the deep ocean. This is achieved through extrapolating from in situ estimates of particulate organic carbon export to the global scale using satellite-derived data. Global scale estimates derived from satellite data show, in keeping with earlier studies, that PEeff is high at high latitudes and low at low latitudes, but that Teff is low at high latitudes and high at low latitudes. However, in contrast to the relationship observed for deep biomineral fluxes in previous studies, we find that Teff is strongly negatively correlated with opal export flux from the upper ocean, but uncorrelated with calcium carbonate export flux. We hypothesise that the underlying factor governing the spatial patterns observed in Teff is ecosystem function, specifically the degree of recycling occurring in the upper ocean, rather than the availability of calcium carbonate for ballasting. Finally, our estimate of global integrated carbon export is only 50% of previous estimates. The lack of consensus amongst different methodologies on the strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains incomplete.

  5. Spatial variability of upper ocean POC export in the Bay of Bengal and the Indian Ocean determined using particle-reactive 234Th

    NASA Astrophysics Data System (ADS)

    Subha Anand, S.; Rengarajan, R.; Sarma, V. V. S. S.; Sudheer, A. K.; Bhushan, R.; Singh, S. K.

    2017-05-01

    The northern Indian Ocean is globally significant for its seasonally reversing winds, upwelled nutrients, high biological production, and expanding oxygen minimum zones. The region acts as sink and source for atmospheric CO2. However, the efficiency of the biological carbon pump to sequester atmospheric CO2 and export particulate organic carbon from the surface is not well known. To quantify the upper ocean carbon export flux and to estimate the efficiency of biological carbon pump in the Bay of Bengal and the Indian Ocean, seawater profiles of total 234Th were measured from surface to 300 m depth at 13 stations from 19.9°N to 25.3°S in a transect along 87°E, during spring intermonsoon period (March-April 2014). Results showed enhanced in situ primary production in the equatorial Indian Ocean and the central Bay of Bengal and varied from 13.2 to 173.8 mmol C m-2 d-1. POC export flux in this region varied from 0 to 7.7 mmol C m-2 d-1. Though high carbon export flux was found in the equatorial region, remineralization of organic carbon in the surface and subsurface waters considerably reduced organic carbon export in the Bay of Bengal. Annually recurring anticyclonic eddies enhanced organic carbon utilization and heterotrophy. Oxygen minimum zone developed due to stratification and poor ventilation was intensified by subsurface remineralization. 234Th-based carbon export fluxes were not comparable with empirical statistical model estimates based on primary production and temperature. Region-specific refinement of model parameters is required to accurately predict POC export fluxes.

  6. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.

    PubMed

    Garabato, Alberto C Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C; Heywood, Karen J; Jenkins, Adrian; Firing, Yvonne L; Kimura, Satoshi

    2017-02-09

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  7. Isotopes and genes reveal freshwater origins of Chinook salmon Oncorhynchus tshawytscha aggregations in California’s coastal ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rachel C.; Garza, John Carlos; MacFarlane, R. Bruce

    The ability of salmon to navigate from the ocean back to their river of origin to spawn acts to reinforce local adaptation and maintenance of unique and heritable traits among salmon populations. Here, the extent to which Chinook salmon Oncorhynchus tshawytscha from the same freshwater breeding groups associate together in the ocean at regional and smaller-scale aggregations prior to homeward migration is evaluated. Natural variation in salmon otolith daily growth bands, strontium isotopes ( 87Sr/ 86Sr), and microsatellite DNA were used as intrinsic tags to link the distributions of fish caught in the ocean with their freshwater origins. Adults weremore » caught from vessels by hook and line in small aggregations (7-18 ind.) at the same geographic location (1-24 km of coastline) and time (4-36 h) from 3 ocean regions along central California, USA. Salmon caught together in aggregations were from the same genetic group, and to a lesser extent, of the same natal origin (individual rivers or hatcheries). However, at regional scales, adult salmon mixed. Central Valley winter-run Chinook salmon caught together in the ocean varied in the duration of freshwater rearing for up to 2-3 mo prior to seaward migration, suggesting associations within the group were not established in freshwater or maintained over the lifetime of the fish. Our findings are consistent with coarser information indicating stocks are distributed differently in time and space, but larger sample sizes are required to evaluate the consistency of patterns at smaller spatial scales. This study uncovers freshwater associations prior to homeward migration, a principle and undocumented prerequisite of the collective navigation hypothesis.« less

  8. Isotopes and genes reveal freshwater origins of Chinook salmon Oncorhynchus tshawytscha aggregations in California’s coastal ocean

    DOE PAGES

    Johnson, Rachel C.; Garza, John Carlos; MacFarlane, R. Bruce; ...

    2016-04-21

    The ability of salmon to navigate from the ocean back to their river of origin to spawn acts to reinforce local adaptation and maintenance of unique and heritable traits among salmon populations. Here, the extent to which Chinook salmon Oncorhynchus tshawytscha from the same freshwater breeding groups associate together in the ocean at regional and smaller-scale aggregations prior to homeward migration is evaluated. Natural variation in salmon otolith daily growth bands, strontium isotopes ( 87Sr/ 86Sr), and microsatellite DNA were used as intrinsic tags to link the distributions of fish caught in the ocean with their freshwater origins. Adults weremore » caught from vessels by hook and line in small aggregations (7-18 ind.) at the same geographic location (1-24 km of coastline) and time (4-36 h) from 3 ocean regions along central California, USA. Salmon caught together in aggregations were from the same genetic group, and to a lesser extent, of the same natal origin (individual rivers or hatcheries). However, at regional scales, adult salmon mixed. Central Valley winter-run Chinook salmon caught together in the ocean varied in the duration of freshwater rearing for up to 2-3 mo prior to seaward migration, suggesting associations within the group were not established in freshwater or maintained over the lifetime of the fish. Our findings are consistent with coarser information indicating stocks are distributed differently in time and space, but larger sample sizes are required to evaluate the consistency of patterns at smaller spatial scales. This study uncovers freshwater associations prior to homeward migration, a principle and undocumented prerequisite of the collective navigation hypothesis.« less

  9. The export and fate of organic matter in the ocean: New constraints from combining satellite and oceanographic tracer observations

    NASA Astrophysics Data System (ADS)

    DeVries, Tim; Weber, Thomas

    2017-03-01

    The ocean's biological pump transfers carbon from the surface euphotic zone into the deep ocean, reducing the atmospheric CO2 concentration. Despite its climatic importance, there are large uncertainties in basic metrics of the biological pump. Previous estimates of the strength of the biological pump, as measured by the amount of organic carbon exported from the euphotic zone, range from about 4 to 12 Pg C yr-1. The fate of exported carbon, in terms of how efficiently it is transferred into the deep ocean, is even more uncertain. Here we present a new model of the biological pump that assimilates satellite and oceanographic tracer observations to constrain rates and patterns of organic matter production, export, and remineralization in the ocean. The data-assimilated model predicts a global particulate organic carbon (POC) flux out of the euphotic zone of ˜9 Pg C yr-1. The particle export ratio (the ratio of POC export to net primary production) is highest at high latitudes and lowest at low latitudes, but low-latitude export is greater than predicted by previous models, in better agreement with observed patterns of long-term carbon export. Particle transfer efficiency (Teff) through the mesopelagic zone is controlled by temperature and oxygen, with highest Teff for high-latitude regions and oxygen minimum zones. In contrast, Teff in the deep ocean (below 1000 m) is controlled by particle sinking speed, with highest deep ocean Teff below the subtropical gyres. These results emphasize the utility of both remote sensing and oceanographic tracer observations for constraining the operation of the biological pump.

  10. Fluvial Export Variability Of Limiting Nutrient Fluxes To The Indian Ocean From Kelani, Kalu and Gin Rivers Of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Silva, A. N.; Vlahos, P.

    2016-12-01

    Inorganic `reactive' nutrients hold the highest importance in understanding the role of limiting nutrients in the ocean since they facilitate marine biological productivity and carbon sequestration that would eventually pave the way to regulate the biogeochemical climate feedbacks. Significant inorganic fractions are expected to be exported episodically to the ocean from fluvial fluxes though this is poorly understood. Thus, no considerable amounts of published work regarding the fluxes from Sri Lankan freshwater streams have ever been recorded. A study was carried out to quantify the contribution of Kelani, Kalu and Gin Rivers, three major rivers in the wet zone of Sri Lanka, in exporting major limiting nutrient fluxes to the Indian Ocean; to understand the significance of their variability patterns with rainfall and understand differences in their inputs. The study was conducted during the summer monsoonal period from late August to early November at two-three week intervals where water samples were collected for ammonia, nitrite, nitrate, orthophosphate, silica, sulfate and iron analysis by Colorimetric Spectroscopy. Discharge and rainfall data were retrieved from the Department of Irrigation and Department of Meteorology, Sri Lanka respectively. According to Two Way ANOVA, none of the individual fluxes showed significant differences (p>0.1) both in their temporal and spatial variability suggesting that studied rivers respond similarly in fluvial transportation owing to the similar rainfall intensities observed during the study period in the wet zone. Linear Regression Analysis indicates that only PO43- (p<0.01), SO42- (p<0.01) and NO2-(p<0.01 for Kelani and Kalu; 0.0.1Key words; nutrients, fluvial, fluxes, Redfield ratios

  11. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Aluwihare, Lihini I.; Barbeau, Katherine A.; Chekalyuk, Alexander M.; Goericke, Ralf; Miller, Arthur J.; Ohman, Mark D.; Ruacho, Angel; Song, Hajoon; Stephens, Brandon M.; Landry, Michael R.

    2017-02-01

    Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg Cṡm-2ṡd-1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ˜225 mg Cṡm-2ṡd-1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

  12. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction

    PubMed Central

    Stukel, Michael R.; Aluwihare, Lihini I.; Barbeau, Katherine A.; Chekalyuk, Alexander M.; Goericke, Ralf; Miller, Arthur J.; Ohman, Mark D.; Ruacho, Angel; Song, Hajoon; Stephens, Brandon M.; Landry, Michael R.

    2017-01-01

    Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C⋅m−2⋅d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C⋅m−2⋅d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems. PMID:28115723

  13. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    USGS Publications Warehouse

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  14. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    NASA Astrophysics Data System (ADS)

    Battaglia, G.; Steinacher, M.; Joos, F.

    2015-12-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally-constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Latin-Hypercube scheme to construct a 1000 member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates either a strong, a weak or no dependency on CaCO3 saturation is assumed. Median (68 % confidence interval) global CaCO3 export is 0.82 (0.67-0.98) Gt PIC yr-1, within the lower half of previously published estimates (0.4-1.8 Gt PIC yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. Dissolution within the 200 to 1500 m depth range (0.33; 0.26-0.40 Gt PIC yr-1) is substantially lower than inferred from the TA*-CFC age method (1 ± 0.5 Gt PIC yr-1). The latter estimate is likely biased high as the TA*-CFC method neglects transport. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport time scales for the different setups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve

  15. Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge

    PubMed Central

    Syed, Tajdarul H.; Famiglietti, James S.; Chambers, Don P.; Willis, Josh K.; Hilburn, Kyle

    2010-01-01

    Freshwater discharge from the continents is a key component of Earth’s water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994–2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km3/y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km3/y2, which was largely attributed to an increase of global-ocean evaporation (768 km3/y2). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle. PMID:20921364

  16. Biome-specific scaling of ocean productivity, temperature, and carbon export efficiency

    NASA Astrophysics Data System (ADS)

    Britten, Gregory L.; Primeau, François W.

    2016-05-01

    Mass conservation and metabolic theory place constraints on how marine export production (EP) scales with net primary productivity (NPP) and sea surface temperature (SST); however, little is empirically known about how these relationships vary across ecologically distinct ocean biomes. Here we compiled in situ observations of EP, NPP, and SST and used statistical model selection theory to demonstrate significant biome-specific scaling relationships among these variables. Multiple statistically similar models yield a threefold variation in the globally integrated carbon flux (~4-12 Pg C yr-1) when applied to climatological satellite-derived NPP and SST. Simulated NPP and SST input variables from a 4×CO2 climate model experiment further show that biome-specific scaling alters the predicted response of EP to simulated increases of atmospheric CO2. These results highlight the need to better understand distinct pathways of carbon export across unique ecological biomes and may help guide proposed efforts for in situ observations of the ocean carbon cycle.

  17. Satellite Synthetic Aperture Radar Detection of Ocean Internal Waves in the South China Sea

    DTIC Science & Technology

    2006-09-30

    waves will occur and what effects they will have on the hydrodynamic and acoustic environment. This project focuses on the use of remotely sensed...variability of the ITF and its associated heat and freshwater flux exported into the Indian Ocean. REFERENCES Boyer, T., and S. Levites , Quality

  18. Magnitude of the Freshwater Turtle Exports from the US: Long Term Trends and Early Effects of Newly Implemented Harvest Management Regimes

    PubMed Central

    Mali, Ivana; Vandewege, Michael W.; Davis, Scott K.; Forstner, Michael R. J.

    2014-01-01

    Unregulated commercial harvest remains a major threat for turtles across the globe. Due to continuing demand from Asian markets, a significant number of turtles are exported from the United States of America (US). Beginning in 2007, several southeastern states in the US implemented restrictions on the commercial harvest of turtles, in order to address the unsustainable take. We have summarized freshwater turtle exports from the US between 2002 and 2012 and demonstrated that the magnitude of turtle exports from the US remained high although the exports decreased throughout the decade. Louisiana and California were the major exporters. The majority of exports were captive bred, and from two genera, Pseudemys and Trachemys. We review the changes over the decade and speculate that the increase in export of wild turtles out of Louisiana after 2007 could be a consequence of strict regulations in surrounding states (e.g., Alabama, Florida). We suggest that if wild turtle protection is a goal for conservation efforts, then these states should work together to develop comprehensive regulation reforms pertaining to the harvest of wild turtles. PMID:24475128

  19. Buffering of Ocean Export Production by Flexible Elemental Stoichiometry of Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Tanioka, Tatsuro; Matsumoto, Katsumi

    2017-10-01

    One of the most important factors that determine the ocean-atmosphere carbon partitioning is the sinking of particulate organic matter (POM) from the surface ocean to the deep ocean. The amount of carbon (C) removed from the surface ocean by this POM export production depends critically on the elemental ratio in POM of C to nitrogen (N) and phosphorus (P), two essential elements that limit productivity. Recent observations indicate that P:N:C in marine POM varies both spatially and temporally due to chemical, physical, and ecological dynamics. In a new approach to predicting a flexible P:C ratio, we developed a power law model with a stoichiometry sensitivity factor, which is able to relate P:C of POM to ambient phosphate concentration. The new factor is robust, measurable, and biogeochemically meaningful. Using the new stoichiometry sensitivity factor, we present a first-order estimate that P:C plasticity could buffer against a generally expected future reduction in global carbon export production by up to 5% under a future warming scenario compared to a fixed, Redfield P:C. Further, we demonstrate that our new stoichiometry model can be implemented successfully and easily in a global model to reproduce the large-scale P:N:C variability in the ocean.

  20. Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Tedstone, A. J.; King, M. D.; Howat, I. M.; Enderlin, E. M.; van den Broeke, M. R.; Noel, B.

    2018-03-01

    The freshwater budget of the Arctic and sub-polar North Atlantic Oceans has been changing due, primarily, to increased river runoff, declining sea ice and enhanced melting of Arctic land ice. Since the mid-1990s this latter component has experienced a pronounced increase. We use a combination of satellite observations of glacier flow speed and regional climate modeling to reconstruct the land ice freshwater flux from the Greenland ice sheet and Arctic glaciers and ice caps for the period 1958-2016. The cumulative freshwater flux anomaly exceeded 6,300 ± 316 km3 by 2016. This is roughly twice the estimate of a previous analysis that did not include glaciers and ice caps outside of Greenland and which extended only to 2010. From 2010 onward, the total freshwater flux is about 1,300 km3/yr, equivalent to 0.04 Sv, which is roughly 40% of the estimated total runoff to the Arctic for the same time period. Not all of this flux will reach areas of deep convection or Arctic and Sub-Arctic seas. We note, however, that the largest freshwater flux anomalies, grouped by ocean basin, are located in Baffin Bay and Davis Strait. The land ice freshwater flux displays a strong seasonal cycle with summer time values typically around five times larger than the annual mean. This will be important for understanding the impact of these fluxes on fjord circulation, stratification, and the biogeochemistry of, and nutrient delivery to, coastal waters.

  1. Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems.

    PubMed

    Rappé; Vergin; Giovannoni

    2000-09-01

    In order to extend previous comparisons between coastal marine bacterioplankton communities and their open ocean and freshwater counterparts, here we summarize and provide new data on a clone library of 105 SSU rRNA genes recovered from seawater collected over the western continental shelf of the USA in the Pacific Ocean. Comparisons to previously published data revealed that this coastal bacterioplankton clone library was dominated by SSU rRNA gene phylotypes originally described from surface waters of the open ocean, but also revealed unique SSU rRNA gene lineages of beta Proteobacteria related to those found in clone libraries from freshwater habitats. beta Proteobacteria lineages common to coastal and freshwater samples included members of a clade of obligately methylotrophic bacteria, SSU rRNA genes affiliated with Xylophilus ampelinus, and a clade related to the genus Duganella. In addition, SSU rRNA genes were recovered from such previously recognized marine bacterioplankton SSU rRNA gene clone clusters as the SAR86, SAR11, and SAR116 clusters within the class Proteobacteria, the Roseobacter clade of the alpha subclass of the Proteobacteria, the marine group A/SAR406 cluster, and the marine Actinobacteria clade. Overall, these results support and extend previous observations concerning the global distribution of several marine planktonic prokaryote SSU rRNA gene phylotypes, but also show that coastal bacterioplankton communities contain SSU rRNA gene lineages (and presumably bacterioplankton) shown previously to be prevalent in freshwater habitats.

  2. Comparative Analysis of Japanese Three-Spined Stickleback Clades Reveals the Pacific Ocean Lineage Has Adapted to Freshwater Environments while the Japan Sea Has Not

    PubMed Central

    Ravinet, Mark; Takeuchi, Naoko; Kume, Manabu; Mori, Seiichi; Kitano, Jun

    2014-01-01

    Divergent selection and adaptive divergence can increase phenotypic diversification amongst populations and lineages. Yet adaptive divergence between different environments, habitats or niches does not occur in all lineages. For example, the colonization of freshwater environments by ancestral marine species has triggered adaptive radiation and phenotypic diversification in some taxa but not in others. Studying closely related lineages differing in their ability to diversify is an excellent means of understanding the factors promoting and constraining adaptive evolution. A well-known example of the evolution of increased phenotypic diversification following freshwater colonization is the three-spined stickleback. Two closely related stickleback lineages, the Pacific Ocean and the Japan Sea occur in Japan. However, Japanese freshwater stickleback populations are derived from the Pacific Ocean lineage only, suggesting the Japan Sea lineage is unable to colonize freshwater. Using stable isotope data and trophic morphology, we first show higher rates of phenotypic and ecological diversification between marine and freshwater populations within the Pacific Ocean lineage, confirming adaptive divergence has occurred between the two lineages and within the Pacific Ocean lineage but not in the Japan Sea lineage. We further identified consistent divergence in diet and foraging behaviour between marine forms from each lineage, confirming Pacific Ocean marine sticklebacks, from which all Japanese freshwater populations are derived, are better adapted to freshwater environments than Japan Sea sticklebacks. We suggest adaptive divergence between ancestral marine populations may have played a role in constraining phenotypic diversification and adaptive evolution in Japanese sticklebacks. PMID:25460163

  3. Comparative analysis of Japanese three-spined stickleback clades reveals the Pacific Ocean lineage has adapted to freshwater environments while the Japan Sea has not.

    PubMed

    Ravinet, Mark; Takeuchi, Naoko; Kume, Manabu; Mori, Seiichi; Kitano, Jun

    2014-01-01

    Divergent selection and adaptive divergence can increase phenotypic diversification amongst populations and lineages. Yet adaptive divergence between different environments, habitats or niches does not occur in all lineages. For example, the colonization of freshwater environments by ancestral marine species has triggered adaptive radiation and phenotypic diversification in some taxa but not in others. Studying closely related lineages differing in their ability to diversify is an excellent means of understanding the factors promoting and constraining adaptive evolution. A well-known example of the evolution of increased phenotypic diversification following freshwater colonization is the three-spined stickleback. Two closely related stickleback lineages, the Pacific Ocean and the Japan Sea occur in Japan. However, Japanese freshwater stickleback populations are derived from the Pacific Ocean lineage only, suggesting the Japan Sea lineage is unable to colonize freshwater. Using stable isotope data and trophic morphology, we first show higher rates of phenotypic and ecological diversification between marine and freshwater populations within the Pacific Ocean lineage, confirming adaptive divergence has occurred between the two lineages and within the Pacific Ocean lineage but not in the Japan Sea lineage. We further identified consistent divergence in diet and foraging behaviour between marine forms from each lineage, confirming Pacific Ocean marine sticklebacks, from which all Japanese freshwater populations are derived, are better adapted to freshwater environments than Japan Sea sticklebacks. We suggest adaptive divergence between ancestral marine populations may have played a role in constraining phenotypic diversification and adaptive evolution in Japanese sticklebacks.

  4. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  5. Quantifying the time lag between organic matter production and export in the surface ocean: Implications for estimates of export efficiency

    NASA Astrophysics Data System (ADS)

    Stange, P.; Bach, L. T.; Le Moigne, F. A. C.; Taucher, J.; Boxhammer, T.; Riebesell, U.

    2017-01-01

    The ocean's potential to export carbon to depth partly depends on the fraction of primary production (PP) sinking out of the euphotic zone (i.e., the e-ratio). Measurements of PP and export flux are often performed simultaneously in the field, although there is a temporal delay between those parameters. Thus, resulting e-ratio estimates often incorrectly assume an instantaneous downward export of PP to export flux. Evaluating results from four mesocosm studies, we find that peaks in organic matter sedimentation lag chlorophyll a peaks by 2 to 15 days. We discuss the implications of these time lags (TLs) for current e-ratio estimates and evaluate potential controls of TL. Our analysis reveals a strong correlation between TL and the duration of chlorophyll a buildup, indicating a dependency of TL on plankton food web dynamics. This study is one step further toward time-corrected e-ratio estimates.

  6. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea-ice cover

    NASA Astrophysics Data System (ADS)

    Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.

    2016-02-01

    In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea-ice covered and salinity stratified ocean, and consists of a sea-ice component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The sea-ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea-ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the sea ice acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in sea ice.

  7. Seasonal Freshwater and Salinity Budgets in the Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Yoo, Jung Moon

    Seasonal freshwater and salt budgets in the tropical Atlantic are examined by incorporating precipitation, estimated from 11 years of outgoing longwave radiation (OLR) data. A spatially dependent formula is developed to estimate rainfall from the OLR data and the height of the base of the trade -wind inversion. This formula has been constructed by comparing rainfall records from twelve islands with the OLR data. Zonal asymmetries due to the differing cloud types in the eastern and western Atlantic and the presence of Saharan sand in the east are included. Significant inconsistencies between results of the present study the seasonal rainfall estimates of Dorman and Bourke (1981) are found. Annual and interannual variations of the moisture and freshwater budgets are examined in the same region. The seasonal moisture budget (E-P) is calculated from the above rainfall and evaporation estimated from surface data. Consistent with previous estimates, we find annual mean deficit of freshwater. The interannual variability of freshwater flux during the period 1974 to 1979 is examined. Seasonal or interannua1 variations of rainfall account for two-thirds of the variations of the freshwater flux. We examine the seasonal freshwater and salt budgets, and obtain their meridional transports by southward integration of their divergence fields. The annual freshwater transport in the tropical Atlantic is northward, ranging from 0 Sv near the equator to 0.3 Sv at 12^circ N and 20^circS. The seasonal meridional transport amounts of freshwater from surface to 500 m depth in the tropical Atlantic Ocean range from 1.35 Sv to -0.45 Sv. The strong northward freshwater transports prevail for the period summer to fall. This seasonal cycle is caused by the shifts of the ITCZ as well as the changes in the local freshwater storage. Annual and seasonal salt budgets are calculated from objectively analyzed historical (1900-1986) salinity observations. The annual salt flux in the tropical Atlantic

  8. Landscape controls on dissolved organic carbon export from watersheds of the British Columbia outer-coast

    NASA Astrophysics Data System (ADS)

    Giesbrecht, I.; Tank, S. E.; Frazer, G. W.; Gonzalez Arriola, S.; Korver, M.; Floyd, B. C.; Oliver, A. A.; Lertzman, K. P.

    2016-12-01

    Global models suggest that the Pacific Coastal Temperate Rainforest of North America (PCTR) exports significant quantities of dissolved organic carbon (DOC) to the coastal ocean. This aquatic flux from land to sea has implications for marine ecosystems and regional carbon budgets. However, DOC concentrations and flux estimates vary substantially across watersheds and drivers of spatial variation are poorly described for this region. For an outer-coast area of the PCTR, with among the highest per unit area DOC yields in the world (Oliver et al. in prep.), we describe and model landscape controls on DOC exports to the coastal ocean. In 2015 we collected three rounds of synoptic samples on Calvert Island, observing a nine-fold variation in DOC concentration (3.8 - 34.3 mg/L) across 59 watersheds that range in size from 0.26 to 21.12 km2 and reach a maximum elevation of 1012 m. We use standard ecosystem maps (Province of BC), LiDAR and other remote sensing data to measure watershed attributes. We use freshwater cation concentrations to explore geochemical signals of bedrock and surficial deposits that may be poorly represented by available geospatial data. We examine the role of topography, climate, waterbodies, geology and the local ecosystem mosaic in controlling DOC concentration and flux. An improved model of spatial controls on freshwater DOC export from the outer-coast of the PCTR will inform regional carbon modeling efforts and enhance our understanding of ecosystem processes at the coastal margin.

  9. Simulating the natural variability of the freshwater budget of the Arctic ocean from the mid to late Holocene using LOVECLIM

    NASA Astrophysics Data System (ADS)

    Davies, F. J.; Goosse, H.; Renssen, H.

    2012-04-01

    The influence of freshwater on the long term climatic variability of the Arctic region is currently of significant interest. Alterations to the natural variability of the oceanic, terrestrial and atmospheric sources of freshwater to the Arctic ocean, caused by anthropogenic induced warming, are likely to have far reaching effects on oceanic processes and climate. A number of these changes are already observable, such as an intensification of the hydrological cycle, a 7% increase in Eurasian river runoff (1936-1999), a 9% reduction of sea-ice extent per decade (1979-2006), a 120km northward migration of permafrost in Northern Canada (1968-1994), and air temperatures 6°C warmer, in parts, from 2007 to 2010, when compared to the 1958-1996 average. All of these changes add another layer of complexity to understanding the role of the freshwater budget, and this makes it difficult to say with any certainty how these future changes will impact freshwater fluxes of the Arctic gateways, such as the Bering Strait, Fram Strait, Canadian Arctic Archipelago and the Barents Sea inflow. Despite these difficulties, there have been studies that have integrated the available data, from both in situ measurements and modelling studies, and used this as a basis to form a picture of the current freshwater budget, and then project upon these hypotheses for the future (Holland et al., 2007). However, one particular aspect of these future projections that is lacking is the accountability of how much future variance is attributable to both natural variability and anthropogenic influences. Here we present results of a mid to late (6-0ka) Holocene transient simulation, using the earth model of intermediate complexity, LOVECLIM (Goosse et al., 2010). The model is forced with orbital and greenhouse gas forcings appropriate for the time period. The results will highlight the natural variability of the oceanic, terrestrial and atmospheric components of the freshwater budget, over decadal and

  10. Mass, heat and freshwater fluxes in the South Indian Ocean

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    1986-01-01

    Six hydrographic sections were used to examine the circulation and property fluxes in the South Indian Ocean from 10 to 32 deg S. The calculations were made by applying an inverse method to the data. In the interior of the South Indian Ocean, the geostrophic flow is generally northward. At 18 deg S, the northward interior mass flux is balanced by the southward Ekman mass flux at the surface, whereas at 32 deg S the northward interior mass flux is balanced by the southward mass flux of the Agulhas Current. There is a weak, southward mass flux of 6 x 10 to the 9th kg/s in the Mozambique Channel. The rate of water exchange between the Pacific Ocean and the Indian Ocean is dependent on the choice of the initial reference level used in the inverse calculation. The choice of 1500 m, the depth of the deep oxygen minimum, has led to a flux of water from the Pacific Ocean to the Indian Ocean at a rate of 6.6 x 10 to the 9th kg/s. Heat flux calculations indicate that the Indian Ocean is exporting heat to the rest of the world's oceans at a rate of -0.69 x 10 to the 15th W at 18 deg S and -0.25 x 10 to the 15th W at 32 deg S (negative values being southward).

  11. Spatio-temporal variability in the freshwater input to the surface water of Southern Ocean

    NASA Astrophysics Data System (ADS)

    Naidu, P. K.; Ghosh, P.; N, A.

    2015-12-01

    Ocean heat content is rising rapidly in high-latitude regions of both hemispheres as a consequence of global warming (e.g., Gille 2002; Karcher et al. 2003; Bindoff et al. 2007; Purkey and Johnson 2010). Recent warming and freshening of Southern Ocean has affected hydrological cycle in terms of increasing tendency of precipitation as liquid water instead of snow. Limited data is available on the extent of fresh water flux by precipitation and sea ice melting to the surface ocean. The spatial extent of sea ice formation is documented based on remote sensing observation. We investigate here spatial variability in freshwater inputs to the Indian sector of Southern Ocean region using combined observation of oxygen isotopes ratios and salinity of surface water during the summer of 2011, 2012 and 2013. Together with this, the measured isotopic ratios of meteoric water and sea ice melt were used in the mass balance equation for deriving the contribution of both of these components in the surface water of southern ocean. The three component mixing equations (Meredith et al., 2013) allowed estimation of fractional contribution of rain over the years. The δ18O of meteoric water followed the pattern nearly similar to the observation documented in the continental stations (Global Network of Isotopes in Precipitation, GNIP) located in the southern hemisphere. However, a slight but consistent heavier composition was documented in rainwater as compared to the GNIP stations. Our observation suggests that the meteoric water is the dominant freshwater source over the ocean, accounting for up to 10-15% of the water present in the surface ocean during the austral summer whereas Sea-ice melt accounts for a much smaller percentage (maximum around 1%). Our observation is consistent with previous studies where similar magnitude of fresh water input was proposed based on observation from coastal region (Meredith et al., 2013).

  12. Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2017-12-01

    Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.

  13. Short-term degradation of terrestrial DOM in the coastal ocean: Implications for nutrient subsidies and marine microbial community structure

    NASA Astrophysics Data System (ADS)

    Oliver, A. A.; Tank, S. E.; Kellogg, C.

    2015-12-01

    The export of riverine dissolved organic matter (DOM) to the coastal ocean provides an important link between terrestrial and aquatic ecosystems. The coastal temperate rainforests of British Columbia contain extensive freshwater networks that export significant amounts of water and DOM to the ocean, representing significant cross-system hydrologic and biogeochemical linkages. To better understand the importance of these linkages and implications for ecosystem structure and function, we used an experimental approach to investigate the role of microbial and photodegradation transformations of DOM exported from small coastal catchments to the marine environment. At two time periods (August 2014, March 2015), stream water from the outlets of two coastal watersheds was filtered (<0.2 μm), and treated with microbial inoculums from across a salinity gradient (i.e., freshwater, estuarine, and marine). Treatments were incubated in the ocean under light and dark conditions for 8 days. At 0, 3 and 8 days, samples were analyzed for DOC, TDN, DIN, and DON. Changes in DOM composition were determined with optical characterization techniques such as absorbance (SUVA, S, Sr) and fluorescence (EEM). Microbial community response was measured using cell counts and DNA/RNA amplicon sequencing to determine changes in bacterial abundance and community composition. General patterns indicated that microbial communities from the high salinity treatment (i.e. most marine) were the most effective at utilizing freshwater DOM, especially under light conditions. In some treatments, DOM appeared as a potential source of inorganic nitrogen with corresponding shifts in microbial community composition. Incubations using inoculum from low and mid salinity levels demonstrated smaller changes, indicating that DOM exported from these streams may not be extensively utilized until exposed to higher salinity environments further from stream outlets. These results suggest a role for terrestrial sourced

  14. Sea-ice transport driving Southern Ocean salinity and its recent trends.

    PubMed

    Haumann, F Alexander; Gruber, Nicolas; Münnich, Matthias; Frenger, Ivy; Kern, Stefan

    2016-09-01

    Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of -0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface waters.

  15. Shallow Carbon Export from an Iron fertilised Plankton Bloom in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Sanders, R.; Pollard, R.; Morris, P.; Statham, P.; Moore, C. M. M.; Lucas, M.

    2009-04-01

    Some regions of the global ocean, notably the Southern Ocean, have high levels of macronutrients yet low levels of chlorophyll (the high nutrient, low chlorophyll or HNLC condition). Numerous artificial iron fertilization experiments conducted in the Southern Ocean have resulted in enhanced phytoplankton biomass and macronutrient drawdown. However the subsequent long-term biogeochemical consequences of such iron fertilization are unclear due in part to the limited size and duration of such experiments. An alternative way to assess the affect of iron over the Southern Ocean biological carbon pump is to observe the evolution of plankton production in regions of the Southern Ocean where shallow topography and Ocean currents interact to promote to release terrestrial iron into HNLC waters. During 2004-5 RRS Discovery conduced a complex programme of observations in such a region around the Crozet Islands in the SW Indian Ocean. The results of this programme, focussing on a quantitative estimate of carbon export per unit iron addition, will be presented.

  16. Estimating the Cross-Shelf Export of Riverine Materials: Part 1. General Relationships From an Idealized Numerical Model

    NASA Astrophysics Data System (ADS)

    Izett, Jonathan G.; Fennel, Katja

    2018-02-01

    Rivers deliver large amounts of terrestrially derived materials (such as nutrients, sediments, and pollutants) to the coastal ocean, but a global quantification of the fate of this delivery is lacking. Nutrients can accumulate on shelves, potentially driving high levels of primary production with negative consequences like hypoxia, or be exported across the shelf to the open ocean where impacts are minimized. Global biogeochemical models cannot resolve the relatively small-scale processes governing river plume dynamics and cross-shelf export; instead, river inputs are often parameterized assuming an "all or nothing" approach. Recently, Sharples et al. (2017), https://doi.org/10.1002/2016GB005483 proposed the SP number—a dimensionless number relating the estimated size of a plume as a function of latitude to the local shelf width—as a simple estimator of cross-shelf export. We extend their work, which is solely based on theoretical and empirical scaling arguments, and address some of its limitations using a numerical model of an idealized river plume. In a large number of simulations, we test whether the SP number can accurately describe export in unforced cases and with tidal and wind forcings imposed. Our numerical experiments confirm that the SP number can be used to estimate export and enable refinement of the quantitative relationships proposed by Sharples et al. We show that, in general, external forcing has only a weak influence compared to latitude and derive empirical relationships from the results of the numerical experiments that can be used to estimate riverine freshwater export to the open ocean.

  17. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    NASA Astrophysics Data System (ADS)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.

  18. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates

    NASA Astrophysics Data System (ADS)

    Schlitzer, Reiner

    The use of dissolved nutrients and carbon for photosynthesis in the euphotic zone and the subsequent downward transport of particulate and dissolved organic material strongly affect carbon concentrations in surface water and thus the air-sea exchange of CO 2. Efforts to quantify the downward carbon flux for the whole ocean or on basin-scales are hampered by the sparseness of direct productivity or flux measurements. Here, a global ocean circulation, biogeochemical model is used to determine rates of export production and vertical carbon fluxes in the Southern Ocean. The model exploits the existing large sets of hydrographic, oxygen, nutrient and carbon data that contain information on the underlying biogeochemical processes. The model is fitted to the data by systematically varying circulation, air-sea fluxes, production, and remineralization rates simultaneously. Use of the adjoint method yields model property simulations that are in very good agreement with measurements. In the model, the total integrated export flux of particulate organic matter necessary for the realistic reproduction of nutrient data is significantly larger than export estimates derived from primary productivity maps. Of the 10,000 TgC yr -1(10 GtC yr -1) required globally, the Southern Ocean south of 30°S contributes about 3000 TgC yr -1 (33%), most of it occurring in a zonal belt along the Antarctic Circumpolar Current and in the Peru, Chile and Namibia coastal upwelling regions. The export flux of POC for the area south of 50°S amounts to 1000±210 TgC yr -1, and the particle flux in 1000 m for the same area is 115±20 TgC yr -1. Unlike for the global ocean, the contribution of the downward flux of dissolved organic carbon is significant in the Southern Ocean in the top 500 m of the water column. Comparison with satellite-based productivity estimates (CZCS and SeaWiFS) shows a relatively good agreement over most of the ocean except for the Southern Ocean south of 50°S, where the model

  19. Climate change decouples oceanic primary and export productivity and organic carbon burial

    PubMed Central

    Lopes, Cristina; Kucera, Michal; Mix, Alan C.

    2015-01-01

    Understanding responses of oceanic primary productivity, carbon export, and burial to climate change is essential for model-based projection of biological feedbacks in a high-CO2 world. Here we compare estimates of productivity based on the composition of fossil diatom floras with organic carbon burial off Oregon in the Northeast Pacific across a large climatic transition at the last glacial termination. Although estimated primary productivity was highest during the Last Glacial Maximum, carbon burial was lowest, reflecting reduced preservation linked to low sedimentation rates. A diatom size index further points to a glacial decrease (and deglacial increase) in the fraction of fixed carbon that was exported, inferred to reflect expansion, and contraction, of subpolar ecosystems that today favor smaller plankton. Thus, in contrast to models that link remineralization of carbon to temperature, in the Northeast Pacific, we find dominant ecosystem and sea floor control such that intervals of warming climate had more efficient carbon export and higher carbon burial despite falling primary productivity. PMID:25453073

  20. Tropical Atlantic climate response to different freshwater input in high latitudes with an ocean-only general circulation model

    NASA Astrophysics Data System (ADS)

    Men, Guang; Wan, Xiuquan; Liu, Zedong

    2016-10-01

    Tropical Atlantic climate change is relevant to the variation of Atlantic meridional overturning circulation (AMOC) through different physical processes. Previous coupled climate model simulation suggested a dipole-like SST structure cooling over the North Atlantic and warming over the South Tropical Atlantic in response to the slowdown of the AMOC. Using an ocean-only global ocean model here, an attempt was made to separate the total influence of various AMOC change scenarios into an oceanic-induced component and an atmospheric-induced component. In contrast with previous freshwater-hosing experiments with coupled climate models, the ocean-only modeling presented here shows a surface warming in the whole tropical Atlantic region and the oceanic-induced processes may play an important role in the SST change in the equatorial south Atlantic. Our result shows that the warming is partly governed by oceanic process through the mechanism of oceanic gateway change, which operates in the regime where freshwater forcing is strong, exceeding 0.3 Sv. Strong AMOC change is required for the gateway mechanism to work in our model because only when the AMOC is sufficiently weak, the North Brazil Undercurrent can flow equatorward, carrying warm and salty north Atlantic subtropical gyre water into the equatorial zone. This threshold is likely to be model-dependent. An improved understanding of these issues may have help with abrupt climate change prediction later.

  1. Production and export in a global ocean ecosystem model

    NASA Astrophysics Data System (ADS)

    Palmer, J. R.; Totterdell, I. J.

    2001-05-01

    The Hadley Centre Ocean Carbon Cycle (HadOCC) model is a coupled physical-biogeochemical model of the ocean carbon cycle. It features an explicit representation of the marine ecosystem, which is assumed to be limited by nitrogen availability. The biogeochemical compartments are dissolved nutrient, total CO 2, total alkalinity, phytoplankton, zooplankton and detritus. The results of the standard simulation are presented. The annual primary production predicted by the model ( 47.7 Gt C yr -1) compares well to the estimates made by Longhurst et al. (1995, J. Plankton Res., 17, 1245) and Antoine et al. (1996, Global Biogeochem. Cycles, 10, 57). The HadOCC model finds high production in the sub-polar North Pacific and North Atlantic Oceans, and around the Antarctic convergence, and low production in the sub-tropical gyres. However in disagreement with the observations of Longhurst et al. and Antoine et al., the model predicts very high production in the eastern equatorial Pacific Ocean. The export flux of carbon in the model agrees well with data from deep-water sediment traps. In order to examine the factors controlling production in the ocean, additional simulations have been run. A nutrient-restoring simulation confirms that the areas with the highest primary production are those with the greatest nutrient supply. A reduced wind-stress experiment demonstrates that the high production found in the equatorial Pacific is driven by excessive upwelling of nutrient-rich water. Three further simulations show that nutrient supply at high latitudes, and hence production there, is sensitive to the parameters and climatological forcings of the mixed layer sub-model.

  2. Millennial-scale variability in dust deposition, marine export production, and nutrient consumption in the glacial subantarctic ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Martinez-Garcia, A.; Sigman, D. M.; Anderson, R. F.; Ren, H. A.; Hodell, D. A.; Straub, M.; Jaccard, S.; Eglinton, T. I.; Haug, G. H.

    2013-12-01

    Based on the limitation of modern Southern Ocean phytoplankton by iron and the evidence of higher iron-bearing dust fluxes to the ocean during ice ages, it has been proposed that iron fertilization of Southern Ocean phytoplankton contributed to the reduction in atmospheric CO2 during ice ages. In the Subantarctic zone of the Atlantic Southern Ocean, glacial increases in dust flux and export production have been documented, supporting the iron fertilization hypothesis. However, these observations could be interpreted alternatively as resulting from the equatorward migration of Southern Ocean fronts during ice ages if the observed productivity rise was not accompanied by an increase in major nutrient consumption. Here, new 230Th-normalized lithogenic and opal fluxes are combined with high-resolution biomarker measurements to reconstruct millennial-scale changes in dust deposition and marine export production in the subantarctic Atlantic over the last glacial cycle. In the same record foraminifera-bound nitrogen isotopes are used to reconstruct ice age changes in surface nitrate utilization, providing a comprehensive test of the iron fertilization hypothesis. Elevation in foraminifera-bound δ15N, indicating more complete nitrate consumption, coincides with times of surface cooling and greater dust flux and export production. These observations indicate that the ice age Subantarctic was characterized by iron fertilized phytoplankton growth. The resulting strengthening of the Southern Ocean's biological pump can explain the ~40 ppm lowering of CO2 that characterizes the transitions from mid-climate states to full ice age conditions as well as the millennial-scale atmospheric CO2 fluctuations observed within the last ice age

  3. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean

    NASA Astrophysics Data System (ADS)

    Han, Yongxiang; Zhao, Tianliang; Song, Lianchun; Fang, Xiaomin; Yin, Yan; Deng, Zuqin; Wang, Suping; Fan, Shuxian

    2011-08-01

    Iron-addition experiments have revealed that iron supply exerts controls on biogeochemical cycles in the ocean and ultimately influences the Earth's climate system. The iron hypothesis in its broad outlines has been proved to be correct. However, the hypothesis needs to be verified with an observable biological response to specific dust deposition events. Plankton growth following the Asian dust storm over Ocean Station PAPA (50°N, 145°W) in the North Pacific Ocean in April 2001 was the first supportive evidence of natural aeolian iron inputs to ocean; The data were obtained through the SeaWiFS satellite and robot carbon explorers by Bishop et al. Using the NARCM modeling results in this study, the calculated total dust deposition flux was 35 mg m -2 per day in PAPA region from the dust storm of 11-13 April, 2001 into 0.0615 mg m -2 d -1 (about 1100 nM) soluble iron in the surface layer at Station PAPA. It was enough for about 1100 nM to enhance the efficiency of the marine biological pump and trigger the rapid increase of POC and chlorophyll. The iron fertilization hypothesis therefore is plausible. However, even if this specific dust event can support the iron fertilization hypothesis, long-term observation data are lacking in marine export production and continental dust. In this paper, we also conducted a simple correlation analysis between the diatoms and foraminifera at about 3000 m and 4000 m at two subarctic Pacific stations and the dust aerosol production from China's mainland. The correlation coefficient between marine export production and dust storm frequency in the core area of the dust storms was significantly high, suggesting that aerosols generated by Asian dust storm are the source of iron for organic matter fixation in the North Pacific Ocean. These results suggest that there could be an interlocking chain for the change of atmospheric dust aerosol-soluble iron-marine export production.

  4. Human Freshwater Demand for Economic Activity and Ecosystems in Taiwan

    NASA Astrophysics Data System (ADS)

    Ferng, Jiun-Jiun

    2007-12-01

    Freshwater is necessary to economic activity, and humans depend on goods and services generated by water-dependent ecosystems. However, national freshwater management usually focuses on direct use of domestic freshwater. With an increasing scarcity of freshwater, attention has turned to two indirect uses of freshwater by humans. The first indirect use is freshwater used by foreign countries when producing products for export. The second use is freshwater required by local ecosystems: human survival and development depend on goods and services generated in these ecosystems. This work adopted Taiwan as a case study. In addition to two widely recognized ecosystem freshwater demands, evapotranspiration and reversed river flow, this study suggests that freshwater is a constituent of some abiotic components, such as groundwater in aquifers, because excessive withdrawal has already caused significant land subsidence in Taiwan. Moreover, the estimated results show that Taiwan’s net imports of freshwater through trade amounts to approximately 25% of its total freshwater use for economic production. Integrating industrial policy, trade policy, and national freshwater management is a useful approach for developing strategies to limit the growing use of freshwater in Taiwan. Policy implications are then developed by further analyzing withdrawal sources of freshwater (domestic and foreign) for supporting economic production in Taiwan and identifying the factors (domestic final demand and export) driving freshwater-intensive products.

  5. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover

    NASA Astrophysics Data System (ADS)

    Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.

    2016-11-01

    Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.

  6. Modeling the influence of atmospheric leading modes on the variability of the Arctic freshwater cycle

    NASA Astrophysics Data System (ADS)

    Niederdrenk, L.; Sein, D.; Mikolajewicz, U.

    2013-12-01

    Global general circulation models show remarkable differences in modeling the Arctic freshwater cycle. While they agree on the general sinks and sources of the freshwater budget, they differ largely in the magnitude of the mean values as well as in the variability of the freshwater terms. Regional models can better resolve the complex topography and small scale processes, but they are often uncoupled, thus missing the air-sea interaction. Additionally, regional models mostly use some kind of salinity restoring or flux correction, thus disturbing the freshwater budget. Our approach to investigate the Arctic hydrologic cycle and its variability is a regional atmosphere-ocean model setup, consisting of the global ocean model MPIOM with high resolution in the Arctic coupled to the regional atmosphere model REMO. The domain of the atmosphere model covers all catchment areas of the rivers draining into the Arctic. To account for all sinks and sources of freshwater in the Arctic, we include a discharge model providing terrestrial lateral waterflows. We run the model without salinity restoring but with freshwater correction, which is set to zero in the Arctic. This allows for the analysis of a closed freshwater budget in the Artic region. We perform experiments for the second half of the 20th century and use data from the global model MPIOM/ECHAM5 performed with historical conditions, that was used within the 4th Assessment Report of the IPCC, as forcing for our regional model. With this setup, we investigate how the dominant modes of large-scale atmospheric variability impact the variability in the freshwater components. We focus on the two leading empirical orthogonal functions of winter mean sea level pressure, as well as on the North Atlantic Oscillation and the Siberian High. These modes have a large impact on the Arctic Ocean circulation as well as on the solid and liquid export through Fram Strait and through the Canadian archipelago. However, they cannot explain

  7. Annual cycles of deep-ocean biogeochemical export fluxes in subtropical and subantarctic waters, southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nodder, Scott D.; Chiswell, Stephen M.; Northcote, Lisa C.

    2016-04-01

    The annual cycles of particle fluxes derived from moored sediment trap data collected during 2000-2012 in subtropical (STW) and subantarctic waters (SAW) east of New Zealand are presented. These observations are the most comprehensive export flux time series from temperate Southern Hemisphere latitudes to date. With high levels of variability, fluxes in SAW were markedly lower than in STW, reflecting the picophytoplankton-dominated communities in the iron-limited, high nutrient-low chlorophyll SAW. Austral spring chlorophyll blooms in surface STW were near synchronous with elevated fluxes of bio-siliceous, carbonate, and organic carbon-rich materials to the deep ocean, probably facilitated by diatom and/or coccolithophorid sedimentation. Lithogenic fluxes were also high in STW, compared to SAW, reflecting proximity to the New Zealand landmass. In contrast, the highest biogenic fluxes in SAW occurred in spring when surface chlorophyll concentrations were low, while highest annual chlorophyll concentrations were in summer with no associated flux increase. We hypothesize that the high spring export in SAW results from subsurface chlorophyll accumulation that is not evident from remote-sensing satellites. This material was also rich in biogenic silica, perhaps related to the preferential export of diatoms and other silica-producing organisms, such as silicoflagellates and radiolarians. Organic carbon fluxes in STW are similar to that of other mesotrophic to oligotrophic waters (˜6-7 mg C m-2 d-1), whereas export from SAW is below the global average (˜3 mg C m-2 d-1). Regional differences in flux across the SW Pacific and Tasman region reflect variations in physical processes and ecosystem structure and function.

  8. Arctic Ocean Freshwater Content and Its Decadal Memory of Sea-Level Pressure

    NASA Astrophysics Data System (ADS)

    Johnson, Helen L.; Cornish, Sam B.; Kostov, Yavor; Beer, Emma; Lique, Camille

    2018-05-01

    Arctic freshwater content (FWC) has increased significantly over the last two decades, with potential future implications for the Atlantic meridional overturning circulation downstream. We investigate the relationship between Arctic FWC and atmospheric circulation in the control run of a coupled climate model. Multiple linear lagged regression is used to extract the response of total Arctic FWC to a hypothetical step increase in the principal components of sea-level pressure. The results demonstrate that the FWC adjusts on a decadal timescale, consistent with the idea that wind-driven ocean dynamics and eddies determine the response of Arctic Ocean circulation and properties to a change in surface forcing, as suggested by idealized models and theory. Convolving the response of FWC to a change in sea-level pressure with historical sea-level pressure variations reveals that the recent observed increase in Arctic FWC is related to natural variations in sea-level pressure.

  9. Correlations Between Sea-Surface Salinity Tendencies and Freshwater Fluxes in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David

    2007-01-01

    Temporal changes in sea-surface salinity (SSS) from 21 years of a high resolution model integration of the Pacific Ocean are correlated with the freshwater flux that was used to force the integration. The correlations are calculated on a 1 x10 grid, and on a monthly scale to assess the possibility of deducing evaporation minus precipitation (E-P) fields from the salinity measurements to be taken by the upcoming Aquarius/SAC-D mission. Correlations between the monthly mean E-P fields and monthly mean SSS temporal tendencies are mainly zonally-oriented, and are highest where the local precipitation is relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude storm tracks and are relatively small in the tropics. The response of the model's surface salinity to surface forcing is very complex, and retrievals of freshwater fluxes from SSS measurements alone will require consideration of other processes, including horizontal advection and vertical mixing, rather than a simple balance between the two.

  10. The influence of orography on modern ocean circulation

    NASA Astrophysics Data System (ADS)

    Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick; Sepulchre, Pierre; Goddéris, Yves

    2018-02-01

    The effects of orography on climate are investigated with a coupled ocean-atmosphere general circulation model (IPSL-CM5). Results are compared with previous investigations in order to dig out robust consequences of the lack of orography on the global scale. Emphasis is made on the thermohaline circulation whose sensitivity to orography has only been subject to a very limited number of studies using coupled models. The removal of the entire orography switches the Meridional Overturning Circulation from the Atlantic to the Pacific, following freshwater transfers from the latter to the former that reverse the salinity gradient between these oceans. This is in part due to the increased freshwater export from the Pacific to the Atlantic through North America in the absence of the Rocky Mountains and the consecutive decreased evaporation in the North Atlantic once the Atlantic MOC weakens, which cools the northern high-latitudes. In addition and unlike previous model studies, we find that tropical freshwater transfers are a major driver of this switch. More precisely, the collapse of the Asian summer monsoon, associated with westward freshwater transfer across Africa, is critical to the freshening of the Atlantic and the increased salt content in the Pacific. Specifically, precipitations are increasing over the Congo catchment area and induce a strong increase in runoff discharging into the tropical Atlantic. In addition, the removal of the Andes shifts the area of strong precipitation toward the Amazonian catchment area and results in a larger runoff discharging into the Tropical Atlantic.

