NASA Astrophysics Data System (ADS)
Wee, S. Y.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Yvon-Lewis, S. A.; Sylvan, J. B.
2017-12-01
International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. Recovered cores were primarily gabbro and olivine gabbro, which may potentially host serpentinization reactions and associated microbial life. Our goal was to sample this subseafloor environment and determine quantity, diversity and metabolic capabilities of any resident microbial life. Hole U1473A was drilled during Expedition 360 down to 790 m below seafloor and samples for detection of microbial communities and microbial biosignatures were collected throughout. We present here quantification of microbial biomass via fluorescence microscopy, preliminary analysis of nutrient addition experiments, data from sequencing of microbial 16S rRNA genes, analysis of microbial lipids, and data from Raman spectra of subsurface isolates. We initiated and sampled 12 nutrient addition experiments from 71-745 mbsf by adding sampled rocks to artificial seawater with no additions, added ammonium, added ammonium plus phosphate, and added organic acids. In nearly all of the experiment bottles, methane was detected when samples were collected at six months and again after one year of incubation. Phosphate in the incubations was drawn down, indicating active microbial metabolism, and archaeal lipids from in situ samples indicate the presence of methanogens, corroborating the likelihood of methanogens as the source of detected methane in the nutrient addition incubations. Altogether, the interdisciplinary approach used here provides a peek into life in the subseafloor upper ocean crust.
The Indigo V Indian Ocean Expedition: a prototype for citizen microbial oceanography
NASA Astrophysics Data System (ADS)
Lauro, Federico; Senstius, Jacob; Cullen, Jay; Lauro, Rachelle; Neches, Russell; Grzymski, Joseph
2014-05-01
Microbial Oceanography has long been an extremely expensive discipline, requiring ship time for sample collection and thereby economically constraining the number of samples collected. This is especially true for under-sampled water bodies such as the Indian Ocean. Specialised scientific equipment only adds to the costs. Moreover, long term monitoring of microbial communities and large scale modelling of global biogeochemical cycles requires the collection of high-density data both temporally and spatially in a cost-effective way. Thousands of private ocean-going vessels are cruising around the world's oceans every day. We believe that a combination of new technologies, appropriate laboratory protocols and strategic operational partnerships will allow researchers to broaden the scope of participation in basic oceanographic research. This will be achieved by equipping sailing vessels with small, satcom-equipped sampling devices, user-friendly collection techniques and a 'pre-addressed-stamped-envelope' to send in the samples for analysis. We aim to prove that 'bigger' is not necessarily 'better' and the key to greater understanding of the world's oceans is to forge the way to easier and cheaper sample acquisition. The ultimate goal of the Indigo V Expedition is to create a working blue-print for 'citizen microbial oceanography'. We will present the preliminary outcomes of the first Indigo V expedition, from Capetown to Singapore, highlighting the challenges and opportunities of such endeavours.
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1973-01-01
Detailed information is presented concerning specific airborne missions in support of the ASSESS program. These missions are the AIDJEX expeditions, meteor shower expeditions, CAT and atmospheric sampling missions, ocean color expeditions, and the Lear Jet missions. For Vol. 2, see N73-31729.
Information And Data-Sharing Plan of IPY China Activity
NASA Astrophysics Data System (ADS)
Zhang, X.; Cheng, W.
2007-12-01
Polar Data-Sharing is an effective resolution to global system and polar science problems and to interdisciplinary and sustainable study, as well as an important means to deal with IPY scientific heritages and realize IPY goals. Corresponding to IPY Data-Sharing policies, Information and Data-Sharing Plan was listed in five sub-plans of IPY Chinese Programme launched in March, 2007,they are Scientific research program of the Prydz Bay, Amery Ice Shelf and Dome A transects(short title:'PANDA'), the Arctic Scientific Research Expedition Plan, International Cooperation Plan, Information and Data-Sharing Plan, Education and Outreach. China, since the foundation of Antarctic Zhongshan Station in 1989, has carried out systematic scientific expeditions and researches in Larsemann Hills, Prydz Bay and the neighbouring sea areas, organized 14 Prydz Bay oceanographic investigations, 3 Amery Ice Shelf expeditions, 4 Grove Mountains expeditions and 5 inland ice cap scientific expeditions. 2 comprehensive oceanographic investigations in the Arctic Ocean were conducted in 1999 and 2003, acquired a large amount of data and samples in PANDA section and fan areas of Pacific Ocean in the Arctic Ocean. A mechanism of basic data submitting ,sharing and archiving has been gradually set up since 2000. Presently, Polar Science Database and Polar Sample Resource Sharing Platform of China with the aim of sharing polar data and samples has been initially established and began to provide sharing service to domestic and oversea users. According to IPY Chinese Activity, 2 scientific expeditions in the Arctic Ocean, 3 in the South Ocean, 2 at Amery Ice Shelf, 1 on Grove Mountains and 2 inland ice cap expeditions on Dome A will be carried out during IPY period. According to the experiences accumulated in the past and the jobs in the future, the Information and Data- Sharing Plan, during 2007-2010, will save, archive, and provide exchange and sharing services upon the data obtained by scientific expeditions on the site of IPY Chinese Programme. Meanwhile, focusing on areas in east Antarctic Dome A-Grove Mountain-Zhongshan Station-Amery Ice Shelf-Prydz Bay Section and the fan areas of Pacific Ocean in the Arctic Ocean, the Plan will also collect and integrate IPY data and historical data and establish database of PANDA Section and the Arctic Ocean. The details are as follows: On the basis of integrating the observed data acquired during the expeditions of China, the Plan will, adopting portal technology, develop 5 subject databases (English version included):(1) Database of Zhongshan Station- Dome A inner land ice cap section;(2) Database of interaction of ocean-ice-atmosphere-ice shelf in east Antarctica;(3) Database of geological and glaciological advance and retreat evolvement in Grove Mountains; (4) Database of Solar Terrestrial Physics at Zhongshan Station; (5) Oceanographic database of fan area of Pacific Ocean in the Arctic Ocean. CN-NADC of PRIC is the institute which assumes the responsibility for the Plan, specifically, it coordinates and organizes the operation of the Plan which includes data management, developing the portal of data and information sharing, and international exchanges. The specific assignments under the Plan will be carried out by research institutes under CAS (Chinese Academy of Sciences), SOA ( State Oceanic Administration), State Bureau of Surveying and Mapping and Ministry of Education.
IODP Expedition 335: Deep Sampling in ODP Hole 1256D
NASA Astrophysics Data System (ADS)
Teagle, D. A. H.; Ildefonse, B.; Blum, P.; IODP Expedition 335 Scientists, the
2012-04-01
Observations of the gabbroic layers of untectonized ocean crust are essential to test theoretical models of the accretion of new crust at mid-ocean ridges. Integrated Ocean Drilling Program (IODP) Expedition 335 ("Superfast Spreading Rate Crust 4") returned to Ocean Drilling Program (ODP) Hole 1256D with the intention of deepening this reference penetration of intact ocean crust a significant distance (~350 m) into cumulate gabbros. Three earlier cruises to Hole 1256D (ODP 206, IODP 309/312) have drilled through the sediments, lavas, and dikes and 100 m into a complex dike-gabbro transition zone. Operations on IODP Expedition 335 proved challenging throughout, with almost three weeks spent re-opening and securing unstable sections of the hole. When coring commenced, the comprehensive destruction of the coring bit required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets were successful, and they recovered large irregular samples that document a hitherto unseen sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting, and retrogressive processes. Hole 1256D is now clean of junk, and it has been thoroughly cleared of the drill cuttings that hampered operations during this and previous expeditions. At the end of Expedition 335, we briefly resumed coring before undertaking cementing operations to secure problematic intervals. To ensure the greatest scientific return from the huge efforts to stabilize this primary ocean lithosphere reference site, it would be prudent to resume the deepening of Hole 1256D in the nearest possible future while it is open to full depth. doi:10.2204/iodp.sd.13.04.2011
Microbiology of the lower ocean crust - Preliminary results from IODP Expedition 360, Atlantis Bank
NASA Astrophysics Data System (ADS)
Sylvan, J. B.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Expedition 360 Scientists, I.
2016-12-01
International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. We present here preliminary analysis of microbial communities sampled from Hole U1473A, drilled to 789.7 m below seafloor during Expedition 360. Sub-sampling of core sections was conducted in a newly designed plexiglass enclosure with positive air pressure and HEPA filtered air, providing a clean environment for microbiology sampling aboard the JOIDES Resolution. Adenosine triphosphoate, an indicator of microbial biomass, was quantified above detection in 23 of 66 samples analyzed. We measured exoenzyme activity for alkaline phosphatase (AP), leucine aminopeptidase and arginine aminopeptidase in 16 samples and found AP to be very low but above background for 14 of the samples, with highest activities measured between 10 and 70 m below seafloor (mbsf) and peaks again at 158 and 307 mbsf, while both peptidase enzymes were above detection for only one sample at 715 mbsf. Isolates of fungi obtained from core samples as well as analyses of lipid and DNA biomarkers, and Raman spectra for a few of our rock core samples provide initial insights into microbial communities in the lower oceanic crust. Finally, a new tracer of seawater and drilling mud contamination, perfluoromethyl decaline (PFMD), was tested for the first time and its performance compared with the commonly used tracer perfluoromethylcyclohexane (PMCH). PFMD was run during coring operations for ten samples and was routinely detected in the drilling fluids, usually detected on the outside of uncleaned cores, and rarely above detection on the cleaned outside of cores. It was below detection on the inside of cores, indicating penetration of drill fluids to the interior of whole round drill cores, where we collected our samples, is unlikely.
Pelagic ecology of the South West Indian Ocean Ridge seamounts: Introduction and overview
NASA Astrophysics Data System (ADS)
Rogers, A. D.
2017-02-01
The Indian Ocean was described by Behrman (1981) as the "Forlorn Ocean", a region neglected by science up to the late-1950s. For example, the Challenger Expedition from 1872 to 1876 largely avoided the Indian Ocean, sailing from Cape Town into Antarctic waters sampling around the Prince Edward Islands, Kerguelen Island and Crozet Islands before heading to Melbourne. From 1876 to the 1950s there were expeditions on several vessels including the Valdivia, Gauss and Planet (Germany), the Snellius (Netherlands), Discovery II, MahaBiss (United Kingdom), Albatross (Sweden), Dana and Galathea (Denmark; Behrman, 1981). There was no coordination between these efforts and overall the Indian Ocean, especially the deep sea remained perhaps the most poorly explored of the world's oceans. This situation was largely behind the multilateral effort represented by the International Indian Ocean Expedition (IIEO), which was coordinated by the Scientific Committee for Ocean Research (SCOR), and which ran from 1959-1965. Work during this expedition focused on the Arabian Sea, the area to the northwest of Australia and the waters over the continental shelves and slopes of coastal states in the region. Subsequently several large-scale international oceanographic programmes have included significant components in the Indian Ocean, including the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE). These studies were focused on physical oceanographic measurements and biogeochemistry and whilst the Indian Ocean is still less understood than other large oceans it is now integrated into the major ocean observation systems (Talley et al., 2011). This cannot be said for many aspects of the biology of the region, despite the fact that the Indian Ocean is one of the places where exploitation of marine living resources is still growing (FAO, 2016). The biology of the deep Indian Ocean outside of the Arabian Sea is particularly poorly understood given the presence of globally significant areas of seamounts, submarine plateaus, continental and island slopes.
NASA Astrophysics Data System (ADS)
Cotterill, Carol; McInroy, David; Stevenson, Alan
2013-04-01
Mission Specific Platform (MSP) expeditions are operated by the European Consortium for Ocean Research Drilling (ECORD). Each MSP expedition is unique within the Integrated Ocean Drilling Program (IODP). In order to complement the abilities of the JOIDES Resolution and the Chikyu, the ECORD Science Operator (ESO) must source vessels and technology suitable for each MSP proposal on a case-by-case basis. The result is that ESO can meet scientific requirements in a flexible manner, whilst maintaining the measurements required for the IODP legacy programme. The process of tendering within EU journals for vessels and technology means that the planning process for each MSP Expedition starts many years in advance of the operational phase. Involvement of proposal proponents from this early stage often leads to the recognition for technological research and development to best meet the scientific aims and objectives. One example of this is the planning for the Atlantis Massif proposal, with collaborative development between the British Geological Survey (BGS) and MARUM, University of Bremen, on suitable instruments for seabed drills, with the European Petrophysics Consortium (EPC) driving the development of suitable wireline logging tools that can be used in association with such seabed systems. Other technological developments being undertaken within the European IODP community include in-situ pressure sampling for gas hydrate expeditions, deep biosphere and fluid sampling equipment and CORK technology. This multi-national collaborative approach is also employed by ESO in the operational phase. IODP Expedition 302 ACEX saw vessel and ice management support from Russia and Sweden to facilitate the first drilling undertaken in Arctic sea ice. A review of MSP expeditions past, present and future reveal the significant impact of European led operations and scientific research within the current IODP programme, and also looking forward to the start of the new International Ocean Discovery Programme in October 2013. Key successes encompass technological development, operational procedures in sensitive areas and research into palaeoclimate and shoreline responses to sea level change amongst others. Increased operational flexibility in the new programme only serves to make the future an exciting one for ocean drilling in Europe.
Arctic Ocean Paleoceanography and Future IODP Drilling
NASA Astrophysics Data System (ADS)
Stein, Ruediger
2015-04-01
Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, such as the Lomonosov Ridge. These new detailed climate records spanning time intervals from the (late Cretaceous/)Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. During the Polarstern Expedition PS87 in August-September 2014, new site survey data including detailed multibeam bathymetry, multi-channel seismic and Parasound profiling as well as geological coring, were obtained on Lomonosov Ridge (Stein, 2015), being the basis for a more precise planning and update for a future IODP drilling campaign. Reference: Stein, R. (Ed.), 2015. Cruise Report of Polarstern Expedition PS87-2014 (Arctic Ocean/Lomonosov Ridge). Reps. Pol. Mar. Res., in press. Stein, R. , Weller, P. , Backman, J. , Brinkhuis, H., Moran, K. , Pälike, H., 2014. Cenozoic Arctic Ocean Climate History: Some highlights from the IODP Arctic Coring Expedition (ACEX). Developments in Marine Geology 7, Elsevier Amsterdam/New York, pp. 259-293.
Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.
2016-12-01
IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Contamination tracer testing with seabed drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.
