Science.gov

Sample records for ocean models final

  1. Scientific development of a massively parallel ocean climate model. Final report

    SciTech Connect

    Semtner, A.J.; Chervin, R.M.

    1996-09-01

    Over the last three years, very significant advances have been made in refining the grid resolution of ocean models and in improving the physical and numerical treatments of ocean hydrodynamics. Some of these advances have occurred as a result of the successful transition of ocean models onto massively parallel computers, which has been led by Los Alamos investigators. Major progress has been made in simulating global ocean circulation and in understanding various ocean climatic aspects such as the effect of wind driving on heat and freshwater transports. These steps have demonstrated the capability to conduct realistic decadal to century ocean integrations at high resolution on massively parallel computers.

  2. Global Ocean Circulation Modeling with an Isopycnic Coordinate Model. Final Report for May 1, 1998 - April 30, 2002

    SciTech Connect

    Bleck, R.

    2004-05-19

    The overall aim of this project was to continue development of a global version of the Miami Isopycnic Coordinate Ocean Model (MICOM) with the intent of turning it into a full-fledged oceanic component of an earth system model.

  3. Geochemical constraints on ocean general circulation models. Final report, May 1, 1995--April 30, 1997

    SciTech Connect

    Broecker, W.S.

    1998-05-17

    A better understanding of the manner in which the ocean operates is essential to the preparation for the consequences of the generation of CO{sub 2} by fossil fuel burning. Examples are as follows: (1) the ocean will ultimately take up a major fraction of the CO{sub 2} produced, but this uptake is retarded by the slow mixing rates, in order to predict the uptake, researchers must develop and validate general circulation models for the ocean; (2) during glacial time large global climate changes occurred. The changes were abrupt happening in a few decades. The trigger for these changes appears to have been reorganizations of the large-scale thermohaline circulation of the ocean. Models suggest that if the CO{sub 2} content of the atmosphere rises to more than 700 ppm, then a possibility exists that another such reorganization might occur. Hence, researchers must learn more about the factors influencing deep-water formation both in the northern Atlantic and in the Souther Ocean. The thrust of this research was to develop constraints based on the distributions of chemicals and tracers in the sea. The accomplishments are outlined in this report.

  4. Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report

    SciTech Connect

    Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee; Padhraic Smyth, UC Irvine

    2006-08-04

    The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics through atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.

  5. Planning a port interface for an ocean incineration system: computer-model user's manual. Final report

    SciTech Connect

    Glucksman, M.A.; Marcus, H.S.

    1986-06-01

    The User's Manual is written to accompany the computer model developed in the report, Planning a Port Interface For An Ocean Incineration System. The model is based on SYMPHONY (TM) a Lotus Development Corp. product. Apart from the requirement for the software, the model needs an IBM PC compatible personal computer with at least 576 kilobytes of RAM. The model assumes the viewpoint of a planner that has yet to choose a particular type of vessel and port technology. The model contains four types of information: physical parameters of system alternatives, government regulations, risks associated with different system alternatives, and relevant background information.

  6. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model. Final report

    SciTech Connect

    Menawat, A.S.

    1992-09-21

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO{sub 2}. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO{sub 2}. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach.

  7. Mesoscale ocean dynamics modeling

    SciTech Connect

    mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P.; Levermore, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.

  8. Climate evolution with a coupled two dimensional atmosphere/ocean model. Final report, [March 1, 1992--August 31, 1993

    SciTech Connect

    Hoffert, M.I.; Kheshgi, H.

    1994-02-01

    To test the impact of a density-dependent eddy diffusivity law on global warming predictions, transient calculations with a standard upwelling-diffusion ocean/climate model were conducted. This report discusses that research. In addition, this report also presents the findings from research conducted on internal wave-breaking turbulence in an upwelling-diffusion ocean.

  9. Upper ocean model of dissolved atmospheric gases. Final report for the period 1 August 1991--31 May 1995

    SciTech Connect

    Schudlich, R.; Emerson, S.

    1996-05-01

    This report summarizes results from three years of funding for a modelling study of processes controlling the distribution of metabolic chemical tracers in surface waters. We determined concentrations of the gases O{sub 2}, Ar, N{sub 2}, and the stable isotope ratio ({sup 18}O/{sup 16}O) of molecular oxygen in surface waters at Station ALOHA in conjunction with the Global Ocean Flux Study (GOFS) Hawaiian Ocean Time-series project during the years 1989- 90 and 1992-93. Under this contract we have incorporated chemical tracers into an existing ocean mixed-layer model to simulate the physical processes controlling the distribution and seasonal cycle of dissolved gases in the upper ocean. The broad background of concurrent chemical, physical, and biological measurements at Station ALOHA provides enough redundancy of ``ground truth`` to assess the model`s accuracy. Biological oxygen production estimated from modelled chemical tracers agrees with estimates based on measurement of carbon fluxes into the deep ocean and nitrate fluxes into the upper ocean during 1989-90 and 1992-93, verifying for the first time the utility of chemical tracers for determining biological fluxes in the ocean. Our results suggest that in the euphotic zone (the upper 100 m of the ocean), the net biological O{sub 2} production is 1.0-2. 0 moles m{sup -2}yr{sup - 1}. Inert gas (Ar, N{sub 2}) supersaturation levels show that air and bubble injection are important modes of air-sea gas transfer in the Station ALOHA region.

  10. Development and Evaluation of a Global Version of the Miami Isopycnic-Coordinate Ocean Model. Final report

    SciTech Connect

    Bleck, Rainer; Rooth, Claes G.H.; Okeefe, Sawdey

    1997-11-01

    The objective of this project was to test the ability of the Miami Isopycnic-Coordinate Ocean Model (MICOM) to simulate the global ocean circulation, setting the stage for the model's incorporation into coupled global climate models. An existing basin-scale model will be expanded to global domain; suitable atmospheric forcing fields, including precipitation and river runoff, will be selected; the modeling of ayssal flow will be improved by incorporating compressibility and particularly thermobaric effects; a sea-ice model will be added; parameterization options will be explored for subgrid-scale deep convection; parallel coarse- and fine-mesh simulations will be carried out to investigate the impact of grid resolution; the sensitivity of the model's solution to magnitude of vertical (diapycnal) exchange coefficient will be studied; and long-term trends in meridional heat transport and water-mass properties in model solutions will be documented and interpreted.

  11. Parameterizations in high resolution isopycnal wind-driven ocean models. Final report, August 1, 1992--January 31, 1996

    SciTech Connect

    Jensen, T.G.; Randall, D.A.

    1996-03-01

    Development of a general quasi-isopycnal code suitable for numerical experimentation and test of parameterizations was the main goal of the proposed research. A versatile ocean modeling system, which the authors refer to as the Thermodynamic Ocean Modeling System (TOMS) is the result of this effort. TOMS is based on an Arbitrary Lagrangian Eulerian (ALE) vertical coordinate and is a hybrid between isopycnal and z-coordinate models. The modeling system is designed for oceanic and coastal flows where the aspect ratio is small. As part of the development effort, the authors also proposed to implement and test new numerical schemes, parameterizations of boundary layer flow and development and implementation of mixed layer physics in this model. The addition objectives for the proposed research were: (1) incorporate various mixed layer parameterizations; (2) implement and test the positive definite Arakawa and Hsu, (1990) scheme; (3) recode a version of the model for a highly parallel architecture; (4) determine effects of various parameterizations of islands, and; (5) determine the correct lateral boundary condition for boundary layer currents, as for instance the Gulf Stream, and other western boundary currents.

  12. Ocean General Circulation Models

    SciTech Connect

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  13. Simple ocean carbon cycle models

    SciTech Connect

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  14. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  15. Modeling ocean deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.

    The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they

  16. Open ocean tide modelling

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1978-01-01

    Two trends evident in global tidal modelling since the first GEOP conference in 1972 are described. The first centers on the incorporation of terms for ocean loading and gravitational self attraction into Laplace's tidal equations. The second centers on a better understanding of the problem of near resonant modelling and the need for realistic maps of tidal elevation for use by geodesists and geophysicists. Although new models still show significant differences, especially in the South Atlantic, there are significant similarities in many of the world's oceans. This allows suggestions to be made for future locations for bottom pressure gauge measurements. Where available, estimates of M2 tidal dissipation from the new models are significantly lower than estimates from previous models.

  17. LLNL Ocean General Circulation Model

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  18. Ocean County Vocational-Technical School's Model for Gifted and Talented Entrepreneurship Training Program, 1983-84. Final Report.

    ERIC Educational Resources Information Center

    Ocean County Vocational Technical School, Toms River, NJ.

    A model was developed for a program that would meet the needs of vocational gifted and talented students while training an important member of the economic community--the entrepreneur. Research material concerning the identification and selection of gifted and talented students was reviewed, and criteria were developed for nomination of candidates…

  19. NEMO Oceanic Model Optimization

    NASA Astrophysics Data System (ADS)

    Epicoco, I.; Mocavero, S.; Murli, A.; Aloisio, G.

    2012-04-01

    NEMO is an oceanic model used by the climate community for stand-alone or coupled experiments. Its parallel implementation, based on MPI, limits the exploitation of the emerging computational infrastructures at peta and exascale, due to the weight of communications. As case study we considered the MFS configuration developed at INGV with a resolution of 1/16° tailored on the Mediterranenan Basin. The work is focused on the analysis of the code on the MareNostrum cluster and on the optimization of critical routines. The first performance analysis of the model aimed at establishing how much the computational performance are influenced by the GPFS file system or the local disks and wich is the best domain decomposition. The results highlight that the exploitation of local disks can reduce the wall clock time up to 40% and that the best performance is achieved with a 2D decomposition when the local domain has a square shape. A deeper performance analysis highlights the obc_rad, dyn_spg and tra_adv routines are the most time consuming routines. The obc_rad implements the evaluation of the open boundaries and it has been the first routine to be optimized. The communication pattern implemented in obc_rad routine has been redesigned. Before the introduction of the optimizations all processes were involved in the communication, but only the processes on the boundaries have the actual data to be exchanged and only the data on the boundaries must be exchanged. Moreover the data along the vertical levels are "packed" and sent with only one MPI_send invocation. The overall efficiency increases compared with the original version, as well as the parallel speed-up. The execution time was reduced of about 33.81%. The second phase of optimization involved the SOR solver routine, implementing the Red-Black Successive-Over-Relaxation method. The high frequency of exchanging data among processes represent the most part of the overall communication time. The number of communication is

  20. Steady-state and transient modeling of tracer and nutrient distributions in the global ocean. Final report, August 1, 1993--July 31, 1995

    SciTech Connect

    Stocker, T.F.; Lynch-Stieglitz, J.; Broecker, W.S.

    1998-05-17

    The authors have completed the studies using the inorganic carbon cycle in the zonally averaged ocean circulation model to calculate anthropogenic uptake of CO{sub 2} and bomb radiocarbon. While the results are in broad agreement with previous studies, the authors have learned that horizontal mixing processes due to gyre circulation are important for transient tracer experiments over a few decades. Using the inorganic carbon cycle model the authors have started to look at the distributions of {delta}{sup 13}C in the ocean. The model is able to reproduce faithfully the air-sea fractionation of {delta}{sup 13}C. The effect of changing sea surface temperature in the middle and low latitudes of the world ocean on {rho}CO{sub 2}{sup atm} is studied in this model and compared to the organic carbon cycle model of the Hamburg group. They find significant differences in sensitivity and are in the process of investigating possible reasons. Incorporation of the organic component is still ongoing. In the present version the surface concentrations of phosphate are still too high indicating strong upwelling.

  1. Four simple ocean carbon models

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III

    1992-01-01

    This paper briefly reviews the key processes that determine oceanic CO2 uptake and sets this description within the context of four simple ocean carbon models. These models capture, in varying degrees, these key processes and establish a clear foundation for more realistic models that incorporate more directly the underlying physics and biology of the ocean rather than relying on simple parametric schemes. The purpose of this paper is more pedagogical than purely scientific. The problems encountered by current attempts to understand the global carbon cycle not only require our efforts but set a demand for a new generation of scientist, and it is hoped that this paper and the text in which it appears will help in this development.

  2. Modelling the global coastal ocean.

    PubMed

    Holt, Jason; Harle, James; Proctor, Roger; Michel, Sylvain; Ashworth, Mike; Batstone, Crispian; Allen, Icarus; Holmes, Robert; Smyth, Tim; Haines, Keith; Bretherton, Dan; Smith, Gregory

    2009-03-13

    Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries. PMID:19087928

  3. A baroclinic quasigeostrophic open ocean model

    NASA Technical Reports Server (NTRS)

    Miller, R. N.; Robinson, A. R.; Haidvogel, D. B.

    1983-01-01

    A baroclinic quasigeostrophic open ocean model is presented, calibrated by a series of test problems, and demonstrated to be feasible and efficient for application to realistic mid-oceanic mesoscale eddy flow regimes. Two methods of treating the depth dependence of the flow, a finite difference method and a collocation method, are tested and intercompared. Sample Rossby wave calculations with and without advection are performed with constant stratification and two levels of nonlinearity, one weaker than and one typical of real ocean flows. Using exact analytical solutions for comparison, the accuracy and efficiency of the model is tabulated as a function of the computational parameters and stability limits set; typically, errors were controlled between 1 percent and 10 percent RMS after two wave periods. Further Rossby wave tests with realistic stratification and wave parameters chosen to mimic real ocean conditions were performed to determine computational parameters for use with real and simulated data. Finally, a prototype calculation with quasiturbulent simulated data was performed successfully, which demonstrates the practicality of the model for scientific use.

  4. Climate science: Unexpected fix for ocean models

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Thompson, Luanne

    2016-07-01

    Computational models persistently underestimate strong currents that redistribute ocean heat. This problem is solved in models in which ocean eddies are damped by coupling of the atmosphere with the sea. See Letter p.533

  5. Development of ocean model LSOMG

    NASA Astrophysics Data System (ADS)

    Sachl, Libor; Martinec, Zdenek

    2015-04-01

    The purpose of this contribution is to present the ocean general circulation model LSOMG. It originates from the LSG (Maier-Reimer and Mikolajewicz, 1992) ocean model, however, significant number of changes has been made. LSOMG is a z-coordinate baroclinic ocean model which solves the primitive equations under the Boussinesq approximation. We intend to use the model for a various geophysical applications with the focus on paleoclimate studies. Hence, the model is not as complex as the current state-of-art climate models, such as the Modular Ocean Model or NEMO models. On the other hand, it is less computationally demanding. The changes and improvements in the code will be reported. One of the obvious changes is that the governing equations are no more discretized on the Arakawa E grid. The whole model has been rewritten on the Arakawa C grid. The main motivation is to avoid a coexistence of two solutions on the grid that evolve independently of each other. A more natural treatment of boundary conditions and simpler structure of the grid are additional advantages. Another significant change is the treatment of time tendencies. The system of equations is split to barotropic and baroclinic subsystems. Both subsystems may either be discretized at the same time points (as in the original LSG model), or their discretizations may be staggered in time as described in Griffies (2004). The original fully implicit barotropic time stepping scheme was found to significantly dissipate energy. Three different time stepping schemes are available instead. Namely, the predictor-corrector scheme of Griffies (2004), the generalized forward-backward scheme of Shchepetkin and McWilliams (2008) and the implicit free surface scheme of Campin et al. (2004). The first two schemes are intended to be used with the split-explicit model configuration for short-term studies whereas the third scheme is suitable for long-term studies, e.g. paleoclimate studies. The short-term studies may also

  6. Ocean modelling aspects for drift applications

    NASA Astrophysics Data System (ADS)

    Stephane, L.; Pierre, D.

    2010-12-01

    Nowadays, many authorities in charge of rescue-at-sea operations lean on operational oceanography products to outline research perimeters. Moreover, current fields estimated with sophisticated ocean forecasting systems can be used as input data for oil spill/ adrift object fate models. This emphasises the necessity of an accurate sea state forecast, with a mastered level of reliability. This work focuses on several problems inherent to drift modeling, dealing in the first place with the efficiency of the oceanic current field representation. As we want to discriminate the relevance of a particular physical process or modeling option, the idea is to generate series of current fields of different characteristics and then qualify them in term of drift prediction efficiency. Benchmarked drift scenarios were set up from real surface drifters data, collected in the Mediterranean sea and off the coasts of Angola. The time and space scales that we are interested in are about 72 hr forecasts (typical timescale communicated in case of crisis), for distance errors that we hope about a few dozen of km around the forecast (acceptable for reconnaissance by aircrafts) For the ocean prediction, we used some regional oceanic configurations based on the NEMO 2.3 code, nested into Mercator 1/12° operational system. Drift forecasts were computed offline with Mothy (Météo France oil spill modeling system) and Ariane (B. Blanke, 1997), a Lagrangian diagnostic tool. We were particularly interested in the importance of the horizontal resolution, vertical mixing schemes, and any processes that may impact the surface layer. The aim of the study is to ultimately point at the most suitable set of parameters for drift forecast use inside operational oceanic systems. We are also motivated in assessing the relevancy of ensemble forecasts regarding determinist predictions. Several tests showed that mis-described observed trajectories can finally be modelled statistically by using uncertainties

  7. Final Report for DOE Grant DE-FG02-07ER64470 [“Incorporation of the HYbrid Coordinate Ocean Model (HYCOM) into the Community Climate System Model (CCSM): Evaluation and Climate Applications”

    SciTech Connect

    Chassignet, Eric P

    2013-03-18

    The primary goal of the project entitled “Incorporation of the HYbrid Coordinate Ocean Model (HYCOM) into the Community Climate System Model (CCSM): Evaluation and Climate Applications” was to systematically investigate the performance of the HYbrid Coordinate Ocean Model (HYCOM) as an alternative oceanic component of the NCAR’s Community Climate System Model (CCSM). We have configured two versions of the fully coupled CCSM3/HYCOM: one with a medium resolution (T42) Community Atmospheric Model (CAM) and the other with higher resolution (T85). We have performed a comprehensive analysis of the 400-year fully coupled CCSM3/HYCOM simulations and compared the results with those from CCSM3/POP and with climatological observations, and also we have performed tuning of critical model parameters, including Smagorinsky viscosity, isopycnal diffusivity, and background vertical diffusivity. The analysis shows that most oceanic features are well represented in the CCSM3/HYCOM. The coupled CCSM3/HYCOM (T42) has been integrated for 400 years, and the results have been archived and transferred to the High Performance Computer in the Florida State Univesity. In the last year, we have made comprehensive diagnostics of the long-term simulations by the comparison with the original CCSM3/POP simulation and with the observations. To gain some understanding of the model biases, the mean climate and modes of climate variability of the two models are compared with observations. The examination includes the Northern and Southern Annular Modes (NAM and SAM), the Pacific-North-American (PNA) pattern, the Atlantic Multidecadal Oscillation (AMO), and the main Southern Ocean SST mode. We also compared the performance of ENSO simulation in the coupled models. This report summarizes the main findings from the comparison of long-term CCSM3/HYCOM and CCSM3/POP simulations.

  8. Toward Submesocale Ocean Modelling and Observations for Global Ocean Forecast.

    NASA Astrophysics Data System (ADS)

    Drillet, Y.

    2014-12-01

    Mercator Ocean is the French oceanographic operational center involved in the development an operation of global high resolution ocean forecasting systems; it is part of the European Copernicus Marine service initiated during MyOcean project. Mercator Ocean currently delivers daily 1/12° global ocean forecast based on the NEMO model which allows for a good representation of mesoscale structures in main areas of the global ocean. Data assimilation of altimetry provides a precise initialization of the mesoscale structures while in situ observations, mainly based on the ARGO network, and satellite Sea Surface Temperature constrain water mass properties from the surface to intermediate depths. One of the main improvements scheduled in the coming years is the transitioning towards submesoscale permitting horizontal resolution (1/36°). On the basis of numerical simulations in selected areas and standard diagnostics developed to validate operational systems, we will discuss : i) The impact of the resolution increase at the basin scale. ii) Adequacy of numerical schemes, vertical resolution and physical parameterization. iii) Adequacy of currently implemented data assimilation procedures in particular with respect to new high resolution data set such as SWOT.

  9. Final Report: Studies of Ocean Predictability at Decade to Century Time Scales Using a Global Ocean General Circulation Model in a Parallel Computing Environment (August 7, 1991-November 30, 1998)

    SciTech Connect

    Barnett, Tim P.

    1998-11-30

    Determine the structure of oceanic natural variability at time scales of decades to centuries; characterize the physical mechanisms responsible for the variability; determine the relative importance of heat, fresh water, and moment fluxes on the variability; determine the predictability of the variability on these times scales.

  10. Warm World Ocean Thermohaline Circulation Model

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2014-12-01

    Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic, filling the ocean interior with cold and heavy water. However, ocean circulation diminished during the last glaciation and consequently the downwelling of the cold. Therefore interior ocean water temperatures must have been affected by other mechanisms which are negligible in the current state. We propose that the submergence of highly saline water from warm seas with high rates of evaporation (like the Red or Mediterranean Sea) was a major factor controlling ocean circulation during the last glaciation. Even today, waters in these poorly connected seas are the heaviest waters in the World ocean (1.029 g/cm3). The second mechanism affecting ocean temperature is the geothermal heat flux. With no heat exchange between the atmosphere and the ocean, geothermal heat flux through the ocean floor is capable of increasing ocean temperature by tens of degrees C over a 100 thousand year glacial cycle. To support these hypotheses we present an ocean box model that describes thermohaline circulation in the World Ocean. According to the model parameters, all water circulation is driven by the water density gradient. Boxes include high-latitude seas, high salinity seas, surface ocean, glaciers, and rift and lateral zones of the ocean interior. External heat sources are radiative forcing, affected by Milankovich cycles, and geothermal heat flux. Additionally this model accounts for the heat produced by organic rain decay. Taking all input parameters close to currently observed values, the model manages to recreate the glacial-interglacial cycles. During the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior ocean accumulates heat while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal

  11. Including eddies in global ocean models

    NASA Astrophysics Data System (ADS)

    Semtner, Albert J.; Chervin, Robert M.

    The ocean is a turbulent fluid that is driven by winds and by surface exchanges of heat and moisture. It is as important as the atmosphere in governing climate through heat distribution, but so little is known about the ocean that it remains a “final frontier” on the face of the Earth. Many ocean currents are truly global in extent, such as the Antarctic Circumpolar Current and the “conveyor belt” that connects the North Atlantic and North Pacific oceans by flows around the southern tips of Africa and South America. It has long been a dream of some oceanographers to supplement the very limited observational knowledge by reconstructing the currents of the world ocean from the first principles of physics on a computer. However, until very recently, the prospect of doing this was thwarted by the fact that fluctuating currents known as “mesoscale eddies” could not be explicitly included in the calculation.

  12. Ocean foam generation and modeling

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A laboratory investigation was conducted to determine the physical and microwave properties of ocean foam. Special foam generators were designed and fabricated, using porous glass sheets, known as glass frits, as the principal element. The glass frit was sealed into a water-tight vertical box, a few centimeters from the bottom. Compressed air, applied to the lower chamber, created ocean foam from sea water lying on the frit. Foam heights of 30 cm were readily achieved, with relatively low air pressures. Special photographic techniques and analytical procedures were employed to determine foam bubble size distributions. In addition, the percentage water content of ocean foam was determined with the aid of a particulate sampling procedure. A glass frit foam generator, with pore diameters in the range 70 - 100 micrometers, produced foam with bubble distributions very similar to those found on the surface of natural ocean foam patches.

  13. Nested ocean models: Work in progress

    NASA Technical Reports Server (NTRS)

    Perkins, A. Louise

    1991-01-01

    The ongoing work of combining three existing software programs into a nested grid oceanography model is detailed. The HYPER domain decomposition program, the SPEM ocean modeling program, and a quasi-geostrophic model written in England are being combined into a general ocean modeling facility. This facility will be used to test the viability and the capability of two-way nested grids in the North Atlantic.

  14. Utilizing Kernelized Advection Schemes in Ocean Models

    NASA Astrophysics Data System (ADS)

    Zadeh, N.; Balaji, V.

    2008-12-01

    There has been a recent effort in the ocean model community to use a set of generic FORTRAN library routines for advection of scalar tracers in the ocean. In a collaborative project called Hybrid Ocean Model Environement (HOME), vastly different advection schemes (space-differencing schemes for advection equation) become available to modelers in the form of subroutine calls (kernels). In this talk we explore the possibility of utilizing ESMF data structures in wrapping these kernels so that they can be readily used in ESMF gridded components.

  15. Atmospheric correction of aviris data in ocean waters. Final report

    SciTech Connect

    Terrie, G.; Armone, R.

    1992-06-01

    Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc.

  16. Models for ecological models: Ocean primary productivity

    USGS Publications Warehouse

    Wikle, Christopher K.; Leeds, William B.; Hooten, Mevin B.

    2016-01-01

    The ocean accounts for more than 70% of planet Earth's surface, and it processes are critically important to marine and terrestrial life.  Ocean ecosystems are strongly dependent on the physical state of the ocean (e.g., transports, mixing, upwelling, runoff, and ice dynamics(.  As an example, consider the Coastal Gulf of Alaska (CGOA) region.

  17. Ocean Clutter Modeling for Ship Detection

    NASA Astrophysics Data System (ADS)

    Tao, Ding; Anfinsen, Stian Normann; Brekke, Camilla

    2013-03-01

    This work addresses the problem of covariance matrix estimation for ocean clutter modeling. For ship detection based on polarimetric synthetic aperture radar (Pol-SAR) imagery and constant false alarm rate (CFAR) detectors, accurate ocean clutter modeling is essential. The covariance matrix provides all the polarimetric information of the ocean clutter and its estimate is always involved in PolSAR detection [1]. The aim of this work is to investigate and compare the behavior of different covariance matrix estimators, i.e., the sample mean, fixedpoint, and maximum likelihood estimators. An approximate maximum likelihood covariance matrix estimator is also proposed and discussed for better computational efficiency. Their performances are evaluated in terms of the Kullback-Leibler (KL) matrix distance, and computational efficiency. Various textured ocean clutter conditions are considered, ranging from high texture to the non-textured case with Gaussian clutter. Experiments are performed on simulated ocean clutter data.

  18. Modelling Ocean Surface Waves in Polar Regions

    NASA Astrophysics Data System (ADS)

    Hosekova, Lucia; Aksenov, Yevgeny; Coward, Andrew; Bertino, Laurent; Williams, Timothy; Nurser, George A. J.

    2015-04-01

    In the Polar Oceans, the surface ocean waves break up sea ice cover and create the Marginal Ice Zone (MIZ), an area between the sea-ice free ocean and pack ice characterized by highly fragmented ice. This band of sea ice cover is undergoing dramatic changes due to sea ice retreat, with up to a 39% widening in the Arctic Ocean reported over the last three decades and projections predicting a continuing increase. The surface waves, sea ice and ocean interact in the MIZ through multiple complex feedbacks and processes which are not accounted for in any of the present-day climate models. To address this issue, we present a model development which implements surface ocean wave effects in the global Ocean General Circulation Model NEMO, coupled to the CICE sea ice model. Our implementation takes into account a number of physical processes specific to the MIZ dynamics. Incoming surface waves are attenuated due to reflection and energy dissipation induced by the presence of ice cover, which is in turn fragmented in response to external stresses. This process generates a distribution of floe sizes and impacts the dynamics of sea ice by the means of combined rheology that takes into account floe collisions and allows for a more realistic representation of the MIZ. We present results from the NEMO OGCM at 1 degree resolution with a wave-ice interaction module described above. The module introduces two new diagnostics previously unavailable in GCM's: surface wave spectra in sea ice covered areas, and floe size distribution due to wave-induced fragmentation. We discuss the impact of these processes on the ocean and sea ice state, including ocean circulation, mixing, stratification and the role of the MIZ in the ocean variability. The model predictions for the floe sizes in the summer Arctic Ocean range from 60 m in the inner MIZ to a few tens of meters near the open ocean, which agrees with estimates from the satellites. The extent of the MIZ throughout the year is also in

  19. A one ocean model of biodiversity

    NASA Astrophysics Data System (ADS)

    O'Dor, Ronald K.; Fennel, Katja; Berghe, Edward Vanden

    2009-09-01

    The history of life is written in the ocean, and the history of the ocean is written in DNA. Geologists have shown us that hundreds of millions of years of ocean history can be revealed from records of a single phylum in cores of mud from abyssal plains. We are now accumulating genetic tools to unravel the relationships of hundreds of phyla to track this history back billions of years. The technologies demonstrated by the Census of Marine Life (CoML) mean that the ocean is no longer opaque or unknowable. The secrets of the largest component of the biosphere are knowable. The cost of understanding the history of ocean life is not cheap, but it is also not prohibitive. A transparent, open ocean is available for us to use to understand ourselves. This article develops a model of biodiversity equilibration in a single, physically static ocean as a step towards biodiversity in physically complex real oceans. It attempts to be quantitative and to simultaneously account for biodiversity patterns from bacteria to whales focusing on emergent properties rather than details. Biodiversity reflects long-term survival of DNA sequences, stabilizing "ecosystem services" despite environmental change. In the ocean, mechanisms for ensuring survival range from prokaryotes maintaining low concentrations of replicable DNA throughout the ocean volume, anticipating local change, to animals whose mobility increases with mass to avoid local change through movement. Whales can reach any point in the ocean in weeks, but prokaryotes can only diffuse. The high metabolic costs of mobility are offset by the dramatically lower number of DNA replicates required to ensure survival. Reproduction rates probably scale more or less inversely with body mass. Bacteria respond in a week, plankton in a year, whales in a century. We generally lack coherent theories to explain the origins of animals (metazoans) and the contributions of biodiversity to ecosystems. The One Ocean Model suggests that mobile

  20. Stereolithography models. Final report

    SciTech Connect

    Smith, R.E.

    1995-03-01

    This report describes the first stereolithographic models made, which proved in a new release of ProEngineer software (Parametric Technologies, or PTC) and 3D Systems (Valencia, California) software for the SLA 250 machine. They are a model of benzene and the {alpha}-carbon backbone of the variable region of an antibody.

  1. Ocean Modeling of the North Atlantic

    NASA Technical Reports Server (NTRS)

    Seminar, A. J.

    1984-01-01

    Present modeling of the North Atlantic is inadequate and can be improved in a number of ways. A number of important physical processes are listed in five categories from the viewpoints of how they are treated in isolation, how they are usually represented in present ocean basin models, and how they may be better represented in future models. In the first two categories of vertical boundary processes and internal vertical mixing, parameterizations exist which can easily be incorporated into models and which will have important effects on the simulated structure of the North Atlantic. For the third catagory (mesoscale eddy effects), adequate parameterizations do not exist; but the order of magnitude of the effects is known from observational and process-model studies. A horizontal grid spacing of 100 km or less in required to allow parameterizations with this order of magnitude, as well as to resolve the time-averaged ocean fields. In the fourth category of large scale transports improvements are suggested by way of increased vertical resolution and by the requirement that lateral mixing due to eddies takes place on isopycnal surfaces. Model incorporation of the latter phenomenta is underway. In the fifth category of miscellaneous high-latitude processes, formulations for the treatment of sea ice are available for use. However, the treatment of gravitational instability, which is crucial to deepwater formation in the Atlantic Ocean, will require additional refinements to account for the unresolved physics of chimney formations in the open ocean and buoyant plumes near ocean boundaries.

  2. Modeling Europa's Ice-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  3. Mixing parameterizations in ocean climate modeling

    NASA Astrophysics Data System (ADS)

    Moshonkin, S. N.; Gusev, A. V.; Zalesny, V. B.; Byshev, V. I.

    2016-03-01

    Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin-Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.

  4. Origin and models of oceanic transform faults

    NASA Astrophysics Data System (ADS)

    Gerya, Taras

    2012-02-01

    Mid-ocean ridges sectioned by transform faults represent prominent surface expressions of plate tectonics. A fundamental problem of plate tectonics is how this pattern has formed and why it is maintained. Gross-scale geometry of mid-ocean ridges is often inherited from respective rifted margins. Indeed, transform faults seem to nucleate after the beginning of the oceanic spreading and can spontaneously form at a single straight ridge. Both analog and numerical models of transform faults were investigated since the 1970s. Two main groups of analog models were developed: thermomechanical (freezing wax) models with accreting and cooling plates and mechanical models with non-accreting lithosphere. Freezing wax models reproduced ridge-ridge transform faults, inactive fracture zones, rotating microplates, overlapping spreading centers and other features of oceanic ridges. However, these models often produced open spreading centers that are dissimilar to nature. Mechanical models, on the other hand, do not accrete the lithosphere and their results are thus only applicable for relatively small amount of spreading. Three main types of numerical models were investigated: models of stress and displacement distribution around transforms, models of their thermal structure and crustal growth, and models of nucleation and evolution of ridge-transform fault patterns. It was shown that a limited number of spreading modes can form: transform faults, microplates, overlapping spreading centers, zigzag ridges and oblique connecting spreading centers. However, the controversy exists whether these patterns always result from pre-existing ridge offsets or can also form spontaneously at a single straight ridge during millions of year of accretion. Therefore, two types of transform fault interpretation exist: plate fragmentation structures vs. plate accretion structures. Models of transform faults are yet relatively scarce and partly controversial. Consequently, a number of first order

  5. Serving ocean model data on the cloud

    USGS Publications Warehouse

    Meisinger, M.; Farcas, C.; Farcas, E.; Alexander, Corrine; Arrott, M.; de La Beaujardière, J.; Hubbard, P.; Mendelssohn, R.; Signell, R.

    2009-01-01

    The NOAA-led Integrated Ocean Observing System (IOOS) and the NSF-funded Ocean Observatories Initiative Cyberinfrastructure Project (OOI-CI) are collaborating on a prototype data delivery system for numerical model output and other gridded data using cloud computing. The strategy is to take an existing distributed system for delivering gridded data and redeploy on the cloud, making modifications to the system that allow it to harness the scalability of the cloud as well as adding functionality that the scalability affords. ??2009 MTS.

  6. Assimilation of altimeter topography into oceanic models

    NASA Technical Reports Server (NTRS)

    Demey, Pierre; Menard, Yves; Pinardi, Nadia; Schroeter, J.; Verron, J.

    1991-01-01

    The primary goals of the authors are to build an intuition for assimilation techniques and to investigate the impact of variable altimeter topography on simple or complex oceanic models. In particular, applying various techniques and sensitivity studies to model and data constraints plays a key role. We are starting to use quasi-geostrophic, semigeostrophic, and primitive-equation (PE) models and to test the schemes in regions of interest to the World Ocean Circulation Experiment (WOCE), as well as in the northeast Atlantic and the Mediterranean. The impact of scatterometer wind forcing on the results is also investigated. The use of Geosat, European Remote Sensing satellite (ERS-1), and TOPEX/POSEIDON altimetry data is crucial in fine tuning the models and schemes to the selected areas of interest.

  7. Development of Facilities for an Ocean Engineering Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Nash, W. A.; And Others

    A collection of seven laboratory facilities and processes dedicated to improving student understanding of the fundamental concepts associated with the structural mechanics of oceanic structures is described. Complete working drawings covering all mechanical and electrical aspects of these systems are presented so that the systems may be reproduced…

  8. Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report

    ERIC Educational Resources Information Center

    Phillips, Michelle; St. John, Mark

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…

  9. Graduate Training Program in Ocean Engineering. Final Report.

    ERIC Educational Resources Information Center

    Frey, Henry R.

    Activities during the first three years of New York University's Ocean Engineering Program are described including the development of new courses and summaries of graduate research projects. This interdepartmental program at the master's level includes aeronautics, chemical engineering, metallurgy, and physical oceanography. Eleven courses were…

  10. Partially molten magma ocean model

    SciTech Connect

    Shirley, D.N.

    1983-02-15

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model.

  11. Mixing parametrizations for ocean climate modelling

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir

    2016-04-01

    The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model

  12. Continental and oceanic crustal magnetization modelling

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Hayling, K. L.

    1984-01-01

    Inversion of magnetic data from the MAGSAT satellite, to arrive at intensities of magnetization of the Earth's crust, was performed by two different methods. The first method uses a spherical harmonic model of the magnetic field. The coefficients believed to represent sources in the Earth's crust can then be inverted to arrive at vertical dipole moments per unit area at the Earth's surface. The spherical harmonic models contain coefficients of degrees of harmonics up to 23. The dipole moment per unit area for a surface element can then be determined by summing the contribution for each individual degree of harmonic. The magnetic moments were calculated for continental and oceanic areas separately as well as over certain latitudinal segments. Of primary concern was to determine whether there are any differences between continental and oceanic areas. The second analysis with magnetization intensities was made using narrower ranges of degrees of harmonics, assuming that higher degrees are present in the core field signal.

  13. Modelling ocean carbon cycle with a nonlinear convolution model

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; White, Benjamin S.

    1996-02-01

    A nonlinear convolution integral is developed to model the response of the ocean carbon sink to changes in the atmospheric concentration of CO2. This model can accurately represent the atmospheric response of complex ocean carbon cycle models in which the nonlinear behavior stems from the nonlinear dependence of CO2 solubility in seawater on CO2 partial pressure, which is often represented by the buffer factor. The kernel of the nonlinear convolution model can be constructed from a response of such a complex model to an arbitrary change in CO2 emissions, along with the functional dependence of the buffer factor. Once the convolution kernel has been constructed, either analytically or from a model experiment, the convolution representation can be used to estimate responses of the ocean carbon sink to other changes in the atmospheric concentration of CO2. Thus the method can be used, e.g., to explore alternative emissions scenarios for assessments of climate change. A derivation for the nonlinear convolution integral model is given, and the model is used to reproduce the response of two carbon cycle models: a one-dimensional diffusive ocean model, and a three-dimensional ocean-general-circulation tracer model.

  14. Water In The Lunar Mantle: Results From Magma Ocean Modeling

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, Linda

    2010-05-01

    The Moon is posited to have formed by reconsolidation of materials produced during a giant impact with the Earth. The young Moon appears to have experienced a magma ocean of some depth. The hypothetical energetics of such an impact and cooling process, combined with the low oxygen activity implied by lunar petrology, has lead investigators to believe that the Moon was free of water. Recent results, however, indicate that lunar volcanic glasses produced by fire fountaining contain small amounts of water (Saal et al., 2008). The volcanic glasses are reported to contain 4 to 46 ppm water, thought to be the remnant after degassing an original minimum 260 ppm. Lunar sample suites indicate fractional crystallization of a lunar magma ocean, including efficient flotation of anorthite to its surface, unimpeded by high crystal fractions or crystal networks. Modeling lunar magma ocean solidification including a small amount of initial water produces predictions for the locations and quantities of water that should be found in the lunar interior, and water that would have been degassed. Compositions of mineral phases are calculated in equilibrium with the magma ocean liquid composition at that stage of solidification, using experimentally-determined KDs for major elements and partition coefficients for hydroxyl and trace elements; for methods see Elkins-Tanton (2008). Water and all other incompatible elements are progressively enriched in the evolving magma ocean liquids as solidification progresses. Progressive enrichment of water in magma ocean liquids produces increasing water contents in solidifying cumulate minerals. Between 0.2 and 1% of the magma ocean liquid water content will be incorporated into solidifying cumulates, enhanced by trapped interstitial liquids. Upon later melting about 99% of cumulate source region water moves into the melt phase. Finally, upon eruption, Saal et al. (2008) estimate that 98% of magmatic water is degassed. Fractional solidification of

  15. Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models

    NASA Astrophysics Data System (ADS)

    Martin, T.; Reintges, A.; Park, W.; Latif, M.

    2014-12-01

    Many current coupled global climate models simulate open ocean deep convection in the Southern Ocean as a recurring event with time scales ranging from a few years to centennial (de Lavergne et al., 2014, Nat. Clim. Ch.). The only observation of such event, however, was the occurrence of the Weddell Polynya in the mid-1970s, an open water area of 350 000 km2 within the Antarctic sea ice in three consecutive winters. Both the wide range of modeled frequency of occurrence and the absence of deep convection in the Weddell Sea highlights the lack of understanding concerning the phenomenon. Nevertheless, simulations indicate that atmospheric and oceanic responses to the cessation of deep convection in the Southern Ocean include a strengthening of the low-level atmospheric circulation over the Southern Ocean (increasing SAM index) and a reduction in the export of Antarctic Bottom Water (AABW), potentially masking the regional effects of global warming (Latif et al., 2013, J. Clim.; Martin et al., 2014, Deep Sea Res. II). It is thus of great importance to enhance our understanding of Southern Ocean deep convection and clarify the associated time scales. In two multi-millennial simulations with the Kiel Climate Model (KCM, ECHAM5 T31 atmosphere & NEMO-LIM2 ~2˚ ocean) we showed that the deep convection is driven by strong oceanic warming at mid-depth periodically overriding the stabilizing effects of precipitation and ice melt (Martin et al., 2013, Clim. Dyn.). Sea ice thickness also affects location and duration of the deep convection. A new control simulation, in which, amongst others, the atmosphere grid resolution is changed to T42 (~2.8˚), yields a faster deep convection flip-flop with a period of 80-100 years and a weaker but still significant global climate response similar to CMIP5 simulations. While model physics seem to affect the time scale and intensity of the phenomenon, the driving mechanism is a rather robust feature. Finally, we compare the atmospheric and

  16. Global ocean modeling on the Connection Machine

    SciTech Connect

    Smith, R.D.; Dukowicz, J.K.; Malone, R.C.

    1993-10-01

    The authors have developed a version of the Bryan-Cox-Semtner ocean model (Bryan, 1969; Semtner, 1976; Cox, 1984) for massively parallel computers. Such models are three-dimensional, Eulerian models that use latitude and longitude as the horizontal spherical coordinates and fixed depth levels as the vertical coordinate. The incompressible Navier-Stokes equations, with a turbulent eddy viscosity, and mass continuity equation are solved, subject to the hydrostatic and Boussinesq approximations. The traditional model formulation uses a rigid-lid approximation (vertical velocity = 0 at the ocean surface) to eliminate fast surface waves. These waves would otherwise require that a very short time step be used in numerical simulations, which would greatly increase the computational cost. To solve the equations with the rigid-lid assumption, the equations of motion are split into two parts: a set of twodimensional ``barotropic`` equations describing the vertically-averaged flow, and a set of three-dimensional ``baroclinic`` equations describing temperature, salinity and deviations of the horizontal velocities from the vertically-averaged flow.

  17. Model-based ocean acoustic passive localization. Revision 1

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1994-06-01

    A model-based approach is developed (theoretically) to solve the passive localization problem. Here the authors investigate the design of a model-based identifier for a shallow water ocean acoustic problem characterized by a normal-mode model. In this problem they show how the processor can be structured to estimate the vertical wave numbers directly from measured pressure-field and sound speed measurements thereby eliminating the need for synthetic aperture processing or even a propagation model solution. Finally, they investigate various special cases of the source localization problem, designing a model-based localizer for each and evaluating the underlying structure with the expectation of gaining more and more insight into the general problem.

  18. On effective resolution in ocean models

    NASA Astrophysics Data System (ADS)

    Soufflet, Yves; Marchesiello, Patrick; Lemarié, Florian; Jouanno, Julien; Capet, Xavier; Debreu, Laurent; Benshila, Rachid

    2016-02-01

    The increase of model resolution naturally leads to the representation of a wider energy spectrum. As a result, in recent years, the understanding of oceanic submesoscale dynamics has significantly improved. However, dissipation in submesoscale models remains dominated by numerical constraints rather than physical ones. Effective resolution is limited by the numerical dissipation range, which is a function of the model numerical filters (assuming that dispersive numerical modes are efficiently removed). We present a Baroclinic jet test case set in a zonally reentrant channel that provides a controllable test of a model capacity at resolving submesoscale dynamics. We compare simulations from two models, ROMS and NEMO, at different mesh sizes (from 20 to 2 km). Through a spectral decomposition of kinetic energy and its budget terms, we identify the characteristics of numerical dissipation and effective resolution. It shows that numerical dissipation appears in different parts of a model, especially in spatial advection-diffusion schemes for momentum equations (KE dissipation) and tracer equations (APE dissipation) and in the time stepping algorithms. Effective resolution, defined by scale-selective dissipation, is inadequate to qualify traditional ocean models with low-order spatial and temporal filters, even at high grid resolution. High-order methods are better suited to the concept and probably unavoidable. Fourth-order filters are suited only for grid resolutions less than a few kilometers and momentum advection schemes of even higher-order may be justified. The upgrade of time stepping algorithms (from filtered Leapfrog), a cumbersome task in a model, appears critical from our results, not just as a matter of model solution quality but also of computational efficiency (extended stability range of predictor-corrector schemes). Effective resolution is also shaken by the need for non scale-selective barotropic mode filters and requires carefully addressing the

  19. Modeling and Assimilating Ocean Color Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Radiances are the source of information from ocean color sensors to produce estimates of biological and geochemical constituents. They potentially provide information on various other aspects of global biological and chemical systems, and there is considerable work involved in deriving new information from these signals. Each derived product, however, contains errors that are derived from the application of the radiances, above and beyond the radiance errors. A global biogeochemical model with an explicit spectral radiative transfer model is used to investigate the potential of assimilating radiances. The results indicate gaps in our understanding of radiative processes in the oceans and their relationships with biogeochemical variables. Most important, detritus optical properties are not well characterized and produce important effects of the simulated radiances. Specifically, there does not appear to be a relationship between detrital biomass and its optical properties, as there is for chlorophyll. Approximations are necessary to get beyond this problem. In this reprt we will discuss the challenges in modeling and assimilation water-leaving radiances and the prospects for improving our understanding of biogeochemical process by utilizing these signals.

  20. Evaluation and improvement of high-resolution models for regional oceans around Canada

    NASA Astrophysics Data System (ADS)

    Lu, Youyu; Zhai, Li; Paquin, Jean-Philippe; Lei, Ji; Li, Jiaxing; Chgini, Fatemeh; Dupont, Frederic

    2016-04-01

    A set of high-resolution regional ocean models based on the Nucleus for European Modelling of the Ocean (NEMO) are being developed for ocean forecasting and research applications in Canada. The horizontal resolutions of these models are 2-10 km for covering large basins and shelf seas, and 0. 5 km for coastal waters. The solutions of these models, in terms of velocity, vorticity and horizontal gradient of temperature and salinity, show strong dependence on the choice of lateral viscosity coefficient. Various in situ and satellite remote sensing data are used to evaluate the model solutions and guide the model improvement. Finally, case studies demonstrate the value of high-resolution models in studying ocean dynamic processes and improving forecasting applications.

  1. Towards petascaling of the NEMO ocean model

    NASA Astrophysics Data System (ADS)

    Donners, J.; Audiffren, N.; Molines, J.-M.

    2012-04-01

    PRACE, the Partnership for Advanced Computing in Europe, offers acces to the largest high-performance computing systems in Europe. These systems follow the trend of increasing numbers of nodes, each with an increasing number of cores. To utilize these computing systems, it is necessary to use a model that is parallellized and has a good scalability. This poster describes different efforts to improve the scalability of the NEMO ocean model. Most importantly, the problem size needs to be chosen adequately: it should contain enough computations to keep thousands of cores busy, but foremostly it has to be scientifically relevant. The global, 1/12degree, NEMO ocean model configuration, developed by the Mercator team, is used for operational ocean forecasting. Therefore, PRACE selected this model for the PRACE Benchmarking suite. However, an increased problem size alone was not enough to efficiently use these petascale systems. Different optimizations were required to reach the necessary performance. Scientifically, the model should simulate one year within a wallclock day. Technically, the application needs to scale up to a minimum number of cores. For example, to utilize the fastest system in Europe, the new Curie system in France, the lower limit is 2048 cores. Scalability can be increased by minimizing the time needed for communication between cores. This has been done in two ways. Firstly, advanced parameters of the MPI-communication library were optimized. The improvement consists in: 1. using RDMA for eager messages (NEMO messages size are below the eager size limit) conjugated with adequate openib flags. 2. tuning for openMPI for collective communication through the btl_coll_tuned_dynamic_rules flag. Overall, the improvement is 33%. Secondly, NEMO uses a tri-polar and staggered grid, which involves a complicated fold across the northpole. Communication along this fold involves collective gather and scatter operations which create a bottleneck at a single core, so

  2. Lagrangian predictability characteristics of an Ocean Model

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia

    2014-11-01

    The Mediterranean Forecasting System (MFS) Ocean Model, provided by INGV, has been chosen as case study to analyze Lagrangian trajectory predictability by means of a dynamical systems approach. To this regard, numerical trajectories are tested against a large amount of Mediterranean drifter data, used as sample of the actual tracer dynamics across the sea. The separation rate of a trajectory pair is measured by computing the Finite-Scale Lyapunov Exponent (FSLE) of first and second kind. An additional kinematic Lagrangian model (KLM), suitably treated to avoid "sweeping"-related problems, has been nested into the MFS in order to recover, in a statistical sense, the velocity field contributions to pair particle dispersion, at mesoscale level, smoothed out by finite resolution effects. Some of the results emerging from this work are: (a) drifter pair dispersion displays Richardson's turbulent diffusion inside the [10-100] km range, while numerical simulations of MFS alone (i.e., without subgrid model) indicate exponential separation; (b) adding the subgrid model, model pair dispersion gets very close to observed data, indicating that KLM is effective in filling the energy "mesoscale gap" present in MFS velocity fields; (c) there exists a threshold size beyond which pair dispersion becomes weakly sensitive to the difference between model and "real" dynamics; (d) the whole methodology here presented can be used to quantify model errors and validate numerical current fields, as far as forecasts of Lagrangian dispersion are concerned.

  3. Numerical noise in ocean and estuarine models

    USGS Publications Warehouse

    Walters, R.; Carey, G.F.

    1984-01-01

    Approximate methods for solving the shallow water equations may lead to solutions exhibiting large fictitious, numerically-induced oscillations. The analysis of the discrete dispersion relation and modal solutions of small wavelengths provides a powerful technique for assessing the sensitivity of alternative numerical schemes to irregular data which may lead to such oscillatory numerical noise. For those schemes where phase speed vanishes at a finite wavenumber or there are multiple roots for wavenumber, oscillation modes can exist which are uncoupled from the dynamics of the problem. The discrete modal analysis approach is used here to identify two classes of spurious oscillation modes associated respectively with the two different asymptotic limits corresponding to estuarine and large scale ocean models. The analysis provides further insight into recent numerical results for models which include large spatial scales and Coriolis acceleration. ?? 1984.

  4. Evaluating the deep-ocean circulation of a global ocean model using carbon isotopic ratios

    NASA Astrophysics Data System (ADS)

    Paul, André; Dutkiewicz, Stephanie; Gebbie, Jake; Losch, Martin; Marchal, Olivier

    2016-04-01

    We study the sensitivity of a global three-dimensional biotic ocean carbon-cycle model to the parameterizations of gas exchange and biological productivity as well as to deep-ocean circulation strength, and we employ the carbon isotopic ratios δ13C and Δ14C of dissolved inorganic carbon for a systematic evaluation against observations. Radiocarbon (Δ14C) in particular offers the means to assess the model skill on a time scale of 100 to 1000 years relevant to the deep-ocean circulation. The carbon isotope ratios are included as tracers in the MIT general circulation model (MITgcm). The implementation involves the fractionation processes during photosynthesis and air-sea gas exchange. We present the results of sixteen simulations combining two different parameterizations of the piston velocity, two different parameterizations of biological productivity (including the effect of iron fertilization) and four different overturning rates. These simulations were first spun up to equilibrium (more than 10,000 years of model simulation) and then continued from AD 1765 to AD 2002. For the model evaluation, we followed the OCMIP-2 (Ocean Carbon-Cycle Model Intercomparision Project phase two) protocol, comparing the results to GEOSECS (Geochemical Ocean Sections Survey) and WOCE (World Ocean Circulation Experiment) δ13C and natural Δ14C data in the world ocean. The range of deep natural Δ14C (below 1000 m) for our single model (MITgcm) was smaller than for the group of different OCMIP-2 models. Furthermore, differences between different model parameterizations were smaller than for different overturning rates. We conclude that carbon isotope ratios are a useful tool to evaluate the deep-ocean circulation. Since they are also available from deep-sea sediment records, we postulate that the simulation of carbon isotope ratios in a global ocean model will aid in estimating the deep-ocean circulation and climate during present and past.

  5. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  6. Ocean Models and Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Salas-de-Leon, D. A.

    2007-05-01

    The increasing computational developments and the better understanding of mathematical and physical systems resulted in an increasing number of ocean models. Long time ago, modelers were like a secret organization and recognize each other by using secret codes and languages that only a select group of people was able to recognize and understand. The access to computational systems was reduced, on one hand equipment and the using time of computers were expensive and restricted, and on the other hand, they required an advance computational languages that not everybody wanted to learn. Now a days most college freshman own a personal computer (PC or laptop), and/or have access to more sophisticated computational systems than those available for research in the early 80's. The resource availability resulted in a mayor access to all kind models. Today computer speed and time and the algorithms does not seem to be a problem, even though some models take days to run in small computational systems. Almost every oceanographic institution has their own model, what is more, in the same institution from one office to the next there are different models for the same phenomena, developed by different research member, the results does not differ substantially since the equations are the same, and the solving algorithms are similar. The algorithms and the grids, constructed with algorithms, can be found in text books and/or over the internet. Every year more sophisticated models are constructed. The Proper Orthogonal Decomposition is a technique that allows the reduction of the number of variables to solve keeping the model properties, for which it can be a very useful tool in diminishing the processes that have to be solved using "small" computational systems, making sophisticated models available for a greater community.