  11. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  12. Diatom resting spore ecology drives enhanced carbon export from a naturally iron-fertilized bloom in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Salter, Ian; Kemp, Alan E. S.; Moore, C. Mark; Lampitt, Richard S.; Wolff, George A.; Holtvoeth, Jens

    2012-03-01

    Southern Ocean Island systems sustain phytoplankton blooms induced by natural iron fertilization that are important for the uptake of atmospheric carbon dioxide and serve as analogues for past and future climate change. We present data on diatom flux assemblages and the biogeochemical properties of sinking particles to explain the enhanced particulate organic carbon (POC) export fluxes observed in response to natural iron supply in the Crozet Islands region (CROZeX). Moored deep-ocean sediment traps (>2000 m) were located beneath a naturally fertilized island bloom and beneath an adjacent High Nutrient Low Chlorophyll (HNLC) control site. Deep-ocean carbon flux from the naturally-fertilized bloom area was tightly correlated (R = 0.83, n = 12, P < 0.0006) with the resting spore flux of a single island-associated diatom species,Eucampia antarctica var. antarctica. The unusually well preserved state of the Eucampia-associated carbon flux, determined by amino acid studies of organic matter degradation, was likely influenced by their ecology, since diatom resting spores are adapted to settle rapidly out of the surface ocean preserving viable cells. The naturally fertilized bloom enhanced carbon flux and the resulting Si/C and Si/N ratios were 2.0-3.4-fold and 2.2-3.5-fold lower than those measured in the adjacent HNLC control area. The enhanced carbon export and distinctive stoichiometry observed in naturally fertilized systems is therefore largely not attributable to iron relief of open ocean diatoms, but rather to the advection and growth of diatom species characteristic of island systems and the subsequent flux of resting spores. Carbon export estimates from current natural iron fertilization studies therefore represent a highly specific response of the island systems chosen as natural laboratories and may not be appropriate analogues for the larger Southern Ocean response. The broader implications of our results emphasize the role of phytoplankton diversity and

  13. The Influence of Volcanic and Solar forcings on the Freshwater Budget of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Davies, F. J.; Goosse, H.; Renssen, H.

    2012-04-01

    In recent decades the quantity and spatial extent of measurements for the atmospheric, terrestrial and oceanic sources and sinks, that comprise the freshwater budget of the Arctic Ocean has increased. This has been driven by a need to understand the variability of the freshwater budget, as a response to anthropogenically induced climate change, and the effects upon climate. However, the natural variability of the system due to specific forcings over a number of temporal scales, is yet to be clearly defined. This is due to several factors. A lack of a reliable freshwater proxy, coupled with a truncated instrumental record, make it difficult to elicit meaningful trends from the data that is currently available. In addition, modelling studies have not taken up the opportunity to evaluate the historical freshwater budget, instead focusing all their efforts in ascertaining the future response of the system. Therefore, when it comes to understanding the role individual forcings, such as volcanic and solar, have upon the natural variability of the freshwater budget, a noticeable void is evident. In order to understand the natural variations over the recent past one has to first consider the effects that natural forcings have upon the system, both independently and simultaneously. Therefore, in this study we seek to understand the effects solar and volcanic forcings have upon the freshwater budget of the Arctic, and by association, the climate. Here we present results of a series of transient simulations spanning the last 2000 years, performed with the earth model of intermediate complexity, LOVECLIM (Goosse et al., 2010). These series of simulations use a combination of orbital parameters, greenhouse gas concentrations, total solar irradiance and volcanic forcings. By comparing the simulation with only long-term forcings (orbital and greenhouse gas), to experiments in which the impacts of short-term forcings (solar and volcanic) are added incrementally to the effect of

  14. Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain

    NASA Astrophysics Data System (ADS)

    Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.

    2016-07-01

    Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial-riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous-riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20 % in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin

  15. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  16. The Importance of Subsurface Production for Carbon Export - Evidence from Past Oceans

    NASA Astrophysics Data System (ADS)

    Kemp, A. E. S.

    2016-02-01

    The maxim of the geological concept of uniformitarianism is "the present is the key to the past", but in the context of our temporally and spatially minimal observational record of modern ocean biogeochemical processes, ancient ocean sediments may provide critical evidence of the key species involved in carbon flux. Specifically, laminated marine sediments that preserve the seasonal flux cycle represent "palaeo-sediment traps" that vastly expand our knowledge of the operations of the marine biological carbon pump. Several key subsurface-dwelling diatom taxa, hitherto thought to be biogeochemically insignificant, are dominant components of ancient marine sediments. For example, the sapropels and equivalent horizons that have accumulated in the Mediterranean over the past 5 million years, contain abundant rhizosolenid and hemiaulid diatoms. These deposits contain the highest concentrations of organic carbon and there is extensive evidence that this was produced by subsurface production in a deep chlorophyll maximum. The highly stratified conditions that led to this subsurface production and carbon flux are in contrast to prevailing views that have held upwelling systems as those with the highest potential for export in the global ocean. Similarly, studies of ancient "greenhouse" periods such as the Cretaceous, with highly stratified oceans and which are potential analogues for future climate change, show evidence for extensive subsurface production. Together with emerging evidence from stratified regions of the modern ocean, such as the subtropical gyres, insights from these ancient oceans suggest that a reappraisal is required of current views on key phytoplankton producers and their role the operation of the marine biological carbon pump.

  17. A Giant Arctic Freshwater Pond at the end of the Early Eocene; Implications for Ocean Heat Transport and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Brinkhuis, H.; Schouten, S.; Collinson, M. E.; Sluijs, A.; Sinninghe-Damste, J. S.; Dickens, G. R.; Huber, M.; Cronin, T. M.; Bujak, J. P.; Stein, R.; Eldrett, J. S.; Harding, I. C.; Sangiorgi, F.

    2005-12-01

    In the last decades remains of the free-floating, fresh water fern Azolla have been found in unusually high abundances in basal middle Eocene (~48.5 Ma) marine sediments deposited in all Nordic seas. While generally taken to signal some `freshwater input', their source and significance were not determined. Through palynological and organic geochemical analyses of unique cores obtained from unprecedented Arctic Ocean drilling (IODP 302 - ACEX) we show that the brackish surface conditions that prevailed in the Arctic Ocean through the late Paleocene and early Eocene culminated in the deposition of laminated organic rich deposits yielding huge amounts of remains of Azolla. This, plus e.g., low diversity dinoflagellate assemblages, and concomitant low BIT values, indicates in-situ Azolla growth, and that the surface of the Arctic Ocean episodically resembled a giant fresh water pond over an interval altogether lasting ~800,000 years. The Arctic Basin thus constituted the main source of the freshwater pulses found elsewhere, reaching as far south as the southern North Sea.TEX86-derived surface temperatures were 13-14°C before and after the Azolla interval and only 10°C during the event, which may be related to obstruction of pole ward ocean heat transport and/or increased carbon burial.

  18. Ocean forces Greenland and Greenland forces the ocean: a two-way exchange at Greenland's marine margins

    NASA Astrophysics Data System (ADS)

    Straneo, F.

    2017-12-01

    The widespread speed up of Greenland's glaciers, over the last two decades, was unpredicted, revealing major gaps in our understanding of how ice sheets respond to a changing climate. Increased submarine melting at the edge of glaciers has emerged as a key trigger - indicating that glacier/ocean exchanges must be accounted for in ice sheet variability reconstructions and predictions. In parallel, the increasing freshwater discharge into the ocean, associated with Greenland's ice loss, has the potential to impact the North Atlantic's circulation and climate. Thus glacier/ocean exchanges are also relevant to understanding drivers of past and future changes in the North Atlantic Ocean's circulation. Here, I present recent findings from observations collected at the edge of several Greenland glaciers that reveal how melting is caused by intrusions of warm, subtropical waters into the fjords and enhanced by the release of surface melt hundreds of meters below sea level. Similarly, hydrographic and tracer data collected at the glaciers' margins, and within the glacial fjords, reveal how Greenland meltwater are exported in the form of highly diluted glacially modified waters, often subsurface, and temporally lagged with respect to the meltwater release. These findings underline the need for improved representation of ice/ocean exchanges in models in order understand and predict the ice sheet's impact on the ocean and the ocean's impact on the ice sheet.

  19. Ocean forces Greenland and Greenland forces the ocean: a two-way exchange at Greenland's marine margins

    NASA Astrophysics Data System (ADS)

    Stanley, V.; Schoephoester, P.; Lodge, R. W. D.

    2016-12-01

    The widespread speed up of Greenland's glaciers, over the last two decades, was unpredicted, revealing major gaps in our understanding of how ice sheets respond to a changing climate. Increased submarine melting at the edge of glaciers has emerged as a key trigger - indicating that glacier/ocean exchanges must be accounted for in ice sheet variability reconstructions and predictions. In parallel, the increasing freshwater discharge into the ocean, associated with Greenland's ice loss, has the potential to impact the North Atlantic's circulation and climate. Thus glacier/ocean exchanges are also relevant to understanding drivers of past and future changes in the North Atlantic Ocean's circulation. Here, I present recent findings from observations collected at the edge of several Greenland glaciers that reveal how melting is caused by intrusions of warm, subtropical waters into the fjords and enhanced by the release of surface melt hundreds of meters below sea level. Similarly, hydrographic and tracer data collected at the glaciers' margins, and within the glacial fjords, reveal how Greenland meltwater are exported in the form of highly diluted glacially modified waters, often subsurface, and temporally lagged with respect to the meltwater release. These findings underline the need for improved representation of ice/ocean exchanges in models in order understand and predict the ice sheet's impact on the ocean and the ocean's impact on the ice sheet.

  20. High biomass, low export regimes in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Lam, Phoebe J.; Bishop, James K. B.

    2007-03-01

    This paper investigates ballasting and remineralization controls of carbon sedimentation in the Twilight Zone (100-1000 m) of the Southern Ocean. Size-fractionated (<1 μm, 1-51 μm, >51 μm) suspended particulate matter was collected by large-volume in-situ filtration from the upper 1000 m in the Subantarctic (55°S, 172°W) and Antarctic (66°S, 172°W) zones of the Southern Ocean during the Southern Ocean Iron Experiment (SOFeX) in January-February 2002. Particles were analyzed for major chemical constituents (POC, P, biogenic Si, CaCO 3), and digital and SEM image analyses of particles were used to aid in the interpretation of the chemical profiles. Twilight Zone waters at 66°S in the Antarctic had a steeper decrease in POC with depth than at 55°S in the Subantarctic, with lower POC concentrations in all size fractions at 66°S than at 55°S, despite up to an-order-of magnitude higher POC in surface waters at 66°S. The decay length scale of >51-μm POC was significantly shorter in the upper Twilight Zone at 66°S ( δe=26 m) compared to 55°S ( δe=81 m). Particles in the carbonate-producing 55°S did not have higher excess densities than particles from the diatom-dominated 66°S, indicating that there was no direct ballast effect that accounted for deeper POC penetration at 55°S. An indirect ballast effect due to differences in particle packaging and porosities cannot be ruled out, however, as aggregate porosities were high (˜97%) and variable. Image analyses point to the importance of particle loss rates from zooplankton grazing and remineralization as determining factors for the difference in Twilight Zone POC concentrations at 55°S and 66°S, with stronger and more focused shallow remineralization at 66°S. At 66°S, an abundance of large (several mm long) fecal pellets from the surface to 150 m, and almost total removal of large aggregates by 200 m, reflected the actions of a single or few zooplankton species capable of grazing diatoms in the

  1. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers

    USGS Publications Warehouse

    Raymond, P.A.; McClelland, J.W.; Holmes, R.M.; Zhulidov, A.V.; Mull, K.; Peterson, B.J.; Striegl, Robert G.; Aiken, G.R.; Gurtovaya, T.Y.

    2007-01-01

    The export and Δ14C-age of dissolved organic carbon (DOC) was determined for the Yenisey, Lena, Ob', Mackenzie, and Yukon rivers for 2004–2005. Concentrations of DOC elevate significantly with increasing discharge in these rivers, causing approximately 60% of the annual export to occur during a 2-month period following spring ice breakup. We present a total annual flux from the five rivers of ∼16 teragrams (Tg), and conservatively estimate that the total input of DOC to the Arctic Ocean is 25–36 Tg, which is ∼5–20% greater than previous fluxes. These fluxes are also ∼2.5× greater than temperate rivers with similar watershed sizes and water discharge. Δ14C-DOC shows a clear relationship with hydrology. A small pool of DOC slightly depleted in Δ14C is exported with base flow. The large pool exported with spring thaw is enriched in Δ14C with respect to current-day atmospheric Δ14C-CO2 values. A simple model predicts that ∼50% of DOC exported during the arctic spring thaw is 1–5 years old, ∼25% is 6–10 years in age, and 15% is 11–20 years old. The dominant spring melt period, a historically undersampled period, exports a large amount of young and presumably semilabile DOC to the Arctic Ocean.

  2. Mesoscale Effects on Carbon Export: A Global Perspective

    NASA Astrophysics Data System (ADS)

    Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.

    2018-04-01

    Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (<2%) however, the impact on local export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.

  3. A subtropical fate awaited freshwater discharged from glacial Lake Agassiz

    DOE PAGES

    Condron, Alan; Winsor, Peter

    2011-02-10

    The 8.2 kyr event is the largest abrupt climatic change recorded in the last 10,000 years, and is widely hypothesized to have been triggered by the release of thousands of kilometers cubed of freshwater into the North Atlantic Ocean. Using a high-resolution (1/6°) global, ocean-ice circulation model we present an alternative view that freshwater discharged from glacial Lake Agassiz would have remained on the continental shelf as a narrow, buoyant, coastal current, and would have been transported south into the subtropical North Atlantic. The pathway we describe is in contrast to the conceptual idea that freshwater from this lake outburstmore » spread over most of the sub-polar North Atlantic, and covered the deep, open-ocean, convection regions. This coastally confined freshwater pathway is consistent with the present-day routing of freshwater from Hudson Bay, as well as paleoceanographic evidence of this event. In this study, using a coarse-resolution (2.6°) version of the same model, we demonstrate that the previously reported spreading of freshwater across the sub-polar North Atlantic results from the inability of numerical models of this resolution to accurately resolve narrow coastal flows, producing instead a diffuse circulation that advects freshwater away from the boundaries. To understand the climatic impact of freshwater released in the past or future (e.g. Greenland and Antarctica), the ocean needs to be modeled at a resolution sufficient to resolve the dynamics of narrow, coastal buoyant flows.« less

  4. High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Roca-Martí, Montserrat; Puigcorbé, Viena; Iversen, Morten H.; van der Loeff, Michiel Rutgers; Klaas, Christine; Cheah, Wee; Bracher, Astrid; Masqué, Pere

    2017-04-01

    Carbon fixation by phytoplankton plays a key role in the uptake of atmospheric CO2 in the Southern Ocean. Yet, it still remains unclear how efficiently the particulate organic carbon (POC) is exported and transferred from ocean surface waters to depth during phytoplankton blooms. In addition, little is known about the processes that control the flux attenuation within the upper twilight zone. Here, we present results of downward POC and particulate organic nitrogen fluxes during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean in summer 2012. We used thorium-234 (234Th) as a particle tracer in combination with drifting sediment traps (ST). Their simultaneous use evidenced a sustained high export rate of 234Th at 100 m depth in the weeks prior to and during the sampling period. The entire study area, of approximately 8000 km2, showed similar vertical export fluxes in spite of the heterogeneity in phytoplankton standing stocks and productivity, indicating a decoupling between production and export. The POC fluxes at 100 m were high, averaging 26±15 mmol C m-2 d-1, although the strength of the biological pump was generally low. Only <20% of the daily primary production reached 100 m, presumably due to an active recycling of carbon and nutrients. Pigment analyses indicated that direct sinking of diatoms likely caused the high POC transfer efficiencies ( 60%) observed between 100 and 300 m, although faecal pellets and transport of POC linked to zooplankton vertical migration might have also contributed to downward fluxes.

  5. How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux

    NASA Astrophysics Data System (ADS)

    Palevsky, Hilary I.; Doney, Scott C.

    2018-05-01

    Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e-ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e-ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e-ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.

  6. Sediment flux measurements at the oceanic boundary of a large estuary

    NASA Astrophysics Data System (ADS)

    Downing-Kunz, M.; Work, P. A.; Schoellhamer, D. H.

    2016-12-01

    Sediment is an important resource for San Francisco Bay (SFB), in the context of wetland restoration projects, dredging operations, ecosystem health, and contaminant transport and fate. One way to help manage sediment (and sediment-associated contaminants) in SFB is by developing a quantitative sediment budget to account for sources, sinks, and storage of sediment. Previously developed sediment budgets have shown that sediment exchange at the oceanic boundary of SFB (Golden Gate) is the most poorly understood element of the SFB sediment budget, owing to logistical challenges that inhibit routine field observations. In this study, field observations of suspended-sediment flux at the Golden Gate were conducted on ebb and flood tides during two distinct periods of the 2016 hydrograph: peak (4,000 m3/s) and low (200 m3/s) rates of freshwater inflow to SFB. Suspended-sediment flux was estimated from a boat-mounted acoustic Doppler current profiler that provided measurements of discharge and acoustic backscatter (ABS) at a cross-section near the oceanic boundary. Discrete water samples were analyzed for suspended-sediment concentration (SSC) and related to ABS. During the period of peak freshwater inflow, maximum discharge observed at Golden Gate reached 130,000 m3/s during ebb tide; observed SSC (20-40 mg/L) were lower than expected compared to upstream conditions. A network of five SSC monitoring stations extending 5-80 km upstream demonstrated a watershed-sourced sediment pulse (SSC reaching 200 mg/L) moved downstream to within 20 km of the oceanic boundary, an observation corroborated by concurrent satellite imagery. This finding, combined with lower SSC near the Golden Gate, suggests the sediment pulse was trapped within SFB, indicating a freshwater inflow threshold exceeding 4,000 m3/s for sediment export at the oceanic boundary. Such trapping could provide additional sediment to benefit wetland restoration efforts.

  7. Linking Ice Sheet Freshwater Discharge and Marine production in Greenland via Fiord Circulation. 'FreshLink', an Interdisciplinary Project Involving Researchers from Multiple Countries.

    NASA Astrophysics Data System (ADS)

    Bøggild, C. E.; Rysgaard, S.; Mortensen, J.; Kallenborn, R.; Truffer, M.; Forsberg, R.; Ahlstrøm, A. P.; Petersen, D.

    2008-12-01

    This interdisciplinary and international project has recently been initiated mainly with IPY funding from Denmark and Greenland. In short the project investigates the linkage between ice sheet freshwater release to a fiord near Nuuk (South-western Greenland) and the resulting fiord circulation. The low density melt water draining into the innermost of the long fiord forms a brackish outward sloping top layer, which exits the fiord and is balanced by entrance of nutritious salty oceanic water below. Such nutritious water, in turn, favors marine production in the fiord. The perspectives of a warmer climate, where more ice sheet melt water will increase the marine production, is of vital interest to investigate for the Greenland society because the present export from the country is totally dominated by living resources of the oceans. This interdisciplinary research project involves scientists from Greenland, Norway, Denmark and USA. Scientific disciplines presently covered are; marine ecology (biological production), cryospheric sciences (ice sheet and snow-water release), pollution chemistry (separating present from ancient precipitation), marine geology (history of freshwater input), oceanography (fiord circulation), geodesy (cryospheric elevation changes), and hydrology (land runoff). First field results will be presented together with the perspectives for linking each fresh water component coming from land and ice to the observed freshwater budget in the fiord.

  8. Ocean to land moisture transport is reflected in sea surface salinity

    NASA Astrophysics Data System (ADS)

    Schmitt, R. W.; Schanze, J. J.; Li, L.; Ummenhofer, C.

    2016-02-01

    The ocean has a much larger water cycle than the land, with global ocean evaporation of 13 Sverdrups being 10 times larger than the sum of all river flows. This disparity and the different dynamics of dry surfaces, have led to an unfortunate disconnect between terrestrial hydrologists and oceanographers. Here we show that there is in fact a close coupling between the water cycles of ocean and land. In both cases there is much local recycling of moisture, since it does not travel far in the atmosphere. We argue that the most important water cycle variable is the net export (or import) of water from (to) an area. Over the open ocean this is just evaporation minus precipitation (E-P). The "P vs E" plot is a valuable tool for identifying the source and sink regions of the water cycle. The subtropical high pressure systems are the source regions of the water cycle, with a global net export of 4.5 Sv. The three sinks are the ITCZ in the tropics, the high latitude subpolar lows, and the land, all at about 1.5 Sv, though the subpolar lows do receive more water than the tropics, where high rainfall is maintained by much local recycling. Of course, the signature of E-P in the open ocean is the sea surface salinity (SSS), as only net freshwater fluxes can create salinity variations. With the land receiving 1/3 of the oceanic export, we should expect close coupling between terrestrial rainfall and the salinity of nearby oceans, and SSS variations have indeed been found to be valuable for seasonal rainfall forecasts on land. The remarkable 3-6 month lead of winter-spring SSS over summer rainfall appears to be mediated by the recycling process on land through soil moisture. When soil moisture is high, terrestrial regions can become more oceanic-like, with solar heating energizing evaporation and leading to down-stream propagation of the moisture signal (the "brown ocean" effect). The correlation of high SSS with high rainfall promises to be a very valuable seasonal prediction

  9. Effect of Global Warming and Increased Freshwater Flux on Northern Hemispheric Cooling

    NASA Astrophysics Data System (ADS)

    Girihagama, L. N.; Nof, D.

    2016-02-01

    We wish to answer the, fairly complicated, question of whether global warming and an increased freshwater flux can cause Northern Hemispheric warming or cooling. Starting from the assumption that the ocean is the primary source of variability in the Northern hemispheric ocean-atmosphere coupled system, we employed a simple non-linear one-dimensional coupled ocean-atmosphere model. The simplicity of the model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean-atmosphere heat fluxes. The model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep-water formation region. Cooling in both the ocean and atmosphere can cause reduction of the ocean-atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.08 Sv. For a constant atmospheric zonal flow, there is minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.

  10. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  11. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Tilstone, Gavin H.; Lange, Priscila K.; Misra, Ankita; Brewin, Robert J. W.; Cain, Terry

    2017-11-01

    Micro-phytoplankton is the >20 μm component of the phytoplankton community and plays a major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this paper we use both in situ data and a satellite model to estimate the contribution of micro-phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-phytoplankton primary production was highest in the South Subtropical Convergence (SSTC ∼ 409 ± 720 mg C m-2 d-1), where it contributed between 38 % of the total PP, and was lowest in the North Atlantic Gyre province (NATL ∼ 37 ± 27 mg C m-2 d-1), where it represented 18 % of the total PP. Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (PmB) (∼5 mg C (mg Chl a)-1 h-1) followed by nano- (∼4 mg C (mg Chl a)-1 h-1) and pico- (∼2 mg C (mg Chl a)-1 h-1). The highest PmB was recorded in the NATL and lowest in the North Atlantic Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to parameterise a remote sensing model of size-fractionated PP, which explained 84 % of the micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was applied to the SeaWiFS time series from 1998-2010, which illustrated that micro-phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and South Subtropical Convergence (SSTC

  12. Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections.

    PubMed

    Tamelander, Tobias; Spilling, Kristian; Winder, Monica

    2017-12-01

    The impact of environmental change and anthropogenic stressors on coastal marine systems will strongly depend on changes in the magnitude and composition of organic matter exported from the water column to the seafloor. Knowledge of vertical export in the Baltic Sea is synthesised to illustrate how organic matter deposition will respond to climate warming, climate-related changes in freshwater runoff, and ocean acidification. Pelagic heterotrophic processes are suggested to become more important in a future warmer climate, with negative feedbacks to organic matter deposition to the seafloor. This is an important step towards improved oxygen conditions in the near-bottom layer that will reduce the release of inorganic nutrients from the sediment and hence counteract further eutrophication. The evaluation of these processes in ecosystem models, validated by field observations, will significantly advance the understanding of the system's response to environmental change and will improve the use of such models in management of coastal areas.

  13. Methods for freshwater riverine input into regional ocean models

    NASA Astrophysics Data System (ADS)

    Herzfeld, M.

    2015-06-01

    The input of freshwater at the coast in regional models is a non-trivial exercise that has been studied extensively in the past. Several issues are of relevance; firstly, estuaries process water properties along their length, so that while freshwater may enter at the estuary head, it is no longer fresh at the mouth. Secondly, models create a numerical response that results in excessive upstream or offshore transport compared to what is typically observed. The cause of this has been traced to the lack of landward flow at the coast where freshwater is input. In this study we assess the performance of various methods of freshwater input in coarse resolution regional models where the estuary cannot be explicitly resolved, and present a formulation that attempts to account for upstream flow in the salt wedge and in-estuary mixing that elevates salinity at the mouth.

  14. Annual Cycles of Deep-ocean, Biogeochemical Export Fluxes and Biological Pump Processes in Subtropical and Subantarctic Waters, Southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nodder, S.; Chiswell, S.; Northcote, L.

    2016-02-01

    One of the key aspects of the global carbon cycle is the efficiency and spatio-temporal variability of the biological pump. In this paper, the annual cycles of particle fluxes, derived from moored sediment trap data collected from 2000-12 in subtropical (STW) and subantarctic waters (SAW), east of New Zealand, are presented. These observations are the most comprehensive export flux time-series from temperate Southern Hemisphere latitudes to date. With high levels of variability, fluxes in SAW were markedly lower than in STW, reflecting the picophytoplankton-dominated communities in the iron-limited, high nutrient-low chlorophyll SAW. Austral spring chlorophyll blooms in surface STW were near-synchronous with elevated fluxes of bio-siliceous, carbonate and organic carbon-rich materials to the deep ocean, probably facilitated by diatom sedimentation. Lithogenic fluxes were also high in STW, compared to SAW, reflecting proximity to the New Zealand landmass. In contrast, the highest biogenic fluxes in SAW occurred in spring when surface chlorophyll concentrations were low, while highest annual chlorophyll concentrations were in summer with no associated flux increase. We hypothesize that the high spring export in SAW occurs from subsurface chlorophyll accumulations that are not evident from remote-sensing satellites. This material was also rich in biogenic silica, perhaps related to the preferential export of diatoms and other silica-producing organisms, such as silicoflagellates and radiolarians. Particle fluxes in STW are similar to that of other mesotrophic to oligotrophic waters ( 6-7 mgC m-2 d-1), whereas export from SAW is below global averages ( 3 mgC m-2 d-1), and is characterized by carbonate-dominated and prominent bio-siliceous deposition.

  15. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Iversen, Morten H.; Pakhomov, Evgeny A.; Hunt, Brian P. V.; van der Jagt, Helga; Wolf-Gladrow, Dieter; Klaas, Christine

    2017-04-01

    Salp fecal pellets are rich in organic matter and have been shown to sink at very high velocities. In recent years, salp abundances have been increasing in the Southern Ocean where they seem to be replacing krill as the dominant grazers on phytoplankton. As salps can form large swarms with high pellet production rates, it has been suggested that they will become increasingly important for the vertical export of particulate organic matter in the Southern Ocean. However, detailed studies combining both investigations of pellet production rates, turnover, and export are still needed in order to determine whether salp pellets are important for export ('sinkers') or recycling ('floaters') of organic matter. Our results suggest that pellets are produced at high rates in the upper few hundred meters of the water column. Although we observed high sinking velocities and low microbial degradation rates of the produced salp pellets, only about one third of the produced pellets were captured in sediment traps placed at 100 m and about 13% of the produced pellets were exported to sediment traps placed at 300 m. The high retention of these fast-settling pellets seems to be caused by break-up and loosening of the pellets, possibly by zooplankton and salps themselves. We measured 3-fold lower size-specific sinking velocities in loosened and fragmented compared to freshly produced intact pellets-. This enhanced the residence times (>1 day) of both small and large pellets in the upper water column. We postulate that the fragile nature of salp pellets make them more important for recycling of organic matter in the upper mesopelagic layer rather than as a conduit for export of particulate organic matter to the seafloor.

  16. Increased risk of a shutdown of ocean convection posed by warm North Atlantic summers

    NASA Astrophysics Data System (ADS)

    Oltmanns, Marilena; Karstensen, Johannes; Fischer, Jürgen

    2018-04-01

    A shutdown of ocean convection in the subpolar North Atlantic, triggered by enhanced melting over Greenland, is regarded as a potential transition point into a fundamentally different climate regime1-3. Noting that a key uncertainty for future convection resides in the relative importance of melting in summer and atmospheric forcing in winter, we investigate the extent to which summer conditions constrain convection with a comprehensive dataset, including hydrographic records that are over a decade in length from the convection regions. We find that warm and fresh summers, characterized by increased sea surface temperatures, freshwater concentrations and melting, are accompanied by reduced heat and buoyancy losses in winter, which entail a longer persistence of the freshwater near the surface and contribute to delaying convection. By shortening the time span for the convective freshwater export, the identified seasonal dynamics introduce a potentially critical threshold that is crossed when substantial amounts of freshwater from one summer are carried over into the next and accumulate. Warm and fresh summers in the Irminger Sea are followed by particularly short convection periods. We estimate that in the winter 2010-2011, after the warmest and freshest Irminger Sea summer on our record, 40% of the surface freshwater was retained.

  17. Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, T.-Y.; Shih, Y.-T.; Huang, J.-C.; Kao, S.-J.; Shiah, F.-K.; Liu, K.-K.

    2014-10-01

    Human-induced excess nitrogen outflowing from land through rivers to oceans has resulted in serious impacts on terrestrial and coastal ecosystems. Oceania, which occupies < 2.5% of the global land surface, delivers 12% of the freshwater and dissolved materials to the ocean on a global scale. However, there are few empirical data sets on riverine dissolved inorganic nitrogen (DIN) fluxes in the region, and their dynamics are poorly understood. In this study, a river monitoring network covering different types of land uses and population densities was implemented to investigate the mechanism of DIN export. The results show that DIN concentration/yield varied from ∼20 μM/∼300 kg-N km-2 yr-1 to ∼378 μM/∼10 000 kg-N km-2 yr-1 from the relatively pristine headwaters to the populous estuary. Agriculture and population density control DIN export in less densely populated regions and urban areas, respectively, and runoff controls DIN at the watershed scale. Compared to documented estimates from global models, the observed DIN export from the Danshui River is 2.3 times larger, which results from the region-specific response of DIN yield to dense population and abundant runoff. The dominating DIN species change gradually from NO3- in the headwaters (∼97%) to NH4+ in the estuary (∼60%) following the urbanization gradient. The prominent existence of NH4+ is probably the result of the anaerobic water body and short residence time, unlike in large river basins. Given the analogous watershed characteristics of the Danshui River to the rivers in Oceania, our study could serve as a first example to examine riverine DIN fluxes in Oceania.

  18. ENSO Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific

    PubMed Central

    Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng

    2015-01-01

    Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other. PMID:26678931

  19. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations

    USGS Publications Warehouse

    Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; Kimball, J.S.; Kwok, R.; Lammers, R.B.; Lee, C.M.; Lettenmaier, D.P.; McDonald, K.C.; Podest, E.; Pundsack, J.W.; Rudels, B.; Serreze, Mark C.; Shiklomanov, A.; Skagseth, O.; Troy, T.J.; Vorosmarty, C.J.; Wensnahan, M.; Wood, E.F.; Woodgate, R.; Yang, D.; Zhang, K.; Zhang, T.

    2010-01-01

    Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate

  20. Kara Sea freshwater transport through Vilkitsky Strait: Variability, forcing, and further pathways toward the western Arctic Ocean from a model and observations

    NASA Astrophysics Data System (ADS)

    Janout, Markus A.; Aksenov, Yevgeny; Hölemann, Jens A.; Rabe, Benjamin; Schauer, Ursula; Polyakov, Igor V.; Bacon, Sheldon; Coward, Andrew C.; Karcher, Michael; Lenn, Yueng-Djern; Kassens, Heidemarie; Timokhov, Leonid

    2015-07-01

    Siberian river water is a first-order contribution to the Arctic freshwater budget, with the Ob, Yenisey, and Lena supplying nearly half of the total surface freshwater flux. However, few details are known regarding where, when, and how the freshwater transverses the vast Siberian shelf seas. This paper investigates the mechanism, variability, and pathways of the fresh Kara Sea outflow through Vilkitsky Strait toward the Laptev Sea. We utilize a high-resolution ocean model and recent shipboard observations to characterize the freshwater-laden Vilkitsky Strait Current (VSC), and shed new light on the little-studied region between the Kara and Laptev Seas, characterized by harsh ice conditions, contrasting water masses, straits, and a large submarine canyon. The VSC is 10-20 km wide, surface intensified, and varies seasonally (maximum from August to March) and interannually. Average freshwater (volume) transport is 500 ± 120 km3 a-1 (0.53 ± 0.08 Sv), with a baroclinic flow contribution of 50-90%. Interannual transport variability is explained by a storage-release mechanism, where blocking-favorable summer winds hamper the outflow and cause accumulation of freshwater in the Kara Sea. The year following a blocking event is characterized by enhanced transports driven by a baroclinic flow along the coast that is set up by increased freshwater volumes. Eventually, the VSC merges with a slope current and provides a major pathway for Eurasian river water toward the western Arctic along the Eurasian continental slope. Kara (and Laptev) Sea freshwater transport is not correlated with the Arctic Oscillation, but rather driven by regional summer pressure patterns.

  1. Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed

    Treesearch

    Shuiwang Duan; Sujay S. Kaushal; Peter Groffman; Lawrence E. Band; Kenneth Belt

    2012-01-01

    Watershed export of phosphorus (P) from anthropogenic sources has contributed to eutrophication in freshwater and coastal ecosystems. We explore impacts of watershed urbanization on the magnitude and export flow distribution of P along an urban-rural gradient in eight watersheds monitored as part of the Baltimore Ecosystem Study Long-Term Ecological Research site....

  2. Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Troselj, Josko; Sayama, Takahiro; Varlamov, Sergey M.; Sasaki, Toshiharu; Racault, Marie-Fanny; Takara, Kaoru; Miyazawa, Yasumasa; Kuroki, Ryusuke; Yamagata, Toshio; Yamashiki, Yosuke

    2017-12-01

    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme

  3. Oceanic Fluxes of Mass, Heat and Freshwater: A Global Estimate and Perspective

    NASA Technical Reports Server (NTRS)

    MacDonald, Alison Marguerite

    1995-01-01

    Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional heat and freshwater budgets and are used to examine the sensitivity of the global circulation, both inter and intra-basin exchange rates, to a variety of external constraints provided by estimates of Ekman, boundary current and throughflow transports. A solution is found which is consistent with both the model physics and the global data set, despite a twenty five year time span and a lack of seasonal consistency among the data. The overall pattern of the global circulation suggested by the models is similar to that proposed in previously published local studies and regional reviews. However, significant qualitative and quantitative differences exist. These differences are due both to the model definition and to the global nature of the data set.

  4. Climate Change Response of Ocean Net Primary Production (NPP) and Export Production (EP) Regulated by Stratification Increases in The CMIP5 models

    NASA Astrophysics Data System (ADS)

    Fu, W.; Randerson, J. T.; Moore, J. K.

    2014-12-01

    Ocean warming due to rising atmospheric CO2 has increasing impacts on ocean ecosystems by modifying the ecophysiology and distribution of marine organisms, and by altering ocean circulation and stratification. We explore ocean NPP and EP changes at the global scale with simulations performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the representative concentration pathway (RCP) 8.5 scenario, although models differ in their significantly in their direct temperature impacts on production and remineralization. The Earth system models used here project similar NPP trends albeit the magnitudes vary substantially. In general, projected changes in the 2090s for NPP range between -2.3 to -16.2% while export production reach -7 to -18% relative to 1990s. This is accompanied by increased stratification by 17-30%. Results indicate that globally reduced NPP is closely related to increased ocean stratification (R2=0.78). This is especially the case for global export production, that seems to be mostly controlled by the increased stratification (R2=0.95). We also identify phytoplankton community impacts on these patterns, that vary across the models. The negative response of NPP to climate change may be through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. There are large disagreements among the CMIP5 models in terms of simulated nutrient and oxygen concentrations for the 1990s, and their trends over time with climate change. In addition, potentially important marine biogeochemical feedbacks on the climate system were not well represented in the CMIP5 models, including important feedbacks with aerosol deposition and the marine iron cycle, and feedbacks involving the oxygen minimum zones and the marine nitrogen cycle. Thus, these substantial reductions in primary productivity and export production over

  5. Arctic climatechange and its impacts on the ecology of the North Atlantic.

    PubMed

    Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole

    2008-11-01

    Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends

  6. Characteristics of the modelled meteoric freshwater budget of the western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    van Wessem, J. M.; Meredith, M. P.; Reijmer, C. H.; van den Broeke, M. R.; Cook, A. J.

    2017-05-01

    Rapid climatic changes in the western Antarctic Peninsula (WAP) have led to considerable changes in the meteoric freshwater input into the surrounding ocean, with implications for ocean circulation, the marine ecosystem and sea-level rise. In this study, we use the high-resolution Regional Atmospheric Climate Model RACMO2.3, coupled to a firn model, to assess the various contributions to the meteoric freshwater budget of the WAP for 1979-2014: precipitation (snowfall and rainfall), meltwater runoff to the ocean, and glacial discharge. Snowfall is the largest component in the atmospheric contribution to the freshwater budget, and exhibits large spatial and temporal variability. The highest snowfall rates are orographically forced and occur over the coastal regions of the WAP (> 2000 mm water equivalent (w.e.) y-1) and extend well onto the ocean up to the continental shelf break; a minimum (∼ 500 mm w . e .y-1) is reached over the open ocean. Rainfall is an order of magnitude smaller, and strongly depends on latitude and season, being large in summer, when sea ice extent is at its minimum. For Antarctic standards, WAP surface meltwater production is relatively large (> 50 mm w . e .y-1) , but a large fraction refreezes in the snowpack, limiting runoff. Only at a few more northerly locations is the meltwater predicted to run off into the ocean. In summer, we find a strong relationship of the freshwater fluxes with the Southern Annular Mode (SAM) index. When SAM is positive and occurs simultaneously with a La Niña event there are anomalously strong westerly winds and enhanced snowfall rates over the WAP mountains, Marguerite Bay and the Bellingshausen Sea. When SAM coincides with an El Niño event, winds are more northerly, reducing snowfall and increasing rainfall over the ocean, and enhancing orographic snowfall over the WAP mountains. Assuming balance between snow accumulation (mass gain) and glacial discharge (mass loss), the largest glacial discharge is found

  7. 48 CFR 52.247-51 - Evaluation of Export Offers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Evaluation of Export....247-51 Evaluation of Export Offers. As prescribed in 47.305-6(e), insert the following provision: Evaluation of Export Offers (JAN 2001) (a) Port handling and ocean charges—other than DOD water terminals...

  8. Export fluxes in a naturally iron-fertilized area of the Southern Ocean - Part 1: Seasonal dynamics of particulate organic carbon export from a moored sediment trap

    NASA Astrophysics Data System (ADS)

    Rembauville, M.; Salter, I.; Leblond, N.; Gueneugues, A.; Blain, S.

    2015-06-01

    A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s-1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m-2 d-1), although two episodic export events (< 14 days) of 1.5 mmol m-2 d-1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m-2 yr-1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.

  9. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Ballas, D.; Cavagna, A.-J.; Bowie, A. R.; Davies, D.; Trull, T.; Laurenceau-Cornec, E. C.; Van Der Merwe, P.; Dehairs, F.

    2015-06-01

    This study examined upper-ocean particulate organic carbon (POC) export using the 234Th approach as part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2). Our aim was to characterize the spatial and the temporal variability of POC export during austral spring (October-November 2011) in the Fe-fertilized area of the Kerguelen Plateau region. POC export fluxes were estimated at high productivity sites over and downstream of the plateau and compared to a high-nutrient low-chlorophyll (HNLC) area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities were observed at all stations in surface waters, indicating early scavenging by particles in austral spring. 234Th export was lowest at the reference station R-2 and highest in the recirculation region (E stations) where a pseudo-Lagrangian survey was conducted. In comparison 234Th export over the central plateau and north of the polar front (PF) was relatively limited throughout the survey. However, the 234Th results support that Fe fertilization increased particle export in all iron-fertilized waters. The impact was greatest in the recirculation feature (3-4 fold at 200 m depth, relative to the reference station), but more moderate over the central Kerguelen Plateau and in the northern plume of the Kerguelen bloom (~2-fold at 200 m depth). The C : Th ratio of large (>53 μm) potentially sinking particles collected via sequential filtration using in situ pumping (ISP) systems was used to convert the 234Th flux into a POC export flux. The C : Th ratios of sinking particles were highly variable (3.1 ± 0.1 to 10.5 ± 0.2 μmol dpm-1) with no clear site-related trend, despite the variety of ecosystem responses in the fertilized regions. C : Th ratios showed a decreasing trend between 100 and 200 m depth suggesting preferential carbon loss relative to 234Th possibly due to heterotrophic degradation and

  10. Vertical Redistribution of Ocean Salt Content

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.

    2017-12-01

    Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.

  11. Sources, variability and fate of freshwater in the Bellingshausen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Regan, Heather C.; Holland, Paul R.; Meredith, Michael P.; Pike, Jennifer

    2018-03-01

    During the second half of the twentieth century, the Antarctic Peninsula was subjected to a rapid increase in air temperatures. This was accompanied by a reduction in sea ice extent, increased precipitation and a dramatic retreat of glaciers associated with an increase in heat flux from deep ocean water masses. Isotopic tracers have been used previously to investigate the relative importance of the different freshwater sources to the adjacent Bellingshausen Sea (BS), but the data coverage is strongly biased toward summer. Here we use a regional model to investigate the ocean's response to the observed changes in its different freshwater inputs (sea ice melt/freeze, precipitation, evaporation, iceberg/glacier melt, and ice shelf melt). The model successfully recreates BS water masses and performs well against available freshwater data. By tracing the sources and pathways of the individual components of the freshwater budget, we find that sea ice dominates seasonal changes in the total freshwater content and flux, but all sources make a comparable contribution to the annual-mean. Interannual variability is dominated by sea ice and precipitation. Decadal trends in the salinity and stratification of the ocean are investigated, and a 20-year surface freshening from 1992 to 2011 is found to be predominantly driven by decreasing autumn sea ice growth. These findings will help to elucidate the role of freshwater in driving circulation and water column structure changes in this climatically-sensitive region.

  12. The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2016-12-01

    Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.

  13. An Arctic Ocean freshwater event as the trigger of the Younger Dryas stadial? Answers from Arctic deep-sea sediment cores

    NASA Astrophysics Data System (ADS)

    Spielhagen, Robert F.

    2017-04-01

    At ca. 12.8-11.5 ka the northern hemisphere climate experienced a dramatic fall-back to quasi-glacial conditions. Since the late 1980s, a major meltwater ejection to the North Atlantic through the Gulf of St.Lawrence was considered the most likely trigger for this "Younger Dryas event". It may have caused a slowdown of the Atlantic meridional overturning circulation (AMOC) and a diminished heat transport to the northern latitudes. However, field evidence from the potential meltwater route in North America has been discussed controversially in the last years, and the detection of a freshwater signal in marine sediments off the St.Lawrence river rendered difficult. More recently, the idea of an "Arctic route" of meltwater originating from proglacial lake Agassiz was put forward (Tarasov & Peltier, Nature 2005) and has gained further attraction through evidence from radiogenic isotopes (Not and Hillaire-Marcel; Nature Comm., 2012) and through modelling results of Condron and Winsor (PNAS, 2012) which showed that only a freshwater outflow through Fram Strait was capable of triggering a climate perturbation like the Younger Dryas. Here I present a review of isotopic records from the Arctic Ocean, the Fram Strait, and the Greenland Sea in search of evidence for a strong freshwater event in the Arctic Ocean at the onset of the Younger Dryas, supporting an Arctic origin of the trigger. A number of Arctic cores show a light planktic oxygen isotope spike at 13 ka. For several of them the age model is detailed enough to exclude a confusion with other deglacial spikes. On the central Arctic Lomonosov Ridge there is even evidence for a diminshed intermediate/bottom water circulation immediately following the freshwater event. On the other hand, there are many records which do not show a meltwater spike in the critical time interval, most likely because of low temporal resolution, a thick ice cover and/or a habitat change of the planktic foraminifers. The largest uncertainty is

  14. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska

    USGS Publications Warehouse

    Neal, E.G.; Hood, E.; Smikrud, K.

    2010-01-01

    Watersheds along the Gulf of Alaska (GOA) are undergoing climate warming, glacier volume loss, and shifts in the timing and volume of freshwater delivered to the eastern North Pacific Ocean. We estimate recent mean annual freshwater discharge to the GOA at 870 km3 yr-1. Small distributed coastal drainages contribute 78% of the freshwater discharge with the remainder delivered by larger rivers penetrating coastal ranges. Discharge from glaciers and icefields accounts for 47% of total freshwater discharge, with 10% coming from glacier volume loss associated with rapid thinning and retreat of glaciers along the GOA. Our results indicate the region of the GOA from Prince William Sound to the east, where glacier runoff contributes 371 km3 yr -1, is vulnerable to future changes in freshwater discharge as a result of glacier thinning and recession. Changes in timing and magnitude of freshwater delivery to the GOA could impact coastal circulation as well as biogeochemical fluxes to near-shore marine ecosystems and the eastern North Pacific Ocean. Copyright ?? 2010 by the American Geophysical Union.

  15. Enhanced Particulate Organic Carbon Export at Eddy Edges in the Oligotrophic Western North Pacific Ocean

    PubMed Central

    Shih, Yung-Yen; Hung, Chin-Chang; Gong, Gwo-Ching; Chung, Wan-Chen; Wang, Yu-Huai; Lee, I-Huan; Chen, Kuo-Shu; Ho, Chuang-Yi

    2015-01-01

    Mesoscale eddies in the subtropical oligotrophic ocean are ubiquitous and play an important role in nutrient supply and oceanic primary production. However, it is still unclear whether these mesoscale eddies can efficiently transfer CO2 from the atmosphere to deep waters via biological pump because of the sampling difficulty due to their transient nature. In 2007, particulate organic carbon (POC) fluxes, measured below the euphotic zone at the edge of warm eddy were 136–194 mg-C m−2 d−1 which was greatly elevated over that (POC flux = 26–35 mg-C m−2 d−1) determined in the nutrient-depleted oligotrophic waters in the Western North Pacific (WNP). In 2010, higher POC fluxes (83–115 mg-C m−2 d−1) were also observed at the boundary of mesoscale eddies in the WNP. The enhanced POC flux at the edge of eddies was mainly attributed to both large denuded diatom frustules and zooplankton fecal pellets based on scanning electron microscopy (SEM) examination. The result suggests that mesoscale eddies in the oligotrophic waters in the subtropical WNP can efficiently increase the oceanic carbon export flux and the eddy edge is a crucial conduit in carbon sequestration to deep waters. PMID:26171611

  16. Quantifying oceanic moisture exports to mainland China in association with summer precipitation

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Zhao, TianLiang

    2017-10-01

    Oceanic moisture exports (OMEs) are considered the major moisture sources for precipitation over Mainland China during the boreal summer season. In this study, a Lagrangian particle dispersion and transport model [FLEXible PARTicle dispersion model (FLEXPART)] driven with European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA)-Interim data was used to conduct 35-year modeling of the summer season (May-August) for 1980-2014. Based on the 6-h output over 35 years, a relatively sophisticated approach was adopted that considers the change in specific humidity with trajectory tracking to diagnose OME-based precipitation during the summer season in China. We specifically explored the spatiotemporal structure of OME-based precipitation over Mainland China with a focus on quantifying the relative contributions of three specific oceanic sub-regions: the Arabian Sea (AS), the Bay of Bengal (BOB), and the South China Sea (SCS). The relevance of the OME anomalies from the three sub-regions and the observed precipitation changes on an interannual scale were also explored. The main research conclusions are summarized as follows: (1) The diagnosed OME-based precipitation and gauge observations exhibit similar spatial patterns in both seasonal and sub-seasonal scales, further evidencing the robustness of the approach used in this study. (2) Climatologically, the OMEs originating from the AS, the BOB, and the SCS made roughly equivalent contributions to the entire areal-averaged precipitation over Mainland China on a seasonal scale, but the preferred regions influenced by the three oceanic sources differ strongly from each other. (3) The relative contributions of OME from three specific subsections to precipitation varied significantly on the sub-seasonal scale. During the onset of summer monsoons, the AS region ranked first as an important oceanic source, followed by the BOB and the SCS, whereas during the withdrawal of summer monsoons, this order was reversed

  17. Transport and Degradation of Dissolved Organic Matter and Associated Freshwater Pathways in the Laptev Sea (Siberian Arctic)

    NASA Astrophysics Data System (ADS)

    Hoelemann, J. A.; Janout, M. A.; Koch, B.; Bauch, D.; Novikhin, A.; Heim, B.; Eulenburg, A.; Kassens, H.; Timokhov, L.

    2016-02-01

    The Siberian shelves are seasonally ice-covered and characterized by large freshwater runoff rates from some of the largest rivers on earth. These rivers also provide a considerable amount of dissolved organic carbon (DOC) to the Arctic Ocean. With an annual load of about 6 Tg DOC a-1 the Lena River contributes nearly 20 percent of the annual DOC discharge to the Arctic Ocean. We present a comprehensive dataset collected during multiple Laptev Sea expeditions carried out in spring, summer and fall (2010-15) in order to explore the processes controlling the dispersal and degradation of DOM during the river water's passage across the shelf. Our investigations are focused on CDOM (Colored Dissolved Organic Matter), which resembles the DOC concentration, interacts with solar radiation and forms a major fraction of the organic matter pool. Our results show an inverse correlation between salinity and CDOM, which emphasizes its terrigenous source. Further, the spectral slope of CDOM absorption indicates that photochemical bleaching is the main process that reduces the CDOM absorption ( 20%) in freshwater along its transport across the shelf. The distribution of the Lena river water is primarily controlled by winds in summer. During summers with easterly or southerly winds, the plume remains on the central and northern Laptev shelf, and is available for export into the Arctic Basin. The CDOM-rich river water increases the absorption of solar radiation and enhances warming of a shallow surface layer. This emphasizes the importance of CDOM for sea surface temperatures and lateral ice melt on the shelf and adjacent basin. DOC concentrations in freshwater vary seasonally and become larger with increasing discharge. Our data indicate that the CDOM concentrations are highest during the freshet when landfast ice is still present. Subsequent mixing with local sea ice meltwater lowers CDOM to values that are characteristic for the Lena freshwater during the rest of the year.

  18. Transport and degradation of dissolved organic matter and associated freshwater pathways in the Laptev Sea (Siberian Arctic)

    NASA Astrophysics Data System (ADS)

    Hoelemann, Jens; Janout, Markus; Koch, Boris; Bauch, Dorothea; Hellmann, Sebastian; Eulenburg, Antje; Heim, Birgit; Kassens, Heidemarie; Timokhov, leonid

    2016-04-01

    The Siberian shelves are seasonally ice-covered and characterized by large freshwater runoff rates from some of the largest rivers on earth. These rivers also provide a considerable amount of dissolved organic carbon (DOC) to the Arctic Ocean. With an annual load of about 6 Tg DOC a-1 the Lena River contributes nearly 20 percent of the annual DOC discharge to the Arctic Ocean. We present a comprehensive dataset collected during multiple Laptev Sea expeditions carried out in spring, summer and fall (2010-15) in order to explore the processes controlling the dispersal and degradation of DOM during the river water's passage across the shelf. Our investigations are focused on CDOM (Colored Dissolved Organic Matter), which resembles the DOC concentration, interacts with solar radiation and forms a major fraction of the organic matter pool. Our results show an inverse correlation between salinity and CDOM, which emphasizes its terrigenous source. Further, the spectral slope of CDOM absorption indicates that photochemical bleaching is the main process that reduces the CDOM absorption (~ 20%) in freshwater along its transport across the shelf. The distribution of the Lena river water is primarily controlled by winds in summer. During summers with easterly or southerly winds, the plume remains on the central and northern Laptev shelf, and is available for export into the Arctic Basin. The CDOM-rich river water increases the absorption of solar radiation and enhances warming of a shallow surface layer. This emphasizes the importance of CDOM for sea surface temperatures and lateral ice melt on the shelf and adjacent basin. DOC concentrations in freshwater vary seasonally and become larger with increasing discharge. Our data indicate that the CDOM concentrations are highest during the freshet when landfast ice is still present. Subsequent mixing with local sea ice meltwater lowers CDOM to values that are characteristic for the Lena freshwater during the rest of the year.