2017-11-01
IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Mapping the Arctic: Online Undergraduate Education Using Scientific Research in International Policy
NASA Astrophysics Data System (ADS)
Reed, D. L.; Edwards, B. D.; Gibbons, H.
2011-12-01
Ocean science education has the opportunity to span traditional academic disciplines and undergraduate curricula because of its interdisciplinary approach to address contemporary issues on a global scale. Here we report one such opportunity, which involves the development of a virtual oceanographic expedition to map the seafloor in the Arctic Ocean for use in the online Global Studies program at San Jose State University. The U.S. Extended Continental Shelf Project provides an extensive online resource to follow the activities of the third joint U.S. and Canada expedition in the Arctic Ocean, the 2010 Extended Continental Shelf survey, involving the icebreakers USCGC Healy and CCGS Louis S. St-Laurent. In the virtual expedition, students join the work of scientists from the U.S. Geological Survey and the Canadian Geological Survey by working through 21 linked web pages that combine text, audio, video, animations and graphics to first learn about the U.N. Convention on the Law of the Sea (UNCLOS). Then, students gain insight into the complexity of science and policy interactions by relating the UNCLOS to issues in the Arctic Ocean, now increasingly accessible to exploration and development as a result of climate change. By participating on the virtual expedition, students learn the criteria contained in Article 76 of UNCLOS that are used to define the extended continental shelf and the scientific methods used to visualize the seafloor in three-dimensions. In addition to experiencing life at sea aboard a research vessel, at least virtually, students begin to interpret the meaning of seafloor features and the use of seafloor sediment samples to understand the application of ocean science to international issues, such as the implications of climate change, national sovereign rights as defined by the UNCLOS, and marine resources. The virtual expedition demonstrates that ocean science education can extend beyond traditional geoscience courses by taking advantage of emerging academic disciplines, contemporary global issues and new learning delivery systems.
Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition
Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Bazire, Pascal; Beluche, Odette; Bertrand, Laurie; Besnard-Gonnet, Marielle; Bordelais, Isabelle; Boutard, Magali; Dubois, Maria; Dumont, Corinne; Ettedgui, Evelyne; Fernandez, Patricia; Garcia, Espérance; Aiach, Nathalie Giordanenco; Guerin, Thomas; Hamon, Chadia; Brun, Elodie; Lebled, Sandrine; Lenoble, Patricia; Louesse, Claudine; Mahieu, Eric; Mairey, Barbara; Martins, Nathalie; Megret, Catherine; Milani, Claire; Muanga, Jacqueline; Orvain, Céline; Payen, Emilie; Perroud, Peggy; Petit, Emmanuelle; Robert, Dominique; Ronsin, Murielle; Vacherie, Benoit; Acinas, Silvia G.; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M.; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E.; Stepanauskas, Ramunas; Sullivan, Matthew B.; Brum, Jennifer R.; Duhaime, Melissa B.; Poulos, Bonnie T.; Hurwitz, Bonnie L.; Acinas, Silvia G.; Bork, Peer; Boss, Emmanuel; Bowler, Chris; De Vargas, Colomban; Follows, Michael; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Kandels-Lewis, Stefanie; Karp-Boss, Lee; Karsenti, Eric; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Raes, Jeroen; Sardet, Christian; Sieracki, Michael E.; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B.; Sunagawa, Shinichi; Wincker, Patrick; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick
2017-01-01
A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009–2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world’s planktonic ecosystems. PMID:28763055
Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition.
Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Acinas, Silvia G; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E; Stepanauskas, Ramunas; Sullivan, Matthew B; Brum, Jennifer R; Duhaime, Melissa B; Poulos, Bonnie T; Hurwitz, Bonnie L; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick
2017-08-01
A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems.
ERIC Educational Resources Information Center
Delaware Univ., Newark. Coll. of Education.
Included are three units related to coastal and oceanic awareness. These are: (1) The "RA" Expeditions: The Archaeological and Anthropological Background; (2) The "RA" Expeditions: The Coriolis Effect; and (3) The "RA" Expeditions: The Papyrus Reed. Each of the three units are designed for students in grades 6-12.…
NASA Astrophysics Data System (ADS)
Ildefonse, B.; Teagle, D. A.; Blum, P.; IODP Expedition 335 Scientists
2011-12-01
IODP Expedition 335 "Superfast Spreading Rate Crust 4" returned to ODP Hole 1256D with the intent of deepening this reference penetration of intact ocean crust several hundred meters into cumulate gabbros. This was the fourth cruise of the superfast campaign to understand the formation of oceanic crust accreted at fast spreading ridges, by exploiting the inverse relationship between spreading rate and the depth to low velocity zones seismically imaged at active mid-ocean zones, thought to be magma chambers. Site 1256 is located on 15-million-year-old crust formed at the East Pacific Rise during an episode of superfast ocean spreading (>200 mm/yr full rate). Three earlier cruises to Hole 1256D have drilled through the sediments, lavas and dikes and 100 m into a complex dike-gabbro transition zone. The specific objectives of IODP Expedition 335 were to: (1) test models of magmatic accretion at fast spreading ocean ridges; (2) quantify the vigor of hydrothermal cooling of the lower crust; (3) establish the geological meaning of the seismic Layer 2-3 boundary at Site 1256; and (4) estimate the contribution of lower crustal gabbros to marine magnetic anomalies. It was anticipated that even a shortened IODP Expedition could deepen Hole 1256D a significant distance (300 m) into cumulate gabbros. Operations on IODP Expedition 335 proved challenging from the outset with almost three weeks spent re-opening and securing unstable sections of the Hole. When coring commenced, the destruction of a hard-formation C9 rotary coring bit at the bottom of the hole required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets returned large samples of a contact-metamorphic aureole between the sheeted dikes and a major heat source below. These large (up to 3.5 kg) irregular samples preserve magmatic, hydrothermal and structural relationships hitherto unseen because of the narrow diameter of drill core and previous poor core recovery. Including the ~60 m-thick zone of granoblastic dikes overlying the uppermost gabbro, the dike-gabbro transition zone at Site 1256 is over 170 m thick, of which more than 100 m are recrystallized granoblastic basalts. This zone records a dynamically evolving thermal boundary layer between the principally hydrothermal domain of the upper crust and a deeper zone of intrusive magmatism. The recovered samples document a sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting and retrogressive processes. Despite the operational challenges, we achieved a minor depth advance to 1522 m, but this was insufficient penetration to complete any of the primary objectives. However, Hole 1256D has been thoroughly cleared of junk and drill cuttings that have hampered operations during this and previous Expeditions. At the end of Expedition 335, we briefly resumed coring and stabilized problematic intervals with cement. Hole 1256D is open to its full depth and ready for further deepening in the near future.
South African Climates: Highlights From International Ocean Discovery Program Expedition 361
NASA Astrophysics Data System (ADS)
Hemming, S. R.; Hall, I. R.; LeVay, L.
2016-12-01
International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel, at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and the Cape Basin were targeted to reconstruct the history of the Greater Agulhas Current System over the past 5 Ma. The Agulhas Current transports 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. The main objectives of the expedition were to document the oceanographic properties of the Agulhas Current through tectonic and climatic changes during the Plio-Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, to address the influence of the Agulhas Current on African terrestrial climates and potential links to Human evolution. Additionally, the Expedition set out to fulfill the needs of the Ancillary Project Letter, consisting of high-resolution interstitial water samples that will, and to constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. Here we highlight some of the expedition successes and show how it has made major strides toward fulfilling each of these objectives. The recovered sequences allowed complete spliced stratigraphic sections to be generated that span the interval of 0 to between 0.2 and 7 Ma. These sediments provide an exceptional opportunity to generate decadal to millennial-scale climatic records that will resolve key paleoceanographic and paleoclimatic questions from a region poorly represented in the database of scientific drill sites.
NASA Technical Reports Server (NTRS)
Werdell, P. Jeremy; Proctor, Christopher W.; Boss, Emmanuel; Leeuw, Thomas; Ouhssain, Mustapha
2013-01-01
Developing and validating data records from operational ocean color satellite instruments requires substantial volumes of high quality in situ data. In the absence of broad, institutionally supported field programs, organizations such as the NASA Ocean Biology Processing Group seek opportunistic datasets for use in their operational satellite calibration and validation activities. The publicly available, global biogeochemical dataset collected as part of the two and a half year Tara Oceans expedition provides one such opportunity. We showed how the inline measurements of hyperspectral absorption and attenuation coefficients collected onboard the R/V Tara can be used to evaluate near-surface estimates of chlorophyll-a, spectral particulate backscattering coefficients, particulate organic carbon, and particle size classes derived from the NASA Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODISA). The predominant strength of such flow-through measurements is their sampling rate-the 375 days of measurements resulted in 165 viable MODISA-to-in situ match-ups, compared to 13 from discrete water sampling. While the need to apply bio-optical models to estimate biogeochemical quantities of interest from spectroscopy remains a weakness, we demonstrated how discrete samples can be used in combination with flow-through measurements to create data records of sufficient quality to conduct first order evaluations of satellite-derived data products. Given an emerging agency desire to rapidly evaluate new satellite missions, our results have significant implications on how calibration and validation teams for these missions will be constructed.
First Investigation of the Microbiology of the Deepest Layer of Ocean Crust
Mason, Olivia U.; Nakagawa, Tatsunori; Rosner, Martin; Van Nostrand, Joy D.; Zhou, Jizhong; Maruyama, Akihiko; Fisk, Martin R.; Giovannoni, Stephen J.
2010-01-01
The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes (“GeoChip”), producing further evidence of genomic potential for hydrocarbon degradation - genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere. PMID:21079766
First investigation of the microbiology of the deepest layer of ocean crust.
Mason, Olivia U; Nakagawa, Tatsunori; Rosner, Martin; Van Nostrand, Joy D; Zhou, Jizhong; Maruyama, Akihiko; Fisk, Martin R; Giovannoni, Stephen J
2010-11-05
The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes ("GeoChip"), producing further evidence of genomic potential for hydrocarbon degradation--genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere.
Open science resources for the discovery and analysis of Tara Oceans data
Pesant, Stéphane; Not, Fabrice; Picheral, Marc; Kandels-Lewis, Stefanie; Le Bescot, Noan; Gorsky, Gabriel; Iudicone, Daniele; Karsenti, Eric; Speich, Sabrina; Troublé, Romain; Dimier, Céline; Searson, Sarah; Acinas, Silvia G.; Bork, Peer; Boss, Emmanuel; Bowler, Chris; Vargas, Colomban De; Follows, Michael; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Kandels-Lewis, Stefanie; Karp-Boss, Lee; Karsenti, Eric; Krzic, Uros; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Raes, Jeroen; Reynaud, Emmanuel G.; Sardet, Christian; Sieracki, Mike; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B.; Sunagawa, Shinichi; Velayoudon, Didier; Weissenbach, Jean; Wincker, Patrick
2015-01-01
The Tara Oceans expedition (2009–2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events. PMID:26029378
Open science resources for the discovery and analysis of Tara Oceans data
NASA Astrophysics Data System (ADS)
2015-05-01
The Tara Oceans expedition (2009-2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.
Open science resources for the discovery and analysis of Tara Oceans data.
Pesant, Stéphane; Not, Fabrice; Picheral, Marc; Kandels-Lewis, Stefanie; Le Bescot, Noan; Gorsky, Gabriel; Iudicone, Daniele; Karsenti, Eric; Speich, Sabrina; Troublé, Romain; Dimier, Céline; Searson, Sarah
2015-01-01
The Tara Oceans expedition (2009-2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.
NASA Astrophysics Data System (ADS)
Kurtz, N.; Marks, N.; Cooper, S. K.
2014-12-01
Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.
Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate
NASA Astrophysics Data System (ADS)
Waddell, Lindsey M.; Moore, Theodore C.
2008-03-01
Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (˜55 to ˜45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The δ18O values of the Eocene samples ranged from -6.84‰ to -2.96‰ Vienna Peedee belemnite, with a mean value of -4.89‰, compared to 2.77‰ for a Miocene sample in the overlying section. An average salinity of 21 to 25‰ was calculated for the Eocene Arctic, compared to 35‰ for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ˜48.7 Ma, and a third previously unidentified event at ˜47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive δ13C excursion was observed, indicating unusually high productivity in the surface waters.
Exploring the functional side of the Ocean Sampling Day metagenomes
NASA Astrophysics Data System (ADS)
Antonio, F. G.; Kottmann, R.; Wallom, D.; Glöckner, F. O.
2016-02-01
The Ocean Sampling Day (OSD) is a simultaneous, collaborative, standardized, and global mega-sequencing campaign to analyze marine microbial community composition and functional traits. 150 metagenomes were sequenced from the first OSD in June 2014 including a rich set of environmental and oceanographic measurements. Unlike other ocean mega-surveys such as Global Ocean Sampling (GOS) or the TARA expedition that mostly sampled open ocean waters most of the OSD samples are from coastal sampling sites, an area not previously well studied in this regard. The result is that OSD adds more than three million new genes to the recently published Ocean Microbial-Reference Gene Catalog (Sunawaga et al., 2015). This allows us to significantly increase our knowledge of the ocean microbiome, identify hot-spots of novelty in terms of function and investigate the impact of human activities on oceans coastal areas where there is the largest interaction between dense human populations and the marine world. Additionally, these cumulative samples, related in time, space and environmental parameters, are providing insights into fundamental rules describing microbial diversity and function and contribute to the blue economy through the identification of novel ocean-derived biotechnologies. References: Sunagawa, Coelho, Chaffron, et al. (2015, May). Structure and function of the global ocean microbiome. Science, 348(6237), 126135.
NASA Astrophysics Data System (ADS)
Conze, R.; Krysiak, F.; Wallrabe-Adams, H.; Graham, C. C.