  7. The Fidelity of Ocean Models With Explicit Eddies (Chapter 17)

    SciTech Connect

    McClean, J; Jayne, S; Maltrud, M; Ivanova, D

    2007-08-01

    Current practices within the oceanographic community have been reviewed with regard to the use of metrics to assess the realism of the upper-ocean circulation, ventilation processes diagnosed by time-evolving mixed layer depth and mode water formation, and eddy heat fluxes in large-scale fine resolution ocean model simulations. We have striven to understand the fidelity of these simulations in the context of their potential use in future fine-resolution coupled climate system studies. A variety of methodologies are used to assess the veracity of the numerical simulations. Sea surface height variability and the location of western boundary current paths from altimetry have been used routinely as basic indicators of fine-resolution model performance. Drifters and floats have also been used to provide pseudo-Eulerian measures of the mean and variability of surface and sub-surface flows, while statistical comparisons of observed and simulated means have been carried out using James tests. Probability density functions have been used to assess the Gaussian nature of the observed and simulated flows. Length and time scales have been calculated in both Eulerian and Lagrangian frameworks from altimetry and drifters, respectively. Concise measures of multiple model performance have been obtained from Taylor diagrams. The time-evolution of the mixed layer depth at monitoring stations has been compared with simulated time series. Finally, eddy heat fluxes are compared to climatological inferences.

  8. A coastal ocean model with subgrid approximation

    NASA Astrophysics Data System (ADS)

    Walters, Roy A.

    2016-06-01

    A wide variety of coastal ocean models exist, each having attributes that reflect specific application areas. The model presented here is based on finite element methods with unstructured grids containing triangular and quadrilateral elements. The model optimizes robustness, accuracy, and efficiency by using semi-implicit methods in time in order to remove the most restrictive stability constraints, by using a semi-Lagrangian advection approximation to remove Courant number constraints, and by solving a wave equation at the discrete level for enhanced efficiency. An added feature is the approximation of the effects of subgrid objects. Here, the Reynolds-averaged Navier-Stokes equations and the incompressibility constraint are volume averaged over one or more computational cells. This procedure gives rise to new terms which must be approximated as a closure problem. A study of tidal power generation is presented as an example of this method. A problem that arises is specifying appropriate thrust and power coefficients for the volume averaged velocity when they are usually referenced to free stream velocity. A new contribution here is the evaluation of three approaches to this problem: an iteration procedure and two mapping formulations. All three sets of results for thrust (form drag) and power are in reasonable agreement.

  9. Diurnal ocean surface layer model validation

    NASA Technical Reports Server (NTRS)

    Hawkins, Jeffrey D.; May, Douglas A.; Abell, Fred, Jr.

    1990-01-01

    The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy.

  10. (Modeling the upper ocean and its interaction with the atmosphere)

    SciTech Connect

    Peng, Tsung-Hung.

    1990-03-28

    The traveler attended the International Meeting on Modeling the Physics, Biology and Chemistry of the Upper Ocean and Its Interaction with the Atmosphere in London, England, and presented a lecture entitled Modeling the Seasonality of CO{sub 2} in the North Atlantic.'' This international meeting was jointly sponsored by the International Geosphere Biosphere Programme and the Joint Global Ocean Flux Study. Most lectures focused on the modeling of the upper ocean, with a particular emphasis in the area of marine biology and marine ecosystems. Models ranged from simple box ocean models to general circulation models. A total of 16 papers were presented in this two-day conference. At the end of the conference, it became clear that a better understanding of global change in climate atmospheric CO{sub 2} variations requires a closer link between the studies of marine biology and ocean physics and chemistry.

  11. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Furue, Ryo; Schloesser, Fabian; Burkhardt, Theodore W.; Nonaka, Masami

    2016-04-01

    A steady-state, variable-density, 2-layer, ocean model (VLOM) is used to investigate basic dynamics of the Atlantic meridional overturning circulation and Southern Ocean. The domain consists of idealized (rectangular) representations of the Atlantic, Southern, and Pacific Oceans. The model equations represent the depth-averaged, layer-1 response (except for one solution in which they represent the depth-integrated flow over both layers). To allow for overturning, water can cross the bottom of layer 1 at the velocity we =wd +wm +wn , the three parts representing: interior diffusion wd that increases the layer-1 thickness h throughout the basin, mixed-layer entrainment wm that ensures h is never less than a minimum value hm , and diapycnal (cooling) processes external to the basin wn that adjust h to hn . For most solutions, horizontal mixing has the form of Rayleigh damping with coefficient ν , which we interpret to result from baroclinic instability through the closure, V∗ = - (ν /f2) ∇P , where ∇P = ∇(1/2 g‧h2) is the depth-integrated pressure gradient, g‧ is the reduced-gravity coefficient, and ν is a mixing coefficient; with this interpretation, the layer-1 flow corresponds to the sum of the Eulerian-mean and eddy-mean (V∗) transport/widths, that is, the "residual" circulation. Finally, layer-1 temperature cools polewards in response to a surface heat flux Q, and the cooling can be strong enough in the Southern Ocean for g‧ = 0 south of a latitude y0 , in which case layer 1 vanishes and the model reduces to a single layer 2. Solutions are obtained both numerically and analytically. The analytic approach splits fields into interior and boundary-layer parts, from which a coupled set of integral constraints can be derived. The set allows properties of the circulation (upwelling-driven transport out of the Southern Ocean M , downwelling transport in the North Atlantic, transport of the Antarctic Circumpolar Current) and stratification (Atlantic

  12. Ocean Wave Studies with Applications to Ocean Modeling and Improvement of Satellite Altimeter Measurements

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1999-01-01

    Combining analysis of satellite data (altimeter, scatterometer, high-resolution visible and infrared images, etc.) with mathematical modeling of non-linear wave processes, we investigate various ocean wave fields (on scales from capillary to planetary), their role in ocean dynamics and turbulent transport (of heat and biogeochemical quantities), and their effects on satellite altimeter measuring accuracy. In 1998 my attention was focused on long internal gravity waves (10 to 1000 km), known also as baroclinic inertia-gravity (BIG) waves. We found these waves to be a major factor of altimeter measurements "noise," resulting in a greater uncertainty [up to 10 cm in terms of sea surface height (SSH) amplitude] in the measured SSH signal than that caused by the sea state bias variations (up to 5 cm or so). This effect still remains largely overlooked by the satellite altimeter community. Our studies of BIG waves address not only their influence on altimeter measurements but also their role in global ocean dynamics and in transport and turbulent diffusion of biogeochemical quantities. In particular, in collaboration with Prof Peter Weichman, Caltech, we developed a theory of turbulent diffusion caused by wave motions of most general nature. Applied to the problem of horizontal turbulent diffusion in the ocean, the theory yielded the effective diffusion coefficient as a function of BIG wave parameters obtainable from satellite altimeter data. This effort, begun in 1997, has been successfully completed in 1998. We also developed a theory that relates spatial fluctuations of scalar fields (such as sea surface temperature, chlorophyll concentration, drifting ice concentration, etc.) to statistical characteristics of BIG waves obtainable from altimeter measurements. A manuscript is in the final stages of preparation. In order to verify the theoretical predictions and apply them to observations, we are now analyzing Sea-viewing Wide Field of view Sensor (SeaWiFS) and Field of

  13. A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.

  14. Modelling Tropical Cyclones-Ocean interactions: the role of the Atmophere - Ocean coupling frequency

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Enrico; Fogli, Pier Giuseppe; Gualdi, Silvio; Masina, Simona; Navarra, Antonio

    2016-04-01

    The interaction between Tropical Cyclones (TCs) and ocean is a major mechanism responsible for energy exchange between the atmosphere and the ocean. TCs affect the thermal and dynamical structure of the ocean, but the magnitude of the impact is still uncertain. Very few CMIP5 models demonstrated ability in representing TCs, mainly due to their horizontal resolution. We aim to improve TCs representation in next CMIPs experiments through the new CMCC-CM2VHR General Circulation Model, having a horizontal resolution of 1/4 degree in both atmospheric and ocean components. The model is capable to represent realistically TCs up to Cat-5 Typhoons. A good representation of the TC-Ocean interaction strongly depends on the coupling frequency between the atmospheric and the ocean components. In this work, we found that a better representation of the negative Sea Surface Temperature - TC induced feedback, through a high (hourly) coupling frequency, ensures the reduction of the TC induced Power Dissipation Index (PDI) bias of one order of magnitude. In addition, a cat-5 storm case study is deeply investigated also in terms of TC effects on the deep ocean.

  15. A Parallel Ocean Model With Adaptive Mesh Refinement Capability For Global Ocean Prediction

    SciTech Connect

    Herrnstein, Aaron R.

    2005-12-01

    An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration, and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No

  16. Adaptation of a general circulation model to ocean dynamics

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  17. The seasonal cycle in a coupled ocean-atmosphere model

    SciTech Connect

    Giese, B.S.; Carton, J.A. )

    1994-08-01

    A coupled ocean-atmosphere model is used to investigate the seasonal cycle of sea surface temperature and wind stress in the Tropics. A control run is presented that gives a realistic annual cycle with a cold tongue in the eastern Pacific and Atlantic Oceans. In an attempt to isolate the mechanisms responsible for the particular annual cycle that is observed. The authors conducted a series of numerical experiments in which they alter the solar forcing. These experiments include changing the longitude of perihelion, increasing the heat capacity of land, and changing the length of the solar year. The results demonstrate that the date of perihelion and land heating do not, by themselves, control the annual cycle. However, there is a natural timescale for the development of the annual cycle. When the solar year is shortened to just 6 months, the seasonal variations of climate remain similar in timing to the control run except that then are weaker. When the solar year is lengthened to 18 months, surface temperature in the eastern Pacific develops a prominent semiannual cycle. The semiannual cycle results from the ITCZ crossing the equator into the Southern Hemisphere and the development of a Northern Hemisphere cold tongue during northern winter. The meridional winds maintain an annual cycle, while the zonal winds have a semiannual component. The Atlantic maintains an annual cycle in all variables regardless of changes in the length of the solar year. A final experiment addresses the factors determining the season in which upwelling occurs. In this experiment the sun is maintained perpetual over the equator (simulating March or September conditions). In this case the atmosphere and ocean move toward September conditions, with a Southern Hemisphere cold tongue and connection north of the equator. 19 refs., 10 figs.

  18. Oceans Abound? Tectonic Tests of Global Ocean Models for Enceladus and Mimas

    NASA Astrophysics Data System (ADS)

    Rhoden, A.; Henning, W. G.; Bland, M. T.; Tajeddine, R.; Hurford, T., Jr.

    2015-12-01

    Librations identified in Cassinidata imply that Mimas either has a global ocean or an irregular core (Tajeddine et al., 2014). A global ocean is the only model consistent with Enceladus' librations (Tajeddine et al., 2015). A global ocean can also explain gravity measurements of Enceladus as long as the overlying ice shell is thicker in the north pole than the south pole (McKinnon, 2015), although a regional sea is also possible (Iess et al., 2014). Generations of fractures at Enceladus' south pole may indicate longitudinal migration of the ice shell, which would also require a global ocean (Patthoff and Kattenhorn, 2011). Because both Mimas and Enceladus have eccentric orbits (0.0196 and 0.0047, respectively) interior models that include oceans can generate much larger tidal stresses than models without oceans. However, the enhancement in tidal stress due to oceans creates complications for both moons. Mimas' surface is ancient and heavily cratered; only about 40 tectonic features have been identified, globally (Schenk, 2011). The lack of tidal-tectonic activity on Mimas implies that either it has not experienced large tidal stresses over its surface age or that its ice shell behaves quite differently than Europa. Enceladus has a young, heavily-fractured region at the south pole, and an old, heavily-cratered region at the north pole. Are global ocean models compatible with ongoing, tidal-tectonic activity at Enceladus' south pole and the lack of activity on Mimas and at Enceladus' north pole? We consider whether global oceans are compatible with the geologic records of Mimas and Enceladus by calculating tidal stresses for 5-layer interior structure models. To explore the range of possible interior structures, we vary the ice shell thickness, the depth of the upper brittle ice layer, and the viscosities of the brittle and ductile ice layers. We find that a global ocean within Mimas generates tidal stresses comparable to those on Europa (~100 kPa) and in some cases

  19. Coupled atmosphere-ocean models of Titan's past

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Lunine, Jonathan I.; Courtin, Regis

    1993-01-01

    The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.

  20. Modelling the community life strategies in ice-covered oceans

    NASA Astrophysics Data System (ADS)

    Tedesco, L.; Vichi, M.

    2010-12-01

    eventually seed its bloom, or will more rapidly sink to the bottom of the oceans and bury the carbon content of the community. While those process studies - supported by in situ measurements both in the Arctic and in the Antarctic - help us understanding the main temporal dynamics of the sea ice ecosystem, the next important challenge is to extend our new knowledge into a 3-dimensional model. This can be achieved in different ways according to the final aim of our research: some preliminary results will be presented on an affordable and reliable way we are developing to estimate the contribution of the sea ecosystem to the biomass of an ice-covered sea.

  1. Final Report. Coupled simulations of Antarctic Ice-sheet/ocean interactions using POP and CISM

    SciTech Connect

    Asay-Davis, Xylar Storm

    2015-12-30

    The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently being incorporated into two manuscripts in preparation.

  2. Parameterizations in high resolution isopycanl wind-driven ocean models

    SciTech Connect

    Jensen, T.G.; Randall, D.A.

    1993-01-01

    For the CHAMMP project, we proposed to implement and test new numerical schemes, parameterizations of boundary layer flow and development and implement mixed layer physics in an existing isopycnal models. The objectives for the proposed research were; implement the Arakawa and Hsu, scheme in an existing isopycnal model of the Indian Ocean; recode the new model for a highly parallel architecture; determine effects of various parameterizations of islands; determine the correct lateral boundary condition for boundary layer currents, as for instance the Gulf Stream and other western boundary currents.; and incorporate a oceanic mixed layer on top of the isopycnal deep layers. This is, primarily a model development project, with emphasis on determining the influence and parameterization of narrow flows along continents and through chains of small islands on the large scale oceanic circulation, which is resolved by climate models. The new model is based on the multi-layer FSU Indian Ocean model. Our research strategy is to; recode a one-layer version of the Indian Ocean Model for a highly parallel computer; add thermodynamics to a rectangular domain version of the new model; implement the irregular domain from the Indian Ocean Model into the box model; change the numerical scheme for the continuity equation to the scheme proposed by; perform parameterization experiments with various coast line and island geometries. This report discusses project progress for period August 1, 1992 through December 31, 1992.

  3. Using ocean tracers to reduce uncertainties about ocean diapycnal mixing and model projections

    NASA Astrophysics Data System (ADS)

    Goes, M. P.; Urban, N.; Keller, K.; Schmittner, A.; Tonkonojenkov, R.; Haran, M.

    2010-12-01

    Current projections of the oceanic response to anthropogenic climate forcings are uncertain. Two key sources of these uncertainties are (i) structural errors in current Earth system models and (ii) imperfect knowledge of model parameters. Ocean tracers observations have the potential to reduce these uncertainties. Previous studies typically consider each tracer separately, neglect potentially important statistical properties of the system, or use methods that impose rather daunting computational demands. Here we extend and improve upon a recently developed approach using horizontally averaged vertical profiles of chlorofluorocarbon (CFC-11), radiocarbon (DC14), and temperature (T) observations to reduce model parametric and structural uncertainties. Our method estimates a joint probability density function, which considers cross-tracer correlations and spatial autocorrelations of the errors. We illustrate this method by estimating two model parameters related to the vertical diffusivity, the background vertical diffusivity and the upper Southern Ocean mixing. We show that enhancing the upper Southern Ocean mixing in the model improves the representations of ocean tracers, as well as improves hindcasts of the Atlantic Meridional Overturning Circulation (AMOC) and Ocean Carbon uptake. The most probable value of the background vertical diffusivity in the pelagic pycnocline is between 0.1-0.2 cm2/s. According to the statistical method, observations of DC14 reduce the uncertainty about the background vertical diffusivity the most followed by CFC-11 and T. Using all three tracers jointly reduces the model uncertainty by 40%, more than each tracer individually. Given several important caveats, we illustrate how the reduced model parametric uncertainty improves probabilistic projections of the AMOC and Ocean Carbon uptake.

  4. Modelling salt finger formation using the Imperial College Ocean Model

    NASA Astrophysics Data System (ADS)

    MacTavish, F. P.; Cotter, C. J.; Piggott, M. D.

    2009-04-01

    We present numerical simulations of salt finger formation produced using the Imperial College Ocean Model (ICOM) which is a finite element model using adaptive meshing. Our aim is to validate the model against published data and to develop the capability to simulate salt finger formation using adaptive meshes. Salt fingering is a form of double-diffusion which occurs because heat diffuses more quickly than salt. When an area of warm, salty water overlies an area of colder, fresher water, an initial perturbation can lead to some of the water from the lower layer moving into the top layer. Its temperature then increases more quickly than its salinity, so that the water is less dense than its surroundings and it will rise up more. This process repeats to form salt fingers, with salt fingers also forming in the downward direction. Salt fingers play a role in oceanic mixing, in particular they are responsible for maintaining thermohaline staircases such as the C-SALT staircase which have been observed extensively, particularly in the tropics. The study of salt fingers could therefore improve our understanding of processes in the ocean, and inform the design of subgrid parameterisations in general circulation models. We used the salt finger formation test case of Oezgoekmen et al (1998) in order to validate ICOM. The formation of salt fingers is modelled by solving the Navier-Stokes equations for a two-dimensional rectangular area of Boussinesq fluid, beginning with two layers of water, the top warm and salty and the bottom cold and fresh, with parameters chosen to match the test case of Oezgoekmen et al (1998). The positions of the interfaces between the fingering layer and the mixed layers as well as the finger growth rate and the kinetic energy are plotted against time. The results are compared with those of Oezgoekmen et al (1998). We present results from structured meshes and preliminary results using adaptive meshing.

  5. A Coupled Ice--Ocean Finite--Element Model of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Iakovlev, N.

    2002-05-01

    A coupled ice-ocean finite-element model of the Arctic Ocean is proposed for the Arctic Ocean Model Intercomparison Project (AOMIP) studies. The model is based on the system of primitive equations for ocean. Sea ice dynamics are based upon the cavitating fluid solution described by Flato and Hibler (1990, 1992). The sea ice component of the model is driven by the heat, momentum, and freshwater fluxes provided at the upper and lower ice boundaries. Vertical water turbulence is parameterized by the generalized Prandtl theory for the vertical turbulent diffusion/momentum exchange coefficient. Model domain covers area north of 65o N. Equations are solved on a rotated coordinate system with the North Pole located at 0o N and 180o W. Horizontal model resolution is 1o and the model has 16 vertical levels. The model numerics is based on the finite-element (FE) spatial approximations. Time approximation is made by the time-splitting scheme with a special treatment for nonlinear sea ice rheology. Temperature, salinity and momentum advection is approximated by the FE upwind scheme with no crosswind diffusion created by Hughes and Brooks, 1979. For the sea ice mass and concentration transports the FE analog of the first order directed differences scheme was developed. The integral function of the model is the sea level elevation, which is determined by an implicit time scheme using Generalized Minimal Residual Method (Saad and Schultz, 1986). Major model results and some considerations for the model intercomparison methodology will be discussed.

  6. Ocean modelling on the CYBER 205 at GFDL

    NASA Technical Reports Server (NTRS)

    Cox, M.

    1984-01-01

    At the Geophysical Fluid Dynamics Laboratory, research is carried out for the purpose of understanding various aspects of climate, such as its variability, predictability, stability and sensitivity. The atmosphere and oceans are modelled mathematically and their phenomenology studied by computer simulation methods. The present state-of-the-art in the computer simulation of large scale oceans on the CYBER 205 is discussed. While atmospheric modelling differs in some aspects, the basic approach used is similar. The equations of the ocean model are presented along with a short description of the numerical techniques used to find their solution. Computational considerations and a typical solution are presented in section 4.

  7. Modeling pCO sub 2 in the upper ocean

    SciTech Connect

    Archer, D.

    1990-12-01

    This report summarizes our current understanding of the physical, chemical, and biological processes that control the natural cycling of carbon dioxide (CO{sub 2}) in the surface ocean. Because the physics of mixing at the ocean surface creates the essential framework for the chemistry and biology, and because the literature on surface ocean mixing is extensive, a major focus of the report is to review existing mixed layer models for the upper ocean and their implementation in global ocean circulation models. Three families of mixed layer models have been developed. The integrated turbulent kinetic energy'' (TKE) models construct a budget for surface ocean TKE, using the wind stress as source and dissipation as sink for TKE. The shear instability'' models maintain profiles of current velocity resulting from the wind stress. Turbulence closure'' models are the most general and the most complicated of the three types, and are based on laboratory studies of fluid turbulence. This paper explores behavioral distinctions between the three types of models, and summarizes previously published comparisons of the generality, accuracy, and computational requirements of the three models. The application of mixed layer models to treatment of sea ice is also reviewed. 101 refs., 7 figs., 1 tab.

  8. Modelling the distribution of plutonium in the Pacific Ocean.

    PubMed

    Nakano, Masanao; Povinec, Pavel P

    2003-01-01

    An Oceanic General Circulation Model (OGCM) including a plutonium scavenging model as well as an advection-diffusion model has been developed for modelling the distribution of plutonium in the Pacific Ocean. Calculated 239, 240Pu water profile concentrations and 239, 240Pu inventories in water and sediment of the Pacific Ocean have showed a reasonable agreement with the experimental results. The presence of local fallout plutonium in central North Pacific waters has been confirmed. The observed 240Pu/239Pu mass ratios confirm that plutonium originating from local fallout from nuclear weapons tests carried out at Bikini and Enewetak Atolls is more rapidly removed from surface waters to deeper waters than plutonium originating from global fallout. The developed OGCM can be used for modelling the dispersion of other non-conservative tracers in the ocean as well. PMID:12860091

  9. Variational Data Assimilation Technique in Mathematical Modeling of Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Agoshkov, V. I.; Zalesny, V. B.

    2012-03-01

    Problems of the variational data assimilation for the primitive equation ocean model constructed at the Institute of Numerical Mathematics, Russian Academy of Sciences are considered. The model has a flexible computational structure and consists of two parts: a forward prognostic model, and its adjoint analog. The numerical algorithm for the forward and adjoint models is constructed based on the method of multicomponent splitting. The method includes splitting with respect to physical processes and space coordinates. Numerical experiments are performed with the use of the Indian Ocean and the World Ocean as examples. These numerical examples support the theoretical conclusions and demonstrate the rationality of the approach using an ocean dynamics model with an observed data assimilation procedure.

  10. Variability of Ocean Heat Uptake: Reconciling Observations and Models

    SciTech Connect

    AchutaRao, K M; Santer, B D; Gleckler, P J; Taylor, K; Pierce, D; Barnett, T; Wigley, T L

    2005-05-05

    This study examines the temporal variability of ocean heat uptake in observations and in climate models. Previous work suggests that coupled Atmosphere-Ocean General Circulation Models (A-OGCMs) may have underestimated the observed natural variability of ocean heat content, particularly on decadal and longer timescales. To address this issue, we rely on observed estimates of heat content from the 2004 World Ocean Atlas (WOA-2004) compiled by Levitus et al. (2005). Given information about the distribution of observations in WOA-2004, we evaluate the effects of sparse observational coverage and the infilling that Levitus et al. use to produce the spatially-complete temperature fields required to compute heat content variations. We first show that in ocean basins with limited observational coverage, there are important differences between ocean temperature variability estimated from observed and infilled portions of the basin. We then employ data from control simulations performed with eight different A-OGCMs as a test-bed for studying the effects of sparse, space- and time-varying observational coverage. Subsampling model data with actual observational coverage has a large impact on the inferred temperature variability in the top 300 and 3000 meters of the ocean. This arises from changes in both sampling depth and in the geographical areas sampled. Our results illustrate that subsampling model data at the locations of available observations increases the variability, reducing the discrepancy between models and observations.

  11. An implementation of a barotropic quasigeostrophic model of ocean circulation on the MPP

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Fatoohi, R.

    1987-01-01

    The implementation on the Massively Parallel Processor (MPP) of a barotropic quasigeostrophic model of ocean circulation is discussed. The mathematical model, including scalings and boundary conditions is discussed. The numerical scheme, which uses compact differencing is also discussed. The implementation of this model on the MPP is then presented. Finally, some performance results are given and compared to results obtained using the VPS-32 and one processor of a CRAY-2.

  12. The role of clouds and oceans in global greenhouse warming. Final report

    SciTech Connect

    Hoffert, M.I.

    1996-10-01

    This research focuses on assessing connections between anthropogenic greenhouse gas emissions and global climatic change. it has been supported since the early 1990s in part by the DOE ``Quantitative Links`` Program (QLP). A three-year effort was originally proposed to the QLP to investigate effects f global cloudiness on global climate and its implications for cloud feedback; and to continue the development and application of climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by clouds and oceans. It is well-known that cloud and ocean processes are major sources of uncertainty in the ability to predict climatic change from humankind`s greenhouse gas and aerosol emissions. And it has always been the objective to develop timely and useful analytical tools for addressing real world policy issues stemming from anthropogenic climate change.

  13. Physics modeling support contract: Final report

    SciTech Connect

    Not Available

    1987-09-30

    This document is the final report for the Physics Modeling Support contract between TRW, Inc. and the Lawrence Livermore National Laboratory for fiscal year 1987. It consists of following projects: TIBER physics modeling and systems code development; advanced blanket modeling task; time dependent modeling; and free electron maser for TIBER II.

  14. Modeling water clarity in oceans and coasts

    EPA Science Inventory

    In oceans and coastal waters, phytoplankton is the primary producer of organic compounds which form the base for the food chain. The concentration of phytoplankton is a major factor controlling water clarity and the depth to which light penetrates in the water column. The light i...

  15. A regional ocean model for the Southwest Pacific Ocean region to assess the risk of storms

    NASA Astrophysics Data System (ADS)

    Natoo, N.; Paul, A.; Hadfield, M.; Jendersie, S.; Bornman, J.; de Lange, W.; Ye, W.; Schulz, M.

    2012-04-01

    New Zealand's coasts are not only affected by mid-latitude storms, but infrequently also by storms that originate from the tropics. Projections for the southern hemisphere's southwest Pacific island countries for the 21st century show a poleward shift of the mid-latitude storm tracks, which consequently might result in changes in wind, precipitation and temperature patterns. Furthermore, an increase in frequency of intense storms is expected for the New Zealand region, which will very likely increase the risk of storm surges and flooding of coastal and low-lying regions. We employ the Regional Ocean Modeling System (ROMS) to assess the changes in the storm climate of the New Zealand region. The model set-up uses a resolution of ~50 km for the Southwest Pacific Ocean "parent domain" and ~10 km for the New Zealand "child domain", to well represent the major eddies that influence the climate of North Island. With the aim to later utilize this nested ocean model set-up as part of a coupled ocean-atmosphere modelling system for the Southwest Pacific Ocean region, results for the 20th century will be presented. The simulated circulation is shown to be largely consistent with the observed regional oceanography.

  16. Modeling the 2004 Indian Ocean Tsunami for Introductory Physics Students

    ERIC Educational Resources Information Center

    DiLisi, Gregory A.; Rarick, Richard A.

    2006-01-01

    In this paper we develop materials to address student interest in the Indian Ocean tsunami of December 2004. We discuss the physical characteristics of tsunamis and some of the specific data regarding the 2004 event. Finally, we create an easy-to-make tsunami tank to run simulations in the classroom. The simulations exhibit three dramatic…

  17. Advances in a distributed approach for ocean model data interoperability

    USGS Publications Warehouse

    Signell, Richard P.; Snowden, Derrick P.

    2014-01-01

    An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF) metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF) output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), a metadata standard for unstructured grid model output (UGRID), and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS®) Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.

  18. Model-Based Detection in a Shallow Water Ocean Environment

    SciTech Connect

    Candy, J V

    2001-07-30

    A model-based detector is developed to process shallow water ocean acoustic data. The function of the detector is to adaptively monitor the environment and decide whether or not a change from normal has occurred. Here we develop a processor incorporating both a normal-mode ocean acoustic model and a vertical hydrophone array. The detector is applied to data acquired from the Hudson Canyon experiments at various ranges and its performance is evaluated.

  19. Final Technical Report: DOE-Biological Ocean Margins Program. Microbial Ecology of Denitrifying Bacteria in the Coastal Ocean.

    SciTech Connect

    Lee Kerkhof

    2013-01-01

    The focus of our research was to provide a comprehensive study of the bacterioplankton populations off the coast of New Jersey near the Rutgers University marine field station using terminal restriction fragment polymorphism analysis (TRFLP) coupled to 16S rRNA genes for large data set studies. Our three revised objectives to this study became: (1) to describe bacterioplankton population dynamics in the Mid Atlantic Bight using TRFLP analysis of 16S rRNA genes. (2) to determine whether spatial and temporal factors are driving bacterioplankton community dynamics in the MAB using monthly samping along our transect line over a 2-year period. (3) to identify dominant members of a coastal bacterioplankton population by clonal library analysis of 16S rDNA genes and sequencing of PCR product corresponding to specific TRFLP peaks in the data set. Although open ocean time-series sites have been areas of microbial research for years, relatively little was known about the population dynamics of bacterioplankton communities in the coastal ocean on kilometer spatial and seasonal temporal scales. To gain a better understanding of microbial community variability, monthly samples of bacterial biomass were collected in 1995-1996 along a 34-km transect near the Long-Term Ecosystem Observatory (LEO-15) off the New Jersey coast. Surface and bottom sampling was performed at seven stations along a transect line with depths ranging from 1 to 35m (n=178). The data revealed distinct temporal patterns among the bacterioplankton communities in the Mid-Atlantic Bight rather than grouping by sample location or depth (figure 2-next page). Principal components analysis models supported the temporal patterns. In addition, partial least squares regression modeling could not discern a significant correlation from traditional oceanographic physical and phytoplankton nutrient parameters on overall bacterial community variability patterns at LEO-15. These results suggest factors not traditionally

  20. Multi-property modeling of ocean basin carbon fluxes

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1988-01-01

    The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.

  1. Parameterizations in high resolution isopycnal wind-driven ocean models

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Randall, D. A.

    1994-01-01

    For the Computer Hardware Advanced Mathematics and Model Physics (CHAMMP) project, developing a new multilayer ocean model, based on the hydrodynamic FSU Indian Ocean model was proposed. The new model will include prognostic temperature and salinity and will be coded for massively parallel machines. Other specific objectives for the proposed research were to: incorporate a oceanic mixed layer on top of the isopycnal deep layers; implement positive definite scheme for advection; determine effects of islands on large scale flow; and investigate lateral boundary conditions for boundary layer currents. The mixed layer model is proposed to be of a bulk type with prognostic equations for temperature and salinity. Development of parallel code will be done in cooperation with other CHAMMP participants, mainly the ocean modelling group at LANL. The main objective is model development, while the application is to determine the influence and parameterization of narrow flows along continents and through chains of small islands on the large scale oceanic circulation. Test runs with artificial wind stress and heat flux will be used to determine model stability, performance, and optimization for the new model configuration. Tests will include western boundary currents, coastal upwelling, and equatorial dynamics. This report discusses project progress for period January 1, 1993 through December 31, 1993.

  2. Testing Components of New Community Isopycnal Ocean Circulation Model

    SciTech Connect

    Bryan, Kirk

    2008-05-09

    The ocean and atmosphere are both governed by the same physical laws and models of the two media have many similarities. However, there are critical differences that call for special methods to provide the best simulation. One of the most important difference is that the ocean is nearly opaque to radiation in the visible and infra-red part of the spectrum. For this reason water mass properties in the ocean are conserved along trajectories for long distances and for long periods of time. For this reason isopycnal coordinate models would seem to have a distinct advantage in simulating ocean circulation. In such a model the coordinate surfaces are aligned with the natural paths of near adiabatic, density conserving flow in the main thermocline. The difficulty with this approach is at the upper and lower boundaries of the ocean, which in general do not coincide with density surfaces. For this reason hybrid coordinate models were proposed by Bleck and Boudra (1981) in which Cartesian coordinates were used near the ocean surface and isopycnal coordinates were used in the main thermocline. This feature is now part of the HICOM model (Bleck, 2002).

  3. Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models

    NASA Astrophysics Data System (ADS)

    Renault, Lionel; Vizoso, Guillermo; Jansá, Agustin; Wilkin, John; Tintoré, Joaquin

    2011-05-01

    Meteotsunamis are oceanic waves that possess tsunami-like characteristics but are meteorological in origin. In the western Mediterranean, travelling atmospheric pressure oscillations generate these long oceanic surface waves that can become amplified and produce strong seiche oscillations inside harbors. We analyze a June 2006 meteotsunami event in Ciutadella harbor (Menorca Island, Spain), studying numerically the phenomenon during its full life cycle, from the early atmospheric stages to the atmosphere-ocean resonant phase and the final highly amplified harbor oscillation. The Weather Research Forecast (WRF) atmospheric model adequately reproduces the development of a convective nucleus and also reproduces the induced atmospheric pressure oscillations moving at a speed of 27 m/s. The oceanic response is studied using the Regional Ocean Modeling System (ROMS), forced by the WRF pressure field. It shows an inverse barometer wave front in the open ocean progressively amplified through resonant interactions in the different shelf and coastal regions. The predictive capability of this new WRF/ROMS modeling approach is then discussed.

  4. Modeling Mesoscale Eddies in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Chao, Yi

    1999-01-01

    Ocean modeling plays an important role in understanding the current climatic conditions and predicting the future climate change. Modeling the ocean at eddy-permitting and/or eddy resolving resolutions (1/3 degree or higher) has a two-fold objective. One part is to represent the ocean as realistically as possible, because mesoscale eddies have an impact on the large-scale circulation. The second objective is to learn how to represent effects of mesoscale eddies without explicitly resolving them. This is particularly important for climate models which cannot be run at eddy-resolving resolutions because of the computational constraints. At JPL, a 1/6 degree latitude by 1/6 degree longitude with 37 vertical levels Atlantic Ocean model has been developed. The model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory (LANL). Using the 256-processor Cray T3D, we have conducted a 40-year integration of this Atlantic eddy-resolving ocean model. A regional analysis demonstrate that many observed features associated with the Caribbean Sea eddies can be realistically simulated by this model. Analysis of this Atlantic eddy-resolving ocean model further suggests that these Caribbean Sea eddies are connected with eddies formed outside the Caribbean Sea at the confluence of the North Brazil Current (NBC) and the North Equatorial Countercurrent. The diagram of the model simulated surface current shows that the Caribbean eddies ultimately originate in the NBC retroflection region, traveling more than a year from the North Brazil coast through the Lesser Antilles into the Caribbean Sea and eventually into the Gulf of Mexico. Additional information is contained in the original.

  5. A Coupled Geodesic Ocean and Ice Model for Climate Studies

    NASA Astrophysics Data System (ADS)

    Tokmakian, R.; Lipscomb, W.; Ringler, T.; Stark, D.

    2006-12-01

    A coupled ocean and sea ice model on a geodesic grid has been developed for use in climate studies. Over the years, different grid definitions and finite difference methods have been developed to solve the equations for fluid flow on a sphere. With the use of any traditional latitude/longitude grid, finite differencing methods encounter the "pole problem" where the lines of latitude and longitude converge at the poles. With the use of a quasi-uniform geodesic grid, the "pole problem" can be avoided (Randall et al. 2002, Ringer and Randall, 2002). The ocean model is a primitive equation model with 33 levels (5 m to 500m vertical resolution) with a horizontal grid resolution of approximately 1.2 degrees (40962 grid cells). The model includes second order dissipation. To increase the time step, the gravity wave retardation method of Higdon (2002) is used. The altimetric based bathymetry estimates of Sandwell and Smith (1997) are incorporated into the ocean model. The sea ice model is the CICE model on geodesic grid (Stark et al. 2006). The CICE model includes the elastic-viscous-plastic ice dynamics as defined by Hunke and Dukowicz (2002) and the energy conserving thermodynamics of Bitz and Lipscomb (1999). The ECMWF atmospheric fields provide the forcing at the ocean/ice-atmosphere interface, in preparation of coupling the ocean/ice system to an atmospheric model also on a similar geodesic grid. The initial results of the ocean/ice coupled system show realistic ocean and ice features (e.g. currents, ice thickness) both in their mean and in the variability of these features.

  6. Detecting toxic diatom blooms from ocean color and a regional ocean model

    NASA Astrophysics Data System (ADS)

    Anderson, Clarissa R.; Kudela, Raphael M.; Benitez-Nelson, Claudia; Sekula-Wood, Emily; Burrell, Christopher T.; Chao, Yi; Langlois, Gregg; Goodman, Jo; Siegel, David A.

    2011-02-01

    An apparent link between upwelling-related physical signatures, macronutrients, and toxic diatom blooms in the various “hotspots” throughout California has motivated attempts to forecast harmful algal blooms (HABs) as a function of select environmental variables. Empirical models for predicting toxic Pseudo-nitzschia blooms in one such region, the Santa Barbara Channel (SBC), are tested in a nowcast mode using predictions based on merging data from MODIS ocean color geophysical products and the Regional Ocean Modeling System (ROMS) applied to the Southern California Bight. Thresholds for each model generate event forecasts. Spatially-explicit, monthly HAB maps are compared to shipboard observations and California monitoring data, demonstrating that the models predict offshore events otherwise undetected by nearshore monitoring. The use of mechanistic hydrodynamic models in concert with empirical, biological models facilitates future process studies on the effects of coastal eutrophication and climate change on regional HAB dynamics.

  7. Global Earth Response to Loading by Ocean Tide Models

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  8. Solidifying the lunar magma ocean: Model results and geochronology (Invited)

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Burgess, S. D.; Meyer, J.; Wisdom, J.

    2009-12-01

    The Moon is posited to have formed by reconsolidation of materials produced during a giant impact with the Earth early in solar system evolution. The young Moon appears to have experienced a magma ocean of some depth, which resulted in the formation of an anorthosite flotation crust. There is no simple way to reconcile W-Hf results for the age of Moon formation, U-Pb and Sm-Nd ages of lunar crustal crystallization, and modeling results for magma ocean solidification. At the beginning of magma ocean solidification the dense iron- and magnesium-rich phases crystallizing from the cooling magma are believed to have sunk to the bottom of the magma ocean. When approximately 80% of the lunar magma ocean solidified, anorthite began to crystallize and float upward through the more dense magma ocean liquid; anorthite will continue to be added to this flotation crust until the last dregs of the magma ocean solidify. The crystallization times of the anorthite in the flotation crust, therefore, could span the range from about 80% solidification to what has been interpreted as the lunar magma ocean solidification age. Models including convection in the remaining magma ocean, conduction through the growing anorthosite lid, and radiation into space indicate that the magma ocean may freeze to the point of anorthosite formation in less than 104 years, and perhaps as little as 103 years. After this brief free-surface cooling period the growth of the anorthosite lid radically slows heat loss, and complete solidification of the magma ocean will require additional tens of millions of years. Young anorthosite crustal ages, far younger than models would predict possible, may be explained by further investigations into the evolution of the lunar orbit. Tidal heating of the anorthosite crust as the young Moon experiences a period of high eccentricity may delay closure of minerals with radiogenic phases; these late-closing minerals will then yield young ages, though they originally formed

  9. On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean-atmosphere model

    SciTech Connect

    Kleeman, R. )

    1993-11-01

    Three different mechanisms for the generation of ENSO SST anomalies within a simplified tropical Pacific Ocean model are examined: thermocline depth changes, Ekman-induced upwelling anomalies, and zonal advection changes. The effect of varying the relative influence of these terms on the realism of tropical pacific coupled models is analyzed. The principal tool used to assess such realism is hindcast skill, with forced ocean and oscillatory behavior also being examined. Of the mechanisms considered, thermocline perturbations are shown to be crucially important for high coupled-model hindcast skills. Furthermore, it is concluded that the realism of the model (as measured by hindcast skill) deteriorates markedly when the influence on SST of Ekman upwelling becomes greater than a small fraction of the thermocline influence. This provides strong evidence for the hypothesis that Ekman upwelling anomalies (which are essentially a local response to wind stress anomalies) have only a small influence on the creation of real world SST anomalies. The implications of this latter point for coupled models involving ocean general circulation models is briefly discussed. It is also demonstrated that western boundary reflections provide a vital role by means of a negative feedback in ensuring realistic performance. The hindcast skill (as measured by NINO3 anomaly correlation) demonstrated by a model involving only the thermocline mechanism can be tuned to exceed that of the benchmark Cane and Zebiak model for hindcast lags up to 7 months (from 7 to 12 months the model skills are roughly equal). 47 refs., 32 figs.

  10. Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming

    NASA Astrophysics Data System (ADS)

    Gentemann, Chelle L.; Minnett, Peter J.; Ward, Brian

    2009-07-01

    Shipboard radiometric measurements of diurnal warming at the ocean surface and profiles through the diurnal thermocline were utilized to assess the temporal and vertical variability and to develop a new physics-based model of near-surface warming. The measurements and modeled diurnal warming were compared, with the goal of comprehensively evaluating differences between the data and model results. On the basis of these results, the diurnal model was refined while attempting to maintain agreement with the measurements. Simplified bulk models commonly do not provide information on the vertical structure within the warm layer, but this new model predicts the vertical temperature profile within the diurnal thermocline using an empirically derived function dependent on wind speed. The vertical profile of temperature provides both a straightforward methodology for modeling differences due to diurnal warming between measurements made at different depths (e.g., in situ measurements at various depths and measurements of the surface temperatures by satellite radiometers) and information on upper ocean thermal structure. Additionally, the model estimates of diurnal warming at the ocean surface are important for air-sea heat and gas flux calculations, blending satellite sea surface temperature fields, and air-sea interaction studies.

  11. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    SciTech Connect

    Wang, P; Song, Y T; Chao, Y; Zhang, H

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds of processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.

  12. Transitional Employment Experimental Model (TEEM). Final Report.

    ERIC Educational Resources Information Center

    California State Personnel Board, Sacramento.

    The final report of the Transitional Employemnt Experimental Model (TEEM) Project, a research and development project providing a potential model for a large scale manpower absorption program in times of economic need, is presented. One major purpose of the project was to demonstrate the viability of providing suitable job placement for the…

  13. Model Tech Prep Demonstration Project. Final Report.

    ERIC Educational Resources Information Center

    Southern Maryland Educational Consortium, La Plata.

    The Southern Maryland Educational Consortium's Tech Prep Model Demonstration project is described in this final report. The consortium members are Calvert, Charles, and St. Mary's county school districts and Charles County Community College in southern Maryland. The project is based on a 4 + 2 model in which ninth-grade students develop career…

  14. (CO sub 2 uptake in an Ocean Circulation Model)

    SciTech Connect

    Siegenthaler, U.C.

    1990-11-06

    The traveler collaborated with Drs. J. L. Sarmiento and J. C. Orr of the Program in Atmospheric Sciences at Princeton University to finish the article A Perturbation Simulation of CO{sub 2} Uptake in an Ocean Circulation Model,'' which has been submitted to the Journal of Geophysical Research for publication. With F. Joos, a graduate student from the University of Bern, the traveler started writing a journal article describing a box model of the global carbon cycle that is an extension of the one-dimensional box-diffusion model. The traveler further collaborated with F. Joos and Dr. J. L. Sarmiento on modeling the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. A letter describing the results is currently being written for the journal Nature.

  15. A Coupled Atmosphere-Ocean-Wave Modeling System

    NASA Astrophysics Data System (ADS)

    Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.

    2012-12-01

    A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.

  16. Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements

    NASA Astrophysics Data System (ADS)

    Boy, Jean-Paul; Longuevergne, Laurent; Boudin, Frédéric; Jacob, Thomas; Lyard, Florent; Llubes, Muriel; Florsch, Nicolas; Esnoult, Marie-France

    2009-12-01

    We investigate the contribution of atmospheric and its induced non-tidal oceanic loading effects on surface time-varying gravity and tilt measurements for several stations in Western Europe. The ocean response to pressure forcing can be modelled accordingly to the inverted barometer, i.e. assuming that air pressure variations are fully compensated by static sea height changes, or using ocean general circulation models. We validate two runs of the HUGO-m barotropic ocean model by comparing predicted sea surface height variations with hundred tide-gauge measurements along the European coasts. We then show that global surface pressure field, as well as a barotropic high-resolution ocean model forced by air pressure and winds allow in most cases a significant reduction of the variance of gravity residuals and, to a smaller extends tilt residuals. We finally show that precise gravity measurements with superconducting gravimeters allow the observation of large storm surges, occurring in the North Sea, even for inland stations. However, we also confirm that the continental hydrology contribution cannot be neglected. Thanks to their specific sensitivity feature, only tiltmeters closest to the coast can clearly detect the loading due to these storm surges.

  17. Modelling the seasonal cycle of dissolved oxygen in the upper ocean at ocean weather station P

    NASA Astrophysics Data System (ADS)

    Thomas, F.; Garcon, V.; Minster, J.-F.

    1990-03-01

    Three main processes regulate the variations of dissolved O 2 concentrations in the surface waters: gas exchange at the air-sea interface, vertical mixing and biological activity of marine organisms. A one-dimensional integral mixed layer model ( GASPAR, 1988) is used to study the temporal evolution of monthly averaged dissolved O 2 content of surface waters at Ocean Weather Station P, and to assess the relative importance of the various contributing mechanisms during 1969-1972. Production and consumption due to biological activity are taken into account as an input function of the model. A large part of the seasonal signal of dissolved O 2 in surface waters can be reproduced by the physical model without biological activity. However, kinetics of gas exchange, biological production and entrainment of sub-mixed layer water all contribute by the same order of magnitude to supersaturation during warming periods and undersaturation during cooling periods. Various shapes (over depth and time) of production-consumption function have been tested for the year 1970. Most of the evolution of monthly average dissolved O 2 in the surface waters can be obtained (1) with a total annual production rate of the order of 5 mol O 2 m -2 y -1, (2) with a constant production throughout the year and in the 0-50 m layer, and (3) with logarithmic decrease in consumption between 50 and 300 m. The relative influence of various parameters on the three processes supplying O 2 to the surface waters is investigated. Total annual production P seems to be the most influential. Vertical mixing and depth of photic zone, z 0, affect the gas exchange flux during the cooling season. Episodic events, like storms, modify the supersaturation of the mixed layer O 2 content by up to 4 mmol m -3, but gas exchange later draws back this content towards a smooth evolution curve. Finally, the sensitivity of the net annual gas exchange to various parameters is too large for the model to provide a reliable value.

  18. How the Ocean personality model affects the perception of crowds.

    PubMed

    Durupinar, F; Pelechano, N; Allbeck, J M; Gudukbay, Ugur; Badler, N I

    2011-01-01

    This approach extends the HiDAC (High-Density Autonomous Crowds) system by providing each agent with a personality model based on the Ocean (openness, conscientiousness, extroversion, agreeableness, and neuroticism) personality model. Each personality trait has an associated nominal behavior. Specifying an agent's personality leads to an automation of low-level parameter tuning.

  19. Multiresolution in CROCO (Coastal and Regional Ocean Community model)

    NASA Astrophysics Data System (ADS)

    Debreu, Laurent; Auclair, Francis; Benshila, Rachid; Capet, Xavier; Dumas, Franck; Julien, Swen; Marchesiello, Patrick

    2016-04-01

    CROCO (Coastal and Regional Ocean Community model [1]) is a new oceanic modeling system built upon ROMS_AGRIF and the non-hydrostatic kernel of SNH, gradually including algorithms from MARS3D (sediments)and HYCOM (vertical coordinates). An important objective of CROCO is to provide the possibility of running truly multiresolution simulations. Our previous work on structured mesh refinement [2] allowed us to run two-way nesting with the following major features: conservation, spatial and temporal refinement, coupling at the barotropic level. In this presentation, we will expose the current developments in CROCO towards multiresolution simulations: connection between neighboring grids at the same level of resolution and load balancing on parallel computers. Results of preliminary experiments will be given both on an idealized test case and on a realistic simulation of the Bay of Biscay with high resolution along the coast. References: [1] : CROCO : http://www.croco-ocean.org [2] : Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Modelling, 49-50, 1-21.

  20. Numerical modelling of floating debris in the world's oceans.

    PubMed

    Lebreton, L C-M; Greer, S D; Borrero, J C

    2012-03-01

    A global ocean circulation model is coupled to a Lagrangian particle tracking model to simulate 30 years of input, transport and accumulation of floating debris in the world ocean. Using both terrestrial and maritime inputs, the modelling results clearly show the formation of five accumulation zones in the subtropical latitudes of the major ocean basins. The relative size and concentration of each clearly illustrate the dominance of the accumulation zones in the northern hemisphere, while smaller seas surrounded by densely populated areas are also shown to have a high concentration of floating debris. We also determine the relative contribution of different source regions to the total amount of material in a particular accumulation zone. This study provides a framework for describing the transport, distribution and accumulation of floating marine debris and can be continuously updated and adapted to assess scenarios reflecting changes in the production and disposal of plastic worldwide.

  1. Investigation of Coastal Ocean Response to Landfalling Hurricane Using a Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) Model: Idealized Experiments

    NASA Astrophysics Data System (ADS)

    Zambon, J. B.; He, R.; Warner, J. C.

    2008-12-01

    We investigate coupling mechanisms among ocean, atmosphere and waves during land-falling hurricanes on an idealized coastal ocean setting with the recently developed Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. The atmosphere is represented by the Weather Research and Forecasting (WRF) model, the ocean by the Regional Ocean Modeling System (ROMS), and waves by the Simulating Waves Nearshore (SWAN) model, with data fields exchanged by the Model Coupling Toolkit (MCT) during concurrent simulations. Coupled model simulations are performed on an idealized ocean grid with a linear coastline and bathymetry representative of a typical coastal shelf. We focus on ocean responses before, during and after landfall. Six sensitivity experiments are performed by switching on and off the two- way communications of various ocean, atmosphere and wave state variables. Model solutions clearly demonstrate complex interactions between the atmosphere, ocean, and wave responses, highlighting the importance and necessity of using an advanced, interdisciplinary, coupled modeling system to study the dynamics of landfalling hurricanes

  2. Ocean Heat and Carbon Uptake in Transient Climate Change: Identifying Model Uncertainty

    NASA Technical Reports Server (NTRS)

    Romanou, Anastasia; Marshall, John

    2015-01-01

    Global warming on decadal and centennial timescales is mediated and ameliorated by the oceansequestering heat and carbon into its interior. Transient climate change is a function of the efficiency by whichanthropogenic heat and carbon are transported away from the surface into the ocean interior (Hansen et al. 1985).Gregory and Mitchell (1997) and Raper et al. (2002) were the first to identify the importance of the ocean heat uptakeefficiency in transient climate change. Observational estimates (Schwartz 2012) and inferences from coupledatmosphere-ocean general circulation models (AOGCMs; Gregory and Forster 2008; Marotzke et al. 2015), suggest thatocean heat uptake efficiency on decadal timescales lies in the range 0.5-1.5 W/sq m/K and is thus comparable to theclimate feedback parameter (Murphy et al. 2009). Moreover, the ocean not only plays a key role in setting the timing ofwarming but also its regional patterns (Marshall et al. 2014), which is crucial to our understanding of regional climate,carbon and heat uptake, and sea-level change. This short communication is based on a presentation given by A.Romanou at a recent workshop, Oceans Carbon and Heat Uptake: Uncertainties and Metrics, co-hosted by US CLIVARand OCB. As briefly reviewed below, we have incomplete but growing knowledge of how ocean models used in climatechange projections sequester heat and carbon into the interior. To understand and thence reduce errors and biases inthe ocean component of coupled models, as well as elucidate the key mechanisms at work, in the final section we outlinea proposed model intercomparison project named FAFMIP. In FAFMIP, coupled integrations would be carried out withprescribed overrides of wind stress and freshwater and heat fluxes acting at the sea surface.

  3. Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    2005-01-01

    Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences. However, with routine observations from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate Resolution Imaging Spectroradometer (MODIS) Aqua, there is increasing interest in ocean color data assimilation. Here SeaWiFS chlorophyll data were assimilated with an established thre-dimentional global ocean model. The assimilation improved estimates of hlorophyll and primary production relative to a free-run (no assimilation) model. This represents the first attempt at ocean color data assimilation using NASA satellites in a global model. The results suggest the potential of assimilation of satellite ocean chlorophyll data for improving models.

  4. Incorporating Phaeocystis into a Southern Ocean ecosystem model

    NASA Astrophysics Data System (ADS)

    Wang, Shanlin; Moore, J. Keith

    2011-01-01

    Phaeocystis antarctica is an important phytoplankton species in the Southern Ocean. We incorporated P. antarctica into the biogeochemical elemental cycling ocean model to study Southern Ocean ecosystem dynamics and biogeochemistry. The optimum values of ecological parameters for Phaeocystis were sought through synthesizing laboratory and field observations, and the model output was evaluated with observed chlorophyll a, carbon biomass, and nutrient distributions. Several factors have been proposed to control Southern Ocean ecosystem structure, including light adaptation, iron uptake capability, and loss processes. Optimum simulation results were obtained when P. antarctica had a relatively high α (P-I curve initial slope) value and a higher half-saturation constant for iron uptake than other phytoplankton. Simulation results suggested that P. antarctica had a competitive advantage under low irradiance levels, especially in the Ross Sea and Weddell Sea. However, the distributions of P. antarctica and diatoms were also strongly influenced by iron availability. Although grazing rates had an influence on total biomass, our simulations did not show a strong influence of grazing pressure in the competition between P. antarctica and diatoms. However, limited observations and the relative simplicity of zooplankton in our model suggest further research is needed. Overall, P. antarctica contributed ˜13% of annual primary production and ˜19% of sinking carbon export in the Southern Ocean (>40°S) in our best case simulation. At higher latitudes (>60°S) P. antarctica accounts for ˜23% of annual primary production and ˜30% of sinking carbon export.

  5. Climate Ocean Modeling on a Beowulf Class System

    NASA Technical Reports Server (NTRS)

    Cheng, B. N.; Chao, Y.; Wang, P.; Bondarenko, M.