  19. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Ballas, D.; Cavagna, A.-J.; Bowie, A. R.; Davies, D.; Trull, T.; Laurenceau, E.; Van Der Merwe, P.; Dehairs, F.

    2014-11-01

    The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2) in austral spring (October-November 2011), we examined upper-ocean Particulate Organic Carbon (POC) export using the 234Th approach. We aimed at characterizing the spatial and the temporal variability of POC export production at high productivity sites over and downstream the Kerguelen plateau. Export production is compared to a High Nutrient Low Chlorophyll area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities relative to its parent nuclide 238U were observed at all stations in surface waters, indicating that scavenging by particles occurred during the early stages of the phytoplankton bloom. 234Th export was lowest at reference station R-2 (412 ± 134 dpm m-2 d-1) and highest inside a~permanent meander of the Polar Front (PF) at stations E (1995 ± 176 dpm m-2 d-1, second visit E-3) where a detailed time series was obtained as part of a~pseudo-lagrangian study. 234Th export over the central plateau was relatively limited at station A3 early (776 ± 171 dpm m-2 d-1, first visit A3-1) and late in the survey (993 ± 223 dpm m-2 d-1, second visit A3-2), but it was higher at high biomass stations TNS-8 (1372 ± 255 dpm m-2 d-1) and E-4W (1068 ± 208 dpm m-2 d-1) in waters which could be considered as derived from plateau. Limited 234Th export of 973 ± 207 dpm m-2 d-1 was also found in the northern branch of the Kerguelen bloom located downstream of the island, north of the PF (station F-L). The 234Th results support that Fe fertilization increased particle export in all iron fertilized waters. The impact was greatest in the recirculation feature (3-4 fold at 200 m depth), but more moderate over the central Kerguelen plateau

  20. Late summer carbon export and remineralisation in the Southern Ocean determined with the combined 234Th and particulate biogenic Ba tracers

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Cavagna, A.-J.; Cardinal, D.; André, L.; Dehairs, F.

    2012-04-01

    As part of the Bonus-GoodHope expedition (late summer 2008; Feb-March) in the Atlantic sector of the Southern Ocean, we present combined 234Th and biogenic particulate barium (Baxs) results. These data are used to estimate the export of particulate organic carbon (POC) from the upper mixed layer and the impact of twilight zone remineralisation on the carbon export. Total 234Th activity in surface waters is depleted relative to its parent nuclide 238U (234Th/238U ratio ranging from 0.74 to 0.91), while equilibrium is reached at the base of the surface mixed-layer. The export fluxes of 234Th from the 100m horizon, as estimated using steady state (SS) and non steady state (NSS) models, reveal different latitudinal trends. SS 234Th export varies from 496 dpm m-2 d-1 in the subtropical domain of the Cape Basin to 1195 dpm m-2 d-1 close to the Polar Front (PF). NSS export representative for a 15 to 22 day period preceding the cruise, is consistently less than SS export in the sub-Antarctic Zone (SAZ, 150 dpm m-2 d-1) and the Polar Frontal Zone (PFZ, 440 dpm m-2 d-1) but is similar further south in the Antarctic Zone (AZ, 1217 dpm m-2 d-1) and the northern Weddell Gyre (N-WG; 757 dpm m-2 d-1). This reflects temporal variability of export north of the PF, while south of the PF the export system appears to be in steady state during this late summer situation. The POC:Th ratio of large (>53 µm) particles collected below the surface mixed layer increases from 1.7 µmol dpm-1 in the STZ to a maximum of 4.8 µmol dpm-1 at the Southern Antarctic Circumpolar Current Front (SACCF), suggesting a southward increase of the contribution of larger cells, such as diatoms, to sinking material. Using these POC:Th ratios we calculate that the POC SS export from the 100m horizon reaches 0.9-1.7 mmol m-2 d-1 in the STZ and the SAZ, 2.6-4.7 mmol m-2 d-1 in the PFZ, and 3.3 mmol m-2 d-1 in the N-WG. Below the export layer, in the mesopelagic zone (100-600 m), 234Th activities generally reach

  1. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  2. Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Anderson, William T.; Swart, Peter K.; Price, René M.; Barbero, Leticia

    2017-05-01

    The Shark and Harney rivers, located on the southwest coast of Florida, USA, originate in the freshwater, karstic marshes of the Everglades and flow through the largest contiguous mangrove forest in North America. In November 2010 and 2011, dissolved carbon source-sink dynamics was examined in these rivers during SF6 tracer release experiments. Approximately 80 % of the total dissolved carbon flux out of the Shark and Harney rivers during these experiments was in the form of inorganic carbon, either via air-water CO2 exchange or longitudinal flux of dissolved inorganic carbon (DIC) to the coastal ocean. Between 42 and 48 % of the total mangrove-derived DIC flux into the rivers was emitted to the atmosphere, with the remaining being discharged to the coastal ocean. Dissolved organic carbon (DOC) represented ca. 10 % of the total mangrove-derived dissolved carbon flux from the forests to the rivers. The sum of mangrove-derived DIC and DOC export from the forest to these rivers was estimated to be at least 18.9 to 24.5 mmol m-2 d-1, a rate lower than other independent estimates from Shark River and from other mangrove forests. Results from these experiments also suggest that in Shark and Harney rivers, mangrove contribution to the estuarine flux of dissolved carbon to the ocean is less than 10 %.

  3. Regime-Dependent Differences in Surface Freshwater Exchange Estimates Over the Ocean

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Behrangi, Ali

    2018-01-01

    Differences in gridded precipitation (P), surface evaporation (E), and the resultant surface freshwater exchange (P - E) among different products over the ocean are diagnosed as functions of moisture advection (Qadvt) and moisture tendency by dynamical convergence (Qcnvg). Compared to the GPCP product, the TRMM3B42 product captures higher frequency of precipitation with larger extreme precipitation rates in regimes of deep convection and more light rain detections in regimes of frequent occurrence of boundary layer clouds. Discrepancies in E depend on moisture flux divergence, with the OAFlux product having the largest E in regimes of divergence. Discrepancies in mean P - E in deep convective regimes are highly influenced by differences in precipitation, with the TRMM3B42 product yielding P - E histograms closer to those inferred from the reanalysis moisture flux convergence. In nonconvergent regimes, observation-based P - E histograms skew toward positive values while the inferred reanalysis histograms are symmetric about the means.

  4. 40 CFR 262.53 - Notification of intent to export.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... country (e.g., land or ocean incineration, other land disposal, ocean dumping, recycling); (vii) The name... forward an EPA Acknowledgment of Consent to the primary exporter for purposes of § 262.54(h). Where the...

  5. 40 CFR 262.53 - Notification of intent to export.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... country (e.g., land or ocean incineration, other land disposal, ocean dumping, recycling); (vii) The name... forward an EPA Acknowledgment of Consent to the primary exporter for purposes of § 262.54(h). Where the...

  6. 40 CFR 262.53 - Notification of intent to export.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... country (e.g., land or ocean incineration, other land disposal, ocean dumping, recycling); (vii) The name... forward an EPA Acknowledgment of Consent to the primary exporter for purposes of § 262.54(h). Where the...

  7. 40 CFR 262.53 - Notification of intent to export.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... country (e.g., land or ocean incineration, other land disposal, ocean dumping, recycling); (vii) The name... forward an EPA Acknowledgment of Consent to the primary exporter for purposes of § 262.54(h). Where the...

  8. 40 CFR 262.53 - Notification of intent to export.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... country (e.g., land or ocean incineration, other land disposal, ocean dumping, recycling); (vii) The name... forward an EPA Acknowledgment of Consent to the primary exporter for purposes of § 262.54(h). Where the...

  9. Coastal conduit in southwestern Hudson Bay (Canada) in summer: Rapid transit of freshwater and significant loss of colored dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; MacDonald, Robie W.; Kuzyk, Zou Zou A.; Senneville, Simon; Mundy, Christopher-John; Barber, David G.; Stern, Gary A.; Saucier, Francois

    2009-08-01

    Distributions of freshwater (sea-ice melt and runoff) were investigated along inshore-offshore sections in southwestern Hudson Bay for fall conditions. Conductivity-temperature-density profiles and bottle samples collected for salinity, oxygen isotope (δ18O), and colored dissolved organic matter (CDOM) analyses were used to discriminate between contributions of river water (RW) and sea-ice melt (SIM). Stations had a fresh summer surface mixed layer 5-25 m thick overlying a cold subsurface layer indicative of the previous winter's polar mixed layer (PML). The fraction of RW decreased strongly with distance from shore, while the opposite was true for SIM. The majority of RW was constrained in a coastal domain within 100-150 km from shore, which, because of high alongshore velocities, accounts for the majority of freshwater and volume transports. On the basis of freshwater inventories and composition, brine and RW accumulate in the PML over winter because of ice formation and downward mixing. The summer surface circulation results in an annual net export of SIM from the region. Residence times for freshwater components in the southwestern sector of the bay, based on currents derived from a 3-D ocean model for Hudson Bay, are about 1-10 months, implying rapid transit of freshwater. Despite the short residence time for RW (1-3 months), CDOM is significantly photobleached and provides an unreliable tracer for RW. Photobleaching represents an important sink for dissolved organic carbon entering from rivers and could, in part, explain why Hudson Bay is only a minor sink for atmospheric CO2 in the open water season.

  10. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  11. The Ocean-Atmosphere Hydrothermohaline Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent

    2015-04-01

    The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each

  12. Suspended and Bedload Sand dynamics in the Mekong River Channel and Export to the Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Stephens, J. D.; Di Leonardo, D. R.; Weathers, H. D., III; Allison, M. A.

    2016-02-01

    Two field campaigns were conducted in the tidal and estuarine reach of the Song Hau distributary of the Mekong River to examine the dynamics of sand transport and export to the coastal ocean. This study examines variation in suspended sand concentration and net transport with respect to changes in discharge between the October 2014 high discharge and March 2015 low discharge studies, and over semi-diurnal and spring-neap tidal cycles between Can Tho and the Tran De and Dinh An distributary channels in the Mekong Delta. Suspended sand concentrations were measured using a P-61 isokinetic suspended sediment sampler and a Sequoia Scientific LISST-100X used in vertical profiling mode. Stationary ADCP data are used to examine bed stress at cast sites. Bed load transport rates were calculated using a repeat multibeam transect methodology and dune translation rates with flow. Preliminary results indicate that suspended sand concentration increases towards the bed and is positively correlated with increasing shear stress controlled by river discharge and tides. However, sites with non-sandy bottoms, as indicated by multibeam bathymetry, have low suspended sand concentrations, suggesting a close linkage with a bed sand source. Bed load transport rates vary cross-sectionally with shear stress and are linked to dune size. Most bed load transport is taking place in or near the thalweg. The reduction in ebb flows at low discharge and the mantling of sand fields by salinity driven mud deposition, is suspected to control the low suspended sand concentrations observed in March. Results to date suggest that net sand export (suspended plus bed load) to the ocean occurs predominantly during the high discharge monsoon season.

  13. Bay-Ocean Coupling and the Proximal Fate of Water-Borne Material Exported from San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Largier, J. L.

    2012-12-01

    The coupling between San Francisco Bay and the ocean is poorly known: how ocean waters intrude into bay and how bay waters flow out into the ocean. Here we address the outflow from the Bay with a view to describing the proximal fate of water-borne material in the coastal ocean, specifically finer particles and dissolved material. Flow trajectories longer than that in the tidal jet are thus the focus of this study - time scales of hours to days. We present data collected in both winter/runoff and spring/upwelling seasons that reflect the importance of tides and also the importance of wind, which introduces either northward or southward along-coast flow. Southward flow is offshore and typically this Bay effluent is removed from nearshore waters. In contrast, northward flow tends to remain attached to shore, and there is persistent presence of Bay waters in the surface layer up to Point Reyes, only occasionally separated from the coast by local upwelling within Drakes Bay. Perhaps most dramatic is outflow during winter storms, when wind is southerly and pushes water on shore in Drakes Bay as well as inducing an intense flow around Point Reyes, which turns cyclonically to reconnect with the shore in the vicinity of Bodega Bay before forming a wind-accelerated coast-attached current that looks very much like a coastal buoyancy current. This is the time when large volumes of low-salinity and high-load waters are exported from the Bay.

  14. Late summer particulate organic carbon export and twilight zone remineralisation in the Atlantic sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Cavagna, A.-J.; Cardinal, D.; André, L.; Dehairs, F.

    2012-03-01

    During the Bonus-GoodHope (BGH) expedition (Jan-Mar 2008) we studied the water column distribution of total 234Th and biogenic particulate Ba (Baxs) in the Atlantic sector of the Southern Ocean. The objective was to assess the export flux of particulate organic carbon (POC) from the surface to the mesopelagic twilight zone along a section between the Cape Basin and Weddell Gyre. Export production of POC was estimated from steady state and non steady state export fluxes of 234Th which were converted into POC fluxes, using the POC/234Th ratio of large (>53 μm) suspended particles, collected via in-situ pumps. Deficits in 234Th activities were observed at all stations from the surface to the bottom of the mixed-layer. 234Th export fluxes from the upper 100 m ranged from 496 ± 57 dpm m-2 d-1 to 1195 ± 120 dpm m-2 d-1 for the steady state model and from 149 ± 18 dpm m-2 d-1 to 1217 ± 146 dpm m-2 d-1 for the non steady state model calculated for a time window of 15 to 22 days preceding the timing of the present cruise. The POC/234Thp ratio of large, potentially sinking particles (>53 μm), was observed to increase with latitude, from 1.9 ± 0.2 μmol dpm-1 and 1.7 ± 0.3 μmol dpm-1 in the Subtropical Zone (STZ) and Subantarctic Zone (SAZ), respectively, to 3.0 ± 0.2 μmol dpm-1 in the Polar Front Zone (PFZ), 4.8 ± 1.9 μmol dpm-1 at the Southern Antarctic Circumpolar Current Front (SACCF) to 4.1 ± 1.7 μmol dpm-1 in the northern Weddell Gyre, in line with an increasing contribution of larger cell diatoms. Steady state and non steady state POC export from the upper 100 m ranged from 0.9 ± 0.2 mmolC m-2 d-1 to 5.1 ± 2.1 mmolC m-2 d-1 and from 0.3 ± 0.0 mmolC m-2 d-1 to 4.9 ± 3.2 mmolC m-2 d-1, respectively. From the SAZ to the SACCF, non steady state POC export production represented only 15 to 54 % of the steady state POC flux, suggesting that the intensity of export had decreased over time partly due to the fact that regenerated-production based communities

  15. Seasonal Variation, Export Dynamics and Consumption of Freshwater Invertebrates in an Estuarine Environment

    NASA Astrophysics Data System (ADS)

    Williams, D. D.; Williams, N. E.

    1998-03-01

    In the Aber Estuary, North Wales, significant numbers of freshwater benthic invertebrates occurred in the tidal freshwater area. Distinct seasonal patterns were observed in their longitudinal zonation which appeared to be unrelated to variations in tidal inundation. The December extension downstream of freshwater taxa is hypothesized to be in response to decreasing water temperatures. In April, larvae/nymphs of the Trichoptera (caddisflies), Ephemeroptera (mayflies) and Plecoptera (stoneflies) ranged as far as a site inundated by 80·9% of all high tides, and larval Elmidae and Chironomidae (midges) occurred at the most marine site (inundated twice daily by all high tides). In July, with the exception of the Chironomidae, the range of most aquatic insects had contracted to the upper estuary. Although, in general, densities of aquatic insects decreased towards the lower estuary, significant densities persisted there. For example, maxima of 3514 chironomid larvae and 48 caddisfly larvae m -2were recorded at the 80·9% inundation site. An estimated 31×10 6freshwater invertebrates (weighing 62·6 kg), per annum, passed from fresh water into salt water across any given transect along the estuary. In comparison, the annual influx of invertebrates carried upstream by incoming tides was estimated to be 1·9×10 6(6·2%; weighing 2·5 kg). Predominant in the downstream drift were the larvae/nymphs and/or pupae of chironomids, mayflies, stoneflies and caddisflies. The ' reverse ' drift comprised mainly copepods, ostracods, amphipods and oligochaetes. Mites and the brackishwater amphipod Gammarus zaddachicommonly moved in both directions. Highest drift densities occurred in July, whereas the lowest densities occurred in late autumn and winter. Multiple regression analysis showed no relationship between total drift or ' reverse ' drift densities and any of the measured environmental variables. Many of the freshwater invertebrates appeared not to die upon passing into tidal

  16. Aquatic carbon export from peatland catchments recently undergone wind farm development

    NASA Astrophysics Data System (ADS)

    Smith, Ben; Waldron, Susan; Henderson, Andrew; Flowers, Hugh; Gilvear, David

    2013-04-01

    Scotland's peat landscapes are desirable locations for wind-based renewables due to high wind resources and low land use pressures in these areas. The environmental impact of sitting wind-based renewables on peats however, is unknown. Globally, peatlands are important terrestrial carbon stores. Given the topical nature of carbon-related issues, e.g. global warming and carbon footprints, it is imperative we help mitigate their degradation and maintain carbon sequestration. To do so, we need to better understand how peatland systems function with regards to their carbon balance (export versus sequestration) so we can assess their resilience and adaptation to hosting land-based renewable energy projects. Predicting carbon lost as a result of construction of wind farms built on peatland has not been fully characterised and this research will provide data that can supplement current 'carbon payback calculator' models for wind farms that aim to reinforce their 'green' credentials. Transfer of carbon from the terrestrial peatland systems to the aquatic freshwater and oceanic systems is most predominant during periods of high rainfall. It has been estimated that 50% of carbon is exported during only 10% of highest river flows, (Hinton et al., 1998). Furthermore, carbon export from peatlands is known to have a seasonal aspect with highest concentrations of dissolved organic carbon (DOC) found mostly in late summer months of August and September and lowest in December and January, (Dawson et al., 2004). Event sampling, where high intensity sample collection is carried out during high river flow periods, offers a better insight, understanding and estimation of carbon aquatic fluxes from peatland landscapes. The Gordonbush estate, near Brora, has an extensive peatland area where a wind farm development has recently been completed (April 2012). Investigations of aquatic carbon fluxes from this peatland system were started in July 2010, in conjunction with the start of

  17. Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom.

    PubMed

    Wollenburg, J E; Katlein, C; Nehrke, G; Nöthig, E-M; Matthiessen, J; Wolf-Gladrow, D A; Nikolopoulos, A; Gázquez-Sanchez, F; Rossmann, L; Assmy, P; Babin, M; Bruyant, F; Beaulieu, M; Dybwad, C; Peeken, I

    2018-05-16

    Mineral ballasting enhances carbon export from the surface to the deep ocean; however, little is known about the role of this process in the ice-covered Arctic Ocean. Here, we propose gypsum ballasting as a new mechanism that likely facilitated enhanced vertical carbon export from an under-ice phytoplankton bloom dominated by the haptophyte Phaeocystis. In the spring 2015 abundant gypsum crystals embedded in Phaeocystis aggregates were collected throughout the water column and on the sea floor at a depth below 2 km. Model predictions supported by isotopic signatures indicate that 2.7 g m -2 gypsum crystals were formed in sea ice at temperatures below -6.5 °C and released into the water column during sea ice melting. Our finding indicates that sea ice derived (cryogenic) gypsum is stable enough to survive export to the deep ocean and serves as an effective ballast mineral. Our findings also suggest a potentially important and previously unknown role of Phaeocystis in deep carbon export due to cryogenic gypsum ballasting. The rapidly changing Arctic sea ice regime might favour this gypsum gravity chute with potential consequences for carbon export and food partitioning between pelagic and benthic ecosystems.

  18. Assessing the Global Climate Response to Freshwater Forcing from the Antarctic Ice Sheet Under Future Climate Scenarios

    NASA Astrophysics Data System (ADS)

    Rogstad, S.; Condron, A.; DeConto, R.; Pollard, D.

    2017-12-01

    Observational evidence indicates that the West Antarctic Ice Sheet (WAIS) is losing mass at an accelerating rate. Impacts to global climate resulting from changing ocean circulation patterns due to increased freshwater runoff from Antarctica in the future could have significant implications for global heat transport, but to-date this topic has not been investigated using complex numerical models with realistic freshwater forcing. Here, we present results from a high resolution fully coupled ocean-atmosphere model (CESM 1.2) forced with runoff from Antarctica prescribed from a high resolution regional ice sheet-ice shelf model. Results from the regional simulations indicate a potential freshwater contribution from Antarctica of up to 1 m equivalent sea level rise by the end of the century under RCP 8.5 indicating that a substantial input of freshwater into the Southern Ocean is possible. Our high resolution global simulations were performed under IPCC future climate scenarios RCP 4.5 and 8.5. We will present results showing the impact of WAIS collapse on global ocean circulation, sea ice, air temperature, and salinity in order to assess the potential for abrupt climate change triggered by WAIS collapse.

  19. Biological production in the Indian Ocean upwelling zones - Part 1: refined estimation via the use of a variable compensation depth in ocean carbon models

    NASA Astrophysics Data System (ADS)

    Geethalekshmi Sreeush, Mohanan; Valsala, Vinu; Pentakota, Sreenivas; Venkata Siva Rama Prasad, Koneru; Murtugudde, Raghu

    2018-04-01

    Biological modelling approach adopted by the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP-II) provided amazingly simple but surprisingly accurate rendition of the annual mean carbon cycle for the global ocean. Nonetheless, OCMIP models are known to have seasonal biases which are typically attributed to their bulk parameterisation of compensation depth. Utilising the criteria of surface Chl a-based attenuation of solar radiation and the minimum solar radiation required for production, we have proposed a new parameterisation for a spatially and temporally varying compensation depth which captures the seasonality in the production zone reasonably well. This new parameterisation is shown to improve the seasonality of CO2 fluxes, surface ocean pCO2, biological export and new production in the major upwelling zones of the Indian Ocean. The seasonally varying compensation depth enriches the nutrient concentration in the upper ocean yielding more faithful biological exports which in turn leads to accurate seasonality in the carbon cycle. The export production strengthens by ˜ 70 % over the western Arabian Sea during the monsoon period and achieves a good balance between export and new production in the model. This underscores the importance of having a seasonal balance in the model export and new productions for a better representation of the seasonality of the carbon cycle over upwelling regions. The study also implies that both the biological and solubility pumps play an important role in the Indian Ocean upwelling zones.

  20. Subsurface iceberg melt key to Greenland fjord freshwater budget

    NASA Astrophysics Data System (ADS)

    Moon, T.; Sutherland, D. A.; Carroll, D.; Felikson, D.; Kehrl, L.; Straneo, F.

    2018-01-01

    Liquid freshwater fluxes from the Greenland ice sheet affect ocean water properties and circulation on local, regional and basin-wide scales, with associated biosphere effects. The exact impact, however, depends on the volume, timing and location of freshwater releases, which are poorly known. In particular, the transformation of icebergs, which make up roughly 30-50% of the loss of the ice-sheet mass to liquid freshwater, is not well understood. Here we estimate the spatial and temporal distribution of the freshwater flux for the Helheim-Sermilik glacier-fjord system in southeast Greenland using an iceberg-melt model that resolves the subsurface iceberg melt. By estimating seasonal variations in all the freshwater sources, we confirm quantitatively that iceberg melt is the largest annual freshwater source in this system type. We also show that 68-78% of the iceberg melt is released below a depth of 20 m and, seasonally, about 40-100% of that melt is likely to remain at depth, in contrast with the usual model assumptions. Iceberg melt also peaks two months after all the other freshwater sources peak. Our methods provide a framework to assess individual freshwater sources in any tidewater system, and our results are particularly applicable to coastal regions with a high solid-ice discharge in Greenland.

  1. Greater diversification of freshwater than marine parasites of fish.

    PubMed

    Poulin, Robert

    2016-04-01

    The species richness of freshwater environments is disproportionately high compared with that of the oceans, given their respective sizes. If diversification rates are higher in freshwaters because they are isolated and heterogeneous, this should apply to parasites as well. Using 14 large datasets comprising 677 species of freshwater and marine fish, the hypothesis that freshwater parasites experience higher rates of diversification than marine ones is tested by contrasting the relative numbers of species per parasite genus between the regional endohelminth faunas of fish in both environments. The relationship between the number of parasite genera and the number of parasite species per host was well described by a power function, in both environments; although the exponent of this function was slightly lower for freshwater parasite faunas than marine ones, the difference was not significant. However, the ratio between the number of parasite species and the number of parasite genera per host species was significantly higher in freshwater fish than in marine ones. These findings suggest fundamental differences between the way parasite faunas diversify in freshwater versus marine habitats, with the independent evolution of conspecific parasite populations in isolated host populations being a more common phenomenon in freshwater environments. Copyright © 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  2. Arctic Outflow West of Greenland: Mass and Freshwater Fluxes at Davis Strait

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Curry, Beth; Petrie, Brian; Azetsu-Scott, Kumiko; Gobat, Jason

    2014-05-01

    Eberhard Fahrbach worked to understand the communication between the Arctic and subpolar oceans and its role in modulating Arctic change. This included long-standing leadership in the Arctic-Subarctic Ocean Flux program and the long-term quantification of fluxes east of Greenland, through Fram Strait, the primary pathway for Atlantic water passing into the Arctic and one of two gateways for freshwater flowing out. Freshwater also exits the Arctic west of Greenland, though the Canadian Arctic Archipelago and, to the south, Davis Strait. The strait provides a convenient choke point for monitoring temporal and spatial variability of Arctic outflow while also characterizing a critical upstream boundary condition for Labrador Sea convection. Fluxes through the Strait represent the net integrated Canadian Archipelago throughflow, over 50% of the Arctic's liquid freshwater discharge, modified by terrestrial inputs and oceanic processes during its southward transit through Baffin Bay. By the time they reach Davis Strait, Arctic waters already embody most of the transformations they undergo prior to exerting their influence on the deepwater formation sites in the Labrador Sea. An ongoing program has characterized Davis Strait volume, freshwater and heat flux since September 2004. Measurements include continuous velocity, temperature and salinity time series collected by a moored array, autumn ship-based hydrographic sections and high-resolution sections occupied by autonomous gliders. Moored instrumentation includes novel new instruments that provide temperature and salinity measurements in the critical region neat the ice-ocean interface and measurements over the shallow Baffin and West Greenland shelves, while gliders have captured the first high-resolution wintertime sections across the Strait. These data show large interannual variability in volume and freshwater transport, with no clear trends observed between 2004-2010. Average volume, liquid freshwater and sea ice

  3. Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Swingedouw, Didier; Rodehacke, Christian B.; Behrens, Erik; Menary, Matthew; Olsen, Steffen M.; Gao, Yongqi; Mikolajewicz, Uwe; Mignot, Juliette; Biastoch, Arne

    2013-08-01

    The recent increase in the rate of the Greenland ice sheet melting has raised with urgency the question of the impact of such a melting on the climate. As former model projections, based on a coarse representation of the melting, show very different sensitivity to this melting, it seems necessary to consider a multi-model ensemble to tackle this question. Here we use five coupled climate models and one ocean-only model to evaluate the impact of 0.1 Sv (1 Sv = 106 m3/s) of freshwater equally distributed around the coast of Greenland during the historical era 1965-2004. The ocean-only model helps to discriminate between oceanic and coupled responses. In this idealized framework, we find similar fingerprints in the fourth decade of hosing among the models, with a general weakening of the Atlantic Meridional Overturning Circulation (AMOC). Initially, the additional freshwater spreads along the main currents of the subpolar gyre. Part of the anomaly crosses the Atlantic eastward and enters into the Canary Current constituting a freshwater leakage tapping the subpolar gyre system. As a consequence, we show that the AMOC weakening is smaller if the leakage is larger. We argue that the magnitude of the freshwater leakage is related to the asymmetry between the subpolar-subtropical gyres in the control simulations, which may ultimately be a primary cause for the diversity of AMOC responses to the hosing in the multi-model ensemble. Another important fingerprint concerns a warming in the Nordic Seas in response to the re-emergence of Atlantic subsurface waters capped by the freshwater in the subpolar gyre. This subsurface heat anomaly reaches the Arctic where it emerges and induces a positive upper ocean salinity anomaly by introducing more Atlantic waters. We found similar climatic impacts in all the coupled ocean-atmosphere models with an atmospheric cooling of the North Atlantic except in the region around the Nordic Seas and a slight warming south of the equator in the

  4. Massive subtropical icebergs and freshwater forcing of climate

    NASA Astrophysics Data System (ADS)

    Condron, Alan; Hill, Jenna

    2014-05-01

    High resolution seafloor mapping shows incredible evidence that massive (>300m thick) icebergs drifted more than 5,000 km along the United States continental margin to southern Florida during the last deglaciation. Here we discuss how the discovery of icebergs in this location highlights a previously unknown ocean circulation pathway capable of transporting icebergs and meltwater from the Northern Hemisphere ice sheets directly to the subtropical North Atlantic. This pathway questions the classical idea that freshwater forcing from meltwater floods and icebergs occurred primarily over the subpolar North Atlantic (50N - 70N), with little penetration to subtropical latitudes, south of 40N. Using a sophisticated, high-resolution (1/6 deg.) ocean model, capable of resolving the circulation of the coastal ocean in detail, we show that icebergs off the coast of Florida likely calved from ice streams in the Gulf of St Lawrence and Hudson Bay. We find that icebergs can only drift south of Cape Hatteras, and overcome the northward flow of the Gulf Stream, when they are entrained in a narrow, southward-flowing, coastal meltwater flood originating from the Laurentide Ice Sheet. This cold meltwater increases iceberg survival in the warm subtropics and flows in the opposite direction to the Gulf Stream along the coast, allowing icebergs to drift to southern Florida in less than 4 months. We conclude that during the last deglaciation, icebergs drifted south in massive meltwater floods that delivered freshwater to the subtropical North Atlantic. Our findings have important implications for understanding how changes in freshwater forcing triggered past abrupt climate change.

  5. The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing

    NASA Astrophysics Data System (ADS)

    Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît

    2017-02-01

    The oceanic mixed layer is the gateway for the exchanges between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by sea-ice, which alters the characteristics of the ocean mixed layer. The interaction between the ocean mixed layer and sea-ice plays a key role for water mass transformation, the carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under sea-ice. Mixed-layer heat and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional sea-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.

  6. Sensitivity of the Freshwater Plume to Winds in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sandeep, K. K.; Pant, V.; Rao, A. D.

    2016-12-01

    The role of winds in determining the dispersal pattern of freshwater plume in the Bay of Bengal (BoB) is investigated by using a high resolution three dimensional Regional Ocean Modelling System (ROMS) with realistic coastline and bathymetry. In the Indian Ocean, the Bay of Bengal (BoB) receives substantial freshwater by excess precipitation over evaporation and river runoff. Major rivers like Ganges, Brahmaputra, Mahanadi, Godavari, Krishna, Irrawaddy discharge freshwater volume in range between 1.5 x 1012 m3 and 1.83 x 1013 m3. About three-fourths of all riverine influx into the BoB occurs during the summer monsoon period from May until September. Multiple experiments are carried out with idealized winds replicating the seasonal wind patterns in the study region. Idealized winds of 8ms-1 with directions as southwesterly, southeasterly, northeasterly, and northerly used to force the model. Monthly climatology of river discharge from the seven major rivers in the domain are included by identifying their geographic locations. Model simulations show distinct behavioural patterns of the dispersal of riverine freshwater plumes in response to the direction of idealized winds. Comparison of different idealized experiments show the largest variability of the transport pathways in the northern BoB, where the largest freshwater volume is discharged through the rivers Ganges and Brahmaputra. Freshwater pool remains bounded to the northern-northeastern boundary of the BoB when forced with southwesterly winds, whereas the northeasterly winds produce a remarkable southward transport of freshwater along the east coast of India. These signatures of low salinity waters along the east coast of India have also been observed in observations during October-November. Further, the southeasterly winds produce strong mixing of low saline waters in the northern BoB. The northerly wind stress, however, limits the channelized flow of riverine freshwater either through the eastern or western

  7. Quantifying the Ocean, Freshwater and Human Effects on Year-to-Year Variability of One-Sea-Winter Atlantic Salmon Angled in Multiple Norwegian Rivers

    PubMed Central

    Otero, Jaime; Jensen, Arne J.; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr.; Storvik, Geir O.; Vøllestad, Leif Asbjørn

    2011-01-01

    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979–2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions

  8. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers.

    PubMed

    Otero, Jaime; Jensen, Arne J; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr; Storvik, Geir O; Vøllestad, Leif Asbjørn

    2011-01-01

    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979-2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to

  9. Wind-driven Circulation and Freshwater Fluxes off Sri Lanka: 4D-Sampling with Autonomous Gliders

    DTIC Science & Technology

    2015-09-30

    riverine freshwater input, precipitation and atmospheric forcing act to govern Bay of Bengal upper ocean variability, water mass formation and...fraction of the water moving through the section is going south, carrying freshwater out of the Bay of Bengal. Currents near the coast have the same...transport of freshwater from the Northern Bay of Bengal, as well of the import of salty Arabian Sea Water , are being investigated are using all the

  10. Particle shape impacts export and fate in the ocean through interactions with the globally abundant appendicularian Oikopleura dioica.

    PubMed

    Conley, Keats R; Sutherland, Kelly R

    2017-01-01

    Marine microbes exhibit highly varied, often non-spherical shapes that have functional significance for essential processes, including nutrient acquisition and sinking rates. There is a surprising absence of data, however, on how cell shape affects grazing, which is crucial for predicting the fate of oceanic carbon. We used synthetic spherical and prolate spheroid microbeads to isolate the effect of particle length-to-width ratios on grazing and fate in the ocean. Here we show that the shape of microbe-sized particles affects predation by the appendicularian Oikopleura dioica, a globally abundant marine grazer. Using incubation experiments, we demonstrate that shape affects how particles are retained in the house and that the minimum particle diameter is the key variable determining how particles are ingested. High-speed videography revealed the mechanism behind these results: microbe-sized spheroids oriented with the long axis parallel to fluid streamlines, matching the speed and tortuosity of spheres of equivalent width. Our results suggest that the minimum particle diameter determines how elongated prey interact with the feeding-filters of appendicularians, which may help to explain the prevalence of ellipsoidal cells in the ocean, since a cell's increased surface-to-volume ratio does not always increase predation. We provide the first evidence that grazing by appendicularians can cause non-uniform export of different shaped particles, thereby influencing particle fate.

  11. The Southern Ocean biogeochemical divide.

    PubMed

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  12. Carbon fluxes in the Arabian Sea: Export versus recycling

    NASA Astrophysics Data System (ADS)

    Rixen, Tim; Gaye, Birgit; Ramaswamy, Venkitasubramani

    2016-04-01

    The organic carbon pump strongly influences the exchange of carbon between the ocean and the atmosphere. It is known that it responds to global change but the magnitude and the direction of change are still unpredictable. Sediment trap experiments carried out at various sites in the Arabian Sea between 1986 and 1998 have shown differences in the functioning of the organic carbon pump (OCP). An OCP driven by eukaryotic phytoplankton operated in the upwelling region off Oman and during the spring bloom in the northern Arabian Sea. Cyanobacteria capable of fixing nitrogen seem to dominate the phytoplankton community during all other seasons. The export driven by cyanobacteria was much lower than the export driven by eukaryotic phytoplankton. Productivity and nutrient availability seems to be a main factor controlling fluxes during blooms of eukaryotic phytoplankton. The ballast effect caused by inputs of dust into the ocean and its incorporation into sinking particles seems to be the main factor controlling the export during times when cyanobacteria dominate the phytoplankton community. C/N ratios of organic matter exported from blooms dominated by nitrogen fixing cyanobacteria are enhanced and, furthermore, indicate a more efficient recycling of nutrients at shallower water depth. This implies that the bacterial-driven OCP operates more in a recycling mode that keeps nutrients closer to the euphotic zone whereas the OCP driven by eukaryotic phytoplankton reduces the recycling of nutrients by exporting them into greater water-depth.

  13. Variation pattern of terrestrial antibiotic resistances and bacterial communities in seawater/freshwater mixed microcosms.

    PubMed

    Zhang, Kai; Zhang, Ying; Xin, Rui; Zhang, Yongpeng; Niu, Zhiguang

    2018-06-01

    The ocean is the final place where pollutants generated by human activities are deposited. As a result, the long-range transport of the ocean can facilitate the diffusion of terrestrial contaminants, including ARGs. However, to our knowledge, little research has been devoted to discussing the content change of terrestrial ARGs and the reason for the change in coastal area. This study established various microcosms, in which seawater and freshwater were mixed at different ratio to simulate the environmental conditions of different regions in coastal areas. Four ARGs were quantified, and 16S pyrosequencing was conducted. The results showed that the terrestrial ARGs influenced the concentration of the corresponding ARGs in coastal areas, and the content change pattern of each ARG was distinct. The influence of salinity on the ARG content was limited in most cases. Moreover, most dominant bacteria from freshwater had significant positive correlation (p < 0.05) with selected ARGs, except for bla TEM . The dominant bacteria in freshwater diminished dramatically in microcosms with a high proportion of seawater. Freshwater may have a strong impact on the bacteria composition of seawater, and the materials from freshwater may prompt the growth of some bacteria (include potential hosts of ARGs) in coastal area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Contribution of Increasing Glacial Freshwater Fluxes to Observed Trends in Antarctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Le Sommer, J.; Merino, N.; Durand, G.; Jourdain, N.; Goosse, H.; Mathiot, P.; Gurvan, M.

    2016-02-01

    Southern Ocean sea-ice extent has experienced an overall positive trend over recent decades. While the amplitude of this trend is open to debate, the geographical pattern of regional changes has been clearly identified by observations. Mechanisms driving changes in the Antarctic Sea Ice Extent (SIE) are not fully understood and climate models fail to simulate these trends. Changes in different atmospheric features such as SAM or ENSO seem to explain the observed trend of Antartic sea ice, but only partly, since they can not account for the actual amplitude of the observed signal. The increasing injection of freshwater due to the accelerating ice discharge from Antarctica Ice Sheet (AIS) during the last two decades has been proposed as another candidate to contribute to SIE trend. However, the quantity and the distribution of the extra freshwater injection were not properly constrained. Recent glaciological estimations may improve the way the glacial freshwater is injected in the model. Here, we study the role of the glacial freshwater into the observed SIE trend, using the state-of-the-art Antarctic mass loss estimations. Ocean/sea-ice model simulations have been carried out with two different Antarctic freshwater scenarios corresponding to 20-years of Antarctic Ice Sheet evolution. The combination of an improved iceberg model with the most recent glaciological estimations has been applied to account for the most realistic possible Antarctic freshwater evolution scenarios. Results suggest that Antarctica has contributed to almost a 30% of the observed trend in regions of the South Pacific and South East Indian sectors, but has little impact in the South Atlantic sector. We conclude that the observed SIE trend over the last decades is due to a combination of both an atmospheric forcing and the extra freshwater injection. Our results advocates that the evolution of glacial freshwater needs to be correctly represented in climate models.

  15. High Resolution Satellite Data reveals Massive Export of Carbon and Nitrogen-Rich Seagrass Wrack from Greater Florida Bay to the Open Ocean after Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Dierssen, H. M.; Hedley, J. D.; Russell, B. J.; Vaudrey, J. M.; Perry, R. A.

    2017-12-01

    Episodic storms are known to be important drivers of ocean ecosystem processes, but the impacts are notoriously difficult to quantify with traditional sampling techniques. Here, we use stunning high spatial resolution satellite imagery from Sentinel 2A collected 13 September 2017, only days after Hurricane Irma passed directly over the Florida Keys, to quantify massive amounts of floating vegetative material. This Category 4 storm passed directly over the Florida Keys, bringing wind gusts over 35 m s-1 and creating turbulence in the water column that scoured the seafloor. The imagery reveals as initial estimate of 40 km2 of surface drifting material. Although the identity of the brown material cannot be fully determined without a hyperspectral sensor, the accumulations are consistent with our past research showing large aggregations of seagrass leaves or "wrack" advected under high winds from dense beds of Syringodium filiforme within Greater Florida Bay to the oceanic waters of the Atlantic. Using measurements of wrack collected from this area, we estimate that this single event corresponds to a total export of 9.7 x 1010 gC and 2.7 x 109 gN from the seagrass beds. This high amount of export is not considered typical for many types of tropical seagrass meadows that are thought to highly recycle nutrients within the beds. Elemental analysis of seagrass leaves from Greater Florida Bay is consistent with nitrogen-fixation in the beds, which could provide the means to sustain a large export of nitrogen from the meadows. As the wrack travels at the sea surface, some of these nutrients are exuded into the surrounding waters providing a nutrient subsidy of dissolved and particulate carbon and nitrogen and making the wrack an ecological hot spot for organisms. Although wrack can potentially remain floating for months, the ultimate fate of the wrack is to either wash ashore, providing connectivity between marine and terrestrial ecosystems, or sink to the seafloor. If most

  16. Massive Freshwater discharges: an example from Glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Lopes, C.; Mix, A. C.

    2016-12-01

    Massive inputs of freshwater into the ocean are known to disrupt climate. This has been fairly studied in the North Atlantic with freshwater inputs from the Laurentide ice sheet and glacial Lake Agassiz. The association of these discharges with global warming has lead us to look for such prints in marine sediments. Here we show the records of Glacial Lake Missoula outbursts during the warming singe the Last Glacial Maximum in two marine cores off Oregon and California that show the presence of freshwater diatoms that are linked to massive discharges of freshwater from the glacial lake Missoula. The dynamics and timing of these north Pacific mega-flood events are fairly constrained by terrestrial records, however, the consequences of such discharges of freshwater in the northeast Pacific regional circulation remains unknown. Nevertheless we were able to estimate a salinity decrease of almost 6.0 PSU more than 400 km to the south (off northern California) during the last glacial interval (from 16-31 calendar (cal) k.y. B.P.). Anomalously high abundances of freshwater diatoms in marine sediments from the region precede generally accepted dates for the existence of glacial Lake Missoula, implying that large flooding events were also common during the advance of the Cordilleran Ice Sheet.

  17. EFFECT OF RESIDENCE TIME ON ANNUAL EXPORT AND DENITRIFICATION OF NITROGEN IN ESTUARIES: A MODEL ANALYSIS

    EPA Science Inventory

    A simple model of annual average response of an estuary to mean nitrogen loading rate and freshwater residence time was developed and tested. It uses nitrogen inputs from land, deposition from the atmosphere, and first-order calculations of internal loss rate and export to perfor...

  18. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, Peiyun; Manucharyan, Georgy E.; Thompson, Andrew F.; Goodman, Jason C.; Vance, Steven D.

    2017-06-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the previously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  19. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  20. Global Ocean Circulation During Cretaceous Time

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2001-12-01

    Present--day global thermohaline ocean circulation (TOC) is usually associated with high--latitude deep-water formation due to surface cooling. In this understanding of the TOC driven by the deep--water production, the warm deep ocean during Mesozoic--Cenozoic time is a challenge. It may be questioned whether warm deep--ocean water, which is direct geologic evidence, does reflect warm polar surface--ocean regions. For the warm Cretaceous, it is difficult to maintain strong poleward heat transport in the case of reduced oceanic thermal contrasts. Usually, atmospheric feedbacks, in conjunction with the increase of atmospheric concentrations of greenhouse gases, are employed in order to explain the warm equable Cretaceous--Eocene climate. However, there is no feasible physical mechanism that could maintain warm subpolar surface oceans in both hemispheres, an assumption often used in atmospheric modeling. Our numerical experiments indicate that having a relatively cool but saltier high--latitude sea surface in at least one hemisphere is sufficient for driving a strong meridional overturning. Thus freshwater impacts in the high latitudes may be responsible for a vigorous conveyor capable of maintaining sufficient poleward oceanic heat transport needed to keep the polar oceans ice--free. These results imply that evaporation-precipitation patterns during warm climates are especially important climatic factors that can redistribute freshwater to create hemispheric asymmetry of sea surface conditions capable of generating a sufficiently strong TOC, otherwise impossible in warm climates.

  1. Impacts of Changed Extratropical Storm Tracks on Arctic Sea Ice Export through Fram Strait

    NASA Astrophysics Data System (ADS)

    Wei, J.; Zhang, X.; Wang, Z.

    2017-12-01

    Studies have indicated a poleward shift of extratropical storm tracks and intensification of Arctic storm activities, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of dynamic effect on changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and activities on Arctic sea ice export through Fram Strait through ocean-sea ice model simulations. The model employed is the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm), which was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  2. Spatial Patterns in the Efficiency of the Biological Pump: What Controls Export Ratios at the Global Scale?

    NASA Astrophysics Data System (ADS)

    Moore, J. K.

    2016-02-01

    The efficiency of the biological pump is influenced by complex interactions between chemical, biological, and physical processes. The efficiency of export out of surface waters and down through the water column to the deep ocean has been linked to a number of factors including biota community composition, production of mineral ballast components, physical aggregation and disaggregation processes, and ocean oxygen concentrations. I will examine spatial patterns in the export ratio and the efficiency of the biological pump at the global scale using the Community Earth System Model (CESM). There are strong spatial variations in the export efficiency as simulated by the CESM, which are strongly correlated with new nutrient inputs to the euphotic zone and their impacts on phytoplankton community structure. I will compare CESM simulations that include dynamic, variable export ratios driven by the phytoplankton community structure, with simulations that impose a near-constant export ratio to examine the effects of export efficiency on nutrient and surface chlorophyll distributions. The model predicted export ratios will also be compared with recent satellite-based estimates.

  3. Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait

    NASA Astrophysics Data System (ADS)

    Wei, Jianfen; Zhang, Xiangdong; Wang, Zhaomin

    2018-05-01

    Studies have indicated regime shifts in atmospheric circulation, and associated changes in extratropical storm tracks and Arctic storm activity, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and cyclone activity on Arctic sea ice export through Fram Strait by using a high resolution global ocean-sea ice model, MITgcm-ECCO2. The model was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter (in this study winter is defined as October-March and summer as April-September) storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  4. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    PubMed

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  5. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis

    PubMed Central

    Leduc, Antoine O. H. C.; Munday, Philip L.; Brown, Grant E.; Ferrari, Maud C. O.

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices. PMID:23980246

  6. Vectors of invasions in freshwater invertebrates and fishes

    USGS Publications Warehouse

    Fuller, Pamela L.; Canning-Clode, João

    2015-01-01

    Without human assistance, the terrestrial environment and oceans represent barriers to the dispersal of freshwater aquatic organisms. The ability to overcome such barriers depends on the existence of anthropogenic vectors that can transport live organisms to new areas, and the species’ biology to survive the transportation and transplantation into the new environment (Johnson et al., 2006).

  7. Cross-ecosystem fluxes: Export of polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects.

    PubMed

    Martin-Creuzburg, Dominik; Kowarik, Carmen; Straile, Dietmar

    2017-01-15

    Cross-ecosystem fluxes can crucially influence the productivity of adjacent habitats. Emerging aquatic insects represent one important pathway through which freshwater-derived organic matter can enter terrestrial food webs. Aquatic insects may be of superior food quality for terrestrial consumers because they contain high concentrations of essential polyunsaturated fatty acids (PUFA). We quantified the export of PUFA via emerging insects from a midsize, mesotrophic lake. Insects were collected using emergence traps installed above different water depths and subjected to fatty acid analyses. Insect emergence from different depth zones and seasonal mean fatty acid concentrations in different insect groups were used to estimate PUFA fluxes. In total, 80.5mg PUFA m -2 yr -1 were exported, of which 32.8mgm -2 yr -1 were eicosapentaenoic acid (EPA), 7.8mgm -2 yr -1 were arachidonic acid (ARA), and 2.6mgm -2 yr -1 were docosahexaenoic acid (DHA). While Chironomidae contributed most to insect biomass and total PUFA export, Chaoborus flavicans contributed most to the export of EPA, ARA, and especially DHA. The export of total insect biomass from one square meter declined with depth and the timing at which 50% of total insect biomass emerged was correlated with the water depths over which the traps were installed, suggesting that insect-mediated PUFA fluxes are strongly affected by lake morphometry. Applying a conceptual model developed to assess insect deposition rates on land to our insect-mediated PUFA export data revealed an average total PUFA deposition rate of 150mgm -2 yr -1 within 100m inland from the shore. We propose that PUFA export can be reliably estimated using taxon-specific information on emergent insect biomass and seasonal mean body PUFA concentrations of adult insects provided here. Our data indicate that insect-mediated PUFA fluxes from lakes are substantial, implying that freshwater-derived PUFA can crucially influence food web processes in adjacent

  8. Late summer particulate organic carbon export and twilight zone remineralisation in the Atlantic sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Cavagna, A.-J.; Cardinal, D.; André, L.; Dehairs, F.

    2013-02-01

    As part of the GEOTRACES Bonus-GoodHope (BGH) expedition (January-March 2008) in the Atlantic sector of the Southern Ocean, particulate organic carbon (POC) export was examined from the surface to the mesopelagic twilight zone using water column distributions of total 234Th and biogenic particulate Ba (Baxs). Surface POC export production was estimated from steady state and non steady state modelling of 234Th fluxes, which were converted into POC fluxes, using the POC/234Th ratio of large, potentially sinking particles (> 53 μm) collected via in situ pumps. Deficits in 234Th activities were observed at all stations from the surface to the bottom of the mixed layer, yielding 234Th export fluxes from the upper 100 m of 496 ± 214 dpm m-2 d-1 to 1195 ± 158 dpm m-2 d-1 for the steady state model and of 149 ±517 dpm m-2 d-1 to 1217 ± 231 dpm m-2 d-1 for the non steady state model. Using the POC/234Thp ratio of sinking particles (ratios varied from 1.7 ± 0.2 μmol dpm-1 to 4.8 ± 1.9 μmol dpm-1) POC export production at 100 m was calculated to range between 0.9 ± 0.4 and 5.1 ± 2.1 mmol C m-2 d-1,assuming steady state and between 0.3 ± 0.9 m-2 d-1 and 4.9 ± 3.3 mmol C m-2 d-1, assuming non steady state. From the comparison of both approaches, it appears that during late summer export decreased by 56 to 16% for the area between the sub-Antarctic zone and the southern Antarctic Circumpolar Current Front (SACCF), whereas it remained rather constant over time in the HNLC area south of the SACCF. POC export represented only 6 to 54% of new production, indicating that export efficiency was, in general, low, except in the vicinity of the SACCF, where export represented 56% of new production. Attenuation of the POC sinking flux in the upper mesopelagic waters (100-600 m depth interval) was evidenced both, from excess 234Th activities and from particulate biogenic Ba (Baxs) accumulation. Excess 234Th activities, reflected by 234Th/238U ratios as large as 1.21 ± 0

  9. Modes of Arctic Ocean Change from GRACE, ICESat and the PIOMAS and ECCO2 Models of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Peralta Ferriz, C.; Morison, J. H.; Bonin, J. A.; Chambers, D. P.; Kwok, R.; Zhang, J.