2004-12-01
During August/September 2004, the Arctic Coring Expedition (ACEX) was used to trial a new Offshore Drilling Information System (OffshoreDIS). ACEX was the first Mission Specific Platform (MSP) expedition of the Integrated Ocean Drilling Programme (IODP), funded by the European Consortium for Ocean Research Drilling (ECORD). The British Geological Survey in conjunction with the University of Bremen and the European Petrophysics Consortium were the ECORD Science Operator (ESO) for ACEX. IODP MSP expeditions have very similar data management requirements and operate in similar working environments to the lake drilling projects conducted by the International Continental Scientific Drilling Program (ICDP), for example, the GLAD800, which has very restricted space on board and operates in difficult conditions. Both organizations require data capture and management systems that are mobile, flexible and that can be deployed quickly on small- to medium-sized drilling platforms for the initial gathering of data, and that can also be deployed onshore in laboratories where the bulk of the scientific work is conducted. ESO, therefore, decided that an adapted version of the existing Drilling Information System (DIS) used by ICDP projects would satisfy its requirements. Based on the existing DIS, an OffshoreDIS has been developed for MSP expeditions. The underlying data model is compatible with IODP(JANUS), the Bremen Core Repository, WDC-MARE/PANGAEA and the LacCore in Minneapolis. According to the specific expedition platform configuration and on-board workflow requirements for the Arctic, this data model, data pumps and user interfaces were adapted for the ACEX-OffshoreDIS. On the drill ship Vidar Viking the cores were catalogued and petrophysically logged using a GeoTek Multi-Sensor Core Logger System, while further initial measurements, lithological descriptions and biostratigraphic investigations were undertaken on the Oden, which provided laboratory facilities for the expedition. Onboard samples were registered in a corresponding sample archive on both vessels. The ACEX-OffshoreDIS used a local area network covering the two ships of the three icebreaker fleet by wireless LAN between the ships and partly wired LAN on the ships. A DIS-server was installed on each ship. These were synchronized by database replication and linked to a total of 10 client systems and label printers across both ships. The ACEX-OffshoreDIS will also be used for the scientific measurement and analysis phase of the expedition during the post-field operations `shore-party' in November 2004 at the Bremen Core Repository (BCR). The data management system employed in the Arctic will be reconfigured and deployed at the BCR. In addition, an eXtended DIS (XDIS) Web interface will be available. This will allow controlled sample distribution (core curation, sub-sampling) as well as sharing of data (registration, upload and download) with other laboratories which will be undertaking additional sampling and analyses. The OffshoreDIS data management system will be of long-term benefit to both IODP and ICDP, being deployed in forthcoming MSP offshore projects, ICDP lake projects and joint IODP-ICDP projects such as the New Jersey Coastal Plain Drilling Project.
New scientific ocean drilling depth record extends study of subseafloor life
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-09-01
The Japanese deep-sea drilling vessel Chikyu set a new depth record for scientific ocean drilling and core retrieval by reaching a depth of 2119.5 meters below the seafloor (mbsf) on 6 September. This is 8.5 meters deeper than the prior record, set 19 years ago. Three days later, on 9 September, Chikyu set another record by reaching a drilling depth of 2466 mbsf, the maximum depth that will be attempted during the current expedition. The 6 September record was set on day 44 of the Deep Coalbed Biosphere off Shimokita expedition, which is expedition 337 of the Integrated Ocean Drilling Program (IODP). It occurred at drilling site C0020 in the northwestern Pacific Ocean, approximately 80 kilometers northeast from Hachinohe, Japan. The expedition is scheduled to conclude on 30 September.
Multiple Ships and Multiple Media: A Flexible Telepresence Program
NASA Astrophysics Data System (ADS)
Pelz, M.; Hoeberechts, M.; Riddell, D. J.; Ewing, N.
2016-02-01
Ocean Networks Canada (ONC) uses a number of research and exploration vessels equipped with remotely operated vehicles (ROVs) to maintain the NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia, Canada. Maintenance expeditions range from several days to multiple weeks and encompass a range of activities including deploying new instruments, laying cable, recovering platforms, scientific sampling and conducting multibeam and visual surveys. In order to engage the widest possible participation in at-sea work, ONC uses telepresence technology to communicate from ship to shore and back with scientists, students, teachers and online viewers. In this presentation, we explore the challenge of designing a sustainable and flexible telepresence program which can be supported across multiple ship and ROV platforms, sometimes simultaneously. To meet outreach and education objectives, onboard educators conduct presentations to K-12 and post-secondary classrooms, museums and science centres on a daily basis. Online commentary by the educators, dive chief and ROV pilots accompanies the ROV dive footage and is streamed online 24/7 during underwater operations. Sharing the sights and sounds of the expeditions with students and educators ashore, including those in remote and inland communities, creates a unique learning environment for both formal and informal education audiences. As space is always a limiting factor on expeditions, the use of telepresence and other communication media enables ONC to simultaneously achieve engineering and science priorities at sea while communicating the successes and challenges of the expedition back to shore. Scientists and engineers provide guidance for operations from shore using a variety of communication technologies. We give examples from Ocean Networks Canada's most recent expedition, Fall 2015, which involved co-ordinated operations with three vessels - the R/V Thompson, the E/V Nautilus and the C/S Wave Venture.
Schicks, J M; Ziemann, M A; Lu, H; Ripmeester, J A
2010-12-01
Natural gas hydrates usually are found in the form of structure I, encasing predominantly methane in the hydrate lattices as guest molecules, sometimes also minor amount of higher hydrocarbons, CO2 or H2S. Raman spectroscopy is an approved tool to determine the composition of the hydrate phase. Thus, in this study Raman spectroscopic analyses have been applied to hydrate samples obtained from Integrated Ocean Drilling Program (IODP) Expedition 311 in two different approaches: studying the samples randomly taken from the hydrate core, and--as a new application--mapping small areas on the surface of clear hydrate crystals. The results obtained imply that the gas composition of hydrate, in terms of relative concentrations of CH4 and H2S, is not homogeneous over a core or even within a crystal. The mapping method yielded results with very high lateral resolution, indicating the coexistence of different phases with the same structure but different compositions within a hydrate crystal. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Coleman, D. F.; Ballard, R. D.
2005-12-01
During the past 3 field seasons, our group at the University of Rhode Island Graduate School of Oceanography, in partnership with the Institute for Exploration and a number of educational institutions, has conducted a series of ocean exploration expeditions with a significant focus on educational outreach through "telepresence" - utilizing live transmissions of video, audio, and data streams across the Internet and Internet2. Our educational partners include Immersion Presents, Boys and Girls Clubs of America, the Jason Foundation for Education, and the National Geographic Society, all who provided partial funding for the expeditions. The primary funding agency each year was NOAA's Office of Ocean Exploration and our outreach efforts were conducted in collaboration with them. During each expedition, remotely operated vehicle (ROV) systems were employed to examine interesting geological and archaeological sites on the seafloor. These expeditions include the investigation of ancient shipwrecks in the Black Sea in 2003, a survey of the Titanic shipwreck site in 2004, and a detailed sampling and mapping effort at the Lost City Hydrothermal Field in 2005. High-definition video cameras on the ROVs collected the footage that was then digitally encoded, IP-encapsulated, and streamed across a satellite link to a shore-based hub, where the streams were redistributed. During each expedition, live half-hour-long educational broadcasts were produced 4 times per day for 10 days. These shows were distributed using satellite and internet technologies to a variety of venues, including museums, aquariums, science centers, public schools, and universities. In addition to the live broadcasts, educational products were developed to enhance the learning experience. These include activity modules and curriculum-based material for teachers and informal educators. Each educational partner also maintained a web site that followed the expedition and provided additional background information to supplement the live feeds. This program continues to grow and has proven very effective at distributing interesting scientific content to a wide range of audiences.
NASA Astrophysics Data System (ADS)
de Jong, M. T.; Clark, J. F.; Neira, N. M.; Fisher, A. T.; Wheat, C. G.
2015-12-01
We present results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of hydrothermal circulation. Sulfur hexafluoride (SF6) tracer was injected in Hole 1362B in 2010, during IODP Expedition 327. Fluid samples were subsequently collected from a borehole observatory (CORK) installed in this hole and similar CORKs in three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. This array of holes is located on 3.5 My old seafloor, as an array oriented subparallel to the Endeavor Segment of Juan de Fuca Ridge. Borehole fluid samples were collected in copper coils using osmotic pumps. In addition to pumps at seafloor wellheads, downhole sampling pumps were installed in the perforated casing in the upper ocean crust. These downhole samplers were intended to produce a high-resolution continuous record of tracer concentrations, including records from the first year after tracer injection in Holes 1362A and 1362B. In contrast, wellhead samplers were not installed on these CORKs holes until 2011, and wellhead records from all CORKs have a record gap of up to one year, because of a delayed expedition in 2012. The downhole samples were recovered with the submersible Alvin in August 2014. SF6 concentrations in downhole samples recovered in 2014 are generally consistent with data obtained from wellhead samples. Of particular interest are the results from Hole 1362B, where a seafloor valve was opened and closed during various recovery expeditions. High resolution tracer curves produced from the 1362B downhole samples confirm that these operations produced an SF6 breakthrough curve corresponding to a classic push-pull test used to evaluate contaminant field locations in terrestrial setting. Complete analyses of downhole samples from these CORKs are expected to produce high-resolution breakthrough curves that will allow more precise analysis and modeling of hydrothermal flow in the study area.
Wang, Dexiang; Wang, Chunsheng; Zhang, Yuan; Liu, Chenggang
2016-09-29
Three new glass sponge species of the family Pheronematidae are described in this study. Specimens were sampled in the northwestern Pacific Ocean during cruise DY125-35I expedition (July-August, 2014) conducted by the China Ocean Mineral Resources R&D Association. All samples were collected by the Chinese manned submersible Jiaolong HOV at a depth of 1627-2897 m. The three species belonging to three genera of the same family were observed, i.e., Platylistrum subviridum sp. nov. Poliopogon canaliculatus sp. nov. and Semperella retrospinella sp. nov. An unique form of the pinular ray of pinular pentactins with reclined spines is described for S. retrospinella sp. nov. This is also the first record of Platylistrum in the Pacific Ocean.
NASA Astrophysics Data System (ADS)
Morono, Y.; Hauer, V. B.; Inagaki, F.; Kubo, Y.; Maeda, L.; Scientists, E.
2017-12-01
Expedition 370 of the International Ocean Discovery Program (IODP) aimed to explore the limits of life in the deep subseafloor biosphere at a location where elevated heat flow lets temperature increase with sediment depth beyond the known maximum of microbial life ( 120°C) at 1.2 km below the seafloor. Such conditions are met in the protothrust zone of the Nankai Trough off Cape Muroto, Japan, where Site C0023 was established in the vicinity of ODP Sites 808 and 1174 at a water depth of 4776 m using the drilling vessel DV Chikyu. Hole C0023A was cored down to a total depth of 1180 meters below seafloor, offshore sampling and research was combined with simultaneous shore-based investigations at the Kochi Core Center (KCC), and long-term temperature observations were started (Heuer et al., 2017). The primary scientific objectives of Expedition 370 are (a) to detect and investigate the presence or absence of life and biological processes at the biotic-abiotic transition of the deep subseafloor with unprecedented analytical sensitivity and precision; (b) to comprehensively study the factors that control biomass, activity, and diversity of microbial communities; and (c) to elucidate if continuous or episodic flow of fluids containing thermogenic and/or geogenic nutrients and energy substrates support subseafloor microbial communities in the Nankai Trough accretionary complex (Hinrichs et al., 2016). This contribution will highlight the scientific approach of our field-work and preliminary expedition results by shipboard and shorebased activities. Hinrichs K-U, Inagaki F, Heuer VB, Kinoshita M, Morono Y, Kubo Y (2016) Expedition 370 Scientific Prospectus: T-Limit of the Deep Biosphere off Muroto (T-Limit). International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.sp.370.2016 Heuer VB, Inagaki F, Morono Y, Kubo Y, Maeda L, the Expedition 370 Scientists (2017) Expedition 370 Preliminary Report: Temperature Limit of the Deep Biosphere off Muroto. International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.pr.370.2017
Not Just About the Science: Cold War Politics and the International Indian Ocean Expedition
NASA Astrophysics Data System (ADS)
Harper, K.
2016-12-01
The International Indian Ocean Expedition broke ground for a series of multi-national oceanographic expeditions starting in the late 1950s. In and of itself, it would have been historically significant—like the International Geophysical Year (1957-58)—for pulling together the international scientific community during the Cold War. However, US support for this and follow-on Indian Ocean expeditions were not just about the science; they were also about diplomacy, specifically efforts to bring non-aligned India into the US political orbit and out of the clutches of its Cold War enemy, the Soviet Union. This paper examines the behind-the-scenes efforts at the highest reaches of the US government to extract international political gain out of a large-scale scientific effort.
NASA Astrophysics Data System (ADS)
Russell, C. W.; Elliott, K.; Lobecker, E.; McKenna, L.; Haynes, S.; Crum, E.; Gorell, F.
2014-12-01
From February to May 2014, NOAA Ship Okeanos Explorer conducted a telepresence-enabled ocean exploration expedition addressing NOAA and National deepwater priorities in the U.S. Gulf of Mexico. The community-driven expedition connected diverse and geographically dispersed audiences including scientists from industry, academia, and government, and educators, students, and the general public. Expedition planning included input from the ocean science and management community, and was executed with more than 70 scientists and students from 14 U.S. states participating from shore in real time. Training the next generation permeated operations: a mapping internship program trained undergraduate and graduate students; an ROV mentorship program trained young engineers to design, build and operate the system; and undergraduate through doctoral students around the country collaborated with expedition scientists via telepresence. Online coverage of the expedition included background materials, daily updates, and mission logs that received more than 100,000 visits by the public. Live video feeds of operations received more than 700,000 views online. Additionally, professional development workshops hosted in multiple locations throughout the spring introduced educators to the Okeanos Explorer Educational Materials Collection and the live expedition, and taught them how to use the website and education resources in their classrooms. Social media furthered the reach of the expedition to new audiences, garnered thousands of new followers and provided another medium for real-time interactions with the general public. Outreach continued through live interactions with museums and aquariums, Exploration Command Center tours, outreach conducted by partners, and media coverage in more than 190 outlets in the U.S. and Europe. Ship tours were conducted when the ship came in to port to engage local scientists, ocean managers, and educators. After the expedition, data and products were archived and quickly shared with ocean managers and scientists working in the region, providing a baseline of publicly available data and stimulating follow-on exploration, research and management activities within a few months of expedition completion.
Perfluoroalkylated substances in the global tropical and subtropical surface oceans.
González-Gaya, Belén; Dachs, Jordi; Roscales, Jose L; Caballero, Gemma; Jiménez, Begoña
2014-11-18
In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability. This suggests that a number of physical and biogeochemical processes collectively drive the oceanic occurrence and fate of PFASs in a complex manner.
NOAA Ocean Exploration: Science, Education and Ocean Literacy Online and in Social Media
NASA Astrophysics Data System (ADS)
Keener-Chavis, P.