    2000-01-01

    With the growing power and shrinking cost of personal computers. the availability of fast ethernet interconnections, and public domain software packages, it is now possible to combine them to build desktop parallel computers (named Beowulf or PC clusters) at a fraction of what it would cost to buy systems of comparable power front supercomputer companies. This led as to build and assemble our own sys tem. specifically for climate ocean modeling. In this article, we present our experience with such a system, discuss its network performance, and provide some performance comparison data with both HP SPP2000 and Cray T3E for an ocean Model used in present-day oceanographic research.

  6. Ocean Dynamics Simulation during an Extreme Bora Event using a Two-Way Coupled Atmosphere-Ocean Modeling System

    NASA Astrophysics Data System (ADS)

    Licer, Matjaz; Smerkol, Peter; Fettich, Anja; Ravdas, Michalis; Papapostolou, Alexandros; Mantziafou, Anneta; Cedilnik, Jure; Strajnar, Benedikt; Jeromel, Maja; Pristov, Neva; Jerman, Jure; Petan, Saso; Malacic, Vlado; Sofianos, Sarantis

    2015-04-01

    The response of the Adriatic Sea to cold north-easterly Bora wind forcing has been modelled numerous times, but usually using one-way coupling techniques. One of the most significant events of the kind took place in February 2012, when hurricane force Bora was blowing over the Northern Adriatic almost continuously for over three weeks, causing extreme air-sea interactions leading to severe water cooling (below 4 degrees Celsius) and extensive dense water formation (with density anomalies above 30.5 kg/m3). The intensity of the atmosphere-ocean interactions during such conditions calls for a two-way atmosphere-ocean coupling approach. We compare the performances of a) fully two-way coupled atmosphere-ocean modelling system and b) one way coupled ocean model (forced by the atmospheric model hourly output) to the available in-situ measurements (coastal buoy, CTD). The models used were ALADIN (4.4 km resolution) on the atmospheric side and POM (1/30°× 1/30° resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. We show that the atmosphere-ocean two-way coupling significantly improves the simulated temperature and density response of the ocean since it represents short-termed transient features much better than the offline version of the ocean model.

  7. Modelling the turbulence of a freezing Martian ocean

    NASA Astrophysics Data System (ADS)

    Kiss, Gabor; Leitner, Johannes; Firneis, Maria

    2015-04-01

    We modified the General Ocean Turbulence Model (GOTM) to fit simulations investigating the hypotheses of early oceans or seas on planet Mars. Observed morphologies like paleoshorelines (Parker et al. 1987, Carr et al. 2003) and buried craters (Boyce et al. 2005, Head et al. 2002) indicate possible processes which could have been caused by large standing open bodies of water in the northern hemisphere of Mars. These structures, as well as altitude measurements of delta networks (diAchille et al. 2010) proclaim various sizes of oceans and or seas. Evidence for their existence whether one or more at different times in the early history of the planet, or the evolution and fate of an ocean are still elusive. The smoothness of the northern plains is debated, to be the result of volcanic effluents followed by the deposition of the sedimental load called the Vastias Borealis Formation (VBF). Detailed observations of crater depths (d/D ratios) in the northern hemisphere have shown further arguments for a northern ocean. The prevailing opinion is a short life of a liquid ocean, and a rather fast freezing period leading to sublimation under a thin atmosphere. McKay et al. (1990) have shown that liquid habitats could be maintained under an ice sheet for up to several hundred million years, if melt/freshwater and or volcanic activity was supported. Using the atmospheric data of the GCM (Forget et al. 1999) as input parameters for temperature and wind velocities, we simulate an ocean exposed from mild to freezing temperatures of water at different atmospheric pressures. We are investigating the detailed effects of turbulence on the ocean or sea floors, as well as the effects of salinity and freshwater inflow on the Martian soil. Apart from the driving forces like fed of outflow channels and or rivers and wind, the duration of liquid water is a key question on the redistribution of sediments and the formation of coastal structures.

  8. A Conceptual Model for Extratropical Atmosphere-ocean Interaction

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Reichler, T.

    2015-12-01

    Equipped with the current understanding for atmosphere-ocean interaction, we build a simple physically-based system of coupled equations to portray the relationships among major atmospheric and oceanic modes, including the NAO, AMO, AMOC, ENSO and stratospheric NAM. The simple model reproduces the strongly timescale-dependent character of the relationships, which changes in strength and direction on scales ranging from days to centuries. Another emphasis is placed on explicitly resolving the air-sea heat fluxes as a function of timescale to provide insight into the coupling between ocean and atmosphere. In constructing and testing the simple model we make use of a multi-millennium-long control integration with a fully coupled climate model. Cross-correlation, spectral analysis and inverse methods are employed to characterize important aspects of the interactions in the full and simple models. It is found that, a) Bjerknes' conjecture on ocean-atmosphere coupling, that is the atmosphere drives climate on high frequencies (days to months) while the ocean acts as the main source of climate variability on interannual and longer timescales, is confirmed; b) the AMOC can be readily understood as a harmonic oscillator driven by the NAO; c) the two-way interaction between NAO and AMO, and also the influence of ENSO on both NAO and AMO are essential for reproducing important correlation features; and d) the consideration of heat fluxes provides additional explanatory power to our model. Our approach not only helps to clarify our understanding for the nature of the atmosphere-ocean interaction problem but also raises new and intriguing questions for future research.

  9. Modeling of ocean dynamics with large variations in sea level

    NASA Astrophysics Data System (ADS)

    Ibrayev, R. A.; Dyakonov, G. S.

    2016-07-01

    The formulation and the algorithm of solving an ocean model for the prediction and assimilation of the observed data which makes it possible to reconstruct the circulation in the deep-water parts of the sea and at a shallow water shelf, as well as to describe the large time-space variability in the surface level, are considered. The model uses a vertical hybrid σ- z coordinate system: the several upper tens of meters of the ocean are described in the σ-coordinate system and the rest of the water column is described in the z coordinates. Such hybridization extends the possibilities of models for reconstructing thermo-hydrodynamic processes in different sea basins and the World Ocean. The differential formulation of the model in the σ- z coordinate system is presented; the simplified records of several operators that are allowable in the case of a small thickness of the ocean σ-layer are described. The construction of a computational grid, approximation of the bottom topography on it, and discretization of equations and boundary conditions of the models are considered; an approach to describing the bottom friction at shallow waters is offered. The results of the comparative experiments in the z and σ- z coordinate models are analyzed.

  10. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations

    NASA Astrophysics Data System (ADS)

    Patara, Lavinia; Böning, Claus W.; Biastoch, Arne

    2016-05-01

    The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to interannual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here the multidecadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 s-2 decade-1. In the western Atlantic, EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multidecadal trends are close to zero. The nonuniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change.

  11. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    NASA Astrophysics Data System (ADS)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  12. Coupled ocean-atmosphere model system for studies of interannual-to-decadal climate variability over the North Pacific Basin and precipitation over the Southwestern United States

    SciTech Connect

    Lai, Chung-Chieng A.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The ultimate objective of this research project is to make understanding and predicting regional climate easier. The long-term goals of this project are (1) to construct a coupled ocean-atmosphere model (COAM) system, (2) use it to explore the interannual-to-decadal climate variability over the North Pacific Basin, and (3) determine climate effects on the precipitation over the Southwestern United States. During this project life, three major tasks were completed: (1) Mesoscale ocean and atmospheric model; (2) global-coupled ocean and atmospheric modeling: completed the coupling of LANL POP global ocean model with NCAR CCM2+ global atmospheric model; and (3) global nested-grid ocean modeling: designed the boundary interface for the nested-grid ocean models.

  13. Sensitivity of ocean model simulation in the coastal ocean to the resolution of the meteorological forcing

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2013-04-01

    The quality of ocean simulations depends on a number of factors such as approximations in governing equations, errors introduced by the numerical scheme, uncertainties in input parameters, and atmospheric forcing. The identification of relations between the uncertainties in input and output data is still a challenge for the development of numerical models. The impacts of ocean variables on ocean models are still not well known (e.g., Kara et al., 2009). Given the considerable importance of the atmospheric forcing to the air-sea interaction, it is essential that researchers in ocean modelling work need a good understanding about how sensitive the atmospheric forcing is to variations of model results, which is beneficial to the development of ocean models. Also, it provides a proper way to choose the atmospheric forcing in ocean modelling applications. Our previous study (Shapiro et al, 2011) has shown that the basin-wide circulation pattern and the temperature structure in the Black Sea produced by the same model is significantly dependent on the source of the meteorological input, giving remarkably different responses. For the purpose of this study we have chosen the Celtic Sea where high resolution meteo data are available from the UK Met office since 2006. The Celtic Sea is tidally dominated water basin, with the tidal stream amplitude varying from 0.25m/s in the southwest to 2 m/s in the Bristol Channel. It is also filled with mesoscale eddies which contribute to the formation of the residual (tidally averaged) circulation pattern (Young et al, 2003). The sea is strongly stratified from April to November, which adds to the formation of density driven currents. In this paper we analyse how sensitive the model output is to variations in the spatial resolution of meteorological using low (1.6°) and high (0.11°) resolution meteo forcing, giving the quantitative relation between variations of met forcing and the resulted differences of model results, as well as

  14. Ventilation of the Miocene Arctic Ocean: An idealized model study

    NASA Astrophysics Data System (ADS)

    Thompson, Bijoy; Nilsson, Johan; Nycander, Jonas; Jakobsson, Martin; Döös, Kristofer

    2010-11-01

    A model study of an idealized early Miocene Arctic Ocean has been undertaken. The work is motivated by the first drill core retrieved from the Lomonosov Ridge in the central Arctic Ocean, which suggests a transition from anoxic to oxic condition during the early Miocene, a feature presumably related to the opening of the Fram Strait. Here, the ventilation in a semienclosed basin, connected with the ocean through a strait with a sill, is examined using an ocean circulation model that includes a passive age tracer. In particular, we investigate how the ventilation depends on strait geometry, freshwater influx, and surface wind stress. We find that the turnover time, characterizing the bulk ventilation rate, is primarily controlled by the strait width and the wind stress. Generally, the oldest water in the basin is encountered near the sill depth, but wind forcing displaces the oldest water downward. For narrow straits, the turnover time gives an upper bound on the mean age of the basin water. The results have implications when translating local oxygen conditions, recorded in the sediment sequence from the Lomonosov Ridge, to basin-scale circulation patterns. Further, the results indicate that the early Miocene Arctic Ocean became well ventilated when the Fram Strait reached a width of about 100 km.

  15. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  16. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    PubMed Central

    Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Abstract Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state‐of‐the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  17. Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers

    NASA Astrophysics Data System (ADS)

    Lowell, Robert P.; Seewald, Jeffrey S.; Metaxas, Anna; Perfit, Michael R.

    Hydrothermal systems at oceanic spreading centers reflect the complex interactions among transport, cooling and crystallization of magma, fluid circulation in the crust, tectonic processes, water-rock interaction, and the utilization of hydrothermal fluids as a metabolic energy source by microbial and macro-biological ecosystems. The development of mathematical and numerical models that address these complex linkages is a fundamental part the RIDGE 2000 program that attempts to quantify and model the transfer of heat and chemicals from "mantle to microbes" at oceanic ridges. This volume presents the first "state of the art" picture of model development in this context. The most outstanding feature of this volume is its emphasis on mathematical and numerical modeling of a broad array of hydrothermal processes associated with oceanic spreading centers. By examining the state of model development in one volume, both cross-fertilization of ideas and integration across the disparate disciplines that study seafloor hydrothermal systems is facilitated. Students and scientists with an interest in oceanic spreading centers in general and more specifically in ridge hydrothermal processes will find this volume to be an up-to-date and indispensable resource.

  18. Task Models in the Digital Ocean

    ERIC Educational Resources Information Center

    DiCerbo, Kristen E.

    2014-01-01

    The Task Model is a description of each task in a workflow. It defines attributes associated with that task. The creation of task models becomes increasingly important as the assessment tasks become more complex. Explicitly delineating the impact of task variables on the ability to collect evidence and make inferences demands thoughtfulness from…

  19. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  20. FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES

    SciTech Connect

    PAUL, JOHN H

    2013-06-21

    nutrient input. The offshore ORP was characterized by haptophyte and in places Prochlorococcus carbon fixation gene expression in surface water, with greater heterokont rbcL RNA at SCM depths. MODIS satellite chlorophyll-a data implied a plume of high chlorophyll water far into the eastern Caribbean, yet field observations did not support this, most likely because of high levels of colored dissolved organic matter (cDOM) in the ORP. The presence of pelagic nitrogen fixers (Trichodesmium and cyanobacterial diatom endosymbionts) most likely provided N for the offshore MRP production. The results underscore the importance of oceanic river plumes as sinks for CO2 and the need for their incorporation in global carbon models as well as estimates of CO2 sequestration.

  1. Simulating aggregate dynamics in ocean biogeochemical models

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Burd, Adrian B.

    2015-04-01

    The dynamics of elements in the water column is complex, depending on multiple biological and physical processes operating at very different physical scales. Coagulation of particulate material is important for transforming particles and moving them in the water column. Mechanistic models of coagulation processes provide a means to predict these processes, help interpret observations, and provide insight into the processes occurring. However, most model applications have focused on describing simple marine systems and mechanisms. We argue that further model development, in close collaboration with field and experimental scientists, is required in order to extend the models to describe the large-scale elemental distributions and interactions being studied as part of GEOTRACES. Models that provide a fundamental description of trace element-particle interactions are required as are experimental tests of the mechanisms involved and the predictions arising from models. However, a comparison between simple and complicated models of aggregation and trace metal provides a means for understanding the implications of simplifying assumptions and providing guidance as to which simplifications are needed.

  2. Decadal variability of the Tropical Atlantic Ocean Surface Temperature in shipboard measurements and in a Global Ocean-Atmosphere model

    NASA Technical Reports Server (NTRS)

    Mehta, Vikram M.; Delworth, Thomas

    1995-01-01

    processes may be responsible for the choice of the decadal and multidecadal timescales. Finally, it must be emphasized that the GFDL coupled ocean-atmosphere model generates the decadal and multidecadal timescale variability without any externally applied force, solar or lunar, at those timescales.

  3. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  4. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f‑5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  5. Tidal simulation using regional ocean modeling systems (ROMS)

    NASA Technical Reports Server (NTRS)

    Wang, Xiaochun; Chao, Yi; Li, Zhijin; Dong, Changming; Farrara, John; McWilliams, James C.; Shum, C. K.; Wang, Yu; Matsumoto, Koji; Rosenfeld, Leslie K.; Paduan, Jeffrey D.

    2006-01-01

    The purpose of our research is to test the capability of ROMS in simulating tides. The research also serves as a necessary exercise to implement tides in an operational ocean forecasting system. In this paper, we emphasize the validation of the model tide simulation. The characteristics and energetics of tides of the region will be reported in separate publications.

  6. High-Order/Low-Order methods for ocean modeling

    SciTech Connect

    Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; Knoll, Dana A.

    2015-06-01

    We examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We demonstrate how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.

  7. The biological carbon pump in the ocean: Reviewing model representations and its feedbacks on climate perturbations.

    NASA Astrophysics Data System (ADS)

    Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie

    2016-04-01

    The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate

  8. Multi-Scale Coupling in Ocean and Climate Modeling

    SciTech Connect

    Zhengyu Liu, Leslie Smith

    2009-08-14

    We have made significant progress on several projects aimed at understanding multi-scale dynamics in geophysical flows. Large-scale flows in the atmosphere and ocean are influenced by stable density stratification and rotation. The presence of stratification and rotation has important consequences through (i) the conservation of potential vorticity q = {omega} {center_dot} {del} {rho}, where {omega} is the total vorticity and {rho} is the density, and (ii) the existence of waves that affect the redistribution of energy from a given disturbance to the flow. Our research is centered on quantifying the effects of potential vorticity conservation and of wave interactions for the coupling of disparate time and space scales in the oceans and the atmosphere. Ultimately we expect the work to help improve predictive capabilities of atmosphere, ocean and climate modelers. The main findings of our research projects are described.

  9. Influence of Raman scattering on ocean color inversion models.

    PubMed

    Westberry, Toby K; Boss, Emmanuel; Lee, Zhongping

    2013-08-01

    Raman scattering can be a significant contributor to the emergent radiance spectrum from the surface ocean. Here, we present an analytical approach to directly estimate the Raman contribution to remote sensing reflectance, and evaluate its effects on optical properties estimated from two common semianalytical inversion models. For application of the method to ocean color remote sensing, spectral irradiance products in the ultraviolet from the OMI instrument are merged with MODerate-resolution Imaging Spectroradiometer (MODIS) data in the visible. The resulting global fields of Raman-corrected optical properties show significant differences from standard retrievals, particularly for the particulate backscattering coefficient, b(bp), where average errors in clear ocean waters are ~50%. Given the interest in transforming b(bp) into biogeochemical quantities, Raman scattering must be accounted for in semianalytical inversion schemes. PMID:23913078

  10. Modelling the volatile and organic content of Enceladus' ocean

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Lunine, Jonathan

    2015-04-01

    A variety of Cassini data on Enceladus suggest that the jets of material spraying out of the south polar region of this Saturnian moon are connected to a regional or global ocean below an icy crust -- an ocean in contact with a rocky core [1, 2, 3]. In this study we construct models of the mineralogical and elemental composition of Enceladus' rocky core so as to predict the abundance of species that may provide more detail on the extent of hydrothermal evolution of the ocean and its interaction with the rocky core. Using equations of state of the relevant material, the models are made consistent with the values of the gravity coefficients [1]. We investigate the amount of organic molecules (amino acids and fatty acids) as well as the amount of 40Ar that could be present in Enceladus' deep ocean and, therefore, in the icy grains expelled into space. Some models show that the conditions in Enceladus rocky core can be very similar to those existing in the Earth's oceanic crust, suggesting that all of Enceladus rocky core would have been leached over the age of the solar system. The amount of 40Ar dissolved in the ocean provides constraints on the amount of K in the building blocks of Enceladus, the amount of leaching of the silicate fraction, and the extent of the ocean. Based on chondritic abundances for K, we have calculated that the total potential of 40Ar is about 5.6x1012 kg. We also investigate the amount of organic material that would have been concentrated in the ocean. The Murchison meteorite contains about 60 ppm of amino acids, mainly glycine [4]. Assuming that all the rocky core has been leached by water, the modelled concentration of amino acids exceeds 150 ppm. Carboxylic acids were detected in the Asuka carbonaceous chondrites in Antarctica with values, for example, of 90 nmol/g of benzoic acid. Assuming this value, about 35 ppm of benzoic acid would be present in Enceladus' ocean. The concentrations are larger if the ocean is not global, but rather

  11. Sonar signal processing using probabilistic signal and ocean environmental models.

    PubMed

    Culver, R Lee; Camin, H John

    2008-12-01

    Acoustic signals propagating through the ocean are refracted, scattered, and attenuated by the ocean volume and boundaries. Many aspects of how the ocean affects acoustic propagation are understood, such that the characteristics of a received signal can often be predicted with some degree of certainty. However, acoustic ocean parameters vary with time and location in a manner that is not, and cannot be, precisely known; some uncertainty will always remain. For this reason, the characteristics of the received signal can never be precisely predicted and must be described in probabilistic terms. A signal processing structure recently developed relies on knowledge of the ocean environment to predict the statistical characteristics of the received signal, and incorporates this description into the processor in order to detect and classify targets. Acoustic measurements at 250 Hz from the 1996 Strait of Gibraltar Acoustic Monitoring Experiment are used to illustrate how the processor utilizes environmental data to classify source depth and to underscore the importance of environmental model fidelity and completeness.

  12. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  13. GRACE gravity model: assssment in terms of deep ocean currents from hydrography and from the ECCO ocean model

    NASA Technical Reports Server (NTRS)

    Zlotnicki, V.; Stammer, D.; Fukumori, I.

    2003-01-01

    Here we assess the new generation of gravity models, derived from GRACE data. The differences between a global geoid model (one from GRACE data and one the well-known EGM-96), minus a Mean Sea Surface derived from over a decade of altimetric data are compared to hydrographic data from the Levitus compilation and to the ECCO numerical ocean model, which assimilates altimetry and other data.

  14. Cycling of DOC and DON by Novel Heterotrophic and Photoheterotrophic Bacteria in the Ocean: Final Report

    SciTech Connect

    Kirchman, David L

    2008-12-09

    The flux of dissolved organic matter (DOM) through aquatic bacterial communities is a major process in carbon cycling in the oceans and other aquatic systems. Our work addressed the general hypothesis that the phylogenetic make-up of bacterial communities and the abundances of key types of bacteria are important factors influencing the processing of DOM in aquatic ecosystems. Since most bacteria are not easily cultivated, the phylogenetic diversity of these microbes has to be assessed using culture-independent approaches. Even if the relevant bacteria were cultivated, their activity in the lab would likely differ from that under environmental conditions. This project found variation in DOM uptake by the major bacterial groups found in coastal waters. In brief, the data suggest substantial differences among groups in the use of high and molecular weight DOM components. It also made key discoveries about the role of light in affecting this uptake especially by cyanobacteria. In the North Atlantic Ocean, for example, over half of the light-stimulated uptake was by the coccoid cyanobacterium, Prochlorococcus, with the remaining uptake due to Synechococcus and other photoheterotrophic bacteria. The project also examined in detail the degradation of one organic matter component, chitin, which is often said to be the second most abundant compound in the biosphere. The findings of this project contribute to our understanding of DOM fluxes and microbial dynamics supported by those fluxes. It is possible that these findings will lead to improvements in models of the carbon cycle that have compartments for dissolved organic carbon (DOC), the largest pool of organic carbon in the oceans.

  15. A parallel coupled oceanic-atmospheric general circulation model

    SciTech Connect

    Wehner, M.F.; Bourgeois, A.J.; Eltgroth, P.G.; Duffy, P.B.; Dannevik, W.P.

    1994-12-01

    The Climate Systems Modeling group at LLNL has developed a portable coupled oceanic-atmospheric general circulation model suitable for use on a variety of massively parallel (MPP) computers of the multiple instruction, multiple data (MIMD) class. The model is composed of parallel versions of the UCLA atmospheric general circulation model, the GFDL modular ocean model (MOM) and a dynamic sea ice model based on the Hiber formulation extracted from the OPYC ocean model. The strategy to achieve parallelism is twofold. One level of parallelism is accomplished by applying two dimensional domain decomposition techniques to each of the three constituent submodels. A second level of parallelism is attained by a concurrent execution of AGCM and OGCM/sea ice components on separate sets of processors. For this functional decomposition scheme, a flux coupling module has been written to calculate the heat, moisture and momentum fluxes independent of either the AGCM or the OGCM modules. The flux coupler`s other roles are to facilitate the transfer of data between subsystem components and processors via message passing techniques and to interpolate and aggregate between the possibly incommensurate meshes.

  16. Model-based inversion for a shallow ocean application

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1994-03-01

    A model-based approach to invert or estimate the sound speed profile (SSP) from noisy pressure-field measurements is discussed. The resulting model-based processor (MBP) is based on the state-space representation of the normal-mode propagation model. Using data obtained from the well-known Hudson Canyon experiment, a noisy shallow water ocean environment, the processor is designed and the results compared to those predicted using various propagation models and data. It is shown that the MBP not only predicts the sound speed quite well, but also is able to simultaneously provide enhanced estimates of both modal and pressure-field measurements which are useful for localization and rapid ocean environmental characterization.

  17. Modeling of SAR signatures of shallow water ocean topography

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Kozma, A.; Kasischke, E. S.; Lyzenga, D. R.

    1984-01-01

    A hydrodynamic/electromagnetic model was developed to explain and quantify the relationship between the SEASAT synthetic aperture radar (SAR) observed signatures and the bottom topography of the ocean in the English Channel region of the North Sea. The model uses environmental data and radar system parameters as inputs and predicts SAR-observed backscatter changes over topographic changes in the ocean floor. The model results compare favorably with the actual SEASAT SAR observed backscatter values. The developed model is valid for only relatively shallow water areas (i.e., less than 50 meters in depth) and suggests that for bottom features to be visible on SAR imagery, a moderate to high velocity current and a moderate wind must be present.

  18. An ice-ocean coupled model for the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Cheng, Abe; Preller, Ruth

    1992-01-01

    The Hibler ice model has been modified and adapted to a domain that includes most of the sea ice-covered areas in the Northern Hemisphere. This model, joined with the Cox ocean model, is developed as an enhancement to the U.S. Navy's sea ice forecasting, PIPS, and is termed PIPS2.0. Generally, the modeled ice edge is consistent with the Navy-NOAA Joint Ice Center weekly analysis, and the modeled ice thickness distribution agrees with submarine sonar data in the central Arctic basin.

  19. Ocean General Circulation From a Global Eddy-Resolving Model

    NASA Astrophysics Data System (ADS)

    Semtner, Albert J.; Chervin, Robert M.

    1992-04-01

    A concerted effort has been made to simulate the global ocean circulation with resolved eddies, using a highly optimized model on the best available supercomputer. An earlier 20-year spin-up has been extended for 12.5 additional years: the first 2.5 with continued annual mean forcing and the final 10.0 with climatological monthly forcing. Model output archived at 3-day intervals has been analyzed into mean fields, standard deviations, products, and covariances on monthly, annual, and multiyear time scales. The multiyear results are examined here in order to give insight into the general circulation of the world ocean. The three-dimensional flow fields of the model are quite realistic, even though resolution of eddies in high latitudes is marginal with a 0.5°, 20-level grid. The use of seasonal forcing improves the simulation, especially in the tropics and high northern latitudes. Mid-latitude gyre circulations, western boundary currents, zonal equatorial flows, and the Antarctic Circumpolar Current (ACC) all show mean and eddy characteristics similar to those observed. There is also some indication of eddy intensification of the mean flow of the ACC and of separated boundary jets. A global thermohaline circulation of North Atlantic Deep Water is identified in deep western boundary currents connected by the ACC. This deep circulation rises mainly in the equatorial Pacific. Several zonal jets are an integral part of this circulation near the equator. The deep flow rises toward the surface in a series of switchbacks. Much of the thermohaline return flow then follows an eddy-rich warm-water route through the Indonesian archipelago and around the southern tip of Africa. However, some intermediate level portions of the thermohaline circulation return south into the ACC and follow a cold water route through the Drake Passage. The representation of a global "conveyor belt" circulation with narrow and relatively high-speed currents along most of its path may be the most

  20. High resolution modeling of direct ocean carbon sequestration

    SciTech Connect

    Michael Follows; John Marshall

    2004-04-22

    This work has followed two themes: (1) Developing and using the adjoint of the MIT ocean biogeochemistry model to examine the efficiency of carbon sequestration in a global configuration. We have demonstrated the power of the adjoint method for systematic ocean model sensitivity studies. We have shown that the relative efficiency of carbon sequestration in the Atlantic and Pacific basins changes with the period of interest. For decadal to centennial scales, the Pacific is more efficient. On longer timescales the Atlantic is more efficient . (2) We have developed and applied a high-resolution, North Atlantic circulation and tracer model to investigate the role of the mesoscale in controlling sequestration efficiency. We show that the mesoscale eddy field, and its explicit representation, significantly affects the estimated sequestration efficiency for local sources on the Eastern US seaboard.

  1. Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model

    NASA Astrophysics Data System (ADS)

    Maier-Reimer, E.; Hasselmann, K.

    1987-08-01

    Inorganic carbon in the ocean is modelled as a passive tracer advected by a three-dimensional current field computed from a dynamical global ocean circulation model. The carbon exchange between the ocean and atmosphere is determined directly from the (temperature-dependent) chemical interaction rates in the mixed layer, using a standard CO2 flux relation at the air-sea interface. The carbon cycle is closed by coupling the ocean to a one-layer, horizontally diffusive atmosphere. Biological sources and sinks are not included. In this form the ocean carbon model contains essentially no free tuning parameters. The model may be regarded as a reference for interpreting numerical experiments with extended versions of the model including biological processes in the ocean (Bacastow R and Maier-Reimer E in prep.) and on land (Esser G et al in prep.). Qualitatively, the model reproduces the principal features of the observed CO2 distribution bution in the surface ocean. However, the amplitudes of surface pCO2 are underestimated in upwelling regions by a factor of the order of 1.5 due to the missing biological pump. The model without biota may, nevertheless, be applied to compute the storage capacity of the ocean to first order for anthropogenic CO2 emissions. In the linear regime, the response of the model may be represented by an impulse response function which can be approximated by a superposition of exponentials with different amplitudes and time constants. This provides a simple reference for comparison with box models. The largest-amplitude (˜0.35) exponential has a time constant of 300 years. The effective storage capacity of the oceans is strongly dependent on the time history of the anthropogenic input, as found also in earlier box model studies.

  2. A Mathematical Model of the Global Ocean Saltwater Density Distribution

    NASA Astrophysics Data System (ADS)

    Gladkikh, Vladislav; Tenzer, Robert

    2012-01-01

    We formulate a functional model which closely approximates the actual seawater density distribution. The methodology of finding a theoretical density model is based on the analysis of the global data of pressure/depth, salinity, and temperature from the World Ocean Atlas 2009 (provided by NOAA's National Oceanographic Data Center) and the World Ocean Circulation Experiment 2004 (provided by the German Federal Maritime and Hydrographic Agency). The seawater density values are calculated according to the thermodynamic equation of seawater TEOS-10. The global seawater density model is defined as a function of the ocean depth (to account for density variations due to pressure) and geographical latitude (to account for density variations due to salinity and temperature). A more complex functional density model is formulated to account for a large seawater density gradient within the pycnocline caused mainly by a combination of decreasing water temperature and increasing salinity with depth. The results of numerical analysis reveal that the new functional model based on the depth and latitudinal density variations approximates the actual seawater density distribution with a relative accuracy better than 0.45%. When incorporating the pycnocline density gradient correction, the accuracy further improves to about 0.25% (except for the shelf seas with the presence of the continental hydrological signal and other oceanographic factors). The results also show that the average seawater density (estimated from the experimental data used in this study) is 1038.5 ± 2.4 kg/m3.

  3. Ocean Response to Possible Southern Meltwater Pulses During Eocene-Oligocene Cooling Climate Trend: A Sensitivity Ocean Modeling Study

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2003-12-01

    Understanding ocean circulation and sea level change in the past (and foreseeable future) is one of the focal points of paleoceanography. Sea level may change due to several primary causes, including the meltdown of the major ice sheets, sea ice melting, and changes in the thermohaline structure of the oceans. The sensitivity of the past ocean circulation to meltwater impacts may have been different from the present-day. We still have only a vague understanding of how ocean basin geography may influence the freshwater impacts in different oceans; the role of geography is important for reconstructing variability of past climates with substantially different land-sea distributions. As freshwater impacts in past geologic eras having different basins configurations may have been different from the present-day pattern, the sensitivity of the ocean circulation to sea surface density impacts and climate change could have been different as well. We use the Eocene-Oligocene geometry and climate to address the past ocean and sea level long-term internal variability because this time slice provides a substantially different geometry and for a strong sea ice impact that can be seen in the geologic record. The Eocene epoch is crucial as a transition from the warm Cretaceous ocean to cooler oceans that may have been subject to bi-polar millennial-scale oscillations of the deep ocean circulation caused by freshwater pulses of the developing southern cryosphere. In a series of numerical experiments, sea ice melting and sea water freezing around Antarctica were simulated by superimposing freshwater layers over zonally-averaged sea surface salinity. Eocene sea surface temperature and sea surface salinity are specified based on the paleoclimatic record and modeling. In our simulations, the Eocene ocean circulation is indeed sensitive to freshwater impacts in the Southern Hemisphere. There are noticeable sea level changes caused by the restructuring of the deep ocean thermal and

  4. Documentation, critique, and suggested changes in a simple ocean model

    SciTech Connect

    Taylor, K.E.

    1986-10-01

    A simple upwelling-diffusion model originally formulated by the NYU modeling group and described in Hoffert et al. (1983) has been rederived and critically analyzed. The purpose was to evaluate how to best incorporate the model into a climate model such as the Livermore Statistical Dynamical Model (LSDM). Hoffert's model was one of the first models to be used to study the question of the transient response of the ocean to climate perturbations. It successfully reproduces the equilibrium temperature structure of the deep ocean. I have found that there are some problems in the formulation of the model when it is applied at individual latitudes. I have offered a simple alternative that allows the thermohaline circulation to vary in such a way as to keep the polar temperature just above the freezing point. I have also corrected some inconsistencies in the poleward heat transport equations. Analytic solutions of the model equations under simple harmonic forcing have been found and can be used to verify the finite-difference schemes of numerical models. Full analysis of a more complex model that includes upwelling driven by surface wind stress has not yet been completed.

  5. Energetically consistent ocean models (Georg Wüst medal lecture)

    NASA Astrophysics Data System (ADS)

    Eden, Carsten; Olbers, Dirk; Czeschel, Lars; Brüggemann, Nils

    2015-04-01

    The energy transfers between the three principal dynamical regimes -- small-scale turbulence, internal gravity waves and geostrophically balanced motion -- are fundamental to the energy cycle of the ocean but poorly understood and quantified. Since the interactions of the dynamical regimes ultimately link the smallest scales to the largest scales by a variety of complex processes, understanding these interactions is mandatory to understand the dynamics of the ocean, to construct models and to predict climate. Here, an effort is documented to develop an energetically consistent model, in which the energy of the mean model variables interacts with the parameterised dynamical regimes without any spurious energy sources or sinks. This means that the energy available to drive the circulation, e.g. by interior mixing in the ocean, is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. Central to the concept is the parameterisation module IDEMIX which predicts and consistently links the sources of internal gravity wave energy in the ocean, its propagation and dissipation. Important components which need further development are physically consistent parameterisations for the dissipation of the geostrophically balanced motion for which different possibilities are explored. The model performance is validated using idealised and realistic global model configurations. The parameterised internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. In contrast, the wind work on the mean circulation contributes by about 1.8 TW to the large-scale circulation.

  6. One-way nesting for a primitive equation ocean model

    NASA Technical Reports Server (NTRS)

    Blake, D. W.

    1991-01-01

    Prognostic numerical models for atmospheric and oceanic circulations require initial fields, boundary conditions, and forcing functions in addition to a consistent set of partial differential equations, including a state relation and equations expressing conservation of mass, momentum, and energy. Depending on the horizontal domain to be modeled, the horizontal boundary conditions are either physically obvious or extremely difficult to specify consistently. If the entire atmosphere is modeled, periodic horizontal boundary conditions are appropriate. On the other hand, the physical horizontal boundaries on the entire ocean are solid walls. Obviously, the normal velocity at a solid wall is zero while the specification of the tangential velocity depends on the mathematical treatment of the horizontal viscous terms. Limitations imposed by computer capacity and cost, as well as research interests, have led to the use of limited area models to study flows in the atmosphere and ocean. The limited area models do not have physical horizontal boundaries, merely numerical ones. Correctly determining these open boundary conditions for limited-area numerical models has both intrigued and frustrated numerical modelers for decades. One common approach is to use the closed or solid wall boundary conditions for a limited-area model. The argument given for this approach is that the boundary conditions affect flow near the walls but that none of these effects are propagated into the interior. Therefore, one chooses a big enough domain that the central region of interest is not corrupted by the boundary flow. Research in progress to model the North Atlantic circulation vividly illustrates the pitfalls of this approach. Two model runs are compared: (1) the southern boundary at 20S between latitudes 0 and 40W is artificially closed; and (2) the same boundary is specified as open with an inward transport of 15 Sv (determined from a global model with the same physics) uniformly spread

  7. Model of Methane Hydrate Formation in Mid-ocean Ridges

    NASA Astrophysics Data System (ADS)

    Dmitrievsky, A. N.; Balanyuk, I. E.; Sorokhtin, O. G.; Matveenkov, V. V.; Dongaryan, L. Sh.

    2003-04-01

    MODEL OF METHANE HYDRATE FORMATION IN MID-OCEAN RIDGES A.N. Dmitrievsky, I.E. Balanyuk, O.G.Sorokhtin, V.V. Matveenkov, and L.Sh. Dongaryan P.P.Shirshov Institute of Oceanology Russian Academy of Sciences Moscow, Russia, balanyuk@sio.rssi.ru One among the most perspective direction in studying the ocean floor is the research of hydrothermal fields within the most active zones — rift valleys, where the processes of spreading of the ocean floor, uplift of the deep matter to the surface of the ocean floor, and creation of the new oceanic crust occur. Volcanic activity in these zones is accompanied with the formation of the hydrothermal system executing separation, transfer, and precipitation of a series of chemical elements. It is known that ore deposits with high concentration of iron, manganese, copper, nickel, cobalt are formed as a result of hydrothermal activity. It is much less known that hydrothermal activity in these zones has important but not so evident result — the formation of hydrocarbons in the form of methane hydrates. We propose the hypothesis of formation of methane hydrate deposits over the shallow slopes of the mid-oceanic ridges as an outcome of the action of two factors: the thermal convection of water in fractured-porous rocks of the crust and the reaction of serpentinization of the crust. The intensive exhalation of hydrocarbons takes place in the process of serpentinization. The conditions of water convection in the porous media are favorable for the formation and accumulation of methane hydrates in the near-surface layers of the oceanic crust. The carbonic-acid gas dissolved in the seawater is involved into the process of methane hydrate formation. It was established that the most favorable conditions for this mechanism are over the slopes of the Mid-Atlantic Ridge. All types of water areas where gas hydrates occur can be conditionally subdivided into following geodynamic zones: the abyssal basins of the inner and marginal seas, the

  8. Assessment of uncertainties of ocean color parameters for the ocean Carbon-based Productivity Model

    NASA Astrophysics Data System (ADS)

    Sheng, M. A.; Xiaofeng, Yang; Zui, Tao; Ziwei, Li; Xuan, Zhou

    2014-03-01

    With the developments of ocean color remote sensing technology, some ocean color parameters can be derived by satellite globally. These terms, including chlorophyll concentration (Chl), particulate backscattering coefficients (bbp), photosynthetically available radiation (PAR), have been proved to be related to NPP of phytoplankton. Based on these parameters with other auxiliary data, a carbon-based productivity model (CbPM) had been developed. The model derives phytoplankton carbon(C) from bbp and utilizes the ratios of C and Chl to describe the phytoplankton growth rates (μ) which has physiological dependencies on light (through variations in PAR), nutrients, and temperature. This paper indicated how the uncertainties in satellite derived parameters (Chl, bbp and PAR) propagated through the CbPM using Monte Carlo method. Comparisons on the individual contributor to the random uncertainty in NPP between these input items were discussed. The analysis results showed that among the three parameters, the biggest contribution to the uncertainty in the model output came from Chl. Therefore, improvements in the accuracy of Chl would have the largest potential to improve the ability of CbPM in estimating NPP of phytoplankton.

  9. An ecosystem model of the global ocean including Fe, Si, P colimitations

    NASA Astrophysics Data System (ADS)

    Aumont, Olivier; Maier-Reimer, Ernst; Blain, StéPhane; Monfray, P.

    2003-06-01

    Observations have shown that large areas of the world ocean are characterized by lower than expected chlorophyll concentrations given the ambient phosphate and nitrate levels. In these High Nutrient-Low Chlorophyll regions, limitations of phytoplankton growth by other nutrients like silicate or iron have been hypothesized and further evidenced by in situ experiments. To explore these limitations, a nine-component ecosystem model has been embedded in the Hamburg model of the oceanic carbon cycle (HAMOCC5). This model includes phosphate, silicate, dissolved iron, two phytoplankton size fractions (nanophytoplankton and diatoms), two zooplankton size fractions (microzooplankton and mesozooplankton), one detritus and semilabile dissolved organic matter. The model is able to reproduce the main characteristics of two of the three main HNLC areas, i.e., the Southern Ocean and the equatorial Pacific. In the subarctic Pacific, silicate and phosphate surface concentrations are largely underestimated because of deficiencies in ocean dynamics. The low chlorophyll concentrations in HNLC areas are explained by the traditional hypothesis of a simultaneous iron-grazing limitation: Diatoms are limited by iron whereas nanophytoplankton is controlled by very efficient grazing by microzooplankton. Phytoplankton assimilates 18 × 109 mol Fe yr-1 of which 73% is supplied by regeneration within the euphotic zone. The model predicts that the ocean carries with it about 75% of the phytoplankton demand for new iron, assuming a 1% solubility for atmospheric iron. Finally, it is shown that a higher supply of iron to surface water leads to a higher export production but paradoxically to a lower primary productivity.

  10. Ocean modelling for aquaculture and fisheries in Irish waters

    NASA Astrophysics Data System (ADS)

    Dabrowski, T.; Lyons, K.; Cusack, C.; Casal, G.; Berry, A.; Nolan, G. D.

    2015-06-01

    The Marine Institute, Ireland, runs a suite of operational regional and coastal ocean models. Recent developments include several tailored products that focus on the key needs of the Irish aquaculture sector. In this article, an overview of the products and services derived from the models are presented. A shellfish model that includes growth and physiological interactions of mussels with the ecosystem and is fully embedded in the 3-D numerical modelling framework has been developed at the Marine Institute. This shellfish model has a microbial module designed to predict levels of coliform contamination in mussels. This model can also be used to estimate the carrying capacity of embayments, assess impacts of pollution on aquaculture grounds and help to classify shellfish waters. The physical coastal model of southwest Ireland provides a three day forecast of shelf water movement in the region. This is assimilated into a new harmful algal bloom alert system used to inform end-users of potential toxic shellfish events and high biomass blooms that include fish killing species. Further services include the use of models to identify potential sites for offshore aquaculture, to inform studies of potential cross-contamination in farms from the dispersal of planktonic sea lice larvae and other pathogens that can infect finfish and to provide modelled products that underpin the assessment and advisory services on the sustainable exploitation of the marine fisheries resources. This paper demonstrates that ocean models can provide an invaluable contribution to the sustainable blue growth of aquaculture and fisheries.

  11. Simulation of the tropical oceans with an ocean GCM coupled to an atmospheric mixed-layer model

    SciTech Connect

    Murtugudde, R.; Seager, R.; Busalacchi, A.

    1996-08-01

    A reduced gravity, primitive equation, ocean general circulation model (GCM) is coupled to an advective atmospheric mixed-layer (AML) model to demonstrate the importance of a nonlocal atmospheric mixed-layer parameterization for a proper simulation of surface heat fluxes and sea surface temperatures (SST). Seasonal variability of the model SSTs and the circulation are generally in good agreement with the observations in each of the tropical oceans. These results are compared to other simulations that use a local equilibrium mixed-layer model. Inclusion of the advective AML model is demonstrated to lead to a significant improvement in the SST simulation in all three oceans. Advection and diffusion of the air humidity play significant roles in determining SSTs even in the tropical Pacific where the local equilibrium assumption was previously deemed quite accurate. The main, and serious, model flaw is an inadequate representation of the seasonal cycle in the upwelling regions of the eastern Atlantic and Pacific Oceans. The results indicate that the feedback between mixed-layer depths and SSTs can amplify SST errors, implying that increased realism in the modeling of the ocean mixed layer increases the demand for realism in the representation of the surface heat fluxes. The performance of the GCM with a local-equilibrium mixed-layer model in the Atlantic is as poor as previous simple ocean model simulations of the Atlantic. The conclusion of earlier studies that the simple ocean model was at fault may, in fact, not be correct. Instead the local-equilibrium heat flux parameterization appears to have been the major source of error. Accurate SST predictions may, hence, be feasible by coupling the AML model to computationally efficient simple ocean models. 69 refs., 18 figs., 1 tab.

  12. Modeling Horizontal GPS Seasonal Signals Caused by Ocean Loading

    NASA Astrophysics Data System (ADS)

    Bartlow, N. M.; Fialko, Y. A.

    2014-12-01

    GPS monuments around the world exhibit seasonal signals in both the horizontal and vertical components with amplitudes on the order of centimeters. For analysis of tectonic signals, researchers typically fit and remove a sine wave with an annual period, and sometimes an additional sine wave with a semiannual period. As interest grows in analyzing smaller, slower signals it becomes more important to correct for these seasonal signals accurately. It is well established that the vertical component of seasonal GPS signals is largely due to continental water storage cycles (e.g. van Dam et al., GRL, 2001). Horizontal seasonal signals however are not well explained by continental water storage. We examine horizontal seasonal signals across western North America and find that the horizontal component is coherent at very large spatial scales and is in general oriented perpendicular to the nearest coastline, indicating an oceanic origin. Additionally, horizontal and vertical annual signals are out of phase by approximately 2 months indicating different physical origins. Studies of GRACE and ocean bottom pressure data indicate an annual variation of non-steric, non-tidal ocean height with an average amplitude of 1 cm globally (e.g. Ponte et al., GRL, 2007). We use Some Programs for Ocean Tide Loading (SPOTL; Agnew, SIO Technical Report, 2012) to model predicted displacements due to these (non-tidal) ocean loads and find general agreement with observed horizontal GPS seasonal signals. In the future, this may lead to a more accurate way to predict and remove the seasonal component of GPS displacement time-series, leading to better discrimination of the true tectonic signal. Modeling this long wavelength signal also provides a potential opportunity to probe the structure of the Earth.

  13. Role of south Indian Ocean swells in modulating the north Indian Ocean wave climate through modelling and remote sensing

    NASA Astrophysics Data System (ADS)

    Samiksha, S. V.; Vethamony, P.; Aboobacker, V. M.; Rashmi, R.

    2012-04-01

    Implementation and validation of a third generation wave model, Wavewatch III was used to study the characteristics of the south Indian ocean swells and their propagation in the north Indian Ocean. The NCEP reanalysis wind data (2.5° x 2.5°) has been used to generate the wind waves for the entire Indian Ocean during 2006 - 2007. The modelled wave parameters have been compared with measured buoy data and with merged altimeter data. The model results show good agreement with the buoy and altimeter data. A case study is carried out to study the propagation of the swells generated at the roaring 40°S in the Indian Ocean during May 2007. The "southern swell" occurred during May 2007 has been successfully reproduced in the wave model, which confirmed by the comparison of modelled significant wave heights with the merged altimeter significant wave heights. These swells were generated in the Atlantic ocean near the southern tip of South Africa and propagated towards the north Indian Ocean. These waves touches the Madagascar region and further hits the La Reunion islands after three days thus creating numerous damages near the islands. The magnitude of the swell is around 15m near the generation area and it reduces to around 6m near the La Reunion islands while propagating towards the north Indian Ocean. Further the swell energy is spataially distributed in the northern and southern Indian Ocean. The study reveals that the swells generated in the roaring forties and propagating in the SW/SSW direction influences more to Bay of Bengal than Arabian Sea. This occurs during pre-monsoon season primarily because large scale winds are weak in the north Indian Ocean during this period and hence swells from south Indian Ocean dominates at this time. The case of "southern swell" also happened to be at the same season. Further wave parameters were extracted at few locations in the northern Indian Ocean to study the impact of May 2007 swells on the wave climate. An average of around

  14. Global atmospheric and ocean modeling on the connection machine

    SciTech Connect

    Atlas, S.R.

    1993-12-01

    This paper describes the high-level architecture of two parallel global climate models: an atmospheric model based on the Geophysical Fluid Dynamics Laboratory (GFDL) SKYHI model, and an ocean model descended from the Bryan-Cox-Semtner ocean general circulation model. These parallel models are being developed as part of a long-term research collaboration between Los Alamos National Laboratory (LANL) and the GFDL. The goal of this collaboration is to develop parallel global climate models which are modular in structure, portable across a wide variety of machine architectures and programming paradigms, and provide an appropriate starting point for a fully coupled model. Several design considerations have emerged as central to achieving these goals. These include the expression of the models in terms of mathematical primitives such as stencil operators, to facilitate performance optimization on different computational platforms; the isolation of communication from computation to allow flexible implementation of a single code under message-passing or data parallel programming paradigms; and judicious memory management to achieve modularity without memory explosion costs.

  15. Medicanes in an ocean-atmosphere coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B.

    2014-03-01

    So-called medicanes (Mediterranean hurricanes) are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (1-D NEMO-MED12) to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°). The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.

  16. Medicanes in an ocean-atmosphere coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B.

    2014-08-01

    So-called medicanes (Mediterranean hurricanes) are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (1-D NEMO-MED12) to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid spacings of 0.44, 0.22, and 0.08°; with/without spectral nudging, and an ocean grid spacing of 1/12°). The results show that at high resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.

  17. Response Of Ocean Carbon Export To Different Model Algorithms

    NASA Astrophysics Data System (ADS)

    Caglar Yumruktepe, Veli; Salihoglu, Baris; Kideys, Ahmet E.

    2013-04-01

    Effects of climate change on the biological carbon pump (BCP) and vice-versa, and the influence of change in ecosystem structure on the dynamics of BCP are vital topics to understand the role of oceans in the global carbon cycle and sequestration of greenhouse gases. Construction of a complete carbon budget, requires better understanding of air-sea exchanges and the processes controlling the vertical and horizontal transport of carbon in the ocean, particularly the biological carbon pump. Improved parameterization of carbon sequestration within ecosystem models is vital to better understand and predict changes in the global carbon cycle. However, due to the complexity of processes controlling particle aggregation, sinking and decomposition, existing ecosystem models necessarily parameterize carbon sequestration using simple algorithms. For this reason, the primary aim of this study is to provide new parameterizations of the downward flux of organic carbon, suitable for inclusion in numerical models. The study area was chosen to be the North Atlantic Basin (NA) and the surrounding shelf seas. In the scope of this study, first, the skill of existing models in representing particle fluxes were compared theoretically. The unique algorithms used in three state-of-the art ecosystem models ERSEM, PISCES and MEDUSA have been compared and tested against observational data collected at the PAP mooring site. For testing purposes, algorithms were inserted into a common 1D pelagic ecosystem model. Following comparison of existing algorithms, new experimental results obtained from targeted mesocosm experiments and open ocean observations, will be utilized to develop improved formulations. New algorithms will be compared to existing model formulations using a standard validation data set complied within the framework of BASIN. In order to assess algorithm response under differing hydrographic environments, each set of algorithms will be tested within a 1D framework at three sites

  18. Modelling coral polyp calcification in relation to ocean acidification

    NASA Astrophysics Data System (ADS)

    Hohn, S.; Merico, A.

    2012-11-01

    Rising atmospheric CO2 concentrations due to anthropogenic emissions induce changes in the carbonate chemistry of the oceans and, ultimately, a drop in ocean pH. This acidification process can harm calcifying organisms like coccolithophores, molluscs, echinoderms, and corals. It is expected that ocean acidification in combination with other anthropogenic stressors will cause a severe decline in coral abundance by the end of this century, with associated disastrous effects on reef ecosystems. Despite the growing importance of the topic, little progress has been made with respect to modelling the impact of acidification on coral calcification. Here we present a model for a coral polyp that simulates the carbonate system in four different compartments: the seawater, the polyp tissue, the coelenteron, and the calcifying fluid. Precipitation of calcium carbonate takes place in the metabolically controlled calcifying fluid beneath the polyp tissue. The model is adjusted to a state of activity as observed by direct microsensor measurements in the calcifying fluid. We find that a transport mechanism for bicarbonate is required to supplement carbon into the calcifying fluid because CO2 diffusion alone is not sufficient to sustain the observed calcification rates. Simulated CO2 perturbation experiments reveal decreasing calcification rates under elevated pCO2 despite the strong metabolic control of the calcifying fluid. Diffusion of CO2 through the tissue into the calcifying fluid increases with increasing seawater pCO2, leading to decreased aragonite saturation in the calcifying fluid. Our modelling study provides important insights into the complexity of the calcification process at the organism level and helps to quantify the effect of ocean acidification on corals.

  19. Modeling selective pressures on phytoplankton in the global ocean.

    PubMed

    Bragg, Jason G; Dutkiewicz, Stephanie; Jahn, Oliver; Follows, Michael J; Chisholm, Sallie W

    2010-01-01

    Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and

  20. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 2, September 1994--August 1996

    SciTech Connect

    Herzog, H.J.; Adams, E.E.

    1996-12-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Technically, the term `disposal` is really a misnomer because the atmosphere and ocean eventually equilibrate on a time scale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release.

  1. A Pacific Ocean general circulation model for satellite data assimilation

    NASA Technical Reports Server (NTRS)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  2. Ocean modelling for aquaculture and fisheries in Irish waters

    NASA Astrophysics Data System (ADS)

    Dabrowski, T.; Lyons, K.; Cusack, C.; Casal, G.; Berry, A.; Nolan, G. D.

    2016-01-01

    The Marine Institute, Ireland, runs a suite of operational regional and coastal ocean models. Recent developments include several tailored products that focus on the key needs of the Irish aquaculture sector. In this article, an overview of the products and services derived from the models are presented. The authors give an overview of a shellfish model developed in-house and that was designed to predict the growth, the physiological interactions with the ecosystem, and the level of coliform contamination of the blue mussel. As such, this model is applicable in studies on the carrying capacity of embayments, assessment of the impacts of pollution on aquaculture grounds, and the determination of shellfish water classes. Further services include the assimilation of the model-predicted shelf water movement into a new harmful algal bloom alert system used to inform end users of potential toxic shellfish events and high biomass blooms that include fish-killing species. Models are also used to identify potential sites for offshore aquaculture, to inform studies of potential cross-contamination in farms from the dispersal of planktonic sea lice larvae and other pathogens that can infect finfish, and to provide modelled products that underpin the assessment and advisory services on the sustainable exploitation of the resources of marine fisheries. This paper demonstrates that ocean models can provide an invaluable contribution to the sustainable blue growth of aquaculture and fisheries.

  3. Present-day Circum-Antarctic Simulations using the POPSICLES Coupled Ice Sheet-Ocean Model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X.; Martin, D. F.; Price, S. F.; Maltrud, M. E.; Collins, W.