    2012-12-01

    EOF analysis of month-to-month variations in GRACE derived Arctic Ocean bottom pressure (OBP) with trend and seasonal variation removed yield three dominant modes. The first mode is a basin wide variation in mass associated with high atmospheric pressure (SLP) over Scandinavia mainly in winter. The second mode is a shift of mass from the central Arctic Ocean to the Siberian shelves due to low pressure over the basins, associated with the Arctic Oscillation. The third mode is a shift in mass between the Eastern and Western Siberian shelves, related to strength of the Beaufort High mainly in summer, and to eastward alongshore winds on the Barents Sea in winter. The PIOMAS and ECCO2 modeled OBP show fair agreement with the form of these modes and provide context in terms of variations in sea surface height SSH. Comparing GRACE OBP from 2007 to 2011 with GRACE OBP from 2002 to 2006 reveals a rising trend over most of the Arctic Ocean but declines in the Kara Sea region and summer East Siberian Sea. ECCO2 bears a faint resemblance to the observed OBP change but appears to be biased negatively. In contrast, PIOMAS SSH and ECCO2 especially, show changes between the two periods that are muted but similar to ICESat dynamic ocean topography and GRACE-ICESat freshwater trends from 2005 through 2008 [Morison et al., 2012] with a rising DOT and freshening in the Beaufort Sea and a trough with decreased freshwater on the Russian side of the Arctic Ocean. Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen, and M. Steele (2012), Changing Arctic Ocean freshwater pathways, Nature, 481(7379), 66-70.

  10. Larval salinity tolerance of the South American salt-marsh crab, Neohelice (Chasmagnathus) granulata: physiological constraints to estuarine retention, export and reimmigration

    NASA Astrophysics Data System (ADS)

    Anger, Klaus; Spivak, Eduardo; Luppi, Tomás; Bas, Claudia; Ismael, Deborah

    2008-06-01

    The semiterrestrial crab Neohelice (= Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5 32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10 15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4 10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4 10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.

  11. 76 FR 10879 - Freshwater Crawfish Tail Meat From the People's Republic of China: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... Meat From the People's Republic of China: Rescission of Antidumping Duty Administrative Review in Part...) initiated an administrative review of the antidumping duty order on freshwater crawfish tail meat (crawfish tail meat) from the People's Republic of China (PRC) with respect to various exporters. The period of...

  12. The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing.

    NASA Astrophysics Data System (ADS)

    Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.

    2016-02-01

    The mixed-layer at the surface of the ocean is the gateway for all exchanges between air and sea. A vast area of the Southern Ocean is however seasonally capped by sea-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and sea-ice plays a key role for water-mass formation and circulation, carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under sea-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under sea-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget, and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional sea-ice distribution or sea-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.

  13. Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export

    PubMed Central

    Bar-Zeev, Edo; Avishay, Itamar; Bidle, Kay D; Berman-Frank, Ilana

    2013-01-01

    The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2–3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans. PMID:23887173

  14. Freshwater Education: The Need, The Tools, and The "Vital Link."

    ERIC Educational Resources Information Center

    Shroeder, Linda

    1984-01-01

    Freshwater education programs are beginning to instill in young people a sense of awareness and a sense of responsibility regarding the future of water resources. Several of these programs are discussed, including Project COAST (Coastal, Oceanic, and Aquatic Studies) and "Acid Precipitation Learning Materials, Grades 7-12." (JN)

  15. Carbonate dissolution in mixed waters due to ocean acidification

    NASA Astrophysics Data System (ADS)

    Koski, K.; Wilson, J. L.

    2009-12-01

    Much of the anthropogenically released carbon dioxide has been stored as a dissolved gas in the ocean, causing a 0.1 decrease in ocean surface pH, with models predicting that by 2100 the surface ocean pH will be 0.5 below pre-industrial levels. In mixed ocean water - fresh water environments (e.g. estuaries, coastal aquifers, and edges of ice sheets), the decreased ocean pH couples with the mixed water geochemistry to make water more undersaturated with respect to calcium carbonate than ocean acidification alone. Mixed-water calcite dissolution may be one of the first directly observable effects of ocean acidification, as the ocean water and the fresh water can both be saturated with respect to calcium carbonate while their mixture will be undersaturated. We present a basic quantitative model describing mixed water dissolution in coastal or island freshwater aquifers, using temporally changing ocean pH, sea level, precipitation, and groundwater pumping. The model describes the potential for an increased rate of speleogenesis and porosity/permeability development along the lower edge of a fresh water lens aquifer. The model accounts the indirect effects of rising sea level and a growing coastal population on these processes. Applications are to freshwater carbonate aquifers on islands (e.g. the Bahamas) and in coastal areas (e.g. the unconfined Floridan aquifer of the United States, the Yucatan Peninsula of Mexico).

  16. Satellite surface salinity maps to determine fresh water fluxes in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Estrella, Olmedo; Emelianov, Mikhail; Ballabrera, Joaquim; Turiel, Antonio

    2017-04-01

    , results make you think that assimilating SMOS Arctic SSS data could be beneficial for the TOPAZ Arctic Ocean Prediction system. Therefore, SMOS shows great potential to routinely monitor the extension of the surface freshwater fluxes also in the Arctic Ocean. The new SMOS Arctic products can therefore substantially contribute to increase our knowledge of the critical processes that are taking place in the Arctic. [1] Haine, T. et al. (2015), 'Arctic freshwater export: Status, mechanisms, and prospects', Global and Planetary Change, 125, 2015. [2] Peterson, B., et al. (2002), 'Increasing river discharge to the arctic ocean', Science, 298, 21712173. [3] Font, J. et al. (2010), 'The Challenging Sea Surface Salinity Measurement From Space'. Proceed. IEEE, 98, 649 -665 [4] Swift, C. (1980). Boundary-layer Meteorology, 18:25-54. [5] McMullan, K. et al. (2008), 'SMOS: The payload', IEEE T. Geosci. Remote, 46. [6] Olmedo, E., et al. (2017) 'Debiased Non-Bayesian retrieval: a novel approach to SMOS Sea Surface Salinity', Remote Sensing of Environment, under review.

  17. Freshwater Megafauna: Flagships for Freshwater Biodiversity under Threat

    PubMed Central

    Carrizo, Savrina F.; Bremerich, Vanessa; Freyhof, Jörg; Harrison, Ian; He, Fengzhi; Langhans, Simone D.; Tockner, Klement; Zarfl, Christiane; Darwall, William

    2017-01-01

    Abstract Freshwater biodiversity is highly threatened and is decreasing more rapidly than its terrestrial or marine counterparts; however, freshwaters receive less attention and conservation investment than other ecosystems do. The diverse group of freshwater megafauna, including iconic species such as sturgeons, river dolphins, and turtles, could, if promoted, provide a valuable tool to raise awareness and funding for conservation. We found that freshwater megafauna inhabit every continent except Antarctica, with South America, Central Africa, and South and Southeast Asia being particularly species rich. Freshwater megafauna co-occur with up to 93% of mapped overall freshwater biodiversity. Fifty-eight percent of the 132 megafauna species included in the study are threatened, with 84% of their collective range falling outside of protected areas. Of all threatened freshwater species, 83% are found within the megafauna range, revealing the megafauna's capacity as flagship and umbrella species for fostering freshwater conservation. PMID:29599539

  18. Freshwater Megafauna: Flagships for Freshwater Biodiversity under Threat.

    PubMed

    Carrizo, Savrina F; Jähnig, Sonja C; Bremerich, Vanessa; Freyhof, Jörg; Harrison, Ian; He, Fengzhi; Langhans, Simone D; Tockner, Klement; Zarfl, Christiane; Darwall, William

    2017-10-01

    Freshwater biodiversity is highly threatened and is decreasing more rapidly than its terrestrial or marine counterparts; however, freshwaters receive less attention and conservation investment than other ecosystems do. The diverse group of freshwater megafauna, including iconic species such as sturgeons, river dolphins, and turtles, could, if promoted, provide a valuable tool to raise awareness and funding for conservation. We found that freshwater megafauna inhabit every continent except Antarctica, with South America, Central Africa, and South and Southeast Asia being particularly species rich. Freshwater megafauna co-occur with up to 93% of mapped overall freshwater biodiversity. Fifty-eight percent of the 132 megafauna species included in the study are threatened, with 84% of their collective range falling outside of protected areas. Of all threatened freshwater species, 83% are found within the megafauna range, revealing the megafauna's capacity as flagship and umbrella species for fostering freshwater conservation.

  19. The glacial iron cycle from source to export

    NASA Astrophysics Data System (ADS)

    Hawkings, J.; Wadham, J. L.; Tranter, M.; Raiswell, R.; Benning, L. G.; Statham, P. J.; Tedstone, A. J.; Nienow, P. W.; Telling, J.; Bagshaw, E.; Simmons, S. L.

    2014-12-01

    Nutrient availability limits primary production in large sectors of the world's oceans. Iron is the major limiting nutrient in around one third of the oceanic euphotic zone, most significantly in the Southern Ocean proximal to Antarctica. In these areas the availability of bioavailable iron can influence the amount of primary production, and thus the strength of the biological pump and associated carbon drawdown from the atmosphere. Despite experiencing widespread iron limitation, the Polar oceans are among the most productive on Earth. Due to the extreme cold, remoteness and their perceived "stasis", ice sheets have previously been though of as insignificant in global biogeochemical cycles. However, large marine algal blooms have been observed in iron-limited areas where glacial influence is large, and it is possible that these areas are stimulated by glacial bioavailable iron input. Here we discuss the importance of the Greenland and Antarctic ice sheets in the global iron cycle. Using field collected trace element data, bulk meltwater chemistry and mineralogical analysis, including photomicrographs, EELS and XANES, we present, for the first time, a conceptual model of the glacial iron cycle from source to export. Using this data we discuss the sources of iron in glacial meltwater, transportation and alteration through the glacial system, and subsequent export to downstream environments. Data collected in 2012 and 2013 from two different Greenlandic glacial catchments are shown, with the most detailed breakdown of iron speciation and concentrations in glacial areas yet reported. Furthermore, the first data from Greenlandic icebergs is presented, allowing meltwater-derived and iceberg-derived iron export to be compared, and the influence of both in marine productivity to be estimated. Using our conceptual model and flux estimates from our dataset, glacial iron delivery in both the northern and southern hemisphere is discussed. Finally, we compare our flux

  20. Productivity and salinity structuring of the microplankton revealed by comparative freshwater metagenomics

    PubMed Central

    Eiler, Alexander; Zaremba-Niedzwiedzka, Katarzyna; Martínez-García, Manuel; McMahon, Katherine D; Stepanauskas, Ramunas; Andersson, Siv G E; Bertilsson, Stefan

    2014-01-01

    Little is known about the diversity and structuring of freshwater microbial communities beyond the patterns revealed by tracing their distribution in the landscape with common taxonomic markers such as the ribosomal RNA. To address this gap in knowledge, metagenomes from temperate lakes were compared to selected marine metagenomes. Taxonomic analyses of rRNA genes in these freshwater metagenomes confirm the previously reported dominance of a limited subset of uncultured lineages of freshwater bacteria, whereas Archaea were rare. Diversification into marine and freshwater microbial lineages was also reflected in phylogenies of functional genes, and there were also significant differences in functional beta-diversity. The pathways and functions that accounted for these differences are involved in osmoregulation, active transport, carbohydrate and amino acid metabolism. Moreover, predicted genes orthologous to active transporters and recalcitrant organic matter degradation were more common in microbial genomes from oligotrophic versus eutrophic lakes. This comparative metagenomic analysis allowed us to formulate a general hypothesis that oceanic- compared with freshwater-dwelling microorganisms, invest more in metabolism of amino acids and that strategies of carbohydrate metabolism differ significantly between marine and freshwater microbial communities. PMID:24118837

  1. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.

    2016-09-01

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reverse on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.

  2. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevellec, Florian; Fedorov, Alexey V.

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less

  3. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    DOE PAGES

    Sevellec, Florian; Fedorov, Alexey V.

    2016-01-04

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less

  4. The freshwater lens of Benjamín Aceval, Chaco, Paraguay: a terrestrial analogue of an oceanic island lens

    NASA Astrophysics Data System (ADS)

    Houben, Georg; Noell, Ursula; Vassolo, Sara; Grissemann, Christoph; Geyh, Mebus; Stadler, Susanne; Dose, Eduardo J.; Vera, Sofia

    2014-12-01

    The occurrence of a freshwater lens in the Paraguayan Chaco, 900 km away from the ocean, is reported. It is located underneath sandstone hills, surrounded by lowlands with predominantly saline groundwater. Its geometry was delineated using geoelectrical and electromagnetic investigations. The unusual height of the fresh groundwater level can be attributed to the presence of a confining layer at depth. The lens receives its recharge exclusively from rainfall during the hot and humid summer months. It predominantly contains water predating the atmospheric atomic bomb tests, some of it probably up to a thousand or more years old. The water balance shows that extraction currently does not exceed recharge in normal years. However, the available volume of groundwater leaves little room for a further increase of extraction in the future. Recharge is augmented by return flow from thousands of latrines and cess pits, and this has lead to widespread contamination of the groundwater by faecal bacteria.

  5. Recent trends and changes in freshwater discharge into Hudson, James, and Ungava Bays

    NASA Astrophysics Data System (ADS)

    Déry, S. J.; Stieglitz, M.; McKenna, E.; Wood, E. F.

    2004-05-01

    Recent trends and changes in the observed river discharge into Hudson, James, and Ungava Bays (HJUBs) for the period 1964-1994 will be presented. Forty-two rivers with outlets into these bays contribute on average 700 cubic kilometers (= 0.02 sverdrups) of freshwater to the Arctic Ocean. River discharge attains a mean annual peak of 4.2 cubic kilometers per day on average each 17 June for the system as a whole, whereas the minimum of 0.6 cubic kilometers occurs on average each 3 April. The Nelson River supplies as much as 30% of the daily discharge for the entire system during winter, but diminishes in relative importance during spring and summer. Runoff rates per contributing area are highest (lowest) on the eastern (western) shores of Hudson and James Bays. Linear trend analyses reveal decreasing discharge in 38 out of the 42 rivers over the 31-year period. By 1994, the total annual freshwater discharge into the Arctic Ocean diminished by 110 cubic kilometers from its values in 1964, equivalent to a reduction of 0.0035 sverdrups. The annual peak discharge rates associated with snowmelt advanced by 16 days between 1964 and 1994 and has diminished slightly in intensity. There is a direct correlation between the time of this hydrological event and the latitude of a river's mouth; the timing of the peak discharge rates varies by 5 days for each degree of latitude. Continental snowmelt induces a seasonal pulse of freshwater from HJUBs that is tracked along its path into the Labrador Current and that coincides with ocean salinity anomalies on the inner Newfoundland Shelf. The talk will end with a discussion on the implications of a changing freshwater regime in HJUBs.

  6. Multi-Model approach to reconstruct the Mediterranean Freshwater Evolution

    NASA Astrophysics Data System (ADS)

    Simon, Dirk; Marzocchi, Alice; Flecker, Rachel; Lunt, Dan; Hilgen, Frits; Meijer, Paul

    2016-04-01

    Today the Mediterranean Sea is isolated from the global ocean by the Strait of Gibraltar. This restricted nature causes the Mediterranean basin to react more sensitively to climatic and tectonic related phenomena than the global ocean. Not just eustatic sea-level and regional river run-off, but also gateway tectonics and connectivity between sub-basins are leaving an enhanced fingerprint in its geological record. To understand its evolution, it is crucial to understand how these different effects are coupled. The Miocene-Pliocene sedimentary record of the Mediterranean shows alternations in composition and colour and has been astronomically tuned. Around the Miocene-Pliocene Boundary the most extreme changes occur in the Mediterranean Sea. About 6% of the salt in the global ocean deposited in the Mediterranean Region, forming an approximately 2 km thick salt layer, which is still present today. This extreme event is named the Messinian Salinity Crisis (MSC, 5.97-5.33 Ma). The gateway and climate evolution is not well constrained for this time, which makes it difficult to distinguish which of the above mentioned drivers might have triggered the MSC. We, therefore, decided to tackle this problem via a multi-model approach: (1) We calculate the Mediterranean freshwater evolution via 30 atmosphere-ocean-vegetation simulations (using HadCM3L), to which we fitted to a function, using a regression model. This allows us to directly relate the orbital curves to evaporation, precipitation and run off. The resulting freshwater evolution can be directly correlated to other sedimentary and proxy records in the late Miocene. (2) By feeding the new freshwater evolution curve into a box/budget model we can predict the salinity and strontium evolution of the Mediterranean for a certain Atlantic-Mediterranean gateway. (3) By comparing these results to the known salinity thresholds of gypsum and halite saturation of sea water, but also to the late Miocene Mediterranean strontium

  7. Anomalous circulation in the Pacific sector of the Arctic Ocean in July-December 2008

    NASA Astrophysics Data System (ADS)

    Panteleev, G.; Francis, O. P.; Yaremchuk, M.; Zhang, J.; Kulakov, M.; Onat, Y.

    2017-12-01

    Variability of the mean summer-fall ocean state in the Pacific Sector of the Arctic Ocean (PSAO) is studied using a dynamically constrained synthesis (4Dvar) of historical in situ observations collected during 1972 to 2008. Specifically, the oceanic response to the cyclonic (1989-1996) and anticyclonic (1972-1978, 1997-2006) phases o f the Arctic Ocean Oscillation (AOO) is assessed for the purpose of quantitatively comparing the 2008 circulation pattern that followed the 2007 ice cover minimum.It is shown that the PSAO circulation during July-December of 2008 was characterized by a pronounced negative Sea Surface Height (SSH) anomaly along theEurasian shelf break, which caused a significant decline of the transport in the Atlantic Water (AW) inflow region into the PSAO and increased the sea level difference betweenthe Bering and Chukchi Seas. This anomaly could be one of the reasons for the observed amplification of the Bering Strait transport carrying fresh Pacific Waters into the PSAO. Largrangian analysis of the optimized solution suggests that the freshwater (FW) accumulation in the Beaufort Gyre has a negligible contribution from the East Siberian Sea and is likely caused by the enhanced FW export from the region north of the Canadian Archipelago/Greenland.The inverse modeling results are confirmed by validation against independent altimetry observations and in situ velocity data from NABOS moorings. It is also shown that presented results are in significantly better agreement with the data than the output of the PIOMAS model run utilized as a first guess solution for the 4dVar analysis.

  8. High export of dissolved silica from the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Meire, L.; Meire, P.; Struyf, E.; Krawczyk, D. W.; Arendt, K. E.; Yde, J. C.; Juul Pedersen, T.; Hopwood, M. J.; Rysgaard, S.; Meysman, F. J. R.

    2016-09-01

    Silica is an essential element for marine life and plays a key role in the biogeochemistry of the ocean. Glacial activity stimulates rock weathering, generating dissolved silica that is exported to coastal areas along with meltwater. The magnitude of the dissolved silica export from large glacial areas such as the Greenland Ice Sheet is presently poorly quantified and not accounted for in global budgets. Here we present data from two fjord systems adjacent to the Greenland Ice Sheet which reveal a large export of dissolved silica by glacial meltwater relative to other macronutrients. Upscaled to the entire Greenland Ice Sheet, the export of dissolved silica equals 22 ± 10 Gmol Si yr-1. When the silicate-rich meltwater mixes with upwelled deep water, either inside or outside Greenland's fjords, primary production takes place at increased silicate to nitrate ratios. This likely stimulates the growth of diatoms relative to other phytoplankton groups.

  9. Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992-2007)

    NASA Astrophysics Data System (ADS)

    Cougnon, E. A.; Galton-Fenzi, B. K.; Meijers, A. J. S.; Legrésy, B.

    2013-10-01

    Ocean observations around the Australian-Antarctic basin show the importance of coastal latent heat polynyas near the Mertz Glacier Tongue (MGT) to the formation of Dense Shelf Water (DSW) and associated Antarctic Bottom Water (AABW). Here, we use a regional ocean/ice shelf model to investigate the interannual variability of the export of DSW from the Adélie (west of the MGT) and the Mertz (east of the MGT) depressions from 1992 to 2007. The variability in the model is driven by changes in observed surface heat and salt fluxes. The model simulates an annual mean export of DSW through the Adélie sill of about 0.07 ± 0.06 Sv. From 1992 to 1998, the export of DSW through the Adélie (Mertz) sills peaked at 0.14 Sv (0.29 Sv) during July to November. During periods of mean to strong polynya activity (defined by the surface ocean heat loss), DSW formed in the Adélie depression can spread into the Mertz depression via the cavity under the MGT. An additional simulation, where ocean/ice shelf thermodynamics have been disabled, highlights the fact that models without ocean/ice shelf interaction processes will significantly overestimate rates of DSW export. The melt rates of the MGT are 1.2 ± 0.4 m yr-1 during periods of average to strong polynya activity and can increase to 3.8 ± 1.5 m/yr during periods of sustained weak polynya activity, due to the increased presence of relatively warmer water interacting with the base of the ice shelf. The increased melting of the MGT during a weak polynya state can cause further freshening of the DSW and ultimately limits the production of AABW.

  10. Model Sensitivity to North Atlantic Freshwater Forcing at 8.2 Ka

    NASA Technical Reports Server (NTRS)

    Morrill, Carrie; Legrande, Allegra Nicole; Renssen, H.; Bakker, P.; Otto-Bliesner, B. L.

    2013-01-01

    We compared four simulations of the 8.2 ka event to assess climate model sensitivity and skill in responding to North Atlantic freshwater perturbations. All of the simulations used the same freshwater forcing, 2.5 Sv for one year, applied to either the Hudson Bay (northeastern Canada) or Labrador Sea (between Canada's Labrador coast and Greenland). This freshwater pulse induced a decadal-mean slowdown of 10-25%in the Atlantic Meridional Overturning Circulation (AMOC) of the models and caused a large-scale pattern of climate anomalies that matched proxy evidence for cooling in the Northern Hemisphere and a southward shift of the Intertropical Convergence Zone. The multi-model ensemble generated temperature anomalies that were just half as large as those from quantitative proxy reconstructions, however. Also, the duration of AMOC and climate anomalies in three of the simulations was only several decades, significantly shorter than the duration of approx.150 yr in the paleoclimate record. Possible reasons for these discrepancies include incorrect representation of the early Holocene climate and ocean state in the North Atlantic and uncertainties in the freshwater forcing estimates.

  11. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    NASA Astrophysics Data System (ADS)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate

  12. Coccolithophore export production during the last deglaciation at ODP Site 1089 (Southern Ocean)

    NASA Astrophysics Data System (ADS)

    Balestrieri, Chiara; Ziveri, Patrizia; Mortyn, Peter Graham; Fornaciari, Eliana; Agnini, Claudia

    2017-04-01

    In order to assess the Southern Ocean carbonate budget change during the last deglaciation we evaluated the significance of calcification changes observed in calcareous nannofossil assemblages. In particular, we analysed coccolithophore assemblages from TNO57-21, a site survey core drilled as part of ODP Site 1089 (40°57'S; 9°53'E, 4620 m water depth), over the last 25 ky in the Subantarctic South Atlantic. This region is characterized by strong hydrographic gradients and ODP Site 1089 is optimally located in order to monitor the evolution of the Subtropical Front and Subpolar Front and the Agulhas Current (Flores et al., 2003) through time. The mean sedimentation rate is in the range of 15-20 cm/kyr, and the recovery of coccolith-bearing sediments provides a powerful tool to study deep-sea carbonate export production at high-resolution. Much of the CO2 drawdown from the atmosphere has been proposed to be stored into the deep ocean but evidence for increased carbon storage are still elusive (Martínez- Botí et al., 2015). Here, we present data on the Florisphaera profunda index and CaCO3 concentrations per gram of dry sediment, which were used to intepret the productivity trend during the last 25 kyr. These data clearly show a decrease in carbonate production throughout the last deglaciation. Moreover, we have calculated the Calcidiscus leptoporus-Emiliania huxleyi dissolution index (CEX'), which suggests a strong link between increasing coccolith dissolution and the evolution of the bottom water mass dynamics during Termination 1 (TI). Finally, mass estimations of the coccolith carbonate allow us to assess the role of each species as carbonate producers across this time span. These results reveal that during the last 25 ky the productivity was influenced by the mid-latitude westerlies, the study site was bathed by different bottom water masses, and was affected by a shoaling of the lysocline during T1 and the Holocene. References Flores J-A., Marino M., Sierro

  13. Anticipated Improvements to Net Surface Freshwater Fluxes from GPM

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2005-01-01

    Evaporation and precipitation over the oceans play very important roles in the global water cycle, upper-ocean heat budget, ocean dynamics, and coupled ocean-atmosphere dynamics. In the conventional representation of the terrestrial water cycle, the assumed role of the oceans is to act as near-infinite reservoirs of water with the main drivers of the water cycle being land- atmosphere interactions in which excess precipitation (P) over evaporation (E) is returned to the oceans as surface runoff and baseflow. Whereas this perspective is valid for short space and time scales -- fundamental principles, available observed estimates, and results from models indicate that the oceans play a far more important role in the large-scale water cycle at seasonal and longer timescales. Approximately 70-80% of the total global evaporation and precipitation occurs over oceans. Moreover, latent heat release into the atmosphere over the oceans is the major heat source driving global atmospheric circulations, with the moisture transported by circulations from oceans to continents being the major source of water precipitating over land. Notably, the major impediment in understanding and modeling the oceans role in the global water cycle is the lack of reliable net surface freshwater flux estimates (E - P fluxes) at the salient spatial and temporal resolutions, i.e., consistent coupled weekly to monthly E - P gridded datasets.

  14. Tidal influence on particulate organic carbon export fluxes around a tall seamount

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Dumont, Matthew; Kiriakoulakis, Kostas; Legg, Sonya; Mohn, Christian; Peine, Florian; Wolff, George

    2016-12-01

    As tall seamounts may be 'stepping stones' for dispersion and migration of deep open ocean fauna, an improved understanding of the productivity at and food supply to such systems needs to be formed. Here, the 234Th/238U approach for tracing settling particulate matter was applied to Senghor Seamount - a tall sub-marine mountain near the tropical Cape Verde archipelago - in order to elucidate the effects of topographically-influenced physical flow regimes on the export flux of particulate organic carbon (POC) from the near-surface (topmost ⩽ 100 m) into deeper waters. The comparison of a suitable reference site and the seamount sites revealed that POC export at the seamount sites was ∼2-4 times higher than at the reference site. For three out of five seamount sites, the calculated POC export fluxes are likely to be underestimates. If this is taken into account, it can be concluded that POC export fluxes increase while the passing waters are advected around and over the seamount, with the highest export fluxes occurring on the downstream side of the seamount. This supports the view that biogeochemical and biological effects of tall seamounts in surface-ocean waters might be strongest at some downstream distance from, rather than centred around, the seamount summit. Based on measured (vessel-mounted ADCP) and modelled (regional flow field: AVISO; internal tides at Senghor: MITgcm) flow dynamics, it is proposed that tidally generated internal waves result in a 'screen' of increased rates of energy dissipation that runs across the seamount and leads to a combination of two factors that caused the increased POC export above the seamount: (1) sudden increased upward transport of nutrients into the euphotic zone, driving brief pulses of primary production of new particulate matter, followed by the particles' export into deeper waters; and (2) pulses of increased shear-driven aggregation of smaller, slower-settling into larger, faster-settling particles. This study

  15. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species

    PubMed Central

    McGraw, Joseph E.; Jensen, Brittany J.; Bishop, Sydney S.; Lokken, James P.; Dorff, Kellen J.; Ripley, Michael P.; Munro, James B.

    2015-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. PMID:26497452

  16. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes.

    PubMed

    Gottschalk, Julia; Skinner, Luke C; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L; Waelbroeck, Claire

    2016-05-17

    Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and (14)C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.

  17. Estimates of Gelatinous Zooplankton Carbon Flux in the Global Oceans

    NASA Astrophysics Data System (ADS)

    Luo, J. Y.; Condon, R.; Cowen, R. K.

    2016-02-01

    Gelatinous zooplankton (GZ), which include the cnidarians, ctenophores, and pelagic tunicates, are a common feature of marine ecosystems worldwide, but their contribution to global biogeochemical fluxes has never been assessed. We constructed a carbon-cycle model with a single, annual time-step and resolved to a 5° spatial grid for the three major GZ groups in order to evaluate the GZ-mediated carbon fluxes and export to depth. Biomass inputs (totaling 0.149 Pg C) were based off of Lucas et al. (2014) and updated using the JeDI database (Condon et al. 2015). From the upper ocean, biomass export flux from cnidarians, ctenophores, and tunicates totaled 2.96 ± 2.82 Pg C y-1, though only 0.199 ± 0.023 Pg C y-1 of GZ carbon were transferred to upper trophic levels, roughly amounting to one-quarter of all mesozooplankton production flux. In contrast, GZ fluxes to DOC only comprised ca. 2% of labile DOC flux. Egestion flux from the upper ocean totaled 2.56 ± 3.35 Pg C y-1, with over 80% being fast-sinking tunicate fecal pellets. Due to fast sinking rates of carcasses and fecal pellets, 26% of all C export from the upper ocean reached the seafloor, such that GZ fecal matter is estimated to comprise between 20-30% of global POC surface export and 11-30% of POC seafloor deposition. Finally, results from sensitivity analyses showed no increase in cnidarian and ctenophore export fluxes with increased temperature and jelly biomass, though tunicate export fluxes showed some increase with both temperature and biomass. These results suggest that current estimates of global POC flux from the surface oceans, which range between 8.6 - 12.9 Pg C y-1, may be underestimated by as much as 20 - 25%, implying a definite need to incorporate GZ mediated flux in estimating the biological pump transfer efficiency. Our study represents the first effort to quantify the role of gelatinous zooplankton in the global marine carbon cycle.

  18. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific

    NASA Astrophysics Data System (ADS)

    Mackinson, B. L.; Moran, S. B.; Lomas, M. W.; Stewart, G. M.; Kelly, R. P.

    2015-06-01

    The contributions of micro-, nano-, and picoplankton to particle export were estimated from measurements of size-fractionated particulate 234Th, organic carbon, and phytoplankton indicator pigments obtained during five cruises between 2010 and 2012 along Line P in the subarctic northeast Pacific Ocean. Sinking fluxes of particulate organic carbon (POC) and indicator pigments were calculated from 234Th-238U disequilibria and, during two cruises, measured by a sediment trap at Ocean Station Papa. POC fluxes at 100 m ranged from 0.65 to 7.95 mmol m-2 d-1, similar in magnitude to previous results at Line P. Microplankton pigments dominate indicator pigment fluxes (averaging 69 ± 19% of total pigment flux), while nanoplankton pigments comprised the majority of pigment standing stocks (averaging 64 ± 23% of total pigment standing stocks). Indicator pigment loss rates (the ratio of pigment export flux to pigment standing stocks) point to preferential export of larger microplankton relative to smaller nano- and picoplankton. However, indicator pigments do not quantitatively trace particle export resulting from zooplankton grazing, which may be an important pathway for the export of small phytoplankton. These results have important implications for understanding the magnitude and mechanisms controlling the biological pump at Line P in particular, and more generally in oligotrophic gyres and high-nutrient, low-chlorophyll (HNLC) regions where small phytoplankton represent a major component of the autotrophic community.

  19. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific

    NASA Astrophysics Data System (ADS)

    Mackinson, B. L.; Moran, S. B.; Lomas, M. W.; Stewart, G. M.; Kelly, R. P.

    2014-08-01

    The contributions of micro-, nano-, and picoplankton to particle export were estimated from measurements of size-fractionated particulate 234Th, organic carbon, and phytoplankton indicator pigments obtained during five cruises between 2010 and 2012 along Line P in the subarctic northeast Pacific Ocean. Sinking fluxes of particulate organic carbon (POC) and indicator pigments were calculated from 234Th-238U disequilibria and, during two cruises, measured by sediment trap at Ocean Station Papa. POC fluxes at 100 m ranged from 0.65-7.95 mmol m-2 d-1, similar in magnitude to previous results at Line P. Microplankton pigments dominate indicator pigment fluxes (averaging 69 ± 19% of total pigment flux), while nanoplankton pigments comprised the majority of pigment standing stocks (averaging 64 ± 23% of total pigment standing stock). Indicator pigment loss rates (the ratio of pigment export flux to pigment standing stock) point to preferential export of larger microplankton relative to smaller nano- and picoplankton. However, indicator pigments do not quantitatively trace particle export resulting from zooplankton grazing, which may be an important pathway for the export of small phytoplankton. These results have important implications for understanding the magnitude and mechanisms controlling the biological pump at Line P in particular, and more generally in oligotrophic gyres and high-nutrient, low-chlorophyll regions where small phytoplankton represent a major component of the autotrophic community.

  20. Ocean Observations of Climate Change

    NASA Astrophysics Data System (ADS)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  1. Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles

    NASA Astrophysics Data System (ADS)

    Pasquier, Benoît; Holzer, Mark

    2017-09-01

    The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe) is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1 ± 0. 3 Tmol P yr-1 (or, in carbon units, 10. 3 ± 0. 4 Pg C yr-1) and 171. ± 3. Tmol Si yr-1. We diagnose the

  2. Current State and Recent Changes in the Arctic Ocean from the HYCOM-NCODA Global Ocean and Sea Ice Prediction System

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, D. S.; Chassignet, E. P.; Hogan, P. J.; Metzger, E. J.; Posey, P.; Smedstad, O. M.; Stefanova, L. B.; Wallcraft, A. J.

    2016-12-01

    The great potential of numerical models to provide a high-resolution continuous picture of the environmental characteristics of the Arctic system is related to the problem of reliability and accuracy of the simulations. Recent Arctic Ocean model intercomparison projects have identified substantial disagreements in water mass distribution and circulation among the models over the last two decades. In situ and satellite observations cannot yield enough continuous in time and space information to interpret the observed changes in the Arctic system. Observations combined with Arctic Ocean models via data assimilation provide perhaps the most complete knowledge about the state of the Arctic system. We use outputs from the US Navy Global Ocean Forecast System (20-year reanalysis + analysis) to investigate several hypotheses that have been put forward regarding the current state and recent changes in the Arctic Ocean. The system is based on the 0.08-degree HYbrid Coordinate Ocean Model (HYCOM) and can be run with two-way coupling to the Los Alamos Community Ice CodE (CICE) or with an energy-loan ice model. Observations are assimilated by the Navy Coupled Ocean Data Assimilation (NCODA) algorithm. HYCOM temperature and salinity fields are shown to be in good agreement with observational data in the Arctic and North Atlantic. The model reproduces changes in the freshwater budget in the Arctic as reported in other studies. The modeled freshwater fluxes between the Arctic Ocean and the North Atlantic are analyzed to document and discuss the interaction between the two regions over the last two decades.

  3. Genetic divergence between freshwater and marine morphs of alewife (Alosa pseudoharengus): a 'next-generation' sequencing analysis.

    PubMed

    Czesny, Sergiusz; Epifanio, John; Michalak, Pawel

    2012-01-01

    Alewife Alosa pseudoharengus, a small clupeid fish native to Atlantic Ocean, has recently (∼150 years ago) invaded the North American Great Lakes and despite challenges of freshwater environment its populations exploded and disrupted local food web structures. This range expansion has been accompanied by dramatic changes at all levels of organization. Growth rates, size at maturation, or fecundity are only a few of the most distinct morphological and life history traits that contrast the two alewife morphs. A question arises to what extent these rapidly evolving differences between marine and freshwater varieties result from regulatory (including phenotypic plasticity) or structural mutations. To gain insights into expression changes and sequence divergence between marine and freshwater alewives, we sequenced transcriptomes of individuals from Lake Michigan and Atlantic Ocean. Population specific single nucleotide polymorphisms were rare but interestingly occurred in sequences of genes that also tended to show large differences in expression. Our results show that the striking phenotypic divergence between anadromous and lake alewives can be attributed to massive regulatory modifications rather than coding changes.

  4. Using Vertically Integrated Ocean Fields to Characterize Greenland Icebergs' Distribution and Lifetime

    NASA Astrophysics Data System (ADS)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Le Sommer, Julien

    2018-05-01

    Icebergs represent approximately half of Greenland's yearly mass loss, having important implications for biological productivity, freshwater fluxes in the ocean, and navigation. This study applies an iceberg model that uses integrated ocean fields (from surface to iceberg keel) to simulate the drift and decay of Greenland icebergs. This version of iceberg model (VERT) is compared with a more widely adopted version (SURF) which only uses surface ocean fields in its equations. We show that icebergs in VERT tend to drift along the shelf break, while in SURF they concentrate along the coastline. Additionally, we show that Greenland's southeast coast is the source of ˜60% of the icebergs that cross the interior of the Labrador Sea—a region that stages buoyancy-driven convection and is, therefore, sensitive to freshwater input.

  5. Export of Strongly Diluted Greenland Meltwater From a Major Glacial Fjord

    NASA Astrophysics Data System (ADS)

    Beaird, Nicholas L.; Straneo, Fiammetta; Jenkins, William

    2018-05-01

    The Greenland Ice Sheet has been, and will continue, losing mass at an accelerating rate. The influence of this anomalous meltwater discharge on the regional and large-scale ocean could be considerable but remains poorly understood. This uncertainty is in part a consequence of challenges in observing water mass transformation and meltwater spreading in coastal Greenland. Here we use tracer observations that enable unprecedented quantification of the export, mixing, and vertical distribution of meltwaters leaving one of Greenland's major glacial fjords. We find that the primarily subsurface meltwater input results in the upwelling of the deep fjord waters and an export of a meltwater/deepwater mixture that is 30 times larger than the initial meltwater release. Using these tracer data, the vertical structure of Greenland's summer meltwater export is defined for the first time showing that half the meltwater export occurs below 65 m.

  6. Quantifying ocean and ice sheet contributions to nutrient fluxes in Sermilik Fjord, Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Cape, M. R.; Straneo, F.; Beaird, N.; Bundy, R.; Charette, M. A.

    2016-12-01

    Meltwater discharged at the margins of the Greenland Ice Sheet (GrIS) represents a potential source of nutrients to biological communities downstream. In Greenland's glacial fjords, this discharge occurs at depth below and along the face of deeply grounded marine-terminating glaciers. This process drives vigorous circulation and mixing between melt and ambient waters at the ice-ocean margins, giving rise to a new glacially modified water mass (GMW) which constitutes the primary vehicle for transport of meltwater in the marine environment. While previous field studies have noted nutrient enrichment in GMW with respect to unmodified waters along the shelf, the source of this enrichment, whether due to entrainment of deep ambient waters or input by meltwater, remains poorly understood. This knowledge is however critical in order to evaluate the current and future contributions of the GrIS to marine biogeochemical cycling. Here we shed light on the distribution, composition, and properties of GMW along the GrIS margin by analyzing integrated physical and chemical measurements collected in August 2015 in Sermilik Fjord, a major glacial freshwater export pathway. Our results document up to a doubling of nutrient concentrations (nitrate, silicate, phosphate, and iron) in GMW, which is distributed in the top 300 m of the water column throughout the fjord. Partitioning of ocean and ice sheet contributions to GMW nutrient load demonstrates that upwelled waters are the primary source of macro-nutrients to GMW. We expand on these results to discuss the magnitude of fluxes in context of previous observations along the GrIS margins, export pathways of GMW to the shelf, and knowledge gaps needed to be addressed to better constrain ice sheet contributions to marine ecosystem processes.

  7. Arctic Ocean circulation during the anoxic Eocene Azolla event

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  8. Episodic fresh surface waters in the Eocene Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Brinkhuis, Henk; Schouten, Stefan; Collinson, Margaret E.; Sluijs, Appy; Damsté, Jaap S. Sinninghe; Dickens, Gerald R.; Huber, Matthew; Cronin, Thomas M.; Onodera, Jonaotaro; Takahashi, Kozo; Bujak, Jonathan P.; Stein, Ruediger; van der Burgh, Johan; Eldrett, James S.; Harding, Ian C.; Lotter, André F.; Sangiorgi, Francesca; Cittert, Han Van Konijnenburg-Van; de Leeuw, Jan W.; Matthiessen, Jens; Backman, Jan; Moran, Kathryn; Expedition 302 Scientists

    2006-06-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (~50Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an ~800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from ~10°C to 13°C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas.

  9. Episodic fresh surface waters in the Eocene Arctic Ocean

    USGS Publications Warehouse

    Brinkhuis, H.; Schouten, S.; Collinson, M.E.; Sluijs, A.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Cronin, T. M.; Onodera, J.; Takahashi, K.; Bujak, J.P.; Stein, R.; Van Der Burgh, J.; Eldrett, J.S.; Harding, I.C.; Lotter, A.F.; Sangiorgi, F.; Cittert, H.V.K.V.; De Leeuw, J. W.; Matthiessen, J.; Backman, J.; Moran, K.

    2006-01-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (???50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an ???800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from ???10??C to 13??C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas. ?? 2006 Nature Publishing Group.

  10. Anthropogenic and climatic controls on carbon and nitrogen exports from Mississippi river basin to Gulf of Mexico during 1800 - 2100: Implications for hypoxia and ocean acidification

    NASA Astrophysics Data System (ADS)

    Tian, H.; Yang, J.; Zhang, B.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Xue, Z. G.; Lu, C.; Ren, W.; Huang, W. J.; Yao, Y.

    2016-02-01

    The enlarged size of dead zone in the Gulf of Mexico in 2015, resulting from high summer precipitation and nutrient runoff from agriculture and other human activities in Mississippi river basin, has aroused plenty of scientific attentions and public concerns. Although recent-decade patterns of water/carbon/nitrogen exports from the US land to Gulf of Mexico have been intensively investigated through gauge station monitoring and empirical-based modeling, our understanding of its historical and future long-term trends and the underlying mechanisms is still limited. Climate variability and change, land cover/land use change (e.g., cropland shift from eastern US to Midwest US) and evolving land management practices (e.g., nitrogen fertilizer use in corn belt) are all important drivers regulating interannual, decadal and century-long variability in riverine carbon and nitrogen exports. In this study, we explore river discharge and carbon/nitrogen exports from US drainage basins in a 300-year period covering both historical and future eras (1800 - 2100) and further quantify the contributions of climate, land use, nitrogen fertilizer use, and atmospheric chemistry by using a process-based land ecosystem model (DLEM) with networked river system incorporated. The results indicate that spatial distribution and shift of agricultural land is of critical importance in shaping land-to-aquatic mass flow and coastal water quality. Historical pattern and future scenarios of climate variability and change play an important role in the trend of water yield and enhanced inter-annual variations of river discharge and carbon/nitrogen exports. Atmospheric nitrogen deposition and agricultural nitrogen fertilizer uses in land ecosystem largely contributed to land-to-aquatic nitrogen exports. Our sensitivity analyses with DLEM suggest that precipitation in the basin as well as nitrogen fertilizer use in US corn belt are important determinants of nutrient export and hence the size of dead

  11. Global Ocean Integrals and Means, with Trend Implications.

    PubMed

    Wunsch, Carl

    2016-01-01

    Understanding the ocean requires determining and explaining global integrals and equivalent average values of temperature (heat), salinity (freshwater and salt content), sea level, energy, and other properties. Attempts to determine means, integrals, and climatologies have been hindered by thinly and poorly distributed historical observations in a system in which both signals and background noise are spatially very inhomogeneous, leading to potentially large temporal bias errors that must be corrected at the 1% level or better. With the exception of the upper ocean in the current altimetric-Argo era, no clear documentation exists on the best methods for estimating means and their changes for quantities such as heat and freshwater at the levels required for anthropogenic signals. Underestimates of trends are as likely as overestimates; for example, recent inferences that multidecadal oceanic heat uptake has been greatly underestimated are plausible. For new or augmented observing systems, calculating the accuracies and precisions of global, multidecadal sampling densities for the full water column is necessary to avoid the irrecoverable loss of scientifically essential information.

  12. Stronger Ocean Meridinal Heat Transport with a Weaker Atlantic Meridional Overturning Circulation?

    NASA Astrophysics Data System (ADS)

    Sevellec, F.; Fedorov, A. V.

    2014-12-01

    It is typically assumed that oceanic heat transport is well and positively correlated with the Atlantic Meridional Ocean Circulation (AMOC). In numerical "water-hosing" experiments, for example, imposing an anomalous freshwater flux in the northern hemisphere leads to a slow-down of the AMOC and a corresponding reduction of the northward heat transport. Here, we study the sensitivity of the heat transport to surface freshwater fluxes using a generalized stability analysis and find that, while the direct relationship between the AMOC and heat transport holds on shorter time scales, it completely reverses on timescales longer than ~500 yr. That is, a reduction in the AMOC volume transport can actually lead to a stronger heat transport on those long timescales, which results from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistically equilibrium) in ocean and climate GCM as well as various paleoclimate problems such as millennial climate variability and the maintenance of equable climate states.

  13. Freshwater and polynya components of the shelf-derived Arctic Ocean halocline in summer 2007 identified by stable oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Bauch, D.; Rutgers van der Loeff, M.; Andersen, N.; Torres-Valdes, S.; Bakker, K.; Abrahamsen, E.

    2011-12-01

    With the aim of determining the origin of freshwater in the halocline, fractions of river water and sea-ice meltwater (or brine influence from sea-ice formation) in the upper 150 m were quantified by a combination of salinity and δ18O and nutrients in the Eurasian basins and the Makarov Basin. Our study indicates which layers of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal polynyas and which are primarily influenced by sea-ice formation over the open ocean. With the ongoing changes in sea-ice coverage in the Arctic Ocean it can be expected that these processes will change in the immediate future and that the relative contributions to the halocline will change accordingly. Within the Eurasian Basin a west to east oriented front between net melting and production of sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a pronounced layer influenced by brines released during sea-ice formation is present at about 30 to 50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct definition of this maximum demonstrates the rapid release and transport of signals from the shelf regions in discrete pulses within the Transpolar Drift. We use the ratio of sea-ice derived brine influence and river water to link the maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the Laptev Sea likely released in summer 2005. For a distinction of Atlantic and Pacific-derived contributions the initial phosphate corrected for mineralization with oxygen (PO*) and alternatively the nitrate to phosphate ratio (N/P) in each sample were used. While PO*-based assessments systematically underestimate the contribution of Pacific-derived waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar Drift due to denitrification in bottom sediments of the Laptev Sea. The extent of Pacific-derived water in the Arctic Ocean was approximately limited

  14. Ba/Ca in Planktonic Foraminifera as a Recorder of Freshwater Input to the Ocean: Proxy Refinement in the Gulf of Papua, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Gibson, K.

    2015-12-01

    In the study of paleoclimate, the past several decades have seen large strides in the advancement of proxies designed to reconstruct changes in sea surface temperature (SST); however, techniques for reconstructing ocean salinity are less well developed. The ratio of Ba/Ca in planktic foraminiferal tests has shown initial promise as a tool for reconstructing salinity in continental margin sites near river mouths. In these environments, Ba/Ca shows an inverse correlation with salinity, and often a less clear correlation to nutrients or indicators of productivity, as is more typical in open-ocean settings. An ideal area in which to apply and test foraminiferal Ba/Ca as a proxy for freshwater input is the Western Pacific Warm Pool (WPWP), where temperatures are relatively stable, but large variations in precipitation are today driven by the El Nino Southern Oscillation (ENSO) and strength of the Australian-Indonesian monsoon. Foraminiferal Ba/Ca in sediments proximal to a river mouth should therefore reflect changes in riverine input, which in turn reflect variations in precipitation on different timescales. We present here planktic foraminiferal δ18O, Ba/Ca, and Mg/Ca records spanning the last glacial-interglacial transition from marine sediment cores in the Gulf of Papua, located in the WPWP. The δ18O records show an increase in the magnitude of glacial-interglacial (G-IG) δ18O change (Δ18O) moving away from the coastline and the mouth of the primary local freshwater source, the Fly River. The reduced amplitude in G-IG Δ18O in the cores closer to shore, manifested by more negative δ18O values before ~20 kyr ago, is likely due to freshwater input from the Fly River, with the effects diminishing with distance from the Fly River source. Temperature and sea level are also changing over the deglaciation, however, contributing to the signal recorded in the calcite δ18O. We use planktic Mg/Ca analyses and independent records of sea level change to isolate the

  15. Arctic freshwater synthesis: Introduction

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  16. Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos

    2016-12-01

    A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.

  17. Pacific patterns of dust deposition, iron supply and export production

    NASA Astrophysics Data System (ADS)

    Winckler, G.; Anderson, R. F.; Park, J.; Schwartz, R.; Pahnke, K.; Struve, T.; Lamy, F.; Gersonde, R.

    2015-12-01

    The scarcity of iron limits marine export production and carbon uptake in about a quarter of the global ocean where the surface concentration of nitrate and phosphate is high, as biological utilization of these macronutrients is incomplete. Of these high nutrient low chlorophyll (HNLC) regions, the Southern Ocean is the region where variations in iron availability can have the largest effect on Earth's carbon cycle through its fertilizing effect on marine ecosystems, both in the modern and in the past. Recent work in the Subantarctic South Atlantic (Martínez-Garcia et al., 2009, 2014, Anderson et al., 2014) suggests that dust-driven iron fertilization lowered atmospheric CO2 by up to 40 ppm in the latter half of each glacial cycle of the late Pleistocene, with the increase in Subantarctic productivity consuming a greater fraction of the surface nutrients and thus driving more storage of carbon in the ocean interior. The other sectors of the Southern Ocean remain poorly constrained, including the Pacific Sector, that accounts for the largest surface area of the Subantarctic Southern Ocean. Here we report records of dust deposition, iron supply and export production from a set of cores from the Subantarctic Pacific (PS75, Lamy et al 2014) and initial results about the origin of dust transported to the Subantarctic Pacific Ocean from radiogenic isotopes and rare earth elements. We test how tightly dust and biological productivity are coupled over glacial/interglacial and millennial timescales in the Subantarctic Pacific and place the region in a context of global patterns of biological productivity, nutrient utilization and iron fertilization by dust, including comparisons to the other Pacific HNLC regions, the Subarctic North Pacific and equatorial Pacific.

  18. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species.

    PubMed

    Dailey, Frank E; McGraw, Joseph E; Jensen, Brittany J; Bishop, Sydney S; Lokken, James P; Dorff, Kellen J; Ripley, Michael P; Munro, James B

    2016-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans

    NASA Astrophysics Data System (ADS)

    Lawson, E. C.; Wadham, J. L.; Tranter, M.; Stibal, M.; Lis, G. P.; Butler, C. E. H.; Laybourn-Parry, J.; Nienow, P.; Chandler, D.; Dewsbury, P.

    2013-12-01

    Runoff from small glacier systems contains dissolved organic carbon (DOC), rich in protein-like, low molecular weight (LMW) compounds, designating glaciers as an important source of bioavailable carbon for downstream heterotrophic activity. Fluxes of DOC and particulate organic carbon (POC) exported from large Greenland catchments, however, remain unquantified, despite the Greenland Ice Sheet (GrIS) being the largest source of global glacial runoff (ca. 400 km3 yr-1). We report high and episodic fluxes of POC and DOC from a large (1200 km2) GrIS catchment during contrasting melt seasons. POC dominates organic carbon (OC) export (70-89% on average), is sourced from the ice sheet bed and contains a significant bioreactive component (9% carbohydrates). A major source for the "bioavailable" (free carbohydrates) LMW-DOC fraction is microbial activity on the ice sheet surface, with some further addition of LMW-DOC to meltwaters by biogeochemical processes at the ice sheet bed. The bioavailability of the exported DOC (30-58%) to downstream marine microorganisms is similar to that reported from other glacial watersheds. Annual fluxes of DOC and free carbohydrates during two melt seasons were similar, despite the ~ 2 fold difference in runoff fluxes, suggesting production-limited DOC sources. POC fluxes were also insensitive to an increase in seasonal runoff volumes, indicating supply-limitation of suspended sediment in runoff. Scaled to the GrIS, the combined DOC and POC fluxes (0.13-0.17 Tg C yr-1 DOC, 0.36-1.52 Tg C yr-1 mean POC) are of a similar order of magnitude to a large Arctic river system, and hence represent an important OC source to the North Atlantic, Greenland and Labrador Seas.