2012-12-01
"Engagement" in ocean science initially might seem like a simple concept, however within an agency like NOAA, with a broad mission and a wide variety of stakeholders, the concept of engagement becomes quite complex. Several years ago, a Kellogg Commission Report was submitted to NOAA's Science Advisory Board to assist the Agency with more closely defining-and refining-how it could more effectively engage with the multiple audiences with which it works. For NOAA, engagement is a two-way relationship that unfolds in a commitment of service to society. It is an Enterprise-wide capability represented in NOAA's Next Generation Strategic Plan and carries the same weight across the Agency as science and technology. NOAA's Office of Ocean Exploration and Research (OER) engages scientists, educators and the public through a variety of online and social media offerings explicitly tied to the exploration science of its expeditions. The principle platform for this engagement is the Ocean Explorer website (http://oceanexplorer.noaa.gov). It is the single point of entry for formal and informal educators and the public to chronicled OER expeditions to little known regions of the world ocean. The site also enables access to live streaming video and audio from the United States' first ship solely dedicated to ocean exploration, the NOAA Ship Okeanos Explorer and the Institute for Exploration's E/V Nautilus. Video includes footage from the remotely operated vehicles, sonar displays, navigation displays, and mapping data displays. Through telepresence technologies and other online communication tools, scientists at remote locations around the world, including Exploration Command Centers, collaborate in deep-sea exploration conducted by the Okeanos Explorer. Those wanting access to the ship's track, oceanographic data, daily updates, web logs, and imagery during an expedition can access the online Okeanos Explorer Digital Atlas. Information on archived expeditions can be accessed through the OER Digital Atlas, a Google map application that displays expedition locations searchable by year, expedition theme or by a text-entry. Information on expedition-specific collection data, education and outreach is also provided. Educators have access to online interactive courses; entitled Why Do We Explore? and How Do We Explore?; that convey the exploration science, capabilities, and assets of the Okeanos Explorer. Hundreds of online lessons, multimedia learning tools, OceanAGE Career Connections and other resources assist educators with bringing authentic ocean exploration and the scientists behind it into classrooms. Live webcasts by San Francisco's Exploratorium and the use of social media; including Twitter, YouTube, Facebook, the Apple iTunes Channel, and conversations with ITunes University have had immediate and profound impacts on OER's ability to successfully engage diverse partners with a ride range of ocean exploration science and education needs. This presentation will highlight several OER's approaches to engaging scientists, educators and others in ocean exploration, including efforts associated with the upcoming Fall 2012 Submarine Ring of Fire: Lau Basin Expedition onboard the Scripps Institution of Oceanography R/V Roger Revelle.
46 CFR 535.605 - Requests for expedited review.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 9 2010-10-01 2010-10-01 false Requests for expedited review. 535.605 Section 535.605 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE OCEAN COMMON... on a showing of good cause. Good cause would include, but is not limited to, the impending expiration...
46 CFR 535.605 - Requests for expedited review.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 9 2011-10-01 2011-10-01 false Requests for expedited review. 535.605 Section 535.605 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE OCEAN COMMON... on a showing of good cause. Good cause would include, but is not limited to, the impending expiration...
46 CFR 535.605 - Requests for expedited review.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 9 2014-10-01 2014-10-01 false Requests for expedited review. 535.605 Section 535.605 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE OCEAN COMMON... ability to complete its review of the agreement's potential impact. In no event, however, may the period...
46 CFR 535.605 - Requests for expedited review.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 9 2013-10-01 2013-10-01 false Requests for expedited review. 535.605 Section 535.605 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE OCEAN COMMON... ability to complete its review of the agreement's potential impact. In no event, however, may the period...
46 CFR 535.605 - Requests for expedited review.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 9 2012-10-01 2012-10-01 false Requests for expedited review. 535.605 Section 535.605 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE OCEAN COMMON... ability to complete its review of the agreement's potential impact. In no event, however, may the period...
Yasuhara, Moriaki; Cronin, T. M.; Martinez, Arbizu P.
2008-01-01
We report the distribution of ostracods from ???5000 m depth from the Southeast and Equatorial Atlantic Ocean recovered from the uppermost 10 cm of minimally disturbed sediments taken by multiple-corer during the R/V Meteor DIVA2 expedition M63.2. Five cores yielded the following major deep-sea genera: Krithe, Henryhowella, Poseidonamicus, Legitimocythere, Pseudobosquetina, and Pennyella. All genera are widely distributed in abyssal depths in the world's oceans and common in Cenozoic deep-sea sediments. The total number of ostracod specimens is higher and ostracod shell preservation is better near the sediment-water interface, especially at the 0-1 cm core depths. Core slices from ???5 to 10 cm were barren or yielded a few poorly preserved specimens. The DIVA2 cores show that deep-sea ostracod species inhabit corrosive bottom water near the carbonate compensation depth (CCD) even though their calcareous valves are rarely preserved as fossils in sediment cores due to postmortem dissolution. Their occurrence at great water depths may partially explain the well-known global distributions of major deep-sea taxa in the world's oceans, although further expeditions using minimal-disturbance sampling devices are needed to fill geographic gaps. ?? 2008 Elsevier Ltd. All rights reserved.
Tara Oceans: Eco-Systems Biology at Planetary Scale
NASA Astrophysics Data System (ADS)
Bowler, C.; Malviya, S.
2016-02-01
The ocean is the largest ecosystem on Earth and yet we know very little about the plankton that drift within. To increase our understanding of this underexplored world a multidisciplinary consortium, Tara Oceans, was formed around the 110-ft research schooner Tara, which sampled plankton at more than 210 sites and multiple depth layers in all the major oceanic regions during expeditions from 2009-2013 (Karsenti et al. Plos Biol., 2011). The presentation will describe the first foundational resources from the project (based on a first data freeze from 579 samples at 75 stations; see Science special issue May 22, 2015) and their initial analyses, illustrating several aspects of the Tara Oceans' eco-systems biology approach. The project provides unique resources for several scientific disciplines, capturing biodiversity of a wide range of organisms that are rarely studied together, exploring interactions between them and integrating them with environmental conditions to further our understanding of life in the ocean and beyond in the context of ongoing climate changes.
Using DSDP/ODP/IODP core photographs and digital images in the classroom
NASA Astrophysics Data System (ADS)
Pereira, Hélder; Berenguer, Jean-Luc
2017-04-01
Since the late 1960's, several scientific ocean drilling programmes have been uncovering the history of the Earth hidden beneath the seafloor. The adventure began in 1968 with the Deep Sea Drilling Project (DSDP) and its special drill ship, the Glomar Challenger. The next stage was the Ocean Drilling Program (ODP) launched in 1985 with a new drill ship, the JOIDES Resolution. The exploration of the ocean seafloor continued, between 2003 and 2013, through the Integrated Ocean Drilling Program (IODP). During that time, in addition to the JOIDES Resolution, operated by the US, the scientists had at their service the Chikyu, operated by Japan, and Mission-Specific-Platforms, funded and implemented by the European Consortium for Ocean Research Drilling. Currently, scientific ocean drilling continues through the collaboration of scientists from 25 nations within the International Ocean Discovery Program (IODP). Over the last 50 years, the scientific ocean drilling expeditions conducted by these programmes have drilled and cored more than 3500 holes. The numerous sediment and rock samples recovered from the ocean floor have provided important insight on the active biological, chemical, and geological processes that have shaped the Earth over millions of years. During an expedition, once the 9.5-meter long cores arrive from the seafloor, the technicians label and cut them into 1.5-meter sections. Next, the shipboard scientists perform several analysis using non-destructive methods. Afterward, the technicians split the cores into two halves, the "working half", which scientists sample and use aboard the drilling platform, and the "archive half", which is kept in untouched condition after being visually described and photographed with a digital imaging system. The shipboard photographer also takes several close-up pictures of the archive-half core sections. This work presents some examples of how teachers can use DSDP/ODP/IODP core photographs and digital images, available through the Janus and LIMS online databases, to develop inquiry-based learning activities for secondary level students.
10,000 m under the sea: An overview of the HADES expedition to Kermadec Trench
Mills, S.; Leduc, D.; Drazen, J.C.; Yancey, P.; Jamieson, A.J.; Clark, M.R.; Rowden, A.A.; Mayor, D.J.; Piertney, S.; Heyl, T.; Bartlett, D.; Bourque, Jill R.; Cho, W.; Demopoulos, Amanda W.J.; Fryer, P.; Gerringer, M.; Grammatopoulou, E.; Herrera, S.; Ichino, M.; Lecroq, B.; Linley, T.D.; Meyer, K.; Nunnally, C.; Ruhl, H.; Wallace, G.; Young, C.; Shank, T.M.
2016-01-01
The hadal zone of the world oceans (6000– 11,000 m) occupies <1% of the marine realm and is found almost exclusively in trenches but represents ~40% of the total ocean depth range. Jamison et al. (2010 & Jamison, 2015) have reviewed the current state of knowledge about the hydrology, physical characteristics, food supply, ecology and biodiversity of life in hadal trenches. This review concluded that, there appears to be a high level of endemism based on the few specimens collected from historical sampling efforts in the 1950s (Danish Galathea and Soviet Vitjaz expeditions), but because trenches are still largely unexplored there is a lot we do not know about the ecological structure and functioning of hadal environments. However, relatively recent advances in technology using remotely operated vehicles (ROV) and landers can help us explore hadal trenches in greater detail.
Recent Multidisciplinary Research Initiatives and IODP Drilling in the South China Sea
NASA Astrophysics Data System (ADS)
Lin, J.; Li, C. F.; Wang, P.; Kulhanek, D. K.
2016-12-01
The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction, serving as a natural laboratory for studying the linkages between tectonic, volcanic, and oceanic processes. The last several years have witnessed significant progress in investigation of the SCS through comprehensive research programs using multidisciplinary approaches and enhanced international collaboration. The International Ocean Discovery Program (IODP) Expedition 349 drilled and cored five sites in the SCS in 2014. The expedition successfully obtained the first basaltic rock samples of the SCS relict spreading center, discovered large and frequent deep-sea turbidity events, and sampled multiple seamount volcaniclastic layers. In addition, high-resolution near-seafloor magnetic surveys were conducted in the SCS with survey lines passing near some of the IODP drilling sites. Together the IODP drilling and deep-tow magnetic survey results confirmed, for the first time, that the entire SCS basin might have stopped seafloor spreading at similar ages in early Miocene, providing important constraints on marginal sea geodynamic models. In 2007, IODP Expeditions 367 and 368 will drill the northern margin of the SCS to investigate the mechanisms of rifting to spreading processes. Meanwhile, major progress in studying the SCS processes has also been made through comprehensive multidisciplinary programs, for example, the eight-year-long "South China Sea Deep" initiative, which also supports and encourages strong international collaboration. This presentation will highlight the recent multidisciplinary research initiatives in investigation of the SCS and the important role of international collaboration.
NASA Astrophysics Data System (ADS)
Nilsson, E. Douglas; Barr, Sumner
2001-12-01
The atmospheric program on the Arctic Ocean Expedition of July through September 1996 (AOE-96) was focused on aerosol climate feedback. The expedition took place close to the saddle point between a semipersistent anticyclonic ridge from near Scandinavia to the Arctic coast of eastern Siberia and a trough from the Canadian archipelago across the pole to north central Siberia. The weather varied from anticyclonic clear-sky conditions to cyclonic cloudy conditions, and 13 identifiable migratory features (frontal bands, wave disturbances) clearly influenced local weather, clouds, atmospheric transport, and chemistry. This includes an explosive polar cyclone, born at the lateral heat gradient between Greenland and the pack ice rather than between open sea and the pack ice. The synoptic scale weather systems caused the strongest variability in trace gases (O3 in particular) and aerosols, and also strong variability in the cloud cover. The formation of air masses over the pack ice primarily depends on if there is cyclonic (convergent) or anticyclonic (divergent) flow. Cyclonic flow resulted in a modified marine air mass loaded with vapor, but with low aerosol number concentrations owing to frequent clouds and fogs and efficient cloud scavenging of the aerosol. Anticyclonic flow resulted in almost continental air masses with clear sky, long residence time over the pack ice and subsidence slowly replacing the boundary layer with free tropospheric air, low vapor concentrations, but large aerosol number in lack of efficient cloud scavenging. The synoptic variability and advection from south of the ice edge were weaker than during the predecessor International Arctic Ocean Expedition in 1991 (IAOE-91), when on average the sampled air spent 55 hours over the pack ice compared to more than 120 hours during AOE-96, owing to exceptionally high cyclone activity in 1991. This caused a large difference in atmospheric transport, chemistry, and aerosols between the two expeditions.
NASA Astrophysics Data System (ADS)
Power, M.; Scientists, I. E.; Avery, A. J.
2015-12-01
Samples for this study were collected from drill cores taken during the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 352 at Sites U1381 and U1439, respectively. Both of these expeditions were focused around subduction zones and, therefore, had priorities to determine time frames for the initiation of subduction. There are two main objectives for this study, the first being to age-date Pleistocene to Miocene sediments from the western offshore continental margin of Costa Rica (IODP Expedition 334) via calcareous nannofossils. The second objective is to age-date the Miocene sediments from the fore-arc of the Izu-Bonin-Mariana system, east of Japan (IODP Expedition 352), using calcareous nannofossils. Shore-based analysis allows for high-resolution study to determine exact biostratigraphic zonations. These zonations reflect specific time frames based on the occurrence or non-occurrence of certain nannofossil species. Once these zonations are determined, scientists can use the data to identify the initiation of seismic processes that often occur in these regions. Calcareous nannofossil biostratigraphy has now provided zonations for the samples taken from IODP Expedition 334 cores. Samples from core 6R are assigned to the Pleistocene nannofossil Zone NN19 due to the presence ofPseudoemiliania lacunosa and the absence of Emiliania huxleyi. Using the zonal scheme by de Kaenel (1999), this can further be broken down into Event 18 due to the presence of Gephyrocapsa oceanica larger than 4 μm but less than 5 μm, the presence of Calcidiscus macintyrei smaller than 11 μm, and the absence ofGephyrocapsa caribbeanica larger than 4 μm. De Kaenel (1999) has assigned this event datum an age of 1.718 Ma using orbital time scales and oxygen isotope data. Below these samples, an extensive hiatus ranges from the Pleistocene to the early Miocene. Samples from cores 7R through 10R are assigned to nannofossil zone NN5; however, it is impossible to constrain the top of this zone due to the hiatus. The presence of Sphenolithus heteromorphus and other restrictive species, and the absence of Helicosphaera ampliaperta and Sphenolithus belemnos help constrain these samples to Zone NN5 (13.2Ma to 14.66Ma). Further work as above will be conducted to analyze Miocene samples from IODP Expedition 352.