    2014-12-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1o (~5 km) ocean resolution and with adaptive ice-sheet model resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal trends in submarine melting from several Antarctic regions. Finally, we explore the influence on basal melting and system dynamics resulting from two different choices of climate forcing: a "normal-year" climatology and the CORE v. 2 forcing data (Large and Yeager 2008).POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3D; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).A companion presentation, "Response of the Antarctic Ice Sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model" in session C024 covers the ice-sheet response to these melt rates in the coupled simulation

  4. Modelling the Oceanic Nd Isotopic Composition With a North Atlantic Eddy Permitting Model

    NASA Astrophysics Data System (ADS)

    Peronne, S.; Treguier, A.; Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.

    2006-12-01

    The oceanic water masses differ by their temperatures, salinity, but also a number of geochemical tracers characterized by their weak concentrations and their ability to quantify oceanic processes (mixing, scavenging rates etc). Among these tracers, the Nd isotopic composition (hereafter epsilon-Nd) is a (quasi) conservative tracer of water mass mixing in the ocean interior, far from any lithogenic inputs. It has been recently established that exchange of Nd at the oceanic margins could be the dominant process controlling both its concentration and isotopic composition distribution in the ocean. This was demonstrated using in situ measurements and budget calculations and has recently been confirmed by a low resolution (2°) modeling approach (Arsouze et al., 2006). However, the currents flowing on the ocean margins are not correctly represented in coarse ocean models. It is the case in the North Atlantic ocean, which is of particular interest since i) it is the area of deep water formation and ii) these deep waters are characterized by the most negative epsilon-Nd values of the world ocean, which are used as "imprint" of the present and past thermohaline circulation. It is therefore essential to understand how these water masses acquire their epsilon-Nd signature. We propose here the first results of the modeling of oceanic Nd isotopic composition at eddy-permitting resolution, with the North Atlantic 0.25° version of the NEMO model used for the DRAKKAR European project. A 150 years off-line experiment and a shorter on-line experiment are performed. Simulated Nd distributions are compared to the present-day data base, vertical profiles, and the results of the low resolution model (in the North Atlantic). The eddy permitting model generally provides improved results, provided a high enough exchange rate is imposed in the deep ocean. Deficiencies of the simulated distribution in the Nordic Seas and the subpolar gyre are explained by errors in the input function on

  5. Skills Conversion Project: Chapter 10, Ocean Engineering and Oceanography. Final Report.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    In order to determine the potential utilization of displaced aerospace and defense technical professionals in oceanography and ocean engineering, a study of ocean-oriented industry in Florida and Southern California was conducted by The National Society of Professional Engineers for the U.S. Department of Labor. After recent consolidation, this…

  6. A model to simulate nonhydrostatic internal gravity waves in the ocean

    NASA Astrophysics Data System (ADS)

    Vitousek, S.; Fringer, O. B.; Zhang, Y.

    2015-12-01

    Internal gravity waves in the ocean are primarily generated due to tidal flow over topography that generates internal tides, or internal waves of tidal frequency. As they propagate, internal tides steepen into trains of internal solitary waves that eventually break upon interacting with shallow coastal topography. Modeling internal solitary waves is difficult because they have length scales that are short relative to the internal tide, and so many grid points in three dimensions are needed to accurately resolve their evolution. Because internal solitary waves arise from a balance between nonlinear advection of momentum and nonhydrostatic dispersion, they must be simulated with nonhydrostatic ocean models. Such models are expensive because computation of the nonhydrostatic pressure requires solution of a three-dimensional Poisson equation that can incur an order of magnitude increase in the computational cost. Finally, because internal solitary waves can propagate over long distances with little to no dissipation or mixing of the thermocline upon which they propagate, the numerical model must minimize spurious vertical numerical diffusion of the density field. We will discuss development of a new ocean model designed to accurately simulate internal solitary waves. Horizontally unstructured, finite-volume grids are employed to enable resolution of the multiscale nature of internal solitary waves by refining the grid where they are likely to form. To resolve the nonlinear-nonhydrostatic balance in the waves, the model computes the nonhydrostatic pressure, but with a preconditioner that ensures minimal overhead where the nonhydrotatic pressure is not needed. Finally, to minimize spurious numerical diffusion, we employ an Arbitrary-Lagrangian-Eulerian (ALE), or hybrid, vertical coordinate system in which the vertical direction is discretized with boundary-following (sigma or s), Cartesian (z), or density-following (isopycnal) coordinates. Because isopycnal coordinates

  7. Modeling oceanic multiphase flow by using Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    Matsumura, Y.

    2014-12-01

    While the density of seawater is basically determined by its temperature, salinity and pressure, the effective density becomes higher when the water mass contains suspended sediment. On the other hands, effective density declines when water mass contains fine scale materials of lower density such as bubbles and ice crystals. Such density anomaly induced by small scale materials suspended in water masses sometimes plays important roles in the sub-mesoscale ocean physics. To simulate these small scale oceanic multiphase flow, a new modeling framework using an online Lagrangian particle tracking method is developed. A Lagrangian particle tracking method has substantial advantages such as an explicit treatment of buoyancy force acting on each individual particle, no numerical diffusion and dissipation, high dynamic range and an ability to track the history and each individual particle. However, its numerical cost causes difficulty when we try to simulate a large number of particles. In the present study we implement a numerically efficient particle tracking scheme using linked-list data structure, which is coupled with a nonhydrostatic dynamical core. This newly developed model successfully reproduces characteristics of some interesting small scale multiphase processes, for example hyperpycnal flow (a sediment-rich river water plume trapped at ocean floor) and grease ice cover (a slurry mixture of frazil ice crystals and seawater).

  8. Deep Ocean Circulation and Climate During the Miocene: Data vs. Modelling

    NASA Astrophysics Data System (ADS)

    Bickert, T.; Butzin, M.; Lohmann, G.

    2005-12-01

    A series of configurations for Neogene ocean circulation sensitivity experiments, i.e. different stages in the shoaling of the Central American Isthmus and of the eastern Tethys as well as different sea-ice coverage scenarios were used as input for a marine carbon cycle model (HAMOCC2s). Using d13C and sedimentary carbonate as model output variables, the geochemical experiments provided a new framework to interpret Neogene paleoenvironmental data. Assuming the Isthmus of Panama to be open and no sea-ice coverage in the southern hemisphere, deep water is formed in the North Atlantic as well as in the sub-Antarctic realm, in agreement with Neogene carbon isotope pattern. However, the formation rate of NADW is reduced by about 75o/o compared to the control experiment, consistent with very low d13C gradients between the North Atlantic and Southern Ocean. The sill depth greater than 1000 m allows for the passage of NADW into the Pacific ocean, forming a deep boundary current along the western Pacific margin. The export of NADW is compensated by an influx of low-salinity Pacific Intermediate water, which enters the Caribbean with a maximum strength of 3 Sv at a depth of about 500 m. Forming of sea-ice related to the Middle Miocene build-up of a permanent Antarctic ice sheet intensifies the sub-Antarctic deep water production while NADW formation is suppressed. This scenario is corroborated by the convergence of Atlantic and Pacific benthic d13C values between 15 and 11 Ma. Finally, the re-establishment of the formation of NADW in the late Miocene and the evolution of the modern ocean conveyor is predicted in the model experiments assuming further shoaling of the Central American Isthmus and evolution of sea-ice in the Artic Ocean.

  9. Modeling ocean wave propagation under sea ice covers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  10. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    SciTech Connect

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data

  11. Warm Bias and Parameterization of Boundary Upwelling in Ocean Models

    SciTech Connect

    Cessi, Paola; Wolfe, Christopher

    2012-11-06

    It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

  12. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Goddard Ocean Tide model GOT99.2 is a new solution for the amplitudes and phases of the global oceanic tides, based on over six years of sea-surface height measurements by the TOPEX/POSEIDON satellite altimeter. Comparison with deep-ocean tide-gauge measurements show that this new tidal solution is an improvement over previous global models, with accuracies for the main semidiurnal lunar constituent M2 now below 1.5 cm (deep water only). The new solution benefits from use of prior hydrodynamic models, several in shallow and inland seas as well as the global finite-element model FES94.1. This report describes some of the data processing details involved in handling the altimetry, and it provides a comprehensive set of global cotidal charts of the resulting solutions. Various derived tidal charts are also provided, including tidal loading deformation charts, tidal gravimetric charts, and tidal current velocity (or transport) charts. Finally, low-degree spherical harmonic coefficients are computed by numerical quadrature and are tabulated for the major short-period tides; these are useful for a variety of geodetic and geophysical purposes, especially in combination with similar estimates from satellite laser ranging.

  13. Coupled atmosphere-ocean model simulations of El Nino/Southern Oscillation with and without an active Indian Ocean

    SciTech Connect

    Nagai, T.; Kitamura, Y.; Endoh, M.; Tokioka, T.

    1995-01-01

    An atmospheric general circulation model (GCM) was coupled with an ocean GCM covering the Pacific. This coupled model (PAC) was integrated over a 30-year period. The PAC model stimulates well the mean seasonally varying atmospheric and ocean fields and reproduces interannual variations corresponding to ENSO (El Nino/Southern Oscillation). The same atmospheric GCM was coupled with an ocean GCM covering the Indian Ocean and the tropical Pacific. This coupled model (IPC) was integrated over a 35-year period. The model climate in IPC is fairly reasonable, and its Pacific part is very similar to the Pacific climate of the PAC model. ENSO is the major interannual variability in the IPC model. The dynamics of ENSO in IPC are essentially the same as that in PAC. In the Pacific, the subsurface ocean heat content anomalies are formed by wind anomalies and show westward propagation centered off the equator. After they reach the western Pacific, they show eastward propagation along the equator. They produce changes in the thermocline structure in the eastern equatorial Pacific resulting in anomalies in SSTs. The SST anomalies provide wind anomalies, the sign of which is opposite to that of the wind anomalies in the first stage, so that this chain will continue. ENSO in the PAC and IPC models can be regarded as the {open_quotes}delayed oscillator{close_quotes} operating in the Pacific. Although the major interannual variability in the Indian Ocean is linked to ENSO in the Pacific, the Indian Ocean does not play any active role in the ENSO cycle in the IPC model. Interannual variability of monsoon activity in the IPC model is more reasonable than that in the PAC model. However, any definite mechanism for the relationship between monsoon activity and ENSO does not emerge in the present study. 31 refs., 14 figs.

  14. Improved tests for global warming trend extraction in ocean acoustic travel-time data. Final technical report

    SciTech Connect

    Bottone, S.; Gray, H.L.; Woodward, W.A.

    1996-04-01

    A possible indication of the existence of global climate warming is the presence of a trend in the travel time of an acoustic signal along several ocean paths over a period of many years. This report describes new, improved tests for testing for linear trend in time series data with correlated residuals. We introduce a bootstrap based procedure to test for trend in this setting which is better adapted to controlling the significance levels. The procedure is applied to acoustic travel time data generated by the MASIG ocean model. It is shown how to generalize the improved method to multivariate, or vector, time series, which, in the ocean acoustics setting, corresponds to travel time data on many ocean paths. An appendix describes the TRENDS software, which enables the user to perform these calculations using a graphical user interface (GUI).

  15. A new approach to the spin-up problem in ocean-climate models

    NASA Astrophysics Data System (ADS)

    Bernsen, E.

    2010-12-01

    geometry was completely different from present day geometry and hence the resulting ocean flows were completely different. In particular, during both epochs Panama Strait was not yet closed, providing a direct connection between the Atlantic and Pacific. During the Oligocene the net transport was westward, from the Atlantic into the Pacific, whereas in the Miocene the sign of this transport likely reversed to a net eastward transport. We use the JFNK method to investigate the robustness of this flow reversal by means of a sensitivity analysis with respect to bottom topography, continental geometry and forcing strength and find that the flow reversal is a robust feature in the MOM4 ocean model. As a final step we extend the JFNK methodology the the case of the full MOM4 equations, where temperature and salinity are part of the solution instead of prescribed fields. For an idealized test case we show that a typical speed-up of a factor 10 to 25 with respect to the original MOM4 time-stepping model can be achieved.

  16. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    PubMed

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. PMID:23009091

  17. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    PubMed

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification.

  18. Strong coupling among Antarctic ice shelves, ocean circulation and sea ice in a global sea-ice - ocean circulation model

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2016-04-01

    The thermodynamic effects of Antarctic ice shelf interaction with ocean circulation are investigated using a global, high-resolution, isopycnal ocean-circulation model coupled to a sea-ice model. The model uses NASA MERRA Reanalysis from 1992 to 2011 as atmospheric forcing. The simulated long-period variability of ice-shelf melting/freezing rates differ across geographic locations. The ice shelves in Antarctic Peninsula, Amundsen and Bellingshausen sea embayments and the Amery Ice Shelf experience an increase in melting starting from 2005. This increase in melting is due to an increase in the subsurface (100-500 m) ocean heat content in the embayments of these ice shelves, which is caused by an increase in sea-ice concentration after 2005, and consequent reduction of the heat loss to the atmosphere. Our simulations provide a strong evidence for a coupling between ocean circulation, sea ice and ice shelves.

  19. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 1, September 1994--August 1996

    SciTech Connect

    Adams, E.E.; Herzog, H.J.

    1996-12-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release. While there are several important environmental impacts of ocean disposal of CO{sub 2}, the acidification around the release point may be the most important. However, the size and severity of the impacted area varies substantially with the injection scenario. We have quantified the impacts of various injection scenarios relative to each other through mortality measures. Based on available data, it appears possible to inject CO{sub 2} into the deep ocean in such a way as to yield negligible environmental impacts.

  20. Compressibility effects in the Miami isopycnic coordinate ocean model

    NASA Astrophysics Data System (ADS)

    Sun, Shan

    Potential density referenced to sea level pressure (sigmasb0) has shown its usefulness as vertical coordinate in ocean models in many ways, but there are problems with sigmasb0 (potential density referenced to sea level) coordinates in the deep ocean: sigmasb0(z) can be multivalued, leading to coordinate folding, and sigmasb0 surfaces can deviate from the so-called neutral surfaces, which are the surfaces along which turbulent lateral mixing takes place in a stratified medium. The reason for both of these problems is that most isopycnal models regard seawater as uniformly compressible. However, the effect of water temperature on compressibility cannot be ignored. In this study a two-pronged approach is taken to improve the model accuracy. First, since the effects of compressibility variation are proportional to the difference between the local and the reference pressure, we replace the model's traditional sigmasb0 coordinate by sigmasb2 (potential density referenced to 2000 dbar). This step eliminates many of the coordinate folding problems associated with sigmasb0 and generally reduces the difference between coordinate and neutrally buoyant surfaces. Second, we split the compressibility coefficient into a pressure- and a temperature-dependent part and, recognizing that the former is dynamically passive, retain only the effect of the latter in the governing equations. This is accomplished by introducing a new variable called "active density"-the density with the pressure-related compressibility removed. Therefore, sigmasb2 is adopted as vertical coordinate, but active density is used to express the seawater density within the layers. The above changes are applied in a near-global, 16-layer, 2sp° x 2sp°cos (lat.) Miami Isopycnic Coordinate Ocean Model (MICOM). The model is driven by observed atmospheric conditions. MICOM modified in this fashion produces realistic meridional mass and associated heat fluxes in the three major ocean basins. A realistic formation

  1. Observationally-Based Data/Model Metrics from the Southern Ocean Climate Model Atlas

    NASA Astrophysics Data System (ADS)

    Abell, J.; Russell, J. L.; Goodman, P. J.

    2015-12-01

    The Southern Ocean Climate Model Atlas makes available observationally-based standardized data/model metrics of the latest simulations of climate and projections of climate change from available climate models. Global climate model simulations differ greatly in the Southern Ocean, so the development of consistent, observationally-based metrics, by which to assess the fidelity of model simulations is essential. We will present metrics showing and quantifying the results of the modern day climate simulations over the Southern Ocean from models submitted as part of the CMIP5/IPCC-AR5 process. Our analysis will focus on the simulations of the temperature, salinity and carbon at various depths and along significant hydrographic sections. The models exhibit different skill levels with various metrics between models and also within individual models.

  2. Numerical investigation of algebraic oceanic turbulent mixing-layer models

    NASA Astrophysics Data System (ADS)

    Chacón-Rebollo, T.; Gómez-Mármol, M.; Rubino, S.

    2013-11-01

    In this paper we investigate the finite-time and asymptotic behaviour of algebraic turbulent mixing-layer models by numerical simulation. We compare the performances given by three different settings of the eddy viscosity. We consider Richardson number-based vertical eddy viscosity models. Two of these are classical algebraic turbulence models usually used in numerical simulations of global oceanic circulation, i.e. the Pacanowski-Philander and the Gent models, while the other one is a more recent model (Bennis et al., 2010) proposed to prevent numerical instabilities generated by physically unstable configurations. The numerical schemes are based on the standard finite element method. We perform some numerical tests for relatively large deviations of realistic initial conditions provided by the Tropical Atmosphere Ocean (TAO) array. These initial conditions correspond to states close to mixing-layer profiles, measured on the Equatorial Pacific region called the West-Pacific Warm Pool. We conclude that mixing-layer profiles could be considered as kinds of "absorbing configurations" in finite time that asymptotically evolve to steady states under the application of negative surface energy fluxes.

  3. Procedures for offline grid nesting in regional ocean models

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Molemaker, Jeroen; Shchepetkin, Alexander F.; Colas, Francois; McWilliams, James C.; Sangrà, Pablo

    One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries. Sensitivity experiments provide information about the robustness of the model open boundary condition to perturbations in the surface wind stress forcing field, to the perturbation of the volume conservation enforcement in the boundary forcing, and to perturbation of the vertical density structure in the boundary forcing. This knowledge is important when extending the nesting technique to include external data from alien sources, such as ocean models with physics and/or numerics different from ROMS, or from observed climatologies of temperature, salinity and sea level.

  4. Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson, W.; Casey, Nancy W.

    2009-01-01

    Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.

  5. Skill assessment of a spectral ocean-atmosphere radiative model

    NASA Astrophysics Data System (ADS)

    Gregg, Watson W.; Casey, Nancy W.

    2009-02-01

    Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean-Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 μm) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference = 20.1 W m - 2 (about 11%), bias = 1.6 W m - 2 (about 0.8%), regression slope = 1.01 and correlation coefficient = 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP II), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS = 20.7 W m - 2 ; bias = - 11.4 W m - 2 , r = 0.98) and ISLSCP II (RMS = 25.2 W m - 2 ; bias = - 13.8 W m - 2 ; r = 0.97), but less well with NCEP (RMS = 43.0 W m - 2 ; bias = - 22.6 W m - 2 ; r = 0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (- 1.8 mol photons m - 2 d - 1 , or about 5%), RMS (4.25 mol photons m - 2 d - 1 , or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.

  6. Closing the energy cycle in an ocean model

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2016-05-01

    An effort is discussed to construct a realistic ocean model in Boussinesq approximation which features a closed energy cycle up to numerical precision errors. In such a model, the energy related to the mean variables interacts with all parameterised forms of energy without any spurious energy sources or sinks. First, the concept of the energetics of the model in terms of resolved and unresolved energy variables is outlined using potential and dynamical enthalpy instead of internal and potential energy and without use of the concept of available potential energy. The role of energy transfer terms due to the non-linear, compressible equation of state is clarified. Second, a discretisation of the primitive equations is described in which energy transfers of viscous dissipation and mixing parameterisations are exactly calculated. Third, the model performance is documented using idealised and realistic global model configurations.

  7. Energy requirements for metals production: comparison between ocean nodules and land-based resources. Final report

    SciTech Connect

    Not Available

    1980-09-01

    A methodology was developed to compare the energy requirements of technologies for production of metals from ocean nodules with production of same metals from land based ores using conventional processes. The energy requirements for production of copper, nickel, cobalt, and manganese from ocean nodules are based on an ocean mining operation of 3 million tons per year of dry nodules. A linear relationship exists between the amount of nodules processed and the total energy so that the energy can be easily converted to other processing rates if desired.

  8. Bio-Optical Measurement and Modeling of the California Current and Southern Oceans

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Gregg; Mitchell, B. Greg

    2003-01-01

    The SIMBIOS project's principal goals are to validate standard or experimental ocean color products through detailed bio-optical and biogeochemical measurements, and to combine Ocean optical observations with modeling to contribute to satellite vicarious radiometric calibration and algorithm development.

  9. Model Calculations of Ocean Acidification at the End Cretaceous

    NASA Astrophysics Data System (ADS)

    Tyrrell, T.; Merico, A.; Armstrong McKay, D. I.

    2014-12-01

    Most episodes of ocean acidification (OA) in Earth's past were either too slow or too minor to provide useful lessons for understanding the present. The end-Cretaceous event (66 Mya) is special in this sense, both because of its rapid onset and also because many calcifying species (including 100% of ammonites and >95% of calcareous nannoplankton and planktonic foraminifera) went extinct at this time. We used box models of the ocean carbon cycle to evaluate whether impact-generated OA could feasibly have been responsible for the calcifier mass extinctions. We simulated several proposed consequences of the asteroid impact: (1) vaporisation of gypsum (CaSO4) and carbonate (CaCO3) rocks at the point of impact, producing sulphuric acid and CO2 respectively; (2) generation of NOx by the impact pressure wave and other sources, producing nitric acid; (3) release of CO2 from wildfires, biomass decay and disinterring of fossil organic carbon and hydrocarbons; and (4) ocean stirring leading to introduction into the surface layer of deep water with elevated CO2. We simulated additions over: (A) a few years (e-folding time of 6 months), and also (B) a few days (e-folding time of 10 hours) for SO4 and NOx, as recently proposed by Ohno et al (2014. Nature Geoscience, 7:279-282). Sulphuric acid as a consequence of gypsum vaporisation was found to be the most important acidifying process. Results will also be presented of the amounts of SO4 required to make the surface ocean become extremely undersaturated (Ωcalcite<0.5) for different e-folding times and combinations of processes. These will be compared to estimates in the literature of how much SO4 was actually released.

  10. The development of a coupled ice-ocean model for forecasting ice conditions in the Arctic

    NASA Astrophysics Data System (ADS)

    Riedlinger, Shelley H.; Preller, Ruth H.

    1991-09-01

    A coupled ice-ocean model has been developed to investigate how a better simulation of ice-ocean interaction can improve sea ice forecasting capabilities. The coupling of the ice and ocean results in improved temporal variability of ocean circulation and heat and salt exchange between ice and ocean. The U.S. Navy's Polar Ice Prediction System is coupled to a diagnostic version of the Bryan-Cox three-dimensional ocean circulation model. A horizontal grid spacing of 127 km was used in the coupled model with 17 vertical levels from the surface to the ocean bottom. Atmospheric data from the Naval Operational Global Atmospheric Prediction System (NOGAPS) for 1986 were used to force the model. The ice-ocean model simulation yielded realistic ice thickness distributions, ice drifts, and ocean currents. The model predicted accurate seasonal trends in ice growth and decay. Excess ice is often grown in the Greenland and Barents seas in fall and winter. This is due, in part, to the model's grid resolution which does not accurately resolve narrow currents, such as the West Spitsbergen Current. A sensitivity study of the heat transfer coefficients used in the ice model showed that the ice edge could be improved by using different coefficient values for thick ice, thin ice, and open water. Other sensitivity studies examined the effect of removing the "distorted" physics frequently used in the Bryan-Cox ocean circulation model and the effect of the vertical eddy momentum coefficient on the surface ocean circulation. An additional simulation was made using 1989 NOGAPS forcing to examine what type of variability could occur when using different years of NOGAPS forcing in the diagnostic ocean model. Significant differences occurred between the 1989 and 1986 ice thickness distributions as well as the oceanic heat fluxes. These differences show that the forecast system, which presently uses an ocean "climatology," can benefit from the variability allowed by the diagnostic ocean model.

  11. Evaluation and Application of a Rigorously Validated Ocean OSSE System to Improve Ocean Model Initialization for Coupled Hurricane Prediction

    NASA Astrophysics Data System (ADS)

    Halliwell, G. R., Jr.; Kourafalou, V.; Androulidakis, I.; Kang, H.; Mehari, M. F.; Atlas, R. M.; Le Henaff, M.

    2015-12-01

    A new fraternal-twin OSSE system has been configured over an extended North Atlantic Ocean domain to evaluate ocean observing strategies with respect to improving coupled hurricane forecasts. It is the first ocean OSSE system to employ all rigorous validation and calibration methods developed for atmospheric OSSE systems. It is based on two different configurations of the Hybrid Coordinate Ocean Model (HYCOM). Model configurations used for the unconstrained Nature Run (NR) and data-assimilative Forecast Model (FM), including lower horizontal and vertical resolution for the FM, produce the substantially different physics and truncation errors required of a credible OSSE system. Evaluation of the NR demonstrates sufficient realism in terms of mean climatology and of statistical properties of eddy and current variability to represent the "true" ocean. System evaluation is performed by comparing OSSE's to Observing System Experiments (OSEs) that are identical except for assimilating actual observations. Based on RMS error increases, the OSSE system tends to overestimate impacts by <10% on average and thus requires only small calibration. The system is then applied to evaluate ocean observing strategies during the 2014 hurricane season. Example results are presented that evaluate different strategies for conducting airborne ocean profile surveys prior to Hurricane Edouard. The impact of the actual pre-storm survey performed prior to Edouard is evaluated against alternate survey strategies. Results demonstrate the importance of surveying as large a region as possible with ocean profiles separated by < 100 km. Modest additional advantages are achieved by profiling both temperature and salinity with CTDs compared to temperature profiles alone from XBTs. The HYCOM-HWRF coupled hurricane prediction model can now be initialized with analyses produced by the OSSE system. The impact of airborne survey design on actual hurricane forecasts will also be discussed.

  12. Upscalling processes in an ocean-atmosphere multiscale coupled model

    NASA Astrophysics Data System (ADS)

    Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.

    2015-12-01

    This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this

  13. A Global, Multi-Resolution Approach to Regional Ocean Modeling

    SciTech Connect

    Du, Qiang

    2013-11-08

    In this collaborative research project between Pennsylvania State University, Colorado State University and Florida State University, we mainly focused on developing multi-resolution algorithms which are suitable to regional ocean modeling. We developed hybrid implicit and explicit adaptive multirate time integration method to solve systems of time-dependent equations that present two signi cantly di erent scales. We studied the e ects of spatial simplicial meshes on the stability and the conditioning of fully discrete approximations. We also studies adaptive nite element method (AFEM) based upon the Centroidal Voronoi Tessellation (CVT) and superconvergent gradient recovery. Some of these techniques are now being used by geoscientists(such as those at LANL).

  14. Modeling deep ocean shipping noise in varying acidity conditions.

    PubMed

    Udovydchenkov, Ilya A; Duda, Timothy F; Doney, Scott C; Lima, Ivan D

    2010-09-01

    Possible future changes of ambient shipping noise at 0.1-1 kHz in the North Pacific caused by changing seawater chemistry conditions are analyzed with a simplified propagation model. Probable decreases of pH would cause meaningful reduction of the sound absorption coefficient in near-surface ocean water for these frequencies. The results show that a few decibels of increase may occur in 100 years in some very quiet areas very far from noise sources, with small effects closer to noise sources. The use of ray physics allows sound energy attenuated via volume absorption and by the seafloor to be compared.

  15. Preliminary ice shelf-ocean simulation results from idealized standalone-ocean and coupled model intercomparison projects (MIPs)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel

    2016-04-01

    The second Ice Shelf-Ocean MIP (ISOMIP+) and the first Marine Ice Sheet-Ocean MIP (MISOMIP1) prescribe a set of idealized experiments for ocean models with ice-shelf cavities and coupled ice sheet-ocean models, respectively. ISOMIP+ and MISOMIP1 were designed together with the third Marine Ice Sheet MIP (MISMIP+) with three main goals, namely that the MIPs should provide: a controlled forum for researchers to compare their model results with those from other models during model development. a path for testing components in the process of developing coupled ice sheet-ocean models. a basic setup from which a large variety of parameter and process studies can usefully be performed. The experimental design for the three MIPs is currently under review in Geoscientific Model Development (Asay-Davis et al. 2015, doi:10.5194/gmdd-8-9859-2015). We present preliminary results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (e.g. boundary-layer transfer coefficients, drag coefficients, vertical mixing parameterizations) for each models. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to how models would be tuned based on observations for non-idealized simulations. We also present a number of parameter studies based the MIP experiments. Again, using several models, we show that melt rates respond sub-linearly to both changes in the square root of the drag coefficient and the heat-transfer coefficient, and that melting is relatively insensitive to horizontal-mixing coefficients (perhaps because the resolution is sufficient to permit eddies) but more sensitive to vertical-mixing coefficients. We show that the choice of the equation of state (linear or nonlinear) does not have a significant impact as long as

  16. Improvement in Geoid Models for Ocean Circulation Studies

    NASA Technical Reports Server (NTRS)

    Tapley, Byron D.; Chambers, Don P.; Poole, Steve; Ries, John c.

    2003-01-01

    At wavelengths of 500 km and longer, the GRACE GGM01 Model produces a significantly better marine geoid than any previous model. This conclusion follows from evaluating the geostrophic currents determined by combining the model with a mean sea surface from altimetry. The agreement with currents computed from a traditional hydrographic map is very close, which suggests that one of the primary missions of the TOPEX/POSEIDON mission, to determine the absolute dynamic ocean topography, may soon be met. This solution has been made available to the public at http://www.csr.utexs.edu/grace/gravity. The results reported in this paper have been presented at the 2003 EGS-AGU-EUG Joint Assembly. Two articles are currently being prepared for Geophysical Research Letters to summarize these results.

  17. Modeling of ocean wave effects for LIDAR remote sensing

    NASA Astrophysics Data System (ADS)

    McLean, John W.

    1990-09-01

    A simulation nodel is described which generates realizations of the LIDAR return from a wind roughened ocean, including both surface specular and subsurface volumetric returns. The physical model includes representations for the two dimensional wavy surface (gravity waves), beam spread at the interface due to small scale roughness (capillary waves), and beam spread and attenuation due to multiple scattering and absorption in the water. The sensor model allows for arbitrary incidence angles, transmitter divergences, and receiver fields of view. From ensembles of realizations, the statistical characteristics of the surface wave induced fluctuations are determined, such as profiles of variance versus depth, and spatial/temporal correlations of the returns. Model results are compared with experimental data on specular return statistics and downwelling irradiance fluctuations. Predictions are presented for the round trip LIDAR fluctuations induced by surface waves.

  18. Radiative transfer theory applied to ocean bottom modeling.

    PubMed

    Quijano, Jorge E; Zurk, Lisa M

    2009-10-01

    Research on the propagation of acoustic waves in the ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. The interaction of acoustic energy with the sea floor sublayers is usually modeled with techniques based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. An alternative way to model wave propagation in layered media containing random scatterers is the radiative transfer (RT) formulation, which is a well established technique in the electromagnetics community and is based on the principle of conservation of energy. In this paper, the RT equation is used to model the backscattering of acoustic energy from a layered elastic bottom sediment containing distributions of independent scatterers due to a constant single frequency excitation in the water column. It is shown that the RT formulation provides insight into the physical phenomena of scattering and conversion of energy between waves of different polarizations.

  19. Approach to equilibrium in accelerated global oceanic models

    SciTech Connect

    Danabasoglu, G.; McWilliams, J.C.; Large, W.G.

    1996-05-01

    The approach to equilibrium of a coarse-resolution, seasonally forced, global oceanic general circulation model is investigated, considering the effects of a widely used acceleration technique that distorts the dynamics by using unequal time steps in the governing equations. A measure of the equilibration time for any solution property is defined as the time it takes to go 90% of the way from its present value to its equilibrium value. This measure becomes approximately time invariant only after sufficiently long integration. It indicates that the total kinetic energy and most mass transport rates attain equilibrium within about 90 and 40 calendar years, respectively. The upper-ocean potential temperature and salinity equilibrium times are about 480 and 380 calender years, following 150- and 20-year initial adjustments, respectively. In the abyssal ocean, potential temperature and salinity equilibration take about 4500 and 3900 calender years, respectively. These longer equilibration times are due to the slow diffusion of tracers both along and across the isopycnal surfaces in stably stratified regions, and these times vary with the associated diffusivities. An analysis of synchronous (i.e., not accelerated) integrations shows that there is a complex interplay between convective, advective, and diffusive timescales. Because of the distortion by acceleration of the seasonal cycle, the solutions display some significant adjustments upon switching to synchronous integration. However, the proper seasonal cycle is recovered within five years. Provided that a sufficient equilibrium state has been achieved with acceleration, the model must be integrated synchronously for only about 15 years thereafter to closely approach synchronous equilibrium. 16 refs., 11 figs., 1 tab.

  20. Thermal and mechanical structure of the upper mantle: A comparison between continental and oceanic models

    NASA Technical Reports Server (NTRS)

    Froidevaux, C.; Schubert, G.; Yuen, D. A.

    1976-01-01

    Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.

  1. Observed and Modeled Trends in Southern Ocean Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2003-01-01

    Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong

  2. Modeling the Ocean Tide for Tidal Power Generation Applications

    NASA Astrophysics Data System (ADS)

    Kawase, M.; Gedney, M.

    2014-12-01

    Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the

  3. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Dupont, F.; Higginson, S.; Bourdallé-Badie, R.; Lu, Y.; Roy, F.; Smith, G. C.; Lemieux, J.-F.; Garric, G.; Davidson, F.

    2015-01-01

    As part of the CONCEPTS (Canadian Operational Network of Coupled Environmental PredicTion Systems) initiative, The Government of Canada is developing a high resolution (1/12°) ice-ocean regional model covering the North Atlantic and the Arctic oceans. The objective is to provide Canada with short-term ice-ocean predictions and hazard warnings in ice infested regions. To evaluate the modelling component (as opposed to the analysis - or data-assimilation - component), a series of hindcasts for the period 2003-2009 is carried out, forced at the surface by the Canadian Global Re-Forecasts. These hindcasts test how the model represent upper ocean characteristics and ice cover. Each hindcast implements a new aspect of the modelling or the ice-ocean coupling. Notably, the coupling to the multi-category ice model CICE is tested. The hindcast solutions are then assessed using a validation package under development, including in-situ and satellite ice and ocean observations. The conclusions are: (1) the model reproduces reasonably well the time mean, variance and skewness of sea surface height. (2) The model biases in temperature and salinity show that while the mean properties follow expectations, the Pacific Water signature in the Beaufort Sea is weaker than observed. (3) However, the modelled freshwater content of the Arctic agrees well with observational estimates. (4) The distribution and volume of the sea ice is shown to be improved in the latest hindcast thanks to modifications to the drag coefficients and to some degree as well to the ice thickness distribution available in CICE. (5) On the other hand, the model overestimates the ice drift and ice thickness in the Beaufort Gyre.

  4. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans

    NASA Astrophysics Data System (ADS)

    Dupont, F.; Higginson, S.; Bourdallé-Badie, R.; Lu, Y.; Roy, F.; Smith, G. C.; Lemieux, J.-F.; Garric, G.; Davidson, F.

    2015-05-01

    As part of the CONCEPTS (Canadian Operational Network of Coupled Environmental PredicTion Systems) initiative, a high-resolution (1/12°) ice-ocean regional model is developed covering the North Atlantic and the Arctic oceans. The long-term objective is to provide Canada with short-term ice-ocean predictions and hazard warnings in ice-infested regions. To evaluate the modelling component (as opposed to the analysis - or data-assimilation - component, which is not covered in this contribution), a series of hindcasts for the period 2003-2009 is carried out, forced at the surface by the Canadian GDPS reforecasts (Smith et al., 2014). These hindcasts test how the model represents upper ocean characteristics and ice cover. Each hindcast implements a new aspect of the modelling or the ice-ocean coupling. Notably, the coupling to the multi-category ice model CICE is tested. The hindcast solutions are then assessed using a verification package under development, including in situ and satellite ice and ocean observations. The conclusions are as follows: (1) the model reproduces reasonably well the time mean, variance and skewness of sea surface height; (2) the model biases in temperature and salinity show that while the mean properties follow expectations, the Pacific Water signature in the Beaufort Sea is weaker than observed; (3) the modelled freshwater content of the Arctic agrees well with observational estimates; (4) the distribution and volume of the sea ice are shown to be improved in the latest hindcast due to modifications to the drag coefficients and to some degree to the ice thickness distribution available in CICE; (5) nonetheless, the model still overestimates the ice drift and ice thickness in the Beaufort Gyre.

  5. Ocean acidification in the Meso- vs. Cenozoic: lessons from modeling about the geological expression of paleo-ocean acidification

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.

    2015-12-01

    Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.

  6. Final Report - Cycling of DOC and DON by novel heterotrophic and photoheterotrophic bacteria in the ocean

    SciTech Connect

    Royer, David F

    2011-06-10

    This report describes a collaboration between Lincoln University and the College of Earth, Ocean and Environment at the University of Delaware and was funded under the Department of Energy Biological Investigations – Ocean Margins Program (BI-OMP). The principal outcomes of the grant are (1) the opportunity for Lincoln students to participate in marine research at the University of Delaware, (2) the opportunity for participating students to present their research at a variety of scientific meetings, (3) the establishment of an environmental science major and a microbial ecology course at Lincoln, (4) the upgrade of research capabilities at Lincoln, and (5) the success of participating students in graduate and professional school.

  7. Global warming in a coupled climate model including oceanic eddy-induced advection

    NASA Astrophysics Data System (ADS)

    Hirst, Anthony C.; Gordon, Hal B.; O'Farrell, Siobhan P.

    The Gent and McWilliams (GM) parameterization for large-scale water transport caused by mesoscale oceanic eddies is introduced into the oceanic component of a global coupled ocean-atmosphere model. Parallel simulations with and without the GM scheme are performed to examine the effect of this parameterization on model behavior under constant atmospheric CO2 and on the model response to increasing CO2. The control (constant CO2) runs show substantial differences in the oceanic stratification and extent of convection, similar to differences found previously using uncoupled ocean models. The transient (increasing CO2) runs show moderate differences in the rate of oceanic heat sequestration (less in the GM case), as expected based on passive tracer uptake studies. However, the surface warming is weaker in the GM case, especially over the Southern Ocean, which is contrary to some recent supposition. Reasons for the reduced warming in the GM case are discussed.

  8. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System

    USGS Publications Warehouse

    Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di, Lorenzo E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; Levin, J.; McWilliams, J.C.; Miller, A.J.; Moore, A.M.; Powell, T.M.; Shchepetkin, A.F.; Sherwood, C.R.; Signell, R.P.; Warner, J.C.; Wilkin, J.

    2008-01-01

    Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers; redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoyancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations, enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less diffusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-purpose regional ocean prediction systems. ?? 2007 Elsevier Inc. All rights reserved.

  9. Technical Report Series on Global Modeling and Data Assimilation. Volume 22; A Coupled Ocean-Atmosphere Radiative Model for Global Ocean Biogeochemical Models

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Suarez, Max J. (Editor)

    2002-01-01

    An ocean-atmosphere radiative model (OARM) evaluates irradiance availability and quality in the water column to support phytoplankton growth and drive ocean thermodynamics. An atmospheric component incorporates spectral and directional effects of clear and cloudy skies as a function of atmospheric optical constituents, and spectral reflectance across the air-sea interface. An oceanic component evaluates the propagation of spectral and directional irradiance through the water column as a function of water, five phytoplankton groups, and chromophoric dissolved organic matter. It tracks the direct and diffuse streams from the atmospheric component, and a third stream, upwelling diffuse irradiance. The atmospheric component of OARM was compared to data sources at the ocean surface with a coefficient of determination (r2) of 0.97 and a root mean square of 12.1%.

  10. Global ocean tides. Part V. The diurnal principal lunar tide (O1), atlas of tidal charts and maps. Final report

    SciTech Connect

    Schwiderski, E.W.

    1981-05-20

    In Part I of this report (AD-A060 913), a unique hydrodynamical interpolation technique was introduced, extensively tested, and evaluated in order to compute partial global ocean tides in great detail and with a high degree of accuracy. This novel method has been applied to construct the diurnal principal lunar (O1) ocean tide with a relative accuracy of better than 5 cm anywhere in the open oceans. The resulting tidal amplitudes and phases are tabulated on a 1 deg x 1 deg grid system in an atlas of 42 deg x 71 deg overlapping charts covering the whole oceanic globe. A corresponding atlas of global corange and cotidal maps is included to provide the reader with a quick general overview of the major tidal phenomena. The specifying hydrodynamical parameters of the model are listed along with quoted sources of empirical tide data, and significant tidal features are explained and discussed. The diurnal O1 ocean tide is found to resemble closely the diurnal K1 tide and qualitatively also the semidiurnal S2 and M2 tides which were presented in Parts IV, III, and II of this report, respectively (AD's A104 334, A104 333, and A084 694).

  11. Global ocean tides. Part III. The semidiurnal principal solar tide (S2), atlas of tidal charts and maps. Final report

    SciTech Connect

    Schwiderski, E.W.

    1981-03-15

    In Part I of this report (AD-A060 913), a unique hydrodynamical interpolation technique was introduced, extensively tested, and evaluated in order to compute partial global ocean tides in great detail and with a high degree of accuracy. This novel method has been applied to construct the semidiurnal principal solar (S2) ocean tide with a relative accuracy of better than 5 cm anywhere in the open oceans. The resulting tidal amplitudes and phases are tabulated on a 1 deg x 1 deg grid system in an atlas of 42 deg x 71 deg overlapping charts covering the whole oceanic globe. A corresponding atlas of global corange and cotidal maps is included to provide the reader with a quick general overview of the major tidal phenomena. The specifying hydrodynamical parameters of the model are listed along with quoted sources of empirical tide data, and significant tidal features are explained and discussed. The S2 ocean tide is found to resemble closely the corresponding lunar M2 tide presented in Part II of this report (AD-A084 694).

  12. The role of local atmospheric forcing on the modulation of the ocean mixed layer depth in reanalyses and a coupled single column ocean model

    NASA Astrophysics Data System (ADS)

    Pookkandy, Byju; Dommenget, Dietmar; Klingaman, Nicholas; Wales, Scott; Chung, Christine; Frauen, Claudia; Wolff, Holger

    2016-02-01

    The role of local atmospheric forcing on the ocean mixed layer depth (MLD) over the global oceans is studied using ocean reanalysis data products and a single-column ocean model coupled to an atmospheric general circulation model. The focus of this study is on how the annual mean and the seasonal cycle of the MLD relate to various forcing characteristics in different parts of the world's oceans, and how anomalous variations in the monthly mean MLD relate to anomalous atmospheric forcings. By analysing both ocean reanalysis data and the single-column ocean model, regions with different dominant forcings and different mean and variability characteristics of the MLD can be identified. Many of the global oceans' MLD characteristics appear to be directly linked to the different atmospheric forcing characteristics at different locations. Here, heating and wind-stress are identified as the main drivers; in some, mostly coastal, regions the atmospheric salinity forcing also contributes. The annual mean MLD is more closely related to the annual mean wind-stress and the MLD seasonality is more closely related to the seasonality in heating. The single-column ocean model, however, also points out that the MLD characteristics over most global ocean regions, and in particular in the tropics and subtropics, cannot be maintained by local atmospheric forcings only, but are also a result of ocean dynamics that are not simulated in a single-column ocean model. Thus, lateral ocean dynamics are essential in correctly simulating observed MLD.

  13. Error analysis of empirical ocean tide models estimated from TOPEX/POSEIDON altimetry

    NASA Astrophysics Data System (ADS)

    Desai, Shailen D.; Wahr, John M.; Chao, Yi

    1997-11-01

    An error budget is proposed for the TOPEX/POSEIDON (T/P) empirical ocean tide models estimated during the primary mission. The error budget evaluates the individual contribution of errors in each of the altimetric range corrections, orbit errors caused by errors in the background ocean tide potential, and errors caused by the general circulation of the oceans, to errors in the ocean tide models of the eight principal diurnal and semidiurnal tidal components, and the two principal long-period tidal components. The effect of continually updating the T/P empirical ocean tide models during the primary T/P mission is illustrated through tide gauge comparisons and then used to predict the impact of further updates during the extended mission. Both the tide gauge comparisons and the error analysis predict errors in the tide models for the eight principal diurnal and semidiurnal constituents to be of the order of 2-3 cm root-sum-square. The dominant source of errors in the T/P ocean tide models appears to be caused by the general circulation of the oceans observed by the T/P altimeter. Further updates of the T/P empirical ocean tide models during the extended mission should not provide significant improvements in the diurnal and semidiurnal ocean tide models but should provide significant improvements in the long-period ocean tide models, particularly in the monthly (Mm) tidal component.

  14. 75 FR 33747 - Ocean Dumping; Correction of Typographical Error in 2006 Federal Register Final Rule for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ...) at 71 FR 27396 (May 11, 2006). The EPA is also restoring the coordinates for Site H at 40 CFR 228.15... Coordinates for Ocean Dredged Material Disposal Site at Coos Bay, OR, Site H AGENCY: Environmental Protection... Federal Register, the EPA is correcting the currently codified coordinates for Site F at 40 CFR...

  15. The Scientific and Legal Uncertainty Behind Ocean Fertilization to Sequester Atmospheric Carbon Dioxide. Final Report

    SciTech Connect

    Phinney, J. T.

    2002-06-01

    A three-day workshop was organized in April 2001 in Washington, DC, consisting of scientists, policy experts, and entrepreneurs to explore the proposed use of iron fertilization in the High Nutrient Low Chlorophyll regions, notably the Equatorial Pacific and Southern Oceans, to actively sequester atmospheric CO{sub 2}.

  16. Simulation of the world ocean climate with a massively parallel numerical model

    NASA Astrophysics Data System (ADS)

    Ushakov, K. V.; Ibrayev, R. A.; Kalmykov, V. V.

    2015-07-01

    The INM-IO numerical World Ocean model is verified through the calculation of the model ocean climate. The numerical experiment was conducted for a period of 500 years following the CORE-I protocol. We analyze some basic elements of the large-scale ocean circulation and local and integral characteristics of the model solution. The model limitations and ways they are overcome are described. The results generally fit the level of leading models. This experiment is a necessary step preceding the transition to high-resolution diagnostic and prognostic calculations of the state of the World Ocean and its individual basins.

  17. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol A.

    2012-01-01

    The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.

  18. Arctic Ocean Freshwater: How Robust are Model Simulations

    NASA Technical Reports Server (NTRS)

    Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  19. Arctic Ocean freshwater: How robust are model simulations?

    NASA Astrophysics Data System (ADS)

    Jahn, A.; Aksenov, Y.; de Cuevas, B. A.; de Steur, L.; Häkkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  20. Onset time and strength of oceanic deep convection diagnosed from an ocean large-eddy simulation model

    SciTech Connect

    Denbo, D.W.

    1995-01-01

    Deep convection has an important role in the large-scale thermohaline circulation, which in turn plays a central part in determining global climate. Manabe and Stouffer`s climate simulations have shown that the thermal and dynamic structure of the oceans have pronounced changes in model climates with increased CO{sub 2}. In their simulations, the addition of low-salinity surface water at high latitudes prevents the ventilation of the deep ocean, thus reducing or in some cases nearly extinguishing the thermohaline circulation. Siegenthaler and Sarmiento remarked that whereas the ocean is the largest of the rapidly exchanging global carbon reservoirs and a major sink for anthropogenic carbon, this uptake capacity become available only when the whole ocean is chemically equilibrated with the new atmospheric CO{sub 2} concentration. The dynamics of the oceanic uptake of CO{sub 2} is therefore strongly determined by the rate of downward transport of CO{sub 2}-laden water from surface to depth. The importance of deep convection in moderating the uptake of CO{sub 2} by the ocean and its role in the meridional circulation, which affects climate by transporting heat from the tropics to the polar regions, motivates this research. The experiments described here were designed to study the sensitivity of the onset time and strength of deep convection to changes in the heat flux, latent heat flux, and perturbations of the surface mixed-layer temperature and salinity.

  1. Development of the Southern Ocean Climate Model Atlas

    NASA Astrophysics Data System (ADS)

    Rudd, J.; Russell, J. L.; Goodman, P. J.

    2014-12-01

    The development of consistent, observationally-based metrics, by which to assess the fidelity of a model simulation is being undertaken by many modelers and modeling groups. A "Southern Ocean Climate Model Atlas" is under construction that will house the results of these various analyses and will provide access for fellow scientists, stakeholders, resource managers and the public to the latest projections of climate and climate change from all of the available climate models. This Atlas will allow a visual comparison of simulated fields, differences and errors and will include quantification of the errors where the observations permit. It will also include the scripts required for anyone to create a comparable map with their own data/output. We will discuss the creation of observationally-based metrics and some of the challenges associated with the consistent quantification of simulations errors and inter-model differences. We will also present some of the commonly assessed variables (e.g. temperature, winds, ice, pH) useful to climate scientists, ecosystem scientists and the general public.

  2. Geoid model of Tahiti-Moorea oceanic volcanic islands

    NASA Astrophysics Data System (ADS)

    Shih, H.; Mouyen, M.; Barriot, J.; Hwang, C.; Lequeux, D.; Sichoix, L.

    2013-12-01

    We present the results of an airborne gravity survey that has been conducted over Tahiti-Moorea, two oceanic volcanic islands in French Polynesia, during July and August 2013. The aim of this survey is two-folds. First, these gravity data can be inverted to unravel the subsurface structure of these islands, in particular the geometry of the magma chambers. Second, such data can be used to determine a geoid over Tahiti-Moorea. In this paper, we focus on the geoid modeling. The gravimeter used is the LaCoste & Romberg Air-Sea gravity System II. The aircraft is equipped with a GPS antenna and a receiver, which data are sampled at 1 Hz. A permanent GPS station in the University of French Polynesia is used together with the aircraft GPS to determine precise positions, velocities and accelerations of the plane. These parameters are necessary to get reliable gravity data at mgal accuracy. In addition to the airborne data, land measurements, done from May to August 2013, and shipborne data (1997) are also used for the Tahiti-Moorea geoid. A band-limited least-squares collocation in a classic remove-compute-restore technique is carried out to combine these data into the geoid computation. This geoid will be of primary interest for the analysis of two tide gauges set in Papeete harbor and Tahiti-Iti, altimetric surveys of the oceanic currents as well as for real-time GPS positioning for surveyors in Tahiti.

  3. Improving Ocean Angular Momentum Estimates Using a Model Constrained by Data

    NASA Technical Reports Server (NTRS)

    Ponte, Rui M.; Stammer, Detlef; Wunsch, Carl

    2001-01-01

    Ocean angular momentum (OAM) calculations using forward model runs without any data constraints have, recently revealed the effects of OAM variability on the Earth's rotation. Here we use an ocean model and its adjoint to estimate OAM values by constraining the model to available oceanic data. The optimization procedure yields substantial changes in OAM, related to adjustments in both motion and mass fields, as well as in the wind stress torques acting on the ocean. Constrained and unconstrained OAM values are discussed in the context of closing the planet's angular momentum budget. The estimation procedure, yields noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale. The comparison with Earth rotation measurements provides an independent consistency check on the estimated ocean state and underlines the importance of ocean state estimation for quantitative. studies of the variable large-scale oceanic mass and circulation fields, including studies of OAM.

  4. Plate tectonic models for Indian Ocean ``intraplate'' deformation

    NASA Astrophysics Data System (ADS)

    Wiens, Douglas A.; Stein, Seth; Demets, Charles; Gordon, Richard G.; Stein, Carol

    1986-12-01

    The equatorial region of the conventionally defined Indo-Australian plate has long been recognized as containing a type example of intense "intraplate" deformation. We trace the development of tectonic models for the area to illustrate techniques for the analysis of such deformation. The identification of anomalous seismicity near the Ninetyeast and Chagos-Laccadive Ridges demonstrated the existence of the deformation. Focal mechanisms from recent and historic earthquakes showed strike-slip motion occurring along the Ninetyeast Ridge; seismic moment data allowed the rate to be estimated. Similar studies showed north-south tension in the Chagos Bank region and north-south compression in the region between the Ninetyeast and Chagos ridges. Global plate motion studies indicated non-closure of the Indian Ocean triple junction, suggesting the conventional plate geometry was inadequate for a rigid plate description of the area. Gravity and marine geophysical data indicated intense north-south compressional deformation south of the Bay of Bengal. These observations are reconciled by a plate motion model in which Australia and India lie on distinct plates divided by a boundary that intersects the Central Indian Ridge near the equator. In this model Arabia, usually considered a separate plate, has negligible motion relative to India. The resulting Euler vector for Australia relative to Indo-Arabia lies just east of the Central Indian Ridge, and predicts approximately 0.5-1.5 cm/yr compression in the Central Indian Basin and 1.5-2 cm/yr strike-slip motion along the northern Ninetyeast Ridge, consistent with the seismological and geophysical data. In contrast to conventional oceanic plate boundaries, the boundary deformation is distributed over a wide zone. This diffuse nature may reflect either the boundary's recent inception or slow rate of motion. Analysis of seismicity and deformation in the boundary zone should offer insights into the mechanics of its development and its

  5. Response of the Antarctic ice sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Price, S. F.; Cornford, S. L.; Maltrud, M. E.; Ng, E. G.; Collins, W.

    2014-12-01

    We present the response of the continental Antarctic ice sheet to sub-shelf-melt forcing derived from POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1 degree (~5 km) ocean resolution and ice sheet resolution as fine as 500 m using adaptive mesh refinement. A comparison of fully-coupled and comparable standalone ice-sheet model results demonstrates the importance of two-way coupling between the ice sheet and the ocean. The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). A companion presentation, "Present-day circum-Antarctic simulations using the POPSICLES coupled land ice-ocean model" in session C027 describes the ocean-model perspective of this work, while we focus on the response of the ice sheet and on details of the model. The figure shows the BISICLES-computed vertically-integrated ice velocity field about 1 month into a 20-year coupled Antarctic run. Groundling lines are shown in green.

  6. 75 FR 33708 - Ocean Dumping; Correction of Typographical Error in 2006 Federal Register Final Rule for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ..., named 40 CFR 228.15(n)(4) at 71 FR 27396, (May 11, 2006) and by restoring the coordinates for Site H at..., EPA also proposed to de-designate the original Site F. EPA published a final rule, 71 FR 27396 (May 11... described in the preamble to the Final Rule, 71 FR 27396 (May 11, 2006), and in the final SMMP for the...