  20. Mercury Export from Mainland China to Adjacent Seas and Its Influence on the Marine Mercury Balance.

    PubMed

    Liu, Maodian; Chen, Long; Wang, Xuejun; Zhang, Wei; Tong, Yindong; Ou, Langbo; Xie, Han; Shen, Huizhong; Ye, Xuejie; Deng, Chunyan; Wang, Huanhuan

    2016-06-21

    Exports from mainland China are a significant source of mercury (Hg) in the adjacent seas (Bohai Sea, Yellow Sea, East China Sea, and South China Sea) near China. A total of 240 ± 23 Mg was contributed in 2012 (30% from natural sources and 70% from anthropogenic sources), including Hg from rivers, industrial wastewater, domestic sewage, groundwater, nonpoint sources, and coastal erosion. Among the various sources, the Hg from rivers amounts to 160 ± 21 Mg and plays a dominant role. The Hg that is exported from mainland China increased from 1984 to 2013; the contributions from rivers, industrial wastewater, domestic sewage and groundwater increased, and the contributions from nonpoint sources and coastal erosion remained stable. A box model is constructed to simulate the mass balance of Hg in these seas and quantify the sources, sinks and Hg biogeochemical cycle in the seas. In total, 160 Mg of Hg was transported to the Pacific Ocean and other oceans from these seas through oceanic currents in 2012, which could have negative impacts on the marine ecosystem. A prediction of the changes in Hg exportation through 2030 shows that the impacts of terrestrial export might worsen without effective pollution reduction measures and that the Hg load in these seas will increase, especially in the seawater of the Bohai Sea, Yellow Sea, and East China Sea and in the sea margin sediments of the Bohai Sea and East China Sea.

  1. Genetic Divergence between Freshwater and Marine Morphs of Alewife (Alosa pseudoharengus): A ‘Next-Generation’ Sequencing Analysis

    PubMed Central

    Czesny, Sergiusz; Epifanio, John; Michalak, Pawel

    2012-01-01

    Alewife Alosa pseudoharengus, a small clupeid fish native to Atlantic Ocean, has recently (∼150 years ago) invaded the North American Great Lakes and despite challenges of freshwater environment its populations exploded and disrupted local food web structures. This range expansion has been accompanied by dramatic changes at all levels of organization. Growth rates, size at maturation, or fecundity are only a few of the most distinct morphological and life history traits that contrast the two alewife morphs. A question arises to what extent these rapidly evolving differences between marine and freshwater varieties result from regulatory (including phenotypic plasticity) or structural mutations. To gain insights into expression changes and sequence divergence between marine and freshwater alewives, we sequenced transcriptomes of individuals from Lake Michigan and Atlantic Ocean. Population specific single nucleotide polymorphisms were rare but interestingly occurred in sequences of genes that also tended to show large differences in expression. Our results show that the striking phenotypic divergence between anadromous and lake alewives can be attributed to massive regulatory modifications rather than coding changes. PMID:22438868

  2. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  3. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  4. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  5. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  6. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  7. 9 CFR 91.19 - Inspection of ocean vessels prior to loading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Inspection of ocean vessels prior to... Inspection of ocean vessels prior to loading. It shall be the responsibility of the owners or the masters of an ocean vessel intended for use in exporting livestock to present the vessel to an inspector at a...

  8. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laufkotter, Charlotte; Vogt, Meike; Gruber, Nicolas

    Here, accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projectionsmore » in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12%. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94% in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher

  9. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem

    DOE PAGES

    Laufkotter, Charlotte; Vogt, Meike; Gruber, Nicolas; ...

    2016-07-14

    Here, accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projectionsmore » in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12%. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94% in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher

  10. Forcing, variability, and pathway of a freshwater-driven current in the Eurasian Arctic

    NASA Astrophysics Data System (ADS)

    Janout, Markus; Aksenov, Yevgeny; Hölemann, Jens; Rabe, Benjamin; Schauer, Ursula; Polyakov, Igor; Bacon, Sheldon; Coward, Andrew; Karcher, Michael; Lenn, Yueng-Djern; Kassens, Heidi; Timokhov, Leo

    2015-04-01

    Siberian river water is a first-order contribution to the Arctic freshwater budget, with the Ob, Yenisey, and Lena supplying nearly half of the total surface freshwater flux. However, few details are known regarding where, when and how the freshwater transverses the vast Siberian shelf seas. This paper investigates the mechanism, variability and pathways of the fresh Kara Sea outflow through Vilkitsky Strait towards the Laptev Sea. We utilize a high-resolution ocean model and recent shipboard observations to characterize the freshwater-laden Vilkitsky Strait Current (VSC), and shed new light on the little-studied region between the Kara and Laptev Seas, characterized by harsh ice conditions, contrasting water masses, straits and a large submarine canyon. The VSC is 10-20 km wide, surface-intensified, and varies seasonally (maximum from August-March) and interannually. Average freshwater (volume) transport is 500 ± 120 km3 a-1 (0.53 ± 0.08 Sv), with a baroclinic flow contribution of 50-90%. Interannual transport variability is explained by a storage-release mechanism, where blocking-favorable summer winds hamper the outflow and cause accumulation of freshwater in the Kara Sea. The year following a blocking event is characterized by enhanced transports driven by a baroclinic flow along the coast that is set up by increased freshwater volumes. Eventually, the VSC merges with a slope current and provides a major pathway for Eurasian river water towards the Western Arctic along the Eurasian continental slope. Kara (and Laptev) Sea freshwater transport is not correlated with the Arctic Oscillation, but rather driven by regional summer pressure patterns.

  11. Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model

    NASA Astrophysics Data System (ADS)

    Romanou, A.; Romanski, J.; Gregg, W. W.

    2014-02-01

    Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10%) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34%, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which

  12. Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Romanski, J.; Gregg, W. W.

    2014-01-01

    Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which

  13. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes

    PubMed Central

    Gottschalk, Julia; Skinner, Luke C.; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L.; Waelbroeck, Claire

    2016-01-01

    Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean–atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air–sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes. PMID:27187527

  14. An electromagnetic geophysical survey of the freshwater lens of Isla de Mona, Puerto Rico

    USGS Publications Warehouse

    Richards, R.T.; Troester, J.W.; Martinez, M.I.

    1998-01-01

    An electromagnetic reconnaissance of the freshwater lens of Isla de Mona, Puerto Rico was conducted with both terrain conductivity (TC) and transient electromagnetic (TEM) surface geophysical techniques. These geophysical surveys were limited to the southern and western parts of the island because of problems with access and cultural metallic objects such as reinforced concrete roadways on the eastern part of the island. The geophysical data were supplemented with the location of a freshwater spring found by scuba divers at a depth of about 20 m below sea level along the northern coast of the island. The geophysical data suggest that the freshwater lens has a maximum thickness of 20 m in the southern half of the island. The freshwater lens is not thickest at the center of the island but nearer the southwestern edge in Quaternary deposits and the eastern edge of the island in the Tertiary carbonates. This finding indicates that the groundwater flow paths on Isla de Mona are not radially summetrical from the center of the island to the ocean. The asymmetry of the freshwater lens indicates that the differences in hydraulic conductivity are a major factor in determining the shape of the freshwater lens. The porosity of the aquifer, as determined by the geophysical data is about 33%.

  15. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans

    NASA Astrophysics Data System (ADS)

    Lawson, E. C.; Wadham, J. L.; Tranter, M.; Stibal, M.; Lis, G. P.; Butler, C. E. H.; Laybourn-Parry, J.; Nienow, P.; Chandler, D.; Dewsbury, P.

    2014-07-01

    Runoff from small glacier systems contains dissolved organic carbon (DOC) rich in protein-like, low molecular weight (LMW) compounds, designating glaciers as an important source of bioavailable carbon for downstream heterotrophic activity. Fluxes of DOC and particulate organic carbon (POC) exported from large Greenland catchments, however, remain unquantified, despite the Greenland Ice Sheet (GrIS) being the largest source of global glacial runoff (ca. 400 km3 yr-1). We report high and episodic fluxes of POC and DOC from a large (>600 km2) GrIS catchment during contrasting melt seasons. POC dominates organic carbon (OC) export (70-89% on average), is sourced from the ice sheet bed, and contains a significant bioreactive component (9% carbohydrates). A major source of the "bioavailable" (free carbohydrate) LMW-DOC fraction is microbial activity on the ice sheet surface, with some further addition of LMW-DOC to meltwaters by biogeochemical processes at the ice sheet bed. The bioavailability of the exported DOC (26-53%) to downstream marine microorganisms is similar to that reported from other glacial watersheds. Annual fluxes of DOC and free carbohydrates during two melt seasons were similar, despite the approximately two-fold difference in runoff fluxes, suggesting production-limited DOC sources. POC fluxes were also insensitive to an increase in seasonal runoff volumes, indicating a supply limitation in suspended sediment in runoff. Scaled to the GrIS, the combined DOC (0.13-0.17 Tg C yr-1 (±13%)) and POC fluxes (mean = 0.36-1.52 Tg C yr-1 (±14%)) are of a similar order of magnitude to a large Arctic river system, and hence may represent an important OC source to the near-coastal North Atlantic, Greenland and Labrador seas.

  16. Dissolved Organic Matter Land-Ocean Linkages in the Arctic

    NASA Astrophysics Data System (ADS)

    Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2012-04-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in

  17. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency.

    PubMed

    Weber, Thomas; Cram, Jacob A; Leung, Shirley W; DeVries, Timothy; Deutsch, Curtis

    2016-08-02

    The "transfer efficiency" of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.

  18. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency

    PubMed Central

    Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis

    2016-01-01

    The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere−ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate. PMID:27457946

  19. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency

    NASA Astrophysics Data System (ADS)

    Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis

    2016-08-01

    The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (˜25%) at high latitudes and low (˜5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.

  20. Investigation of XoxF methanol dehydrogenases reveals new methylotrophic bacteria in pelagic marine and freshwater ecosystems.

    PubMed

    Ramachandran, Arthi; Walsh, David A

    2015-10-01

    The diversity and distribution of methylotrophic bacteria have been investigated in the oceans and lakes using the methanol dehydrogenase mxaF gene as a functional marker. However, pelagic marine (OM43) and freshwater (LD28 and PRD01a001B) methylotrophs within the Betaproteobacteria lack mxaF, instead possessing a related xoxF4-encoded methanol dehydrogenase. Here, we developed and employed xoxF4 as a complementary functional gene marker to mxaF for studying methylotrophs in aquatic environment. Using xoxF4, we detected OM43-related and LD28-related methylotrophs in the ocean and freshwaters of North America, respectively, and showed the coexistence of these two lineages in a large estuarine system (St Lawrence Estuary). Gene expression patterns of xoxF4 supported a positive relationship between xoxF4-containing methylotroph activity and spring time productivity, suggesting phytoplankton blooms are a source of methylotrophic substrates. Further investigation of methanol dehydrogenase diversity in pelagic ecosystems using comparative metagenomics provided strong support for a widespread distribution of xoxF4 (as well as several distinct xoxF5) containing methylotrophs in marine and freshwater surface waters. In total, these results demonstrate a geographical distribution of OM43/LD28-related methylotrophs that includes marine and freshwaters and suggest that methylotrophy occurring in the water column is an important component of lake and estuary carbon cycling and biogeochemistry. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Particulate export vs lateral advection in the Antarctic Polar Front (Southern Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Langone, L.; Ravaioli, M.; Capotondi, L.; Giglio, F.

    2012-04-01

    The overarching goal of our study was to describe and quantify the influence of lateral advection relative to the vertical export in the Antarctic Polar Front (Southern Pacific Ocean). In areas where lateral advection of particulate material is significant, budgets of bioactive elements can be inaccurate if fluxes through the water column and to the seabed are exclusively interpreted as passive sinking of particles. However, detailed information on the influence of lateral advection in the water column in the southern ocean is lacking. With this in mind, our study focused between the twilight zone (i.e. mesopelagic) and the benthic nepheloid layer to understand the relative importance of lateral flux with increasing water depth. Measurements were performed south of the Antarctic Polar Front for 1 year (January 10th 1999-January 3rd 2000) at 900, 1300, 2400, and 3700 m from the sea surface. The study was carried out using a 3.5 km long mooring line instrumented with sediment traps, current meters and sensors of temperature and conductivity. Sediment trap samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera taxonomy. High fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During no-productive periods, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~60 and ~90% of the material caught at 2400 and 3700 m, respectively. Samples collected during

  2. The geomicrobiology of the Greenland Ice Sheet: impact on DOC export (Invited)

    NASA Astrophysics Data System (ADS)

    Wadham, J. L.; Stibal, M.; Lawson, E. C.; Barnett, M. J.; Hasan, F.; Telling, J.; Anesio, A.; Lis, G.; Cullen, D.; Butler, C.; Tranter, M.; Nienow, P. W.

    2010-12-01

    The Greenland Ice Sheet (GrIS) is the largest mass of ice in the northern hemisphere, and contributes ~370 km3 in runoff annually to the Arctic Ocean. While recent work has highlighted runoff increases of up to 100% from the GrIS over the next century, very little is known about the associated impacts upon rates of sediment-bound and dissolved organic carbon export from the ice sheet to the coastal ocean. This is relevant given recent work that has suggested that the high proportion of labile dissolved organic carbon (DOC) present in glacial runoff may be important in sustaining the productivity of ecosystems downstream. Here we report the phylogenetic and functional diversity of micro-organisms inhabiting the surface and basal regions of the Greenland Ice Sheet (at Leverett Glacier, SW Greenland), and whose activity influences the biogeochemical composition of runoff. Real time PCR data on runoff, together with 16S-rRNA bacterial clone libraries on sediments, demonstrate a subglacial microbial community that contrasts phylogenetically and functionally with the ice sheet surface ecosystem. We envisage that large sectors of the subglacial environment are microbially active, with overridden paleosols and in-washed surface organic matter providing a carbon substrate for a range of metabolic pathways. This includes methanogenesis which proceeds at rates similar to deep ocean sediments and via a CO2/H2 pathway. These subglacial microbial communities serve to chemically modify the DOC composition of meltwater inputs from the ice sheet surface and modulate the reactivity of bulk DOC exported in runoff. Evidence for subglacial microbial influences on DOC in runoff includes elevated concentrations of dissolved carbohydrates (e.g. glucose and fructose of up to 1 μmol/L), which are preferentially exported during subglacial outburst events. We examine the temporal changes in DOC export in runoff from the ice sheet over a full melt season, and consider how changes in total

  3. The Freshwater Information Platform - an online network supporting freshwater biodiversity research and policy

    NASA Astrophysics Data System (ADS)

    Schmidt-Kloiber, Astrid; De Wever, Aaike; Bremerich, Vanessa; Strackbein, Jörg; Hering, Daniel; Jähnig, Sonja; Kiesel, Jens; Martens, Koen; Tockner, Klement

    2017-04-01

    Species distribution data is crucial for improving our understanding of biodiversity and its threats. This is especially the case for freshwater environments, which are heavily affected by the global biodiversity crisis. Currently, a huge body of freshwater biodiversity data is often difficult to access, because systematic data publishing practices have not yet been adopted by the freshwater research community. The Freshwater Information Platform (FIP; www.freshwaterplatform.eu) - initiated through the BioFresh project - aims at pooling freshwater related research information from a variety of projects and initiatives to make it easily accessible for scientists, water managers and conservationists as well as the interested public. It consists of several major components, three of which we want to specifically address: (1) The Freshwater Biodiversity Data Portal aims at mobilising freshwater biodiversity data, making them online available Datasets in the portal are described and documented in the (2) Freshwater Metadatabase and published as open access articles in the Freshwater Metadata Journal. The use of collected datasets for large-scale analyses and models is demonstrated in the (3) Global Freshwater Biodiversity Atlas that publishes interactive online maps featuring research results on freshwater biodiversity, resources, threats and conservation priorities. Here we present the main components of the FIP as tools to streamline open access freshwater data publication arguing this will improve the capacity to protect and manage freshwater biodiversity in the face of global change.

  4. Impact of river discharge on the California coastal ocean circulation and variability

    NASA Astrophysics Data System (ADS)

    Leiva, J.; Chao, Y.; Farrara, J. D.; Zhang, H.

    2016-12-01

    A real-time California coastal ocean nowcast and forecast system is used to quantify the impact of river discharge on the California coastal ocean circulation and variability. River discharge and freshwater runoff is monitored by an extensive network of stream gages maintained through the U.S. Geological Survey, that offers archived stream flow records as well as real-time datasets. Of all the rivers monitored by the USGS, 25 empty into the Pacific Ocean and contribute a potential source of runoff data. Monthly averages for the current water year yield discharge estimates as high as 6,000 cubic meters per second of additional freshwater input into our present model. Using Regional Ocean Modeling System (ROMS), we performed simulations from October 2015 to May 2016 with and without the river discharge. Results of these model simulations are compared with available observations including both in situ and satellite. Particular attention is paid to the salinity simulation. Validation is done with comparisons to sea glider data available through Oregon State University and UC San Diego, which provides depth profiles along the California coast during this time period. Additional validation is performed through comparisons with sea surface salinity measurements from the Soil Moisture and Ocean Salinity (SMOS) mission. Continued testing for previous years, e.g. between 2011 and 2015, is being made using the Aquarius sea surface salinity data. Discharge data collected by the USGS stream gages provides a necessary source of freshwater input that must be accounted for. Incorporating a new runoff source produces a more robust model that generates improved forecasts. Following validation with available sea glider and satellite data, the enhanced model can be adapted to real-time forecasting.

  5. An Intensified Arctic Water Cycle? Trend Analysis of the Arctic System Freshwater Cycle: Observations and Expectations

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.; Adam, J. C.; Vorosmarty, C. J.; Serreze, M. C.; Hinzman, L. D.; Holland, M.; Shiklomanov, A.

    2007-12-01

    It is expected that a warming climate will be attended by an intensification of the global hydrological cycle. While there are signs of positive trends in several hydrological quantities emerging at the global scale, the scope, character, and quantitative significance of these changes are not well established. In particular, long-term increases in river discharge across Arctic Eurasia are assumed to represent such an intensification and have received considerable attention. Yet, no change in long-term annual precipitation across the region can be related with the discharge trend. Given linkages and feedbacks between the arctic and global climate systems, a more complete understanding of observed changes across northern high latitudes is needed. We present a working definition of an accelerated or intensified hydrological cycle and a synthesis of long-term (nominally 50 years) trends in observed freshwater stocks and fluxes across the arctic land-atmosphere-ocean system. Trend and significance measures from observed data are described alongside expectations of intensification based on GCM simulations of contemporary and future climate. Our domain of interest includes the terrestrial arctic drainage (including all of Alaska and drainage to Hudson Bay), the Arctic Ocean, and the atmosphere over the land and ocean domains. For the terrestrial Arctic, time series of spatial averages which are derived from station data and atmospheric reanalysis are available. Reconstructed data sets are used for quantities such as Arctic Ocean ice and liquid freshwater transports. Study goals include a comprehensive survey of past changes in freshwater across the pan-arctic and a set of benchmarks for expected changes based on an ensemble of GCM simulations, and identification of potential mechanistic linkages which may be examined with contemporary remote sensing data sets.

  6. Linking the 8.2 ka Event and its Freshwater Forcing in the Labrador Sea

    NASA Technical Reports Server (NTRS)

    Hoffman, Jeremy S.; Carlson, Anders E.; Winsor, Kelsey; Klinkhammer, Gary P.; LeGrande, Allegra N.; Andrews, John T.; Strasser, C.

    2012-01-01

    The 8.2 ka event was the last deglacial abrupt climate event. A reduction in the Atlantic meridional overturning circulation (AMOC) attributed to the drainage of glacial Lake Agassiz may have caused the event, but the freshwater signature of Lake Agassiz discharge has yet to be identified in (delta)18O of foraminiferal calcite records from the Labrador Sea, calling into question the connection between freshwater discharge to the North Atlantic and AMOC strength. Using Mg/Ca-paleothermometry, we demonstrate that approx. 3 C of near-surface ocean cooling masked an 1.0 % decrease in western Labrador Sea (delta)18O of seawater concurrent with Lake Agassiz drainage. Comparison with North Atlantic (delta)18O of seawater records shows that the freshwater discharge was transported to regions of deep-water formation where it could perturb AMOC and force the 8.2 ka event.

  7. Influence of diatom diversity on the ocean biological carbon pump

    NASA Astrophysics Data System (ADS)

    Tréguer, Paul; Bowler, Chris; Moriceau, Brivaela; Dutkiewicz, Stephanie; Gehlen, Marion; Aumont, Olivier; Bittner, Lucie; Dugdale, Richard; Finkel, Zoe; Iudicone, Daniele; Jahn, Oliver; Guidi, Lionel; Lasbleiz, Marine; Leblanc, Karine; Levy, Marina; Pondaven, Philippe

    2018-01-01

    Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

  8. Three Dimensional Dynamics of Freshwater Lenses in the Oceans Near Surface Layer

    DTIC Science & Technology

    2016-09-14

    a third new front appeared…” However, this striking effect was observed only when the following con- ditions for the Froude number (Fr) and the... Coriolis forces and, strictly speaking, is valid only for the equatorial region. CONCLUSIONS Convective rains within the ITCZ pro- duce localized...freshwater plumes under the influence of both ambient stratification and wind stress and how they interact to affect plume dynam- ics. The Coriolis

  9. Quantifying and predicting historical and future patterns of carbon fluxes from the North American Continent to Ocean

    NASA Astrophysics Data System (ADS)

    Tian, H.; Zhang, B.; Xu, R.; Yang, J.; Yao, Y.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Najjar, R. G.; Friedrichs, M. A. M.; Hofmann, E. E.

    2017-12-01

    Carbon export through river channels to coastal waters is a fundamental component of the global carbon cycle. Changes in the terrestrial environment, both natural (e.g., climatic change, enriched CO2 concentration, and elevated ozone concentration) and anthropogenic (e.g, deforestation, cropland expansion, and urbanization) have greatly altered carbon production, stocks, decomposition, movement and export from land to river and ocean systems. However, the magnitude and spatiotemporal patterns of lateral carbon fluxes from land to oceans and the underlying mechanisms responsible for these fluxes remain far from certain. Here we applied a process-based land model with explicit representation of carbon processes in stream and rivers (Dynamic Land Ecosystem Model: DLEM 2.0) to examine how changes in climate, land use, atmospheric CO2, and nitrogen deposition have affected the carbon fluxes from North American continent to Ocean during 1980-2015. Our simulated results indicated that terrestrial carbon export shows substantially spatial and temporal variability. Of the five sub-regions (Arctic coast, Pacific coast, Gulf of Mexico, Atlantic coast, and Great lakes), the Arctic sub-region provides the highest DOC flux, whereas the Gulf of Mexico sub-region provided the highest DIC flux. However, terrestrial carbon export to the arctic oceans showed increasing trends for both DOC and DIC, whereas DOC and DIC export to the Gulf of Mexico decreased in the recent decades. Future pattern of riverine carbon fluxes would be largely dependent on the climate change and land use scenarios.

  10. Fluid flow enhances the effectiveness of toxin export by aquatic microorganisms: a first-passage perspective

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas; Clark, Aaron

    2014-03-01

    Aquatic microorganisms face a variety of challenges in the course of development. One central challenge is efficiently regulating the export of toxic molecules inside the developing embryo. The strategies employed should be robust with respect to the variable ocean environment and limit the chances that exported toxins are reabsorbed. In this talk we consider the first-passage problem for the uptake of exported toxins by a spherical embryo. A perturbative solution of the advection-diffusion equation reveals that a concentration boundary layer forms in the vicinity of the embryo, and that fluid flow enhances the effectiveness of toxin export. We highlight connections between the model results and recent experiments on the development of sea urchin embryos. We acknowledge financial support from the University of Michigan-Dearobrn CASL Faculty Summer Research Grant.

  11. Observations of Ocean Primary Productivity Using MODIS

    NASA Technical Reports Server (NTRS)

    Esaias, Wayne E.; Abbott, Mark R.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Measuring the magnitude and variability of oceanic net primary productivity (NPP) represents a key advancement toward our understanding of the dynamics of marine ecosystems and the role of the ocean in the global carbon cycle. MODIS observations make two new contributions in addition to continuing the bio-optical time series begun with Orbview-2's SeaWiFS sensor. First, MODIS provides weekly estimates of global ocean net primary productivity on weekly and annual time periods, and annual empirical estimates of carbon export production. Second, MODIS provides additional insight into the spatial and temporal variations in photosynthetic efficiency through the direct measurements of solar-stimulated chlorophyll fluorescence. The two different weekly productivity indexes (first developed by Behrenfeld & Falkowski and by Yoder, Ryan and Howard) are used to derive daily productivity as a function of chlorophyll biomass, incident daily surface irradiance, temperature, euphotic depth, and mixed layer depth. Comparisons between these two estimates using both SeaWiFS and MODIS data show significant model differences in spatial distribution after allowance for the different integration depths. Both estimates are strongly dependence on the accuracy of the chlorophyll determination. In addition, an empirical approach is taken on annual scales to estimate global NPP and export production. Estimates of solar stimulated fluorescence efficiency from chlorophyll have been shown to be inversely related to photosynthetic efficiency by Abbott and co-workers. MODIS provides the first global estimates of oceanic chlorophyll fluorescence, providing an important proof of concept. MODIS observations are revealing spatial patterns of fluorescence efficiency which show expected variations with phytoplankton photo-physiological parameters as measured during in-situ surveys. This has opened the way for research into utilizing this information to improve our understanding of oceanic NPP

  12. Effect of tidal fluctuations on contaminant transfer to the ocean

    USGS Publications Warehouse

    Licata, I.L.; Langevin, C.D.; Dausman, A.M.

    2007-01-01

    Variable-density groundwater flow was simulated to examine the effects that tide has on the coastward migration of a contaminant through a freshwater/saltwater interface and toward a coastal ocean boundary. Simulated ocean tides did not significantly affect the total contaminant mass input to the ocean; however, the difference in tidal and non-tidal simulated concentrations could be as much as 15%. It may be possible to numerically approximate the tidal-driven hydraulic transients in transport models that do not explicitly include tides by locally increasing dispersivity. Copyright ?? 2007 IAHS Press.

  13. Swimming in the USA: Beachgoer Characteristics and Health Outcomes at U.S. Marine and Freshwater Beaches

    EPA Science Inventory

    Swimming in lakes and oceans is popular, but tittle is known about the demographic characteristics, behaviors, and health risks of beachgoers on a national level. Data from a prospective cohort study of beachgoers at multiple marine and freshwater beaches in the USA were used to ...

  14. Freshwater Macroinvertebrates.

    ERIC Educational Resources Information Center

    Nalepa, T. F.

    1978-01-01

    Presents a literature review of freshwater biology particularly freshwater macroinvertebrates and their effect on water pollution, covering publications of 1976-77. A list of 158 references is also presented. (HM)

  15. Rising susceptibility of freshwater DOC inputs to extreme events? The implications of underlying changes in atmospheric deposition and land-management. (Invited)

    NASA Astrophysics Data System (ADS)

    Evans, C.; Monteith, D.; Jones, T.; Burden, A.; Peacock, M.; Gauci, V.; Page, S. E.; Moore, S.

    2013-12-01

    Dissolved organic carbon (DOC) represents a significant loss term within the carbon (C) balance of many terrestrial ecosystems, and a quantitatively important and reactive C input to many freshwater ecosystems. DOC concentrations have risen dramatically, over a period of decades, in rivers and lakes draining semi-natural catchments across large areas of Northern Europe and Northeast North America, with wide-ranging consequences for C cycling, aquatic ecosystem functioning and drinking water treatment. These increases have been variously attributed to climatic changes, including increased incidence of extreme events, as well as land-management factors and changes in atmospheric deposition. A growing body of evidence now indicates that the primary driver of rising DOC has been ecosystem recovery from the historic effects of acid deposition, and thus that observed increases - whilst sometimes economically problematic - may represent a return to pre-industrial baseline conditions. In light of the apparent dominance of acidity change as a driver of recent freshwater DOC increases, we consider whether or not other potential drivers of change, including climatic extremes and management-related disturbances, are likely to exert a significant influence on the transport of DOC from catchments to surface waters. We conclude that the alleviation of acidification pressures has now made catchments in regions formerly impacted by sulphur pollution much more susceptible to extreme events and disturbances. Drawing on monitoring and experimental case studies from the UK, we suggest that DOC export from organic soils may be shifting from ';solubility controlled' to ';supply controlled', and that climatic events leading to enhanced DOC production (e.g. high temperatures or drought-rewet cycles) and/or shallow lateral transport (e.g. high flow events) are now generating freshwater DOC peaks that are unprecedented in the monitoring record. We also examine the role of land-management as

  16. Antarctic Ocean Nutrient Conditions During the Last Two Glacial Cycles

    NASA Astrophysics Data System (ADS)

    Studer, A.; Sigman, D. M.; Martinez-Garcia, A.; Benz, V.; Winckler, G.; Kuhn, G.; Esper, O.; Lamy, F.; Jaccard, S.; Wacker, L.; Oleynik, S.; Gersonde, R.; Haug, G. H.

    2014-12-01

    The high concentration of the major nutrients nitrate and phosphate in the Antarctic Zone of the Southern Ocean dictates the nature of Southern Ocean ecosystems and permits these nutrients to be carried from the deep ocean into the nutrient-limited low latitudes. Incomplete nutrient consumption in the Antarctic also allows the leakage of deeply sequestered carbon dioxide (CO2) back to the atmosphere, and changes in this leakage may have driven glacial/interglacial cycles in atmospheric CO2. In a sediment core from the Pacific sector of the Antarctic Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two assemblages of diatom species. These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Measurements in the same sediment core indicate that export production was reduced during ice ages, pointing to an ice age reduction in the supply of deep ocean-sourced nitrate to the Antarctic Ocean surface. The reduced export production of peak ice ages also implies a weaker winter-to-summer decline (i.e. reduced seasonality) in mixed layer nitrate concentration, providing a plausible explanation for an observed reduction in the inter-assemblage δ15Ndb difference during these coldest times. Despite the weak summertime productivity, the reduction in wintertime nitrate supply from deep waters left the Antarctic mixed layer with a low nitrate concentration, and this wintertime change also would have reduced the outgassing of CO2. Relief of light limitation fails to explain the intermediate degree of nitrate consumption that characterizes early glacial conditions, as improved light limitation coincident with reduced nitrate supply would drive nitrate consumption to completion. Thus, the data favor iron availability as the dominant control on annual Antarctic

  17. Antarctic ice shelf potentially stabilized by export of meltwater in surface river.

    PubMed

    Bell, Robin E; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J; Zappa, Christopher J; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-19

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  18. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    NASA Technical Reports Server (NTRS)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  19. Antarctic ice shelf potentially stabilized by export of meltwater in surface river

    NASA Astrophysics Data System (ADS)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks—interconnected streams, ponds and rivers—on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf’s meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica—contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  20. Reconciliation of the carbon budget in the ocean's twilight zone.

    PubMed

    Giering, Sarah L C; Sanders, Richard; Lampitt, Richard S; Anderson, Thomas R; Tamburini, Christian; Boutrif, Mehdi; Zubkov, Mikhail V; Marsay, Chris M; Henson, Stephanie A; Saw, Kevin; Cook, Kathryn; Mayor, Daniel J

    2014-03-27

    Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink.

  1. Biodiversity and distribution of polar freshwater DNA viruses

    PubMed Central

    Aguirre de Cárcer, Daniel; López-Bueno, Alberto; Pearce, David A.; Alcamí, Antonio

    2015-01-01

    Viruses constitute the most abundant biological entities and a large reservoir of genetic diversity on Earth. Despite the recent surge in their study, our knowledge on their actual biodiversity and distribution remains sparse. We report the first metagenomic analysis of Arctic freshwater viral DNA communities and a comparative analysis with other freshwater environments. Arctic viromes are dominated by unknown and single-stranded DNA viruses with no close relatives in the database. These unique viral DNA communities mostly relate to each other and present some minor genetic overlap with other environments studied, including an Arctic Ocean virome. Despite common environmental conditions in polar ecosystems, the Arctic and Antarctic DNA viromes differ at the fine-grain genetic level while sharing a similar taxonomic composition. The study uncovers some viral lineages with a bipolar distribution, suggesting a global dispersal capacity for viruses, and seemingly indicates that viruses do not follow the latitudinal diversity gradient known for macroorganisms. Our study sheds light into the global biogeography and connectivity of viral communities. PMID:26601189

  2. Arctic Freshwater Synthesis: Summary of key emerging issues

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.; Holland, M.; Instanes, A.; Vihma, T.; Wrona, F. J.

    2015-10-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason behind the joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. The AFSΣ was structured around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources, and modeling, the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ summary manuscript reviews key issues that emerged during the conduct of the synthesis, especially those that are cross-thematic in nature, and identifies future research required to address such issues.

  3. Interannual and Decadal Changes in Salinity in the Oceanic Subtropical Gyres

    NASA Astrophysics Data System (ADS)

    Bulusu, Subrahmanyam

    2017-04-01

    There is evidence that the global water cycle has been undergoing an intensification over several decades as a response to increasing atmospheric temperatures, particularly in regions with skewed evaporation - precipitation (E-P) patterns such as the oceanic subtropical gyres. Moreover, observational data (rain gauges, etc.) are quite sparse over such areas due to the inaccessibility of open ocean regions. In this work, a comparison of observational and model simulations are conducted to highlight the potential applications of satellite derived salinity from NASA Aquarius Salinity mission, NASA Soil Moisture and Ocean Salinity (SMOS), and ESA's Soil Moisture Active Passive (SMAP). We explored spatial and temporal salinity changes (and trends) in surface and subsurface in the oceanic subtropical gyres using Argo floats salinity data, Simple Ocean Data Assimilation (SODA) reanalysis, Estimating the Circulations & Climate of the Ocean GECCO (German ECCO) model simulations, and Hybrid Coordinate Ocean Model (HYCOM). Our results based on SODA reanalysis reveals that a positive rising trend in sea surface salinity in the subtropical gyres emphasizing evidence for decadal intensification in the surface forcing in these regions. Zonal drift in the location of the salinity maximum of the south Pacific, north Atlantic, and south Indian regions implies a change in the mean near-surface currents responsible for advecting high salinity waters into the region. Also we found out that an overall salinity increase within the mixed layer, and a subsurface salinity decrease at depths greater than 200m in the global subtropical gyres over 61 years. We determine that freshwater fluxes at the air-sea interface are the primary drivers of the sea surface salinity (SSS) signature over these open ocean regions by quantifying the advective contribution within the surface layer. This was demonstrated through a mixed layer salinity budget in each subtropical gyre based on the vertically

  4. Enhanced open ocean storage of CO2 from shelf sea pumping.

    PubMed

    Thomas, Helmuth; Bozec, Yann; Elkalay, Khalid; de Baar, Hein J W

    2004-05-14

    Seasonal field observations show that the North Sea, a Northern European shelf sea, is highly efficient in pumping carbon dioxide from the atmosphere to the North Atlantic Ocean. The bottom topography-controlled stratification separates production and respiration processes in the North Sea, causing a carbon dioxide increase in the subsurface layer that is ultimately exported to the North Atlantic Ocean. Globally extrapolated, the net uptake of carbon dioxide by coastal and marginal seas is about 20% of the world ocean's uptake of anthropogenic carbon dioxide, thus enhancing substantially the open ocean carbon dioxide storage.

  5. Increased nitrogen export from eastern North America to the Atlantic Ocean due to climatic and anthropogenic changes during 1901-2008

    NASA Astrophysics Data System (ADS)

    Yang, Qichun; Tian, Hanqin; Friedrichs, Marjorie A. M.; Hopkinson, Charles S.; Lu, Chaoqun; Najjar, Raymond G.

    2015-06-01

    We used a process-based land model, Dynamic Land Ecosystem Model 2.0, to examine how climatic and anthropogenic changes affected riverine fluxes of ammonium (NH4+), nitrate (NO3-), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) from eastern North America, especially the drainage areas of the Gulf of Maine (GOM), Mid-Atlantic Bight (MAB), and South Atlantic Bight (SAB) during 1901-2008. Model simulations indicated that annual fluxes of NH4+, NO3-, DON, and PON from the study area during 1980-2008 were 0.019 ± 0.003 (mean ± 1 standard deviation) Tg N yr-1, 0.18 ± 0.035 Tg N yr-1, 0.10 ± 0.016 Tg N yr-1, and 0.043 ± 0.008 Tg N yr-1, respectively. NH4+, NO3-, and DON exports increased while PON export decreased from 1901 to 2008. Nitrogen export demonstrated substantial spatial variability across the study area. Increased NH4+ export mainly occurred around major cities in the MAB. NO3- export increased in most parts of the MAB but decreased in parts of the GOM. Enhanced DON export was mainly distributed in the GOM and the SAB. PON export increased in coastal areas of the SAB and northern parts of the GOM but decreased in the Piedmont areas and the eastern parts of the MAB. Climate was the primary reason for interannual variability in nitrogen export; fertilizer use and nitrogen deposition tended to enhance the export of all nitrogen species; livestock farming and sewage discharge were also responsible for the increases in NH4+ and NO3- fluxes; and land cover change (especially reforestation of former agricultural land) reduced the export of the four nitrogen species.

  6. Southern Ocean vertical iron fluxes; the ocean model effect

    NASA Astrophysics Data System (ADS)

    Schourup-Kristensen, V.; Haucke, J.; Losch, M. J.; Wolf-Gladrow, D.; Voelker, C. D.

    2016-02-01

    The Southern Ocean plays a key role in the climate system, but commonly used large-scale ocean general circulation biogeochemical models give different estimates of current and future Southern Ocean net primary and export production. The representation of the Southern Ocean iron sources plays an important role for the modeled biogeochemistry. Studies of the iron supply to the surface mixed layer have traditionally focused on the aeolian and sediment contributions, but recent work has highlighted the importance of the vertical supply from below. We have performed a model study in which the biogeochemical model REcoM2 was coupled to two different ocean models, the Finite Element Sea-ice Ocean Model (FESOM) and the MIT general circulation model (MITgcm) and analyzed the magnitude of the iron sources to the surface mixed layer from below in the two models. Our results revealed a remarkable difference in terms of mechanism and magnitude of transport. The mean iron supply from below in the Southern Ocean was on average four times higher in MITgcm than in FESOM and the dominant pathway was entrainment in MITgcm, whereas diffusion dominated in FESOM. Differences in the depth and seasonal amplitude of the mixed layer between the models affect on the vertical iron profile, the relative position of the base of the mixed layer and ferricline and thereby also on the iron fluxes. These differences contribute to differences in the phytoplankton composition in the two models, as well as in the timing of the onset of the spring bloom. The study shows that the choice of ocean model has a significant impact on the iron supply to the Southern Ocean mixed layer and thus on the modeled carbon cycle, with possible implications for model runs predicting the future carbon uptake in the region.

  7. Reengineering ribosome export.

    PubMed

    Lo, Kai-Yin; Johnson, Arlen W

    2009-03-01

    Large cargoes require multiple receptors for efficient transport through the nuclear pore complex. The 60S ribosomal subunit is one of the bulkiest transport cargoes, and in yeast three different receptors, Crm1, Mex67/Mtr2, and Arx1, collaborate in its export. However, only Crm1, recruited by the adapter Nmd3, appears to be conserved for 60S export in higher eukaryotes. We asked if export of the large subunit requires specific receptors. We made protein fusions between mutant Nmd3 and various export receptors. Surprisingly, fusions of Mex67, the tRNA exportin Los1, Mtr2, Cse1, or Msn5 to Nmd3, lacking its Crm1-dependent nuclear export signal (NES), all functioned in export. Furthermore, these chimeric proteins supported 60S export even in the presence of the Crm1 inhibitor leptomycin B, indicating that export was now independent of Crm1. These results suggest that there is not a requirement for a specific export receptor for the large subunit, as recruitment of any receptor will suffice. Finally we show that the addition of an NES directly to the 60S ribosomal subunit protein Rpl3 promotes export. These results imply remarkable flexibility in the export pathway for the 60S subunit and help explain how different export receptors could have evolved in different eukaryotic lineages.

  8. Reengineering Ribosome Export

    PubMed Central

    Lo, Kai-Yin

    2009-01-01

    Large cargoes require multiple receptors for efficient transport through the nuclear pore complex. The 60S ribosomal subunit is one of the bulkiest transport cargoes, and in yeast three different receptors, Crm1, Mex67/Mtr2, and Arx1, collaborate in its export. However, only Crm1, recruited by the adapter Nmd3, appears to be conserved for 60S export in higher eukaryotes. We asked if export of the large subunit requires specific receptors. We made protein fusions between mutant Nmd3 and various export receptors. Surprisingly, fusions of Mex67, the tRNA exportin Los1, Mtr2, Cse1, or Msn5 to Nmd3, lacking its Crm1-dependent nuclear export signal (NES), all functioned in export. Furthermore, these chimeric proteins supported 60S export even in the presence of the Crm1 inhibitor leptomycin B, indicating that export was now independent of Crm1. These results suggest that there is not a requirement for a specific export receptor for the large subunit, as recruitment of any receptor will suffice. Finally we show that the addition of an NES directly to the 60S ribosomal subunit protein Rpl3 promotes export. These results imply remarkable flexibility in the export pathway for the 60S subunit and help explain how different export receptors could have evolved in different eukaryotic lineages. PMID:19144820

  9. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; van den Broeke, M. R.

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.

  10. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    PubMed Central

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; van den Broeke, M. R.; Ribergaard, Mads H.; Mortensen, John

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening. PMID:26796579

  11. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation.

    PubMed

    Yang, Qian; Dixon, Timothy H; Myers, Paul G; Bonin, Jennifer; Chambers, Don; van den Broeke, M R

    2016-01-22

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.

  12. Regional hydroclimate response to freshwater fluxes from the Fennoscandian Ice Sheet during the Last Termination

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Schmitz, M. D.; Condon, D. J.; Zhu, M.; Rooney, A. D.; Brandon, A. D.

    2014-12-01

    Resolving the effects of freshwater forcing during the last glacial-interglacial transition, the Last Termination, is critical to our comprehension of rapid climate change. In particular, the role of Fennoscandian Ice Sheet (FIS) and freshwater from the eastern seaboard of the North Atlantic has been entirely disregarded in the context of the abrupt regional hydroclimate shifts that characterized this period. Here we infer freshwater input variations from the FIS to the Nordic Seas based on two accurately dated hydroclimate reconstructions from lake sediment records from Southern Sweden and one SST reconstruction from the Nordic Seas. The records indicate a number of abrupt freshwater discharges into the Nordic Seas at the start of the Bølling interstadial and during the Allerød interstadial. We observe that these intervals of enhanced FIS freshwater outflow correspond to different modalities of hydroclimate regime shifts in Greenland. Using a set of climate model simulations, we show that the dominant Greenland hydroclimate state can be influenced by the degree of FIS freshwater recirculation in the Nordic Seas, which redirects the excess of sea ice partitioned into the Barents Sea towards the eastern Greenland Current. The tradeoff between buildup and recirculation of sea ice in the Nordic Seas generate large-scale sea-level pressure anomalies that may explain the sign and magnitude of the isotopic and temperature changes inferred from Greenland and North European reconstructions. We conclude that air-sea interactions in the North Atlantic are more sensitive to Fennoscandian freshwater forcing than previously thought. These results could help to solve the problematic relationship between origin, timing and magnitude of freshwater perturbations and abrupt deglacial changes in North Atlantic Ocean circulation in numerical simulations.

  13. Life on the edge: carbon fluxes from wetland to ocean along Alaska's coastal temperate rain forest

    Treesearch

    Rhonda Mazza; Richard Edwards; David D' Amore

    2010-01-01

    Acre for acre, streams of the coastal temperate rain forest along the Gulf of Alaska export 36 times as much dissolved organic carbon as the world average. Rain and snow are the great connectors, tightly linking aquatic and terrestrial systems of this region. The freshwater that flushes over and through the forest floor leaches carbon...

  14. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  15. Century-long increasing trend and variability of dissolved organic carbon export from the Mississippi River basin driven by natural and anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Tian, Hanqin; Cai, Wei-Jun; Lohrenz, Steven E.; Hopkinson, Charles S.; Huang, Wei-Jen; Yang, Jia; Tao, Bo; Pan, Shufen; He, Ruoying

    2016-09-01

    There has been considerable debate as to how natural forcing and anthropogenic activities alter the timing and magnitude of the delivery of dissolved organic carbon (DOC) to the coastal ocean, which has ramifications for the ocean carbon budget, land-ocean interactions, and coastal life. Here we present an analysis of DOC export from the Mississippi River to the Gulf of Mexico during 1901-2010 as influenced by changes in climate, land use and management practices, atmospheric CO2, and nitrogen deposition, through the integration of observational data with a coupled hydrologic/biogeochemical land model. Model simulations show that DOC export in the 2000s increased more than 40% since the 1900s. For the recent three decades (1981-2010), however, our simulated DOC export did not show a significant increasing trend, which is consistent with observations by U.S. Geological Survey. Our factorial analyses suggest that land use and land cover change, including land management practices (LMPs: i.e., fertilization, irrigation, tillage, etc.), were the dominant contributors to the century-scale trend of rising total riverine DOC export, followed by changes in atmospheric CO2, nitrogen deposition, and climate. Decadal and interannual variations of DOC export were largely attributed to year-to-year climatic variability and extreme flooding events, which have been exacerbated by human activity. LMPs show incremental contributions to DOC increase since the 1960s, indicating the importance of sustainable agricultural practices in coping with future environmental changes such as extreme flooding events. Compared to the observational-based estimate, the modeled DOC export was 20% higher, while DOC concentrations were slightly lower. Further refinements in model structure and input data sets should enable reductions in uncertainties in our prediction of century-long trends in DOC.

  16. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    NASA Astrophysics Data System (ADS)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven

  17. The Indian Ocean as a Connector

    NASA Astrophysics Data System (ADS)

    Durgadoo, J. V.; Biastoch, A.; Boning, C. W.

    2016-02-01

    The Indian Ocean is a conduit for the upper ocean flow of the global thermohaline circulation. It receives water from the Pacific Ocean through the Indonesian throughflow and the Tasman leakage, and exports water into the Atlantic by means of Agulhas leakage. A small contribution from the northern Indian Ocean is also detectable within Agulhas leakage. Changes on different timescales in the various components of the Pacific inflows and the Atlantic outflow have been reported. Little is known on the role of the Indian Ocean circulation in communicating changes from the Pacific into the Atlantic, let alone any eventual alterations in response to climate change. The precise routes and timescales of Indonesian throughflow, Tasman leakage, Red Sea and Persian Gulf Waters towards the Atlantic are examined in a Lagrangian framework within a high-resolution global ocean model. In this presentation, the following questions are addressed: How are Pacific waters modified in the Indian Ocean before reaching the Agulhas system? On what timescale is water that enters the Indian Ocean from the Pacific flushed out? How important are detours in the Bay of Bengal and Arabian Sea?

  18. Particle export fluxes to the oxygen minimum zone of the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Engel, Anja; Wagner, Hannes; Le Moigne, Frédéric A. C.; Wilson, Samuel T.

    2017-04-01

    In the ocean, sinking of particulate organic matter (POM) drives carbon export from the euphotic zone and supplies nutrition to mesopelagic communities, the feeding and degradation activities of which in turn lead to export flux attenuation. Oxygen (O2) minimum zones (OMZs) with suboxic water layers (< 5 µmol O2 kg-1) show a lower carbon flux attenuation compared to well-oxygenated waters (> 100 µmol O2 kg-1), supposedly due to reduced heterotrophic activity. This study focuses on sinking particle fluxes through hypoxic mesopelagic waters (< 60 µmol O2 kg-1); these represent ˜ 100 times more ocean volume globally compared to suboxic waters, but they have less been studied. Particle export fluxes and attenuation coefficients were determined in the eastern tropical North Atlantic (ETNA) using two surface-tethered drifting sediment trap arrays with seven trapping depths located between 100 and 600 m. Data on particulate matter fluxes were fitted to the normalized power function Fz = F100 (z/100)-b, with F100 being the flux at a depth (z) of 100 m and b being the attenuation coefficient. Higher b values suggest stronger flux attenuation and are influenced by factors such as faster degradation at higher temperatures. In this study, b values of organic carbon fluxes varied between 0.74 and 0.80 and were in the intermediate range of previous reports, but lower than expected from seawater temperatures within the upper 500 m. During this study, highest b values were determined for fluxes of particulate hydrolyzable amino acids (PHAA), followed by particulate organic phosphorus (POP), nitrogen (PN), carbon (POC), chlorophyll a (Chl a) and transparent exopolymer particles (TEP), pointing to a sequential degradation of organic matter components during sinking. Our study suggests that in addition to O2 concentration, organic matter composition co-determines transfer efficiency through the mesopelagic. The magnitude of future carbon export fluxes may therefore also depend on

  19. Protein export through the bacterial flagellar type III export pathway.

    PubMed

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. © 2013 Elsevier B.V. All rights reserved.

  20. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model

    NASA Astrophysics Data System (ADS)

    Jungclaus, J. H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Mikolajewicz, U.; Notz, D.; von Storch, J. S.

    2013-06-01

    MPI-ESM is a new version of the global Earth system model developed at the Max Planck Institute for Meteorology. This paper describes the ocean state and circulation as well as basic aspects of variability in simulations contributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The performance of the ocean/sea-ice model MPIOM, coupled to a new version of the atmosphere model ECHAM6 and modules for land surface and ocean biogeochemistry, is assessed for two model versions with different grid resolution in the ocean. The low-resolution configuration has a nominal resolution of 1.5°, whereas the higher resolution version features a quasiuniform, eddy-permitting global resolution of 0.4°. The paper focuses on important oceanic features, such as surface temperature and salinity, water mass distribution, large-scale circulation, and heat and freshwater transports. In general, these integral quantities are simulated well in comparison with observational estimates, and improvements in comparison with the predecessor system are documented; for example, for tropical variability and sea ice representation. Introducing an eddy-permitting grid configuration in the ocean leads to improvements, in particular, in the representation of interior water mass properties in the Atlantic and in the representation of important ocean currents, such as the Agulhas and Equatorial current systems. In general, however, there are more similarities than differences between the two grid configurations, and several shortcomings, known from earlier versions of the coupled model, prevail.

  1. Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index.

    PubMed

    Vollmer, Derek; Shaad, Kashif; Souter, Nicholas J; Farrell, Tracy; Dudgeon, David; Sullivan, Caroline A; Fauconnier, Isabelle; MacDonald, Glen M; McCartney, Matthew P; Power, Alison G; McNally, Amy; Andelman, Sandy J; Capon, Timothy; Devineni, Naresh; Apirumanekul, Chusit; Ng, Cho Nam; Rebecca Shaw, M; Wang, Raymond Yu; Lai, Chengguang; Wang, Zhaoli; Regan, Helen M

    2018-06-15

    Degradation of freshwater ecosystems and the services they provide is a primary cause of increasing water insecurity, raising the need for integrated solutions to freshwater management. While methods for characterizing the multi-faceted challenges of managing freshwater ecosystems abound, they tend to emphasize either social or ecological dimensions and fall short of being truly integrative. This paper suggests that management for sustainability of freshwater systems needs to consider the linkages between human water uses, freshwater ecosystems and governance. We present a conceptualization of freshwater resources as part of an integrated social-ecological system and propose a set of corresponding indicators to monitor freshwater ecosystem health and to highlight priorities for management. We demonstrate an application of this new framework -the Freshwater Health Index (FHI) - in the Dongjiang River Basin in southern China, where stakeholders are addressing multiple and conflicting freshwater demands. By combining empirical and modeled datasets with surveys to gauge stakeholders' preferences and elicit expert information about governance mechanisms, the FHI helps stakeholders understand the status of freshwater ecosystems in their basin, how ecosystems are being manipulated to enhance or decrease water-related services, and how well the existing water resource management regime is equipped to govern these dynamics over time. This framework helps to operationalize a truly integrated approach to water resource management by recognizing the interplay between governance, stakeholders, freshwater ecosystems and the services they provide. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater

    NASA Astrophysics Data System (ADS)

    Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.