Sustainable Seas Expeditions Teacher Resource Book, Units 1 [and] 2.
ERIC Educational Resources Information Center
Larkin, Pam, Ed.
This publication describes the Sustainable Seas Expeditions which is a five-year project of ocean exploration and conservation focusing on the National Oceanic and Atmospheric Administration's (NOAA) national marine sanctuaries. This resource book is the first in a two part series. This first teacher resource contains an introduction to the…
NASA Technical Reports Server (NTRS)
Kyte, Frank T.; Gersonde, Rainer; Kuhn. Gerhard
2002-01-01
Several workers have addressed the potential for extraterrestrial delivery of volatles, including water and complex organic compounds, to the early Earth. For example, Chyba and Sagan (1992) argued that since impacts would destroy organic matter, most extraterrestrial organics must be delivered in the fine-fractions of interplanetary dust. More recent computer simulations (Pierazzo and Chyba, 1999), however, have shown that substantial amounts of amino acids may survive the impacts of large (km-sized) comets and that this may exceed the amounts derived from IDPs or Miller-Urey synthesis in the atmosphere. Once an ocean developed on the early Earth, impacts of small ,asteroids and comets into deep-ocean basins were potentially common and may have been the most likely events to deliver large amounts of organics. The deposits of the late Pliocene impact of the Eltanin asteroid into the Bellingshausen Sea provide the only record of a deep-ocean (approx. 5 km) impact that can be used to constrain models of these events. This impact was first discovered in 1981 as an Ir anomaly in sediment cores collected by the USNS Eltanin in 1965 (Kyte et al., 1981). In 1995, Polarstem expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5S, 91 W) contained well-preserved impact deposits that include disturbed ocean sediments and meteoritic impact ejecta (Gersonde et al., 1997). The latter is composed of shock- melted asteroidal materials and unmelted meteorites. In 2001, the FS Polarstem returned to the impact area during expedition ANT XVIII/5a. At least 16 cores were recovered that contain ejecta deposits. These cores and geophysical data from the expedition can be used to map the effects of the impact over a large region of the ocean floor.
Aurora Australis over the southern Indian ocean view taken by the Expedition 29 crew
2011-09-17
ISS029-E-005904 (17 Sept. 2011) --- This is one of a series of night time images photographed by one of the Expedition 29 crew members from the International Space Station. It features Aurora Australis over the southern Indian ocean. Nadir coordinates are 50.16 south latitude and 48.11 degrees east longitude.
Marine anthropogenic radiotracers in the Southern Hemisphere: New sampling and analytical strategies
NASA Astrophysics Data System (ADS)
Levy, I.; Povinec, P. P.; Aoyama, M.; Hirose, K.; Sanchez-Cabeza, J. A.; Comanducci, J.-F.; Gastaud, J.; Eriksson, M.; Hamajima, Y.; Kim, C. S.; Komura, K.; Osvath, I.; Roos, P.; Yim, S. A.
2011-04-01
The Japan Agency for Marine Earth Science and Technology conducted in 2003-2004 the Blue Earth Global Expedition (BEAGLE2003) around the Southern Hemisphere Oceans, which was a rare opportunity to collect many seawater samples for anthropogenic radionuclide studies. We describe here sampling and analytical methodologies based on radiochemical separations of Cs and Pu from seawater, as well as radiometric and mass spectrometry measurements. Several laboratories took part in radionuclide analyses using different techniques. The intercomparison exercises and analyses of certified reference materials showed a reasonable agreement between the participating laboratories. The obtained data on the distribution of 137Cs and plutonium isotopes in seawater represent the most comprehensive results available for the Southern Hemisphere Oceans.
Reconstructing Sea Surface Conditions in the Bay of Bengal during the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Lagos, A. D.; Dekens, P.; Reilly, B. T.; Selkin, P. A.; Meynadier, L.; Savian, J. F.
2017-12-01
During the Mid-Pleistocene Transition (MPT, 0.8-1.2Ma) Earth's glacial cycles transitioned from responding primarily to 41kyr obliquity cycles to responding to 100kyr eccentricity cycles. In the tropics, sea surface temperature (SST) in the eastern tropical Pacific cooled through the MPT, suggesting a strengthening of the equatorial Pacific zonal temperature gradient (Medina-Elizalde & Lea, 2005). The strong SST gradient would have intensified Walker Cell convection during the MPT and built up latent heat in the western Pacific, which could cause cold SST anomalies in the northern Indian Ocean (Liu et al., 2015). Due to a scarcity of records, it is unclear how climate and oceanic conditions evolved in the Indian Ocean during the MPT. A set of recent IODP expeditions, including 353 and 354, cored sediment from the Bay of Bengal. Several sites recovered by expedition 353 will be ideal for reconstructing monsoon intensity through time, while the expedition 354 cores from a longitudinal transect at 8°N are in a region not directly impacted by changes in freshwater input due to direct precipitation or run off. The sites are influenced by the northeastern migration of equatorial Indian Ocean water via the Southwest Monsoon Current, which supplies significant moisture to the monsoon. Expedition 354's southern Bay of Bengal sites are well situated for better understanding the link between the tropical Indian Ocean and the northern Bay of Bengal. We reconstructed sea surface conditions at IODP site 1452 (8°N, 87°E, 3670m water depth) in the distal Bengal Fan. A 3 meter long section of the core has been identified as the MPT using the Bruhnes/Matuyama, Jaramillo, and Cobb Mountain paleomagnetic reversals (France-Lanord et al., 2016). This section of site 1452 was sampled every 2cm ( 2kyr resolution). Approximately 30 G. sacculifer, a surface dwelling planktonic foraminifera, were picked from the 355-425μm size fraction. We measured Mg/Ca and δ18O on splits of the same material to reconstruct SST and δ18OSW. While this study will not reconstruct monsoon intensity, establishing the sea surface conditions for the southern Bay of Bengal will improve our understanding of the connection between the Indian Ocean and the monsoons through the MPT.
NASA Astrophysics Data System (ADS)
Aleem, A. A.; Morcos, S. A.
In addition to its scientific achievements, the John Murray/Mabahiss Expedition was a unique experiment in technology transfer and it pioneered bilateral relations in the field of oceanography, at a time when the Law of the Sea was not even an embryonic concept. The Expedition will be remembered for its profound influence on the development of oceanography in Egypt, and subsequently in several Arab and African countries, as well as for its socio-economic impact in Egypt. The International Indian Ocean Expedition (IIOE) was an elaborate exercise involving both the most sophisticated developments in oceanography of the day and the full complexity of international relations which necessitated the scientific, coordinating and supporting mechanisms of SCOR, IOC and Unesco combined. Each exercise separated by 25 years represented a significant event in the development of oceanography. Each was a natural product of the prevailing state of the art and the international climate. Oceanography had made a quantum jump in technology in the intervening quarter of a century, which had put the cost of deep sea oceanography quite beyond the financial capabilities of many developing countries, an important factor to bear in mind when comparing the impact of the John Murray/Mabahiss Expedition on Egypt with that of the IIOE, on the Indian Ocean countries.
New data aid estimate of ocean's plastic content
NASA Astrophysics Data System (ADS)
Wendel, JoAnna
2014-12-01
Experts estimate that 5.25 trillion plastic particles—weighing in at nearly 269,000 tons—are floating in the world's oceans. A new paper in the open access journal PLOS ONE (doi:10.1371/journal.pone.011191) about the abundance of plastic in the oceans combines data from 24 expeditions between 2007 and 2013. These expeditions cover all five subtropical gyres—areas of high pressure where seawater churns and sinks—as well as Australian coastal waters, the Bay of Bengal, and even the Mediterranean Sea.
"The Oceans" not Withstanding: Scripps Geological-Geophysical Expeditions of the Golden Age
NASA Astrophysics Data System (ADS)
Fisher, R. L.
2002-12-01
"The Oceans: Their Physics, Chemistry, and General Biology," fully recognized and promoted the inherent unity of oceanography, the field itself, and of all components of the oceanic world. It covered well the wet pieces. However, except for sedimentary studies of the California borderland and reconnaissances of the Arctic, Mediterranean, and the South Atlantic, little was presented that could be parent to today's portrayals of marine geology and geophysics. The advances in those areas in the 1950's, 1960's, and early 1970's, by SIO scientists and those of several other institutions resulted from extended expeditionary studies, essential on-the-job field training of confident very young chief scientists, dogged pushing of traditional rough sampling methods to their limits, and the invention and lateral prompt application of precise electronic timing and sensing devices to shipboard observation of deep ocean seafloor/crustal elements. SIO's multifaceted expeditions of those years were conceived, planned and often lead by graduate students making thesis observations, assisted by their fellows as "warm bodies," perhaps with more senior staff scientists making specific collections at key localities. Education was real-time: discovering--reflection--discussion, and mutual tutoring. The principal factor that made such operation scientifically and educationally successful was SIO's then Director, Roger Revelle, a benevolent and trusting, but very perceptive, godfather.
Drilling Fluid Contamination during Riser Drilling Quantified by Chemical and Molecular Tracers
NASA Astrophysics Data System (ADS)
Inagaki, F.; Lever, M. A.; Morono, Y.; Hoshino, T.
2012-12-01
Stringent contamination controls are essential to any type of microbiological investigation, and are particularly challenging in ocean drilling, where samples are retrieved from hundreds of meters below the seafloor. In summer 2012, Integrated Ocean Drilling Expedition 337 aboard the Japanese vessel Chikyu pioneered the use of chemical tracers in riser drilling while exploring the microbial ecosystem of coalbeds 2 km below the seafloor off Shimokita, Japan. Contamination tests involving a perfluorocarbon tracer that had been successfully used during past riserless drilling expeditions were complemented by DNA-based contamination tests. In the latter, likely microbial contaminants were targeted via quantitative polymerase chain reaction assays using newly designed, group-specific primers. Target groups included potential indicators of (a) drilling mud viscosifiers (Xanthomonas, Halomonas), (b) anthropogenic wastewater (Bifidobacterium, Blautia, Methanobrevibacter), and (c) surface seawater (SAR 11, Marine Group I Archaea). These target groups were selected based on past evidence suggesting viscosifiers, wastewater, and seawater as the main sources of microbial contamination in cores retrieved by ocean drilling. Analyses of chemical and molecular tracers are in good agreement, and indicate microorganisms associated with mud viscosifiers as the main contaminants during riser drilling. These same molecular analyses are then extended to subseafloor samples obtained during riserless drilling operations. General strategies to further reduce the risk of microbial contamination during riser and riserless drilling operations are discussed.
Lim, Yan Wei; Cuevas, Daniel A.; Silva, Genivaldo Gueiros Z.; Aguinaldo, Kristen; Dinsdale, Elizabeth A.; Haas, Andreas F.; Hatay, Mark; Sanchez, Savannah E.; Wegley-Kelly, Linda; Dutilh, Bas E.; Harkins, Timothy T.; Lee, Clarence C.; Tom, Warren; Sandin, Stuart A.; Smith, Jennifer E.; Zgliczynski, Brian; Vermeij, Mark J.A.; Rohwer, Forest
2014-01-01
Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines. PMID:25177534
Lim, Yan Wei; Cuevas, Daniel A; Silva, Genivaldo Gueiros Z; Aguinaldo, Kristen; Dinsdale, Elizabeth A; Haas, Andreas F; Hatay, Mark; Sanchez, Savannah E; Wegley-Kelly, Linda; Dutilh, Bas E; Harkins, Timothy T; Lee, Clarence C; Tom, Warren; Sandin, Stuart A; Smith, Jennifer E; Zgliczynski, Brian; Vermeij, Mark J A; Rohwer, Forest; Edwards, Robert A
2014-01-01
Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines.
15 CFR 904.209 - Expedited administrative proceedings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS CIVIL PROCEDURES Hearing and Appeal Procedures General § 904.209 Expedited administrative proceedings. In the...
15 CFR 904.209 - Expedited administrative proceedings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS CIVIL PROCEDURES Hearing and Appeal Procedures General § 904.209 Expedited administrative proceedings. In the...
NASA Astrophysics Data System (ADS)
Kars, M. A. C.; Henkel, S.
2017-12-01
In 2016, International Ocean Discovery Program (IODP) Expedition 370 drilled Site C0023 in the Nankai Trough, off Cape Muroto (Shikoku Island, Japan, NW Pacific Ocean). The aim of this expedition was to explore the limits of life in the deep subseafloor sediments in a high temperature environment (up to 120°C), and to investigate, among other objectives, the processes at the biotic-abiotic transition. A deep sulfate-methane transition zone (SMTZ) was identified between 630 and 750 meters below sea floor (mbsf). Based on the magnetic data profiles and results from previous ODP expeditions in the area, four magnetic zones were defined mostly reflecting changes in detrital supply and alteration/diagenetic features.Here, a rock magnetic study is conducted in order to document the downhole changes in magnetic properties and magnetic mineralogy (content, grain size and composition of the magnetic mineral assemblage) related to post-depositional diagenetic processes from 200 to 1100 mbsf, with a focus on the deep SMTZ. Natural remanent magnetization and its alternating-field demagnetization, magnetic susceptibility and acquisition of isothermal remanent magnetization are measured on 225 discrete samples for concentration and composition of the magnetic assemblage. Hysteresis properties and first order reversal curves are measured on respective dry powders for magnetic grain size study and composition of the magnetic assemblage. The preliminary rock magnetic results are presented and discussed based on the shipboard inorganic geochemical data.