  7. Modeling High-Resolution Coastal Ocean Dynamics with COAMPS: System Overview, Applications and Future Directions

    NASA Astrophysics Data System (ADS)

    Allard, R. A.; Campbell, T. J.; Edwards, K. L.; Smith, T.; Martin, P.; Hebert, D. A.; Rogers, W.; Dykes, J. D.; Jacobs, G. A.; Spence, P. L.; Bartels, B.

    2014-12-01

    The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) is an atmosphere-ocean-wave modeling system developed by the Naval Research Laboratory which can be configured to cycle regional forecasts/analysis models in single-model (atmosphere, ocean, and wave) or coupled-model (atmosphere-ocean, ocean-wave, and atmosphere-ocean-wave) modes. The model coupling is performed using the Earth System Modeling Framework (ESMF). The ocean component is the Navy Coastal Ocean Model (NCOM), and the wave components include Simulating WAves Nearshore (SWAN) and WaveWatch-III. NCOM has been modified to include wetting and drying, the effects of Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum flux of surface waves, enhancement of bottom drag in shallow water, and enhanced vertical mixing due to Langmuir turbulence. An overview of the modeling system including ocean data assimilation and specification of boundary conditions will be presented. Results from a high-resolution (10-250m) modeling study from the Surfzone Coastal Oil Pathways Experiment (SCOPE) near Ft. Walton Beach, Florida in December 2013 will be presented. ®COAMPS is a registered trademark of the Naval Research Laboratory

  8. Low-frequency variability in a climate model with a mixed-layer ocean

    SciTech Connect

    Gould-Stewart, S.

    1984-11-01

    A mixed-layer ocean model coupled to a global spectral atmospheric circulation model produces a warming in the model equatorial Pacific Ocean similar to the El Nino or Southern Oscillation (SO) response. The mechanism for producing the SO-like response in an ocean with heat storage and without ocean dynamics is investigated. The model is capable of simulating SO-like time scales, but the details of the structure of the warming differ significantly from the observed El Nino/Southern Oscillation (ENSO) response. 22 refs.

  9. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe

    NASA Astrophysics Data System (ADS)

    Saba, V. S.; Friedrichs, M. A. M.; Antoine, D.; Armstrong, R. A.; Asanuma, I.; Behrenfeld, M. J.; Ciotti, A. M.; Dowell, M.; Hoepffner, N.; Hyde, K. J. W.; Ishizaka, J.; Kameda, T.; Marra, J.; Mélin, F.; Morel, A.; O'Reilly, J.; Scardi, M.; Smith, W. O., Jr.; Smyth, T. J.; Tang, S.; Uitz, J.; Waters, K.; Westberry, T. K.

    2011-02-01

    Nearly half of the earth's photosynthetically fixed carbon derives from the oceans. To determine global and region specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ 14C measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, subtropical North Pacific, Ross Sea, West Antarctic Peninsula, and the Antarctic Polar Frontal Zone. Average model skill, as determined by root-mean square difference calculations, was lowest in the Black and Mediterranean Seas, highest in the pelagic North Atlantic and the Antarctic Polar Frontal Zone, and intermediate in the other six regions. The maximum fraction of model skill that may be attributable to uncertainties in both the input variables and in situ NPP measurements was nearly 72%. On average, the simplest depth/wavelength integrated models performed no worse than the more complex depth/wavelength resolved models. Ocean color models were not highly challenged in extreme conditions of surface chlorophyll-a and sea surface temperature, nor in high-nitrate low-chlorophyll waters. Water column depth was the primary influence on ocean color model performance such that average skill was significantly higher at depths greater than 250 m, suggesting that ocean color models are more challenged in Case-2 waters (coastal) than in Case-1 (pelagic) waters. Given that in situ chlorophyll-a data was used as input data, algorithm improvement is required to eliminate the poor performance of ocean color NPP models in Case-2 waters that are close to coastlines. Finally, ocean color chlorophyll-a algorithms are challenged by optically complex Case-2 waters, thus using satellite-derived chlorophyll-a to

  10. Mechanisms of dissolved organic carbon cycling in an ocean margin. Final technical report

    SciTech Connect

    Benner, R.

    1997-11-24

    Dissolved organic carbon (DOC) is the largest reservoir of organic carbon in the ocean, and the objectives of this project were to investigate the mechanisms and pathways of DOC formation and consumption in seawater. Carbohydrates are the most abundant form of DOC, and this project included measurements of dissolved carbohydrates as well as DOC to help delineate the cycling of DOC. Many of the methods and approaches for investigating DOC production were developed as part of this project.

  11. Increase of total CO/sub 2/ in the world ocean. Final technical report

    SciTech Connect

    Chen, C.T.A.

    1984-01-01

    Accomplishments achieved include the development of a digital potentiometric oxygen titration system, design of an Apple-IIe-controlled automatic CO/sub 2/ titration system, and new data sets of pH, alkalinity, and CO/sub 2/ from the Weddell Sea, the Bering Sea, the Pacific Ocean between Alaska and Hawaii and between Kwajalein and Seattle, and from the equatorial Pacific, the Drake Passage, and the Red Sea. (ACR)

  12. Model-based localization for a shallow ocean experiment

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1995-07-19

    In this paper a modern approach was developed to solve the passive localization problem in ocean acoustics using the state-space formulation. It is shown that the inherent structure of the resulting processor consists of a parameter estimator coupled to a nonlinear optimization scheme. The parameter estimator is design using an acoustic propagation model in developing the modern identifier required for localization. The detection and localization of an acoustic source has long been the motivation of early sonar systems. With the advent of quieter and quieter submarines due to new manufacturing technologies and the next proliferation of diesel powered vessels, the need for more sophisticated processing techniques has been apparent for quite some time.

  13. Data assimilation into a numerical equatorial ocean model. I. The model and the assimilation algorithm

    NASA Astrophysics Data System (ADS)

    Long, Robert Bryan; Thacker, William Carlisle

    1989-06-01

    Numerical modeling provides a powerful tool for the study of the dynamics of oceans and atmospheres. However, the relevance of modeling results can only be established by reference to observations of the system being modeled. Typical oceanic observation sets are sparse, asynoptic, of mixed type and limited reliability, generally inadequate in some respects, and redundant and inconsistent in others. An optimal procedure for interfacing such data sets with a numerical model is the so-called adjoint method. This procedure effectively assimilates the observations into a run of the numerical model by finding that solution to the model equations that best fits all observations made within some specified space-time interval. The method requires the construction of the adjoint of the numerical model, a process made practical for models of realistic complexity by the work of Thacker and Long. In the present paper, the first of two parts, we illustrate the application of Thacker and Long's approach by constructing a data-assimilating version of an equatorial ocean model incorporating the adjoint method. The model is subsequently run for 5 years to near-steady-state, and exhibits many of the features known to be characteristic of equatorial oceanic flows. Using the last 54 days of the run as a control, a set of simulated sea-level and subsurface-density observations are collected, then successfully assimilated to demonstrate that the procedure can recover the control run, given a generous amount of data. In part II we conduct a sequence of numerical experiments to explore the ability of more limited sets of observations to fix the state of the modeled ocean; in the process, we examine the potential value of sea-level data obtained via satellite altimetry.

  14. Parallelism and optimization of numerical ocean forecasting model

    NASA Astrophysics Data System (ADS)

    Xu, Jianliang; Pang, Renbo; Teng, Junhua; Liang, Hongtao; Yang, Dandan

    2016-10-01

    According to the characteristics of Chinese marginal seas, the Marginal Sea Model of China (MSMC) has been developed independently in China. Because the model requires long simulation time, as a routine forecasting model, the parallelism of MSMC becomes necessary to be introduced to improve the performance of it. However, some methods used in MSMC, such as Successive Over Relaxation (SOR) algorithm, are not suitable for parallelism. In this paper, methods are developedto solve the parallel problem of the SOR algorithm following the steps as below. First, based on a 3D computing grid system, an automatic data partition method is implemented to dynamically divide the computing grid according to computing resources. Next, based on the characteristics of the numerical forecasting model, a parallel method is designed to solve the parallel problem of the SOR algorithm. Lastly, a communication optimization method is provided to avoid the cost of communication. In the communication optimization method, the non-blocking communication of Message Passing Interface (MPI) is used to implement the parallelism of MSMC with complex physical equations, and the process of communication is overlapped with the computations for improving the performance of parallel MSMC. The experiments show that the parallel MSMC runs 97.2 times faster than the serial MSMC, and root mean square error between the parallel MSMC and the serial MSMC is less than 0.01 for a 30-day simulation (172800 time steps), which meets the requirements of timeliness and accuracy for numerical ocean forecasting products.

  15. Predictability of the Indian Ocean Dipole in the coupled models

    NASA Astrophysics Data System (ADS)

    Liu, Huafeng; Tang, Youmin; Chen, Dake; Lian, Tao

    2016-06-01

    In this study, the Indian Ocean Dipole (IOD) predictability, measured by the Indian Dipole Mode Index (DMI), is comprehensively examined at the seasonal time scale, including its actual prediction skill and potential predictability, using the ENSEMBLES multiple model ensembles and the recently developed information-based theoretical framework of predictability. It was found that all model predictions have useful skill, which is normally defined by the anomaly correlation coefficient larger than 0.5, only at around 2-3 month leads. This is mainly because there are more false alarms in predictions as leading time increases. The DMI predictability has significant seasonal variation, and the predictions whose target seasons are boreal summer (JJA) and autumn (SON) are more reliable than that for other seasons. All of models fail to predict the IOD onset before May and suffer from the winter (DJF) predictability barrier. The potential predictability study indicates that, with the model development and initialization improvement, the prediction of IOD onset is likely to be improved but the winter barrier cannot be overcome. The IOD predictability also has decadal variation, with a high skill during the 1960s and the early 1990s, and a low skill during the early 1970s and early 1980s, which is very consistent with the potential predictability. The main factors controlling the IOD predictability, including its seasonal and decadal variations, are also analyzed in this study.

  16. Climate Simulations for 1951-2050 with a Coupled Atmosphere-Ocean Model.

    NASA Astrophysics Data System (ADS)

    Sun, Shan; Hansen, James E.

    2003-09-01

    The authors simulate climate change for 1951-2050 using the GISS SI2000 atmospheric model coupled to HYCOM, a quasi-isopycnal ocean model (`ocean E'), and contrast the results with those obtained using the same atmosphere coupled to a passive Q-flux ocean model (`ocean B') and the same atmosphere driven by observed SST (`ocean A'). All of the models give reasonable agreement with observed global temperature change during 1951-2000, but the quasi-isopycnal ocean E mixes heat more deeply and hence sequesters heat more effectively on the century timescale. Global surface warming in the next 50 yr is only 0.3°-0.4°C with this ocean in simulations driven by an `alternative scenario' climate forcing (1.1 W m2 in the next 50 yr), only half as much as with ocean B. From the different models the authors estimate that the earth was out of radiation balance by about 0.18 W m2 in 1951 and is now out of balance by about 0.75 W m2. This energy imbalance, or residual climate forcing, a consequence of deep ocean mixing of heat anomalies and the history of climate forcings, is a crucial measure of the state of the climate system that should be precisely monitored with full-ocean temperature measurements.

  17. DE-EE0000319 Final Technical Report [National Open-ocean Energy Laboratory

    SciTech Connect

    Skemp, Susan

    2013-12-29

    Under the authorization provided by Section 634 of the Energy Independence and Security Act of 2007 (P.L. 110-140), in 2009 FAU was awarded U.S. Congressionally Directed Program (CDP) funding through the U.S. Department of Energy (DOE) to investigate and develop technologies to harness the energy of the Florida Current as a source of clean, renewable, base-load power for Florida and the U.S. A second CDP award in 2010 provided additional funding in order to enhance and extend FAU’s activities. These two CDPs in 2009 and 2010 were combined into a single DOE grant, DE-EE0000319, and are the subject of this report. Subsequently, in July 2010 funding was made available under a separate contract, DE-EE0004200. Under that funding, DOE’s Wind and Water Power Program designated FAU’s state of Florida marine renewable energy (MRE) center as the Southeast National Marine Renewable Energy Center (SNMREC). This report discusses SNMREC activities funded by the DE-EE0000319 grant, but will make reference, as appropriate, to activities that require further investigation under the follow-on grant. The concept of extracting energy from the motions of the oceans has a long history. However, implementation on large scales of the technologies to effect renewable energy recovery from waves, tides, and open-ocean currents is relatively recent. DOE’s establishment of SNMREC recognizes a significant potential for ocean current energy recovery associated with the (relatively) high-speed Florida Current, the reach of the Gulf Stream System flowing through the Straits of Florida, between the Florida Peninsula and the Bahamas Archipelago. The proximity of the very large electrical load center of southeast Florida’s metropolitan area to the resource itself makes this potential all the more attractive. As attractive as this potential energy source is, it is not without its challenges. Although the technology is conceptually simple, its design and implementation in a commercially

  18. Global ocean tides. Part VII. The diurnal principal solar tide (P1), atlas of tidal charts and maps. Final report

    SciTech Connect

    Schwiderski, E.W.

    1981-05-01

    In Part I (Schwiderski, 1978a) of this report, a unique hydrodynamical interpolation technique was introduced, extensively tested, and evaluated in order to compute partial global ocean tides in great detail and with a high degree of accuracy. This novel method has been applied to construct the diurnal principal solar (P1) ocean tide with a relative accuracy of better than 5 cm anywhere in the open oceans. The resulting tidal amplitudes and phases are tabulated on a 1 deg X 1 deg grid system in an atlas of 42 deg X 71 deg overlapping charts covering the whole oceanic globe. A corresponding atlas of global corange and cotidal maps is included to provide the reader with a quick general overview of the major tidal phenomena. The specifying hydrodynamical parameters of the model are listed along with quoted sources of empirical tide data, and significant tidal features are explained and discussed. As expected, since the periods of the diurnal tides P1 (24.07h) and K1 (23.93 h) differ by only 0.14 h, these two tides resemble very closely each other (compare Part IV). Significant differences occur only in regions of rapid tidal variations. Of course, P1 resembles also the diurnal 01 tide but to a visibly lesser degree (see Part V).

  19. Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012

    SciTech Connect

    Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

  20. Thermohaline feedbacks in ocean-climate models of varying complexity

    NASA Astrophysics Data System (ADS)

    den Toom, M.

    2013-03-01

    The Atlantic Meridional Overturning Circulation (AMOC) is considered an important component of the climate system, because of its significant contribution to the heat budget of the Northern Hemisphere. Theoretical models indicate that the AMOC has non-linear dynamics, which result in a strong sensitivity to high latitude freshwater forcing. These models suggest that, as a result of the presence of multiple equilibria, the AMOC may drive large, abrupt shifts of the climate when a certain threshold is exceeded. There is no direct observational evidence that such AMOC related climate variations occur in reality, but the available data are too short and sparse to be conclusive in this case. Therefore, numerical models provide the main source of information regarding the nonlinear behavior of the AMOC. Because numerical models are necessarily incomplete, not in the least because of a lack of computational resources, their results must always be tested for robustness. This thesis presents four studies that examine how the representation of a certain unresolved process affects the behavior of the simulated AMOC The study in chapter 2 deals with the representation of horizontal mixing by mesoscale eddies. It is shown that a simple horizontal tracer mixing scheme is only a reasonable alternative to the more realistic isoneutral / Gent-McWilliams parameterization, provided that no wind forcing is imposed. In chapter 3, it is demonstrated that the use of a stability-dependent tracer diffusivity, which is commonly used to parameterize convection, leads to the occurrence of artificial multiple equilibria. In chapter 4, the representation of ocean-atmosphere interaction is considered. It is found that the sensitivity to anomalous freshwater forcing is only slightly modified if an interactive (sea surface temperature-dependent) atmosphere model is used, instead of a static atmosphere model. In chapter 5, the simulated sensitivity of the AMOC is compared between a model that

  1. Small diversity effects on ocean primary production under environmental change in a diversity-resolving ocean ecosystem model

    NASA Astrophysics Data System (ADS)

    Prowe, A. E. F.; Pahlow, M.; Dutkiewicz, S.; Oschlies, A.

    2013-07-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic diversity. Diversity, however, can affect functions such as primary production and their sensitivity to environmental changes. Using a global ocean ecosystem model that explicitly resolves phytoplankton diversity within four phytoplankton functional types (PFTs) we investigate the model's ability to capture diversity effects on primary production under environmental change. An idealized scenario with a sudden reduction in vertical mixing causes diversity and primary-production changes that turn out to be largely independent of the number of coexisting phytoplankton types. The model provides a small number of niches with respect to nutrient use in accordance with the PFTs defined in the model, and increasing the number of phytoplankton types increases the resolution within the niches. The variety of traits and trade-offs resolved in the model constrains diversity effects such as niche complementarity, which operate between, but not within PFTs. The number and nature of the niches formulated in the model, for example via trade-offs or different PFTs, thus determines the diversity effects on ecosystem functioning captured in ocean ecosystem models.

  2. Dynamics and predictability of a low-order wind-driven ocean - atmosphere model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2013-04-01

    The dynamics of a low order coupled wind-driven Ocean-Atmosphere (OA) system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear. This feature is expected to be related with the specific domain choice over which the coupled system is defined. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on his attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial (at2 + bt3 + ct4) up to purely exponential evolutions. These features are explained and analyzed in the light of the recent findings on error growth (Nicolis et al, 2009). References Charney J G, Straus DM (1980) Form-Drag Instability, Multiple Equilibria and Propagating Planetary Waves in Baroclinic, Orographically Forced, Planetary Wave Systems. J Atmos Sci 37: 1157-1176. Nicolis C, Perdigao RAP, Vannitsem S (2009) Dynamics of

  3. Design, Observing and Data Systems, and Final Installation of the NEPTUNE Canada Regional Cabled Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Barnes, C. R.; Best, M. M.; Johnson, F. R.; Phibbs, P.; Pirenne, B.

    2009-05-01

    NEPTUNE Canada (NC; www.neptunecanada.ca) will complete most of the installation of the world's first regional cabled ocean observatory in late 2009 off Canada's west coast. It will comprise five main observatory nodes (100-2700m water depths) linked by an 800km backbone cable delivering 10kVDC power and 10Gbps communications bandwidth to hundreds of sensors, with a 25-year design life. Infrastructure (100M) and initial operational funding (20M) is secured. University of Victoria (UVic) leads a consortium of 12 Canadian universities, hosts the coastal VENUS cabled observatory, with Ocean Networks Canada (ONC) providing management oversight. Observatory architecture has a trunk and branch topology. Installed in late 2007, the backbone cable loops from/to UVic's Port Alberni shore station. The wet plant's design, manufacture and installation was contracted to Alcatel-Lucent. Each node provides six interface ports for connection of science instrument arrays or extensions. Each port provides dual optical Ethernet links and up to 9kW of electrical power at 400VDC. Junction boxes, designed and built by OceanWorks support up to 10 instruments each and can be daisy- chained. They accommodate both serial and 10/100 Ethernet instruments, and provide a variety of voltages (400V, 48V, 24V, 15V). Backbone equipment has all been qualified and installed; shore station re-equipping is complete; junction boxes are manufactured. A major marine program will deploy nodes and instruments in July-September 2009; instruments to one node will probably be deferred until 2010. Observatory instruments will be deployed in subsurface (boreholes), on seabed, and buoyed through the water column. Over 130 instruments (over 40 different types) will host several hundred sensors; mobile assets include a tethered crawler and a 400m vertical profiler. Experiments will address: earthquake dynamics and tsunami hazards; fluid fluxes in both ocean crust and sediments, including gas hydrates; ocean

  4. Atmosphere & ocean modeling on grids of variable resolution

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; Korn, Peter

    2014-05-01

    Grids of variable resolution are of great interest in Atmosphere and Ocean Modeling as they offer a route to higher local resolution and improved solutions. On the other hand there are changes in grid resolution considered to be problematic because of the errors they create between coarse and fine parts of a grid due to reflection and scattering of waves. On complex multidimensional domains these errors resist theoretical investigation and demand numerical experiments. With a low-order hybrid continuous/discontinuous finite element model of the inviscid and viscous shallow-water equations a numerical study is carried out that investigates the influence of grid refinement on critical features such as wave propagation, turbulent cascades and the representation of geostrophic balance. The refinement technique we use is static h-refinement, where additional grid cells are inserted in regions of interest known a priori. For the specific finite element model under investigation, the simulations suggest that grid refinement does not deteriorate geostrophic balance and turbulent cascades and the shape of mesh transition zones appears to be less important than expected. However, our results show that the static local refinement is able to reduce the local error, but not necessarily the global error and convergence properties with resolution are changed. Our relatively simple tests already illustrate that grid refinement has to go along with a simultaneous change of the parametrization schemes.

  5. Modeling of GE Appliances: Final Presentation

    SciTech Connect

    Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

    2013-01-31

    This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances’ through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances’ DR-enabled appliances to provide benefits to the utility grid.

  6. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  7. Seasonal Distributions of Global Ocean Chlorophyll and Nutrients: Analysis with a Coupled Ocean General Circulation Biogeochemical, and Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    1999-01-01

    A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological

  8. A zonally averaged, three-basin ocean circulation model for climate studies

    SciTech Connect

    Hovine, S.; Fichefet, T.

    1994-09-01

    A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70{degree}N at a rate of about 17 Sv (1 Sv=10{sup 6} m{sup 3}S{sup {minus}1}) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions i.e., a restoring condition no sea-surface temperature and flux condition on sea-surface salinity are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.

  9. Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?

    SciTech Connect

    Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

    2013-01-17

    The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

  10. Numerical model of the transition from continental rifting to oceanization: the case study of the Ligure-Piemontese ocean.

    NASA Astrophysics Data System (ADS)

    Roda, M.; Marotta, A. M.; Conte, K.; Spalla, M. I.

    2015-12-01

    The transition from continental rifting to oceanization has been investigated by mean of a 2D thermo-mechanical numerical model in which the formation of oceanic crust by mantle serpentinization, due to the hydration of the uprising peridotite, as been implemented. Model predictions have been compared with natural data related to the Permian-Triassic thinning affecting the continental lithosphere of the Alpine domain, in order to identify which portions of the present Alpine-Apennine system, preserving the imprints of Permian-Triassic high temperature (HT) metamorphism, is compatible, in terms of lithostratigraphy and tectono-metamorphic evolution, with a lithospheric extension preceding the opening of the Ligure-Piemontese oceanic basin. At this purpose age, petrological and structural data from the Alpine and Apennine ophiolite complexes are compared with model predictions from the oceanization stage. Our comparative analysis supports the thesis that the lithospheric extension preceding the opening of the Alpine Tethys did not start on a stable continental lithosphere, but developed by recycling part of the old Variscan collisional suture. The HT Permian-Triassic metamorphic re-equilibration overprints an inherited tectonic and metamorphic setting consequent to the Variscan subduction and collision, making the Alps a key case history to explore mechanisms responsible for the re-activation of orogenic scars.

  11. Accurate numerical forward model for optimal retracking of SIRAL2 SAR echoes over open ocean

    NASA Astrophysics Data System (ADS)

    Phalippou, L.; Demeestere, F.

    2011-12-01

    The SAR mode of SIRAL-2 on board Cryosat-2 has been designed to measure primarily sea-ice and continental ice (Wingham et al. 2005). In 2005, K. Raney (KR, 2005) pointed out the improvements brought by SAR altimeter for open ocean. KR results were mostly based on 'rule of thumb' considerations on speckle noise reduction due to the higher PRF and to speckle decorrelation after SAR processing. In 2007, Phalippou and Enjolras (PE,2007) provided the theoretical background for optimal retracking of SAR echoes over ocean with a focus on the forward modelling of the power-waveforms. The accuracies of geophysical parameters (range, significant wave heights, and backscattering coefficient) retrieved from SAR altimeter data were derived accounting for SAR echo shape and speckle noise accurate modelling. The step forward to optimal retracking using numerical forward model (NFM) was also pointed out. NFM of the power waveform avoids analytical approximation, a warranty to minimise the geophysical dependent biases in the retrieval. NFM have been used for many years, in operational meteorology in particular, for retrieving temperature and humidity profiles from IR and microwave radiometers as the radiative transfer function is complex (Eyre, 1989). So far this technique was not used in the field of ocean conventional altimetry as analytical models (e.g. Brown's model for instance) were found to give sufficient accuracy. However, although NFM seems desirable even for conventional nadir altimetry, it becomes inevitable if one wish to process SAR altimeter data as the transfer function is too complex to be approximated by a simple analytical function. This was clearly demonstrated in PE 2007. The paper describes the background to SAR data retracking over open ocean. Since PE 2007 improvements have been brought to the forward model and it is shown that the altimeter on-ground and in flight characterisation (e.g antenna pattern range impulse response, azimuth impulse response

  12. A coupled ice-ocean model of upwelling in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.; Obrien, J. J.

    1983-01-01

    A dynamical coupled ice-ocean numerical model for the marginal ice zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea ice model has a variable ice concentration and includes internal ice stress. The model is forced by stresses on the air/ocean and air/ice surfaces. The main coupling between the ice and the ocean is in the form of an interfacial stress on the ice/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress ice/ocean is proportional to the concentration of ice. A new mechanism for ice edge upwelling is suggested based on a geostrophic equilibrium solution for the sea ice medium. The upwelling reported in previous models invoking a stationary ice cover is shown to be replaced by a weak downwelling due to the ice motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across ice edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.

  13. Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Romanski, J.; Gregg, W. W.

    2014-01-01

    Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which

  14. A model of biogeochemical cycling of phosphorus, nitrogen, oxygen, and sulphur in the ocean: One step toward a global climate model

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary

    1989-02-01

    formation (for P limitation) and denitrification (for N limitation) can strongly constrain primary production and the development of anoxia. N limitation, i.e., negligable nitrogen fixation, practically precludes anoxia but is unlikely for very long times scales. For P limitation and no phosphorite formation the model indicates that the redox state of the ocean may be most sensitive to changes in ocean biology followed by changes in ocean circulation and mixing and finally by changes in ocean temperature.

  15. Evaluating Consistency in the Ocean Model Component of the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Hammerling, D.; Hu, Y.; Baker, A. H.; Huang, X.; Tseng, Y. H.; Bryan, F.

    2015-12-01

    We developed a new ensemble-based statistical method for evaluating the consistency in the Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM). Since the ocean dynamics are chaotic in nature, a roundoff-level perturbation in the initial conditions will potentially result in distinct model solutions. No bit-for-bit (BFB) identical results in ocean solutions can be guaranteed for even tiny code modification. Our approach takes the natural variability of the ocean model into account through POP ensemble simulations. In particular, the statistical distribution from an ensemble of POP simulations is used to determine the standard score of any new model solution at each grid point. This setup accounts for the spatial heterogeneity in variability within the ensemble. Then the percentage of grid points which have scores greater than a specified threshold indicates whether the new model simulation is statistically distinguishable from the ensemble simulations. We evaluate the new tool on three types of scenarios: running with different processor layouts, changing the physical parameterization, and varying the convergence tolerance in the barotropic solver. Results indicate that our new testing tool is capable of distinguishing cases which should be consistent with the ensemble, such as the solutions with different processor layouts, and those which should not, such as increasing a certain physical parameter by two or more times. This new tool provides a simple, subjective and systematic way to evaluate the difference between the given solution and the ensemble, thus facilitating the detection of errors introduced during model development.

  16. Reproducibility and Transparency in Ocean-Climate Modeling

    NASA Astrophysics Data System (ADS)

    Hannah, N.; Adcroft, A.; Hallberg, R.; Griffies, S. M.

    2015-12-01

    Reproducibility is a cornerstone of the scientific method. Within geophysical modeling and simulation achieving reproducibility can be difficult, especially given the complexity of numerical codes, enormous and disparate data sets, and variety of supercomputing technology. We have made progress on this problem in the context of a large project - the development of new ocean and sea ice models, MOM6 and SIS2. Here we present useful techniques and experience.We use version control not only for code but the entire experiment working directory, including configuration (run-time parameters, component versions), input data and checksums on experiment output. This allows us to document when the solutions to experiments change, whether due to code updates or changes in input data. To avoid distributing large input datasets we provide the tools for generating these from the sources, rather than provide raw input data.Bugs can be a source of non-determinism and hence irreproducibility, e.g. reading from or branching on uninitialized memory. To expose these we routinely run system tests, using a memory debugger, multiple compilers and different machines. Additional confidence in the code comes from specialised tests, for example automated dimensional analysis and domain transformations. This has entailed adopting a code style where we deliberately restrict what a compiler can do when re-arranging mathematical expressions.In the spirit of open science, all development is in the public domain. This leads to a positive feedback, where increased transparency and reproducibility makes using the model easier for external collaborators, who in turn provide valuable contributions. To facilitate users installing and running the model we provide (version controlled) digital notebooks that illustrate and record analysis of output. This has the dual role of providing a gross, platform-independent, testing capability and a means to documents model output and analysis.

  17. Spreading and wandering of Gaussian–Schell model laser beams in an anisotropic turbulent ocean

    NASA Astrophysics Data System (ADS)

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda

    2016-09-01

    The effect of anisotropic turbulence on the spreading and wandering of Gaussian–Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens–Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.

  18. Spreading and wandering of Gaussian-Schell model laser beams in an anisotropic turbulent ocean

    NASA Astrophysics Data System (ADS)

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda

    2016-09-01

    The effect of anisotropic turbulence on the spreading and wandering of Gaussian-Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens-Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.

  19. Modeling and Measurement of Ocean Generated Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Liang, R.; Avera, W. E.; Nelson, J.; Brozena, J. M.

    2011-12-01

    -track gradient. Total-field compensated and edited data from each aircraft and the magnetic base-station data were low-pass filtered and sub-sampled to 4Hz for analysis. Data from the magnetic base-stations exhibit good coherence, as do the data from the ocean-bottom magnetometers. After correction for the geomagnetic component, the two aircraft residuals matched quite closely in both amplitude and phase in many places, but in other places the phase match was poor. This produced an overall poor coherence between the two residuals. However, cross-spectral analysis showed that there was a statistical correlation between the two aircraft residuals in the frequency band 0.02-0.05 Hz (5000-2000 m wavelength for an aircraft flying at 100 m/s). Both the amplitude (0.1-0.2 nT) and wavelength were consistent with predictions computed from the 3-D water velocities and conductivity from the ADCP using a simple model. The predicted undersea magnetic fields correlated well with the measured undersea magnetometer fields at times, but they rarely matched at the "wiggle-for-wiggle" level. More often, it was the statistics that correlated well.

  20. Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models

    NASA Technical Reports Server (NTRS)

    Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; De Cuevas, Beverly

    2012-01-01

    Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.

  1. An update on modeling land-ice/ocean interactions in CESM

    SciTech Connect

    Asay-davis, Xylar

    2011-01-24

    This talk is an update on ongoing land-ice/ocean coupling work within the Community Earth System Model (CESM). The coupling method is designed to allow simulation of a fully dynamic ice/ocean interface, while requiring minimal modification to the existing ocean model (the Parallel Ocean Program, POP). The method makes use of an immersed boundary method (IBM) to represent the geometry of the ice-ocean interface without requiring that the computational grid be modified in time. We show many of the remaining development challenges that need to be addressed in order to perform global, century long climate runs with fully coupled ocean and ice sheet models. These challenges include moving to a new grid where the computational pole is no longer at the true south pole and several changes to the coupler (the software tool used to communicate between model components) to allow the boundary between land and ocean to vary in time. We discuss benefits for ice/ocean coupling that would be gained from longer-term ocean model development to allow for natural salt fluxes (which conserve both water and salt mass, rather than water volume).

  2. Effects of vertical shear in modelling horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2016-02-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  3. Model-based processing for shallow ocean environments: The broadband problem

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1996-01-31

    Most acoustic sources found is the ocean environmental are spatially complex and broadband. When propagating in a shallow ocean these source characteristics complicate the analysis of received acoustic data considerably. The enhancement of broadband acoustic pressure- field measurements using a vertical array is discussed. Here a model- based approach is developed for a broadband source using a normal- mode propagation model.

  4. Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming

    PubMed

    Sarmiento; Le Quéré C

    1996-11-22

    In a model of ocean-atmosphere interaction that excluded biological processes, the oceanic uptake of atmospheric carbon dioxide (CO2) was substantially reduced in scenarios involving global warming relative to control scenarios. The primary reason for the reduced uptake was the weakening or collapse of the ocean thermohaline circulation. Such a large reduction in this ocean uptake would have a major impact on the future growth rate of atmospheric CO2. Model simulations that include a simple representation of biological processes show a potentially large offsetting effect resulting from the downward flux of biogenic carbon. However, the magnitude of the offset is difficult to quantify with present knowledge.

  5. Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming

    PubMed

    Sarmiento; Le Quéré C

    1996-11-22

    In a model of ocean-atmosphere interaction that excluded biological processes, the oceanic uptake of atmospheric carbon dioxide (CO2) was substantially reduced in scenarios involving global warming relative to control scenarios. The primary reason for the reduced uptake was the weakening or collapse of the ocean thermohaline circulation. Such a large reduction in this ocean uptake would have a major impact on the future growth rate of atmospheric CO2. Model simulations that include a simple representation of biological processes show a potentially large offsetting effect resulting from the downward flux of biogenic carbon. However, the magnitude of the offset is difficult to quantify with present knowledge. PMID:8910268

  6. Feature Analysis of Ocean Waves in North Central Pacific Ocean Based ASAR Wave Spectral Data and Wave Model

    NASA Astrophysics Data System (ADS)

    Wang, Jichao; Zhang, Jie; Yang, Jungang; Meng, Junmin

    2013-01-01

    Directional Spectrum of the ocean waves could be obtained form Envisat advanced synthetic aperture radar (ASAR) wave spectral data. The wave model WAVEWATCH III (WW3) is applied to simulate the ocean wave field. Study area is 185°E-215°E and 15°N-30°N, time range is from 1 January 2008 to 31 December 2008. Based on ASAR and buoy data, the wave numerical simulation and assimilation of the north central Pacific Ocean is carried out. The validation and assessment of ASAR ocean wave spectra products is performed. The optimal interpolation (OI) algorithm is used in model WW3 for assimilating ASAR wave spectra data. Based on the result of the simulation and assimilation, mean waves direction (MWD), significant wave height (SWH) and mean wave period (MWP) are analysed. SWH and MWP are larger in winter and SWH reach to more than 2.5 meters. Seasonal change of SWH and MWP are significant.

  7. Final Project Report Load Modeling Transmission Research

    SciTech Connect

    Lesieutre, Bernard; Bravo, Richard; Yinger, Robert; Chassin, Dave; Huang, Henry; Lu, Ning; Hiskens, Ian; Venkataramanan, Giri

    2012-03-31

    The research presented in this report primarily focuses on improving power system load models to better represent their impact on system behavior. The previous standard load model fails to capture the delayed voltage recovery events that are observed in the Southwest and elsewhere. These events are attributed to stalled air conditioner units after a fault. To gain a better understanding of their role in these events and to guide modeling efforts, typical air conditioner units were testing in laboratories. Using data obtained from these extensive tests, new load models were developed to match air conditioner behavior. An air conditioner model is incorporated in the new WECC composite load model. These models are used in dynamic studies of the West and can impact power transfer limits for California. Unit-level and systemlevel solutions are proposed as potential solutions to the delayed voltage recovery problem.

  8. Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II

    SciTech Connect

    1980-06-30

    The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

  9. Final Progress Report: Direct Experiments on the Ocean Disposal of Fossil Fuel CO2.

    SciTech Connect

    James P. Barry; Peter G. Brewer

    2004-05-25

    OAK-B135 This report summarizes activities and results of investigations of the potential environmental consequences of direct injection of carbon dioxide into the deep-sea as a carbon sequestration method. Results of field experiments using small scale in situ releases of liquid CO2 are described in detail. The major conclusions of these experiments are that mortality rates of deep sea biota will vary depending on the concentrations of CO2 in deep ocean waters that result from a carbon sequestration project. Large changes in seawater acidity and carbon dioxide content near CO2 release sites will likely cause significant harm to deep-sea marine life. Smaller changes in seawater chemistry at greater distances from release sites will be less harmful, but may result in significant ecosystem changes.

  10. Intermediate Models of Planetary Circulations in the Atmosphere and Ocean.

    NASA Astrophysics Data System (ADS)

    McWilliams, James C.; Gent, Peter R.

    1980-08-01

    Large-scale extratropical motions (with dimensions comparable to, or somewhat smaller than, the planetary radius) in the atmosphere and ocean exhibit a more restricted range of phenomena than are admissible in the primitive equations for fluid motions, and there have been many previous proposals for simpler, more phenomenologically limited models of these motions. The oldest and most successful of these is the quasi-geostrophic model. An extensive discussion is made of models intermediate between the quasi-geostrophic and primitive ones, some of which have been previously proposed [e.g., the balance equations (BE), where tendencies in the equation for the divergent component of velocity are neglected, or the geostrophic momentum approximation (GM), where ageostrophic accelerations are neglected relative to geostrophic ones] and some of which are derived here. Virtues of these models are assessed in the dual measure of nearly geostrophic momentum balance (i.e., small Rossby number) and approximate frontal structure (i.e., larger along-axis velocities and length scales than their cross-axis counterparts), since one or both of these circumstances is usually characteristic of planetary motions. Consideration is also given to various coordinate transformations, since they can yield simpler expressions for the governing differential equations of the intermediate models. In particular, a new set of coordinates is proposed, isentropic geostrophic coordinates,(IGC), which has the advantage of making implicit the advections due to ageostrophic horizontal and vertical velocities under various approximations. A generalization of quasi-geostrophy is made. named hypo-geostrophy (HG), which is an asymptotic approximation of one higher order accuracy in Rossby number. The governing equations are simplest in IGC for both HG and GM; we name the latter in these coordinates isentropic semi-geostrophy (ISG), in analogy to Hoskins' (1975) semi-geostrophy (SG). HG, GM and BE are, in our

  11. Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.

    PubMed

    Gent, Peter R

    2016-01-01

    Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.

  12. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  13. Tropical Indian Ocean surface salinity bias in Climate Forecasting System coupled models and the role of upper ocean processes

    NASA Astrophysics Data System (ADS)

    Parekh, Anant; Chowdary, Jasti S.; Sayantani, Ojha; Fousiya, T. S.; Gnanaseelan, C.

    2016-04-01

    In the present study sea surface salinity (SSS) biases and seasonal tendency over the Tropical Indian Ocean (TIO) in the coupled models [Climate Forecasting System version 1 (CFSv1) and version 2 (CFSv2)] are examined with respect to observations. Both CFSv1 and CFSv2 overestimate SSS over the TIO throughout the year. CFSv1 displays improper SSS seasonal cycle over the Bay of Bengal (BoB), which is due to weaker model precipitation and improper river runoff especially during summer and fall. Over the southeastern Arabian Sea (AS) weak horizontal advection associated with East Indian coastal current during winter limits the formation of spring fresh water pool. On the other hand, weaker Somali jet during summer results for reduced positive salt tendency in the central and eastern AS. Strong positive precipitation bias in CFSv1 over the region off Somalia during winter, weaker vertical mixing and absence of horizontal salt advection lead to unrealistic barrier layer during winter and spring. The weaker stratification and improper spatial distribution of barrier layer thickness (BLT) in CFSv1 indicate that not only horizontal flux distribution but also vertical salt distribution displays large discrepancies. Absence of fall Wyrtki jet and winter equatorial currents in this model limit the advection of horizontal salt flux to the eastern equatorial Indian Ocean. The associated weaker stratification in eastern equatorial Indian Ocean can lead to deeper mixed layer and negative Sea Surface Temperature (SST) bias, which in turn favor positive Indian Ocean Dipole bias in CFSv1. It is important to note that improper spatial distribution of barrier layer and stratification can alter the air-sea interaction and precipitation in the models. On the other hand CFSv2 could produce the seasonal evolution and spatial distribution of SSS, BLT and stratification better than CFSv1. However CFSv2 displays positive bias in evaporation over the whole domain and negative bias in

  14. Experimental design for three interrelated Marine Ice-Sheet and Ocean Model Intercomparison Projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X. S.; Cornford, S. L.; Durand, G.; Galton-Fenzi, B. K.; Gladstone, R. M.; Gudmundsson, G. H.; Hattermann, T.; Holland, D. M.; Holland, D.; Holland, P. R.; Martin, D. F.; Mathiot, P.; Pattyn, F.; Seroussi, H.

    2015-11-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions in the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the ice shelf-ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for evaluation of the participating models.

  15. Statistical modeling of electrical components: Final report

    SciTech Connect

    Jolly, R.L.

    1988-07-01

    A method of forecasting production yields based on SPICE (University of California at Berkeley) circuit simulation and Monte Carlo techniques was evaluated. This method involved calculating functionally accurate component models using statistical techniques and using these component models in a SPICE electrical circuit simulation program. The results of the simulation program allow production yields to be calculated using standard statistical techniques.

  16. Some Approaches to Modeling Diffuse Flow at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Craft, K.; Germanovich, L. N.

    2011-12-01

    To obtain a sound understanding of subsurface temperatures and the extent of the subsurface biosphere in young oceanic crust, one must understand the mechanisms of diffuse flow at oceanic spreading centers. Mathematical modeling of diffuse flow at oceanic spreading centers has received relatively little attention compared to high-temperature black smoker discharge, in part because the temperature and fluid flow data required to constrain the models are scarce. We review a number of different approaches to modelling diffuse flow: (1) The simplest method considers 1-D steady-state uniform upflow from below subject to a heat transfer boundary condition at the surface, which represents the effects of mixing of hydrothermal fluid with seawater. These models, in which the heat transfer coefficient and the velocity of the ascending fluid are constrained by observed diffuse flow vent temperature and heat flux, typically result in a steep temperature gradient near the seafloor and subsurface biological activity may be limited to the upper few cm of the crust. (2) A related method uses data on the partitioning of heat flux between focused and diffuse flow and chemical data from the focused and diffuse flow components in a two-limb single pass modeling approach to determine the fraction of high-temperature fluid that is incorporated in the diffuse flow. Using data available from EPR 950', the Main Endeavour Field, and ASHES vent field at Axial Volcano on the Juan de Fuca Ridge in conjunction with Mg as a passive tracer, we find that the mixing ratio of high temperature in diffuse flow is <10%. The high-temperature contribution to the diffuse heat flux remains large, however, and high-temperature vent fluid ultimately contributes ~ 90% of the total heat output from the vent field. In these models mixing between high-temperature fluid and seawater may occur over a considerable depth, and the subsurface biosphere may be ~ 100 m deep beneath diffuse flow sites. (3) Finally, in

  17. Chesapeake Bay sediment flux model. Final report

    SciTech Connect

    Di Toro, D.M.; Fitzpatrick, J.J.

    1993-06-01

    Formulation and application of a predictive diagenetic sediment model are described in this report. The model considers two benthic sediment layers: a thin aerobic layer in contact with the water column and a thicker anaerobic layer. Processes represented include diagenesis, diffusion, particle mixing, and burial. Deposition of organic matter, water column concentrations, and temperature are treated as independent variables that influence sediment-water fluxes. Sediment oxygen demand and sediment-water fluxes of sulfide, ammonium, nitrate, phosphate, and silica are predicted. The model was calibrated using sediment-water flux observations collected in Chesapeake Bay 1985-1988. When independent variables were specified based on observations, the model correctly represented the time series of sediment-water fluxes observed at eight stations in the Bay and tributaries.... Chesapeake Bay, Models, Sediments, Dissolved oxygen, Nitrogen Eutrophication, Phosphorus.

  18. Barotropic-Baroclinic Time Splitting for Ocean Circulation Modeling

    NASA Astrophysics Data System (ADS)

    Higdon, Robert L.; de Szoeke, Roland A.

    1997-07-01

    Numerical models of ocean circulation admit motions varying on a wide range of time scales. These motions include fast external gravity waves, which are approximately independent of depth, and slower internal motions which are fully three-dimensional. Explicit time discretizations are impractical for these systems, due to the short timesteps dictated by the fast waves. A commonly used alternative is to confine the fast waves to a two-dimensional system, via vertical averaging, and then to compute the remaining motions explicitly with a long time step. However, this procedure can lead to numerical instability if the latter system admits sufficiently large residual fast motions due to an inexact splitting. In this paper we modify a method developed by R. Bleck and L. T. Smith ( J. Geophys. Res. C95,3273, 1990) in order to obtain a more precise splitting into fast and slow subsystems. In the vertically averaged momentum equation, we use the exact vertical average of the horizontal pressure gradient in place of the approximation used in op cit.We then apply natural time discretizations and show that the modified splitting produces considerable improvements in stability.

  19. Advances in ocean modeling for climate change research

    NASA Astrophysics Data System (ADS)

    Holland, William R.; Capotondi, Antonietta; Holland, Marika M.

    1995-07-01

    An adequate understanding of climate variability and the eventual prediction of climate change are among the most urgent and far-reaching efforts of the scientific community. The climate system is in an ever-changing state with vast impact on mankind in all his activities. Both short and long-term aspects of climate variability are of concern, and the unravelling of "natural" variability from "man-induced" climate change is required to prepare for and ameliorate, if possible, the potentially devastating aspects of such change. In terms of scientific effort, the climate community can be thought of as the union of the disciplinary sciences of meteorology, oceanography, sea ice and glaciology, and land surface processes. Since models are based upon mathematical and numerical constructs, mathematics and computer sciences are also directly involved. In addition, some of the problems of man-induced climate change (release of greenhouse gases, the ozone-hole problem, etc.) are basically chemical in nature, and the expertise of the atmospheric and oceanic chemist is also required. In addition, some part of the response to climate perturbations will arise in the biological world, due to upsetting the balance in the great food web that binds communities together on both the land and the sea. Thus, the problems to be solved are extraordinarily complex and require the efforts of many kinds of scientist.

  20. Diurnal heating of ocean: Experiments and model calculations

    SciTech Connect

    Tsvetkov, A.V.; Kudryavtsev, Y.N.; Grodsky, S.A.

    1994-12-31

    Presented are the results of investigation of the ocean upper layer diurnal heating, when absorption of isolation in the near-surface layer leads to formation of the diurnal thermocline. Turbulence suppression below the heated layer leads to the fact that the impulse incoming from the atmosphere does not propagate below the diurnal thermocline in which main current velocity shears are concentrated. Motion of this layer is determined by wind stress and the Coriolis force. At evening time due to growth of the heating layer depth it starts to decelerate fast. Groups of internal waves are recorded in the diurnal thermocline. The thermocline shear instability may be the source of their generation. Experimental data are analyzed by the model based on the concept of the diurnal thermocline shear instability. The combined analysis permitted us to reveal peculiarities of the heating layer dynamics in wide range of wind velocities and the Coriolis parameter, and also to obtain semi-empirical dependencies appropriate for its realization.

  1. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  2. Assimilation of satellite surface-height anomalies data into a Hybrid Coordinate Ocean Model (HYCOM) over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Tanajura, C. A. S.; Lima, L. N.; Belyaev, K. P.

    2015-09-01

    The data of sea height anomalies calculated along the tracks of the Jason-1 and Jason-2 satellites are assimilated into the HYCOM hydrodynamic ocean model developed at the University of Miami, USA. We used a known method of data assimilation, the so-called ensemble method of the optimal interpolation scheme (EnOI). In this work, we study the influence of the assimilation of sea height anomalies on other variables of the model. The behavior of the time series of the analyzed and predicted values of the model is compared with a reference calculation (free run), i.e., with the behavior of model variables without assimilation but under the same initial and boundary conditions. The results of the simulation are also compared with the independent data of observations on moorings of the Pilot Research Array in the Tropical Atlantic (PIRATA) and the data of the ARGO floats using objective metrics. The investigations demonstrate that data assimilation under specific conditions results in a significant improvement of the 24-h prediction of the ocean state. The experiments also show that the assimilated fields of the ocean level contain a clearly pronounced mesoscale variability; thus they quantitatively differ from the dynamics obtained in the reference experiment.

  3. The Ocean Construct: A Model for Maritime Education

    ERIC Educational Resources Information Center

    Allin, Lawrence C.

    1977-01-01

    Described is an organizational construct to help teachers integrate the oceanographic and maritime disciplines within a comprehensible framework. The construct considers three areas: aquasphere, human adaptation to the ocean, and integrative prospects. (Author/AV)

  4. The DEBOT Model, a New Global Barotropic Ocean Tidal Model: Test Computations and an Application in Related Geophysical Disciplines

    NASA Astrophysics Data System (ADS)

    Einspigel, D.; Sachl, L.; Martinec, Z.

    2014-12-01

    We present the DEBOT model, which is a new global barotropic ocean model. The DEBOT model is primarily designed for modelling of ocean flow generated by the tidal attraction of the Moon and the Sun, however it can be used for other ocean applications where the barotropic model is sufficient, for instance, a tsunami wave propagation. The model has been thoroughly tested by several different methods: 1) synthetic example which involves a tsunami-like wave propagation of an initial Gaussian depression and testing of the conservation of integral invariants, 2) a benchmark study with another barotropic model, the LSGbt model, has been performed and 3) results of realistic simulations have been compared with data from tide gauge measurements around the world. The test computations prove the validity of the numerical code and demonstrate the ability of the DEBOT model to simulate the realistic ocean tides. The DEBOT model will be principaly applied in related geophysical disciplines, for instance, in an investigation of an influence of the ocean tides on the geomagnetic field or the Earth's rotation. A module for modelling of the secondary poloidal magnetic field generated by an ocean flow is already implemented in the DEBOT model and preliminary results will be presented. The future aim is to assimilate magnetic data provided by the Swarm satellite mission into the ocean flow model.

  5. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.

  6. Performance Optimization of NEMO Oceanic Model at High Resolution

    NASA Astrophysics Data System (ADS)

    Epicoco, Italo; Mocavero, Silvia; Aloisio, Giovanni

    2014-05-01

    The NEMO oceanic model is based on the Navier-Stokes equations along with a nonlinear equation of state, which couples the two active tracers (temperature and salinity) to the fluid velocity. The code is written in Fortan 90 and parallelized using MPI. The resolution of the global ocean models used today for climate change studies limits the prediction accuracy. To overcome this limit, a new high-resolution global model, based on NEMO, simulating at 1/16° and 100 vertical levels has been developed at CMCC. The model is computational and memory intensive, so it requires many resources to be run. An optimization activity is needed. The strategy requires a preliminary analysis to highlight scalability bottlenecks. It has been performed on a SandyBridge architecture at CMCC. An efficiency of 48% on 7K cores (the maximum available) has been achieved. The analysis has been also carried out at routine level, so that the improvement actions could be designed for the entire code or for the single kernel. The analysis highlighted for example a loss of performance due to the routine used to implement the north fold algorithm (i.e. handling the points at the north pole of the 3-poles Grids): indeed an optimization of the routine implementation is needed. The folding is achieved considering only the last 4 rows on the top of the global domain and by applying a rotation pivoting on the point in the middle. During the folding, the point on the top left is updated with the value of the point on bottom right and so on. The current version of the parallel algorithm is based on the domain decomposition. Each MPI process takes care of a block of points. Each process can update its points using values belonging to the symmetric process. In the current implementation, each received message is placed in a buffer with a number of elements equal to the total dimension of the global domain. Each process sweeps the entire buffer, but only a part of that computation is really useful for the

  7. Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Irrgang, C.; Saynisch, J.; Thomas, M.

    2016-01-01

    Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.

  8. Global Bathymetric Prediction For Ocean Modeling and Marine Geophysics

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Smith, Walter H. F.; Sichoix, Lydie; Frey, Herbert V. (Technical Monitor)

    2001-01-01

    We proposed to construct a complete bathymetric map of the oceans at a 3-10 km resolution by combining all of the available depth soundings collected over the past 30 years with high resolution marine gravity information provided by the Geosat, ERS-1/2, and Topex/Poseidon altimeters. Detailed bathymetry is essential for understanding physical oceanography and marine geophysics. Currents and tides are controlled by the overall shapes of the ocean basins as well as the smaller sharp ocean ridges and seamounts. Because erosion rates are low in the deep oceans, detailed bathymetry reveals the mantle convection patterns, the plate boundaries, the cooling/subsidence of the oceanic lithosphere, the oceanic plateaus, and the distribution of off-ridge volcanoes. We proposed to: (1) Accumulate all available depth soundings collected over the past 30 years; (2) Use the short wavelength (< 160 km) satellite gravity information to interpolate between sparse ship soundings; (3) Improve the resolution of the marine gravity field using enhanced estimates along repeat altimeter profiles together with the dense altimeter measurements; (4) Refine/improve bathymetric predictions using the improved resolution gravity field and also by investigating computer-intensive methods for bathymetric prediction such as inverse theory; and (5) Produce a 'Globe of the Earth' similar to the globe of Venus prepared by the NASA Magellan investigation. This will also include the best available digital land data.

  9. Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models

    SciTech Connect

    Gleckler, P.J.; Randall, D.A.; Boer, G.

    1994-03-01

    This paper reports on energy fluxes across the surface of the ocean as simulated by fifteen atmospheric general circulation models in which ocean surface temperatures and sea-ice boundaries are prescribed. The oceanic meridional energy transport that would be required to balance these surface fluxes is computed, and is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean energy transport can be affected by the errors in simulated cloud-radiation interactions.

  10. A design and an application of a regional coupled atmosphere-ocean model for tropical cyclone prediction

    NASA Astrophysics Data System (ADS)

    Winterbottom, Henry R.; Uhlhorn, Eric W.; Chassignet, Eric P.