    2014-11-01

    The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude-salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an

  3. Geochemistry and Flux of Terrigenous Dissolved Organic Matter to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Mann, P. J.; Hernes, P. J.; Tank, S. E.; Striegl, R. G.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2011-12-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC) and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is of key importance for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric dissolved organic matter (CDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.

  4. Pan-Arctic distributions of continental runoff in the Arctic Ocean

    PubMed Central

    Fichot, Cédric G.; Kaiser, Karl; Hooker, Stanford B.; Amon, Rainer M. W.; Babin, Marcel; Bélanger, Simon; Walker, Sally A.; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region. PMID:23316278

  5. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    PubMed

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  6. Understanding the linkages between a tidal freshwater forested wetland and an adjoining bottomland hardwood forest

    Treesearch

    Brooke Czwartacki; Carl C. Trettin; Timothy J. Callahan

    2016-01-01

    The low-gradient coastal topography of the southeastern Atlantic Coastal Plain, coupled with large oceanic tidal amplitudes cause rivers that discharge to the coast to exhibit tidal influence of tides far inland. In those reaches, tidal-freshwater forested wetlands (TFFW) occupy floodplains which eventually transition to non-tidal, bottomland hardwood-forested ...

  7. Potential Increasing Dominance of Heterotrophy in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Kvale, K.; Meissner, K. J.; Keller, D. P.

    2016-02-01

    Autotrophs are largely limited by resources in the modern ocean. However, standard metabolic theory suggests continued ocean warming could globally benefit heterotrophs, thereby reducing autotrophic nutrient limitation. The paleo record as well as modern observations offer evidence this has happened in the past and could happen again. Increasing dominance of heterotrophs would result in strong nutrient recycling in the upper ocean and high rates of net primary production (NPP), yet low carbon export to the deep ocean and sediments. We describe the transition towards such a state in the early 22nd century as a response to business-as-usual Representative Concentration Pathway forcing (RCP8.5) in an intermediate complexity Earth system model in three configurations: with and without an explicit calcifier phytoplankton class and calcite ballast model. In all models nutrient regeneration in the near surface becomes an increasingly important driver of primary production. The near-linear relationship between changes in NPP and global sea surface temperature (SST) found over the 21st century becomes exponential above a 2-4 °C global mean SST change. This transition to a more heterotrophic ocean agrees roughly with metabolic theory. Inclusion of small phytoplankton and calcifiers increase the model NPP:SST sensitivity because of their relatively higher nutrient affinity than general phytoplankton. Accounting for organic carbon "protected" from remineralization by carbonate ballast mitigates the exponential increase in NPP and provides an increasingly important pathway for deep carbon export with higher SST changes, despite simultaneous increasing carbonate dissolution rates due to ocean acidification.

  8. Fifty Years of Water Cycle Change expressed in Ocean Salinity

    NASA Astrophysics Data System (ADS)

    Durack, P. J.; Wijffels, S.

    2010-12-01

    Using over 1.6 million profiles of salinity, potential temperature and density from historical archives and Argo, we derive the global field of linear change for ocean state properties over the period 1950-2008, taking care to minimise aliasing associated with seasonal and El Nino Southern Oscillation modes. We find large, robust and spatially coherent multi-decadal linear trends in ocean surface salinities. Increases are found in evaporation-dominated regions and freshening in precipitation-dominated regions. The spatial patterns of surface change strongly resemble the climatological mean surface salinity field, consistent with an amplification of the global water cycle. A robust amplification of the mean salinity pattern of 8% (to 200m depth) is found globally and 5-9% is found in each of the 3 key ocean basins. 20th century runs from the CMIP3 model suite support the relationship between amplified patterns of freshwater flux driving an amplified pattern of ocean surface salinity only in models that warm substantially. Models with volcanic aerosols show a diminished warming response and a corresponding weak response in ocean surface salinity change, which implies dampened changes to the global water cycle. The warming response represented in realistic (when compared to observations) 20th century simulations appear quite similar in their broad zonal patterns to those of the projected 21st century simulations, these projected runs being strongly forced by greenhouse gases. This pattern amplification is mostly absent from 20th century simulations which include volcanic forcing. While we confirm that global mean precipitation only weakly change with surface warming (2-3% K-1), the pattern amplification rate in both the freshwater flux and ocean salinity fields indicate larger responses. Our new observed salinity estimates suggest a change of between 8-16% K-1, close to, or greater than, the theoretical response described by the Clausius-Clapeyron relation. The

  9. Development of upwelling on pathway and freshwater transport of Pearl River plume in northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoyun; Jiang, Yuwu; Liu, James T.; Gong, Wenping

    2017-08-01

    In situ observations, satellite images, and numerical modeling results have shown that the Pearl River plume axis extends alongshore and passes through two separate upwelling regions—one off the Guangdong and Fujian coasts (the Yuedong upwelling) and the other in the Taiwan Bank during the initial and medium stages of the Yuedong upwelling, while it is directed offshore when the Yuedong upwelling is strong. Model experiments are conducted to examine the effects of wind strength and baroclinicity on the upwelling and the corresponding pathway and freshwater transport of the Pearl River plume. The baroclinic effect is important to intensifying the horizontal velocity at the upwelling front and freshwater transport in the northeastern South China Sea. The freshwater transport flux is further decomposed into advection, vertical shear, and tidal pumping components, and advection is the dominant contributor. As the Yuedong upwelling develops, the zone with a relatively high-pressure gradient moves offshore due to offshore Ekman transport and the shift in the upwelling front, which is responsible for the offshore transport of the river plume. When the river plume is transported to the outer-shelf, sometimes it can be further entrained into eddies, allowing its export to the open sea.

  10. Turbulent properties of oceanic near-surface stable boundary layers subject to wind, fresh water, and thermal forcing.

    NASA Astrophysics Data System (ADS)

    St. Laurent, Louis; Clayson, Carol Anne

    2015-04-01

    The near-surface oceanic boundary layer is generally regarded as convectively unstable due to the effects of wind, evaporation, and cooling. However, stable conditions also occur often, when rain or low-winds and diurnal warming provide buoyancy to a thin surface layer. These conditions are prevalent in the tropical and subtropical latitude bands, and are underrepresented in model simulations. Here, we evaluate cases of oceanic stable boundary layers and their turbulent processes using a combination of measurements and process modeling. We focus on the temperature, salinity and density changes with depth from the surface to the upper thermocline, subject to the influence of turbulent processes causing mixing. The stabilizing effects of freshwater from rain as contrasted to conditions of high solar radiation and low winds will be shown, with observations providing surprising new insights into upper ocean mixing in these regimes. Previous observations of freshwater lenses have demonstrated a maximum of dissipation near the bottom of the stable layer; our observations provide a first demonstration of a similar maximum near the bottom of the solar heating-induced stable layer and a fresh-water induced barrier layer. Examples are drawn from recent studies in the tropical Atlantic and Indian oceans, where ocean gliders equipped with microstructure sensors were used to measure high resolution hydrographic properties and turbulence levels. The limitations of current mixing models will be demonstrated. Our findings suggest that parameterizations of near-surface mixing rates during stable stratification and low-wind conditions require considerable revision, in the direction of larger diffusivities.

  11. Atmospheric nitrate export in streams along a montane to urban gradient.

    PubMed

    Bourgeois, Ilann; Savarino, Joel; Némery, Julien; Caillon, Nicolas; Albertin, Sarah; Delbart, Franck; Voisin, Didier; Clément, Jean-Christophe

    2018-08-15

    Nitrogen (N) emissions associated with urbanization exacerbate the atmospheric N influx to remote ecosystems - like mountains -, leading to well-documented detrimental effects on ecosystems (e.g., soil acidification, pollution of freshwaters). Here, the importance and fate of N deposition in a watershed was evaluated along a montane to urban gradient, using a multi-isotopic tracers approach (Δ 17 O, δ 15 N, δ 18 O of nitrate, δ 2 H and δ 18 O of water). In this setting, the montane streams had higher proportions of atmospheric nitrate compared to urban streams, and exported more atmospheric nitrate on a yearly basis (0.35 vs 0.10 kg-Nha -1 yr -1 ). In urban areas, nitrate exports were driven by groundwater, whereas in the catchment head nitrate exports were dominated by surface runoff. The main sources of nitrate to the montane streams were microbial nitrification and atmospheric deposition, whereas microbial nitrification and sewage leakage contributed most to urban streams. Based on the measurement of δ 15 N and δ 18 O-NO 3 - , biological processes such as denitrification or N assimilation were not predominant in any streams in this study. The observed low δ 15 N and δ 18 O range of terrestrial nitrate (i.e., nitrate not coming from atmospheric deposition) in surface water compared to literature suggests that atmospheric deposition may be underestimated as a direct source of N. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria

    PubMed Central

    Bauersachs, Thorsten; Speelman, Eveline N.; Hopmans, Ellen C.; Reichart, Gert-Jan; Schouten, Stefan; Damsté, Jaap S. Sinninghe

    2010-01-01

    N2-fixing cyanobacteria play an essential role in sustaining primary productivity in contemporary oceans and freshwater systems. However, the significance of N2-fixing cyanobacteria in past nitrogen cycling is difficult to establish as their preservation potential is relatively poor and specific biological markers are presently lacking. Heterocystous N2-fixing cyanobacteria synthesize unique long-chain glycolipids in the cell envelope covering the heterocyst cell to protect the oxygen-sensitive nitrogenase enzyme. We found that these heterocyst glycolipids are remarkably well preserved in (ancient) lacustrine and marine sediments, unambiguously indicating the (past) presence of N2-fixing heterocystous cyanobacteria. Analysis of Pleistocene sediments of the eastern Mediterranean Sea showed that heterocystous cyanobacteria, likely as epiphytes in symbiosis with planktonic diatoms, were particularly abundant during deposition of sapropels. Eocene Arctic Ocean sediments deposited at a time of large Azolla blooms contained glycolipids typical for heterocystous cyanobacteria presently living in symbiosis with the freshwater fern Azolla, indicating that this symbiosis already existed in that time. Our study thus suggests that heterocystous cyanobacteria played a major role in adding “new” fixed nitrogen to surface waters in past stratified oceans. PMID:20966349

  13. Meltwater Pathways and Iron Delivery to the Antarctic Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Null, K. A.; Corbett, D. R.; Crenshaw, J.; Peterson, R. N.; Peterson, L.; Buck, C. S.; Lyons, W. B.

    2016-02-01

    Freshwater inputs to the Antarctic coastal ocean can occur through multiple pathways including calving, streams, and groundwater discharge. The impacts of submarine groundwater discharge on polar ecosystems are generally poorly understood and, until recently, had not been considered as an important physical process along the coast of the Antarctic continent. Here, we present a study utilizing multiple tracers (radium, radon, and stable water isotopes) to quantify freshwater inputs and chemical constituent fluxes associated with multiple discharge pathways, including submarine groundwater discharge, along the Western Antarctic Peninsula. Previous research has shown that primary production in iron-limited waters offshore of the Antarctic Peninsula is fueled in part by continentally-derived sediments, and our work demonstrates that subglacial/submarine groundwater discharge (SSGD) to continental shelf waters in the region is also an important source of dissolved iron (6.4 Gg yr-1; dFe). For reference, this flux equates to approximately 25 times the iron flux from calving in the study area. SSGD also contributed a significantly higher macronutrient flux than calving, although calving contributed more than twice as much freshwater. Thus, SSGD is likely a much more important source of macronutrients and dFe to the nearshore coastal ocean along the Western Antarctic Peninsula, and potentially to the continental shelf and offshore waters of the entire continent than previously recognized. If we assume similar discharge rates along the entire Antarctic coastline ( 45,000 km), the delivery of dFe via SSGD ( 216 Gg yr-1) is comparable to the other fluxes of Fe to the Southern Ocean via dust, icebergs, and glacial runoff from the Antarctic Ice Sheet, and should be considered in future geochemical budgets.

  14. Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets.

    PubMed

    Feng, Yang; Friedrichs, Marjorie A M; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E; Wiggert, Jerry D; Hood, Raleigh R

    2015-08-01

    The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 10 9  g N yr -1 ) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 10 9  g N yr -1 ) and buried (46 × 10 9  g N yr -1 ) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 10 9  g N yr -1 ) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.

  15. Chesapeake Bay nitrogen fluxes derived from a land‐estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets

    PubMed Central

    Friedrichs, Marjorie A. M.; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E.; Wiggert, Jerry D.; Hood, Raleigh R.

    2015-01-01

    Abstract The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land‐estuarine‐ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within‐estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite‐derived data, and a simulation using environmental conditions for 2001–2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr−1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr−1) and buried (46 × 109 g N yr−1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr−1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50–60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf. PMID:27668137

  16. Arctic Sea Ice Export Through Fram Strait and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Koblinsky, Chester (Technical Monitor)

    2001-01-01

    A link is found between the variability of Arctic sea ice export through Ram Strait and the phase of the longest atmospheric planetary wave (zonal wave 1) in SLP for the period 1958-1997. Previous studies have identified a link between From Strait ice export and the North Atlantic Oscillation (NAO), but this link has been described as unstable because of a lack of consistency over time scales longer than the last two decades. Inconsistent and low correlations are also found between From Strait ice export and the Arctic Oscillation (AD) index. This paper shows that the phase of zonal wave 1 explains 60% - 70% of the simulated From Strait ice export variance over the Goodyear period 1958 - 1997. Unlike the NAB and AD links, these high variances are consistent for both the first and second halves of the Goodyear period. This consistency is attributed to the sensitivity of the wave I phase at high latitudes to the presence of secondary low pressure systems in the Barents Sea that serve to drive sea ice southward through From Strait. These results provide further evidence that the phase of zonal wave 1 in SLP at high latitudes drives regional as well as hemispheric low frequency Arctic Ocean and sea ice variability.

  17. Forests fuel fish growth in freshwater deltas

    PubMed Central

    Tanentzap, Andrew J.; Szkokan-Emilson, Erik J.; Kielstra, Brian W.; Arts, Michael T.; Yan, Norman D.; Gunn, John M.

    2014-01-01

    Aquatic ecosystems are fuelled by biogeochemical inputs from surrounding lands and within-lake primary production. Disturbances that change these inputs may affect how aquatic ecosystems function and deliver services vital to humans. Here we test, using a forest cover gradient across eight separate catchments, whether disturbances that remove terrestrial biomass lower organic matter inputs into freshwater lakes, thereby reducing food web productivity. We focus on deltas formed at the stream-lake interface where terrestrial-derived particulate material is deposited. We find that organic matter export increases from more forested catchments, enhancing bacterial biomass. This transfers energy upwards through communities of heavier zooplankton, leading to a fourfold increase in weights of planktivorous young-of-the-year fish. At least 34% of fish biomass is supported by terrestrial primary production, increasing to 66% with greater forest cover. Habitat tracers confirm fish were closely associated with individual catchments, demonstrating that watershed protection and restoration increase biomass in critical life-stages of fish. PMID:24915965

  18. ExportAid: database of RNA elements regulating nuclear RNA export in mammals.

    PubMed

    Giulietti, Matteo; Milantoni, Sara Armida; Armeni, Tatiana; Principato, Giovanni; Piva, Francesco

    2015-01-15

    Regulation of nuclear mRNA export or retention is carried out by RNA elements but the mechanism is not yet well understood. To understand the mRNA export process, it is important to collect all the involved RNA elements and their trans-acting factors. By hand-curated literature screening we collected, in ExportAid database, experimentally assessed data about RNA elements regulating nuclear export or retention of endogenous, heterologous or artificial RNAs in mammalian cells. This database could help to understand the RNA export language and to study the possible export efficiency alterations owing to mutations or polymorphisms. Currently, ExportAid stores 235 and 96 RNA elements, respectively, increasing and decreasing export efficiency, and 98 neutral assessed sequences. Freely accessible without registration at http://www.introni.it/ExportAid/ExportAid.html. Database and web interface are implemented in Perl, MySQL, Apache and JavaScript with all major browsers supported. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium

    NASA Astrophysics Data System (ADS)

    Van Damme, Stefan; Frank, Dehairs; Micky, Tackx; Olivier, Beauchard; Eric, Struyf; Britta, Gribsholt; Oswald, Van Cleemput; Patrick, Meire

    2009-11-01

    Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a freshwater tidal marsh along the Scheldt estuary (Belgium), covering oxygen, nutrients (N, P and Si), carbon, chlorophyll, suspended matter, chloride and sulfate. The role of seepage from the marsh was also investigated. A ranking between the parameters revealed that oxygenation was the strongest effect of the marsh on the estuarine water. Particulate parameters showed overall import. Export of dissolved silica (DSi) was more important than exchange of any other nutrient form. Export of DSi and import of total dissolved nitrogen (DIN) nevertheless contributed about equally to the increase of the Si:N ratio in the seepage water. The marsh had a counteracting effect on the long term trend of nutrient ratios in the estuary.

  20. Measuring Ocean Literacy: What teens understand about the ocean using the Survey of Ocean Literacy and Engagement (SOLE)

    NASA Astrophysics Data System (ADS)

    Greely, T. M.; Lodge, A.

    2009-12-01

    Ocean issues with conceptual ties to science and global society have captured the attention, imagination, and concern of an international audience. Climate change, over fishing, marine pollution, freshwater shortages and alternative energy sources are a few ocean issues highlighted in our media and casual conversations. The ocean plays a role in our life in some way everyday, however, disconnect exists between what scientists know and the public understands about the ocean as revealed by numerous ocean and coastal literacy surveys. While the public exhibits emotive responses through care, concern and connection with the ocean, there remains a critical need for a baseline of ocean knowledge. However, knowledge about the ocean must be balanced with understanding about how to apply ocean information to daily decisions and actions. The present study analyzed underlying factors and patterns contributing to ocean literacy and reasoning within the context of an ocean education program, the Oceanography Camp for Girls. The OCG is designed to advance ocean conceptual understanding and decision making by engagement in a series of experiential learning and stewardship activities from authentic research settings in the field and lab. The present study measured a) what understanding teens currently hold about the ocean (content), b) how teens feel toward the ocean environment (environmental attitudes and morality), and c) how understanding and feelings are organized when reasoning about ocean socioscientific issues (e.g. climate change, over fishing, energy). The Survey of Ocean Literacy and Engagement (SOLE), was used to measure teens understanding about the ocean. SOLE is a 57-item survey instrument aligned with the Essential Principles and Fundamental Concepts of Ocean Literacy (NGS, 2007). Rasch analysis was used to refine and validate SOLE as a reasonable measure of ocean content knowledge (reliability, 0.91). Results revealed that content knowledge and environmental

  1. Comparison of surface freshwater fluxes from different climate forecasts produced through different ensemble generation schemes.

    NASA Astrophysics Data System (ADS)

    Romanova, Vanya; Hense, Andreas; Wahl, Sabrina; Brune, Sebastian; Baehr, Johanna

    2016-04-01

    The decadal variability and its predictability of the surface net freshwater fluxes is compared in a set of retrospective predictions, all using the same model setup, and only differing in the implemented ocean initialisation method and ensemble generation method. The basic aim is to deduce the differences between the initialization/ensemble generation methods in view of the uncertainty of the verifying observational data sets. The analysis will give an approximation of the uncertainties of the net freshwater fluxes, which up to now appear to be one of the most uncertain products in observational data and model outputs. All ensemble generation methods are implemented into the MPI-ESM earth system model in the framework of the ongoing MiKlip project (www.fona-miklip.de). Hindcast experiments are initialised annually between 2000-2004, and from each start year 10 ensemble members are initialized for 5 years each. Four different ensemble generation methods are compared: (i) a method based on the Anomaly Transform method (Romanova and Hense, 2015) in which the initial oceanic perturbations represent orthogonal and balanced anomaly structures in space and time and between the variables taken from a control run, (ii) one-day-lagged ocean states from the MPI-ESM-LR baseline system (iii) one-day-lagged of ocean and atmospheric states with preceding full-field nudging to re-analysis in both the atmospheric and the oceanic component of the system - the baseline one MPI-ESM-LR system, (iv) an Ensemble Kalman Filter (EnKF) implemented into oceanic part of MPI-ESM (Brune et al. 2015), assimilating monthly subsurface oceanic temperature and salinity (EN3) using the Parallel Data Assimilation Framework (PDAF). The hindcasts are evaluated probabilistically using fresh water flux data sets from four different reanalysis data sets: MERRA, NCEP-R1, GFDL ocean reanalysis and GECCO2. The assessments show no clear differences in the evaluations scores on regional scales. However, on the

  2. The southeastern continental shelf of the United States as an atmospheric CO 2 source and an exporter of inorganic carbon to the ocean

    NASA Astrophysics Data System (ADS)

    Aleck Wang, Zhaohui; Cai, Wei-Jun; Wang, Yongchen; Ji, Hongwei

    2005-10-01

    The US southeastern continental shelf, also known as the South Atlantic Bight (SAB), is a strong source of CO 2 to the atmosphere, which is in direct contrast to recent reports regarding other major continental shelves. Both spatial (cross-shelf) and seasonal variations of the CO 2 system were pronounced in the SAB. Sea surface pCO 2 in winter was undersaturated relative to the atmosphere, while oversaturation of pCO 2 dominated the entire shelf water in all other seasons. Annually, the SAB releases CO 2 to the atmosphere at an average rate of 30 g C m -2 (2.5 mol C m -2). This system also discharges dissolved inorganic carbon to the open ocean (30 g C m -2 yr -1). Methods of estimating CO 2 flux and DIC flux are critically evaluated and compared. A carbon mass balance model in the SAB is presented based on inorganic carbon fluxes from this study and organic carbon fluxes from literature. The carbon budget is much closer to balance by using this carbon flux approach than by direct measurements of primary production and respiration. It is concluded that the SAB is a net heterotrophic system annually. Intensified heating, elevated input of inorganic carbon from coastal salt marshes, microbial respiration of marsh-exported organic carbon and the lack of annual spring blooms all contribute to maintaining the SAB as a strong CO 2 source to the atmosphere during the warm seasons. In winter, the primary factor that governs the CO 2 sink in the SAB is likely the cooling process. Strong heterotrophy during warm seasons also sustains the SAB to be an exporter of inorganic carbon to the open ocean annually. The SAB shelf functions differently from the East China Sea, the North Atlantic European Shelves, and the Mid-Atlantic Bight as a source or sink of atmospheric CO 2. The SAB is classified as a "marsh-dominated" shelf as compared to other shelves in terms of carbon dynamics. Further work to study carbon dynamics in coastal margins is warranted to interpret their roles in

  3. Global Ocean Circulation in Thermohaline Coordinates and Small-scale and Mesoscale mixing: An Inverse Estimate.

    NASA Astrophysics Data System (ADS)

    Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.

    2016-02-01

    I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.

  4. Greenland's glacial fjords and their role in regional biogeochemical dynamics.

    NASA Astrophysics Data System (ADS)

    Crosby, J.; Arndt, S.

    2017-12-01

    Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.

  5. The role of diatom resting spores in pelagic-benthic coupling in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Rembauville, Mathieu; Blain, Stéphane; Manno, Clara; Tarling, Geraint; Thompson, Anu; Wolff, George; Salter, Ian

    2018-05-01

    Natural iron fertilization downstream of Southern Ocean island plateaus supports large phytoplankton blooms and promotes carbon export from the mixed layer. In addition to sequestering atmospheric CO2, the biological carbon pump also supplies organic matter (OM) to deep-ocean ecosystems. Although the total flux of OM arriving at the seafloor sets the energy input to the system, the chemical nature of OM is also of significance. However, a quantitative framework linking ecological flux vectors to OM composition is currently lacking. In the present study we report the lipid composition of export fluxes collected by five moored sediment traps deployed in contrasting productivity regimes of Southern Ocean island systems (Kerguelen, Crozet and South Georgia) and compile them with quantitative data on diatom and faecal pellet fluxes. At the three naturally iron-fertilized sites, the relative contribution of labile lipids (mono- and polyunsaturated fatty acids, unsaturated fatty alcohols) is 2-4 times higher than at low productivity sites. There is a strong attenuation of labile components as a function of depth, irrespective of productivity. The three island systems also display regional characteristics in lipid export. An enrichment of zooplankton dietary sterols, such as C27Δ5, at South Georgia is consistent with high zooplankton and krill biomass in the region and the importance of faecal pellets to particulate organic carbon (POC) flux. There is a strong association of diatom resting spore fluxes that dominate productive flux regimes with energy-rich unsaturated fatty acids. At the Kerguelen Plateau we provide a statistical framework to link seasonal variation in ecological flux vectors and lipid composition over a complete annual cycle. Our analyses demonstrate that ecological processes in the upper ocean, e.g. resting spore formation and grazing, not only impact the magnitude and stoichiometry of the Southern Ocean biological pump, but also regulate the

  6. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    PubMed

    Silveira, Cynthia B; Vieira, Ricardo P; Cardoso, Alexander M; Paranhos, Rodolfo; Albano, Rodolpho M; Martins, Orlando B

    2011-03-09

    Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine

  7. Influence of Salinity on Bacterioplankton Communities from the Brazilian Rain Forest to the Coastal Atlantic Ocean

    PubMed Central

    Silveira, Cynthia B.; Vieira, Ricardo P.; Cardoso, Alexander M.; Paranhos, Rodolfo; Albano, Rodolpho M.; Martins, Orlando B.

    2011-01-01

    Background Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. Methodology/Principal Findings We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Conclusions/Significance Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters

  8. International Ocean Discovery Program U.S. Implementing Organization

    Science.gov Websites

    coordinates seagoing expeditions to study the history of the Earth recorded in sediments and rocks beneath the Internship :: Minorities in Scientific Ocean Drilling Fellowship Education Deep Earth Academy logo :: joidesresolution.org :: For students :: For teachers :: For scientists :: View drill sites in Google Earth Export

  9. Dissolved organic carbon export and internal cycling in small, headwater lakes

    USGS Publications Warehouse

    Stets, Edward G.; Striegl, Robert G.; Aiken, George R.

    2010-01-01

    Carbon (C) cycling in freshwater lakes is intense but poorly integrated into our current understanding of overall C transport from the land to the oceans. We quantified dissolved organic carbon export (DOCX) and compared it with modeled gross DOC mineralization (DOCR) to determine whether hydrologic or within-lake processes dominated DOC cycling in a small headwaters watershed in Minnesota, USA. We also used DOC optical properties to gather information about DOC sources. We then compared our results to a data set of approximately 1500 lakes in the Eastern USA (Eastern Lake Survey, ELS, data set) to place our results in context of lakes more broadly. In the open-basin lakes in our watershed (n = 5), DOCX ranged from 60 to 183 g C m−2 lake area yr−1, whereas DOCR ranged from 15 to 21 g C m−2 lake area yr−1, emphasizing that lateral DOC fluxes dominated. DOCX calculated in our study watershed clustered near the 75th percentile of open-basin lakes in the ELS data set, suggesting that these results were not unusual. In contrast, DOCX in closed-basin lakes (n = 2) was approximately 5 g C m−2 lake area yr−1, whereas DOCR was 37 to 42 g C m−2 lake area yr−1, suggesting that internal C cycling dominated. In the ELS data set, median DOCX was 32 and 12 g C m−2 yr−1 in open-basin and closed-basin lakes, respectively. Although not as high as what was observed in our study watershed, DOCX is an important component of lake C flux more generally, particularly in open-basin lakes.

  10. 76 FR 9550 - President's Export Council: Meeting of the President's Export Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... DEPARTMENT OF COMMERCE International Trade Administration President's Export Council: Meeting of the President's Export Council AGENCY: International Trade Administration, U.S. Department of Commerce.... exports, jobs, and growth. DATES: March 11, 2011 at 9:30 a.m. (ET). ADDRESSES: The President's Export...

  11. Chromophoric Dissolved Organic Matter Export from U.S. Rivers

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Aiken, G.; Dornblaser, M.; Butler, K. D.; Holmes, R. M.; Fiske, G.; Mann, P. J.; Stubbins, A.

    2012-12-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. Utilizing CDOM and dissolved organic carbon (DOC) flux data we establish a robust universal relationship between CDOM and DOC loads. The application of this relationship allows future studies to derive DOC loads from CDOM utilizing emerging in-situ or remote sensing technologies and thus refine river-to-ocean DOC fluxes, as well as exploit historic imagery to examine how fluxes may have changed. Calculated CDOM yields from the 15 U.S. rivers highlight the importance of certain regions with respect to CDOM flux to the coastal ocean. This approach indicates that future studies might predict CDOM and DOC yields for different watershed types that could then be readily converted to loads providing for the estimation of CDOM and DOC export from ungauged watersheds. Examination of CDOM yields also highlights important geographical regions for future study with respect to the role of terrigenous CDOM in ocean color budgets and CDOM's role in biogeochemical processes.

  12. Understanding the economic, environmental and energy consequences of the Panama Canal expansion on Midwest grain and agricultural exports.

    DOT National Transportation Integrated Search

    2011-05-01

    The Panama Canal Authority (ACP) is currently building a third lock scheduled to open in 2014, significantly changing the capacity of the : canal for inter-ocean movements. Midwest specialty grain and agricultural product exporters will be directly a...

  13. Freshwater Fish Communities

    EPA Science Inventory

    Freshwater fish are ecologically important in stream ecosystems, and they provide people with significant food, recreation, and conservation value as biological indicator of freshwater streams. Historically, the streams and rivers of southern New England supported moderately dive...

  14. Dilution of the northern North Atlantic Ocean in recent decades.

    PubMed

    Curry, Ruth; Mauritzen, Cecilie

    2005-06-17

    Declining salinities signify that large amounts of fresh water have been added to the northern North Atlantic Ocean since the mid-1960s. We estimate that the Nordic Seas and Subpolar Basins were diluted by an extra 19,000 +/- 5000 cubic kilometers of freshwater input between 1965 and 1995. Fully half of that additional fresh water-about 10,000 cubic kilometers-infiltrated the system in the late 1960s at an approximate rate of 2000 cubic kilometers per year. Patterns of freshwater accumulation observed in the Nordic Seas suggest a century time scale to reach freshening thresholds critical to that portion of the Atlantic meridional overturning circulation.

  15. U.S. hardwood product exports, hardwood exports to Korea, hardwood resource situation, and the future of U.S. exports to Korea

    Treesearch

    Philip A. Araman

    1991-01-01

    The exerpts from this seminar are intended to give an overview of U.S. hardwood exports, hardwood exports to Korea, the hardwood resource situation, and the future of U.S. hardwood exports to Korea. It includes 1) some basic information about total U.S. hardwood exports and products, 2) information on hardwood exports to Korea from the U.S., 3) U.S. hardwood resources...

  16. Ocean Biological Pump Sensitivities and Implications for Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Romanou, Anastasia

    2013-01-01

    The ocean is one of the principal reservoirs of CO2, a greenhouse gas, and therefore plays a crucial role in regulating Earth's climate. Currently, the ocean sequesters about a third of anthropogenic CO2 emissions, mitigating the human impact on climate. At the same time, the deeper ocean represents the largest carbon pool in the Earth System and processes that describe the transfer of carbon from the surface of the ocean to depth are intimately linked to the effectiveness of carbon sequestration.The ocean biological pump (OBP), which involves several biogeochemical processes, is a major pathway for transfer of carbon from the surface mixed layer into the ocean interior. About 75 of the carbon vertical gradient is due to the carbon pump with only 25 attributed to the solubility pump. However, the relative importance and role of the two pumps is poorly constrained. OBP is further divided to the organic carbon pump (soft tissue pump) and the carbonate pump, with the former exporting about 10 times more carbon than the latter through processes like remineralization.Major uncertainties about OBP, and hence in the carbon uptake and sequestration, stem from uncertainties in processes involved in OBP such as particulate organicinorganic carbon sinkingsettling, remineralization, microbial degradation of DOC and uptakegrowth rate changes of the ocean biology. The deep ocean is a major sink of atmospheric CO2 in scales of hundreds to thousands of years, but how the export efficiency (i.e. the fraction of total carbon fixation at the surface that is transported at depth) is affected by climate change remains largely undetermined. These processes affect the ocean chemistry (alkalinity, pH, DIC, particulate and dissolved organic carbon) as well as the ecology (biodiversity, functional groups and their interactions) in the ocean. It is important to have a rigorous, quantitative understanding of the uncertainties involved in the observational measurements, the models and the

  17. Rain Rate from IMERG as a Predictor for Salinity Stratification in the Upper Meter of the Ocean during SPURS-2 Rain Events

    NASA Astrophysics Data System (ADS)

    Thompson, E. J.; Asher, W.; Drushka, K.; Schanze, J. J.; Jessup, A. T.; Clark, D.

    2016-12-01

    Rain can produce a lens of fresher and generally colder, less dense water at the ocean surface. These stable surface layers concentrate heat, freshwater, and momentum into a thin layer and reduce the exchange of these properties between the surface layer and deeper water, which can impact regional freshwater storage and air-sea fluxes of heat and moisture. Although in situ observations have shown that fresh lenses are common in the presence of rain, attempts to correlate the magnitude and lifetime of the surface freshening with rain rate using field data have not produced a definitive relationship. The reasons for this are most likely that in situ rain rate measurements represent the freshwater flux to the ocean surface at a single point in space and time, whereas the fresh lens is the result of the integrated rainfall over time and space, convoluted with the evolution of the fresh lens. Therefore, it is possible that integrated, upstream rainfall estimates might provide a better correlate for the presence of fresh lenses than in situ measurements at a point. This hindcast study seeks to determine the utility of NASA GPM IMERG satellite measurements of rain relative to in situ collocated rain measurements in predicting the occurrence and duration of 0-1 m freshwater stabilization of the ocean. Vertical gradients of temperature, salinity, and density between the surface and at most a few meters were measured using towed profilers and underway sampling during the 2016 SPURS-2 experiment conducted in the tropical east Pacific Ocean. Local wind speed was also measured and taken into account. These measurements were used to determine whether local or integrated upstream precipitation metrics could better predict the occurrence of rain-generated lenses of fresher water at the ocean surface and whether the strength and duration of rain events was correlated with the observed lifetime of fresh lenses.

  18. Global carbon export from the terrestrial biosphere controlled by erosion.

    PubMed

    Galy, Valier; Peucker-Ehrenbrink, Bernhard; Eglinton, Timothy

    2015-05-14

    Riverine export of particulate organic carbon (POC) to the ocean affects the atmospheric carbon inventory over a broad range of timescales. On geological timescales, the balance between sequestration of POC from the terrestrial biosphere and oxidation of rock-derived (petrogenic) organic carbon sets the magnitude of the atmospheric carbon and oxygen reservoirs. Over shorter timescales, variations in the rate of exchange between carbon reservoirs, such as soils and marine sediments, also modulate atmospheric carbon dioxide levels. The respective fluxes of biospheric and petrogenic organic carbon are poorly constrained, however, and mechanisms controlling POC export have remained elusive, limiting our ability to predict POC fluxes quantitatively as a result of climatic or tectonic changes. Here we estimate biospheric and petrogenic POC fluxes for a suite of river systems representative of the natural variability in catchment properties. We show that export yields of both biospheric and petrogenic POC are positively related to the yield of suspended sediment, revealing that POC export is mostly controlled by physical erosion. Using a global compilation of gauged suspended sediment flux, we derive separate estimates of global biospheric and petrogenic POC fluxes of 157(+74)(-50) and 43(+61)(-25) megatonnes of carbon per year, respectively. We find that biospheric POC export is primarily controlled by the capacity of rivers to mobilize and transport POC, and is largely insensitive to the magnitude of terrestrial primary production. Globally, physical erosion rates affect the rate of biospheric POC burial in marine sediments more strongly than carbon sequestration through silicate weathering. We conclude that burial of biospheric POC in marine sediments becomes the dominant long-term atmospheric carbon dioxide sink under enhanced physical erosion.

  19. Impact of Arctic shelf summer stratification on Holocene climate variability

    NASA Astrophysics Data System (ADS)

    Thibodeau, Benoit; Bauch, Henning A.; Knies, Jochen

    2018-07-01

    Understanding the dynamic of freshwater and sea-ice export from the Arctic is crucial to better comprehend the potential near-future climate change consequences. Here, we report nitrogen isotope data of a core from the Laptev Sea to shed light on the impact of the Holocene Siberian transgression on the summer stratification of the Laptev Sea. Our data suggest that the oceanographic setting was less favourable to sea-ice formation in the Laptev Sea during the early to mid-Holocene. It is only after the sea level reached a standstill at around 4 ka that the water column structure in the Laptev Sea became more stable. Modern-day conditions, often described as "sea-ice factory", were reached about 2 ka ago, after the development of a strong summer stratification. These results are consistent with sea-ice reconstruction along the Transpolar Drift, highlighting the potential contribution of the Laptev Sea to the export of freshwater from the Arctic Ocean.

  20. Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode.

    PubMed

    Hauck, J; Völker, C; Wang, T; Hoppema, M; Losch, M; Wolf-Gladrow, D A

    2013-12-01

    Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO 2 . In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO 2 . In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO 2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.

  1. Bjerknes Compensation in Meridional Heat Transport under Freshwater Forcing and the Role of Climate Feedback

    NASA Astrophysics Data System (ADS)

    Wen, Qin

    2017-04-01

    Using a coupled Earth climate model, freshwater experiments are performed to study the Bjerknes compensation (BJC) between meridional atmosphere heat transport (AHT) and meridional ocean heat transport (OHT). Freshwater hosing in the North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) and thus reduces the northward OHT in the Atlantic significantly, leading to a cooling (warming) in surface layer in the Northern (Southern) Hemisphere. This results in an enhanced Hadley Cell and northward AHT. Meanwhile, the OHT in the Indo-Pacific is increased in response to the Hadley Cell change, partially offsetting the reduced OHT in the Atlantic. Two compensations occur here: compensation between the AHT and the Atlantic OHT, and that between the Indo-Pacific OHT and the Atlantic OHT. The AHT change compensates the OHT change very well in the extratropics, while the former overcompensates the latter in the tropics due to the Indo-Pacific change. The BJC can be understood from the viewpoint of large-scale circulation change. However, the intrinsic mechanism of BJC is related to the climate feedback of Earth system. Our coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy balance, and local climate feedback determines the extent of BJC, consistent with previous theoretical results. Even during the transient period of climate change in the model, the BJC is well established when the ocean heat storage is slowly varying and its change is weaker than the net heat flux changes at the ocean surface and the top of the atmosphere. The BJC can be deduced from the local climate feedback. Under the freshwater forcing, the overcompensation in the tropics (undercompensation in the extratropics) is mainly caused by the positive longwave feedback related to cloud (negative longwave feedback related to surface temperature change). Different dominant feedbacks determine different BJC scenarios in different regions

  2. Dynamic ocean topography from CryoSat-2: examining recent changes in ice-ocean stress and advancing a theory for Beaufort Gyre stabilization

    NASA Astrophysics Data System (ADS)

    Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.

    2017-12-01

    Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.

  3. Ocean transport and variability studies of the South Pacific, Southern, and Indian Oceans

    NASA Technical Reports Server (NTRS)

    Church, John A.; Cresswell, G. R.; Nilsson, C. S.; Mcdougall, T. J.; Coleman, R.; Rizos, C.; Penrose, J.; Hunter, J. R.; Lynch, M. J.

    1991-01-01

    The objectives of this study are to analyze ocean dynamics in the western South Pacific and the adjacent Southern Ocean and the eastern Indian Ocean. Specifically, our objectives for these three regions are, for the South Pacific Ocean: (1) To estimate the volume transport of the east Australian Current (EAC) along the Australian coast and in the Tasman Front, and to estimate the time variability (on seasonal and interannual time scales) of this transport. (2) To contribute to estimating the meridional heat and freshwater fluxes (and their variability) at about 30 deg S. Good estimates of the transport in the western boundary current are essential for accurate estimates of these fluxes. (3) To determine how the EAC transport (and its extension, the Tasman Front and the East Auckland Current) closes the subtropical gyre of the South Pacific and to better determine the structure at the confluence of this current and the Antarctic Circumpolar Current. (4) To examine the structure and time variability of the circulation in the western South Pacific and the adjacent Southern Ocean, particularly at the Tasman Front. For the Indian Ocean: (5) To study the seasonal interannual variations in the strength of the Leeuwin Current. (6) To monitor the Pacific-Indian Ocean throughflow and the South Equatorial and the South Java Currents between northwest Australia and Indonesia. (7) To study the processes that form the water of the permanent oceanic thermocline and, in particular, the way in which new thermocline water enters the permanent thermocline in late winter and early spring as the mixed layer restratifies. For the Southern Ocean: (8) To study the mesoscale and meridional structure of the Southern Ocean between 150 deg E and 170 deg E; in particular, to describe the Antarctic frontal system south of Tasmania and determine its interannual variability; to estimate the exchanges of heat, salt, and other properties between the Indian and Pacific Oceans; and to investigate the

  4. 76 FR 66693 - President's Export Council: Meeting of the President's Export Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    .... ACTION: Notice of an open meeting. SUMMARY: The President's Export Council will hold a meeting to discuss.... exports, jobs, and growth. DATES: November 16, 2011 at 9:30 a.m. (ET) ADDRESSES: The President's Export... on December 20, 1973 to advise the President on matters relating to U.S. export trade and report to...

  5. Sensitivity of the ocean overturning circulation to wind and mixing: theoretical scalings and global ocean models

    NASA Astrophysics Data System (ADS)

    Nikurashin, Maxim; Gunn, Andrew

    2017-04-01

    The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.

  6. Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Ducklow, Hugh W.

    2017-09-01

    The biological carbon pump (BCP) transports organic carbon from the surface to the ocean's interior via sinking particles, vertically migrating organisms, and passive transport of organic matter by advection and diffusion. While many studies have quantified sinking particles, the magnitude of passive transport remains poorly constrained. In the Southern Ocean weak thermal stratification, strong vertical gradients in particulate organic matter, and weak vertical nitrate gradients suggest that passive transport from the euphotic zone may be particularly important. We compile data from seasonal time series at a coastal site near Palmer Station, annual regional cruises in the Western Antarctic Peninsula (WAP), cruises throughout the broader Southern Ocean, and SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) autonomous profiling floats to estimate spatial and temporal patterns in vertical gradients of nitrate, particulate nitrogen (PN), and dissolved organic carbon. Under a steady state approximation, the ratio of ∂PN/∂z to ∂NO3-/∂z suggests that passive transport of PN may be responsible for removing 46% (37%-58%) of the nitrate introduced into the surface ocean of the WAP (with dissolved organic matter contributing an additional 3-6%) and for 23% (19%-28%) of the BCP in the broader Southern Ocean. A simple model parameterized with in situ nitrate, PN, and primary production data suggested that passive transport was responsible for 54% of the magnitude of the BCP in the WAP. Our results highlight the potential importance of passive transport (by advection and diffusion) of organic matter in the Southern Ocean but should only be considered indicative of high passive transport (rather than conclusive evidence) due to our steady state assumptions.

  7. Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta

    USGS Publications Warehouse

    Eckard, Robert S.; Hernes, Peter J.; Bergamaschi, Brian A.; Stepanauskas, Ramunas; Kendall, Carol

    2007-01-01

    Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L-1 within the Sacramento River to 39.9 mg L-1 at the outfall from an island drain (median 3.0 mg L-1), while lignin concentrations ranged from 3.0 μL-1 within the Sacramento River to 111 μL-1 at the outfall from an island drain (median 11.6 μL-1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)-1 at an island drain to 0.84 mg (100 mg OC)-1 for a wetland (median 0.36 mg (100 mg OC)-1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized

  8. Understanding the recent changes in the Southern Ocean carbon cycle: A multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Manizza, M.; Kahru, M.; Menemenlis, D.; Nevison, C. D.; Mitchell, B. G.; Keeling, R. F.

    2016-12-01

    The Southern Ocean represents a key area of the global ocean for the uptake of the CO2 originating from fossil fuels emissions. In these waters, cold temperatures combined with high rates of biological production drive the carbon uptake that accounts for about one-third of the global ocean uptake.Recent studies showed that changes in the Southern Annular Mode (SAM) index, mainly a proxy of the intensity of westerly winds, had a significant impact on the temporal variability of the CO2 uptake in the Southern Ocean. In order to shed light on this problem we propose to use both satellite-derived estimates of ocean productivity and carbon export in combinations of ocean physical and biogeochemical state estimates focusing on the 2006-2013 period. While the estimates of carbon fixation and export based on remote sensing will provide key information on the spatial and temporal variations of the biological carbon pump, the ocean state estimates will provide additional information on physical and carbon cycle processes, including the air-sea CO2 fluxes of the Southern Ocean in the 2006-2013 period where model solutions have been optimized.These physical estimates will be used to force an ocean biogeochemical model (ECCO2-Darwin) that will compute the CO2 uptake for each year. The physical model, forced with optimized atmospheric forcing, aims to realistically simulate interannual ocean climate variability that drives changes in both physical and biogeochemical processes ultimately impacting the carbon uptake of the Southern Ocean, and potentially responding to the SAM index variations.Although in this study great emphasis is given to the role of physical climate variations at driving the CO2 uptake of these polar waters, we will integrate model results with estimates from remote sensing techniques to better understand role of the biological carbon pump and its variability potentially responding to the SAM index changes.

  9. No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta.

    PubMed

    Kefford, Ben J; Nugegoda, Dayanthi

    2005-04-01

    The growth and reproduction of the freshwater snail Physa acuta (Gastropoda: Physidae) were measured at various salinity levels (growth: distilled water, 50, 100, 500, 1000 and 5000 microS/cm; reproduction: deionized water, 100, 500, 1000 and 3000 microS/cm) established using the artificial sea salt, Ocean Nature. This was done to examine the assumption that there is no direct effect of salinity on freshwater animals until a threshold, beyond which sub-lethal effects, such as reduction in growth and reproduction, will occur. Growth of P. acuta was maximal in terms of live and dry mass at salinity levels 500-1000 microS/cm. The number of eggs produced per snail per day was maximal between 100 and 1000 microS/cm. Results show that rather than a threshold response to salinity, small rises in salinity (from low levels) can produce increased growth and reproduction until a maximum is reached. Beyond this salinity, further increases result in a decrease in growth and reproduction. Studies on the growth of freshwater invertebrates and fish have generally shown a similar lack of a threshold response. The implications for assessing the effects of salinisation on freshwater organisms need to be further considered.

  10. Future Freshwater Stress on Small Islands: Population, Aridity and Global Warming Targets

    NASA Astrophysics Data System (ADS)

    Karnauskas, K. B.; Schleussner, C. F.; Donnelly, J. P.; Anchukaitis, K. J.

    2017-12-01

    Small island developing states (SIDS) face multiple threats from anthropogenic climate change, including potential changes in freshwater resource availability. Future freshwater stress, including geographic and seasonal variability, has important implications for climate change adaptation scenarios for vulnerable human populations living on islands across the world ocean. Due to a mismatch in spatial scale between SIDS landforms and the horizontal resolution of global climate models (GCMs), SIDS are mostly unaccounted for in GCMs that are used to make future projections of global climate change and its regional impacts. Specific approaches are required to address this gap between broad-scale model projections and regional, policy-relevant outcomes. Here we apply a recently developed methodology to project future changes in aridity in combination with population projections associated with different shared socioeconomic pathways (SSPs) to evaluate overall changes in freshwater stress in SIDS at warming levels of 1.5°C and 2°C above pre-industrial levels. By accounting for evaporative demand a posteriori, we reveal a robust yet spatially variable tendency towards increasing aridity for 16 million people living on islands by mid-century. Although about half of the islands are projected to experience increased rainfall—predominantly in the deep tropics—projected changes in evaporation are more uniform, shifting the global distribution of changes in island freshwater balance towards greater aridity. In many cases, the magnitude of projected drying is comparable to the amplitude of the estimated observed interannual variability, with important consequences for extreme events. While we find that future population growth will dominate changes in projected freshwater stress especially towards the end of the century, projected changes in aridity are found to compound freshwater stress for the vast majority of SIDS. Particularly across the Caribbean region, a

  11. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  12. Genomic population structure of freshwater-resident and anadromous ide (Leuciscus idus) in north-western Europe.

    PubMed

    Skovrind, Mikkel; Olsen, Morten Tange; Vieira, Filipe Garrett; Pacheco, George; Carl, Henrik; Gilbert, M Thomas P; Møller, Peter Rask

    2016-02-01

    Climate change experts largely agree that future climate change and associated rises in oceanic water levels over the upcoming decades, will affect marine salinity levels. The subsequent effects on fish communities in estuarine ecosystems however, are less clear. One species that is likely to become increasingly affected by changes in salinity is the ide (Leuciscus idus). The ide is a stenohaline freshwater fish that primarily inhabits rivers, with frequent anadromous behavior when sea salinity does not exceed 15%. Unlike most other anadromous Baltic Sea fish species, the ide has yet to be subjected to large-scale stocking programs, and thus provides an excellent opportunity for studying the natural population structure across the current salinity gradient in the Danish Belts. To explore this, we used Genotyping-by-Sequencing to determine genomic population structure of both freshwater resident and anadromous ide populations in the western Baltic Sea region, and relate the results to the current salinity gradient and the demographic history of ide in the region. The sample sites separate into four clusters, with all anadromous populations in one cluster and the freshwater resident populations in the remaining three. Results demonstrate high level of differentiation between sites hosting freshwater resident populations, but little differentiation among anadromous populations. Thus ide exhibit the genomic population structure of both a typical freshwater species, and a typical anadromous species. In addition to providing a first insight into the population structure of north-western European ide, our data also (1) provide indications of a single illegal introduction by man; (2) suggest limited genetic effects of heavy pollution in the past; and (3) indicate possible historical anadromous behavior in a now isolated freshwater population.

  13. Routine and active metabolic rates of migrating adult wild sockeye salmon (Oncorhynchus nerka Walbaum) in seawater and freshwater.

    PubMed

    Wagner, G N; Kuchel, L J; Lotto, A; Patterson, D A; Shrimpton, J M; Hinch, S G; Farrell, A P

    2006-01-01

    We present the first data on the differences in routine and active metabolic rates for sexually maturing migratory adult sockeye salmon (Oncorhynchus nerka) that were intercepted in the ocean and then held in either seawater or freshwater. Routine and active oxygen uptake rates (MO2) were significantly higher (27%-72%) in seawater than in freshwater at all swimming speeds except those approaching critical swimming speed. During a 45-min recovery period, the declining postexercise oxygen uptake remained 58%-73% higher in seawater than in freshwater. When fish performed a second swim test, active metabolic rates again remained 28%-81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates, fish in both seawater and freshwater could repeat the swim test and reach a similar maximum oxygen uptake and critical swimming speed as in the first swim test, even without restoring routine metabolic rate between swim tests. Thus, elevated MO2 related to either being in seawater as opposed to freshwater or not being fully recovered from previous exhaustive exercise did not present itself as a metabolic loading that limited either critical swimming performance or maximum MO2. The basis for the difference in metabolic rates of migratory sockeye salmon held in seawater and freshwater is uncertain, but it could include differences in states of nutrition, reproduction, and restlessness, as well as ionic differences. Regardless, this study elucidates some of the metabolic costs involved during the migration of adult salmon from seawater to freshwater, which may have applications for fisheries conservation and management models of energy use.

  14. Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE

    NASA Astrophysics Data System (ADS)

    Mazloff, Matthew R.; Boening, Carmen

    2016-04-01

    Air-ice-ocean interactions in the Antarctic lead to formation of the densest waters on Earth. These waters convect and spread to fill the global abyssal oceans. The heat and carbon storage capacity of these water masses, combined with their abyssal residence times that often exceed centuries, makes this circulation pathway the most efficient sequestering mechanism on Earth. Yet monitoring this pathway has proven challenging due to the nature of the formation processes and the depth of the circulation. The Gravity Recovery and Climate Experiment (GRACE) gravity mission is providing a time series of ocean mass redistribution and offers a transformative view of the abyssal circulation. Here we use the GRACE measurements to infer, for the first time, a 2003-2014 time series of Antarctic Bottom Water export into the South Pacific. We find this export highly variable, with a standard deviation of 1.87 sverdrup (Sv) and a decorrelation timescale of less than 1 month. A significant trend is undetectable.