Antarctic Porifera database from the Spanish benthic expeditions
Rios, Pilar; Cristobo, Javier
2014-01-01
Abstract The information about the sponges in this dataset is derived from the samples collected during five Spanish Antarctic expeditions: Bentart 94, Bentart 95, Gebrap 96, Ciemar 99/00 and Bentart 2003. Samples were collected in the Antarctic Peninsula and Bellingshausen Sea at depths ranging from 4 to 2044 m using various sampling gears. The Antarctic Porifera database from the Spanish benthic expeditions is unique as it provides information for an under-explored region of the Southern Ocean (Bellingshausen Sea). It fills an information gap on Antarctic deep-sea sponges, for which there were previously very few data. This phylum is an important part of the Antarctic biota and plays a key role in the structure of the Antarctic marine benthic community due to its considerable diversity and predominance in different areas. It is often a dominant component of Southern Ocean benthic communities. The quality of the data was controlled very thoroughly with GPS systems onboard the R/V Hesperides and by checking the data against the World Porifera Database (which is part of the World Register of Marine Species, WoRMS). The data are therefore fit for completing checklists, inclusion in biodiversity pattern analysis and niche modelling. The authors can be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies. The dataset currently contains 767 occurrence data items that have been checked for systematic reliability. This database is not yet complete and the collection is growing. Specimens are stored in the author’s collection at the Spanish Institute of Oceanography (IEO) in the city of Gijón (Spain). The data are available in GBIF. PMID:24843257
Woods Hole Oceanographic Institution
OCEAN Ocean Topics Oceanus Magazine Visual WHOI Blogs/Expeditions Exhibit Center JOIN US DONATE Technology Transfer 90% of international trade travels by ship Explore Ocean Topics Hydrothermal Vents Trenches Ocean Acidification Phytoplankton Currents, Gyres, & Eddies [ ALL OCEAN TOPICS ] Dive into our
NASA Astrophysics Data System (ADS)
Kitamura, M.; Kitajima, H.; Henry, P.; Valdez, R. D., II; Josh, M.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.
2014-12-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of ~2.7 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density, but higher bulk density and lower porosity, respectively. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity on discrete samples is higher than the LWD resistivity data but the overall depth trends are similar. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
NASA Astrophysics Data System (ADS)
Sommar, J.; Andersson, M. E.; Jacobi, H.-W.
2009-10-01
Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent mercury HgII(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July-September, 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska - Chukchi Penninsula - Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0} pulse in the water was spilled with some time-delay into the air samples collected 20 m a.s.l. Several episodes of elevated Hg0(g) were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m-3) compared to the marine boundary layer over ice-free oceanic waters (1.55±0.21 ng m-3). In addition, an overall majority of the variance in the temporal series of Hg0 concentrations was observed during July. Atmospheric boundary layer {O3} mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15-20 ppbv was observed during summer (July-August). Alongside the polar transect during the beginning of autumn, a steady trend of increasing O3 mixing ratios was measured returning to initial levels of the expedition (>30 ppbv). Ambient CO was fairly stable (84±12 ppbv) during the expedition. However, from the Beaufort Sea and moving onwards steadily increasing CO mixing ratios were observed (0.3 ppbv day-1). On a comparison with coeval archived CO and O3 data from the Arctic coastal strip monitoring sites Barrow and Alert, the observations from Oden indicate these species to be homogeneously distributed over the Arctic Ocean. Neither correlated low ozone and GEM events nor elevated concentrations of RGM and PHg were at any extent sampled, suggesting that atmospheric mercury deposition to the Arctic basin is low during the Polar summer and autumn. Elevated levels of Hg0 and CO were episodically observed in air along the Chukchi Peninsula indicating transport of regional pollution.
NASA Astrophysics Data System (ADS)
Sommar, J.; Andersson, M. E.; Jacobi, H.-W.
2010-06-01
Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent gaseous mercury species HgIIX2(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July-September 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska - Chukchi Penninsula - Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0 pulse in the water was transferred with some time-delay into the air samples collected ~20 m above sea level. Several episodes of elevated Hg0 in air were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m-3) compared to the marine boundary layer over ice-free Arctic oceanic waters (1.55±0.21 ng m-3). In addition, the bulk of the variance in the temporal series of Hg0 concentrations was observed during July. The Oden Hg0 observations compare in this aspect very favourably with those at the coastal station Alert. Atmospheric boundary layer O3 mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15-20 ppbV was observed during summer (July-August). Alongside the polar transect during the beginning of autumn, a steady trend of increasing O3 mixing ratios was measured returning to initial levels of the expedition (>30 ppbV). Ambient CO was fairly stable (84±12 ppbV) during the expedition. However, from the Beaufort Sea and moving onwards steadily increasing CO mixing ratios were observed (0.3 ppbV day-1). On a comparison with coeval archived CO and O3 data from the Arctic coastal strip monitoring sites Barrow and Alert, the observations from Oden indicate these species to be homogeneously distributed over the Arctic Ocean. Neither correlated low ozone and Hg0 events nor elevated concentrations of RGM and PHg were at any extent sampled, suggesting that atmospheric mercury deposition to the Arctic basin is low during the Polar summer and autumn.
New Era of Scientific Ocean Drilling
NASA Astrophysics Data System (ADS)
Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.
2014-12-01
The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.
Ding, Xiang; Wang, Xinming; Xie, Zhouqing; Zhang, Zhou; Sun, Liguang
2013-04-02
During the 2003 Chinese Arctic Research Expedition (CHINARE2003) from the Bohai Sea to the high Arctic (37°N-80°N), filter-based particle samples were collected and analyzed for tracers of primary and secondary organic aerosols (SOA) as well as water-soluble organic carbon (WSOC). Biomass burning (BB) tracer levoglucosan had comparatively much higher summertime average levels (476 ± 367 pg/m(3)) during our cruise due to the influence of intense forest fires then in Siberia. On the basis of 5-day back trajectories, samples with air masses passing through Siberia had organic tracers 1.3-4.4 times of those with air masses transporting only over the oceans, suggesting substantial contribution of continental emissions to organic aerosols in the marine atmosphere. SOA tracers from anthropogenic aromatics were negligible or not detected, while those from biogenic terpenenoids were ubiquitously observed with the sum of SOA tracers from isoprene (623 ± 414 pg/m(3)) 1 order of magnitude higher than that from monoterpenes (63 ± 49 pg/m(3)). 2-Methylglyceric acid as a product of isoprene oxidation under high-NOx conditions was dominant among SOA tracers, implying that these BSOA tracers were not formed over the oceans but mainly transported from the adjacent Siberia where a high-NOx environment could be induced by intense forest fires. The carbon fractions shared by biogenic SOA tracers and levoglucosan in WSOC in our ocean samples were 1-2 orders of magnitude lower than those previously reported in continental samples, BB emissions or chamber simulation samples, largely due to the chemical evolution of organic tracers during transport. As a result of the much faster decline in levels of organic tracers than that of WSOC during transport, the trace-based approach, which could well reconstruct WSOC using biogenic SOA and BB tracers for continental samples, only explained ∼4% of measured WSOC during our expedition if the same tracer-WSOC or tracer-SOC relationships were applied.
Rock and Core Repository Coming Digital
NASA Astrophysics Data System (ADS)
Maicher, Doris; Fleischer, Dirk; Czerniak, Andreas
2016-04-01
In times of whole city centres being available by a mouse click in 3D to virtually walk through, reality sometimes becomes neglected. The reality of scientific sample collections not being digitised to the essence of molecules, isotopes and electrons becomes unbelievable to the upgrowing generation of scientists. Just like any other geological institute the Helmholtz Centre for Ocean Research GEOMAR accumulated thousands of specimen. The samples, collected mainly during marine expeditions, date back as far as 1964. Today GEOMAR houses a central geological sample collection of at least 17 000 m of sediment core and more than 4 500 boxes with hard rock samples and refined sample specimen. This repository, having been dormant, missed the onset of the interconnected digital age. Physical samples without barcodes, QR codes or RFID tags need to be migrated and reconnected, urgently. In our use case, GEOMAR opted for the International Geo Sample Number IGSN as the persistent identifier. Consequentially, the software CurationDIS by smartcube GmbH as the central component of this project was selected. The software is designed to handle acquisition and administration of sample material and sample archiving in storage places. In addition, the software allows direct embedding of IGSN. We plan to adopt IGSN as a future asset, while for the initial inventory taking of our sample material, simple but unique QR codes act as "bridging identifiers" during the process. Currently we compile an overview of the broad variety of sample types and their associated data. QR-coding of the boxes of rock samples and sediment cores is near completion, delineating their location in the repository and linking a particular sample to any information available about the object. Planning is in progress to streamline the flow from receiving new samples to their curation to sharing samples and information publically. Additionally, interface planning for linkage to GEOMAR databases OceanRep (publications) and OSIS (expeditions) as well as for external data retrieval are in the pipeline. Looking ahead to implement IGSN, taking on board lessons learned from earlier generations, it will enable to comply with our institute's open science policy. Also it will allow to register newly collected samples already during ship expeditions. They thus receive their "birth certificate" contemporarily in this ever faster revolving scientific world.
Aspmo, Katrine; Temme, Christian; Berg, Torunn; Ferrari, Christophe; Gauchard, L Pierre-Alexis; Fain, Xavier; Wibetoe, Grethe
2006-07-01
Atmospheric mercury speciation measurements were performed during a 10 week Arctic summer expedition in the North Atlantic Ocean onboard the German research vessel RV Polarstern between June 15 and August 29, 2004. This expedition covered large areas of the North Atlantic and Arctic Oceans between latitudes 54 degrees N and 85 degrees N and longitudes 16 degrees W and 16 degrees E. Gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and mercury associated with particles (Hg-P) were measured during this study. In addition, total mercury in surface snow and meltwater ponds located on sea ice floes was measured. GEM showed a homogeneous distribution over the open North Atlantic Ocean (median 1.53 +/- 0.12 ng/m3), which is in contrast to the higher concentrations of GEM observed over sea ice (median 1.82 +/- 0.24 ng/m3). It is hypothesized that this results from either (re-) emission of mercury contained in snow and ice surfaces that was previously deposited during atmospheric mercury depletion events (AMDE) in the spring or evasion from the ocean due to increased reduction potential at high latitudes during Arctic summer. Measured concentrations of total mercury in surface snow and meltwater ponds were low (all samples <10 ng/L), indicating that marginal accumulation of mercury occurs in these environmental compartments. Results also reveal low concentrations of RGM and Hg-P without a significant diurnal variability. These results indicate that the production and deposition of these reactive mercury species do not significantly contribute to the atmospheric mercury cycle in the North Atlantic Ocean during the Arctic summer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, S.; Goddard, J.G.; Chipman, D.W.
1998-06-01
This data documentation discusses the procedures and methods used to measure total carbon dioxide concentration (TCO{sub 2}) and partial pressure of CO{sub 2} (pCO{sub 2}) in discrete water samples collected during three expeditions of the Research Vessel (R/V) Knorr in the South Pacific Ocean. Conducted as part of the World Ocean Circulation Experiment (WOCE), the first cruise (WOCE Section P16A/P17A) began in Papeete, Tahiti, French Polynesia, on October 6, 1992, and returned to Papeete on November 25, 1992. The second cruise (WOCE Section P17E/P19S) began in Papeete on December 4, 1992, and finished in Punta Arenas, Chile, on January 22,more » 1993. The third expedition (WOCE Section P19C) started in Punta Arenas, on February 22 and finished in Panama City, Panama, on April 13, 1993. During the three expeditions, 422 hydrographic stations were occupied. Hydrographic and chemical measurements made along WOCE Sections P16A/P17A, P17E/P19S, and P19C included pressure, temperature, salinity, and oxygen [measured by conductivity, temperature, and depth (CTD) sensor], as well as discrete measurements of salinity, oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO{sub 2}, and pCO{sub 2} measured at 4 and 20 C. In addition, potential temperatures were calculated from the measured variables.« less
ONR Tokyo Scientific Bulletin. Volume 4, Number 4, October-December 1979,
1979-12-01
describing various biological rhythms, from oscillatory electrical activities of the brain to circadian fluctuations in bodily functions and task...Technology Division, Naval Research Laboratory, has concentrated his activities on the design and utilization of far infrared gas lasers for the study... activities of the International Indian Ocean Expedition (IIOE) and the plankton sorting center established at Cochin, for plankton samples taken during the
Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; He, Quan-Fu; Zhang, Pengfei
2013-01-01
Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m³ in the boundary layer over remote oceans.
A Geographical Information System to Manage the Endeavour Hydrothermal Vents Marine Protected Area
NASA Astrophysics Data System (ADS)
Douglas, K. L.; Hillier, M. C. J.; Thornborough, K. J.; Jenkyns, R.; Juniper, K.
2016-02-01
The Endeavour Hydrothermal Vents Marine Protected Area (EHVMPA) is located approximately 250 km offshore of Vancouver Island, British Columbia. Since its discovery in 1982, there have been hundreds of dives, samples collected, measurements made, and debris left behind at the EHVMPA. In 2003, the Canadian government declared the region as a Marine Protected Area (MPA) under Canada's Oceans Act, to be managed by the Department of Fisheries and Oceans (DFO). Ocean Networks Canada (ONC) operates a cabled observatory in the EHVMPA, and streams data in near real-time via the Internet to science communities worldwide. ONC's observatory data, combined with observations made during maintenance expeditions provides insight assisting the management and preservation of the MPA. In 2014, DFO partnered with ONC to build a geodatabase to enhance and inform the knowledge base of the EHVMPA Management Plan. The geodatabase, built in ArcGIS, contains data integrated from ONC's Oceans 2.0 database, third parties, and relevant publications. Layers include annual observatory infrastructure deployments, remotely operated vehicle (ROV) dive tracks, sampling activity, anthropogenic debris, high-resolution bathymetry, observations of species of interest, and locations of hydrothermal vents. The combined data show both efforts to better understand the environment and the resulting stressors that impact the MPA. The tool also links observed features such as debris and biological observations to the time-correlated ROV dive video using ONC's SeaTube video viewing tool allowing for further analysis. Through 2017, the geodatabase will be maintained by ONC and enriched with expedition data from organizations such as Monterey Bay Aquarium Research Institute, Woods Hole Oceanographic Institute, and the University of Washington. The end result is a tool that can integrate many types of data obtained from the MPA, and encourages systematic management of a remote, dynamic and fragile environment.