    2012-04-01

    The prediction of tropical cyclone (TC) track has improved greatly in recent decades due in part to the implementation and improvement of numerical weather prediction (NWP) models. However, the prediction of TC intensity using NWP models remains difficult. Several hypotheses have been proposed to explain the factors contributing to the TC intensity prediction errors and one of the leading candidates is the implication of an evolving sea-surface temperature (SST) boundary condition beneath the TC. In this study, a regional scale coupled atmosphere-ocean model is developed using the Advanced Research Weather Research and Forecasting (ARW) model and the HYbrid Coordinate Ocean Model (HYCOM). A coupling algorithm and a methodology to define appropriate ocean initial conditions are provided. Experiments are conducted, during the lifecycle of TC Ike (2008), using both the coupled-model and static (e.g., temporally fixed) SST to illustrate the impacts of the coupled-model for the TC track, intensity, and structure, as well as upon the larger (synoptic) scale. The results from this study suggest that the impact of the evolving SST (e.g., from a coupled atmosphere-ocean model) begin to impact the intensity, size, and thermodynamic structure for TC Ike (2008) at forecast lead-times beyond 48-hours. Further, the forecast trajectories (i.e., tracks) do not illustrate large differences between the non-coupled and coupled-models. Finally, the impact of the SST boundary condition upon TC Ike (2008) appears to be a function of the strength of the atmospheric forcing - in particular the size and intensity of the TC wind field.

  11. Research on Instructional Decision Models. Final Report.

    ERIC Educational Resources Information Center

    Seidel, Robert J.

    Optimization procedures for a computer-assisted instruction (CAI) system were developed using iterative development and tests of a series of instructional decision models (IDM). The result was a total systems effort in which the instruction was carried on by a dialogue between a computerized tutor and the student. A profile of the student, student…

  12. Final Report for CAEL Operational Models Project.

    ERIC Educational Resources Information Center

    Cooperative Assessment of Experiential Learning, Columbia, MD.

    Twelve institutions with experiential learning programs in higher education were selected to develop practical models that could be useful to similar institutions. Attention was to be focused on either or both of two areas of concern for experiential learning programs: the establishment of criterion standards for assessment and the financial…

  13. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Good, M. R.

    1982-01-01

    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields.

  14. Carbon dioxide induced ocean climatic change and tracer experiment with an atmosphere-ocean general circulation model

    SciTech Connect

    Jiang, Xingjian.

    1991-01-01

    The principal objective of this study is to determine whether or not the penetration of a passive tracer is analogous to the penetration of a greenhouse-gas-induced heating. The Atmosphere Ocean General Circulation Model (A-O GCM) has been used to study CO2-induced climate change and the penetration of passive tracers into the world ocean. The present climate and a 2 x CO2 climate have been simulated. The passive tracers tritium, CFC-11, CFC-12 and a 'passive CO2- induced heating' are simulated. The CO2-induced active and passive warmings are larger in the subtropics and high latitudes than in the tropics. The largest difference between the active and passive CO2-induced heatings occur in the North Atlantic deep ocean, with maximum cooling about -1.5C for the active case in layer four of the ocean (1150m). There is no hemispherically asymmetric warming as that found by Manabe et al. (1990) and Stouffer et al. (1990). The convective overturning and large-scale sinking motion are responsible for the large penetration of CO2-induced warming in high latitudes. The CO2-induced circulation changes show that the North Atlantic thermohaline circulation is significantly weakened due to the penetration of CO2-induced heating. Associated with this change, the strength of North Atlantic conveyor belt is reduced, which results in a large warming in the upper ocean and cooling in the deep layers. The characteristic response time ranges from 40-50 years for the active CO2-induced climate change, and 70-160 years for passive CO2-induced climate change. The physical processes controlling the geochemical tracer penetration are very similar to those for the CO2-induced heating. There is not a single tracer which penetrates into the ocean exactly like the active CO2-induced heating in terms of distribution, transport or physical process. CFC's may be the best candidate as a surrogate for the CO2-induced oceanic climate study.

  15. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies

    NASA Astrophysics Data System (ADS)

    Aumont, O.; Ethé, C.; Tagliabue, A.; Bopp, L.; Gehlen, M.

    2015-08-01

    PISCES-v2 (Pelagic Interactions Scheme for Carbon and Ecosystem Studies volume 2) is a biogeochemical model which simulates the lower trophic levels of marine ecosystems (phytoplankton, microzooplankton and mesozooplankton) and the biogeochemical cycles of carbon and of the main nutrients (P, N, Fe, and Si). The model is intended to be used for both regional and global configurations at high or low spatial resolutions as well as for short-term (seasonal, interannual) and long-term (climate change, paleoceanography) analyses. There are 24 prognostic variables (tracers) including two phytoplankton compartments (diatoms and nanophytoplankton), two zooplankton size classes (microzooplankton and mesozooplankton) and a description of the carbonate chemistry. Formulations in PISCES-v2 are based on a mixed Monod-quota formalism. On the one hand, stoichiometry of C / N / P is fixed and growth rate of phytoplankton is limited by the external availability in N, P and Si. On the other hand, the iron and silicon quotas are variable and the growth rate of phytoplankton is limited by the internal availability in Fe. Various parameterizations can be activated in PISCES-v2, setting, for instance, the complexity of iron chemistry or the description of particulate organic materials. So far, PISCES-v2 has been coupled to the Nucleus for European Modelling of the Ocean (NEMO) and Regional Ocean Modeling System (ROMS) systems. A full description of PISCES-v2 and of its optional functionalities is provided here. The results of a quasi-steady-state simulation are presented and evaluated against diverse observational and satellite-derived data. Finally, some of the new functionalities of PISCES-v2 are tested in a series of sensitivity experiments.

  16. A nonlinear convolution model for the evasion of CO2 injected into the deep ocean

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; Archer, David E.

    2004-02-01

    Deep ocean storage of CO2 captured from, for example, flue gases is being considered as a potential response option to global warming concerns. For storage to be effective, CO2 injected into the deep ocean must remain sequestered from the atmosphere for a long time. However, a fraction of CO2 injected into the deep ocean is expected to eventually evade into the atmosphere. This fraction is expected to depend on the time since injection, the location of injection, and the future atmospheric concentration of CO2. We approximate the evasion of injected CO2 at specific locations using a nonlinear convolution model including explicitly the nonlinear response of CO2 solubility to future CO2 concentration and alkalinity and Green's functions for the transport of CO2 from injection locations to the ocean surface as well as alkalinity response to seafloor CaCO3 dissolution. Green's functions are calculated from the results of a three-dimensional model for ocean carbon cycle for impulses of CO2 either released to the atmosphere or injected a locations deep in the Pacific and Atlantic oceans. CO2 transport in the three-dimensional (3-D) model is governed by offline tracer transport in the ocean interior, exchange of CO2 with the atmosphere, and dissolution of ocean sediments. The convolution model is found to accurately approximate results of the 3-D model in test cases including both deep-ocean injection and sediment dissolution. The convolution model allows comparison of the CO2 evasion delay achieved by deep ocean injection with notional scenarios for CO2 stabilization and the time extent of the fossil fuel era.

  17. The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0

    NASA Astrophysics Data System (ADS)

    De Cruz, Lesley; Demaeyer, Jonathan; Vannitsem, Stéphane

    2016-08-01

    This paper describes a reduced-order quasi-geostrophic coupled ocean-atmosphere model that allows for an arbitrary number of atmospheric and oceanic modes to be retained in the spectral decomposition. The modularity of this new model allows one to easily modify the model physics. Using this new model, coined the "Modular Arbitrary-Order Ocean-Atmosphere Model" (MAOOAM), we analyse the dependence of the model dynamics on the truncation level of the spectral expansion, and unveil spurious behaviour that may exist at low resolution by a comparison with the higher-resolution configurations. In particular, we assess the robustness of the coupled low-frequency variability when the number of modes is increased. An "optimal" configuration is proposed for which the ocean resolution is sufficiently high, while the total number of modes is small enough to allow for a tractable and extensive analysis of the dynamics.

  18. Surface Expression Models for Aqueous Oceanic Activity on Titan

    NASA Astrophysics Data System (ADS)

    Clark, B.

    Drawing upon analogs from the rocky planets with geological features, subsurface acquifers and magmatism, the range of surface manifestations of a subsurface ocean on Titan comprise a series of models. Cryovolcanism of aqueous eutectics will produce flows which may be detectable as sporadic outcrops from the hydrocarbon-rich regolith, exhumed by aeolian and/or fluid processes. Solidification of extruded cryomagma, especially if containing a significant water component, should exhibit fractional crystallization of solutes in late-freeze ponds and flow fronts. Abundant higher- Z elements such as Si, S and Fe, as influenced by the Eh-pH field of the liquid phase, might be in evidence, demonstrating communication among the principal mantle components of such bodies. Consequent availability of potential nutrients and chemical energy sources would be a key indicator for habitability by chemoautolithotrophs on Titan. With near-surface mobility and sensing, LIBS as well as active and passive IR mapping spectrometry are all possible in the environment of Titan's lower atmosphere. Although some remote measurements are infeasible because of the atmosphere, near- surface naturally radioactive rock-forming elements such as K, U, and Th could be detected with gamma ray spectrometry. Touch-and-go techniques developed for small- body sampling can provide material for onboard GC, MS, XRD, microscopy and other miniaturized analytical techniques. Surface dwell times of minutes would enable contact XRF with detection of critical element ratio's such as S/Cl, K/Ca, and Mg/Si/Fe, and Raman spectroscopy for organic and mineralogical analysis, . Longer contact times would permit electromagnetic depth sounding. Many IR and particle- detection sensors operate ideally at or near the low temperatures intrinsic to the Titan atmosphere, simplifying those aspects of instrument development. Exploration of Titan by in situ and mobility techniques would capitalize on the investments and lessons

  19. Effect of Ocean Tide Models on the Precise Orbit Determination of Geodetic Satellites

    NASA Astrophysics Data System (ADS)

    Kubo-Oka, T.; Matsumoto, K.; Otsubo, T.; Gotoh, T.

    2005-12-01

    Several ocean tide models are tested with precise observation data of satellite laser ranging to geodetic satellites, Starlette and Stella. Four ocean models, NAO.99b, CSR 3.0 (standard model in IERS Conventions 2003), CSR 4.0, and GOT99.2b were implemented in our orbit analysis software "concerto ver. 4". NAO.99b model was developed by assimilating tidal solutions from TOPEX/POSEIDON altimeter data into hydrodynamical model. Eight constituents (M2, S2, K1, O1, N2, P1, K2, Q1) were taken into account in each ocean tide model. Moreover, eight additional constituents (M1, J1, OO1, 2N2, Mu2, Nu2, L2, T2) can be included in NAO.99b model. Effect of ocean tides on geopotential coefficients were computed to 20th order. SLR data to Starlette and Stella were divided into arcs of 7 days length and 52 arcs (Jan. 2 - Dec. 30, 2004) were analyzed. Using different ocean tide model, orbits of these satellites were determined and weighted rms of postfit residuals are compared. We found that the NAO.99b model with 16 constituents can reduce weighted rms of postfit residuals using to the level of about 6.0 cm (Starlette) and 9.6 cm (Stella). These values are about 3-5 % smaller compared to other ocean tide models.

  20. Mixed boundary conditions versus coupling with an energy-moisture balance model for a zonally averaged ocean climate model

    SciTech Connect

    Bjornsson, H.; Mysak, L.A.; Schmidt, G.A.

    1997-10-01

    The Wright and Stocker oceanic thermohaline circulation model is coupled to a recently developed zonally averaged energy moisture balance model for the atmosphere. The results obtained with this coupled model are compared with those from an ocean-only model that employs mixed boundary conditions. The ocean model geometry uses either one zonally averaged interhemispheric basin (the {open_quotes}Atlantic{close_quotes}) or two zonally averaged basins (roughly approximating the Atlantic and the Pacific Oceans) connected by a parameterized Antarctic Circumpolar Current. The differences in the steady states and their linear stability are examined over a wide range of parameters. The presence of additional feedbacks between the ocean circulation and the atmosphere and hydrological cycle in the coupled model produces significant differences between the latter and the ocean-only model, in both the one-basin and two-basin geometries. The authors conclude that due to the effects produced by the feedbacks in the coupled model, they must have serious reservations about the results concerning long-term climate variability obtained from ocean-only models. Thus, to investigate long-term climatic variability a coupled model is necessary. 31 refs., 15 figs., 7 tabs.

  1. Sensitivity study of subgrid scale ocean mixing under sea ice using a two-column ocean grid in climate model CESM

    NASA Astrophysics Data System (ADS)

    Jin, Meibing; Hutchings, Jennifer; Kawaguchi, Yusuke

    2015-12-01

    Brine drainage from sea ice formation plays a critical role in ocean mixing and seasonal variations of halocline in polar oceans. The horizontal scale of brine drainage and its induced convection is much smaller than a climate model grid and a model tends to produce false ocean mixing when brine drainage is averaged over a grid cell. A two-column ocean grid (TCOG) scheme was implemented in the Community Earth System Model (CESM) using coupled sea ice-ocean model setting to explicitly solve the different vertical mixing in the two sub-columns of one model grid with and without brine rejection. The fraction of grid with brine rejection was tested to be equal to the lead fraction or a small constant number in a series of sensitivity model runs forced by the same atmospheric data from 1978 to 2009. The model results were compared to observations from 29 ice tethered profilers (ITP) in the Arctic Ocean Basin from 2004 to 2009. Compared with the control run using a regular ocean grid, the TCOG simulations showed consistent reduction of model errors in salinity and mixed layer depth (MLD). The model using a small constant fraction grid for brine rejection was found to produce the best model comparison with observations, indicating that the horizontal scale of the brine drainage is very small compared to the sea ice cover and even smaller than the lead fraction. Comparable to models using brine rejection parameterization schemes, TCOG achieved more improvements in salinity but similar in MLD.

  2. Sensitivity of the glacial ocean to Heinrich events from different iceberg sources, as modeled by a coupled atmosphere-iceberg-ocean model

    NASA Astrophysics Data System (ADS)

    Levine, Richard C.; Bigg, Grant R.

    2008-12-01

    We introduce explicit icebergs from a dynamic and thermodynamic iceberg model into an intermediate complexity climate model, which includes the coupled atmosphere-ocean system. This modeling approach allows iceberg meltwater to be injected into the ocean on the basis of thermodynamical considerations along the iceberg trajectories. Icebergs are seeded from known ice sheets in both hemispheres. Adding icebergs to the present-day climate model has a minimal impact, but during the Last Glacial Maximum (LGM), Atlantic overturning strength is reduced by a third, while producing a model state that is consistent with a steady state climate. We test the sensitivity of the model at the LGM to additional Heinrich event-scale fluxes of icebergs from three possible sources: Hudson Strait, the Gulf of Saint Lawrence, and the Norwegian Channel Ice Stream (NCIS). The sensitivity of the ocean is similar for all locations, with differences dominated by the length of the iceberg meltwater pathways to the main ocean convection region. The NCIS events result in more variability and a distinctly different, more northerly, salinity anomaly. We compare these results to a more typical modeling approach, whereby meltwater is injected directly into the ocean at the iceberg source locations, and find that these floods overestimate the oceanic response compared to the iceberg events. Our results suggest that 0.3-0.4 Sv of additional freshwater flux, either as icebergs or freshwater, is required to shut down the North Atlantic meridional overturning, a larger freshwater flux than sometimes suggested because of the localized nature of the release of the freshwater.

  3. Mean Sea Level Derived from Altimetry and Wind-Driven Numerical Models in the Indian Ocean

    NASA Technical Reports Server (NTRS)

    Perigaud, C.; Delecluse, P.; Greiner, E.; Rogel, P.

    1995-01-01

    Wind-driven model skill in simulating sea level variations in the Indian Ocean depends on our knowledge of the mean ocean dynamic topography. This is demonstrated by running the nonlinear or linear version of a shallow-water model driven by observed winds over Geosat and TOPEX periods. Geosat variations are assimilated in the nonlinear shallow-water model with the objective of obtaining topography data.

  4. Analyzing Glacial-Interglacial Ocean Biogeochemical States in the MPI-Earth System Model

    NASA Astrophysics Data System (ADS)

    Heinze, M.; Ilyina, T.

    2015-12-01

    There is still little consensus about the mechanisms causing the glacial - interglacial variationsin atmospheric CO2 concentrations of around 100 ppm. Some of those mechanisms aredriven by alterations in ocean biogeochemical cycles. Hence, it is crucial to understand oceanbiogeochemistry dynamics during glacial-interglacial transitions. Within the German nationalclimate modeling initiative PalMod, aiming at simulating a full glacial cycle (135k - today) intransient mode with a state-of-the-art Earth System Model (ESM), we address the oceanbiogeochemistry cycles using a comprehensive modeling approach. In order to set up themodel we start with ocean only simulations, which are based on the 3-D ocean generalcirculation model MPIOM coupled to the ocean biogeochemistry model HAMOCC.Atmospheric forcing data is derived from a fully coupled LGM simulation including theatmosphere general circulation model ECHAM6. This setup provides us a sophisticatedrepresentation of the ocean biogeochemistry during the LGM without using any kind of datarestoring,to be consistent with the biological, chemical and physical dynamics of the model.We analyze alterations in ocean biogeochemistry during the LGM in comparison to a preindustrialcontrol climate. We discuss and quantify the changes in ocean biogeochemicalcycles between these two states, as well as possible implications for carbon transfer due tochanges in ocean dynamics. In the next steps we will use the ocean biogeochemistry model aspart of the fully coupled MPI-ESM. Our results aim at improving the understanding of glacial- interglacial changes in atmospheric CO2, especially in terms of marine carbon sequestrationand release. The presented work contributes to developing comprehensive ESMs, which arecapable of simulating the climate evolution and the variability during the last glacial cycle.

  5. Climate variability in a low-order coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Roebber, Paul J.

    1995-08-01

    The dynamical behavior of the climate system is investigated through the use of a low-order coupled atmosphere-ocean general circulation model. The goal is to gain some qualitative understanding of how non linear interactions between the individual system components may affect the climate. Both the atmosphere and ocean models are fully dynamic: the former is defined by 3 ordinary differential equations derived from a truncated Fourier series expansion of the mean and perturbation components of the quasi-geostrophic potential vorticity equation, while the latter is specified by 6 ordinary differential equations representing the time-dependent variations of ocean temperature and salinity in a 3-box model of the North Atlantic. Despite the existence of 2 basic equilibrium ocean model responses to perpetual atmospheric conditions, equilibrium states are never attained in the coupled system within 10000years of integration; the deep ocean flow continually adjusts to the atmospheric regime changes associated with particular ocean circulations, which leads to new circulations and new atmospheric regimes. Low-frequency quasi-periodic oscillations about a single state of the thermohaline circulation result from an advective-diffusive process, modulated by the correlation of the atmospheric behavior with the phase of the ocean cycle. The climate is strongly effected by interactions with the ocean, leading to distinct atmospheric patterns for different phases in the oscillations, and a conversion of some of the high-frequency atmospheric signal to lower frequencies. This conversion also results in a measurable ocean response at high frequencies. Furthermore, owing to the richness of the atmospheric response to small modifications in the meridional and zonal gradients in diabatic heating, even modest adjustments in the ocean circulation resulting from interactions with the high-frequency atmospheric component can also lead to climate change over relatively short time periods

  6. Analyzing the Effect of Tropical Cyclones on the Upper Ocean Using an Ocean General Circulation Model with Varying Horizontal Grid Resolution

    NASA Astrophysics Data System (ADS)

    Li, H.; Sriver, R. L.

    2015-12-01

    Tropical cyclones (TCs) have the potential to influence regional and global climate through their interactions with the upper ocean. Here we present results from a suite of ocean-only model experiments featuring the Community Earth System Model (CESM), in which we analyze the effect of tropical cyclone wind forcing on the global ocean using three different horizontal ocean grid resolutions (3˚, 1˚, and 0.1˚). The ocean simulations are forced with identical atmospheric inputs from the Coordinated Ocean-Ice Reference Experiments version 2 (COREv2) normal year forcing conditions, featuring global blended TC winds from a fully-coupled CESM simulation with a 25 km atmosphere [Small et al., 2014]. The simulated TC climatology shows good agreement with observational estimates of annual TC statistics, including annual frequency, intensity distributions, and geographic distributions. Each simulation is 10 years, which includes a 5-year spin up and 5 years of TC-wind forcing. In addition, we conduct corresponding control simulations for each grid resolution configuration without applied TC forcing. We will discuss the TC-induced ocean responses across a variety of spatial and temporal scales. A key highlight of this work is analyzing the effect of ocean horizontal grid resolution on TC-induced ocean responses, particularly at resolutions capable of simulating mesoscale ocean eddies.

  7. Clouds and ocean-atmosphere interactions. Final report, September 15, 1992--September 14, 1995

    SciTech Connect

    Randall, D.A.; Jensen, T.G.

    1995-10-01

    Predictions of global change based on climate models are influencing both national and international policies on energy and the environment. Existing climate models show some skill in simulating the present climate, but suffer from many widely acknowledged deficiencies. Among the most serious problems is the need to apply ``flux corrections`` to prevent the models from drifting away from the observed climate in control runs that do not include external perturbing influences such as increased carbon dioxide (CO{sub 2}) concentrations. The flux corrections required to prevent climate drift are typically comparable in magnitude to the observed fluxes themselves. Although there can be many contributing reasons for the climate drift problem, clouds and their effects on the surface energy budget are among the prime suspects. The authors have conducted a research program designed to investigate global air-sea interaction as it relates to the global warming problem, with special emphasis on the role of clouds. Their research includes model development efforts; application of models to simulation of present and future climates, with comparison to observations wherever possible; and vigorous participation in ongoing efforts to intercompare the present generation of atmospheric general circulation models.

  8. The relationship between sea-level and bottom pressure variability in an eddy permitting ocean model

    NASA Astrophysics Data System (ADS)

    Bingham, Rory J.; Hughes, Chris W.

    2008-02-01

    We investigate the relationship between sea-level (after application of an inverse-barometer correction) and ocean bottom pressure, in an eddy-permitting ocean model. We find the presence of eddies can disrupt this relationship even on timescales as short as 10-20 days, but only in the regions of most energetic eddy variability. Away from eddies, the relationship is similar to that seen in a coarser-resolution model, with a tight relationship between sea-level and bottom pressure at high frequencies, but with significant correlations between sea-level and bottom pressure at interannual timescales seen only in shelf sea regions. In the deep ocean, regions where sea-level and bottom pressure remain related out to the longest timescales are in the Arctic Ocean and regions of the Southern Ocean, where particularly large amplitude barotropic fluctuations are found but where the mesoscale signal is weak.

  9. NEMOTAM: tangent and adjoint models for the ocean modelling platform NEMO

    NASA Astrophysics Data System (ADS)

    Vidard, A.; Bouttier, P.-A.; Vigilant, F.

    2014-10-01

    The tangent linear and adjoint model (TAM) are efficient tools to analyse and to control dynamical systems such as NEMO. They can be involved in a large range of applications such as sensitivity analysis, parameter estimation or the computation of characteristics vectors. TAM is also required by the 4-D-VAR algorithm which is one of the major method in Data Assimilation. This paper describes the development and the validation of the Tangent linear and Adjoint Model for the NEMO ocean modelling platform (NEMOTAM). The diagnostic tools that are available alongside NEMOTAM are detailed and discussed and several applications are also presented.

  10. NEMOTAM: tangent and adjoint models for the ocean modelling platform NEMO

    NASA Astrophysics Data System (ADS)

    Vidard, A.; Bouttier, P.-A.; Vigilant, F.

    2015-04-01

    Tangent linear and adjoint models (TAMs) are efficient tools to analyse and to control dynamical systems such as NEMO. They can be involved in a large range of applications such as sensitivity analysis, parameter estimation or the computation of characteristic vectors. A TAM is also required by the 4D-Var algorithm, which is one of the major methods in data assimilation. This paper describes the development and the validation of the tangent linear and adjoint model for the NEMO ocean modelling platform (NEMOTAM). The diagnostic tools that are available alongside NEMOTAM are detailed and discussed, and several applications are also presented.

  11. Multiple equilibria, natural variability, and climate transitions in an idealized ocean-atmosphere model

    SciTech Connect

    Saravanan, R.; McWilliams, J.C.

    1995-10-01

    An idealized coupled ocean-atmosphere is constructed to study climatic equilibria and variability. The model focuses on the role of large-scale fluid motions in the climate system. The atmospheric component is an eddy-resolving two-level global primitive equation model with simplified physical parameterizations. The oceanic component is a zonally averaged sector model of the thermohaline circulation. The two components exchange heat and freshwater fluxes synchonously. Coupled integrations are carried out over periods of several centuries to identify the equilibrium states of the ocean-atmosphere system. It is shown that there exist at least three types of equilibria, which are distinguished by whether they have upwelling or downwelling in the polar regions. Each oceanic circulation in the coupled model exhibits natural variability on interdecadal and longer timescales. The dominant interdecadal mode of variability is associated with the advection of oceanic temperature anomalies in the sinking regions. The sensitivity of the coupled model to climatic perturbations is studied. A rapid increase in the greenhouse gas concentrations leads to a collapse of the meridional overtuning in the ocean. Introduction of a large positive surface freshwater anomaly in the high latitudes leads to a temporary suppression of the sinking motion, followed by a rapid recovery, due primarily to the high latitude cooling associated with the reduction of oceanic heat transport. In this evolution, the secondary roles played by the atmospheric heat transport and moisture transport in destablizing the thermohaline circulation are compared, and the former is found to be dominant.

  12. Predictive modelling of boiler fouling. Final report.

    SciTech Connect

    Chatwani, A

    1990-12-31

    A spectral element method embodying Large Eddy Simulation based on Re- Normalization Group theory for simulating Sub Grid Scale viscosity was chosen for this work. This method is embodied in a computer code called NEKTON. NEKTON solves the unsteady, 2D or 3D,incompressible Navier Stokes equations by a spectral element method. The code was later extended to include the variable density and multiple reactive species effects at low Mach numbers, and to compute transport of large particles governed by inertia. Transport of small particles is computed by treating them as trace species. Code computations were performed for a number of test conditions typical of flow past a deep tube bank in a boiler. Results indicate qualitatively correct behavior. Predictions of deposition rates and deposit shape evolution also show correct qualitative behavior. These simulations are the first attempts to compute flow field results at realistic flow Reynolds numbers of the order of 10{sup 4}. Code validation was not done; comparison with experiment also could not be made as many phenomenological model parameters, e.g., sticking or erosion probabilities and their dependence on experimental conditions were not known. The predictions however demonstrate the capability to predict fouling from first principles. Further work is needed: use of large or massively parallel machine; code validation; parametric studies, etc.

  13. Global ocean tide models on the eve of Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1993-01-01

    Some existing global ocean tide models that can provide tide corrections to Topex/Poseidon altimeter data are described. Emphasis is given to the Schwiderski and Cartwright-Ray models, as these are the most comprehensive, highest resolution models, but other models that will soon appear are mentioned. Differences between models for M2 often exceed 10 cm over vast stretches of the ocean. Comparisons to 80 selected pelagic and island gauge measurements indicate the Schwiderski model is more accurate for the major solar tides, Cartwright-Ray for the major lunar tides. The adequacy of available tide models for studying basin-scale motions is probably marginal at best.

  14. "One-Stop Shopping" for Ocean Remote-Sensing and Model Data

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Vu, Quoc; Chao, Yi; Li, Zhi-Jin; Choi, Jei-Kook

    2006-01-01

    OurOcean Portal 2.0 (http:// ourocean.jpl.nasa.gov) is a software system designed to enable users to easily gain access to ocean observation data, both remote-sensing and in-situ, configure and run an Ocean Model with observation data assimilated on a remote computer, and visualize both the observation data and the model outputs. At present, the observation data and models focus on the California coastal regions and Prince William Sound in Alaska. This system can be used to perform both real-time and retrospective analyses of remote-sensing data and model outputs. OurOcean Portal 2.0 incorporates state-of-the-art information technologies (IT) such as MySQL database, Java Web Server (Apache/Tomcat), Live Access Server (LAS), interactive graphics with Java Applet at the Client site and MatLab/GMT at the server site, and distributed computing. OurOcean currently serves over 20 real-time or historical ocean data products. The data are served in pre-generated plots or their native data format. For some of the datasets, users can choose different plotting parameters and produce customized graphics. OurOcean also serves 3D Ocean Model outputs generated by ROMS (Regional Ocean Model System) using LAS. The Live Access Server (LAS) software, developed by the Pacific Marine Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), is a configurable Web-server program designed to provide flexible access to geo-referenced scientific data. The model output can be views as plots in horizontal slices, depth profiles or time sequences, or can be downloaded as raw data in different data formats, such as NetCDF, ASCII, Binary, etc. The interactive visualization is provided by graphic software, Ferret, also developed by PMEL. In addition, OurOcean allows users with minimal computing resources to configure and run an Ocean Model with data assimilation on a remote computer. Users may select the forcing input, the data to be assimilated, the

  15. Modeling Studies of the Effects of Winds and Heat Flux on the Tropical Oceans

    NASA Technical Reports Server (NTRS)

    Seager, R.

    1999-01-01

    Over a decade ago, funding from this NASA grant supported the development of the Cane-Zebiak ENSO prediction model which remains in use to this day. It also supported our work developing schemes for modeling the air-sea heat flux in ocean models used for studying climate variability. We introduced a succession of simple boundary layer models that allow the fluxes to be computed internally in the model and avoid the need to specify the atmospheric thermodynamic state. These models have now reached a level of generality that allows modeling of the global, rather than just tropical, ocean, including sea ice cover. The most recent versions of these boundary layer models have been widely distributed around the world and are in use by many ocean modeling groups.

  16. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    PubMed

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible.

  17. Application of a Topological Metric for Assessing Numerical Ocean Models with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Morey, S. L.; Dukhovskoy, D. S.; Hiester, H. R.; Garcia-Pineda, O. G.; MacDonald, I. R.

    2015-12-01

    Satellite-based sensors provide a vast amount of observational data over the world ocean. Active microwave radars measure changes in sea surface height and backscattering from surface waves. Data from passive radiometers sensing emissions in multiple spectral bands can directly measure surface temperature, be combined with other data sources to estimate salinity, or processed to derive estimates of optically significant quantities, such as concentrations of biochemical properties. Estimates of the hydrographic variables can be readily used for assimilation or assessment of hydrodynamic ocean models. Optical data, however, have been underutilized in ocean circulation modeling. Qualitative assessments of oceanic fronts and other features commonly associated with changes in optically significant quantities are often made through visual comparison. This project applies a topological approach, borrowed from the field of computer image recognition, to quantitatively evaluate ocean model simulations of features that are related to quantities inferred from satellite imagery. The Modified Hausdorff Distance (MHD) provides a measure of the similarity of two shapes. Examples of applications of the MHD to assess ocean circulation models are presented. The first application assesses several models' representation of the freshwater plume structure from the Mississippi River, which is associated with a significant expression of color, using a satellite-derived ocean color index. Even though the variables being compared (salinity and ocean color index) differ, the MHD allows contours of the fields to be compared topologically. The second application assesses simulations of surface oil transport driven by winds and ocean model currents using surface oil maps derived from synthetic aperture radar backscatter data. In this case, maps of time composited oil coverage are compared between the simulations and satellite observations.

  18. How well do coupled models replicate ocean energetics relevant to ENSO?

    NASA Astrophysics Data System (ADS)

    Brown, Jaclyn N.; Fedorov, Alexey V.; Guilyardi, Eric

    2011-06-01

    Accurate replication of the processes associated with the energetics of the tropical ocean is necessary if coupled GCMs are to simulate the physics of ENSO correctly, including the transfer of energy from the winds to the ocean thermocline and energy dissipation during the ENSO cycle. Here, we analyze ocean energetics in coupled GCMs in terms of two integral parameters describing net energy loss in the system using the approach recently proposed by Brown and Fedorov (J Clim 23:1563-1580, 2010a) and Fedorov (J Clim 20:1108-1117, 2007). These parameters are (1) the efficiency γ of the conversion of wind power into the buoyancy power that controls the rate of change of the available potential energy (APE) in the ocean and (2) the e-folding rate α that characterizes the damping of APE by turbulent diffusion and other processes. Estimating these two parameters for coupled models reveals potential deficiencies (and large differences) in how state-of-the-art coupled GCMs reproduce the ocean energetics as compared to ocean-only models and data assimilating models. The majority of the coupled models we analyzed show a lower efficiency (values of γ in the range of 10-50% versus 50-60% for ocean-only simulations or reanalysis) and a relatively strong energy damping (values of α-1 in the range 0.4-1 years versus 0.9-1.2 years). These differences in the model energetics appear to reflect differences in the simulated thermal structure of the tropical ocean, the structure of ocean equatorial currents, and deficiencies in the way coupled models simulate ENSO.

  19. Atmosphere, ocean, and land: Critical gaps in Earth system models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Hartley, Dana

    1992-01-01

    We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.

  20. A Reduced Grid Method for a Parallel Global Ocean General Circulation Model

    SciTech Connect

    Wickett, M.E.

    1999-12-01

    A limitation of many explicit finite-difference global climate models is the timestep restriction caused by the decrease in cell size associated with the convergence of meridians near the poles. A computational grid in which the number of cells in the longitudinal direction is reduced toward high-latitudes, keeping the longitudinal width of the resulting cells as uniform as possible and increasing the allowable timestep, is applied to a three-dimensional primitive equation ocean-climate model. This ''reduced'' grid consists of subgrids which interact at interfaces along their northern and southern boundaries, where the resolution changes by a factor of three. Algorithms are developed to extend the finite difference techniques to this interface, focusing on the conservation required to perform long time integrations, while preserving the staggered spatial arrangement of variables and the numerics used on subgrids. The reduced grid eliminates the common alternative of filtering high-frequency modes from the solution at high-latitudes to allow a larger timestep and reduces execution time per model step by roughly 20 percent. The reduced grid model is implemented for parallel computer architectures with two-dimensional domain decomposition and message passing, with speedup results comparable to those of the original model. Both idealized and realistic model runs are presented to show the effect of the interface numerics on the model solution. First, a rectangular, mid-latitude, at-bottomed basin with vertical walls at the boundaries is driven only by surface wind stress to compare three resolutions of the standard grid to reduced grid cases which use various interface conditions. Next, a similar basin with wind stress, heat, and fresh water forcing is used to compare the results of a reduced grid with those of a standard grid result while exercising the full set of model equations. Finally, global model runs, with topography, forcing, and physical parameters similar to

  1. A reduced-grid method for a parallel global ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Wickett, Michael Everett

    A limitation of many explicit finite-difference global climate models is the timestep restriction caused by the decrease in cell size associated with the convergence of meridians near the poles. A computational grid in which the number of cells in the longitudinal direction is reduced toward high- latitudes, keeping the longitudinal width of the resulting cells as uniform as possible and increasing the allowable timestep, is applied to a three- dimensional primitive equation ocean-climate model. This ``reduced'' grid consists of subgrids which interact at interfaces along their northern and southern boundaries, where the resolution changes by a factor of three. Algorithms are developed to extend the finite difference techniques to this interface, focusing on the conservation required to perform long time integrations, while preserving the staggered spatial arrangement of variables and the numerics used on subgrids. The reduced grid eliminates the common alternative of filtering high- frequency modes from the solution at high-latitudes to allow a larger timestep and reduces execution time per model step by roughly 20 percent. The reduced grid model is implemented for parallel computer architectures with two-dimensional domain decomposition and message passing, with speedup results comparable to those of the original model. Both idealized and realistic model runs are presented to show the effect of the interface numerics on the model solution. First, a rectangular, mid-latitude, flat-bottomed basin with vertical walls at the boundaries is driven only by surface wind stress to compare three resolutions of the standard grid to reduced grid cases which use various interface conditions. Next, a similar basin with wind stress, heat, and fresh water forcing is used to compare the results of a reduced grid with those of a standard grid result while exercising the full set of model equations. Finally, global model runs, with topography, forcing, and physical parameters

  2. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    PubMed Central

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-01-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived. PMID:27245575

  3. Multi-model attribution of upper-ocean temperature changes using an isothermal approach.

    PubMed

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  4. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  5. Multi-model attribution of upper-ocean temperature changes using an isothermal approach.

    PubMed

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-01-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived. PMID:27245575

  6. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  7. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Anet, J. G.; Stenke, A.; Raible, C. C.; Rozanov, E.; Brönnimann, S.; Peter, T.; Arfeuille, F. X.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brugnara, Y.; Schmutz, W.

    2014-05-01

    The newly developed atmosphere-ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann-Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600-2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600-1850) the simulated surface temperature trends

  8. A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data

    NASA Astrophysics Data System (ADS)

    Satheesh, S. K.; Ramanathan, V.; Li-Jones, Xu; Lobert, J. M.; Podgorny, I. A.; Prospero, J. M.; Holben, B. N.; Loeb, N. G.

    1999-11-01

    The physical, chemical and radiative properties of aerosols are investigated over the tropical Indian Ocean during the first field phase (FFP) of the international Indian Ocean Experiment. The FFP was conducted during February 20 to March 31, 1998. The results shown here are from the Kaashidhoo Climate Observatory (KCO), a new surface observatory established on the tiny island of Kaashidhoo (4.965°N, 73.466°E) in the Republic of Maldives. From simultaneous measurements of aerosol physical, chemical, and radiative properties and the vertical structure from lidar, we have developed an aerosol model which, in conjunction with a Monte Carlo radiative transfer model, successfully explains (within a few percent) the observed solar radiative fluxes at the surface and at the top of the atmosphere. This agreement demonstrates the fundamental importance of measuring aerosol physical and chemical properties for modeling radiative fluxes. KCO, during the northeast monsoon period considered here, is downwind of the Indian subcontinent and undergoes variations in the aerosol visible optical depth τν from ˜0.1 to 0.4, with a monthly mean of ˜0.2. Lidar data suggest that the aerosol is confined largely to the first 3 kms. Sulfate and ammonium contribute ˜29% to τν; sea-salt and nitrate contributes ˜17%; mineral dust contributes ˜15%; and the inferred soot, organics, and fly ash contribute 11%, 20%, and 8% respectively. We estimate that anthropogenic sources may contribute as much as 65% to the observed τν. We consider both an externally and an internally mixed aerosol model with very little difference between the two in the computed radiative forcing. The observed scattering coefficients are in the upper range of those reported for other oceanic regions, the single-scattering albedos are as low as 0.9, and the Angstrom wavelength exponents of ˜1.2 indicate the abundance of submicron aerosols. In summary, the data and the model confirm the large impact of

  9. Biological production models as elements of coupled, atmosphere-ocean models for climate research

    NASA Technical Reports Server (NTRS)

    Platt, Trevor; Sathyendranath, Shubha

    1991-01-01

    Process models of phytoplankton production are discussed with respect to their suitability for incorporation into global-scale numerical ocean circulation models. Exact solutions are given for integrals over the mixed layer and the day of analytic, wavelength-independent models of primary production. Within this class of model, the bias incurred by using a triangular approximation (rather than a sinusoidal one) to the variation of surface irradiance through the day is computed. Efficient computation algorithms are given for the nonspectral models. More exact calculations require a spectrally sensitive treatment. Such models exist but must be integrated numerically over depth and time. For these integrations, resolution in wavelength, depth, and time are considered and recommendations made for efficient computation. The extrapolation of the one-(spatial)-dimension treatment to large horizontal scale is discussed.

  10. Wave hindcast experiments in the Indian Ocean using MIKE 21 SW model

    NASA Astrophysics Data System (ADS)

    Remya, P. G.; Kumar, Raj; Basu, Sujit; Sarkar, Abhijit

    2012-04-01

    Wave prediction and hindcast studies are important in ocean engineering, coastal infrastructure development and management. In view of sparse and infrequent in-situ observations, model derived hindcast wave data can be used for the assessment of wave climate in offshore and coastal areas. In the present study, MIKE 21 SW Model has been used to carry out wave hindcast experiments in the Indian Ocean. Model runs have been made for the year 2005 using QuickSCAT scatterometer winds blended with ECMWF model winds. In order to study the impact of southern ocean swells, the model has been run in two different domains, with the southern boundary being shifted far south for the Domain 60S model. The model simulated wave parameters have been validated by comparing with buoy and altimeter data and various statistical yardsticks have been employed to quantify the validation. Possible reason for the poorer performance of the model in the Arabian Sea has also been pointed out.

  11. A Realistically Perturbed Atmosphere and Ocean De-Aliasing Model for Future Gravity Mission Simulation Studies

    NASA Astrophysics Data System (ADS)

    Dobslaw, Henryk; Forootan, Ehsan; Bergmann-Wolf, Inga; Neumayer, Karl-Hans; Mayer-Gürr, Torsten; Kusche, Jürgen; Flechtner, Frank

    2015-04-01

    Recently completed performance studies of future gravity mission concepts arrived at sometimes contradicting conclusions about the importance of non-tidal aliasing errors that remain in the finally retrieved gravity field time-series. In those studies, typically a fraction of the differences between two different models of atmosphere and ocean mass variability determined the magnitude of the aliasing errors. Since differences among arbitrary pairs of the numerical models available might lead to widely different aliasing errors and thus conclusions regarding limiting error contributors of a candidate mission, we present here for the first time a version of a realistically perturbed de-aliasing model that is consistent with the updated ESA Earth System Model for gravity mission simulation studies (Dobslaw et al., 2015). The error model is available over the whole 12-year period of the ESA ESM and consists of two parts: (i) a component containing signals from physical processes that are intentionally omitted from de-aliasing models, as for a example, variations in global eustatic sea-level; and (ii) a series of true errors that consist of in total five different components with realistically re-scaled variability at both small and large spatial scales for different frequency bands ranging from sub-daily to sub-monthly periods. Based on a multi-model ensemble of atmosphere and ocean mass variability available to us for the year 2006, we will demonstrate that our re-scaled true errors have plausible magnitudes and correlation characteristics in all frequency bands considered. The realism of the selected scaling coefficients for periods between 1 and 30 days is tested further by means of a variance component estimation based on the constrained daily GRACE solution series ITSG-GRACE2014. Initial full-scale simulation experiments are used to re-assess the relative importance of non-tidal de-aliasing errors for the GRACE-FO mission, which might be subsequently expanded to

  12. Modeled dependence of wind and waves on ocean temperature in tropical cyclones

    NASA Astrophysics Data System (ADS)

    Phibbs, S.; Toumi, R.

    2015-12-01

    A coupled ocean-atmosphere-wave model is used to investigate the sensitivity of surface wind speed and significant wave height to ocean temperature for idealized tropical cyclones (TCs). More intense and larger TCs, with higher waves, form when ocean temperature is increased. The maximum significant wave height increases more than the maximum wind speed for TCs up to hurricane force wind. However, above hurricane force wind the change in maximum wind speed is similar or greater than the change in maximum significant wave height. This can be explained by the wind drag coefficient decreasing as wind speed exceeds hurricane force wind, so that the growth of waves is dampened. The areal footprint of wave height grows considerably more than the maximum as ocean temperature is increased. This suggests a large increase in the surface area of damaging waves generated by TCs may be the dominant impact of a future warmer ocean.

  13. Efficient Flowline Simulations of Ice Shelf-Ocean Interactions: Sensitivity Studies with a Fully Coupled Model

    NASA Technical Reports Server (NTRS)

    Walker, Ryan Thomas; Holland, David; Parizek, Byron R.; Alley, Richard B.; Nowicki, Sophie M. J.; Jenkins, Adrian

    2013-01-01

    Thermodynamic flowline and plume models for the ice shelf-ocean system simplify the ice and ocean dynamics sufficiently to allow extensive exploration of parameters affecting ice-sheet stability while including key physical processes. Comparison between geophysically and laboratory-based treatments of ice-ocean interface thermodynamics shows reasonable agreement between calculated melt rates, except where steep basal slopes and relatively high ocean temperatures are present. Results are especially sensitive to the poorly known drag coefficient, highlighting the need for additional field experiments to constrain its value. These experiments also suggest that if the ice-ocean interface near the grounding line is steeper than some threshold, further steepening of the slope may drive higher entrainment that limits buoyancy, slowing the plume and reducing melting; if confirmed, this will provide a stabilizing feedback on ice sheets under some circumstances.

  14. Estimation of Interbasin Transport Using Ocean Bottom Pressure: Theory and Model for Asian Marginal Seas

    NASA Technical Reports Server (NTRS)

    Song, Y. Tony

    2006-01-01

    The Asian Marginal Seas are interconnected by a number of narrow straits, such as the Makassar Strait connecting the Pacific Ocean with the Indian Ocean, the Luzon Strait connecting the South China Sea with the Pacific Ocean, and the Korea/Tsushima Strait connecting the East China Sea with the Japan/East Sea. Here we propose a method, the combination of the "geostrophic control" formula of Garrett and Toulany (1982) and the "hydraulic control" theory of Whitehead et al. (1974), allowing the use of satellite-observed sea-surface-height (SSH) and ocean-bottom-pressure (OBP) data for estimating interbasin transport. The new method also allows separating the interbasin transport into surface and bottom fluxes that play an important role in maintaining the mass balance of the regional oceans. Comparison with model results demonstrates that the combined method can estimate the seasonal variability of the strait transports and is significantly better than the method of using SSH or OBP alone.

  15. Two-stage models for lunar and terrestrial anorthosites Petrogenesis without a magma ocean

    NASA Astrophysics Data System (ADS)

    Longhi, J.; Ashwal, L. D.

    1985-02-01

    The most popular model of early lunar differentiation is that of a globe-encircling magma ocean tens, if not hundreds, of kilometers deep which produced a floating anorthositic crust and a complementary plagioclase-depleted interior during solidification. Shirley (1983) attempted to show a process by which some of the oldest rocks, lunar ferroan anorthosites (LFA), might have formed from a partially molten 'magma ocean'. The present investigation is concerned with a process by which ferroan anorthosites might have formed without a magma ocean. Attention is given to the magma ocean hypothesis, a hypothesis proposed by Wetherill (1975) regarding a petrogenesis without a magma ocean, two-stage lunar anorthosites, and terrestrial anorthosites.

  16. Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake.

    PubMed

    Brischoux, François; Cotté, Cédric; Lillywhite, Harvey B; Bailleul, Frédéric; Lalire, Maxime; Gaspar, Philippe

    2016-08-01

    It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large. PMID:27555651

  17. Modeled dependence of wind and waves on ocean temperature in tropical cyclones

    NASA Astrophysics Data System (ADS)

    Phibbs, Samuel; Toumi, Ralf

    2014-10-01

    A coupled ocean-atmosphere-wave model is used to investigate the sensitivity of surface wind speed and significant wave height to ocean temperature for idealized tropical cyclones (TCs). More intense and larger TCs, with higher waves, form when ocean temperature is increased. The maximum significant wave height increases more than the maximum wind speed for TCs up to hurricane force wind. However, above hurricane force wind the change in maximum wind speed is similar or greater than the change in maximum significant wave height. This can be explained by the wind drag coefficient decreasing as wind speed exceeds hurricane force wind, so that the growth of waves is dampened. The areal footprint of wave height grows considerably more than the maximum as ocean temperature is increased. This suggests a large increase in the surface area of damaging waves generated by TCs may be the dominant impact of a future warmer ocean.

  18. Scale Interactions by physics in a Simplified Multiscale Coupled Atmosphere-Ocean nonlinear model

    NASA Astrophysics Data System (ADS)

    Ramirez, E.; Dias, P. L. D. S.; Raupp, C. F. M.; Ramirez Gutierrez, E. M. A.

    2015-12-01

    A simplified multiscale model of the interactions between the atmosphere and ocean is developed. Two coupled nonlinear equatorial β-plane shallow water equations are used. The nonlinearities are of two types: advective and atmosphere-ocean coupling related. To mimic the main differences between the fast-atmosphere and the slow-ocean, multi-space and multi-time scalings are adopted. Three possible regimes have been discussed: intradiurnal/synoptic/intraseasonal (ISIn), synoptic/intraseasonal/interannual-El Niño (SInEN) and intraseasonal/El Niño/decadal (InEND) regimes. Special attention is given to the SInEN regime, where simplified physical parameterizations for the atmosphere-ocean coupling are developed. In this regime, the synoptic scale is the fastest atmospheric scale, the intraseasonal is the intermediate atmosphere-ocean coupling scale and the El Niño refers to the slowest inter-annual ocean scale. Analytical solutions of the SInEN equations reveal that the slow wave amplitude evolution depends on both types of nonlinearities. Nonlinear interactions of synoptic scale atmospheric waves force intraseasonal variability not only in the atmosphere but also in the ocean through wind stress. Intraseasonal ocean temperature perturbations coupled with the atmosphere through evaporation force higher order atmospheric variability and the wave-convection coupling provides another source of higher order atmospheric variability. In the ocean, nonlinear interactions of intraseasonal ocean perturbations force interannual oceanic variability. The slowest inter-annual variability in the SInEN regime is associated with either nonlinear wind stress and advective nonlinearity.

  19. Modelling Ocean Dissipation in Icy Satellites: A Comparison of Linear and Quadratic Friction

    NASA Astrophysics Data System (ADS)

    Hay, H.; Matsuyama, I.

    2015-12-01

    Although subsurface oceans are confirmed in Europa, Ganymede, Callisto, and strongly suspected in Enceladus and Titan, the exact mechanism required to heat and maintain these liquid reservoirs over Solar System history remains a mystery. Radiogenic heating can supply enough energy for large satellites whereas tidal dissipation provides the best explanation for the presence of oceans in small icy satellites. The amount of thermal energy actually contributed to the interiors of these icy satellites through oceanic tidal dissipation is largely unquantified. Presented here is a numerical model that builds upon previous work for quantifying tidally dissipated energy in the subsurface oceans of the icy satellites. Recent semi-analytical models (Tyler, 2008 and Matsuyama, 2014) have solved the Laplace Tidal Equations to estimate the time averaged energy flux over an orbital period in icy satellite oceans, neglecting the presence of a solid icy shell. These models are only able to consider linear Rayleigh friction. The numerical model presented here is compared to one of these semi-analytical models, finding excellent agreement between velocity and displacement solutions for all three terms to the tidal potential. Time averaged energy flux is within 2-6% of the analytical values. Quadratic (bottom) friction is then incorporated into the model, replacing linear friction. This approach is commonly applied to terrestrial ocean dissipation studies where dissipation scales nonlinearly with velocity. A suite of simulations are also run for the quadratic friction case which are then compared to and analysed against recent scaling laws developed by Chen and Nimmo (2013).

  20. Tuning and assessment of the HYCOM-NORWECOM V2.1 biogeochemical modeling system for the North Atlantic and Arctic oceans

    NASA Astrophysics Data System (ADS)

    Samuelsen, A.; Hansen, C.; Wehde, H.

    2015-07-01

    The HYCOM-NORWECOM (HYbrid Coordinate Ocean Model-NORWegian ECOlogical Model) modeling system is used both for basic research and as a part of the forecasting system for the Arctic Marine Forecasting Centre through the MyOcean project. Here we present a revised version of this model. The present model, as well as the sensitivity simulations leading up to this version, have been compared to a data set of in situ measurements of nutrient and chlorophyll from the Norwegian Sea and the Atlantic sector of the Arctic Ocean. The model revisions having the most impact included adding diatoms to the diet of microzooplankton, increasing microzooplankton grazing rate and decreasing the silicate-to-nitrate ratio in diatoms. Model runs are performed both with a coarse- (~ 50 km) and higher-resolution (~ 15 km) model configuration, both covering the North Atlantic and Arctic oceans. While the new model formulation improves the results in both the coarse- and high-resolution model, the nutrient bias is smaller in the high-resolution model, probably as a result of the better resolution of the main processes and improved circulation. The final revised version delivers satisfactory results for all three nutrients as well as improved results for chlorophyll in terms of the annual cycle amplitude. However, for chlorophyll the correlation with in situ data remains relatively low. Besides the large uncertainties associated with observational data this is possibly caused by the fact that constant C:N- and Chl:N ratios are implemented in the model.

  1. Dynamics and Thermodynamics of a Warming Event in a Coupled Tropical Atmosphere-Ocean Model.

    NASA Astrophysics Data System (ADS)

    Battisti, David S.

    1988-10-01

    , even for a basin the size of the Pacific. The model results indicate that shortly after the initial set of gravest mode Rossby reflections on the western boundary, the instability growth is already being substantially moderated by the equatorial wave processes in the ocean. Thus the system is oscillatory around a single basic state.Of the Rossby waves produced in the central Pacific by the warm event, only the two gravest mode symmetric modes are important in the reflection process, which produce the Kelvin waves that terminate the warm event. In nature, the actual western boundary for the equatorial Pacific wave guide is very ambiguous. Calculations indicate, however, that efficient reflection of the gravest symmetric Rossby waves from a more realistic boundary than the meridional wall in the model is possible. Finally, if the model is indeed simulating the correct processes controlling ENSO events, the nature of the instability mechanism that leads to growth and the wave-induced termination of the model warm event suggests that, for realistic instability growth rates for the coupled equatorial ocean-atmosphere system, interannual variability analogous to ENSO should not be possible in equatorial basins significantly smaller than the Pacific.

  2. Tracking the long-distance dispersal of marine organisms: sensitivity to ocean model resolution.

    PubMed

    Putman, Nathan F; He, Ruoying

    2013-04-01

    Ocean circulation models are widely used to simulate organism transport in the open sea, where challenges of directly tracking organisms across vast spatial and temporal scales are daunting. Many recent studies tout the use of 'high-resolution' models, which are forced with atmospheric data on the scale of several hours and integrated with a time step of several minutes or seconds. However, in many cases, the model's outputs that are used to simulate organism movement have been averaged to considerably coarser resolutions (e.g. monthly mean velocity fields). To examine the sensitivity of tracking results to ocean circulation model output resolution, we took the native model output of one of the most sophisticated ocean circulation models available, the Global Hybrid Coordinate Ocean Model, and averaged it to commonly implemented spatial and temporal resolutions in studies of basin-scale dispersal. Comparisons between simulated particle trajectories and in situ near-surface drifter trajectories indicated that 'over averaging' model output yields predictions inconsistent with observations. Further analyses focused on the dispersal of juvenile sea turtles indicate that very different inferences regarding the pelagic ecology of these animals are obtained depending on the resolution of model output. We conclude that physical processes occurring at the scale of days and tens of kilometres should be preserved in ocean circulation model output to realistically depict the movement marine organisms and the resulting ecological and evolutionary processes.