  15. How potentially predictable are midlatitude ocean currents?

    PubMed Central

    Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi

    2016-01-01

    Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954

  16. Diversity of the free-living marine and freshwater Copepoda (Crustacea) in Costa Rica: a review

    PubMed Central

    Morales-Ramírez, Álvaro; Suárez-Morales, Eduardo; Corrales-Ugalde, Marco; Garrote, Octavio Esquivel

    2014-01-01

    Abstract The studies on marine copepods of Costa Rica started in the 1990’s and focused on the largest coastal-estuarine systems in the country, particularly along the Pacific coast. Diversity is widely variable among these systems: 40 species have been recorded in the Culebra Bay influenced by upwelling, northern Pacific coast, only 12 in the Gulf of Nicoya estuarine system, and 38 in Golfo Dulce, an anoxic basin in the southern Pacific coast of the country. Freshwater environments of Costa Rica are known to harbor a moderate diversity of continental copepods (25 species), which includes 6 calanoids, 17 cyclopoids and only two harpacticoids. Of the +100 freshwater species recorded in Central America, six are known only from Costa Rica, and one appears to be endemic to this country. The freshwater copepod fauna of Costa Rica is clearly the best known in Central America. Overall, six of the 10 orders of Copepoda are reported from Costa Rica. A previous summary by 2001 of the free-living copepod diversity in the country included 80 marine species (67 pelagic, 13 benthic). By 2009, the number of marine species increased to 209: 164 from the Pacific (49% of the copepod fauna from the Eastern Tropical Pacific) and 45 from the Caribbean coast (8% of species known from the Caribbean Basin). Both the Caribbean and Pacific species lists are growing. Additional collections of copepods at Cocos Island, an oceanic island 530 km away of the Pacific coast, have revealed many new records, including five new marine species from Costa Rica. Currently, the known diversity of marine copepods of Costa Rica is still in development and represents up to 52.6% of the total marine microcrustaceans recorded in the country. Future sampling and taxonomic efforts in the marine habitats should emphasize oceanic environments including deep waters but also littoral communities. Several Costa Rican records of freshwater copepods are likely to represent undescribed species. Also, the

  17. Diversity of the free-living marine and freshwater Copepoda (Crustacea) in Costa Rica: a review.

    PubMed

    Morales-Ramírez, Álvaro; Suárez-Morales, Eduardo; Corrales-Ugalde, Marco; Garrote, Octavio Esquivel

    2014-01-01

    The studies on marine copepods of Costa Rica started in the 1990's and focused on the largest coastal-estuarine systems in the country, particularly along the Pacific coast. Diversity is widely variable among these systems: 40 species have been recorded in the Culebra Bay influenced by upwelling, northern Pacific coast, only 12 in the Gulf of Nicoya estuarine system, and 38 in Golfo Dulce, an anoxic basin in the southern Pacific coast of the country. Freshwater environments of Costa Rica are known to harbor a moderate diversity of continental copepods (25 species), which includes 6 calanoids, 17 cyclopoids and only two harpacticoids. Of the +100 freshwater species recorded in Central America, six are known only from Costa Rica, and one appears to be endemic to this country. The freshwater copepod fauna of Costa Rica is clearly the best known in Central America. Overall, six of the 10 orders of Copepoda are reported from Costa Rica. A previous summary by 2001 of the free-living copepod diversity in the country included 80 marine species (67 pelagic, 13 benthic). By 2009, the number of marine species increased to 209: 164 from the Pacific (49% of the copepod fauna from the Eastern Tropical Pacific) and 45 from the Caribbean coast (8% of species known from the Caribbean Basin). Both the Caribbean and Pacific species lists are growing. Additional collections of copepods at Cocos Island, an oceanic island 530 km away of the Pacific coast, have revealed many new records, including five new marine species from Costa Rica. Currently, the known diversity of marine copepods of Costa Rica is still in development and represents up to 52.6% of the total marine microcrustaceans recorded in the country. Future sampling and taxonomic efforts in the marine habitats should emphasize oceanic environments including deep waters but also littoral communities. Several Costa Rican records of freshwater copepods are likely to represent undescribed species. Also, the biogeographic relevance

  18. Seawater-overwash impacts on freshwater-lens water supplies of low-lying oceanic islands: example from Roi-Namur Island, Kwajalein Atoll, Republic of the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Voss, C. I.; Gingerich, S. B.

    2015-12-01

    Low-lying oceanic islands host thin freshwater lenses subject to long-term aquifer salinization by seawater overwash. The lens is often the sole-source water supply for inhabitants. As maximum elevation for these islands is only a few meters above sea level, overwash can occur during high tides and storm surges. Sea level rise due to climate change will make overwash events even more common. The thin freshwater lenses, a few meters thick, are underlain by seawater, so pumping must be done carefully, often with horizontal skimming wells. Even a small amount of downward seawater infiltration from an overwash event can render the water supply non-potable. Where permeability is high, seawater infiltrates quickly, but seawater that infiltrates lower-permeability zones may remain for many months causing groundwater to remain non-potable, leaving residents without a reliable freshwater source. Initial post-overwash salinization is driven by the higher density of the invading saltwater, which sinks and mixes into the fresher water in potentially-complex patterns determined by: distribution of flooding and post-flood ponding, locations of permeable paths, and the inherently complex flow fields generated when fluid of higher density overlies lower-density fluid. The flow patterns cannot generally be measured or predicted in detail. This study develops basic understanding of overwash salinization processes impacting water supply on low-level islands, using a rare example of a monitored seawater overwash event that occurred in December 2008 at Roi-Namur Island in Kwajalein Atoll, Republic of the Marshall Islands, in which the salinity evolution of well water was measured. Due to typical lack of field data on such islands, a set of plausible alternative simulation-model descriptions of the hydrogeology and overwash event are created for analysis of the monitored salinization and recovery. Despite inability to know the 'true and complete' description of the event and the

  19. 7 CFR 1488.9a - Evidence of export for commodities delivered before export.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... COMMODITIES Financing of Export Sales of Agricultural Commodities From Private Stocks Under CCC Export Credit... financial period is 12 months or less, the exporter shall furnish a certification to the Treasurer, CCC... Assistant Treasurer, CCC, certifying that the commodities have been exported. The certification must include...

  20. 7 CFR 1488.9a - Evidence of export for commodities delivered before export.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... COMMODITIES Financing of Export Sales of Agricultural Commodities From Private Stocks Under CCC Export Credit... financial period is 12 months or less, the exporter shall furnish a certification to the Treasurer, CCC... Assistant Treasurer, CCC, certifying that the commodities have been exported. The certification must include...

  1. 7 CFR 1488.9a - Evidence of export for commodities delivered before export.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... COMMODITIES Financing of Export Sales of Agricultural Commodities From Private Stocks Under CCC Export Credit... financial period is 12 months or less, the exporter shall furnish a certification to the Treasurer, CCC... Assistant Treasurer, CCC, certifying that the commodities have been exported. The certification must include...

  2. The Importance of Freshwater to Spatial Variability of Aragonite Saturation State in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Siedlecki, Samantha A.; Pilcher, Darren J.; Hermann, Albert J.; Coyle, Ken; Mathis, Jeremy

    2017-11-01

    High-latitude and subpolar regions like the Gulf of Alaska (GOA) are more vulnerable than equatorial regions to rising carbon dioxide (CO2) levels, in part due to local processes that amplify the global signal. Recent field observations have shown that the shelf of the GOA is currently experiencing seasonal corrosive events (carbonate mineral saturation states Ω, Ω < 1), including suppressed Ω in response to ocean acidification as well as local processes like increased low-alkalinity glacial meltwater discharge. While the glacial discharge mainly influences the inner shelf, on the outer shelf, upwelling brings corrosive waters from the deep GOA. In this work, we develop a high-resolution model for carbon dynamics in the GOA, identify regions of high variability of Ω, and test the sensitivity of those regions to changes in the chemistry of glacial meltwater discharge. Results indicate the importance of this climatically sensitive and relatively unconstrained regional freshwater forcing for Ω variability in the nearshore. The increase was nearly linear at 0.002 Ω per 100 µmol/kg increase in alkalinity in the freshwater runoff. We find that the local winds, biological processes, and freshwater forcing all contribute to the spatial distribution of Ω and identify which of these three is highly correlated to the variability in Ω. Given that the timing and magnitude of these processes will likely change during the next few decades, it is critical to elucidate the effect of local processes on the background ocean acidification signal using robust models, such as the one described here.

  3. Biotic and abiotic retention, recycling and remineralization of metals in the ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Philip W.; Ellwood, Michael J.; Tagliabue, Alessandro

    Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export tomore » depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals.« less

  4. Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Hogg, A.; Ward, M.

    2011-12-01

    The southern limb of the ocean's meridional overturning circulation plays a key role in the Earth's response to climate change. The rise in atmospheric CO2 during glacial-interglacial transitions has been attributed to outgassing of enhanced upwelling water masses in the Southern Ocean. However a dynamical understanding of the physical mechanisms driving the change in overturning is lacking. Previous modelling studies of the Southern Ocean have focused on the effect of wind stress forcing on the overturning, while largely neglecting the response of the upper overturning cell to changes in surface buoyancy forcing. Using a series of eddy-permitting, idealised simulations of the Southern Ocean, we show that surface buoyancy forcing in the mid-latitudes is likely to play a significant role in setting the strength of the overturning circulation. Air-sea fluxes of heat and precipitation over the Antarctic Circumpolar Current region act to convert dense upwelled water masses into lighter waters at the surface. Additional fluxes of heat or freshwater thereby facilitate the meridional overturning up to a theoretical limit derived from Ekman transport. The sensitivity of the overturning to surface buoyancy forcing is strongly dependent on the relative locations of the wind stress profile, buoyancy forcing and upwelling region. The idealised model results provide support for the hypothesis that changes in upwelling during deglaciations may have been driven by changes in heat and freshwater fluxes, instead of, or in addition to, changes in wind stress. Morrison, A. K., A. M. Hogg, and M. L. Ward (2011), Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing, Geophys. Res. Lett., 38, L14602, doi:10.1029/2011GL048031.

  5. Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions.

    PubMed

    Louis, Justine; Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile

    2017-01-01

    The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two 'no bloom' periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6-7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions.

  6. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    PubMed Central

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-01-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235

  7. Holocene sea level and climate change in the Black Sea: Multiple marine incursions related to freshwater discharge events

    USGS Publications Warehouse

    Martin, R.E.; Leorri, E.; McLaughlin, P.P.

    2007-01-01

    Repeated marine invasions of the Black Sea during the Holocene have been inferred by many eastern scientists as resulting from episodes of marine inflow from the Mediterranean beneath a brackish outflow from the Black Sea. We support this scenario but a fundamental question remains: What caused the repeated marine invasions? We offer an hypothesis for the repeated marine invasions of the Black Sea based on: (1) the overall similarity of sea-level curves from both tectonically quiescent and active margins of the Black Sea and their similarity to a sequence stratigraphic record from the US mid-Atlantic coast. The similarity of the records from two widely-separated regions suggests their common response to documented Holocene climate ocean-atmosphere reorganizations (coolings); (2) the fact that in the modern Black Sea, freshwater runoff from surrounding rivers dominates over evaporation, so that excess runoff might have temporarily raised Black Sea level (although the Black Sea would have remained brackish). Following the initial invasion of the Black Sea by marine Mediterranean waters (through the Marmara Sea) in the early Holocene, repeated marine incursions were modulated, or perhaps even caused, by freshwater discharge to the Black Sea. Climatic amelioration (warming) following each documented ocean-atmosphere reorganization during the Holocene likely shifted precipitation patterns in the surrounding region and caused mountain glaciers to retreat, increasing freshwater runoff above modern values and temporarily contributing to an increase of Black Sea level. Freshwater-to-brackish water discharges into the Black Sea initially slowed marine inflow but upon mixing of runoff with more marine waters beneath them and their eventual exit through the Bosphorus, marine inflow increased again, accounting for the repeated marine invasions. The magnitude of the hydrologic and sea-level fluctuations became increasingly attenuated through the Holocene, as reflected by Black

  8. Sensitivity of the Younger Dryas climate to changes in orbtial, greenhouse gas, and freshwater forcing in CESM1

    NASA Astrophysics Data System (ADS)

    Hughlett, T. M.; Winguth, A. M. E.; Rosenbloom, N. A.; He, F.

    2016-12-01

    The Younger Dryas cooling event ( 12,900 years before present) was the most recent abrupt climate change in the geologic record where climate for the Northern Hemisphere returned to a near-glacial state. The cause of this cooling event is widely controversial, and no consensus has been found as to why the onset of the cooling occurred. Of the several hypotheses proposed, the freshening of the North Atlantic Ocean due to meltwater discharge from the retreating Lake Agassiz and subsequent changes in Atlantic meridional oceanic circulation (AMOC) is the most widely accepted one. In this study, the Community Earth System Model version 1 was used to perform sensitivity experiments to test how the AMOC responds to a freshwater discharge into the Northern Atlantic Ocean over the course of 1,000 years. This study is the first fully coupled, moderate-resolution simulation that implements a 13.1ka ice sheet (ICE-5G) along with Younger Dryas boundary and initial conditions. With the addition of the 13.1ka ice sheet and a 0.3 Sverdrup (Sv) freshwater discharge into the Northern Atlantic Ocean, the AMOC reduces by approximately 20 Sv, coming to a substantially slowed-down state of approximately 5 Sv. This reduction of the AMOC causes a decrease in surface air temperature of approximately 15 °C, which is in agreement with surface air temperature reconstructions from the Greenland Ice Sheet Project 2. Overall, the simulation presented in this study accurately represents the climatic state of the Younger Dryas cooling event.

  9. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  10. 75 FR 52929 - President's Export Council: Meeting of the President's Export Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... DEPARTMENT OF COMMERCE International Trade Administration President's Export Council: Meeting of the President's Export Council AGENCY: International Trade Administration, U.S. Department of Commerce...: The President's Export Council will convene its next meeting via live webcast on the Internet at http...

  11. Exploring changes in river nitrogen export to the world's oceans

    NASA Astrophysics Data System (ADS)

    Bouwman, A. F.; van Drecht, G.; Knoop, J. M.; Beusen, A. H. W.; Meinardi, C. R.

    2005-03-01

    Anthropogenic disturbance of river nutrient loads and export to coastal marine systems is a major global problem affecting water quality and biodiversity. Nitrogen is the major nutrient in rivers. On the basis of projections for food production and wastewater effluents, the global river N flux to coastal marine systems is shown to increase by 13% in the coming 3 decades. While the river N flux will grow by about 10% in North America and Oceania and will decrease in Europe, a 27% increase is projected for developing countries, which is a continuation of the trend observed in the past decades. This is a consequence of increasing nitrogen inputs to surface water associated with urbanization, sanitation, development of sewerage systems, and lagging wastewater treatment, as well as increasing food production and associated inputs of N fertilizer, animal manure, atmospheric N deposition, and biological N fixation in agricultural systems. Growing river N loads will lead to increased incidence of problems associated with eutrophication in coastal seas.

  12. An Arctic source for the Great Salinity Anomaly - A simulation of the Arctic ice-ocean system for 1955-1975

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1993-01-01

    The paper employs a fully prognostic Arctic ice-ocean model to study the interannual variability of sea ice during the period 1955-1975 and to explain the large variability of the ice extent in the Greenland and Iceland seas during the late 1960s. The model is used to test the contention of Aagaard and Carmack (1989) that the Great Salinity Anomaly (GSA) was a consequence of the anomalously large ice export in 1968. The high-latitude ice-ocean circulation changes due to wind field changes are explored. The ice export event of 1968 was the largest in the simulation, being about twice as large as the average and corresponding to 1600 cu km of excess fresh water. The simulations suggest that, besides the above average ice export to the Greenland Sea, there was also fresh water export to support the larger than average ice cover. The model results show the origin of the GSA to be in the Arctic, and support the view that the Arctic may play an active role in climate change.

  13. Freshwater mussels of Florida

    USGS Publications Warehouse

    Williams, James D.; Butler, Robert S.; Warren, Gary L.; Johnson, Nathan A.

    2014-01-01

    An exhaustive guide to all aspects of the freshwater mussel fauna in Florida,Freshwater Mussels of Florida covers the ecology, biology, distribution, and conservation of the many species of bivalve mollusks in the Sunshine State. In the past three decades, researchers, the public, businesses that depend on wildlife, and policy makers have given more attention to the threatened natural diversity of the Southeast, including freshwater mussels. This compendium meets the increasingly urgent need to catalog this imperiled group of aquatic organisms in the United States.

  14. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  15. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  16. Effects of the Changiang river discharge on the change in ocean and atmosphere over the East Asian region

    NASA Astrophysics Data System (ADS)

    Kim, M. H.; Lim, Y. J.; Kang, H. S.; Kim, B. J.; Cho, C.

    2017-12-01

    This study investigates the effects of freshwater from the Changiang river basin over the East Asian region for summer season. To do this, we simulated global seasonal forecasting system (GloSea5) of KMA (Korea Meteorology Administration). GloSea5 consists of atmosphere, ocean, sea ice and land model. Also, it has river routing model (TRIP), which links between land and ocean using freshwater. It is very important component in long-term forecast because of be able to change the air-sea interaction. To improve more the freshwater performance over the East Asian region, we realistically modified the river mouth, direction and storage around Changiang river basin of TRIP in GloSea5. Here, the comparison study among the no freshwater forcing experiment to ocean model (TRIP-OFF), the operated original file based freshwater coupled experiment (TRIP-ON) and the improved one (TRIP-MODI) has been carried out and the results are evaluated against the reanalysis data. As a result, the amount of fresh water to the Yellow Sea increase in TRIP-ON experiment and it attributes to the improvement of bias and RMSE of local SST over the East Asia. The implementation of the realistic river related ancillary files (TRIP-MODI) improves the abnormal salinity distribution around the Changjiang river gate and its related SST reduces cold bias about 0.37˚C for July over the East Sea. Warm SST over this region is caused by barrier layer (BL). Freshwater flux and salinity changes can create a pronounced salinity-induced mixed layer (ML) above the top of the thermocline. The layer between the base of the ML and the top of the thermocline is called a barrier layer (BL), because it isolates the warm surface water from cold deep water. In addition, the improved fresh water forcing can lead to the change in the local volume transport from the Kuroshio to the Strait of Korea and Changed the transport and SST over the Straits of Korea have correlation 0.57 at 95% confidence level. For the

  17. Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming

    PubMed Central

    Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji

    2015-01-01

    Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970–1989) and a recent stage (1990–2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0–99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe. PMID:26372356

  18. Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming.

    PubMed

    Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji

    2015-01-01

    Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.

  19. Fisheries indicators, freshwater

    USGS Publications Warehouse

    Kwak, Thomas J.

    2010-01-01

    Freshwater fisheries exist among diverse ecosystems and fauna, provide societal benefits, and are influenced by human activities. Fisheries scientists assess the status and sustainability of fisheries by multiple approaches, including abundance and condition indices, population parameters, community indices, modeling, and surveys of habitat and human dimensions. The future sustainability of freshwater fisheries is limited not by available methods but by society’s will.

  20. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations.

    PubMed

    Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted

    2014-11-01

    Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30'S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean. Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies.

  1. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations

    PubMed Central

    Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted

    2014-01-01

    Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30′S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean. Key Points Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies PMID:26213672

  2. Why are freshwater fish so threatened?

    USGS Publications Warehouse

    Closs, Gerard P.; Angermeier, Paul; Darwall, William R.T.; Balcombe, Stephen R.

    2015-01-01

    Understanding why so many freshwater fish species are threatened requires some understanding of their biology, diversity, distribution, biogeography and ecology, but also some appreciation of the social, economic and political forces that are causing humans to destroy the natural ecosystems upon which we all ultimately depend. To begin to understand the diversity of freshwater fishes, we first need to consider the processes that generated and continue to sustain the diversity of species we see today. Based on an understanding of how freshwater fish diversity is generated and sustained, we consider how vulnerable or resilient various freshwater fishes are to the range of anthropogenic impacts that impinge on freshwater ecosystems. Finally, we discuss how social, political and economic drivers influence human impacts on natural systems, and the changes needed to current models of development that can lead to a sustainable future for humans and the diverse range of freshwater fish species with which we share our planet. The aim of this chapter is to provide an overview of the key issues and threats driving the declines in freshwater fish diversity identified in Chapter 1; subsequent chapters provide more detail on the key issues and address our options for developing a sustainable future for freshwater fishes.

  3. Estaurine Freshwater Entrainment By Oyster Reefs: Quantifying A Keystone Ecosystem Service

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Olabarrieta, M.; Frederick, P.; Valle-Levinson, A.; Seavey, J.

    2014-12-01

    Oyster reefs have been shown to provide myriad critical ecosystem services, however their role in directing flow and currents during non-storm conditions has been largely neglected. In many regions, oyster reefs form as linear structures perpendicular to the coast and across the path of streams and rivers, potentially entraining large volumes of freshwater flow and altering nearshore mixing. We hypothesize that these reefs have the potential to influence salinity over large areas, providing a "keystone" ecosystem service by supporting multiple estuarine functions. Here we present results from a field and modeling study to quantify the effects of reef extent and elevation on estuarine salinities under varying river discharge. We found salinity differences ranging from 2 to 16 g/kg between inshore and offshore sides of degraded oyster reefs in the Suwannee Sound (FL, USA), supporting the role of reefs as local-scale freshwater dams. Moreover, differences between inshore and offshore salinities were correlated with flow, with the most marked differences during periods of low flow. Hydrodynamic modeling using the 3-D Regional Ocean Modeling System (ROMS) suggests that the currently degraded reef system entrained greater volumes of freshwater in the past, buffering the landward advance of high salinities, particularly during low flow events related to droughts. Using ROMS, we also modeled a variety of hypothetical oyster bar morphology scenarios (historical, current, and "restored") to understand how changes in reef structure (elevation, extent, and completeness) impact estuarine mixing and near-shore salinities. Taken together, these results serve to: 1) elucidate a poorly documented ecosystem service of oyster reefs; 2) provide an estimate of the magnitude and sptial extent of the freshwater entrainment effect; and 3) offer quantitative information to managers and restoration specialists interested in restoring oyster habitat.

  4. Impact of Greenland orography on the Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; von Hardenberg, Jost; Filippi, Luca; Provenzale, Antonello

    2015-04-01

    We show that the absence of the Greenland Ice Sheet would have important consequences on the North Atlantic Ocean circulation, even without taking into account the effect of the freshwater input from ice melting. These effects are investigated in a 200-year long coupled ocean-atmosphere simulation with the high-resolution global climate model EC-Earth 3.0.1. Once a new equilibrium is established, cooling of Eurasia and of the North Atlantic and poleward shift of the subtropical jet are observed. These hemispheric changes are ascribed to a weakening of the Atlantic Meridional Overturning Circulation (AMOC) by about 20%. Such slowdown is associated to the freshening of the Arctic basin and to the related reduction in the freshwater export through the Fram Strait, as a result of the new wind pattern generated by the lower orography. This idealized experiment reveals the possibility of decreasing the AMOC by locally changing the surface winds.

  5. 76 FR 31584 - President's Export Council Subcommittee on Export Administration, Notice of Open Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security President's Export Council Subcommittee on Export Administration, Notice of Open Meeting; Correction: Meeting Time and Agenda The President's Export Council Subcommittee on Export Administration (PECSEA) will meet on June 9, 2011, 10 a.m., at the U.S. Department of Commerce, Herbert C. Hoove...

  6. The resurrection of oceanic dispersal in historical biogeography.

    PubMed

    de Queiroz, Alan

    2005-02-01

    Geographical distributions of terrestrial or freshwater taxa that are broken up by oceans can be explained by either oceanic dispersal or vicariance in the form of fragmentation of a previously contiguous landmass. The validation of plate-tectonics theory provided a global vicariance mechanism and, along with cladistic arguments for the primacy of vicariance, helped create a view of oceanic dispersal as a rare phenomenon and an explanation of last resort. Here, I describe recent work that suggests that the importance of oceanic dispersal has been strongly underestimated. In particular, molecular dating of lineage divergences favors oceanic dispersal over tectonic vicariance as an explanation for disjunct distributions in a wide variety of taxa, from frogs to beetles to baobab trees. Other evidence, such as substantial gene flow among island populations of Anolis lizards, also indicates unexpectedly high frequencies of oceanic dispersal. The resurrection of oceanic dispersal is the most striking aspect of a major shift in historical biogeography toward a more even balance between vicariance and dispersal explanations. This new view implies that biotas are more dynamic and have more recent origins than had been thought previously. A high frequency of dispersal also suggests that a fundamental methodological assumption of many biogeographical studies--that vicariance is a priori a more probable explanation than dispersal--needs to be re-evaluated and perhaps discarded.

  7. Diatoms Si uptake capacity drives carbon export in coastal upwelling systems

    NASA Astrophysics Data System (ADS)

    Abrantes, Fatima; Cermeno, Pedro; Lopes, Cristina; Romero, Oscar; Matos, Lélia; Van Iperen, Jolanda; Rufino, Marta; Magalhães, Vitor

    2016-07-01

    Coastal upwelling systems account for approximately half of global ocean primary production and contribute disproportionately to biologically driven carbon sequestration. Diatoms, silica-precipitating microalgae, constitute the dominant phytoplankton in these productive regions, and their abundance and assemblage composition in the sedimentary record is considered one of the best proxies for primary production. The study of the sedimentary diatom abundance (SDA) and total organic carbon content (TOC) in the five most important coastal upwelling systems of the modern ocean (Iberia-Canary, Benguela, Peru-Humboldt, California, and Somalia-Oman) reveals a global-scale positive relationship between diatom production and organic carbon burial. The analysis of SDA in conjunction with environmental variables of coastal upwelling systems such as upwelling strength, satellite-derived net primary production, and surface water nutrient concentrations shows different relations between SDA and primary production on the regional scale. On the global scale, SDA appears modulated by the capacity of diatoms to take up silicic acid, which ultimately sets an upper limit to global export production in these ocean regions.

  8. A Freshwater Starvation Mechanism for Dansgaard-Oeschger Cycles

    NASA Astrophysics Data System (ADS)

    Wolff, E. W.; Hewitt, I.; Fowler, A.; Clark, C.; Evatt, G. W.; Munday, D. R.; Stokes, C.

    2014-12-01

    Many northern hemisphere climate records, particularly those from around the North Atlantic, show a series of rapid climate changes that recurred on centennial to millennial timescales throughout most of the last glacial period. These Dansgaard-Oeschger (D-O) sequences are observed most prominently in Greenland ice cores, although they have a global signature, including an out of phase Antarctic signal. They consist of warming jumps of order 10°C, occurring in typically 40 years, followed generally by a slow cooling (Greenland Interstadial, GI) lasting between a few centuries and a few millennia, and then a final rapid temperature drop into a cold Greenland Stadial (GS) that lasts for a similar period. The most distinctive feature of D-O cycles is the rapid warming event, often attributed to a sudden change in the strength of the Atlantic meridional overturning circulation (AMOC). Recent work has suggested that AMOC is most easily disrupted by freshwater delivered through the Arctic. We suggest that the proposed AMOC changes may have occurred as part of a natural oscillation, in which runoff from the Laurentide ice sheet into the Arctic is controlled by temperature around the North Atlantic. The Arctic buffers the salinity changes, but under warm conditions, high runoff eventually leads to water entering the North Atlantic with low enough salinity to switch AMOC into its weaker state. Under the colder conditions now prevailing, the Arctic is starved of runoff, and the salinity rises until a further switch occurs. Contrary to many previous studies, this mechanism does not require large freshwater pulses to the North Atlantic. Instead, steady changes in ice-sheet runoff, driven by the AMOC, lead to a naturally arising oscillator, in which the rapid warmings come about because the Arctic Ocean is starved of freshwater. The changing size of the ice sheets would have affected the magnitude and extent of runoff, and we suggest that this may provide a simple explanation

  9. The salinity, temperature, and delta18O of the glacial deep ocean.

    PubMed

    Adkins, Jess F; McIntyre, Katherine; Schrag, Daniel P

    2002-11-29

    We use pore fluid measurements of the chloride concentration and the oxygen isotopic composition from Ocean Drilling Program cores to reconstruct salinity and temperature of the deep ocean during the Last Glacial Maximum (LGM). Our data show that the temperatures of the deep Pacific, Southern, and Atlantic oceans during the LGM were relatively homogeneous and within error of the freezing point of seawater at the ocean's surface. Our chloride data show that the glacial stratification was dominated by salinity variations, in contrast with the modern ocean, for which temperature plays a primary role. During the LGM the Southern Ocean contained the saltiest water in the deep ocean. This reversal of the modern salinity contrast between the North and South Atlantic implies that the freshwater budget at the poles must have been quite different. A strict conversion of mean salinity at the LGM to equivalent sea-level change yields a value in excess of 140 meters. However, the storage of fresh water in ice shelves and/or groundwater reserves implies that glacial salinity is a poor predictor of mean sea level.

  10. 22 CFR 123.22 - Filing, retention, and return of export licenses and filing of export information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Filing, retention, and return of export licenses and filing of export information. 123.22 Section 123.22 Foreign Relations DEPARTMENT OF STATE....22 Filing, retention, and return of export licenses and filing of export information. (a) Any export...

  11. River Export of Dissolved and Particulate Organic Carbon from Permafrost and Peat Deposits across the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Wild, B.; Andersson, A.; Bröder, L.; Vonk, J.; Hugelius, G.; McClelland, J. W.; Raymond, P. A.; Gustafsson, O.

    2017-12-01

    Permafrost and peat deposits of northern high latitudes store more than 1300 Pg of organic carbon. This carbon has been preserved for thousands of years by cold and moist conditions, but is now increasingly mobilized as temperatures rise. While part will be degraded to CO2 and CH4 and amplify global warming, part will be exported by rivers to the Arctic Ocean where it can be degraded or re-buried by sedimentation. We here use the four large Siberian rivers Ob, Yenisey, Lena, and Kolyma as natural integrators of carbon mobilization in their catchments. We apply isotope based source apportionments and Markov Chain Monte Carlo Simulations to quantify contributions of organic carbon from permafrost and peat deposits to organic carbon exported by these rivers. More specifically, we compare the 14C signatures of dissolved and particulate organic carbon (DOC, POC) sampled close to the river mouths with those of five potential carbon sources; (1) recent aquatic and (2) terrestrial primary production, (3) the active layer of permafrost soils, (4) deep Holocene deposits (including thermokarst and peat deposits) and (5) Ice Complex Deposits. 14C signatures of these endmembers were constrained based on extensive literature review. We estimate that the four rivers together exported 2.4-4.5 Tg organic carbon from permafrost and peat deposits per year. While total organic carbon export was dominated by DOC (90%), the export of organic carbon from permafrost and peat deposits was more equally distributed between DOC (56%) and POC (44%). Recent models predict that ca. 200 Pg carbon will be lost as CO2 or CH4 by 2100 (RCP8.5) from the circumarctic permafrost area, of which roughly a quarter is drained by the Ob, Yenisey, Lena, and Kolyma rivers. Our comparatively low estimates of river carbon export thus suggest limited transfer of organic carbon from permafrost and peat deposits to high latitude rivers, or its rapid degradation within rivers. Our findings highlight the importance

  12. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    USGS Publications Warehouse

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-01-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  13. Inhibition of mRNA export in vertebrate cells by nuclear export signal conjugates

    PubMed Central

    Pasquinelli, Amy E.; Powers, Maureen A.; Lund, Elsebet; Forbes, Douglass; Dahlberg, James E.

    1997-01-01

    Leucine-rich nuclear export signals (NESs) are recognized by the NES receptor exportin 1 and are central to the export of multiple shuttling proteins and RNAs. The export of messenger RNA in vertebrates was, however, thought to occur by a different pathway, because inhibition by injection of a synthetic Rev NES conjugate could not be demonstrated. Here we find that peptide conjugates composed of the NES of either protein kinase A inhibitor protein (PKI) or the HIV-1 Rev protein, when coupled to human serum albumin, are potent inhibitors of mRNA and small nuclear RNA export. These results provide direct evidence that mRNA export in vertebrates depends on interactions between an NES and its cognate NES receptors. PKI NES conjugates are significantly more efficient at inhibiting RNA export than are REV NES conjugates, indicating that different NESs may have different abilities to promote protein and RNA export. Surprisingly, an expected control conjugate containing the mutant Rev NES sequence M10 strongly inhibited the export of intronless dihydrofolate reductase mRNA. Nuclear injection of NES peptide conjugates led to mislocalization to the nucleus of 10–20% of the cytoplasmic Ran GTPase-binding protein (RanBP1) indicating that RanBP1 shuttles between the nucleus and the cytoplasm via an NES pathway. These results demonstrate that in vertebrates the export of mRNA, like that of small nuclear RNA, 5S rRNA, and transport factors such as RanBP1, employs NES-mediated molecular machinery. PMID:9405623

  14. Seven persistent misconceptions about Ocean Nourishment

    NASA Astrophysics Data System (ADS)

    Jones, I.

    2016-02-01

    Ian S F Jones Ocean Technology Group University of Sydney, F09 Australia The productivity of the open ocean is dependent on the flow of nutrients most of which are upwelled from the deep ocean. The natural limitation posed by the restricted supply of nutrients in the soil has been overcome in agriculture by supplying mined or manufactured nutrients. This has increased the productivity of the arable land by a factor of five. Purposeful ocean fertilisation, in contrast, has rarely been practiced in part because of a number of concerns about the potential environmental impacts. In some regions of the ocean iron is the limiting nutrient while in the majority of the ocean, the macronutrient nitrogen limits phytoplankton growth. The fertilization with macronutrients, has been termed Ocean Nourishment and has a number of differences to fertilisation by iron. Some misunderstandings arise because analogies of coastal eutrophication and iron fertilisation are uncritically assumed to apply to macronutrient fertilisation. Seven misunderstandings persist and now can be discounted; Export will be low due to enhancement of the microbial loop. Phosphate and silica will need to be supplied. The quantity and cost of nitrogen make carbon sequestration uneconomic Fertilisation with urea encourages dinoflagellates. Size distribution will unsuitable (too small) for zooplankton and herbivorous fish. Fertilization will cause alarming levels of oxygen consumption. Implementation carries large ecological risk. For low fertilisation concentrations, away from shallow water, in a prevailing current, in temperate waters, the seven concerns above can be shown to be mild enough to justify open ocean small scale scientific experimentation.

  15. 76 FR 11756 - Action Affecting Export Privileges; Ali Amirnazmi; Order Denying Export Privileges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Action Affecting Export Privileges; Ali Amirnazmi; Order Denying Export Privileges In the Matter of: Ali Amirnazmi, Register 63302-066, FCI... release and forfeit $81,277.37. Section 766.25 of the Export Administration Regulations (``EAR'' or...

  16. 7 CFR 1493.80 - Evidence of export.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Export Credit Guarantee Program (GSM-102) and CCC Intermediate Export Credit Guarantee Program (GSM-103) Operations § 1493.80 Evidence of export. (a) Report of export. The exporter is required to provide CCC an evidence of export...

  17. 7 CFR 1493.80 - Evidence of export.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Export Credit Guarantee Program (GSM-102) and CCC Intermediate Export Credit Guarantee Program (GSM-103) Operations § 1493.80 Evidence of export. (a) Report of export. The exporter is required to provide CCC an evidence of export...

  18. 7 CFR 1493.80 - Evidence of export.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Export Credit Guarantee Program (GSM-102) and CCC Intermediate Export Credit Guarantee Program (GSM-103) Operations § 1493.80 Evidence of export. (a) Report of export. The exporter is required to provide CCC an evidence of export...

  19. Resolving the Intricacies of Lateral Exports of Inorganic Carbon and Alkalinity from Coastal Salt Marshes

    NASA Astrophysics Data System (ADS)

    Wang, A. Z.; Chu, S. N.; Kroeger, K. D.; Gonneea, M. E.; Ganju, N. K.

    2017-12-01

    Dynamic lateral exports of dissolved inorganic carbon (DIC) and total alkalinity (Alk) via tidal exchange from highly productive intertidal marshes are an important piece of puzzle in the coastal carbon cycle, challenging our capability of assessing coastal carbon budgets and projecting future changes under anthropogenic pressure. The effects of these exports on seawater chemistry are profound yet complicated to study. This study presents the latest development of assessing lateral DIC and Alk fluxes from tidal marshes and examining their effects on seawater chemistry and coastal carbon budgets. The study evaluates different approaches to quantify these exports in order to obtain insights on the best and efficient way to capture the dynamics of such exports. A state-of-the-art DIC sensor, Channelized Optical System (CHANOS), was deployed to establish the true DIC fluxes. They are compared to the fluxes derived from empirical modeling and traditional bottle measurements. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and Alk over a same tidal cycle. However, their generation is decoupled as a result of deferential effects of aerobic and anaerobic respirations. This creates complex scenarios of large swings of seawater chemistry and buffering capacity in tidal water over tidal and seasonal cycles. Marsh exports of DIC and Alk may have complex implications for the future, more acidified ocean. The latest estimates of marsh DIC and Alk exports suggest they are a major term in the marsh carbon budget and can be translated into one of the primary components in the coastal carbon cycle.

  20. Coccolithovirus facilitation of carbon export in the North Atlantic.

    PubMed

    Laber, Christien P; Hunter, Jonathan E; Carvalho, Filipa; Collins, James R; Hunter, Elias J; Schieler, Brittany M; Boss, Emmanuel; More, Kuldeep; Frada, Miguel; Thamatrakoln, Kimberlee; Brown, Christopher M; Haramaty, Liti; Ossolinski, Justin; Fredricks, Helen; Nissimov, Jozef I; Vandzura, Rebecca; Sheyn, Uri; Lehahn, Yoav; Chant, Robert J; Martins, Ana M; Coolen, Marco J L; Vardi, Assaf; DiTullio, Giacomo R; Van Mooy, Benjamin A S; Bidle, Kay D

    2018-05-01

    Marine phytoplankton account for approximately half of global primary productivity 1 , making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon 2 , which can stimulate nutrient regeneration, primary production and upper ocean respiration 2 via lytic infection and the 'virus shunt'. Ultimately, this limits the trophic transfer of carbon and energy to both higher food webs and the deep ocean 2 . Using imagery taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, along with a suite of diagnostic lipid- and gene-based molecular biomarkers, in situ optical sensors and sediment traps, we show that Coccolithovirus infections of mesoscale (~100 km) Emiliania huxleyi blooms in the North Atlantic are coupled with particle aggregation, high zooplankton grazing and greater downward vertical fluxes of both particulate organic and particulate inorganic carbon from the upper mixed layer. Our analyses captured blooms in different phases of infection (early, late and post) and revealed the highest export flux in 'early-infected blooms' with sinking particles being disproportionately enriched with infected cells and subsequently remineralized at depth in the mesopelagic. Our findings reveal viral infection as a previously unrecognized ecosystem process enhancing biological pump efficiency.

  1. Heat export from the tropics drives mid to late Holocene palaeoceanographic changes offshore southern Australia

    NASA Astrophysics Data System (ADS)

    Perner, Kerstin; Moros, Matthias; De Deckker, Patrick; Blanz, Thomas; Wacker, Lukas; Telford, Richard; Siegel, Herbert; Schneider, Ralph; Jansen, Eystein

    2018-01-01

    The Leeuwin Current (LC), an eastern boundary current, transports tropical waters from the Indo-Pacific Warm Pool (IPWP) towards southern latitudes and modulates oceanic conditions offshore southern Australia. New, high-resolution planktic foraminifer assemblage data and alkenone-derived sea surface temperatures (SST) provide an in-depth view on LC variability and mechanisms driving the current's properties during the mid to late Holocene (last c. 7.4 ka BP). Our marine reconstructions highlight a longer-term mid to late Holocene reduction of tropical heat export from the IPWP area into the LC. Mid Holocene (c. 7.4 to 3.5 ka BP) occurrence of high SSTs (>19.5 °C), tropical planktic foraminifera and a well-stratified water column document an enhanced heat export from the tropics. From c. 3.5 ka BP onwards, a weaker LC and a notably reduced tropical heat export cause oceanic cooling offshore southern Australia. The observed mid to late Holocene trends likely result from large-scale changes in the IPWP's heat storage linked to the El Niño-Southern Oscillation (ENSO) phenomenon. We propose that a strong and warm LC occurs in response to a La Niña-like state of ENSO during the mid Holocene. The late Holocene LC cooling, however, results from a shift towards an El Niño-like state and a more variable ENSO system that causes cooling of the IPWP. Superimposed on these longer-term trends we find evidence of distinct late Holocene millennial-scale phases of enhanced El Niño/La Niña development, which appear synchronous with northern hemispheric climatic variability. Phases of dominant El Niño-like states occur parallel to North Atlantic cold phases: the '2800 years BP cooling event', the 'Dark Ages' and the 'Little Ice Age', whereas the 'Roman Warm Period' and the 'Medieval Climate Anomaly' parallel periods of a predominant La Niña-like state. Our findings provide further evidence of coherent interhemispheric climatic and oceanic conditions during the mid to late

  2. Inhabitants of the Fresh-Water Community.

    ERIC Educational Resources Information Center

    Jorgensen, Joseph; Schroeder, Marlene

    This learner's guide is designed to assist middle school students in studying freshwater organisms. Following a brief introduction to freshwater ecology, simple line drawings facilitate the identification of plants and animals common to Florida's freshwater ecosystems. Emphasis of the short text which accompanies each illustration is upon the…

  3. Final technical report DOE award DE-SC0007206 Improving CESM Efficiency to Study Variable C:N:P Stoichiometry in the Oceans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primeau, Francois William

    2016-02-11

    This report lists the accomplishments of the project, which includes: (1) analysis of inorganic nutrient concentration data as well as suspended particulate organic matter data in the ocean to demonstrate that the carbon to nitrogen to phosphorus ratios (C:N:P) of biological uptake and export vary on large spatial scales, (2) the development of a new computationally efficient method for simulating biogeochemical tracers in earth system models, (3) the application of the method to help calibrate an improved representation of dissolved organic matter in the ocean that includes variable C:N:P stoichiometry. This research is important because biological uptake of carbon andmore » nutrients in the upper ocean and export by sinking particles and downward mixing of dissolved organic matter helps maintain a vertical gradient in the carbon dioxide concentration in the ocean. This gradient is key to understanding the partitioning of CO2 between the ocean and the atmosphere. The final report lists seven peer reviewed scientific publications, one Ph.D. thesis, one technical report and two papers in preparation.« less

  4. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate

    USGS Publications Warehouse

    Hamdan, Leila J.; Wickland, Kimberly P.

    2016-01-01

    Methane is a powerful greenhouse gas, and atmospheric concentrations have risen 2.5 times since the beginning of the Industrial age. While much of this increase is attributed to anthropogenic sources, natural sources, which contribute between 35% and 50% of global methane emissions, are thought to have a role in the atmospheric methane increase, in part due to human influences. Methane emissions from many natural sources are sensitive to climate, and positive feedbacks from climate change and cultural eutrophication may promote increased emissions to the atmosphere. These natural sources include aquatic environments such as wetlands, freshwater lakes, streams and rivers, and estuarine, coastal, and marine systems. Furthermore, there are significant marine sediment stores of methane in the form of clathrates that are vulnerable to mobilization and release to the atmosphere from climate feedbacks, and subsurface thermogenic gas which in exceptional cases may be released following accidents and disasters (North Sea blowout and Deepwater Horizon Spill respectively). Understanding of natural sources, key processes, and controls on emission is continually evolving as new measurement and modeling capabilities develop, and different sources and processes are revealed. This special issue of Limnology and Oceanography gathers together diverse studies on methane production, consumption, and emissions from freshwater, estuarine, and marine systems, and provides a broad view of the current science on methane dynamics of aquatic ecosystems. Here, we provide a general overview of aquatic methane sources, their contribution to the global methane budget, and key uncertainties. We then briefly summarize the contributions to and highlights of this special issue.

  5. 15 CFR 752.15 - Export clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Export clearance. 752.15 Section 752... OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS SPECIAL COMPREHENSIVE LICENSE § 752.15 Export clearance. (a) Shipper's Export Declaration (SED) or Automated Export...

  6. Biogeochemical modelling of dissolved oxygen in a changing ocean

    NASA Astrophysics Data System (ADS)

    Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha

    2017-08-01

    Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  7. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  8. Influence of net freshwater supply on salinity in Florida Bay

    USGS Publications Warehouse

    Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.

    2000-01-01

    An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central

  9. 40 CFR 273.40 - Exports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Exports. 273.40 Section 273.40... UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.40 Exports. A... exporter in 40 CFR 262.53, 262.56(a)(1) through (4), (6), and (b) and 262.57; (b) Export such universal...

  10. 40 CFR 273.20 - Exports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Exports. 273.20 Section 273.20... UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.20 Exports. A... exporter in 40 CFR 262.53, 262.56(a) (1) through (4), (6), and (b) and 262.57; (b) Export such universal...

  11. Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions

    PubMed Central

    Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile

    2017-01-01

    The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two ‘no bloom’ periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6–7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions. PMID:28212418

  12. Detecting the influence of ocean process on the moisture supply for India summer monsoon from Satellite Sea Surface Salinity

    NASA Astrophysics Data System (ADS)

    Tang, W.; Yueh, S. H.; Liu, W. T.; Fore, A.; Hayashi, A.

    2016-02-01

    A strong contrast in the onset of Indian summer monsoon was observed by independent satellites: average rain rate over India subcontinent (IS) in June was more than doubled in 2013 than 2012 (TRMM); also observed are larger area of wet soil (Aquarius) and high water storage (GRACE). The difference in IS rainfall was contributed to the moisture inputs through west coast of India, estimated from ocean wind (OSCAT2) and water vapor (TMI). This is an interesting testbed for studying the role of ocean on terrestrial water cycle, in particular the Indian monsoon, which has tremendous social-economical impact. What is the source of extra moisture in 2013 or deficit in 2012 for the monsoon onset? Is it possible to quantify the contribution of ocean process that maybe responsible for redistributing the freshwater in favor of the summer monsoon moisture supply? This study aims to identify the influence of ocean processes on the freshwater exchange between air-sea interfaces, using Aquarius sea surface salinity (SSS). We found two areas in Indian Ocean with high correlation between IS rain rate and Aquarius SSS: one area is in the Arabian Sea adjacent to IS, another area is a horizontal patch from 60°E to 100°E centered around 10°S. On the other hand, E-P (OAflux, TRMM) shows no similar correlation patterns with IS rain. Based on the governing equation of the salt budget in the upper ocean, we define the freshwater flux, F, from the oceanic branch of the water cycle, including contributions from salinity tendency, advection, and subsurface process. The tendency and advection terms are estimated using Aquarius SSS and OSCAR ocean current. We will present results of analyzing the spatial and temporal variability of F and evidence of and hypothesis on how the oceanic processes may enhance the moisture supply for summer Indian monsoon onset in 2013 comparing with 2012. The NASA Soil Moisture Active Passive (SMAP) has been producing the global soil moisture (SM) every 2-3 days

  13. Southern Ocean bottom water characteristics in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, CéLine; Heywood, Karen J.; Stevens, David P.; Ridley, Jeff K.

    2013-04-01

    Southern Ocean deep water properties and formation processes in climate models are indicative of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean temperature and density averaged over 1986-2005 from 15 CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models are compared with an observed climatology, focusing on bottom water. Bottom properties are reasonably accurate for half the models. Ten models create dense water on the Antarctic shelf, but it mixes with lighter water and is not exported as bottom water as in reality. Instead, most models create deep water by open ocean deep convection, a process occurring rarely in reality. Models with extensive deep convection are those with strong seasonality in sea ice. Optimum bottom properties occur in models with deep convection in the Weddell and Ross Gyres. Bottom Water formation processes are poorly represented in ocean models and are a key challenge for improving climate predictions.

  14. 19 CFR 10.430 - Export requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Export requirements. 10.430 Section 10.430 Customs... Export Requirements § 10.430 Export requirements. (a) Submission of certification to CBP. An exporter or producer in the United States that signs a certification of origin for a good exported from the United...

  15. Subsurface phytoplankton layers in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, J. E.

    2016-02-01

    Recent observations underscored the near-ubiquitous presence of subsurface chlorophyll maxima (SCM) and their potential importance for total primary production (PP) and pelagic food webs in perennially stratified waters of the Arctic Ocean. The contribution of SCM layers to annual PP is particularly important in oligotrophic areas, where modest nutrient supply to the upper euphotic zone results in weak or short-lived phytoplankton blooms near the surface. The large amount of nutrients present in the Pacific halocline relative to comparable depths in the Atlantic sector of the Arctic may also foster particularly productive SCM along the path of Pacific water. The association between strongly stratified conditions and the SCM in today's Arctic Ocean has broad relevance in providing a glimpse into the future of other oceans whose vertical stratification progressively rises with water temperature and freshwater content. In this regard, there is much to learn on the photosynthetic and nutritive ecology of SCM layers, whose biogeochemical significance depends on the extent to which they rely on allochthonous nitrogen (new production), their contribution to carbon biomass and their ability to influence air-sea CO2 exchange. Here we report on several years of eco-physiological investigations of SCM across the Arctic Ocean, with an aim to provide a basis of comparison with the ecology of SCM in other ocean areas.

  16. Amounts, isotopic character, and ages of organic and inorganic carbon exported from rivers to ocean margins: 2. Assessment of natural and anthropogenic controls

    NASA Astrophysics Data System (ADS)

    Hossler, Katie; Bauer, James E.

    2013-04-01

    Riverine exports of carbon (C) and organic matter (OM) are regulated by a variety of natural and anthropogenic factors. Understanding the relationships between these various factors and C and OM exports can help to constrain global C budgets and allow assessment of current and future anthropogenic impacts on both riverine and global C cycles. We quantified the effects of multiple natural and anthropogenic controls on riverine export fluxes and compositions of particulate organic C, dissolved organic C, and dissolved inorganic C for a regional group of eight rivers in the northeastern U.S. Potential controls related to hydrogeomorphology and regional climate, soil order, soil texture, bedrock lithology, land use, and anthropogenic factors were analyzed individually, collectively, and at scales of both local and regional influence. Factors related to hydrogeomorphology and climate, followed in importance by land use and anthropogenic factors, exhibited the strongest impacts on riverine C exports and compositions, particularly at smaller localized scales. The effects of hydrogeomorphology and climate were primarily related to volumetric flow, which resulted in greater exports of terrestrial and total C. Principal anthropogenic factors included impacts of wastewater treatment plants (WWTPs) and river impoundments. The presence of WWTPs as well as anthropogenic use of carbonate-based materials (e.g., limestone) may have substantially increased riverine C exports, particularly fossil C exports, in the study region. The presence of nuclear power plants in the associated watersheds is also discussed because of the potential for anthropogenic 14C inputs and subsequent biasing of aquatic C studies utilizing natural abundance 14C.

  17. Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions

    NASA Astrophysics Data System (ADS)

    Hendry, Katharine R.; Georg, R. Bastian; Rickaby, Rosalind E. M.; Robinson, Laura F.; Halliday, Alex N.

    2010-04-01

    The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO 2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep waters. In particular, the upwelling of silicic acid (Si(OH) 4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep water Si(OH) 4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH) 4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH) 4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH) 4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.