NASA Astrophysics Data System (ADS)
Hood, Raleigh; D'Adamo, Nick; Burkill, Peter; Urban, Ed; Bhikajee, Mitrasen
2014-05-01
The International Indian Ocean Expedition (IIOE) was one of the greatest international, interdisciplinary oceanographic research efforts of all time. Planning for the IIOE began in 1959 and the project officially continued through 1965, with forty-six research vessels participating under fourteen different flags. The IIOE motivated an unprecedented number of hydrographic surveys (and repeat surveys) over the course of the expedition covering the entire Indian Ocean basin. And it was an interdisciplinary endeavor that embraced physical oceanography, chemical oceanography, meteorology, marine biology, marine geology and geophysics. The end of 2015 will mark the 50th Anniversary of the completion of the IIOE. In the 50 years since the IIOE three fundamental changes have taken place in ocean science. The first is the deployment of a broad suite of oceanographic sensors on satellites that have dramatically improved the characterization of both physical and biological oceanographic variability. The second is the emergence of new components of the ocean observing system, most notably remote sensing and Argo floats. And the third is the development of ocean modeling in all its facets from short-term forecasting to seasonal prediction to climate projections. These advances have revolutionized our understanding of the global oceans, including the Indian Ocean. Compared to the IIOE era, we now have the capacity to provide a much more integrated picture of the Indian Ocean, especially if these new technologies can be combined with targeted and well-coordinated in situ measurements. In this presentation we report on current efforts to motivate an IIOE 50th Anniversary Celebration (IIOE-2). We envision this IIOE-2 as a 5-year expedition and effort beginning in 2015 and continuing through to 2020. An important objective of our planning efforts is assessing ongoing and planned research activities in the Indian Ocean in the 2015 to 2020 time frame, with the goal of embracing and helping to organize these activities as part of a larger coordinated 50th Anniversary research initiative. In addition we are working to motivate conferences, summer schools, data recovery, repeat line work and new process studies.
Image of the Moon taken by Expedition 13
2006-09-07
ISS013-E-78721 (7 Sept. 2006) --- A partial lunar eclipse is featured in this image photographed by an Expedition 13 crewmember on the International Space Station as the station flew over the southern Indian Ocean.
Image of the Moon taken by Expedition 13
2006-09-07
ISS013-E-78708 (7 Sept. 2006) --- A partial lunar eclipse is featured in this image photographed by an Expedition 13 crewmember on the International Space Station as the station flew over the southern Indian Ocean.
Image of the Moon taken by Expedition 13
2006-09-07
ISS013-E-78724 (7 Sept. 2006) --- A partial lunar eclipse is featured in this image photographed by an Expedition 13 crewmember on the International Space Station as the station flew over the southern Indian Ocean.
Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean.
Cai, Minghong; Zhao, Zhen; Yin, Zhigao; Ahrens, Lutz; Huang, Peng; Cai, Minggang; Yang, Haizhen; He, Jianfeng; Sturm, Renate; Ebinghaus, Ralf; Xie, Zhiyong
2012-01-17
Perfluoroalkyl compounds (PFCs) were determined in 22 surface water samples (39-76°N) and three sea ice core and snow samples (77-87°N) collected from North Pacific to the Arctic Ocean during the fourth Chinese Arctic Expedition in 2010. Geographically, the average concentration of ∑PFC in surface water samples were 560 ± 170 pg L(-1) for the Northwest Pacific Ocean, 500 ± 170 pg L(-1) for the Arctic Ocean, and 340 ± 130 pg L(-1) for the Bering Sea, respectively. The perfluoroalkyl carboxylates (PFCAs) were the dominant PFC class in the water samples, however, the spatial pattern of PFCs varied. The C(5), C(7) and C(8) PFCAs (i.e., perfluoropentanoate (PFPA), perfluoroheptanoate (PFHpA), and perfluorooctanoate (PFOA)) were the dominant PFCs in the Northwest Pacific Ocean while in the Bering Sea the PFPA dominated. The changing in the pattern and concentrations in Pacific Ocean indicate that the PFCs in surface water were influenced by sources from the East-Asian (such as Japan and China) and North American coast, and dilution effect during their transport to the Arctic. The presence of PFCs in the snow and ice core samples indicates an atmospheric deposition of PFCs in the Arctic. The elevated PFC concentration in the Arctic Ocean shows that the ice melting had an impact on the PFC levels and distribution. In addition, the C(4) and C(5) PFCAs (i.e., perfluorobutanoate (PFBA), PFPA) became the dominant PFCs in the Arctic Ocean indicating that PFBA is a marker for sea ice melting as the source of exposure.
Ubiquitous healthy diatoms in the deep sea confirms deep carbon injection by the biological pump
NASA Astrophysics Data System (ADS)
Agustí, Susana; González-Gordillo, Jose I.; Vaqué, Dolors; Estrada, Marta; Cerezo, Maria I.; Salazar, Guillem; Gasol, Josep M.; Duarte, Carlos M.
2016-04-01
The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean awaits confirmation. Photosynthetic plankton, directly responsible for trapping CO2 in organic form in the surface layer, are a key constituent of the flux of sinking particles and are assumed to die and become detritus upon leaving the photic layer. Research in the 1960-70's reported the occasional presence of well-preserved phytoplankton cells in the deep ocean, but these observations, which could signal at rapid sinking rates, were considered anecdotal. Using new developments we tested the presence of healthy phytoplankton cells in the deep sea (2000 to 4000 m depth) along the Malaspina 2010 Circumnavigation Expedition, a global expedition sampling the bathypelagic zone of the Atlantic, Indian and Pacific Oceans. In particular, we used a new microplankton sampling device, the Bottle-Net, 16S rDNA sequences, flow cytometric counts, vital stains and experiments to explore the abundance and health status of photosynthetic plankton cells between 2,000 and 4,000 m depth along the Circumnavigation track. We described the community of microplankton (> 20μm) found at the deep ocean (2000-4000 m depth), surprisingly dominated by phytoplankton, and within this, by diatoms. Moreover, we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark sea. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from few days to few weeks, corresponding to sinking rates of 124 to 732 m d-1, comparable to those of fast sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep-sea and that this is a prevalent process operating across the global oligotrophic ocean.
Improving OBS operations in ultra-deep ocean during the Southern Mariana Trench expeditions
NASA Astrophysics Data System (ADS)
Zeng, X.; Lin, J.; Xu, M.; Zhou, Z.
2017-12-01
The Mariana Trench Research Initiative, led by the South China Sea Institute of Oceanology of the Chinese Academy of Sciences and through international collaboration, focuses on investigating the deep and shallow lithospheric structure, earthquake characteristics, extreme geological environments, and the controlling geodynamic mechanisms for the formation of Earth's deepest basins in the southern Mariana Trench. Two multidisciplinary research expeditions were executed during December 2016 and June 2017, respectively, on board R/V Shiyan 3. A main task of the Mariana Initiative is to conduct the Southern Mariana OBS Experiment (SMOE), the first OBS seismic experiment across the Challenger Deep. The SMOE expeditions include both active and passive source seismic experiments and employed a large number of broadband OBS instruments. Due to the deep water, rough weather, strong winds, and other unfavorable factors, it was challenging to deploy/recover the OBSs. During the two expeditions we developed and experimented with a number of ways to improve the success rate of OBS operations in the harsh ultra-deep ocean environment of the Southern Mariana Trench. All newly acquired OBSs underwent a series of uniquely designed deep-ocean tests to improve the instrument performance and maximize reliability during their deployment under the ultra-high pressure conditions. The OBS deployment and recovery followed a unified standard operation procedure and aided by an instrumental checklist, which were specifically designed and strictly enforced for operation during the expeditions. Furthermore, an advanced ship-based radio positioning system was developed to rapidly and accurately locate the OBS instruments when they reached the sea surface; the system proved its effectiveness even under extreme weather conditions. Through the development and application of the novel methods for operation in deep oceans, we overcame the rough sea and other unfavorable factors during the first two expeditions to the southern Mariana Trench and achieved a highly successful OBS operation program.
Ocean Drilling Simulation Activity.
ERIC Educational Resources Information Center
Telese, James A.; Jordan, Kathy
The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…
NASA Astrophysics Data System (ADS)
Inagaki, Fumio; Hinrichs, Kai-Uwe; Kubo, Yusuke; IODP Expedition 337 Scientists
2016-06-01
The Integrated Ocean Drilling Program (IODP) Expedition 337 was the first expedition dedicated to subseafloor microbiology that used riser-drilling technology with the drilling vessel Chikyu. The drilling Site C0020 is located in a forearc basin formed by the subduction of the Pacific Plate off the Shimokita Peninsula, Japan, at a water depth of 1180 m. Primary scientific objectives during Expedition 337 were to study the relationship between the deep microbial biosphere and a series of ˜ 2 km deep subseafloor coalbeds and to explore the limits of life in the deepest horizons ever probed by scientific ocean drilling. To address these scientific objectives, we penetrated a 2.466 km deep sedimentary sequence with a series of lignite layers buried around 2 km below the seafloor. The cored sediments, as well as cuttings and logging data, showed a record of dynamically changing depositional environments in the former forearc basin off the Shimokita Peninsula during the late Oligocene and Miocene, ranging from warm-temperate coastal backswamps to a cool water continental shelf. The occurrence of small microbial populations and their methanogenic activity were confirmed down to the bottom of the hole by microbiological and biogeochemical analyses. The factors controlling the size and viability of ultra-deep microbial communities in those warm sedimentary habitats could be the increase in demand of energy and water expended on the enzymatic repair of biomolecules as a function of the burial depth. Expedition 337 provided a test ground for the use of riser-drilling technology to address geobiological and biogeochemical objectives and was therefore a crucial step toward the next phase of deep scientific ocean drilling.
Earth observations taken by the Expedition 12 crew
2005-11-15
ISS012-E-10131 (3 Dec. 2005) --- This oblique view of Hurricane Epsilon in the Atlantic Ocean was photographed at 15:37:45 GMT on Dec. 3, 2005 by one of the crewmembers of Expedition 12 aboard the International Space Station. The orbital outpost was flying at an altitude of 190 nautical miles. Center point coordinates are 34.5 degrees north latitude and 44.4 degrees west longitude. As it continues moving in the Atlantic Ocean, the storm poses no threat to any land mass.
NASA Astrophysics Data System (ADS)
De Vleeschouwer, David; Dunlea, Ann G.; Auer, Gerald; Anderson, Chloe H.; Brumsack, Hans; de Loach, Aaron; Gurnis, Michael; Huh, Youngsook; Ishiwa, Takeshige; Jang, Kwangchul; Kominz, Michelle A.; März, Christian; Schnetger, Bernhard; Murray, Richard W.; Pälike, Heiko
2017-03-01
During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. (2013) quantified K, Th, and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, and U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost.
NASA Astrophysics Data System (ADS)
Koppers, A. A. P.
2014-12-01
Accurate age dates for the basement rocks in the South China Sea (SCS) basins were lacking before the execution of International Ocean Discovery Program (IODP) Expedition 349 in early 2014. This left a large margin of error in estimated opening ages for the SCS and rendered various hypotheses regarding its opening mechanism and history untested, hampering our understanding of East Asian tectonic and paleoenvironmental evolution. Therefore, high-precision 40Ar/39Ar age dating lies at the heart of Expedition 349, which in particular aimed to determine the timing of the start and cessation of seafloor spreading in the SCS. In addition, the recovery of a complete seamount apron section at Site U1431 allows 40Ar/39Ar dating of abundantly present plagioclase and biotite crystals to help establish a detailed chronology of the sedimentary and volcaniclastic sequences cored. Here we present the first 40Ar/39Ar incremental heating ages on the low-potassium (~0.1-0.2 wt% K2O) and the least altered (loss on ignition < 1.5%) mid-ocean ridge basalt (MORB) from the SCS. Plagioclase and groundmass samples were prepared using conventional mineral separation techniques, acid-leaching and hand-picking. Analyses were carried out using a new ARGUS-VI multi-collector noble gas mass spectrometer. Ages are expected to have precisions ranging between 0.1-0.3 Ma (2σ), which will allow us to precisely and accurately date the final emplacement of basalts at Sites U1431, U1433 and U1434 in the SCS basin, just prior to the cessation of spreading as all sites were slightly offset from the relict spreading center.
Drilling Deep Into STEM Education with JOIDES Resolution Education and Outreach Officers
NASA Astrophysics Data System (ADS)
Christiansen, E. A.
2015-12-01
During International Ocean Discovery Program (IODP) expeditions, IODP scientists and Education/Outreach (E/O) Officers enter classrooms and informal science venues via live Internet video links between the JOIDES Resolution (JR) and land-based learning centers. Post-expedition, E/O Officers, serving as JR Ambassadors, deepen and broaden the learning experience by bringing STEM from the JR to the general public through targeted outreach events at those land-based sites. Youth and adult learners participate in scientific inquiry through interactive activities linked directly to the video broadcast experience. Outreach venues include museums, summer camps, and after-school programs; classroom visits from E/O Officers encompass kindergarten to undergraduate school groups and often include professional development for educators. Events are hands-on with simulations, expedition samples, core models, and equipment available for interaction. This program can serve as a model for linking virtual and real experiences; deepening the educational value of virtual field trip events; and bringing cutting edge science into both classrooms and informal science venues.
NASA Astrophysics Data System (ADS)
Carvallo, C.; Camps, P.; Ooga, M.; Fanjat, G.; Sager, W. W.
2013-03-01
IODP Expedition 324 cored igneous rocks from Shatsky Rise, an oceanic plateau in the northwest Pacific Ocean that formed mainly during late Jurassic and Early Cretaceous times. We selected 60 samples from 3 different holes for Thellier-Thellier palaeointensity determinations. Induced and remanent magnetization curves measured at low- and high-temperature suggest a diverse and complex magnetic mineralogy, with large variations in Ti content and oxidation state. Hysteresis and FORC measurements show that most samples contain single-domain magnetic grains. After carrying out the palaeointensity determinations, only 9 samples satisfied all reliability criteria. These gave palaeointensity values between 16.5 and 21.5 μT, which correspond to average VDM values of (4.9 ± 0.2) × 1022 Am2 for an estimated age of 140-142 Ma. This value is lower than that for the recent field, which agrees with the hypothesis of a Mesozoic Dipole Low.
NASA Astrophysics Data System (ADS)
Black, H. D.; Anderson, W. T., Jr.
2017-12-01
Inorganic and organic matter concentrations as well as the stable isotopes of nitrogen and organic carbon are presented for continuous sedimentary sequences collected during Integrated Ocean Drilling Program (IODP) Expedition 346 in the Japan Sea/East Sea in 2013. During major glacioeustatic sea level changes, the paleoceanographic conditions within the Japan Sea/East Sea widely vary due to the shallow, narrow straights connecting the sea to surrounding waters limiting an influx of oceanic currents. During glacial sea level low-stands the sea can be nearly isolated, creating a highly-stratified water column and hypoxic to anoxic bottom water conditions. Meanwhile during sea level high-stands, the Tsushima Warm Current (TWC) flows into the sea bringing warmer, nutrient-rich inputs, leading to vertical mixing and oxic conditions. This study aims to better understand the role of orbital cycling within the organic matter and stable isotope contents of these Late Pleistocene sediments. A total of 192 samples were analyzed each for %CaCO3, %TOC, δ13C, %N, and δ15N from two Expedition 346 sampling sites (U1426 and U1427) during the last 430,000 years and statistical analyses were completed using wavelet and time series analyses. Carbonate concentration ranges from 0-44.3%, total organic carbon 0.2 to 6.4%, δ13C -25.8 to -19.6‰, %N 0.04 to 0.4%, and δ15N 3.8 to 13.1‰. These results are well correlated with b* color values of the sediment and generally show increased productivity during interglacial periods, likely through increased vertical mixing and deepwater ventilation, when compared to glacial periods within the Japan Sea/East Sea when the sea may be partially isolated.