  3. In Situ Eddy Analysis in a High-Resolution Ocean Climate Model.

    PubMed

    Woodring, Jonathan; Petersen, Mark; Schmeißer, Andre; Patchett, John; Ahrens, James; Hagen, Hans

    2016-01-01

    An eddy is a feature associated with a rotating body of fluid, surrounded by a ring of shearing fluid. In the ocean, eddies are 10 to 150 km in diameter, are spawned by boundary currents and baroclinic instabilities, may live for hundreds of days, and travel for hundreds of kilometers. Eddies are important in climate studies because they transport heat, salt, and nutrients through the world's oceans and are vessels of biological productivity. The study of eddies in global ocean-climate models requires large-scale, high-resolution simulations. This poses a problem for feasible (timely) eddy analysis, as ocean simulations generate massive amounts of data, causing a bottleneck for traditional analysis workflows. To enable eddy studies, we have developed an in situ workflow for the quantitative and qualitative analysis of MPAS-Ocean, a high-resolution ocean climate model, in collaboration with the ocean model research and development process. Planned eddy analysis at high spatial and temporal resolutions will not be possible with a postprocessing workflow due to various constraints, such as storage size and I/O time, but the in situ workflow enables it and scales well to ten-thousand processing elements. PMID:26353372

  4. In Situ Eddy Analysis in a High-Resolution Ocean Climate Model.

    PubMed

    Woodring, Jonathan; Petersen, Mark; Schmeißer, Andre; Patchett, John; Ahrens, James; Hagen, Hans

    2016-01-01

    An eddy is a feature associated with a rotating body of fluid, surrounded by a ring of shearing fluid. In the ocean, eddies are 10 to 150 km in diameter, are spawned by boundary currents and baroclinic instabilities, may live for hundreds of days, and travel for hundreds of kilometers. Eddies are important in climate studies because they transport heat, salt, and nutrients through the world's oceans and are vessels of biological productivity. The study of eddies in global ocean-climate models requires large-scale, high-resolution simulations. This poses a problem for feasible (timely) eddy analysis, as ocean simulations generate massive amounts of data, causing a bottleneck for traditional analysis workflows. To enable eddy studies, we have developed an in situ workflow for the quantitative and qualitative analysis of MPAS-Ocean, a high-resolution ocean climate model, in collaboration with the ocean model research and development process. Planned eddy analysis at high spatial and temporal resolutions will not be possible with a postprocessing workflow due to various constraints, such as storage size and I/O time, but the in situ workflow enables it and scales well to ten-thousand processing elements.

  5. A survey of models for the prediction of ambient ocean noise: Circa 1995

    SciTech Connect

    Doolittle, R.

    1996-01-01

    The state of the art of model development for application to computer studies of undersea search systems utilizing acoustics is surveyed in this document. Due to the demands for surveillance of submarines operating in ocean basins, the development of noise models for application in deep oceans is fairly advanced and somewhat generic. This is due to the deep sound channel, discovered during World War II, which when present allows for long-range sound propagation with little or no interaction with the bottom. Exceptions to this channel, also well understood, are found in both the high latitudes where the sound is upward refracting and in tropical ocean areas with downward refracting sound transmission. The controlling parameter is the sound speed as a function of depth within the ocean, the sound speed profile. When independent of range, this profile may be converted to a noise-versus-depth profile with well-validated consequences for deep-ocean ambient noise. When considering ocean areas of shallow water, the littoral regions, the idea of a genenic ocean channel advisedly is abandoned. The locally unique nature of both the noise production mechanisms and of the channel carrying the sound, obviates the generic treatment. Nevertheless, idealizations of this case exist and promote the understanding if not the exact predictability of the statistics of shallow water ambient noise. Some examples of these models are given in this document.

  6. Global warming and changes in ocean circulation

    SciTech Connect

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  7. Modelling the effect of boundary scavenging on Thorium and Protactinium profiles in the ocean

    NASA Astrophysics Data System (ADS)

    Roy-Barman, M.

    2009-07-01

    The "boundary scavenging" box model is a cornerstone of our understanding of the particle-reactive radionuclide fluxes between the open ocean and the ocean margins. However, it does not describe the radionuclide profiles in the water column. Here, I present the transport-reaction equations for radionuclides transported vertically by reversible scavenging on settling particles and laterally by horizontal currents between the margin and the open ocean. Analytical solutions of these equations are compared with existing data. In the Pacific Ocean, the model produces "almost" linear 230Th profiles (as observed in the data) despite lateral transport. However, omitting lateral transport biased the 230Th based particle flux estimates by as much as 50%. 231Pa profiles are well reproduced in the whole water column of the Pacific Margin and from the surface down to 3000 m in the Pacific subtropical gyre. Enhanced bottom scavenging or inflow of 231Pa-poor equatorial water may account for the model-data discrepancy below 3000 m. The lithogenic 232Th is modelled using the same transport parameters as 230Th but a different source function. The main source of 232Th scavenged in the open Pacific is advection from the ocean margin, whereas a net flux of 230Th produced in the open Pacific is advected and scavenged at the margin, illustrating boundary exchange. In the Arctic Ocean, the model reproduces 230Th measured profiles that the uni-dimensional scavenging model or the scavenging-ventilation model failed to explain. Moreover, if lateral transport is ignored, the 230Th based particle settling speed may by underestimated by a factor 4 at the Arctic Ocean margin. The very low scavenging rate in the open Arctic Ocean combined with the enhanced scavenging at the margin accounts for the lack of high 231Pa/230Th ratio in arctic sediments.

  8. Modelling the effect of boundary scavenging on Thorium and Protactinium profiles in the ocean

    NASA Astrophysics Data System (ADS)

    Roy-Barman, M.

    2009-12-01

    The "boundary scavenging" box model is a cornerstone of our understanding of the particle-reactive radionuclide fluxes between the open ocean and the ocean margins. However, it does not describe the radionuclide profiles in the water column. Here, I present the transport-reaction equations for radionuclides transported vertically by reversible scavenging on settling particles and laterally by horizontal currents between the margin and the open ocean. Analytical solutions of these equations are compared with existing data. In the Pacific Ocean, the model produces "almost" linear 230Th profiles (as observed in the data) despite lateral transport. However, omitting lateral transport biaises the 230Th based particle flux estimates by as much as 50%. 231Pa profiles are well reproduced in the whole water column of the Pacific Margin and from the surface down to 3000 m in the Pacific subtropical gyre. Enhanced bottom scavenging or inflow of 231Pa-poor equatorial water may account for the model-data discrepancy below 3000 m. The lithogenic 232Th is modelled using the same transport parameters as 230Th but a different source function. The main source of the 232Th scavenged in the open Pacific is advection from the ocean margin, whereas a net flux of 230Th produced in the open Pacific is advected and scavenged at the margin, illustrating boundary exchange. In the Arctic Ocean, the model reproduces 230Th measured profiles that the uni-dimensional scavenging model or the scavenging-ventilation model failed to explain. Moreover, if lateral transport is ignored, the 230Th based particle settling speed may by underestimated by a factor 4 at the Arctic Ocean margin. The very low scavenging rate in the open Arctic Ocean combined with the enhanced scavenging at the margin accounts for the lack of high 231Pa/230Th ratio in arctic sediments.

  9. Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data

    NASA Astrophysics Data System (ADS)

    Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan

    2016-04-01

    There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.

  10. Ocean-Atmosphere Coupled Model Simulations of Precipitation in the Central Andes

    NASA Technical Reports Server (NTRS)

    Nicholls, Stephen D.; Mohr, Karen I.

    2015-01-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. In addition, South American meteorology and climate are also made further complicated by ENSO, a powerful coupled ocean-atmosphere phenomenon. Modelling studies in this region have typically resorted to either atmospheric mesoscale or atmosphere-ocean coupled global climate models. The latter offers full physics and high spatial resolution, but it is computationally inefficient typically lack an interactive ocean, whereas the former offers high computational efficiency and ocean-atmosphere coupling, but it lacks adequate spatial and temporal resolution to adequate resolve the complex orography and explicitly simulate precipitation. Explicit simulation of precipitation is vital in the Central Andes where rainfall rates are light (0.5-5 mm hr-1), there is strong seasonality, and most precipitation is associated with weak mesoscale-organized convection. Recent increases in both computational power and model development have led to the advent of coupled ocean-atmosphere mesoscale models for both weather and climate study applications. These modelling systems, while computationally expensive, include two-way ocean-atmosphere coupling, high resolution, and explicit simulation of precipitation. In this study, we use the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), a fully-coupled mesoscale atmosphere-ocean modeling system. Previous work has shown COAWST to reasonably simulate the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data when ECMWF interim analysis data were used for boundary conditions on a 27-9-km grid configuration (Outer grid extent: 60.4S to 17.7N and 118.6W to 17.4W).

  11. Non-local ocean mixing model and a new plume model for deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    Turbulent fluxes can be represented by a diffusivity tensor, the symmetric part of which describes " turbulent diffusion" while the anti-symmetric part describes " advection". Diffusion is a local process in the sense that it depends only on the local gradients of the mean fields while advection is non-local for it is represented by an integral over all length scales (all eddies) that can "fit" from say the bottom of the physical domain to the z where the fluxes are computed. In the ocean, there are two main regimes where non-local transport is important. One regime is where storms release a sudden burst of mechanical energy to the ocean surface that is then transported downward by energetic eddies that deepen the mixed layer. Even relatively simple non-local models yield results considerably more realistic than those of local models. The second regime is deep convection (DC) caused by loss of surface buoyancy, the description of which is required for a reliable assessment of water masses formation. At present, there is no reliable model for either of these non-local regimes individually or much less a formalism capable of accounting for both regimes simultaneously. The goal of this paper is to present a formalism that provides the expressions for the non-local fluxes for momentum, heat and salinity encompassing both cases. Since the resulting number of dynamic equations involves is however large, we work out two sub-models, one when only shear must be treated non-locally (e.g., when storms release mechanical energy) and one when only buoyancy is to be treated non-locally (the DC case). We employ the Reynolds Stress formalism in which non-locality is represented by the third-order moments which in turn depend on the fourth-order moments for which we employ a new model that has been tested against LES data, aircraft data and a full PBL simulation. For the DC case, we rewrite the non-local model in terms of Plumes since thus far the only non-local model used to treat

  12. A model of ocean basin crustal magnetization appropriate for satellite elevation anomalies

    NASA Technical Reports Server (NTRS)

    Thomas, Herman H.

    1987-01-01

    A model of ocean basin crustal magnetization measured at satellite altitudes is developed which will serve both as background to which anomalous magnetizations can be contrasted and as a beginning point for studies of tectonic modification of normal ocean crust. The model is based on published data concerned with the petrology and magnetization of the ocean crust and consists of viscous magnetization and induced magnetization estimated for individual crustal layers. Thermal remanent magnetization and chemical remanent magnetization are excluded from the model because seafloor spreading anomalies are too short in wavelength to be resolved at satellite altitudes. The exception to this generalization is found at the oceanic magnetic quiet zones where thermal remanent magnetization and chemical remanent magnetization must be considered along with viscous magnetization and induced magnetization.

  13. MJO simulation in a cloud-system-resolving global ocean-atmosphere coupled model

    NASA Astrophysics Data System (ADS)

    Sasaki, Wataru; Onishi, Ryo; Fuchigami, Hiromitsu; Goto, Koji; Nishikawa, Shiro; Ishikawa, Yoichi; Takahashi, Keiko

    2016-09-01

    An observed Madden-Julian Oscillation (MJO) propagating from the central Indian Ocean to the western Pacific from 15 December 2006 to 10 January 2007 was successfully simulated by a cloud-system-resolving global ocean-atmosphere coupled model without parameterization of cumulus convection. We found that the ocean coupling has significant impacts on the MJO simulation, e.g., strength of the moisture convergence, and the timing and strength of the westerly wind burst over the Maritime Continent. The model also generally well simulated the decay of the MJO in the western Pacific, as well as the changes in sea surface temperature. These results demonstrate that the cloud-system-resolving global ocean-atmosphere coupled model can be used for realistic MJO simulation.

  14. STOIC: An Assessment of Coupled Model Climatology and Variability in Tropical Ocean Regions

    SciTech Connect

    Davey, M.K.; Sperber, K.R.; Huddleston, M

    2000-08-30

    The tropics are regions of strong ocean-atmosphere interaction on seasonal and interannual timescales, so a good representation of observed tropical behavior is a desirable objective for coupled ocean-atmosphere general circulation models (CGCMs). To broaden and update previous assessments (Mechoso et al. 1995, Neelin et al. 1992), two complementary projects were initiated by the CLIVAR Working Group on Seasonal to Interannual Prediction (WGSIP): the El Nino Simulation Intercomparison Project (ENSIP, by Mojib Latif) and STOIC (Study of Tropical Oceans In Coupled models). The aim was to compare models against observations to identify common weaknesses and strengths. Results from ENSIP concentrating on the equatorial Pacific have been described by Latif et al. (2000), hereafter ENSIP2000. A detailed report on STOIC is available via anonymous ftp at email.meto.gov.uk/pub/cr/ ''stoic'' and is summarized in Davey et al. (2000). The STOIC analyses extend beyond the equatorial Pacific, to examine behavior in all three tropical ocean regions.

  15. Sensitivity studies with a coupled ice-ocean model of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.

    1983-01-01

    An analytical coupled ice-ocean model is considered which is forced by a specified wind stress acting on the open ocean as well as the ice. The analysis supports the conjecture that the upwelling dynamics at ice edges can be understood by means of a simple analytical model. In similarity with coastal problems it is shown that the ice edge upwelling is determined by the net mass flux at the boundaries of the considered region. The model is used to study the sensitivity of the upwelling dynamics in the marginal ice zone to variation in the controlling parameters. These parameters consist of combinations of the drag coefficients used in the parameterization of the stresses on the three interfaces atmosphere-ice, atmosphere-ocean, and ice-ocean. The response is shown to be sensitive to variations in these parameters in that one set of parameters may give upwelling while a slightly different set of parameters may give downwelling.

  16. Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models

    SciTech Connect

    Gleckler, P.J.; Randall, D.A.; Boer, G.

    1995-04-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects to clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmospheric-ocean general circulation models. 16 refs., 3 figs.

  17. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  18. M2, S2, K1 models of the global ocean tide

    NASA Technical Reports Server (NTRS)

    Parke, M. E.; Hendershott, M. C.

    1979-01-01

    Ocean tidal signals appear in many geophysical measurements. Geophysicists need realistic tidal models to aid in interpretation of their data. Because of the closeness to resonance of dissipationless ocean tides, it is difficult for numerical models to correctly represent the actual open ocean tide. As an approximate solution to this problem, test functions derived by solving Laplace's Tidal Equations with ocean loading and self gravitation are used as a basis for least squares dynamic interpolation of coastal and island tidal data for the constituents M2, S2, and Kl. The resulting representations of the global tide are stable over at least a ?5% variation in the mean depth of the model basin, and they conserve mass. Maps of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each contituent are presented.

  19. Ocean tide models for satellite geodesy and Earth rotation

    NASA Technical Reports Server (NTRS)

    Dickman, Steven R.

    1991-01-01

    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  20. Near-surface ocean velocity from infrared images: Global Optimal Solution to an inverse model

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Mied, Richard P.; Shen, Colin Y.

    2008-10-01

    We address the problem of obtaining ocean surface velocities from sequences of thermal (AVHRR) space-borne images by inverting the heat conservation equation (including sources of surface heat fluxes and vertical entrainment). We demonstrate the utility of the technique by deriving surface velocities from (1) The motion of a synthetic surface tracer in a numerical model and (2) a sequence of five actual AVHRR images from 1 day. Typical formulations of this tracer inversion problem yield too few equations at each pixel, which is often remedied by imposing additional constraints (e.g., horizontal divergence, vorticity, and energy). In contrast, we propose an alternate strategy to convert the underdetermined equation set to an overdetermined one. We divide the image scene into many subarrays and define velocities and sources within each subarray using bilinear expressions in terms of the corner points (called knots). In turn, all velocities and sources on the knots can be determined by seeking an optimum solution to these linear equations over the large scale, which we call the Global Optimal Solution (GOS). We test the accuracy of the GOS by contaminating the model output with up to 10% white noise but find that filtering the data with a Gaussian convolution filter yields velocities nearly indistinguishable from those without the added noise. We compare the GOS velocity fields with those from the numerical model and from the Maximum Cross Correlation (MCC) technique. A histogram of the difference between GOS and numerical model velocities is narrower and more peaked than the similar comparison with MCC, irrespective of the time interval (Δt = 2 or 4 h) between images. The calculation of the root mean square error difference between the GOS (and MCC) results and the model velocities indicates that the GOS/model error is only half that of the MCC/model error irrespective of the time interval (Δt = 2 or 4 h) between images. Finally, the application of the technique to

  1. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  2. A conceptual model of ocean freshwater flux derived from sea surface salinity

    NASA Astrophysics Data System (ADS)

    Nieves, V.; Wang, J.; Willis, J. K.

    2014-09-01

    A conceptual model is proposed to express freshwater flux (evaporation minus precipitation) as a function of sea surface salinity (and vice versa). The model is formulated using an idealized one-dimensional diffusion equation for the ocean surface layer. It is shown to provide good agreement with existing freshwater flux estimates and salinity observations. It also has the potential to enhance our capability of monitoring and modeling global freshwater fluxes and salinity as a data retrieval algorithm for remote sensing. The model may improve physical parameterization in coupled ocean-atmosphere models to study the global water cycle.

  3. Interannual variability of CFC-11 absorption by the ocean: an offline model study

    NASA Astrophysics Data System (ADS)

    Valsala, Vinu; Alsibai, Hayyan M.; Ikeda, Motoyoshi; Maksyutov, Shamil

    2011-04-01

    The global ocean Chlorofluorocarbon (CFC-11) was simulated in an offline model driven by re-analysis ocean currents in order to identify the mechanisms of interannual to interdecadal variability of air-sea CFC fluxes. The model was forced with the observed anthropogenic perturbations of atmospheric CFC-11 from the post industrial period (1938) following the OCMIP-II flux protocols along with the observed winds from 1960 to 1999 in the formulation of surface gas exchanges. The model ocean CFC-11 inventories, at the end of 1990s, accounted approximately 1% of the total atmospheric CFC-11, which is consistent with the corresponding observations. The mid-to-high latitude oceans were venue for strong (weak) oceanic sinks (sources) of CFC-11 during the winter (summer) months. The Southern Ocean (south of 40°S) and the North Atlantic (north of 35°N) provided two largest sinks of CFC-11, through which 31.4 and 14.6% of the global ocean CFC-11 entered, respectively. The eastern tropical Pacific Ocean exhibited large interannual variability of CFC-11 flux with a strong (weak) sink during La Niña (El Niño) years and represented 36% of the global CFC-11 flux variability. The North Atlantic and Southern Ocean were found as regions of large sink efficiency: a capacity to sink more CFC than outsource, although it reduced by 80 and 70%, respectively, in the last 40 years compared to 1960. The sink to source ratio of global ocean CFC-11 fluxes were reduced from 90 to 50% in the last 40 years. This indicates a saturation of CFC in the above-thermocline subsurface that makes the upper ocean less efficient in absorbing CFC in recent decades. A positive trend in CFC sink is now limited to the Southern Ocean, central tropical Pacific and western boundary current regions which possess active upwelling of old water with long time since last atmospheric contact. However, a globally averaged trend was a reduced CFC-11 sink, by emitting 30% of the total ocean CFC-11 that was absorbed

  4. A new high frequency Earth rotation model based on an empirical ocean tide model from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Madzak, Matthias; Böhm, Sigrid; Böhm, Johannes; Bosch, Wolfgang; Hagedoorn, Jan; Schuh, Harald

    2014-05-01

    A new model for Earth rotation variations based on ocean tide models is highly desirable in order to close the gap between geophysical Earth rotation models and geodetic observations. The current high frequency Earth rotation model mentioned in the IERS Conventions 2010 and thus used by most analysis institutions was developed in 1994. Since then several satellite missions have collected lots of altimetry data and were used to obtain new ocean tide models. Due to the increase of accuracy and resolution of these models, we will develop an improved Earth rotation model for (sub-) daily periods. In order to reduce (hydrodynamic) modeling effects, we use the empirical ocean tide model EOT11a, provided by DGFI, Munich. Global oceanic currents, which are required for ocean tidal angular momentum but not included in empirical models, are obtained using a linearized and simplified Navier-Stokes equation (Ray, 2001). We compare the new model with the model from the IERS Conventions 2010 as well as with an empirical Earth rotation model (Artz et al., 2011) and show the expected differences in the analysis of VLBI observations. For this purpose we use the Vienna VLBI Software (VieVS).

  5. Ocean tides

    NASA Technical Reports Server (NTRS)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  6. Eddy-resolving 1/10° model of the World Ocean

    NASA Astrophysics Data System (ADS)

    Ibrayev, R. A.; Khabeev, R. N.; Ushakov, K. V.

    2012-02-01

    The first results on simulating the intra-annual variability of the World Ocean circulation by use of the eddy-resolving model are considered. For this purpose, a model of the World Ocean with a 1/10° horizontal resolution and 49 vertical levels was developed (a 1/10 × 1/10 × 49 model of the World Ocean). This model is based on the traditional system of three-dimensional equations of the large-scale dynamics of the ocean and boundary conditions with an explicit allowance for water fluxes on the free surface of the ocean. The equations are written in the tripolar coordinate system. The numerical method is based on the separation of the barotropic and baroclinic components of the solution. Discretization in time is implemented using explicit schemes allowing effective parallelization for a large number of processors. The model uses the sub-models of the boundary layer of the atmosphere and the submodel of sea-ice thermodynamics. The model of the World Ocean was developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS) and the P.P. Shirshov Institute of Oceanogy (IO RAS). The formulation of the problem of simulating the intra-annual variability of thermohydrodynamic processes of the World Ocean and the parameterizations that were used are considered. In the numerical experiment, the temporal evolution of the atmospheric effect is determined by the normal annual cycle according to the conditions of the international Coordinated Ocean-Ice Reference Experiment (CORE-I). The calculation was carried out on a multiprocessor computer with distributed memory; 1601 computational cores were used. The presented analysis demonstrates that the obtained results are quite satisfactory when compared to the results that were obtained by other eddy-resolving models of the global ocean. The analysis of the model solution is, to a larger extent, of a descriptive character. A detailed analysis of the results is to be presented in following works

  7. Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models.

    PubMed

    Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya

    2016-04-13

    Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere-ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave-turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave-turbulence interaction effects in both general ocean circulation models and atmosphere-ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability.

  8. Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models

    PubMed Central

    Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya

    2016-01-01

    Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere–ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave–turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave–turbulence interaction effects in both general ocean circulation models and atmosphere–ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability. PMID:26953182

  9. Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models.

    PubMed

    Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya

    2016-04-13

    Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere-ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave-turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave-turbulence interaction effects in both general ocean circulation models and atmosphere-ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability. PMID:26953182

  10. Modeling Oceanic Primary Production: Photoacclimation and Nutrient Effects on Light-saturated Photosynthesis

    NASA Technical Reports Server (NTRS)

    Behrenfeld, Michael J.; Maranon, Emilio; Siegel, David A.; Hooker, Stanford B.

    2000-01-01

    In this report, we describe a new model (the 'PhotoAcc' model) for estimating changes in the light-saturated rate of chlorophyll-normalized phytoplankton carbon fixation (Pbmax). The model is based on measurements conducted during the Atlantic Meridional Transect studies and the Bermuda Time Series program. The PhotoAcc model explained 64% to 82% of the observed variability in Pbmax for our data set, whereas none of the previously published Pbmax models described over the past 44 years explained any of the variance. The significance of this result is that a primary limiting factor for extracting ocean carbon fixation rates from satellite measurements of near surface chlorophyll has been errors in the estimate of Pbmax. Our new model should thus result in much improved calculations of oceanic photosynthesis and thus the role of the oceans in the global carbon cycle.

  11. Preliminary testing of turbulence and radionuclide transport modeling in deep ocean environment

    SciTech Connect

    Onishi, Y.; Dummuller, D.C.; Trent, D.S.; Washington State Univ., Pullman, WA; Pacific Northwest Lab., Richland, WA )

    1989-03-01

    Pacific Northwest Laboratory (PNL) performed a study for the US Environmental Protection Agency's Office of Radiation Programs to (1) identify candidate models for regional modeling of low-level waste ocean disposal sites in the mid-Atlantic ocean; (2) evaluate mathematical representation of the model's eddy viscosity/dispersion coefficients; and (3) evaluate the adequacy of the k-{epsilon} turbulence model and the feasibility of one of the candidate models, TEMPEST{copyright}/FLESCOT{copyright}, to deep-ocean applications on a preliminary basis. PNL identified the TEMPEST{copyright}/FLESCOT{copyright}, FLOWER, Blumberg's, and RMA 10 models as appropriate candidates for the regional radionuclide modeling. Among these models, TEMPEST/FLESCOT is currently the only model that solves distributions of flow, turbulence (with the k-{epsilon} model), salinity, water temperature, sediment, dissolved contaminants, and sediment-sorbed contaminants. Solving the Navier-Stokes equations using higher order correlations is not practical for regional modeling because of the prohibitive computational requirements; therefore, the turbulence modeling is a more practical approach. PNL applied the three-dimensional code, TEMPEST{copyright}/FLESCOT{copyright} with the k-{epsilon} model, to a very simple, hypothetical, two-dimensional, deep-ocean case, producing at least qualitatively appropriate results. However, more detailed testing should be performed for the further testing of the code. 46 refs., 39 figs., 6 tabs.

  12. Effects of Ocean Tide Models on Gnss-Estimated Ztd and Pwv in Turkey

    NASA Astrophysics Data System (ADS)

    Gurbuz, G.; Jin, S.; Mekik, C.

    2015-12-01

    Global Navigation Satellite System (GNSS) observations can precisely estimate the total zenith tropospheric delay (ZTD) and precipitable water vapour (PWV) for weather prediction and atmospheric research as a continuous and all-weather technique. However, apart from GNSS technique itself, estimations of ZTD and PWV are subject to effects of geophysical models with large uncertainties, particularly imprecise ocean tide models in Turkey. In this paper, GNSS data from Jan. 1st to Dec. 31st of 2014 are processed at 4 co-located GNSS stations (GISM, DIYB, GANM, and ADAN) with radiosonde from Turkish Met-Office along with several nearby IGS stations. The GAMIT/GLOBK software has been used to process GNSS data of 30-second sample using the Vienna Mapping Function and 10° elevation cut-off angle. Also tidal and non-tidal atmospheric pressure loadings (ATML) at the observation level are also applied in GAMIT/GLOBK. Several widely used ocean tide models are used to evaluate their effects on GNSS-estimated ZTD and PWV estimation, such as IERS recommended FES2004, NAO99b from a barotropic hydrodynamic model, CSR4.0 obtained from TOPEX/Poseidon altimetry with the model FES94.1 as the reference model and GOT00 which is again long wavelength adjustments of FES94.1 using TOPEX/Poseidon data at 0.5 by 0.5 degree grid. The ZTD and PWV computed from radiosonde profile observations are regarded as reference values for the comparison and validation. In the processing phase, five different strategies are taken without ocean tide model and with four aforementioned ocean tide models, respectively, which are used to evaluate ocean tide models effects on GNSS-estimated ZTD and PWV estimation through comparing with co-located Radiosonde. Results showed that ocean tide models have greatly affected the estimation of the ZTD in centimeter level and thus the precipitable water vapour in millimeter level, respectively at stations near coasts. The ocean tide model FES2004 that is the product of

  13. Modeling studies of the upper ocean response to a tropical cyclone

    NASA Astrophysics Data System (ADS)

    Morey, Steven L.; Bourassa, Mark A.; Dukhovskoy, Dmitry S.; O'Brien, James J.

    2006-12-01

    A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5° 1.5°C) of sea surface temperature over the inner West Florida Shelf 100 300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/m2 is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100 150 MJ/m2. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced.

  14. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  15. Oceanic carbon dioxide uptake in a model of century-scale global warming

    SciTech Connect

    Sarmiento, J.L.; Le Quere, C.

    1996-11-22

    In a model of ocean-atmosphere interaction that excluded biological processes, the oceanic uptake of atmospheric carbon dioxide (CO{sub 2}) was substantially reduced in scenarios involving global warming relative to control scenarios. The primary reason for the reduced uptake was the weakening or collapse of the ocean thermohaline circulation. Such a large reduction in this ocean uptake would have a major impact o the future growth rate of atmospheric CO{sub 2}. Model simulations that include a simple representation of biological processes show a potentially large offsetting effect resulting from the downward flux of biogenic carbon. However, the magnitude of the offset is difficult to quantify with present knowledge. 19 refs., 3 figs., 2 tabs.

  16. Quantifying predictability variations in a low-order ocean-atmosphere model - A dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.; Dutton, John A.

    1993-01-01

    The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.

  17. Troposphere-stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model

    NASA Astrophysics Data System (ADS)

    Omrani, N.-E.; Bader, Jürgen; Keenlyside, N. S.; Manzini, Elisa

    2016-03-01

    The instrumental records indicate that the basin-wide wintertime North Atlantic warm conditions are accompanied by a pattern resembling negative North Atlantic oscillation (NAO), and cold conditions with pattern resembling the positive NAO. This relation is well reproduced in a control simulation by the stratosphere resolving atmosphere-ocean coupled Max-Planck-Institute Earth System Model (MPI-ESM). Further analyses of the MPI-ESM model simulation shows that the large-scale warm North Atlantic conditions are associated with a stratospheric precursory signal that propagates down into the troposphere, preceding the wintertime negative NAO. Additional experiments using only the atmospheric component of MPI-ESM (ECHAM6) indicate that these stratospheric and tropospheric changes are forced by the warm North Atlantic conditions. The basin-wide warming excites a wave-induced stratospheric vortex weakening, stratosphere/troposphere coupling and a high-latitude tropospheric warming. The induced high-latitude tropospheric warming is associated with reduction of the growth rate of low-level baroclinic waves over the North Atlantic region, contributing to the negative NAO pattern. For the cold North Atlantic conditions, the strengthening of the westerlies in the coupled model is confined to the troposphere and lower stratosphere. Comparing the coupled and uncoupled model shows that in the cold phase the tropospheric changes seen in the coupled model are not well reproduced by the standalone atmospheric configuration. Our experiments provide further evidence that North Atlantic Ocean variability (NAV) impacts the coupled stratosphere/troposphere system. As NAV has been shown to be predictable on seasonal-to-decadal timescales, these results have important implications for the predictability of the extra-tropical atmospheric circulation on these time-scales.

  18. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    NASA Astrophysics Data System (ADS)

    Chen, K.; He, R.

    2015-07-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, in situ temperature and salinity measurements in the GOM, and observed mean depth-averaged velocities. Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv over the Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  19. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    NASA Astrophysics Data System (ADS)

    Chen, K.; He, R.

    2014-12-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, temperature and salinity time series in the GOM, glider transects in the MAB, and observed mean depth-averaged velocities by Lentz (2008a). Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv at Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  20. Coupled ocean-atmosphere modeling on horizontally icosahedral and vertically hybrid-isentropic/isopycnic grids.

    NASA Astrophysics Data System (ADS)

    Bleck, Rainer; Sun, Shan; Li, Haiqin; Benjamin, Stan

    2016-04-01

    Current efforts to close the gap between weather prediction and climate models have led to the construction of a coupled ocean-atmosphere system consisting of two high-resolution component models, operating on matching icosahedral grids and utilizing adaptive, near-isentropic/isopycnic vertical coordinates. The two components models, FIM and HYCOM (the latter converted to an icosahedral mesh for this purpose), have been tested extensively in twice-daily global medium-range weather prediction (http://fim.noaa.gov) and in real-time ocean data assimilation (http://hycom.org), respectively. The use of matching horizontal grids, currently at resolutions of 15km, 30km and 60km, avoids coastline ambiguities and interpolation errors at the air-sea interface. The intended purpose of the coupled model being subseasonal-to-seasonal prediction, our focus is on mid-term precipitation biases and the statistical steadiness of the atmospheric circulation (blocking frequency, Rossby wave breaking, meridional heat transport, etc.), as well as on possible causes of ocean model drift. An attempt is made to isolate the weather model's role in modifying water mass properties and ocean circulations (including meridional overturning) by comparing coupled model results to ocean-only experiments forced by observed atmospheric boundary conditions. A multi-decadal run at 60km resolution is used to illustrate ENSO variability in the coupled system.

  1. Sequential Model-Based Detection in a Shallow Ocean Acoustic Environment

    SciTech Connect

    Candy, J V

    2002-03-26

    A model-based detection scheme is developed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an embedded model-based processor and a reference model in a sequential likelihood detection scheme. The monitor is therefore called a sequential reference detector. The underlying theory for the design is developed and discussed in detail.

  2. The modeling of the garbage patch formation in the Ocean

    NASA Astrophysics Data System (ADS)

    Budnikov, A. A.; Stepanova, E. V.

    2012-04-01

    It is well known that the vortex motion in the Atmosphere and Ocean can grab and move objects and various admixtures. The behavior of the trapped objects in dust devils, tornadoes, and other small vortices is sometimes unpredictable. Ocean circulation currents of different sizes, ranging from small vortices to global system of currents stretched all over the oceans, also are capturing and transporting various floating objects. The subject of interest is the marker transport in the flows with a nonuniform distribution of vorticity, which are implemented in a variety of laboratory equipment. A compound vortex is an opportune object to study the admixture transport in the steady reproducible flow. The purpose of this study is to observe the dynamics of floating particles on the surface of the compound vortex, simulating the vortex system with drain in the center and influx of fluid at the periphery. On the liquid surface are placed one or more floating markers.Each new experiment began after the decay of all the visible movements in the pool. The experiments to study the cycle paths of solid markers in a compound vortex are performed at fixed liquid depth and the frequency of rotation and diameter of the disk-activator. All the kinematic parameters of movement are determined and can be reproduced. Some parameters of marker motion as the rate of radial displacement are unpredictable and unstable. The trajectory of the marker depends on its initial position. There is an area on the free surface of compound vortex in which the marker would not move to the center of the rotating surface, and go to the sidewall of the container. The marker has two components of rotation, one around the center of the free surface of liquid, and the other around its own axis. Instantaneous center of rotation of the flow pattern is off-center of symmetry of the container. The work is supported by Grant of President of the Russian Federation (MK 4650.2011.1).

  3. A diffuse plate boundary model for Indian Ocean tectonics

    NASA Technical Reports Server (NTRS)

    Wiens, D. A.; Demets, C.; Gordon, R. G.; Stein, S.; Argus, D.

    1985-01-01

    It is suggested that motion along the virtually aseismic Owen fracture zone is negligible, so that Arabia and India are contained within a single Indo-Arabian plate divided from the Australian plate by a diffuse boundary. The boundary is a zone of concentrated seismicity and deformation commonly characterized as 'intraplate'. The rotation vector of Australia relative to Indo-Arabia is consistent with the seismologically observed 2 cm/yr of left-lateral strike-slip along the Ninetyeast Ridge, north-south compression in the Central Indian Ocean, and the north-south extension near Chagos.

  4. Toward the application of the Kalman filter to regional open ocean modeling

    NASA Technical Reports Server (NTRS)

    Miller, R. N.

    1986-01-01

    A partial differential equation model is defined for ocean meteorological prediction and synoptic analysis. The Kalman filter used for data assimilation is described and applied to the one-dimensional linear barotropic quasi-geostrophic model with periodic and open boundary conditions. The model accounts for eddy scale dynamics in the ocean. The assumptions made in the forecast model are discussed, along with comparisons of the error variances expected with the filter and from an objective analysis method. The effectiveness of the Kalman filter is demonstrated and subsequent efforts to extend the filter to two dimensions are indicated.

  5. Tectonic slicing of subducted oceanic crust along plate interfaces: numerical modeling

    NASA Astrophysics Data System (ADS)

    Ruh, Jonas B.; Burov, Evgenii; Gerya, Taras; Agard, Philippe; Le Pourhiet, Laetitia

    2015-04-01

    Remains of high-pressure low-temperature metamorphic oceanic crust are observed within orogenic belts and along recent subduction zones all around the globe. Such blueshist and eclogite "slivers" can strongly vary in extend and experienced P-T-t evolution. To reveal the surficial occurrence of oceanic rocks that occasionally have been at depths down to ~ 80 km within subduction zones, two main processes have to be investigated individually: (i) Detachment of oceanic slivers from the down going plate preventing rocks to be consumed by the mantle, and (ii) exhumation of detached oceanic material to the surface. It has often been stated that the process of slicing and exhumation of oceanic blueshists and eclogites is closely related to continental subduction. Nevertheless, several examples worldwide show exhumation (and therefore latest possible detachment from slab) occurring early or intermediate of the subduction process. We present new insight into the mechanical processes of detachment of oceanic slivers and their exhumation independent of continental collision by using numerical modelling tools. Large-scale thermo-mechanical models (600 * 200 km) based on finite difference, marker-in-cell technique, are applied to test how serpentinised upper slab mantle (mantle serpentinisation at oceanic ridges or/and along to outer-rise normal faults) influences shallow and deep crustal detachment. Preliminary results show that a through-going serpentinite layer below the oceanic crust, if serpentinisation exceeds 50%, triggers slicing at wedge depths. Even if mechanical coupling mainly occurs at intermediate depths along the subduction interface, stresses within the oceanic crust are dispersed upward due to the weak, decoupling serpentinite layer. Unconnected patches of serpentinised upper slab mantle eventually lead to deep slicing, depending on upper plate serpentinisation due to slab dewatering. Furthermore, we investigated the effect of pressure-dependent fluid migration

  6. Application of the generalized vertical coordinate ocean model for better representing satellite data

    NASA Technical Reports Server (NTRS)

    Song, Y. T.

    2002-01-01

    It is found that two adaptive parametric functions can be introduced into the basic ocean equations for utilizing the optimal or hybrid features of commonly used z-level, terrain- following, isopycnal, and pressure coordinates in numerical ocean models. The two parametric functions are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara (1 974), the Jacobian pressure gradient formulation of Song (1 998), and a newly developed metric factor that permits both compressible (non-Boussinesq) and incompressible (Boussinesq) approximations. Based on the new formulation, an adaptive modeling strategy is proposed and a staggered finite volume method is designed to ensure conservation of important physical properties and numerical accuracy. Implementation of the combined techniques to SCRUM (Song and Haidvogel1994) shows that the adaptive modeling strategy can be applied to any existing ocean model without incurring computational expense or altering the original numerical schemes. Such a generalized coordinate model is expected to benefit diverse ocean modelers for easily choosing optimal vertical structures and sharing modeling resources based on a common model platform. Several representing oceanographic problems with different scales and characteristics, such as coastal canyons, basin-scale circulation, and global ocean circulation, are used to demonstrate the model's capability for multiple applications. New results show that the model is capable of simultaneously resolving both Boussinesq and non-Boussinesq, and both small- and large-scale processes well. This talk will focus on its applications of multiple satellite sensing data in eddy-resolving simulations of Asian Marginal Sea and Kurosio. Attention will be given to how Topex/Poseidon SSH, TRMM SST; and GRACE ocean bottom pressure can be correctly represented in a non- Boussinesq model.

  7. Optical Measurements and Modeling to Estimate Concentrations and Fluxes of Organic Matter in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Stramski, Dariusz; Mitchell, B. Greg; Marra, John W. (Technical Monitor)

    2001-01-01

    This project was a collaboration between two Principal Investigators, Dr. Dariusz Stramski and Dr. Greg Mitchell of Scripps Institution of Oceanography, University of California San Diego. Our overall goal was to conduct optical measurements and modeling to estimate concentrations of organic matter in the Southern Ocean in support of the U.S. JGOFS Process Study in this region. Key variables and processes of high relevance to accomplish the JGOFS goals include time and space resolution of phytoplankton pigments, particulate organic carbon, and the formation and export of organic carbon. Our project focused on establishing the fundamental relationships for parameterization of these variables and processes in terms of the optical properties of seawater, and developing understanding of why the Southern Ocean differs from other low-latitude systems, or has differentiation within. Our approach builds upon historical observations that optical properties provide a useful proxy for key reservoirs of organic matter such as chlorophyll alpha (Chl) and particulate organic carbon (POC) concentrations, which are of relevance to the JGOFS objectives. We carried out detailed studies of in situ and water sample optical properties including spectral reflectance, absorption, beam attenuation, scattering, and backscattering coefficients. We evaluated the ability to estimate Chl from the spectral reflectance (ocean color) in the Southern Ocean. We examined relationships between the ocean optical properties and particulate organic carbon. We developed, for the first time, an algorithm for estimating particulate organic carbon concentration in the surface ocean from satellite imagery of ocean color. With this algorithm, we obtained maps of POC distribution in the Southern Ocean showing the seasonal progression of POC in the austral spring-summer season. We also developed a semianalytical reflectance model for the investigated polar waters based on our field measurements of absorption

  8. Development of a L-band ocean emissivity electromagnetic model using observations from the Aquarius Radiometer

    NASA Astrophysics Data System (ADS)

    Hejazin, Y.; Jones, W.; El-Nimri, S.

    2012-12-01

    The Aquarius/SAC-D ocean salinity measurement mission was launched into polar orbit during the summer of 2011. The prime sensor is an L-band radiometer/scatterometer developed jointly by NASA Goddard Space Flight Center and the Jet Propulsion Laboratory. This paper deals with the development of an ocean emissivity model using AQ radiometer brightness temperature (Tb) observations. This model calculates the ocean surface emissivity as a function of ocean salinity, sea surface temperature, surface wind speed and direction. One unique aspect of this model is that it calculates ocean emissivity over wide ranges of Earth incidence angles (EIAs) from nadir to > 60°and ocean wind speeds from 0 m/s to > 70 m/s. This physical electromagnetic model with empirical coefficients follows the form of Stogryn [1967] that treats the ocean as a mixture of foam and clean rough water. The CFRSL ocean surface emissivity (ɛocean) is modeled as a linear sum of foam (ɛfoam) and foam-free seawater (ɛrough) emissivities, according to ɛocean = FF * ɛfoam + (1 - FF) * ɛrough (1) where FF is the fractional area coverage by foam. The foam emissivity is modeled as ɛfoam = Q(freq, U10, EIA) (2) where Q( ) is the empirical dependence of foam emissivity on radiometer frequency, the 10-m neutral stability wind speed and EIA according to El-Nimri [2010]. Following Stogryn, the foam-free seawater emissivity (ɛrough) is modeled ɛrough = ɛsmooth +Δɛexcess (3) where ɛsmooth = (1 - Γ) is the smooth surface emissivity, Γ is the Fresnel power reflection coefficient, and Δɛexcess is the wind-induced excess emissivity, given by Δɛexcess = G(freq, U10, WDir, EIA) (4) Where G( ) is the empirical signature of foam-free rough ocean, which depends upon the surface wind speed and wind direction. This function is determined empirically from measured AQ radiometer Tb's associated with surface wind vector from collocated NOAA GDAS numerical weather model. Ocean emissivity calculations are compared

  9. Structures of the oceanic lithosphere-asthenosphere boundary: Mineral-physics modeling and seismological signatures

    NASA Astrophysics Data System (ADS)

    Olugboji, T. M.; Karato, S.; Park, J.

    2013-04-01

    We explore possible models for the seismological signature of the oceanic lithosphere-asthenosphere boundary (LAB) using the latest mineral-physics observations. The key features that need to be explained by any viable model include (1) a sharp (<20 km width) and a large (5-10%) velocity drop, (2) LAB depth at ~70 km in the old oceanic upper mantle, and (3) an age-dependent LAB depth in the young oceanic upper mantle. We examine the plausibility of both partial melt and sub-solidus models. Because many of the LAB observations in the old oceanic regions are located in areas where temperature is ~1000-1200°K, significant partial melting is difficult. We examine a layered model and a melt-accumulation model (at the LAB) and show that both models are difficult to reconcile with seismological observations. A sub-solidus model assuming absorption-band (AB) physical dispersion is inconsistent with the large velocity drop at the LAB. We explore a new sub-solidus model, originally proposed by Karato [2012], that depends on grain-boundary sliding. In contrast to the previous model where only the AB behavior was assumed, the new model predicts an age-dependent LAB structure including the age-dependent LAB depth and its sharpness. Strategies to test these models are presented.

  10. The Southern Ocean Carbon and Climate Observations and Modeling Program (SOCCOM)

    NASA Astrophysics Data System (ADS)

    Russell, Joellen

    2016-04-01

    SOCCOM is a 6-year observational and modeling research program focused on the role of the Southern Ocean in the anthropogenic carbon budget, ocean biogeochemistry, and climate change. The operational goal of SOCCOM is to deploy nearly 200 Argo-compatible biogeochemically-sensored (BGC) profiling floats equipped with pH, oxygen, nitrate and bio-optical sensors throughout the Southern Ocean waters south of 30°S. These climate-ready BGC-floats are calibrated at the time of deployment by high accuracy biogeochemical measurements, and they operate year around, including in ice-covered waters. The data from the BGC-floats is being assimilated by a Southern Ocean State Estimate (SOSE) model that incorporates biogeochemical processes, and this gridded SOSE output is used to constrain high-resolution coupled atmosphere-ocean model simulations designed to both increase our understanding of Southern Ocean processes and to reduce the uncertainty of projections of the future trajectory of the Earth's carbon, climate and biogeochemistry. We will present an overview of the organization and recent results of SOCCOM as well as the exciting next steps being developed.

  11. The Effect of Atmosphere-Ocean-Wave Interactions and Model Resolution on Hurricane Katrina in a Coupled Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Patricola, C. M.; Chang, P.; Saravanan, R.; Montuoro, R.

    2012-04-01

    The sensitivity of simulated strength, track, and structure of Hurricane Katrina to atmospheric model resolution, cumulus parameterization, and initialization time, as well as mesoscale ocean-atmosphere interactions with and without small-scale ocean-wave effect, are investigated with a fully coupled regional climate model. The atmosphere, ocean, and wave components are represented by the Weather Research and Forecasting Model (WRF), Regional Ocean Modeling System (ROMS), and Simulating WAves Nearshore (SWAN) model. Uncoupled atmosphere-only simulations with horizontal resolutions of 1, 3, 9, and 27 km show that while the simulated cyclone track is highly sensitive to initialization time, its dependence on model resolution is relatively weak. Using NCEP/CFSR reanalysis as initial and boundary conditions, WRF, even at low resolution, is able to track Katrina accurately for 3 days before it made landfall on August 29, 2005. Katrina's strength, however, is much more difficult to reproduce and exhibits a strong dependence on model resolution. At its lowest resolution (27 km), WRF is only capable of simulating a maximum strength of Category 2 storm. Even at 1 km resolution, the simulated Katrina only reaches Category 4 storm intensity. Further WRF experiments with and without cumulus parameterization reveal minor changes in strength. None of the WRF-only simulations capture the observed rapid intensification of Katrina to Category 5 when it passed over a warm Loop-Current eddy (LCE) in the Gulf of Mexico, suggesting that mesoscale ocean-atmosphere interactions involving LCEs may play a crucial role in Katrina's rapid intensification. Coupled atmosphere-ocean simulations are designed and carried out to investigate hurricane Katrina-LCE interactions with and without considering small-scale ocean wave processes in order to fully understand the dynamical ocean-atmosphere processes in the observed rapid cyclone intensification.

  12. Improved routines to model the ocean carbonate system: mocsy 1.0

    NASA Astrophysics Data System (ADS)

    Orr, J. C.; Epitalon, J.-M.

    2014-05-01

    Software used by modelers to compute ocean carbonate chemistry is often based on code from the Ocean Carbon Cycle Model Intercomparison Project (OCMIP), last revised in 2005. As an update, we offer here new publicly available Fortran 95 routines to model the ocean carbonate system (mocsy). Both codes take as input dissolved inorganic carbon CT and total alkalinity AT, the only two tracers of the ocean carbonate system that are unaffected by changes in temperature and salinity and conservative with respect to mixing, properties that make them ideally suited for ocean carbon models. With the same basic thermodynamic equilibria, both codes compute surface-ocean pCO2 in order to simulate air-sea CO2 fluxes. The mocsy package goes beyond the OCMIP code by computing all other carbonate system variables (e.g., pH, CO32-, and CaCO3 saturation states) and by doing so throughout the water column. Moreover, it avoids three common model approximations: that density is constant, that modeled potential temperature is equivalent to in situ temperature, and that depth is equivalent to pressure. These approximations work well at the surface, but total errors in computed variables grow with depth, e.g., reaching -8 μatm in pCO2, +0.010 in pH, and +0.01 in ΩA at 5000 m. Besides the equilibrium constants recommended for best practices, mocsy also offers users three new options: (1) a recent formulation for total boron that increases its ocean content by 4%, (2) an older formulation for KF common to all other such software, and (3) recent formulations for K1 and K2 designed to also include low-salinity waters. More total boron increases borate alkalinity and reduces carbonate alkalinity, which is calculated as a difference from total alkalinity. As a result, the computed surface pCO2 increases by 4 to 6 μatm, while the computed aragonite saturation horizon (ASH) shallows by 60 m in the North Atlantic and by up to 90 m in the Southern Ocean. Changes due to the new formulation for K1

  13. An analytical model of the free H2 produced by serpentinization within oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Pratson, L.; Darrah, T. H.; Karson, J. A.; Klein, E. M.

    2014-12-01

    The free H2 produced by serpentinization within oceanic lithosphere figures prominently in theories regarding (1) the origin and early evolution of life of earth, (2) the basal fuel-source sustaining the sub-seafloor biosphere, (3) the formation of abiogenic hydrocarbons as well as (4) native metal alloys, (5) the geochemical cycles of various elements, and (5) the future use of H2 as a substitute for fossil fuels. Here we present an analytical model that ties H2 production to seafloor spreading rates and the cooling of oceanic lithosphere. If the assumptions underpinning our simplistic model are largely correct, we estimate that global H2 production by the serpentinization of peridoitite within oceanic-lithosphere may be as large as ~9.7x1012 moles H2/year, which is within one or two orders of magnitude of any previous estimates. The model, however, also predicts where globally H2 production should be greatest as well as how far from the axis of a mid-oceanic ridge H2 production should remain significant. We could not rigorously test our model due to sparse and varied measurements of H2 globally however the model suggests a number of systematic relationships and testable predications for future field-based studies. To demonstrate the potential validity and implications our results, we evaluate where all the free-H2 predicted by the model may go given the limited amount known about the H2 budget within the oceans.

  14. Seasonal heat and freshwater cycles in the Arctic Ocean in CMIP5 coupled models

    NASA Astrophysics Data System (ADS)

    Ding, Yanni; Carton, James A.; Chepurin, Gennady A.; Steele, Michael; Hakkinen, Sirpa

    2016-04-01

    This study examines the processes governing the seasonal response of the Arctic Ocean and sea ice to surface forcings as they appear in historical simulations of 14 Coupled Model Intercomparison Project Phase 5 coupled climate models. In both models and observations, the seasonal heat budget is dominated by a local balance between net surface heating and storage in the heat content of the ocean and in melting/freezing of sea ice. Observations suggest ocean heat storage is more important than sea ice melt, while in most of these models, sea ice melt dominates. Seasonal horizontal heat flux divergence driven by the seasonal cycle of volume transport is only important locally. In models and observations, the dominant terms in the basin-average seasonal freshwater budget are the storages of freshwater between the ocean and sea ice, and the exchange between the two. The largest external source term is continental discharge in early summer, which is an order of magnitude smaller. The appearance of sea ice (extent and volume) and also ocean stratification in both the heat and freshwater budgets provides two links between the budgets and provides two mechanisms for feedback. One consequence of such an interaction is the fact that models with strong/weak seasonal surface heating also have strong/weak seasonal haline and temperature stratification.

  15. ENSO Simulation in Coupled Ocean-Atmosphere Models: Are the Current Models Better?

    SciTech Connect

    AchutaRao, K; Sperber, K R

    2005-04-29

    Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Nino/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990's (the so-called Coupled Model Intercomparison Project-2 [CMIP2] models). The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared with reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Nino. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modeling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Nino precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Nino forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies in the IPCC models occurs. This improvement, is directly proportional to the skill of the tropical El Nino forced precipitation anomalies.

  16. Steady-state and transient modeling of tracer and nutrient distributions in the global ocean

    SciTech Connect

    Stocker, T.F.; Broecker, W.S.

    1992-03-26

    The deep circulation model developed by Wright and Stocker has been used to represent the latitude-depth distributions of temperature, salinity, radiocarbon and color'' tracers in the Pacific, Atlantic and Indian Oceans. Restoring temperature and salinity to observed surface data the model shows a global thermohaline circulation where deep water is formed in the North Atlantic and in the Southern Ocean. A parameter study reveals that the high-latitude surface salinity determines the composition of deep water and its flow in the global ocean. Increasing Southern Ocean surface salinity by 0.4 ppt the circulation changes from a present-day mode where North Atlantic Deep Water is one where Antarctic Bottom Water is dominant. An inorganic carbon cycle with surface carbonate chemistry is included, and gas exchange is parameterized in terms of pCO{sub 2} differences. Pre- industrial conditions are achieved by adjusting the basin-mean alkalinity. A classical 2{times}CO{sub 2} experiment yields the intrinsic time scales for carbon uptake of the ocean; they agree with those obtained from simple box models or 3-dimensional ocean general circulation models. Using the estimated industrial anthropogenic input of CO{sub 2} into the atmosphere the model requires, consistent with other model studies, an additional carbon flux to match the observed increase of atmospheric pCO{sub 2}. We use more realistic surface boundary conditions which reduce sensitivity to freshwater discharges into the ocean. In a glacial-to-interglacial experiment rapid transitions of the deep circulation between two different states occur in conjunction with a severe reduction of the meridional heat flux and sea surface temperature during peak melting. After the melting the conveyor belt circulation restarts.