  18. Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon

    PubMed Central

    Bao, Hongyan; Lee, Tsung-Yu; Huang, Jr-Chuan; Feng, Xiaojuan; Dai, Minhan; Kao, Shuh-Ji

    2015-01-01

    The land-to-ocean export of particulate organic carbon (POC) connects carbon flow from the atmosphere through land to the ocean, of which the contemporary fraction that reaches the deep sea for burial may effectively affect atmospheric CO2. In this regard, small mountainous rivers (SMRs) in Oceania, a global erosion hotspot driven by torrential typhoon rain and active earthquakes are potentially important. Here we measured typhoon lignin discharges for Taiwan SMRs. We found that the particulate lignin export in 96 hours by a single SMR amounting to ~20% of the annual export by Mississippi River. The yearly particulate lignin discharge from Taiwan Island (35,980 km2) is governed by the frequency and magnitude of typhoon; thus, the historical lignin export ranged widely from 1.5 to 99.7 Gg yr−1, which resulted in a 10–100 times higher areal yield relative to non-Oceanian rivers. The lignin-derived modern POC output from Oceania region is 37 ± 21 Tg C yr−1, account for approximately 20% of the annual modern POC export from global rivers. Coupled with the hyperpycnal pathway, the forested watersheds of SMRs in Oceania may serve as a giant factory to rapidly produce and efficiently convey modern POC into deep sea for sequestration. PMID:26584586

  19. Molluscs for Sale: Assessment of Freshwater Gastropods and Bivalves in the Ornamental Pet Trade.

    PubMed

    Ng, Ting Hui; Tan, Siong Kiat; Wong, Wing Hing; Meier, Rudolf; Chan, Sow-Yan; Tan, Heok Hui; Yeo, Darren C J

    2016-01-01

    The ornamental pet trade is often considered a key culprit for conservation problems such as the introduction of invasive species (including infectious diseases) and overharvesting of rare species. Here, we present the first assessment of the biodiversity of freshwater molluscs in the ornamental pet trade in Singapore, one of the most important global hubs of the ornamental aquarium trade, and discuss associated conservation concerns. We recorded freshwater molluscs from ornamental pet shops and major exporters including non-ornamental species (e.g., hitchhikers, molluscs sold as fish feed). We recorded an unexpectedly high diversity-59 species-of freshwater bivalves and gastropods, with the majority (38 species or 64%) being from the Oriental region. In addition to morphological examination, we sequenced the DNA barcode region of mitochondrial CO1 and 16S genes to provide molecular data for the confirmation of the identification and for future re-identification. DNA barcodes were obtained for 50 species, and all but four were separated by > 3% uncorrected pairwise distances. The trade has been considered a main introduction pathway for non-native species to Singapore, and we found that out of 15 species in the trade as well as in the wild in Singapore, 12 are either introduced or of unknown origin, representing almost half of the known non-native freshwater molluscs in Singapore. Particularly prevalent are non-ornamental species: six hitchhikers on aquarium plants and six species sold as fish feed. We found that a quarter of the trade species have a history of introduction, which includes 11 known or potentially invasive species. We conclude that potential overharvesting is difficult to assess because only half of the trade species have been treated by IUCN. Of these, 21 species are of Least Concern and three are Data Deficient. Our checklist, with accompanying DNA barcodes, images, and museum vouchers, provides an important reference library for future monitoring

  20. Molluscs for Sale: Assessment of Freshwater Gastropods and Bivalves in the Ornamental Pet Trade

    PubMed Central

    Tan, Siong Kiat; Wong, Wing Hing; Meier, Rudolf; Chan, Sow-Yan; Tan, Heok Hui; Yeo, Darren C. J.

    2016-01-01

    The ornamental pet trade is often considered a key culprit for conservation problems such as the introduction of invasive species (including infectious diseases) and overharvesting of rare species. Here, we present the first assessment of the biodiversity of freshwater molluscs in the ornamental pet trade in Singapore, one of the most important global hubs of the ornamental aquarium trade, and discuss associated conservation concerns. We recorded freshwater molluscs from ornamental pet shops and major exporters including non-ornamental species (e.g., hitchhikers, molluscs sold as fish feed). We recorded an unexpectedly high diversity—59 species—of freshwater bivalves and gastropods, with the majority (38 species or 64%) being from the Oriental region. In addition to morphological examination, we sequenced the DNA barcode region of mitochondrial CO1 and 16S genes to provide molecular data for the confirmation of the identification and for future re-identification. DNA barcodes were obtained for 50 species, and all but four were separated by > 3% uncorrected pairwise distances. The trade has been considered a main introduction pathway for non-native species to Singapore, and we found that out of 15 species in the trade as well as in the wild in Singapore, 12 are either introduced or of unknown origin, representing almost half of the known non-native freshwater molluscs in Singapore. Particularly prevalent are non-ornamental species: six hitchhikers on aquarium plants and six species sold as fish feed. We found that a quarter of the trade species have a history of introduction, which includes 11 known or potentially invasive species. We conclude that potential overharvesting is difficult to assess because only half of the trade species have been treated by IUCN. Of these, 21 species are of Least Concern and three are Data Deficient. Our checklist, with accompanying DNA barcodes, images, and museum vouchers, provides an important reference library for future

  1. Sustaining healthy freshwater ecosystems

    USGS Publications Warehouse

    Baron, Jill S.; Poff, N.L.

    2004-01-01

    Functionally intact and biologically complex freshwater ecosystems provide many economically valuable commodities and services to society. The services supplied by freshwater ecosystems include flood control, transportation, recreation, purification of human and industrial wastes, habitat for plants and animals, and production of fish and other foods and marketable goods. These human benefits are called ecological services, defined as “the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfill human life” (Daily 1997). Over the long term, healthy freshwater ecosystems are likely to retain the adaptive capacity to sustain production of these ecological services in the face of future environmental disruptions such as climate change.

  2. Metagenomic Insights into the Evolution, Function, and Complexity of the Planktonic Microbial Community of Lake Lanier, a Temperate Freshwater Ecosystem ▿†

    PubMed Central

    Oh, Seungdae; Caro-Quintero, Alejandro; Tsementzi, Despina; DeLeon-Rodriguez, Natasha; Luo, Chengwei; Poretsky, Rachel; Konstantinidis, Konstantinos T.

    2011-01-01

    Lake Lanier is an important freshwater lake for the southeast United States, as it represents the main source of drinking water for the Atlanta metropolitan area and is popular for recreational activities. Temperate freshwater lakes such as Lake Lanier are underrepresented among the growing number of environmental metagenomic data sets, and little is known about how functional gene content in freshwater communities relates to that of other ecosystems. To better characterize the gene content and variability of this freshwater planktonic microbial community, we sequenced several samples obtained around a strong summer storm event and during the fall water mixing using a random whole-genome shotgun (WGS) approach. Comparative metagenomics revealed that the gene content was relatively stable over time and more related to that of another freshwater lake and the surface ocean than to soil. However, the phylogenetic diversity of Lake Lanier communities was distinct from that of soil and marine communities. We identified several important genomic adaptations that account for these findings, such as the use of potassium (as opposed to sodium) osmoregulators by freshwater organisms and differences in the community average genome size. We show that the lake community is predominantly composed of sequence-discrete populations and describe a simple method to assess community complexity based on population richness and evenness and to determine the sequencing effort required to cover diversity in a sample. This study provides the first comprehensive analysis of the genetic diversity and metabolic potential of a temperate planktonic freshwater community and advances approaches for comparative metagenomics. PMID:21764968

  3. Wind-driven export of Weddell Sea slope water

    NASA Astrophysics Data System (ADS)

    Meijers, A. J. S.; Meredith, M. P.; Abrahamsen, E. P.; Morales Maqueda, M. A.; Jones, D. C.; Naveira Garabato, A. C.

    2016-10-01

    The export of waters from the Weddell Gyre to lower latitudes is an integral component of the southern subpolar contribution to the three-dimensional oceanic circulation. Here we use more than 20 years of repeat hydrographic data on the continental slope on the northern tip of the Antarctic Peninsula and 5 years of bottom lander data on the slope at 1000 m to show the intermittent presence of a relatively cold, fresh, westward flowing current. This is often bottom-intensified between 600 and 2000 dbar with velocities of over 20 cm s-1, transporting an average of 1.5 ± 1.5 Sv. By comparison with hydrography on the continental slope within the Weddell Sea and modeled tracer release experiments we show that this slope current is an extension of the Antarctic Slope Current that has crossed the South Scotia Ridge west of Orkney Plateau. On monthly to interannual time scales the density of the slope current is negatively correlated (r > 0.6 with a significance of over 95%) with eastward wind stress over the northern Weddell Sea, but lagging it by 6-13 months. This relationship holds in both the high temporal resolution bottom lander time series and the 20+ year annual hydrographic occupations and agrees with Weddell Sea export variability observed further east. We compare several alternative hypotheses for this wind stress/export relationship and find that it is most consistent with wind-driven acceleration of the gyre boundary current, possibly modulated by eddy dynamics, and represents a mechanism by which climatic perturbations can be rapidly transmitted as fluctuations in the supply of intermediate-level waters to lower latitudes.

  4. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005-2014

    NASA Astrophysics Data System (ADS)

    Yao, Wenjun; Shi, Jiuxin; Zhao, Xiaolong

    2017-07-01

    Basin-scale freshening of Antarctic Intermediate Water (AAIW) is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo) data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity increase of thermocline water, indicating a hydrological cycle intensification. This was supported by the precipitation-minus-evaporation change in the Southern Hemisphere from 2000 to 2014. Freshwater input from atmosphere to ocean surface increased in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle changes, a decrease in the transport of Agulhas Leakage (AL), which was revealed by the simulated velocity field, was proposed to be a contributor to the associated freshening of AAIW. Further calculation showed that such a decrease could account for approximately 53 % of the observed freshening (mean salinity reduction of about 0.012 over the AAIW layer). The estimated variability of AL was inferred from a weakening of wind stress over the South Indian Ocean since the beginning of the 2000s, which would facilitate freshwater input from the source region. The mechanical analysis of wind data here was qualitative, but it is contended that this study would be helpful to validate and test predictably coupled sea-air model simulations.

  5. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    PubMed

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Local Wind Influence on Freshwater Plume Behavior: Application to the Catalan Shelf.

    NASA Astrophysics Data System (ADS)

    Liste, Maria; Grifoll, Manel; Monbaliu, Jaak; Keupers, Ingrid; Komijani, Homayoon

    2013-04-01

    Introduction Freshwater fluxes are not always considered, and often their 3D character is neglected. The "distributed" continental run-off is seldom taken into consideration. The main aim of the EU-FP7 Field_Ac project (www.field_ac.eu), was to improve operational service for coastal areas and to generate added value for shelf and regional scale predictions including land discharge as a boundary condition. In this paper the dispersal of a fresh water plume in a small part of the Catalan Coast (NW Mediterranean Sea) caused by a flash flood event in March 2011 is presented in response to the local wind forcing. Observations and modeling results are shown for a short period but with a large impact on the receiving coastal waters. Methodology and aim For the coastal circulation model, version 3.0 of the Regional Ocean Modeling System [ROMS, Shchepetkin and McWilliams, 2005] has been chosen. ROMS solves the 3-D Reynolds-Averaged Navier-Stokes equations in sigma coordinates. The code design is modular, so that different choices for advection and mixing, for example, may be applied by simply modifying preprocessor flags. Nested increasing-resolution models have been implemented in order to reproduce with sufficient spatial resolution the coastal circulation and the river plume evolution in a small portion of the Catalan coastal area. The boundary conditions for the largest domain model are obtained from the MyOcean products. River and urban run-off are estimated based on measured or predicted rainfall in the contributing catchments areas. Conceptual models based on a reservoir-type schematization of the river and sewer network have been set up to allow for fast prediction of the different point source boundary conditions [Keupers et al., 2011]. Model output data are compared to in situ data from dedicated campaigns during the Field_AC Project and to data from operational buoys in the Catalan coastal area. Results Wind forcing leads to freshwater spreading. As expected

  7. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump

    NASA Astrophysics Data System (ADS)

    Turner, Jefferson T.

    2015-01-01

    The 'biological pump' is the process by which photosynthetically-produced organic matter in the ocean descends from the surface layer to depth by a combination of sinking particles, advection or vertical mixing of dissolved organic matter, and transport by animals. Particulate organic matter that is exported downward from the euphotic zone is composed of combinations of fecal pellets from zooplankton and fish, organic aggregates known as 'marine snow' and phytodetritus from sinking phytoplankton. Previous reviews by Turner and Ferrante (1979) and Turner (2002) focused on publications that appeared through late 2001. Since that time, studies of the biological pump have continued, and there have been >300 papers on vertical export flux using sediment traps, large-volume filtration systems and other techniques from throughout the global ocean. This review will focus primarily on recent studies that have appeared since 2001. Major topics covered in this review are (1) an overview of the biological pump, and its efficiency and variability, and the role of dissolved organic carbon in the biological pump; (2) zooplankton fecal pellets, including the contribution of zooplankton fecal pellets to export flux, epipelagic retention of zooplankton fecal pellets due to zooplankton activities, zooplankton vertical migration and fecal pellet repackaging, microbial ecology of fecal pellets, sinking velocities of fecal pellets and aggregates, ballasting of sinking particles by mineral contents, phytoplankton cysts, intact cells and harmful algae toxins in fecal pellets, importance of fecal pellets from various types of zooplankton, and the role of zooplankton fecal pellets in picoplankton export; (3) marine snow, including the origins, abundance, and distributions of marine snow, particles and organisms associated with marine snow, consumption and fragmentation of marine snow by animals, pathogens associated with marine snow; (4) phytodetritus, including pulsed export of

  8. The Bay of Bengal : an ideal laboratory for studying salinity

    NASA Astrophysics Data System (ADS)

    Vialard, jerome; Lengaigne, Matthieu; Akhil, Valiya; Chaitanya, Akurathi; Krishna-Mohan, Krishna; D'Ovidio, Francesco; Keerthi, Madhavan; Benshila, Rachid; Durand, Fabien; Papa, Fabrice; Suresh, Iyappan; Neetu, Singh

    2017-04-01

    The Bay of Bengal combines several unique features that make it an excellent laboratory to study the variability of salinity and its potential effects on the oceanic circulation and climate. This basin receives very large quantities of freshwater in association to the southwest monsoon, either directly from rain or indirectly through the runoffs of the Ganges-Brahmaputra and Irrawaddy. This large quantity of freshwater in a small, semi enclosed basin results in some of the lowest sea surface salinities (SSS) and strongest near-surface haline stratification in the tropical band. The strong monsoon winds also drive an energetic circulation, which exports the excess water received during the monsoon and results in strong horizontal salinity gradients. In this talk, I will summarize several studies of the Bay of Bengal salinity variability and its impacts undertaken in the context of an Indo-French collaboration. In situ data collected along the coast by fishermen and model results show that the intense, coastally-trapped East India Coastal Current (EICC) transports the very fresh water near the Ganges-Brahmaputra river mouth along the eastern Bay of Bengal rim to create a narrow, very fresh "river in the sea" after the southwest monsoon. The salinity-induced pressure gradient contributes to almost 50% of the EICC intensity and sustains mesoscale eddy generation through its effect on horizontal current shears and baroclinic gradients. Oceanic eddies play a strong role in exporting this fresh water from the coast to the basin interior. This "river in the sea" has a strong interannual variability related to the EICC remote modulation by the Indian Ocean Dipole (a regional climate mode). I will also discuss the potential effect of haline stratification on the regional climate through its influence on the upper ocean budget. Finally, I will briefly discuss the performance of remote-sensing for observing SSS in the Bay of Bengal.

  9. Using Ocean Color Satellite Data to Estimate Economics Benefits Associated with Monitoring and Preventing Harmful Algal Blooms

    EPA Science Inventory

    This presentation describes preliminary work that is underway that will illustrate the use of ocean land colour instrument data (Sentinel-3 & Landsat) to detect and monitor harmful algal blooms (HABS) in freshwater lakes for two types of economic analyses. This project is a j...

  10. Export of microplastics from land to sea. A modelling approach.

    PubMed

    Siegfried, Max; Koelmans, Albert A; Besseling, Ellen; Kroeze, Carolien

    2017-12-15

    Quantifying the transport of plastic debris from river to sea is crucial for assessing the risks of plastic debris to human health and the environment. We present a global modelling approach to analyse the composition and quantity of point-source microplastic fluxes from European rivers to the sea. The model accounts for different types and sources of microplastics entering river systems via point sources. We combine information on these sources with information on sewage management and plastic retention during river transport for the largest European rivers. Sources of microplastics include personal care products, laundry, household dust and tyre and road wear particles (TRWP). Most of the modelled microplastics exported by rivers to seas are synthetic polymers from TRWP (42%) and plastic-based textiles abraded during laundry (29%). Smaller sources are synthetic polymers and plastic fibres in household dust (19%) and microbeads in personal care products (10%). Microplastic export differs largely among European rivers, as a result of differences in socio-economic development and technological status of sewage treatment facilities. About two-thirds of the microplastics modelled in this study flow into the Mediterranean and Black Sea. This can be explained by the relatively low microplastic removal efficiency of sewage treatment plants in the river basins draining into these two seas. Sewage treatment is generally more efficient in river basins draining into the North Sea, the Baltic Sea and the Atlantic Ocean. We use our model to explore future trends up to the year 2050. Our scenarios indicate that in the future river export of microplastics may increase in some river basins, but decrease in others. Remarkably, for many basins we calculate a reduction in river export of microplastics from point-sources, mainly due to an anticipated improvement in sewage treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. 7 CFR 1280.106 - Exporter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Lamb Promotion, Research, and Information Order Definitions § 1280.106 Exporter. Exporter means any person who exports domestic live lambs from the United States. ...

  12. 7 CFR 1493.470 - Evidence of export.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Supplier Credit Guarantee... provide CCC an evidence of export report for each shipment made under the payment guarantee. This report... participation in any of the following CCC or USDA export program: Export Enhancement Program, Dairy Export...

  13. 7 CFR 1493.470 - Evidence of export.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Supplier Credit Guarantee... provide CCC an evidence of export report for each shipment made under the payment guarantee. This report... participation in any of the following CCC or USDA export program: Export Enhancement Program, Dairy Export...

  14. 7 CFR 1493.470 - Evidence of export.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC... exporter is required to provide CCC an evidence of export report for each shipment made under the payment... participation in any of the following CCC or USDA export program: Export Enhancement Program, Dairy Export...

  15. 7 CFR 1493.470 - Evidence of export.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Supplier Credit Guarantee... provide CCC an evidence of export report for each shipment made under the payment guarantee. This report... participation in any of the following CCC or USDA export program: Export Enhancement Program, Dairy Export...

  16. 7 CFR 1493.80 - Evidence of export.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Export Credit Guarantee Program (GSM-102) and CCC Intermediate Export Credit Guarantee Program (GSM-103) Operations § 1493.80 Evidence of export. (a) Report of export. The exporter is required to provide CCC an...

  17. Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus.

    PubMed

    Minamino, Tohru

    2018-06-01

    The bacterial flagellum is supramolecular motility machinery consisting of the basal body, the hook and the filament. Flagellar proteins are translocated across the cytoplasmic membrane via a type III protein export apparatus, diffuse down the central channel of the growing structure and assemble at the distal end. Flagellar assembly begins with the basal body, followed by the hook and finally the filament. The completion of hook assembly is the most important morphological checkpoint of the sequential flagellar assembly process. When the hook reaches its mature length of about 55 nm in Salmonella enterica, the type III protein export apparatus switches export specificity from proteins required for the structure and assembly of the hook to those responsible for filament assembly, thereby terminating hook assembly and initiating filament assembly. Three flagellar proteins, namely FliK, FlhB and FlhA, are responsible for this substrate specificity switching. Upon completion of the switching event, interactions among FlhA, the cytoplasmic ATPase complex and flagellar type III export chaperones establish the assembly order of the filament at the hook tip. Here, we describe our current understanding of a hierarchical protein export mechanism used in flagellar type III protein export.

  18. 7 CFR 1218.6 - Exporter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.6 Exporter. Exporter means a person involved in exporting blueberries from another country to the United States. ...

  19. 7 CFR 1218.6 - Exporter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.6 Exporter. Exporter means a person involved in exporting blueberries from another country to the United States. ...

  20. 7 CFR 1218.6 - Exporter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.6 Exporter. Exporter means a person involved in exporting blueberries from another country to the United States. ...

  1. 7 CFR 1218.6 - Exporter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.6 Exporter. Exporter means a person involved in exporting blueberries from another country to the United States. ...

  2. 7 CFR 1218.6 - Exporter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.6 Exporter. Exporter means a person involved in exporting blueberries from another country to the United States. ...

  3. Estimating the contribution of strong daily export events to total pollutant export from the United States in summer

    NASA Astrophysics Data System (ADS)

    Fang, Yuanyuan; Fiore, Arlene M.; Horowitz, Larry W.; Gnanadesikan, Anand; Levy, Hiram; Hu, Yongtao; Russell, Armistead G.

    2009-12-01

    While the export of pollutants from the United States exhibits notable variability from day to day and is often considered to be "episodic," the contribution of strong daily export events to total export has not been quantified. We use carbon monoxide (CO) as a tracer of anthropogenic pollutants in the Model of OZone And Related Tracers (MOZART) to estimate this contribution. We first identify the major export pathway from the United States to be through the northeast boundary (24-48°N along 67.5°W and 80-67.5°W along 48°N), and then analyze 15 summers of daily CO export fluxes through this boundary. These daily CO export fluxes have a nearly Gaussian distribution with a mean of 1100 Gg CO day-1 and a standard deviation of 490 Gg CO day-1. To focus on the synoptic variability, we define a "synoptic background" export flux equal to the 15 day moving average export flux and classify strong export days according to their fluxes relative to this background. As expected from Gaussian statistics, 16% of summer days are "strong export days," classified as those days when the CO export flux exceeds the synoptic background by one standard deviation or more. Strong export days contributes 25% to the total export, a value determined by the relative standard deviation of the CO flux distribution. Regressing the anomalies of the CO export flux through the northeast U.S. boundary relative to the synoptic background on the daily anomalies in the surface pressure field (also relative to a 15 day running mean) suggests that strong daily export fluxes are correlated with passages of midlatitude cyclones over the Gulf of Saint Lawrence. The associated cyclonic circulation and Warm Conveyor Belts (WCBs) that lift surface pollutants over the northeastern United States have been shown previously to be associated with long-range transport events. Comparison with observations from the 2004 INTEX-NA field campaign confirms that our model captures the observed enhancements in CO outflow

  4. Freshwater salinization syndrome on a continental scale

    PubMed Central

    Likens, Gene E.; Pace, Michael L.; Utz, Ryan M.; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-01

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. PMID:29311318

  5. Climate, carbon cycling, and deep-ocean ecosystems.

    PubMed

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  6. Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient.

    PubMed

    Gregory-Eaves, Irene; Demers, J Marc J; Kimpe, Lynda; Krümmel, Eva M; Macdonald, Robie W; Finney, Bruce P; Blais, Jules M

    2007-06-01

    Many have demonstrated that anadromous Pacific salmon are significant vectors of nutrients from the ocean to freshwaters. Recently. however, it has been recognized that salmon spawners also input significant quantities of contaminants. The objectives of this paper are to delineate the extent to which salmon-derived nutrients are integrated into the freshwater food web using delta(15)N and delta(13)C and to assess the influence of the salmon pathway in the accumulation of contaminants in rainbow trout (Oncorhynchus mykiss). We found that the delta(15)N and delta(13)C of food web components were related positively and significantly to sockeye salmon (Oncorhynchus nerka) spawner density. Contaminant concentrations in rainbow trout also positively and significantly were related to sockeye salmon spawner density. These data suggest that the anadromous salmon nutrient and contaminant pathways are related and significantly impact the contaminant burden of resident fish.

  7. Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Landolfi, A.; Somes, C. J.; Koeve, W.; Zamora, L. M.; Oschlies, A.

    2017-08-01

    There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (˜+5 Tg N y-1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.

  8. Patterns of Indian Ocean Sea-Level Change in a Warming Climate

    DTIC Science & Technology

    2010-08-01

    distribution is unlimited. 13. SUPPLEMENTARY NOTES 20110415461 14 ABSTRACT Global sea level has risen during the past decades as a result of thermal...expansion of the warming ocean and freshwater addition from melting continental icel However, sea-level rise is not globally uniforml, 2, 3, 4, 5...7320 Division Head Ruth H. Preller, 7300 Security. Code 1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public

  9. Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.

    PubMed

    Fernández-Castro, B; Mouriño-Carballido, B; Marañón, E; Chouciño, P; Gago, J; Ramírez, T; Vidal, M; Bode, A; Blasco, D; Royer, S-J; Estrada, M; Simó, R

    2015-09-09

    The input of new nitrogen into the euphotic zone constrains the export of organic carbon to the deep ocean and thereby the biologically mediated long-term CO2 exchange between the ocean and atmosphere. In low-latitude open-ocean regions, turbulence-driven nitrate diffusion from the ocean's interior and biological fixation of atmospheric N2 are the main sources of new nitrogen for phytoplankton productivity. With measurements across the tropical and subtropical Atlantic, Pacific and Indian oceans, we show that nitrate diffusion (171±190 μmol m(-2) d(-1)) dominates over N2 fixation (9.0±9.4 μmol m(-2) d(-1)) at the time of sampling. Nitrate diffusion mediated by salt fingers is responsible for ca. 20% of the new nitrogen supply in several provinces of the Atlantic and Indian Oceans. Our results indicate that salt finger diffusion should be considered in present and future ocean nitrogen budgets, as it could supply globally 0.23-1.00 Tmol N yr(-1) to the euphotic zone.

  10. Biogeochemical modelling of dissolved oxygen in a changing ocean.

    PubMed

    Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha

    2017-09-13

    Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of p CO 2 -sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a p CO 2 -sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  11. Plastic pollution in freshwater ecosystems: macro-, meso-, and microplastic debris in a floodplain lake.

    PubMed

    Blettler, Martin C M; Ulla, Maria Alicia; Rabuffetti, Ana Pia; Garello, Nicolás

    2017-10-23

    Plastic pollution is considered an important environmental problem by the United Nations Environment Programme, and it is identified, alongside climate change, as an emerging issue that might affect biological diversity and human health. However, despite research efforts investigating plastics in oceans, relatively little studies have focused on freshwater systems. The aim of this study was to estimate the spatial distribution, types, and characteristics of macro-, meso-, and microplastic fragments in shoreline sediments of a freshwater lake. Food wrappers (mainly polypropylene and polystyrene), bags (high- and low-density polyethylene), bottles (polyethylene terephthalate), and disposable Styrofoam food containers (expanded polystyrene) were the dominant macroplastics recorded in this study. Contrary to other studies, herein macroplastic item surveys would not serve as surrogates for microplastic items. This is disadvantageous since macroplastic surveys are relatively easier to conduct. Otherwise, an average of 25 mesoplastics (mainly expanded polystyrene) and 704 microplastic particles (diverse resins) were recorded per square meter in sandy sediments. Comparisons with other studies from freshwater and marine beaches indicated similar relevance of plastic contamination, demonstrating for the first time that plastic pollution is a serious problem in the Paraná floodplain lakes. This study is also valuable from a social/educational point of view, since plastic waste has been ignored in the Paraná catchment as a pollutant problem, and therefore, the outcome of the current study is a relevant contribution for decision makers.

  12. 75 FR 52505 - Fiscal Year 2011 Veterinary Import/Export Services, Veterinary Diagnostic Services, and Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ...] Fiscal Year 2011 Veterinary Import/Export Services, Veterinary Diagnostic Services, and Export... certain veterinary diagnostic services; and for export certification of plants and plant products. The..., through September 30, 2011). FOR FURTHER INFORMATION CONTACT: For information on Veterinary Diagnostic...

  13. Freshwater fluxes into the subpolar North Atlantic from secular trends in Arctic land ice mass balance

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Enderlin, E. M.; Howat, I. M.; Wouters, B.; van den Broeke, M.

    2015-12-01

    Freshwater fluxes (FWF) from river runoff and precipitation minus evaporation for the pan Arctic seas are relatively well documented and prescribed in ocean GCMs. Fluxes from Greenland and Arctic glaciers and ice caps on the other hand are generally ignored, despite their potential impacts on ocean circulation and marine biology and growing evidence for changes to the hydrography of parts of the subpolar North Atlantic. In a previous study we determined the FWF from Greenland for the period 1958-2010 using a combination of observations and regional climate modeling. Here, we update the analysis with data from new satellite observations to extend the record both in space and time. The new FWF estimates cover the period 1958-2014 and include the Canadian, Russian and Norwegian Arctic (Svalbard) in addition to the contributions from Greenland. We combine satellite altimetry (including CryoSat 2) with grounding line flux data, regional climate modeling of surface mass balance and gravimetry to produce consistent estimates of solid ice and liquid FWF into the Arctic and North Atlantic Oceans. The total cumulative FWF anomaly from land ice mass loss started to increase significantly in the mid 1990s and now exceeds 5000 km^3, a value that is about half of the Great Salinity Anomaly of the 1970s. The majority of the anomaly is entering two key areas of deep water overturning in the Labrador and Irminger Seas, at a rate that has been increasing steadily over the last ~20 years. Since the mid 2000s, however, the Canadian Arctic archipelago has been making a significant contribution to the FW anomaly entering Baffin Bay. Tracer experiments with eddy-permitting ocean GCMs suggest that the FW input from southern Greenland and the Canadian Arctic should accumulate in Baffin Bay with the potential to affect geostrophic circulation, stratification in the region and possibly the strength of the Atlantic Meridional Overturning Circulation. We also examine the trajectory of

  14. Physical modeling of the effects of climate change on freshwater lenses

    NASA Astrophysics Data System (ADS)

    Stoeckl, L.; Houben, G.

    2012-04-01

    The investigation of the fragile equilibrium between fresh and saline water on oceanic islands is of major importance for a sustainable management and protection of freshwater lenses. Overexploitation will lead to salt water intrusion (up-coning), in turn causing damages or even destruction of a lens in the long term. We have performed a series of experiments on the laboratory scale to investigate and visualize processes of freshwater lenses under different boundary conditions. In addition these scenarios were numerically simulated using the finite-element model FEFLOW. Results were also compared to analytical solutions for problems regarding e.g. mean travel times of flow paths within a freshwater lens. On the laboratory scale, a cross section of an island was simulated by setting up a sand-box model (200 cm x 50 cm x 5 cm). Lens dynamics are driven by density contrasts of saline and fresh water, recharge rate and Kf-values of the medium. We used a time-dependent, sequential application of the tracers uranine, eosine and indigotine, to represent different recharge events. With a stepwise increase of freshwater recharge, we could show that the maximum thickness of the lens increased in a non-linear behavior. Moreover we measured that the degradation of a freshwater lens after turning off the precipitation does not follow the same function as its development does. This means that a steady state freshwater lens does not degrade as fast as it develops under constant recharge. On the other side, we could show that this is not true for a partial degradation of the lens due to passing forces, like anthropogenic pumping or climate change. This is, because the recovery to equilibrium is always a quasi asymptotic process. Thus, times of re-equilibration to steady state will take longer after e.g. a drought, than the degradation during the draught itself. This behavior could also be verified applying the numerical finite-element model FEFLOW. In addition, numerical

  15. 7 CFR 923.15 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 923.15 Section 923.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... IN WASHINGTON Order Regulating Handling Definitions § 923.15 Export. Export means to ship cherries...

  16. 7 CFR 958.14 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 958.14 Section 958.14 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Definitions § 958.14 Export. Export...

  17. 27 CFR 7.60 - Exports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Exports. 7.60 Section 7.60... TREASURY LIQUORS LABELING AND ADVERTISING OF MALT BEVERAGES General Provisions § 7.60 Exports. This part shall not apply to malt beverages exported in bond. ...

  18. 75 FR 29514 - Export Trade Certificate of Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... Operation described below in the following Export Trade and Export Markets: Export Trade Export Product ALCC... being headed and gutted. Export Markets The Export Markets include all parts of the world except the... engage in Export Trade in the Export Markets, ALCC and its Members may undertake the following activities...

  19. Carbon and Nutrient Cycling in the Southwestern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Windom, Herbert; Piola, Alberto; McKee, Brent

    2009-03-01

    State of Knowledge on the Southwestern Atlantic Ocean Margin; Montevideo, Uruguay, 16-22 November 2008; The southwestern Atlantic Ocean margin (SWAOM), along the coasts of southern Brazil, Uruguay, and Argentina, is one of the most productive regions of the world ocean and is believed to be the largest carbon dioxide (CO2) sink in the Atlantic Ocean. The region is dominated by two major boundary currents (the Brazil and the Malvinas), which impinge on a broad continental shelf along southeastern South America and converge offshore of the Rio de la Plata, the largest source of freshwater to the South Atlantic Ocean. Scientific knowledge about this region is based on past research focused generally on processes within the confines of the waters of the individual countries and from single disciplines. However, the complex interactions of physical, chemical, and biological processes that control the transport and production in time and space across this region require multidisciplinary investigation and international cooperation. This led a group of more than 40 marine scientists from these countries and the United States to convene a workshop to review what is known about this region, to suggest how future multidisciplinary research might be organized, and to foster regional and North-South scientific cooperation.

  20. 27 CFR 28.30 - Export status.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Export status. 28.30... Export status. (a) Distilled spirits and wines manufactured, produced, bottled in bottles packed in... such purposes are considered to be exported. Export status is not acquired until application on Form...

  1. 76 FR 54193 - Fiscal Year 2012 Veterinary Import/Export, Diagnostic Services, and Export Certification for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ...] Fiscal Year 2012 Veterinary Import/Export, Diagnostic Services, and Export Certification for Plants and.... SUMMARY: This notice pertains to user fees charged for Veterinary Services animal quarantine and other..., organisms, and vectors; for certain veterinary diagnostic services; and for export certification of plants...

  2. RNA Export through the NPC in Eukaryotes.

    PubMed

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  3. 27 CFR 4.80 - Exports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Exports. 4.80 Section 4.80... TREASURY LIQUORS LABELING AND ADVERTISING OF WINE General Provisions § 4.80 Exports. The regulations in this part shall not apply to wine exported in bond. ...

  4. 7 CFR 947.17 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 947.17 Section 947.17 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 947.17 Export. Export means shipment of potatoes beyond the boundaries of continental United...

  5. 7 CFR 922.15 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 922.15 Section 922.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... WASHINGTON Order Regulating Handling Definitions § 922.15 Export. Export means to ship apricots beyond the...

  6. 7 CFR 948.17 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 948.17 Section 948.17 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Regulating Handling Definitions § 948.17 Export. Export means the shipment of potatoes to any destination...

  7. 7 CFR 924.15 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 924.15 Section 924.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... WASHINGTON AND IN UMATILLA COUNTY, OREGON Order Regulating Handling Definitions § 924.15 Export. Export means...

  8. 7 CFR 946.15 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 946.15 Section 946.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Regulating Handling Definitions § 946.15 Export. Export means shipment of potatoes beyond the boundaries of...

  9. 7 CFR 945.14 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 945.14 Section 945.14 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... COUNTIES IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Definitions § 945.14 Export. Export...

  10. 7 CFR 966.18 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 966.18 Section 966.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 966.18 Export. Export means shipment of tomatoes beyond the boundaries of the 48...

  11. 7 CFR 915.12 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 915.12 Section 915.12 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Regulating Handling Definitions § 915.12 Export. Export means to ship avocados to any destination which is...

  12. 7 CFR 1280.218 - Exporter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Lamb Promotion, Research, and Information Order Assessments § 1280.218 Exporter. Each person exporting live lambs shall remit to the Board an assessment on such lambs at the time of export at the rate...

  13. 15 CFR 2012.3 - Export certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Export certificates. 2012.3 Section... STATES TRADE REPRESENTATIVE IMPLEMENTATION OF TARIFF-RATE QUOTAS FOR BEEF § 2012.3 Export certificates... export certificate is in effect with respect to the beef. (b) To be valid, an export certificate shall...

  14. 31 CFR 592.304 - Exporting authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Exporting authority. 592.304 Section... § 592.304 Exporting authority. (a) The term exporting authority means one or more entities designated by a Participant from whose territory a shipment of rough diamonds is being exported as having the...

  15. 40 CFR 89.909 - Export exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Export exemptions. 89.909 Section 89....909 Export exemptions. (a) A new nonroad engine intended solely for export, and so labeled or tagged..., 1200 Pennsylvania Ave., NW., Washington, DC 20460. New nonroad engines exported to such countries must...

  16. On the freshwater budget in the eastern tropical Atlantic during the development of the cold tongue

    NASA Astrophysics Data System (ADS)

    Schlundt, Michael; Krahmann, Gerd; Brandt, Peter; Karstensen, Johannes

    2013-04-01

    The most striking sea surface temperature (SST) phenomenon in the tropical Atlantic is the seasonal appearance of the Atlantic Cold Tongue (ACT). Onset, duration, spatial extent and strength of cooling are subject to significant interannual variability. The ACT onset is also associated with remarkable changes in upper ocean salinity. To examine the different contributions to these changes we here focus on and present a mixed layer freshwater budget in the eastern tropical Atlantic. Our investigation is based on an exceptionally large set of observations during the onset of the ACT in late boreal spring/ early boreal summer 2011: more than 5400 CTD-profiles acquired by seven gliders running simultaneously to two research cruises, 180 ship based CTD-profiles, time series data from the PIRATA buoy array as well as measurements from the Argo float program are used to derive mixed layer depth, lateral and vertical salinity gradients. To derive turbulent mixing and inferred diapycnal salt flux, microstructure observations are taken into account. Furthermore satellite measurements of sea surface salinity (SSS) by the SMOS mission and of SST by the TMI radiometer as well as atmospheric reanalysis data and the OSCAR project products are implemented. Freshwater budget terms were calculated for different sub-regions. These sub-regions are chosen using pre-defined thresholds in SSS, SST or mixed layer depth. Overall the freshwater budget is dominated by the net surface freshwater flux and horizontal advection by strong zonal currents. Other terms, like entrainment and diapycnal mixing are found to be regionally important. In particular, the observed increase in salinity in the near-equatorial region during ACT onset is found to be the result of the northward migration of the ITCZ associated with reduced net surface freshwater flux at the equator as well as mixing of salty subsurface waters into the surface mixed layer.

  17. Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname, South America.

    PubMed

    Mol, J H; Ramlal, J S; Lietar, C; Verloo, M

    2001-06-01

    The extent of mercury contamination in Surinamese food fishes due to small-scale gold mining was investigated by determination of the total mercury concentration in 318 freshwater fishes, 109 estuarine fishes, and 110 fishes from the Atlantic Ocean. High background levels were found in the piranha Serrasalmus rhombeus (0.35 microg Hg x g(-1) muscle tissue, wet mass basis) and the peacock cichlid Cichla ocellaris (0.39 microg x g(-1)) from the Central Suriname Nature Reserve. Average mercury levels in freshwater fishes were higher in piscivorous species than in nonpiscivorous species, both in potentially contaminated water bodies (0.71 and 0.19 microg x g(-1), respectively) and in the control site (0.25 and 0.04 microg x g(-1), respectively). Mercury concentrations in piscivorous freshwater fishes were significantly higher in rivers potentially affected by gold mining than in the control site. In 57% of 269 piscivorous freshwater fishes from potentially contaminated sites, mercury levels exceeded the maximum permissible concentration of 0.5 microg Hg x g(-1). The highest mercury concentrations (3.13 and 4.26 microg x g(-1)) were found in two piranhas S. rhombeus from the hydroelectric reservoir Lake Brokopondo. The high mercury levels in fishes from Lake Brokopondo were to some extent related to gold mining because fishes collected at eastern sites (i.e., close to the gold fields) showed significantly higher mercury concentrations than fishes from western localities. In the estuaries, mercury levels in ariid catfish (0.22 microg x g(-1)) and croakers (0.04-0.33 microg x g(-1)) were distinctly lower than those in piscivorous fishes from contaminated freshwater sites. In the isolated Bigi Pan Lagoon, the piscivores snook Centropomus undecimalis (0.04 microg x g(-1)) and tarpon Megalops atlanticus (0.03 microg x g(-1)) showed low mercury levels. Mercury levels were significantly higher in marine fishes than in estuarine fishes, even with the Bigi Pan fishes excluded

  18. 7 CFR 959.18 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Export. 959.18 Section 959.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 959.18 Export. Export means to ship onions to any destination which is not within...

  19. 40 CFR 92.909 - Export exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Export exemptions. 92.909 Section 92....909 Export exemptions. (a) A new locomotive or locomotive engine intended solely for export, and so... from EPA standards. (c) It is a condition of any exemption for the purpose of export under paragraph (a...

  20. 40 CFR 91.1009 - Export exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Export exemptions. 91.1009 Section 91....1009 Export exemptions. (a) A new marine SI engine intended solely for export, and so labeled or tagged...., Washington, DC 20460. New marine SI engines exported to such countries must comply with EPA certification...

  1. 10 CFR 431.405 - Exported equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Exported equipment. 431.405 Section 431.405 Energy... EQUIPMENT General Provisions § 431.405 Exported equipment. Under Sections 330 and 345 of the Act, this Part... for export from the United States (or such equipment was imported for export), unless such equipment...

  2. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    PubMed

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in

  3. Tropical warm pool rainfall variability and impact on upper ocean variability throughout the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    Thompson, Elizabeth J.

    Heating and rain freshening often stabilize the upper tropical ocean, bringing the ocean mixed layer depth to the sea surface. Thin mixed layer depths concentrate subsequent fluxes of heat, momentum, and freshwater in a thin layer. Rapid heating and cooling of the tropical sea surface is important for controlling or triggering atmospheric convection. Ocean mixed layer depth and SST variability due to rainfall events have not been as comprehensively explored as the ocean's response to heating or momentum fluxes, but are very important to understand in the tropical warm pool where precipitation exceeds evaporation and many climate phenomena such as ENSO and the MJO (Madden Julian Oscillation) originate. The first part of the dissertation investigates tropical, oceanic convective and stratiform rainfall variability and determines how to most accurately estimate rainfall accumulation with radar from each rain type. The second, main part of the dissertation uses central Indian Ocean salinity and temperature microstructure measurements and surrounding radar-derived rainfall maps throughout two DYNAMO MJO events to determine the impact of precipitating systems on upper-ocean mixed layer depth and resulting SST variability. The ocean mixed layer was as shallow as 0-5 m during 528/1071 observation hours throughout 2 MJOs (54% of the data record). Out of 43 observation days, thirty-eight near-surface mixed layer depth events were attributed to freshwater stabilization, called rain-formed mixed layers (RFLs). Thirty other mixed layer stratification events were classified as diurnal warm layers (DWLs) due to stable temperature stratification by daytime heating. RFLs and DWLs were observed to interact in two ways: 1) RFLs fill preexisting DWLs and add to total near-surface mixed layer stratification, which occurred ten times; 2) RFLs last long enough to heat, creating a new DWL on top of the RFL, which happened nine times. These combination stratification events were

  4. 78 FR 37518 - Order Denying Export Privileges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Order Denying Export Privileges In the... Texas, Lee Roy Perez (``Perez'') was convicted of violating Section 38 of the Arms Export Control Act... of knowingly and willfully exporting and causing to be exported and attempting to export and...

  5. 78 FR 37787 - Order Denying Export Privileges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Order Denying Export Privileges In the... District of Texas, Manuel Mario Pavon (``Pavon'') was convicted of violating Section 38 of the Arms Export... knowingly and willfully exporting and causing to be exported and attempting to export and attempting to...

  6. Ventilation of the deep Southern Ocean and changes in atmospheric CO2 during the last deglacial and glacial periods

    NASA Astrophysics Data System (ADS)

    Gottschalk, J.; Skinner, L. C.; Lippold, J. A.; Jaccard, S.; Vogel, H.; Frank, N.; Waelbroeck, C.

    2014-12-01

    The Southern Ocean is thought to have played a key role in atmospheric CO2 (CO2,atm) variations, both via its role in bringing carbon-rich deep-waters into contact with the atmosphere, and via its capacity for enhanced biologically mediated carbon export into the deep sea. The governing mechanisms of millennial scale rises in CO2,atm during the last deglacial and glacial periods have been linked controversially either with variations in biological export productivity, possibly driven by fluctuations in airborne dust supply, or to variations in southern high-latitude vertical mixing, possibly driven by changes in westerly wind stress or density stratification across the Southern Ocean water column. However, the impact of these processes on deep, southern high-latitude carbon sequestration and ocean-atmosphere CO2 exchange remain ambiguous. We present proxy evidence for the link between deep carbon storage in the sub-Antarctic Atlantic with changes in CO2,atm during the last 70 ka from sub-millennially resolved changes in bottom water oxygenation based on the uranium accumulation in authigenic coatings on foraminiferal shells and the δ13C offset between epibenthic and infaunal foraminifera (Δδ13C). We compare our results with reconstructed opal fluxes and sediment model output data to assess the impact of physical and biological processes on Southern Ocean carbon storage. While variations in sub-Antarctic Atlantic export production are intrinsically linked with changes in airborne dust supply supporting the major impact of dust on the biological soft-tissue pump, they cannot account for observed changes in pore water organic carbon respiration indicated by increasing Δδ13C and therefore, bottom water oxygen changes in the deep sub-Antarctic Atlantic. This is in strong support of millennial-scale fluctuations in deep Southern Ocean carbon storage primarily controlled by the ventilation of the deep ocean by southern-sourced water masses, which emphasize the strong

  7. RNA Export through the NPC in Eukaryotes

    PubMed Central

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-01-01

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC. PMID:25802992

  8. 27 CFR 16.31 - Exports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Exports. 16.31 Section 16... TREASURY LIQUORS ALCOHOLIC BEVERAGE HEALTH WARNING STATEMENT General Provisions § 16.31 Exports. The..., bottled, or labeled for export from the United States, or for delivery to a vessel or aircraft, as...

  9. 40 CFR 94.909 - Export exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Export exemptions. 94.909 Section 94... Export exemptions. (a) A new engine intended solely for export, and so labeled or tagged on the outside... of export under paragraph (a) of this section, that such exemption is void ab initio with respect to...

  10. Multiple Export Production and Sulfur Isotope Records over the Paleocene Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Gray, E.; Paytan, A.

    2007-12-01

    The Paleocene Eocene Thermal Maximum (PETM) was a global climatic event that occurred 55 million years ago. δ18O values from benthic foraminifera indicate that temperatures rose 4-5°C coeval with a precipitous drop in δ13C values that indicate a new source of carbon rapidly entered the global carbon cycle. Marine barite (BaSO4) was used to evaluate the 1) barite accumulation rate that serves a proxy for export production and 2) the sulfur isotopic composition of seawater that reflects the mass balance of oceanic sulfate (SO42-). Increased barite accumulation rates at the PETM suggest that increased export production and CO2 sequestration was in direct response to the carbon isotope excursion, although not all of the increases are accounted for. High resolution δ34S values are lower but within reasonable range of previously observed values and indicate a decrease in sulfate removal by pyrite deposition.

  11. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean

    USGS Publications Warehouse

    Wang, Zhaohui Aleck; Kroeger, Kevin D.; Ganju, Neil K.; Gonneea, Meagan; Chu, Sophie N.

    2016-01-01

    Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.

  12. Century/millennium internal climate oscillations in an ocean-atmosphere-continental ice sheet model

    NASA Technical Reports Server (NTRS)

    Birchfield, Edward G.; Wang, Huaxiao; Rich, Jonathan J.

    1994-01-01

    We demonstrate in a simple climate model that there exist nonlinear feedbacks between the atmosphere, ocean, and ice sheets capable of producing century/millennium timescale internal oscillations resembling those seen in the paleoclimate record. Feedbacks involve meridional heat and salt transports in the North Atlantic, surface ocean freshwater fluxes associated with melting and growing continental ice sheets in the northen hemisphere and with Atlantic to Pacific water vapor transport. The positive feedback between the production of North Atlantic Deep Water (NADW) and the meridional salt transport by the Atlantic thermohaline circulation tends to destabilize the climate system, while the negative feedback between the freshwater flux, either to or from the continental ice sheets, and meridional heat flux to the high-latitude North Atlantic, accomplished by the thermohaline circulation, stabilizes the system. The thermohaline circulation plays a central role in both positive and negative feedbacks because of its transport of both heat and salt. Because of asymmetries between the growth and melt phases the oscillations are, in general, accompanied by a growing or decreasing ice volume over each cycle, which in the model is reflected by increasing or decreasing mean salinity.

  13. 19 CFR 191.73 - Export summary procedure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Export summary procedure. 191.73 Section 191.73... TREASURY (CONTINUED) DRAWBACK Exportation and Destruction § 191.73 Export summary procedure. (a) General. The export summary procedure consists of a Chronological Summary of Exports used to support a drawback...

  14. Phytoplankton Assemblages in Selected Freshwaters of New Jersey

    NASA Astrophysics Data System (ADS)

    Caraballo, Y. A.; Wu, M. S.

    2017-12-01

    Characterizing phytoplankton assemblages in freshwaters is crucial for future management and monitoring of drinking and recreational freshwaters of New Jersey. New Jersey freshwater phytoplankton assemblages are poorly known and there is no list of freshwater phytoplankton taxa in New Jersey. This study seeks to describe phytoplankton assemblages of freshwaters in New Jersey. Results will help address public health, economic and environmental threats related to harmful algal blooms in New Jersey. A total of 49 freshwater sites, including ponds, rivers and reservoirs, were used for this study. Overall results showed 66 taxa of freshwater phytoplankton in 6 major groups and 29 different orders. Green algae had the highest number of taxa, followed by diatoms and blue-greens (cyanobacteria). The most common freshwater taxa in NJ are Synedra spp., Fragilaria spp., Selenastrum capricornutum, Scenedesmus spp., and Anabaena spp. Cyanobacteria species are present in more than half of the sites examined in this study. All ten cyanobacteria taxa present in New Jersey freshwaters are capable of producing the endotoxin lipopolysaccharides (LPS), eight can produce the hepatotoxins and six can produce neutoroxins. In addition, some taxa such as Anabaena spp. are capable of simultaneously producing endotoxins, hepatotoxins, neurotoxins and taste and odor compounds. The presence of taxa capable of producing multiple toxins infers the difficulty of management and treatment as well as increased public health effects.

  15. 15 CFR 732.5 - Steps regarding Shipper's Export Declaration or Automated Export System record, Destination...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... than anti-terrorism (AT). The only exception to this requirement would be the return of unwanted... be entered on the invoice and on the bill of lading, air waybill, or other export control document... THE EAR § 732.5 Steps regarding Shipper's Export Declaration or Automated Export System record...

  16. 15 CFR 732.5 - Steps regarding Shipper's Export Declaration or Automated Export System record, Destination...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... than anti-terrorism (AT). The only exception to this requirement would be the return of unwanted... be entered on the invoice and on the bill of lading, air waybill, or other export control document... THE EAR § 732.5 Steps regarding Shipper's Export Declaration or Automated Export System record...

  17. 15 CFR 732.5 - Steps regarding Shipper's Export Declaration or Automated Export System record, Destination...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... than anti-terrorism (AT). The only exception to this requirement would be the return of unwanted... be entered on the invoice and on the bill of lading, air waybill, or other export control document... THE EAR § 732.5 Steps regarding Shipper's Export Declaration or Automated Export System record...

  18. 15 CFR 732.5 - Steps regarding Shipper's Export Declaration or Automated Export System record, Destination...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... than anti-terrorism (AT). The only exception to this requirement would be the return of unwanted... be entered on the invoice and on the bill of lading, air waybill, or other export control document... THE EAR § 732.5 Steps regarding Shipper's Export Declaration or Automated Export System record...

  19. Fluid flow enhances the effectiveness of toxin export by aquatic microorganisms: A first-passage perspective on microvilli and the concentration boundary layer

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.; Clark, Aaron

    2015-01-01

    A central challenge for organisms during development is determining a means to efficiently export toxic molecules from inside the developing embryo. For aquatic microorganisms, the strategies employed should be robust with respect to the variable ocean environment and limit the chances that exported toxins are reabsorbed. As a result, the problem of toxin export is closely related to the physics of mass transport in a fluid. In this paper, we consider a model first-passage problem for the uptake of exported toxins by a spherical embryo. By considering how macroscale fluid turbulence manifests itself on the microscale of the embryo, we determine that fluid flow enhances the effectiveness of toxin export as compared to the case of diffusion-limited transport. In the regime of a large Péclet number, a perturbative solution of the advection-diffusion equation reveals that a concentration boundary layer forms at the surface of the embryo. The model results suggest a functional role for cell surface roughness in the export process, with the thickness of the concentration boundary layer setting the length scale for cell membrane protrusions known as microvilli. We highlight connections between the model results and experiments on the development of sea urchin embryos.

  20. 7 CFR 51.912 - Export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Export. 51.912 Section 51.912 Agriculture Regulations... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.912 Export. When designated as Export, grapes shall be packed with any of the customary protective materials such as cushions...