  17. Finding the driver of local ocean-atmosphere coupling in reanalyses and CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Ruiz-Barradas, Alfredo; Kalnay, Eugenia; Peña, Malaquías; BozorgMagham, Amir E.; Motesharrei, Safa

    2016-06-01

    Identification of the driver of coupled anomalies in the climate system is of great importance for a better understanding of the system and for its use in predictive efforts with climate models. The present analysis examines the robustness of a physical method proposed three decades ago to identify coupled anomalies as of atmospheric or oceanic origin by analyzing 850 mb vorticity and sea surface temperature anomalies. The method is then used as a metric to assess the coupling in climate simulations and a 30-year hindcast from models of the CMIP5 project. Analysis of the frequency of coupled anomalies exceeding one standard deviation from uncoupled NCEP/NCAR and ERA-Interim and partially coupled CFSR reanalyses shows robustness in the main results: anomalies of oceanic origin arise inside the deep tropics and those of atmospheric origin outside of the tropics. Coupled anomalies occupy similar regions in the global oceans independently of the spatiotemporal resolution. Exclusion of phenomena like ENSO, NAO, or AMO has regional effects on the distribution and origin of coupled anomalies; the absence of ENSO decreases anomalies of oceanic origin and favors those of atmospheric origin. Coupled model simulations in general agree with the distribution of anomalies of atmospheric and oceanic origin from reanalyses. However, the lack of the feedback from the atmosphere to the ocean in the AMIP simulations reduces substantially the number of coupled anomalies of atmospheric origin and artificially increases it in the tropics while the number of those of oceanic origin outside the tropics is also augmented. Analysis of a single available 30-year hindcast surprisingly indicates that coupled anomalies are more similar to AMIP than to coupled simulations. Differences in the frequency of coupled anomalies between the AMIP simulations and the uncoupled reanalyses, and similarities between the uncoupled and partially coupled reanalyses, support the notion that the nature of the

  18. Coupling analyses of new high-resolution regional ocean climatologies and ocean model output in relation to long-term AMOC fluctuations

    NASA Astrophysics Data System (ADS)

    Parsons, A. R.; Seidov, D.; Cross, S. L.; Mishonov, A. V.; Reagan, J. R.

    2014-12-01

    New global and regional high-resolution ocean climatologies have a great potential for climate-scale analyses through data-model comparison. Quality-controlled high-resolution climatologies that retain many critical mesoscale hydrographic features (such as persistent oceanic fronts, topographically controlled quasi-stationary meanders, etc.) become suitable for climate-scale interpretation through meaningful comparison between observations and high-resolution ocean model output. Leveraging the regularly sampled, synoptic depiction of the ocean contained in the model output we can assess the undersampled high-frequency variability contained in the quality controlled observational record that is inherently aliased into the climatology to discern longer period oscillations, differences, and trends. We couple the recently developed Arctic, Northwest Atlantic and Greenland-Iceland-Norwegian Seas regional climatologies (with grid resolution of 1/10-degree-the highest regional resolution so far), with synergistic analyses of output from a data-assimilating ocean numerical model. By comparing the climatological fields with the model output, the authors explore the ability to quantify the relations between modeled and observed regional ocean variability, including the decadal-scale climatology differences that will focus on and may reflect AMOC long-term fluctuations.

  19. Final Report Fermionic Symmetries and Self consistent Shell Model

    SciTech Connect

    Larry Zamick

    2008-11-07

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with "anomoulous" magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them.The importance of a self consistent shell model was emphasized.

  20. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  1. Modeling seasonality of ice and ocean carbon production in the Arctic

    NASA Astrophysics Data System (ADS)

    Jin, M.; Deal, C. M.; Ji, R.

    2011-12-01

    In the Arctic Ocean, both phytoplankton and sea ice algae are important contributors to the primary production and the arctic food web. Copepod in the arctic regions have developed their feeding habit depending on the timing between the ice algal bloom and the subsequent phytoplankton bloom. A mismatch of the timing due to climate changes could have dramatic consequences on the food web as shown by some regional observations. In this study, a global coupled ice-ocean-ecosystem model was used to assess the seasonality of the ice algal and phytoplankton blooms in the arctic. The ice-ocean ecosystem modules are fully coupled in the physical model POP-CICE (Parallel Ocean Program- Los Alamos Sea Ice Model). The model results are compared with various observations. The modeled ice and ocean carbon production were analyzed by regions and their linkage to the physical environment changes (such as changes of ice concentration and water temperature, and light intensity etc.) between low- and high-ice years.

  2. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records

    NASA Astrophysics Data System (ADS)

    Butzin, Martin; Lohmann, Gerrit; Bickert, Torsten

    2011-02-01

    In a modeling sensitivity study we investigate the evolution of the ocean circulation and of marine carbon isotope (δ13C) records during the Miocene (about 23-5 million years ago). For this purpose we ran an ocean-circulation carbon cycle model of intermediate complexity (Large Scale Geostrophic- Hamburg Ocean Carbon Cycle Model, version 2s) exploring various seaway configurations. Our investigations confirm that the Central American Seaway played a decisive role in the history of the Miocene ocean circulation. In simulations with a deep Central American Seaway (depth range 1-3 km), typical for the early to middle Miocene, deep water production in the North Atlantic is absent or weak, while the meridional overturning circulation is dominated by water mass formation in the Southern Ocean. Deep water formation in the North Atlantic begins when the Central American Seaway shoals to a few hundreds of meters, which is typical for the late Miocene. Our results do not support ideas that the mid-Miocene closing of the Eastern Tethys contributed to Antarctic glaciation. On the other hand, we find some water exchange between the Indian Ocean and the Atlantic via the Eastern Tethys during the early Miocene. Our model results for the Atlantic meridional overturning circulation and for Atlantic δ13C during the late Miocene are largely independent from depth variations of the Greenland-Scotland Ridge. To a large extent, the evolution of Miocene deep-sea δ13C records can be explained with large-scale ocean circulation changes. Our model-data comparison for the middle and early Miocene suggests that during the early Neogene the seaway effect on benthic δ13C may have been superimposed by further factors such as climate regime shifts and/or terrestrial carbon cycle changes.

  3. Photovoltaic subsystem marketing and distribution model: programming manual. Final report

    SciTech Connect

    Not Available

    1982-07-01

    Complete documentation of the marketing and distribution (M and D) computer model is provided. The purpose is to estimate the costs of selling and transporting photovoltaic solar energy products from the manufacturer to the final customer. The model adjusts for the inflation and regional differences in marketing and distribution costs. The model consists of three major components: the marketing submodel, the distribution submodel, and the financial submodel. The computer program is explained including the input requirements, output reports, subprograms and operating environment. The program specifications discuss maintaining the validity of the data and potential improvements. An example for a photovoltaic concentrator collector demonstrates the application of the model.

  4. Computerized symbolic computation, nonintegrable Ostrovsky's model for the oceanic or plasma environment and similarity solutions

    NASA Astrophysics Data System (ADS)

    Tian, Bo; Gao, Yi-Tian

    2004-06-01

    Computerized symbolic computation is a new branch of artificial intelligence, with its remarkable feature as the permeation of computer sciences among various fields of science and engineering. Although nonintegrable, Ostrovsky's model is able to describe a variety of mechanical and physical problems, such as the internal or surface waves in the ocean, magnetic sound in plasma, or a certain type of dispersion in an electromagnetic transmission line. In the oceanic environment, for example, this model applies when Coriolis forces are significant. In this paper, with symbolic computation, we present some similarity solutions to Ostrovsky's model, and discuss the structures and properties of the resulting coupled nonlinear ordinary differential equations.

  5. Modeling the seasonal variability of a coupled Arctic ice-ocean system

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Mellor, George L.

    1992-01-01

    The seasonal variability of the ice-ocean system in the Arctic Basin and the Norwegian, Greenland, and Barents Seas was modeled using a three-dimensional coupled ice-ocean model developed at Princeton University. The snow-ice model uses a three-level thermodynamic scheme similar to Semtner's (1976), but is extended to include the effect of leads. It is shown that simulations using the climatological monthly forcing fields produce a realistic seasonal variability of the ice cover. The ice thickness had a considerable sensitivity to the choice of the long-wave back radiation scheme, but these effects can be reduced through dynamical factors.

  6. Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2011-06-01

    It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Puget Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.

  7. Modeling oxygenation of an ocean-atmosphere system during the Late Ordovician-Devonian

    NASA Astrophysics Data System (ADS)

    Ozaki, K.

    2013-12-01

    Throughout the Earth's history, the redox state of surface environments, biogeochemical cycles, and biological innovation/extinction have been intimately related. Therefore, understanding the long-term (over millions of years) evolution of the redox state of an ocean-atmosphere system and its controlling factors is one of the fundamental topics of Earth Sciences. In particular, Early Paleozoic is marked by the prominent biological evolution/diversification events (Cambrian explosion and Great Ordovician Biodiversification Event), implying the causal linkage between ocean oxygenation and biological innovation. On the other hand, multiple lines of evidence (such as black shale deposition, low C/S ratio of buried sediments, low molybdenum isotopic value, and iron speciation data) suggest that ocean interior had been kept in low oxygen condition until the Devonian. Dahl et al. (2010) PNAS found an increase in molybdenum isotopic value from ~1.4‰ to ~2.0‰ between ~440 Ma and ~390 Ma, implying the oceanic redox transition to a well-oxygenated condition. It was proposed that this ocean oxygenation event correlates with the diversification of vascular land plants; an enhanced burial of terrigenous organic matter increases the oxygen supply rate to an ocean-atmosphere system. Although this hypothesis for a causal linkage between the diversification of land plants and oxidation event of an ocean-atmosphere system is intriguing, it remains unclear whether the radiation of land plant is necessary to cause such redox transition. Because oxygen is most likely regulated by a combination of several feedbacks in the Earth system, it is essential to evaluate the impact of plant diversification on the oxygenation state of an ocean-atmosphere system by use of a numerical model in which C-N-P-O-S coupled biogeochemical cycles between ocean-atmosphere-sediment systems are take into account. In this study, the paleoredox history of an ocean-atmosphere system during the Paleozoic is

  8. Validation of sub-grid-scale mixing schemes using CFCs in a global ocean model

    NASA Astrophysics Data System (ADS)

    Robitaille, Daniel Y.; Weaver, Andrew J.

    Three sub-grid-scale mixing parameterizations (lateral/vertical; isopycnal; Gent and McWilliams, 1990) are used in a global ocean model in an attempt to determine which yields the best ocean climate. Observed CFC-11 distributions, in both the North and South Atlantic, are used in evaluating the model results. While the isopycnal mixing scheme does improve the deep ocean potential temperature and salinity distributions, when compared to results from the traditional lateral/vertical mixing scheme, the CFC-11 distribution is worse in the upper ocean due to too much mixing. The Gent and McWilliams (1990) parameterization significantly improves the CFC-11 distributions when compared to both of the other schemes. The main improvement comes from a reduction of CFC uptake in the southern ocean where the ‘bolus’ transport cancels the mean advection of tracers and hence causes the Deacon Cell to disappear. These results suggest that the asymmetric response found in CO2-increase experiments, whereby the climate over the southern ocean does not warm as much as in the northern hemisphere, may be due to the particular mixing schemes used.

  9. Modelling subglacial discharge and its influence on ocean heat transport in Arctic fjords

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2015-11-01

    Tidewater outlet glaciers are directly connected to the ocean via ice walls or floating shelves. Melting and freezing of ice, runoff, englacial, and subglacial discharge of freshwater and ocean heat transport are therefore potential feedback processes between glacial ice flow and ocean circulation. Subglacial discharge occurs at the base of tidewater glacier outlets where out-flowing freshwater forms a convective buoyant plume ascending close to the glacier face and, due to entrainment, transports relatively warm and saline ambient bottom water up towards the surface. Plume dynamics, typically occurring at sub-grid scales in regional ocean models, therefore has to be parameterized in areas where ice-ocean interactions occur, as for example in Arctic fjords. Here, we develop and analyze a new simple boundary condition of subglacial discharge where entrainment-induced transport between the subsurface and surface layer is described. A sensitivity study showed that subglacial discharge increased ocean heat transport near the glacier whereas the impact from plume-entrainment became relatively small further from the glacier. Subglacial discharge was shown to have a significant influence on surface concentrations. The impact from subglacial discharge was demonstrated in a regional model of Godthåbsfjord (64°N), located at the west coast of Greenland, where surface concentrations near the glacier were shown to be sensitive to subglacial discharge in accordance with observations.

  10. A Final Approach Trajectory Model for Current Operations

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Sadovsky, Alexander

    2010-01-01

    Predicting accurate trajectories with limited intent information is a challenge faced by air traffic management decision support tools in operation today. One such tool is the FAA's Terminal Proximity Alert system which is intended to assist controllers in maintaining safe separation of arrival aircraft during final approach. In an effort to improve the performance of such tools, two final approach trajectory models are proposed; one based on polynomial interpolation, the other on the Fourier transform. These models were tested against actual traffic data and used to study effects of the key final approach trajectory modeling parameters of wind, aircraft type, and weight class, on trajectory prediction accuracy. Using only the limited intent data available to today's ATM system, both the polynomial interpolation and Fourier transform models showed improved trajectory prediction accuracy over a baseline dead reckoning model. Analysis of actual arrival traffic showed that this improved trajectory prediction accuracy leads to improved inter-arrival separation prediction accuracy for longer look ahead times. The difference in mean inter-arrival separation prediction error between the Fourier transform and dead reckoning models was 0.2 nmi for a look ahead time of 120 sec, a 33 percent improvement, with a corresponding 32 percent improvement in standard deviation.

  11. Modeling Internal Tides and Mixing Over Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Slinn, D. N.; Levine, M. D.

    2002-12-01

    Moored observations from the Hawaiian Ocean Mixing Experiment (HOME) Survey component suggest an increase in diapycnal mixing events during spring tides in the region above the slope. To study possible mixing mechanisms, we utilize large eddy simulations of the benthic boundary layer, using a domain on the order of 200 m thick, with environmental parameters from the HOME. When the barotropic tidal flow is upslope, the stratification near the boundary is greatly reduced as denser deep water is advected above the less dense water retained in the boundary layer. This leads to statically unstable situations and persistent strong mixing events that are several tens of meters thick and last for approximately one quarter of the tidal period. Conversely, during the down-slope tidal flow, denser fluid remains trapped in the boundary layer as less dense upslope fluid is advected downward, leading to very strong stratification near the boundary, which shuts down vertical mixing over the slope. The current structure and statistics of the overturning are compared with the field observations. We demonstrate also from the simulations that the Coriolis force plays an important role in both increasing the levels of turbulence in the boundary layer and in producing an efficient mechanism for fluid exchange between the interior and the boundary. Comparisons with numerical experiments where the Coriolis force is artificially turned off show decreased levels of turbulent mixing and less complex velocity shear structure in the boundary layer. Numerical dye release and Lagrangian drifter experiments indicate that horizontal exchange flows at the inertial period produce a pathway for the new intermediate density water formed in the mixing process to leave the boundary layer. We generalize our results to consider combinations of oceanic parameter ranges of slope, inertial, buoyancy, and tidal frequencies and amplitudes that could combine to produce increased boundary mixing.

  12. Constructing an idealized model of the North Atlantic Ocean using slippery sacks

    NASA Astrophysics Data System (ADS)

    Haertel, Patrick T.; Van Roekel, Luke; Jensen, Tommy G.

    This paper documents the continued development and testing of a new Lagrangian oceanic general circulation model. The slippery sacks ocean model (SSOM), which represents a body of water as a pile of conforming parcels, is improved and is used to simulate circulations in homogeneous oceans and in an idealized model of the North Atlantic Ocean. A method for including horizontal mixing in the SSOM is presented. A given sack's nearest neighbors are identified in the positive and negative x- and y-directions, and the sack exchanges momentum and/or tracers with these neighbors. This formulation of mixing is straightforward to implement, computationally efficient, and it produces results similar to a standard Eulerian finite-difference representation of diffusion. The model's ability to reproduce the Stommel and Munk solutions to the classical western boundary current problem is tested. When steps are taken to reduce the potential energy barrier to sacks crossing one another, the model generates circulations that are consistent with linear theory. In moderately non-linear regimes the model produces appropriate departures from linear solutions including a boundary current that continues along the northern boundary for a time. Taking advantage of the new mixing scheme and lessons learned from simulations of homogeneous oceans, the authors construct an idealized model of the North Atlantic Ocean. They compare simulations conducted with the SSOM to similar simulations conducted with the Massachusetts Institute of Technology general circulation model (MITgcm). The SSOM and the MITgcm produce similar wind-forced gyres, thermocline structure, and meridional overturning. The SSOM is also used to explore how circulations change in the limit when tracer diffusion goes to zero.

  13. Data Assimilation In A Marine Ecosystem Coupled To A Mixed Layer Model of The Upper Ocean.

    NASA Astrophysics Data System (ADS)

    Magri, S.; Brasseur, P.; Lacroix, G.

    Data assimilation have been conducted in a one-dimensional, coupled physical ecosys- tem model of the upper ocean to characterize the observability properties of in situ and satellite observing systems. The assimilation method is based on the Singular Evolu- tive Extended Kalman (SEEK) filter, in which the error sub-space is decomposed into multivariate orthogonal functions of the system's variability. The coupled model simulates the primary production in a coastal zone of the Ligurian Sea, where oligotrophic conditions prevail. The ecosystem dynamics is represented by 12 interacting compartments expressed in nitrogen units. The coupling with a hydrodynamic model determines the physical constraints asso- ciated to the development of a seasonal mixed layer. The stratification of the water column, according to the computation of the vertical turbulent diffusivities, is a key parameter of the evolution of the marine ecosystem. The coupled system has been developed and validated on the basis of field data col- lected during the FRONTAL campains, between 1984 and 1988. As a first approach, twin experiments are performed to check the algorithmic imple- mentation of the SEEK filter, and to verify the statistical consistence of the assimila- tion scheme in non-linear regimes. Vertical temperature and salinity profiles have been assimilated to evaluate the impact of a better representation of the water column strat- ification on the primary production. Then, nitrate and chlorophyll-a profiles have been assimilated to try to control the ecosystem in spite of an imperfect physical model. Finally, physical and biological profiles of in situ data collected during the FRONTAL campains, will be used to reconstruct the seasonal evolution of the ecosystem.

  14. Climate change projection for the western tropical Pacific Ocean using a high-resolution ocean model: Implications for tuna fisheries

    NASA Astrophysics Data System (ADS)

    Matear, R. J.; Chamberlain, M. A.; Sun, C.; Feng, M.

    2015-03-01

    The Western Pacific Warm Pool is a region of high tuna catch, and how future climate change might impact the tuna fisheries is an important regional issue. By using a high-resolution ocean model forced by the simulated climate of the 2060s, we investigate whether enhanced spatial resolution and bias correction of the mean state could alter the climate change projection for the western tropical Pacific and examine the consequences this might have for tropical tuna distributions. For most of the physical environmental variables, enhanced resolution and bias correction had only a minor impact on the projected changes. The climate projections showed a maximum surface warming east of the Warm Pool, a shoaling of the thermocline in the Warm Pool, and an eastward expansion of the Warm Pool. In the Warm Pool, the shoaling of the thermocline raises the nutricline into the photic zone and increases phytoplankton and primary productivity, a feature that is most evident in the high-resolution model projection but also weakly present in the coarse-resolution projection. The phytoplankton and primary productivity response to climate change was where ocean model resolution produced a clear difference. With enhanced resolution, the simulation had stronger and better-defined zonal currents, which were more consistent with observations. Along the equator, the high-resolution model enabled vertical current shear mixing to generate a sub-surface phytoplankton maximum both inside and outside the Warm Pool, which is an observed phenomenon. With climate change, the enhanced-resolution model projected enhanced vertical shear mixing, increased vertical supply of nutrients to the photic zone, and increased sub-surface phytoplankton concentrations. The increase in sub-surface phytoplankton concentrations helps to offset the decline in surface phytoplankton concentrations and results in a projection of almost no change in the western tropical Pacific primary productivity. In contrast, the low

  15. Modeled ocean circulation in Nares Strait and its dependence on landfast-ice cover

    NASA Astrophysics Data System (ADS)

    Shroyer, Emily L.; Samelson, Roger M.; Padman, Laurie; Münchow, Andreas

    2015-12-01

    Two simplified ocean simulations are used to study circulation and transport within Nares Strait. The simulations are similar, except that one included a coupled sea ice model that effectively established a landfast ice cover throughout the simulation year. Comparison between the ocean-only and ocean-ice simulations reveals a systematic change in the current structure, reminiscent of the seasonal shift under mobile and landfast ice previously observed in Nares Strait. A surface-intensified jet, which carries low-salinity water along the strait's centerline, develops within the ocean-only simulation. The current structure under landfast ice is characterized by a subsurface jet located along the western side with low-salinity surface water distributed along the eastern side of the strait. Intermediate salinity water is offset to the west in the ice-ocean simulation relative to the ocean-only simulation, while high-salinity water (>34.8) is constrained to recirculations that are located north and south of a sill in Kane Basin. The simulations, combined with an idealized, semianalytical model, suggest that the structural shift is caused by the surface Ekman layer beneath the landfast ice and the associated eastward advection of near-surface low-salinity water and westward movement of the jet. Temporal variability in the ocean-ice simulation is dominated by the remote response to the time-dependent northern boundary conditions. In contrast, the ocean-only simulation favors an instability and additionally responds to local surface wind forcing, which enhances the variability within the strait above that imposed at the boundaries.

  16. A model of the ocean iron cycle and its influence on biological production

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, S.; Parekh, P.; Follows, M.

    2003-04-01

    Biological productivity in large regions of the ocean, specifically high nutrient, low chlorophyll regions, is limited by the deficit in iron relative to other nutrients. We have developed a parameterization of the iron cycle of the world's oceans which attempts to explicitly represent the processes by which this deficit in iron occurs. We have implemented this parameterization in the context of the MIT three dimensional global ocean model and examined the consequences for nutrient distributions, new production and primary production. The iron model parameterizes the mechanisms of scavenging of iron onto sinking particles and complexation with an organic ligand and is driven by specified aeolian flux patterns. First, using an idealized representation of export production, limited by light, phosphate and iron, the model reproduces the broad features of the observed ocean phosphate and iron distributions. We replace the simplified export parameterization with an explicit, but highly idealized, ecosystem model. The model represents a simplified food web with two phytoplankton size classes and a single grazer. The base currency for this model is phosphorus, but the larger phytoplankton class (i.e. diatoms) is also limited by silica. Both classes are limited by the availability of iron. The results of this model are also generally consistent with the observed patterns of phosphate and iron. In addition, the model captures the broad features of the distributions and cycles of silica, chlorophyll and primary production. We will also explore the sensitivities of this model to the forcing fields (e.g. aeolian iron flux) and parameter choices of the ecosystem model. This model represents a step towards the explicit representation of the ocean iron cycle, and its biogeochemical influences, in global biogeochemical models.

  17. A hierarchy of thermohaline circulation models. Final report

    SciTech Connect

    Cessi, P.; Young, W.R.

    1998-04-01

    The objectives of this effort were: (1) to understand the variability caused by the competitive roles of salt and heat in the ocean circulation; (2) to understand the effect of differential advection of active tracers, such as temperature, salinity and angular momentum; and (3) to improve the parametrization of convection in models of the ocean circulation. One result of the project is the discovery that the characteristics of the quasi-periodic centennial and millennial oscillations found in OGCM`s, associated with alternating suppression and activation of high latitude convection, are extremely sensitive to the salinity flux and specific choice of convective adjustment scheme. In particular, the period of the oscillation depends crucially on the salinity fluxes (whether deterministic or with a stochastic component) and can be arbitrarily long. This result has clarified that these long-period oscillations (termed flushes) are not the result of the excitation of an intrinsic linear eigenmode of the system, but rather are relaxation-oscillations towards one of the several equilibria available to the system. This implies that it is the amplitude, rather than the period, of the oscillation which is almost independent of the salinity flux.

  18. Reevaluation of plate motion models based on hotspot tracks in the Atlantic and Indian Oceans

    SciTech Connect

    Baksi, A.K.

    1999-01-01

    Plate motion models based on hotspot tracks in the Atlantic and Indian Oceans predict minimal movement (less than a few millimeters per year) between these hotspots and their counterparts in the Pacific Ocean for the past {approximately}100 m.yr., whereas plate circuit exercises indicate relative motions of {approximately}20 mm/yr. Hotspot-based models also suggest that the Rajmahal Traps, India, were located {approximately}1,000 km away from the Kerguelen hotspot at {approximately}115 Ma, and the Deccan Traps, India, were located a similar distance from the Reunion hotspot at {approximately}65 Ma; this is at odds with conclusions derived from paleomagnetism, plate circuits, and geochemical parameters that suggest a genetic link between flood basalt provinces in India and hotspots in the Indian Ocean. These divergent views may be explained by plume action {approximately}1,000 km from its center or errors in the hotspot motion models. The latter hypothesis is scrutinized in this article by examination of the radiometric ages for hotspot tracks in the Atlantic and Indian Oceans. The {sup 40}/{sup 39}Ar step-heating data for rocks defining the tracks of the Reunion and Kerguelen hotspots in the Indian Ocean and the Great Metero and Tristan da Cunha hotspots in the Atlantic Ocean are critically reexamined. Of {approximately}35 such ages utilized for deriving plate motion models for the past 130 m.yr., at best, only three ({approximately}32, {approximately}50, and {approximately}52 Ma) in the Indian Ocean and one ({approximately}65 Ma) for the Atlantic Ocean may be treated as crystallization ages. Conclusions based on hotspot track modeling for Late Cretaceous to Eocene time are suspect, and those for the Early to Late Cretaceous period are untenable. In the absence of precise age data for the tracks of hotspots in the Atlantic and Indian Oceans, and inconsistent age progressions noted within a single volcanic chain, plate circuit models serve as the superior technique

  19. Gravity model improvement investigation. [improved gravity model for determination of ocean geoid

    NASA Technical Reports Server (NTRS)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.

    1973-01-01

    This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.

  20. Multi-mission mean sea surface and geoid models for ocean monitoring within the GOCINA project

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Knudsen, P.; Anne, V. L.

    2004-05-01

    A major goal of the EU project GOCINA (Geoid and Ocean Circulation In the North Atlantic) is to develop tools for ocean monitoring using satellite altimetry combined with satellite gravimetry. Furthermore, the project will determine an accurate geoid in the region between Greenland and the UK and, hereby, create a platform for validation of future GOCE Level 2 data and higher order scientific products. The central quantity bridging the geoid and the ocean circulation is the mean dynamic topography, which is the difference between the mean sea surface and the geoid. The mean dynamic topography provides the absolute reference surface for the ocean circulation. The improved determination of the mean circulation will advance the understanding of the role of the ocean mass and heat transport in climate change. To calculate the best possible synthetic mean dynamic topographies a new mean sea surface (KMS03) has been derived from nine years of altimetric data (1993-2001). The regional geoid has furthermore being updated using GRACE and gravimetric data from a recent airborne survey. New synthetic mean dynamic topography models have been computed from the best available geoid models (EGM96, GRACE, GOCINA) and the present mean sea surface models (i.e. CLS01, GSFC00, KMS03). These models will be compared with state of the art hydrodynamic mean dynamic topography models in the North Atlantic GOCINA area. An extended comparison in the Artic Ocean will also be presented to demonstrate the impact of improved geoid and mean sea surface modeling. Particularly using the GRACE derived geoid models, and the KMS03 mean sea surface.

  1. Decadal-Scale Response of the Antarctic Ice sheet to a Warming Ocean using the POPSICLES Coupled Ice Sheet-Ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.

    2015-12-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.

  2. Numerical simulation of Typhoon Muifa (2011) using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system

    NASA Astrophysics Data System (ADS)

    Liu, Na; Ling, Tiejun; Wang, Hui; Zhang, Yunfei; Gao, Zhiyi; Wang, Yi

    2015-04-01

    The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa (2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.

  3. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  4. Modeling the Natural Biogeochemical Cycle of Mercury in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Jaegle, L.; Thompson, L.; Emerson, S. R.; Deutsch, C. A.; Trossman, D. S.; Shao, A.

    2012-12-01

    The ocean plays an important role in the biogeochemical cycling of mercury (Hg) because of its large reservoir mass and re-emission flux via evasion. The currently available Hg models, including 2D slab, 1D column and 0D box model cannot fully resolve the marine Hg cycle because of the lack of the proper spatial resolution. In this work, we have implemented Hg biogeochemistry in a state-of-the-art 3D offline ocean tracer model (OFFTRAC). OFFTRAC simulates the evolution of three Hg species (Hg0aq, HgIIaq and HgPaq), which are diffused and advected in the ocean. Hg0aq and HgII aq are interconverted in the surface ocean via parameterized photochemical and biological redox processes. The partitioning between HgIIaq and HgPaq depends on the local levels of particulate organic carbon (POC). The sinking of HgPaq is parameterized by coupling with the nutrient phosphorous cycle simulated in OFFTRAC. The reduction of HgIIaq to Hg0aq in the anaerobic subsurface water is proportional to the remineralizaiton of POC. OFFTRAC is coupled to a global simulation of the natural atmospheric Hg cycle in the GEOS-Chem chemical transport model. The GEOS-Chem simulation includes a geogenic source and provides the atmospheric deposition flux of HgII to the ocean and atmospheric Hg0 concentrations. The riverine input of Hg is calculated based on the climatological monthly mean fresh water discharge from continental to ocean and the average soil concentrations near the river mouth. The results show that the riverine input enhances Hg concentrations at surface by a factor of 2-3 near large river mouths and nearby coastal regions. The riverine input approximately doubles surface Hg concentration over the Arctic because of the small basin volume. In the deep ocean, which is not influenced by anthropogenic emissions, the model results (1.1±0.3 pM) generally agree with the observed present-day total Hg concentration profiles (1.4±0.9 pM). In the surface ocean, observations show average total Hg

  5. The Southern Ocean in the Coupled Model Intercomparison Project phase 5

    PubMed Central

    Meijers, A. J. S.

    2014-01-01

    The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395

  6. Organic acid modeling and model validation: Workshop summary. Final report

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E&S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.`` The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  7. Great Plains ASPEN model development: gasifier model. Final topical report

    SciTech Connect

    Benjamin, B.W.

    1985-01-01

    A rigorous model of a moving-bed, dry-bottom gasifier, RGAS, has been incorporated into ASPEN. The model is designed to calculate the variables which characterize gasifier performance: (1) the composition of the outlet gas; (2) the flow of the outlet gas; (3) the temperature of the outlet gas; (4) the temperature profile of the solids (especially important in dry bottom gasifiers because of the necessity of maintaining the maximum temperature of the bed below the ash softening temperature); and (5) the rate of steam generation in the jacket (if applicable). The option of using alternative kinetic expressions has been incorporated into the model structure. Presently, RGAS can be used to simulate gasifier performance using the kinetic expressions for gasification established at West Virginia University and the University of Delaware. The models of both West Virginia University and the University of Delaware were tuned to agree with the Great Plains gasifier flowsheet. Then, several case studies were run to determine the sensitivity of each model to changes in such inputs as: (1) feed rates; (2) feed temperatures; (3) reaction parameters; and (4) heat transfer coefficient. The data from these case studies have been compared with experimental findings. For example, increasing the oxygen feed rate or increasing the temperature of the inlet gas feed both serve to increase the reactor temperature which, in turn, increases the carbon conversion and steam generation rate. On the other hand, increasing the steam feed rate does the opposite. These results agree with trends observed experimentally. 5 references.

  8. A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies

    SciTech Connect

    Stocker, T.F.; Mysak, L.A. ); Wright, D.G. )

    1992-08-01

    A zonally averaged ocean model for the thermohaline circulation is coupled to a zonally averaged, one-layer energy balance model of the atmosphere to form a climate model for paleoclimate studies. The emphasis of the coupled model is on the ocean's thermohaline circulation in the Pacific, Atlantic, and Indian oceans. Under present-day conditions, the global conveyor belt is simulated. Latitude-depth structures of modeled temperature and salinity fields, as well as depth-integrated meridional transports of heat and freshwater, compare well with estimates from observations when wind stress is included. Ekman cells are present in the upper ocean and contribute substantially to the meridional fluxes at low latitudes.The atmospheric component of the coupled climate model consists of a classical balance model. When the two components are coupled after being spun up individually, the system remains steady. If intermittent convection is operating, the coupled model shows systematic deviations of the surface salinity, which may result in reversals of the thermohaline circulation. This climate drift can be inhibited by removing intermittent convection prior to coupling. The climate model is applied to investigate the effect of excess freshwater discharge into the North Atlantic, and the influence of the parameterization of precipitation is tested. The Atlantic thermohalinc flow is sensitive to anomalous freshwater input. Reversals of the deep circulation can occur in the Atlantic, leading to a state where deep water is formed only in the Southern Ocean. A feedback mechanism is identified that may also trigger the reversal of the Pacific thermobaline circulation yielding the inverse conveyor bell as an additional steady state. In total, four different stable equilibria of the coupled model were realized.

  9. A simple metabolic model of glacial-interglacial energy supply to the upper ocean

    NASA Astrophysics Data System (ADS)

    Pelegrí, J. L.; Olivella, R.; García-Olivares, A.

    2011-03-01

    We use a simple two-state two-box ocean to simulate the CO2 signal during the last four glacial-interglacial transitions in the earth system. The model is inspired by the similarity in spatial organization and temporal transition patterns between the earth and other complex systems, such as mammals. The comparison identifies the earth's metabolic rate with net autotrophic primary production in the upper ocean, sustained through new inorganic carbon and nutrients advected from the deep ocean and organic matter remineralized within the upper ocean. We view the glacial-interglacial transition as a switch of the upper ocean from a basal to an enhanced metabolic state, with energy supply initially relying on the remineralization of the local organic sources and the eventual steady state resulting from the increased advective supply of inorganic deep sources. During the interglacial-glacial transition the opposite occurs, with an initial excess of advective supply and primary production that allows the replenishment of the upper-ocean organic storages. We set the relative change in energy supply from the CO2 signal and use genetic algorithms to explore the sensitivity of the model output to both the basal recirculation rate and the intensity-timing of the maximum recirculation rate. The model is capable of reproducing quite well the long-term oscillations, as shown by correlations with observations typically about 0.8. The dominant time scale for each cycle ranges between about 40 and 45 kyr, close to the 41 kyr average obliquity astronomical period, and the deep-ocean recirculation rate increases between one and two orders of magnitude from glacial to interglacial periods.

  10. The sources of Antarctic bottom water in a global ice ocean model

    NASA Astrophysics Data System (ADS)

    Goosse, Hugues; Campin, Jean-Michel; Tartinville, Benoı̂t

    Two mechanisms contribute to the formation of Antarctic bottom water (AABW). The first, and probably the most important, is initiated by the brine released on the Antarctic continental shelf during ice formation which is responsible for an increase in salinity. After mixing with ambient water at the shelf break, this salty and dense water sinks along the shelf slope and invades the deepest part of the global ocean. For the second one, the increase of surface water density is due to strong cooling at the ocean-atmosphere interface, together with a contribution from brine release. This induces deep convection and the renewal of deep waters. The relative importance of these two mechanisms is investigated in a global coupled ice-ocean model. Chlorofluorocarbon (CFC) concentrations simulated by the model compare favourably with observations, suggesting a reasonable deep water ventilation in the Southern Ocean, except close to Antarctica where concentrations are too high. Two artificial passive tracers released at surface on the Antarctic continental shelf and in the open-ocean allow to show clearly that the two mechanisms contribute significantly to the renewal of AABW in the model. This indicates that open-ocean convection is overestimated in our simulation. Additional experiments show that the amount of AABW production due to the export of dense shelf waters is quite sensitive to the parameterisation of the effect of downsloping and meso-scale eddies. Nevertheless, shelf waters always contribute significantly to deep water renewal. Besides, increasing the P.R. Gent, J.C. McWilliams [Journal of Physical Oceanography 20 (1990) 150-155] thickness diffusion can nearly suppress the AABW formation by open-ocean convection.

  11. Analysis of Atmosphere-Ocean Surface Flux Feedbacks in Recent Satellite and Model Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.; Clayson, C. A.

    2010-01-01

    Recent investigations have examined observations in an attempt to determine when and how the ocean forces the atmosphere, and vice versa. These studies focus primarily on relationships between sea surface temperature anomalies and the turbulent and radiative surface heat fluxes. It has been found that both positive and negative feedbacks, which enhance or reduce sea surface temperature anomaly amplitudes, can be generated through changes in the surface boundary layer. Consequent changes in sea surface temperature act to change boundary layer characteristics through changes in static stability or turbulent fluxes. Previous studies over the global oceans have used coarse-resolution observational and model products such as ICOADS and the NCEP Reanalysis. This study focuses on documenting the atmosphere ocean feedbacks that exist in recently produced higher resolution products, namely the SeaFlux v1.0 product and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). It has been noted in recent studies that evidence of oceanic forcing of the atmosphere exists on smaller scales than the usually more dominant atmospheric forcing of the ocean, particularly in higher latitudes. It is expected that use of these higher resolution products will allow for a more comprehensive description of these small-scale ocean-atmosphere feedbacks. The SeaFlux intercomparisons have revealed large scatter between various surface flux climatologies. This study also investigates the uncertainty in surface flux feedbacks based on several of these recent satellite based climatologies

  12. Simulating Late Ordovician deep ocean O2 with an earth system climate model. Preliminary results.

    NASA Astrophysics Data System (ADS)

    D'Amico, Daniel F.; Montenegro, Alvaro

    2016-04-01

    The geological record provides several lines of evidence that point to the occurrence of widespread and long lasting deep ocean anoxia during the Late Ordovician, between about 460-440 million years ago (ma). While a series of potential causes have been proposed, there is still large uncertainty regarding how the low oxygen levels came about. Here we use the University of Victoria Earth System Climate Model (UVic ESCM) with Late Ordovician paleogeography to verify the impacts of paleogeography, bottom topography, nutrient loading and cycling and atmospheric concentrations of O2 and CO2 on deep ocean oxygen concentration during the period of interest. Preliminary results so far are based on 10 simulations (some still ongoing) covering the following parameter space: CO2 concentrations of 2240 to 3780 ppmv (~8x to 13x pre-industrial), atmospheric O2 ranging from 8% to 12% per volume, oceanic PO4 and NO3 loading from present day to double present day, reductions in wind speed of 50% and 30% (winds are provided as a boundary condition in the UVic ESCM). For most simulations the deep ocean remains well ventilated. While simulations with higher CO2, lower atmospheric O2 and greater nutrient loading generate lower oxygen concentration in the deep ocean, bottom anoxia - here defined as concentrations <10 μmol L-1 - in these cases is restricted to the high-latitue northern hemisphere. Further simulations will address the impact of greater nutrient loads and bottom topography on deep ocean oxygen concentrations.

  13. Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge

    NASA Astrophysics Data System (ADS)

    De Rydt, J.; Gudmundsson, G. H.

    2016-05-01

    Recent observations and modeling work have shown a complex mechanical coupling between Antarctica's floating ice shelves and the adjacent grounded ice sheet. A prime example is Pine Island Glacier, West Antarctica, which has a strong negative mass balance caused by a recent increase in ocean-induced melting of its ice shelf. The mass loss coincides with the retreat of the grounding line from a seabed ridge, on which it was at least partly grounded until the 1970s. At present, it is unclear what has caused the onset of this retreat and how feedback mechanisms between the ocean and ice shelf geometry have influenced the ice dynamics. To address these questions, we present the first results from an offline coupling between a state-of-the-art shallow-ice flow model with grounding line resolving capabilities and a three-dimensional ocean general circulation model with a static implementation of the ice shelf. A series of idealized experiments simulate the retreat from a seabed ridge in response to changes in the ocean forcing, and we show that the retreat becomes irreversible after 20 years of warm ocean conditions. A comparison to experiments with a simple depth-dependent melt rate parameterization demonstrates that such parameterizations are unable to capture the details of the retreat process, and they overestimate mass loss by more than 40% over a 50 year timescale.

  14. Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing

    NASA Astrophysics Data System (ADS)

    Morlighem, M.; Bondzio, J.; Seroussi, H.; Rignot, E.; Larour, E.; Humbert, A.; Rebuffi, S.

    2016-03-01

    Glacier-front dynamics is an important control on Greenland's ice mass balance. Warmer ocean waters trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. Here we present an approach to quantify the sensitivity and vulnerability of marine-terminating glaciers to ocean-induced melt. We develop a plan view model of Store Gletscher that includes a level set-based moving boundary capability, a parameterized ocean-induced melt, and a calving law with complete and precise land and fjord topographies to model the response of the glacier to increased melt. We find that the glacier is stabilized by a sill at its terminus. The glacier is dislodged from the sill when ocean-induced melt quadruples, at which point the glacier retreats irreversibly for 27 km into a reverse bed. The model suggests that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude.

  15. Coupled ice shelf-ocean modeling and complex grounding line retreat for Pine Island Glacier

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    Recent observations and modeling work have shown a complex mechanical coupling between Antarctica's floating ice shelves and the adjacent grounded ice sheet. A prime example is Pine Island Glacier, West Antarctica, which has a strong negative mass balance caused by a recent increase in ocean-induced melting of its ice shelf. The mass loss coincides with the retreat of the grounding line from a seabed ridge, on which it was at least partly grounded until the 1970s. At present, it is unclear what has caused the onset of this retreat, and how feedback mechanisms between the ocean and iceshelf geometry have influenced the ice dynamics. To address these questions, we present results from an offline coupling between a state-of-the-art shallow-ice flow model with grounding line resolving capabilities, and a three-dimensional ocean general circulation model with a static implementation of the ice shelf. A series of idealized experiments simulate the retreat from a seabed ridge in response to changes in the ocean forcing, and we show that the retreat becomes irreversible after 20 years of warm ocean conditions. A comparison to experiments with a simple depth-dependent meltrate parameterisation demonstrates that such parameterizations are unable to capture the details of the retreat process, and they overestimate mass loss by more than 40% over a 50-year timescale.

  16. Stable Isotopic Variability in the Carbon Cycle: Reconciling Ocean Model Results with Atmospheric Observations

    NASA Astrophysics Data System (ADS)

    Alden, C. B.; White, J. W.; Miller, J. B.

    2009-12-01

    In the face of rising sea levels, species extinction, unpredictable precipitation changes, and other potential impacts of anthropogenic climate change, there is a push for the scientific community to expand our current understanding of the major sources and sinks of global warming’s most implicated culprit, CO2. Knowing the mechanisms controlling CO2 sinks and sources will be vital for policy-makers to make informed decisions regarding its mitigation. The stable carbon isotope, 13C, can be used to partition CO2 fluxes into land and ocean components. The major fluxes of this gas (fossil fuel, ocean and land) impose distinctive and predictable fractionation patterns upon the stable isotope ratio, making it an ideal tool for distinguishing between them. One drawback to this method is that photosynthesis and respiration are not contemporaneous, and because the 13C of atmospheric CO2 is being continuously depleted through the burning of 12C-rich fossil fuels (the Suess effect), there is an isotopic “disequilibrium flux” between CO2 moving into and out of the ocean and land reservoirs. In this study, we take a new approach and seek to reconcile independent estimates of time histories of ocean fluxes with atmospheric observations. We use a combination of atmospheric CO2 and 13CO2 data, fossil fuel emission estimates, and recent ocean model results (from two different approaches) for the ocean CO2 flux, within a box-inverse model as well as a 2D transport model. We calculate time series of land flux, disequilibrium flux and photosynthetic fractionation from 1991 through 2008. Our findings reveal that if ocean variability is as small as is suggested by the ocean model, and the isotopic variability is forced into the disequilibrium flux, then the resulting disequilibrium flux has very large interannual variability (~35 PgC‰/yr). While large interannual variability in DIS seems incompatible with the Suess effect alone, it could be explained by interannual variations

  17. Mobile Ocean Test Berth Support: Cooperative Research and Development Final Report, CRADA Number CRD-10-413

    SciTech Connect

    LiVecchi, Albert

    2015-12-01

    The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriate instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.

  18. Propagation properties of electromagnetic rectangular multi-Gaussian Schell-model beams in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Xudong; Zhao, Daomu

    2016-08-01

    A model of electromagnetic rectangular multi-Gaussian Schell-model (ERMGSM) beams is introduced. Its analytic expression for the elements of the cross-spectral density matrix of such beams passing through oceanic turbulence is derived. It is shown that the rectangular shape of the ERMGSM beams holds a small distance on propagation in oceanic turbulence. The spectral density, the degree of coherence and the degree of polarization of ERMGSM beams are also studied in detail. The results will be helpful for underwater communication by using ERMGSM beams.

  19. Computational dispersion properties of horizontal staggered grids for atmospheric and ocean models

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    1991-01-01

    The computational dispersion properties of horizontally and time-horizontally staggered grids utilizing corresponding centered-difference techniques for approximation of the adjustment, or gravity wave equations, are examined in terms of their group velocity characteristics. Results are acquired for oceanic and atmospheric models, the former being characterized by a much smaller Rossby radius of deformation. For all grids considered additional filtering is required to control and even eliminate waves with poor computational dispersion characteristics. Computational dispersion properties along with other computational characteristics and requirements give some guidance for an optimal selection of an appropriate grid for an ocean or atmospheric model.

  20. Coupled Ocean-Atmosphere Dynamics in a Simple Midlatitude Climate Model.

    NASA Astrophysics Data System (ADS)

    Ferreira, David; Frankignoul, Claude; Marshall, John

    2001-09-01

    Midlatitude air-sea interactions are investigated by coupling a stochastically forced two-layer quasigeostrophic channel atmosphere to a simple ocean model. The stochastic forcing has a large-scale standing pattern to simulate the main modes of low-frequency atmospheric variability. When the atmosphere interacts with an oceanic mixed layer via surface heat exchanges, the white noise forcing generates an approximately red noise sea surface temperature (SST) response. As the SST adjusts to the air temperature changes at low frequency, thus decreasing the heat flux damping, the atmospheric spectra are slightly reddened, the power enhancement increasing with the zonal scale because of atmospheric dynamics. Decadal variability is enhanced by considering a first baroclinic oceanic mode that is forced by Ekman pumping and modulates the SST by entrainment and horizontal advection. The ocean interior is bounded at its eastern edge, and a radiation condition is used in the west. Primarily in wintertime conditions, a positive feedback takes place between the atmosphere and the ocean when the atmospheric response to the SST is equivalent barotropic. Then, the ocean interior modulates the SST in a way that leads to a reinforcement of its forcing by the wind stress, although the heat flux feedback is negative. The coupled mode propagates slowly westward with exponentially increasing amplitude, and it is fetch limited. The atmospheric and SST spectral power increase at all periods longer than 10 yr when the coupling with the ocean interior occurs by entrainment. When it occurs by advection, the power increase is primarily found at near-decadal periods, resulting in a slightly oscillatory behavior of the coupled system. Ocean dynamics thus leads to a small, but significant, long-term climate predictability, up to about 6 yr in advance in the entrainment case.

  1. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an earth system model

    NASA Astrophysics Data System (ADS)

    Rodgers, K. B.; Lin, J.; Frölicher, T. L.

    2014-12-01

    Marine ecosystems are increasingly impacted by human-induced changes. Ocean ecosystem drivers - including warming, acidification, deoxygenation and perturbations to biological productivity - can co-occur in space and time, but detecting their trends is complicated by the presence of noise associated with natural variability in the climate system. Here we use Large Initial-Condition Ensemble Simulations with a comprehensive Earth System Model under a historical/RCP8.5 pathway over 1950-2100 to consider emergence characteristics for the four individual and combined drivers. Using a one-standard deviation (67% confidence) threshold of signal-to-noise to define emergence with a 30 yr trend window, we show that ocean acidification emerges much earlier than other drivers, namely during the 20th century over most of the global ocean. For biological productivity, the anthropogenic signal does not emerge from the noise over most of the global ocean before the end of the 21st century. The early emergence pattern for sea surface temperature in low latitudes is reversed from that of subsurface oxygen inventories, where emergence occurs earlier in the Southern Ocean. For the combined multiple-driver field, 41% of the global ocean exhibits emergence for the 2005-2014 period, and 63% for the 2075-2084 period. The combined multiple-driver field reveals emergence patterns by the end of this century that are relatively high over much of the Southern Ocean, North Pacific, and Atlantic, but relatively low over the tropics and the South Pacific. In regions with pronounced emergence characteristics, marine ecosystems can be expected to be pushed outside of their comfort zone determined by the degree of natural background variability to which they are adapted. The results here thus have implications not only for optimization of the ocean observing system, but also for risk assessment and mitigation strategies.

  2. Global ocean tide models on the eve of Topex/Poseidon

    SciTech Connect

    Ray, R.D. )

    1993-03-01

    Some existing global ocean tide models that can provide tide corrections to Topex/Poseidon altimeter data are described. Emphasis is given to the Schwiderski and Cartwright-Ray models, as these are the most comprehensive, highest resolution models, but other models that will soon appear are mentioned. Differences between models for M[sub 2] often exceed 10 cm over vast stretches of the ocean. Comparisons to 80 selected pelagic and island gauge measurements indicate the Schwiderski model is more accurate for the major solar tides, Cartwright-Ray for the major lunar tides. The adequacy of available tide models for studying basin-scale motions is probably marginal at best. The subject, however, is in a state of flux, and one may expect rapid advancement over the next several years.

  3. Accounting for age uncertainty in growth modeling, the case study of yellowfin tuna (Thunnus albacares) of the Indian Ocean.

    PubMed

    Dortel, Emmanuelle; Massiot-Granier, Félix; Rivot, Etienne; Million, Julien; Hallier, Jean-Pierre; Morize, Eric; Munaron, Jean-Marie; Bousquet, Nicolas; Chassot, Emmanuel

    2013-01-01

    Age estimates, typically determined by counting periodic growth increments in calcified structures of vertebrates, are the basis of population dynamics models used for managing exploited or threatened species. In fisheries research, the use of otolith growth rings as an indicator of fish age has increased considerably in recent decades. However, otolith readings include various sources of uncertainty. Current ageing methods, which converts an average count of rings into age, only provide periodic age estimates in which the range of uncertainty is fully ignored. In this study, we describe a hierarchical model for estimating individual ages from repeated otolith readings. The model was developed within a Bayesian framework to explicitly represent the sources of uncertainty associated with age estimation, to allow for individual variations and to include knowledge on parameters from expertise. The performance of the proposed model was examined through simulations, and then it was coupled to a two-stanza somatic growth model to evaluate the impact of the age estimation method on the age composition of commercial fisheries catches. We illustrate our approach using the sagittal otoliths of yellowfin tuna of the Indian Ocean collected through large-scale mark-recapture experiments. The simulation performance suggested that the ageing error model was able to estimate the ageing biases and provide accurate age estimates, regardless of the age of the fish. Coupled with the growth model, this approach appeared suitable for modeling the growth of Indian Ocean yellowfin and is consistent with findings of previous studies. The simulations showed that the choice of the ageing method can strongly affect growth estimates with subsequent implications for age-structured data used as inputs for population models. Finally, our modeling approach revealed particularly useful to reflect uncertainty around age estimates into the process of growth estimation and it can be applied to any

  4. Accounting for age uncertainty in growth modeling, the case study of yellowfin tuna (Thunnus albacares) of the Indian Ocean.

    PubMed

    Dortel, Emmanuelle; Massiot-Granier, Félix; Rivot, Etienne; Million, Julien; Hallier, Jean-Pierre; Morize, Eric; Munaron, Jean-Marie; Bousquet, Nicolas; Chassot, Emmanuel

    2013-01-01

    Age estimates, typically determined by counting periodic growth increments in calcified structures of vertebrates, are the basis of population dynamics models used for managing exploited or threatened species. In fisheries research, the use of otolith growth rings as an indicator of fish age has increased considerably in recent decades. However, otolith readings include various sources of uncertainty. Current ageing methods, which converts an average count of rings into age, only provide periodic age estimates in which the range of uncertainty is fully ignored. In this study, we describe a hierarchical model for estimating individual ages from repeated otolith readings. The model was developed within a Bayesian framework to explicitly represent the sources of uncertainty associated with age estimation, to allow for individual variations and to include knowledge on parameters from expertise. The performance of the proposed model was examined through simulations, and then it was coupled to a two-stanza somatic growth model to evaluate the impact of the age estimation method on the age composition of commercial fisheries catches. We illustrate our approach using the sagittal otoliths of yellowfin tuna of the Indian Ocean collected through large-scale mark-recapture experiments. The simulation performance suggested that the ageing error model was able to estimate the ageing biases and provide accurate age estimates, regardless of the age of the fish. Coupled with the growth model, this approach appeared suitable for modeling the growth of Indian Ocean yellowfin and is consistent with findings of previous studies. The simulations showed that the choice of the ageing method can strongly affect growth estimates with subsequent implications for age-structured data used as inputs for population models. Finally, our modeling approach revealed particularly useful to reflect uncertainty around age estimates into the process of growth estimation and it can be applied to any

  5. Data Assimilation Into a Coupled Ocean Atmosphere Model: Application to the 1997-1998 El Nino

    NASA Technical Reports Server (NTRS)

    Lee, Tong

    1999-01-01

    As part of JPL's ocean data assimilation effort to study ocean circulation and seasonal-interannual climate variability, sea level anomaly observed by TOPEX altimeter, together with sea surface temperature and wind stress data, are assimilated into a simple coupled ocean atmosphere model of the tropical Pacific. Model-data consistency is examined. Impact of the assimilation (as initialization) on El Nino Southern Oscillation (ENSO)