Brum, Jennifer R; Schenck, Ryan O; Sullivan, Matthew B
2013-09-01
Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51-92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research.
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Mayer, L. A.; Marcussen, C.
2013-12-01
Despite the last decades of diminishing sea-ice cover in the Arctic Ocean, ship operations are only possible in vast sectors of the central Arctic using the most capable polar-class icebreakers. There are less than a handful of these icebreakers outfitted with modern seafloor mapping equipment. This implies either fierce competition between those having an interest in using these icebreakers for investigations of the shape and properties of Arctic Ocean seafloor or, preferably, collaboration. In this presentation examples will be shown of scientific discoveries based on mapping data collected during Arctic Ocean icebreaker expeditions carried out for the purpose of substantiating claims for an extended continental shelf under United Nations Convention of the Law of the Sea (UNCLOS) Article 76. Scientific results will be presented from the suite of Lomonosov Ridge off Greenland (LOMROG) expeditions (2007, 2009, and 2012), shedding new light on Arctic Ocean oceanography and glacial history. The Swedish icebreaker Oden was used in collaboration between Sweden and Denmark during LOMROG to map and sample portions of the central Arctic Ocean; specifically focused on the Lomonosov Ridge north of Greenland. While the main objective of the Danish participation was seafloor and sub-seabed mapping to substantiate their Article 76 claim, LOMROG also included several scientific components, with scientists from both countries involved. Other examples to be presented are based on data collected using US Coast Guard Cutter Healy, which for several years has carried out mapping in the western Arctic Ocean for the US continental shelf program. All bathymetric data collected with Oden and Healy have been contributed to the International Bathymetric Chart of the Arctic Ocean (IBCAO). This is also the case for bathymetric data collected by Canadian Coast Guard Ship Louis S. St-Laurent for Canada's extended continental shelf claim. Together, the bathymetric data collected during these Article 76 mapping missions comprises, by far, the most comprehensive contribution to the last Version 3.0 of IBCAO.
NASA Astrophysics Data System (ADS)
Glombitza, C.; Inagaki, F.; Lever, M. A.; Jørgensen, B. B.
2013-12-01
Integrated Ocean Drilling Program (IODP) Expedition 337 aboard the drilling vessel Chikyu in summer 2012 was the first IODP expedition to drill into a deeply buried hydrocarbon system by riser drilling and, in the process, extended the depth record of scientific ocean drilling to 2466 meters below seafloor (mbsf). A main scientific goal of Expedition 337 was to explore microbial communities associated with deeply buried coalbeds 2 km below the seafloor at Site C0020 off the Shimokita Peninsula of Japan, northwestern coast of the Pacific Ocean. Four lithological units were defined according to sedimentological observations (Inagaki et al. 2012). Temperature measurements during wireline logging revealed in-situ temperatures in the range habitable for life, with ~40-45°C in 2km-deep coalbeds and 60°C at the bottom of the hole. To determine potential sulfate reduction rates (pSRRs) throughout the lower half of the borehole (1200-2466 mbsf; Units II - IV), we prepared slurries from fresh core material in artificial seawater medium containing 1 mM of sulfate and incubated these onboard with 35S-labeled sulfate at approximate in-situ temperatures (i.e., 25, 35, and 45°C). A duplicate set of incubations was started from each sample, one with only N2 in the headspace, and one with N2 + CH4 in the headspace. We incubated samples with 3.7 MBq 35S for a period of 10 days to achieve a detection limit of ca. 10 fmol sulfate cm-3 d-1. pSRRs were close to the detection limit in Unit II and increased by two orders of magnitude up to 2 pmol cm-3 d-1 in the coal-bearing strata (Unit III), decreasing again below in Unit IV. Maximum rates in Unit III reached values similar to those determined during the Chikyu shakedown cruise at 350 mbsf at the same site in 2006. In contrast to the pSRRs determined previously, however, addition of methane did not stimulate pSRRs, suggesting that potential sulfate reduction was supported by electron donors other than methane. The increase of pSRR in the coal-bearing unit is in accordance with other indicators of increased microbial activity in this depth interval, such as high C1/C2 ratios with low 13C/12C isotope ratios of methane observed by real-time mud gas logging during riser drilling. Inagaki, F., K.-U. Hinrichs, Y. Kubo, and the Expedition 337 Scientists (2012), Deep coalbed biosphere off Shimokita: microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean, IODP Prel. Rept., 337, doi: 10.2204/iodp.pr.337.2012
NASA Astrophysics Data System (ADS)
Marziali, C. G.; Edwards, K. J.
2009-12-01
Sea going research expeditions provide an ideal opportunity for outreach through blogs: the finite duration limits the author's commitment; scientists are usually in a remote location with fewer distractions; and fieldwork is visual and interesting to describe. Over four weeks this winter, Katrina Edwards of USC authored a blog about her deep-sea drilling expedition to North Pond, a depression in the ocean crust in the mid-Atlantic. She emailed daily dispatches and photos to USC Media Relations, which maintained a (still accessible) blog. Written for the general public, the blog quickly attracted interest from lay readers as well as from media organizations. Scientific American carried the blog on its web site, and the National Science Foundation linked to it in its "Science 360" electronic news digest. The blog also led to a Q&A with Edwards in the widely-read "Behind the Scenes" feature of LiveScience. Interest from science bloggers and National Geographic towards the end suggests that the blog could have expanded its reach given more time: expeditions lasting between six weeks and three months, such as occur during ocean drilling expeditions, would appear to be ideal candidates for a blog. Most importantly, the blog educated readers about the importance to planetary life of what Edwards calls the "intraterrestrials": the countless microbes that inhabit the oceanic crust and influence major chemical and biological cycles. Considering that the subjects of the expedition were invisible critters in a pitch-dark place, the blog shows what can be accomplished by scientists and institutions committed to public outreach.
NASA Astrophysics Data System (ADS)
Gorell, F. R.; Martinez, C.
2006-12-01
NOAA's Office of Ocean Exploration (OE) was created in response to the recommendations of the President's Panel on Ocean Exploration in 2000. With the establishment of OE, NOAA developed a great opportunity to reach out to teachers, students, and the general public to share the excitement of discovery. As exciting expeditions are the core of our NOAA program, outreach efforts are focused around these cruises. Through various initiatives, OE works with the science community to share the excitement of ocean science and discovery with a wide variety of audiences. Initiatives include media events held during port calls, media conference calls arranged with scientists at sea, journalists' participation in expeditions, and select interviews with scientist-explorers. NOAA OE is now poised to initiate a major ongoing satellite-based education and public outreach program from its new dedicated research vessel, the Okeanos Explorer that will become operational in 2008. Through telepresence technology designed by the Institute for Exploration (IFE) in Mystic, CT, expeditions can be managed `virtually' by scientists working from Science Command Centers on land, live education broadcasts can be produced in real-time, and media events can be held through shore-based consoles connected to scientists at sea. Three pilot programs were successfully completed in the past few years demonstrating the potential for this new technology to allow for unlimited access to data, including video, from expeditions, sharing in real-time the excitement of discovery through multiple virtual pathways. News media provide a powerful means to inform and educate the public. In some cases, scientists may believe that interaction with media representatives poses risks unmatched by rewards. While it is important to serve the public's right to know, scientist-explorers on NOAA-sponsored ocean expeditions have a recognized interest in protecting certain data, including images, for a number of legitimate reasons including the potential for further research to gain greater understanding, and the potential for publishing discoveries in scientific journals. At the same time, NOAA has an interest in informing the public in a timely manner about expedition findings, and seeks to do so via Web site coverage, news releases, embarked media, and news conferences ashore and at sea. These sometimes competing interests require advance planning, understandings and agreements, in a delicate balance of cooperation that serves the interests of all. This is especially true in light of the rapidly developing telepresence technology that allows for immediate transmission of information in real-time.
Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; He, Quan-Fu; Zhang, Pengfei
2013-01-01
Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m3 in the boundary layer over remote oceans. PMID:23880782
Earth observations taken by Expedition 38 crewmember
2013-11-26
ISS038-E-008471 (26 Nov. 2013) --- One of the Expedition 38 crew members aboard the International Space Station took this photograph showing a part of South Africa's Atlantic Coast. South Africa is the only African nation bordered by both the Indian and Atlantic Oceans.
Earth Observation taken by the Expedition 36 crew
2013-06-02
ISS036-E-005813 (2 June 2013) --- One of the Expedition 36 crew members aboard the International Space Station, flying at altitude of approximately 257 miles above the Indian Ocean, recorded this image of the sun about to go down on June 2, 2013.
Earth Observations taken by Expedition 47 Crewmember
2016-03-25
ISS047e020123 (03/25/2016) --- A golden reflection of the rising sun on the Earths oceans greets the crew of Expedition 47 on board the International Space station. Another day begins for the crew in their pursuit of science that will aid humankind.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.
An international symposium was convened to celebrate the 50th anniversary of the John Murray Expedition to the Indian Ocean on board the Egyptian research vessel Mabahiss (1933-1934). This report describes the symposium and provides abstracts and syntheses of the papers presented in the various marine scientific disciplines covering the areas of…
The Second International Indian Ocean Expedition (IIOE-2)
NASA Astrophysics Data System (ADS)
Cowie, Greg; Hood, Raleigh
2015-04-01
The International Indian Ocean Expedition (IIOE) was one of the greatest international, interdisciplinary oceanographic research efforts of all time. Planning for the IIOE began in 1959 and the project officially continued through 1965, with forty-six research vessels participating under fourteen different flags. The IIOE motivated an unprecedented number of hydrographic surveys (and repeat surveys) over the course of the expedition covering the entire Indian Ocean basin. And it was an interdisciplinary endeavor that embraced physical oceanography, chemical oceanography, meteorology, marine biology, marine geology and geophysics. The end of 2015 will mark the 50th Anniversary of the completion of the IIOE. SCOR and the IOC are working to stimulate a new phase of coordinated international research focused on the Indian Ocean for a 5-year period beginning in late 2015 and continuing through 2020. The goal is to help to organize ongoing research and stimulate new initiatives in the 2015-2020 time frame as part of a larger expedition. Several International programs that have research ongoing or planned in the Indian Ocean during this time period and many countries are planning cruises in this time frame as well. These programs and national cruises will serve as a core for the new Indian Ocean research focus, which has been dubbed "IIOE-2." The overarching goal of the IIOE-2 is to advance our understanding of interactions between geological, oceanic and atmospheric processes that give rise to the complex physical dynamics of the Indian Ocean region, and to determine how those dynamics affect climate, extreme events, marine biogeochemical cycles, ecosystems and human populations. This understanding is required to predict the impacts of climate change, pollution, and increased fish harvesting on the Indian Ocean and its nations, as well as the influence of the Indian Ocean on other components of the Earth System. New understanding is also fundamental to policy makers for the development of sustainable coastal zone, ecosystem, and fisheries management strategies for the Indian Ocean. Other goals of IIOE-2 include helping to build research capacity and improving availability and accessibility of oceanographic data from the region. The IIOE-2 Science Plan is structured around six scientific themes. Each theme comprises a set of core questions fundamental to our need to understand the forcings, processes, and resultant variability of the Indian Ocean and to develop the capacity to predict how this variability will impact human populations in the future. In this presentation we will report on current efforts to motivate an IIOE-2 and we will present the draft science plan that has been commissioned by SCOR.
Data availability and data archeology from the former Soviet Union
NASA Technical Reports Server (NTRS)
Sychev, Yuri; Mikhailov, Nickolai N.
1992-01-01
Acquisition of data on the ocean is believed to start in 1872, when the Royal Navy ship 'Challenger' performed oceanographic stations in its round-world voyage (1872-1876). The first oceanographic studies of the World Ocean refer to the 80s second half of the 19th century. During its round-world expedition 'Vityaz' (1886-1889) headed by S.O. Markov, performed hydrological measurements in the Baltic Sea, Atlantic and Pacific Oceans. According to information available the regular expedition observations (prototype of future complex international program on the ocean research) started in the second half of 80s last century under the auspice of Kiev commission for exploration of German Seas. Systematic hydrological observations were organized by Hydrographic Department of Russia in 1876-1879 according to the program similar to the Kiev one and observations were regularly made by ships of custom service over the Russian area of the Baltic Sea. The increasing demands in oceanographic data contributed to considerable progress in exploration of the World Ocean during current century whole tendency to increase and become more significant has been observed for the last 30-40 years. Most probably various expeditions which were carried out during International Geophysical Year in different regions of the World Ocean are to be reference point in performing intensive oceanographic observations of Marine environment. In the former USSR oceanographic observations are made by research and hydrographic vessels, commercial and fishery ships as well as oil production platforms, coastal hydrometeorological station and other observing platforms. Oceanographic observations data, available from main sources of information on the ocean-research vessels, are also considered in the report.
Using Telepresence and New Learning Platforms for Engagement in Ocean Exploration
NASA Astrophysics Data System (ADS)
Keener, P.; Pomponi, S. A.; Hanisak, D.; Kelley, C.; Etnoyer, P. J.; Sautter, L.
2016-02-01
Telepresence technologies are changing the way the ocean science community engages with multiple audiences, including scientists, formal and informal educators, students and the public. As such, there are a variety of platforms for engaging in learning about why and how the ocean is explored through the eyes and voices of scientists in real time as they are conducing deep-sea exploration of these little known and unknown areas of the ocean planet. The National Oceanic and Atmospheric Administration's (NOAA's ) Ship Okeanos Explorer conducted expeditions off Puerto Rico and in the Northwestern Hawaiian Islands during the 2015 field season. Novel and existing partnerships were leveraged to bring live video from the seafloor and audio from the ship and Exploration Command Centers in real time into colleges, universities, aquariums, and research centers around the country. This presentation will give a brief overview of the live feed venues for the Oceano Profundo 2015: Exploring Puerto Rico's Seamounts, Trenches and Troughs and the Hohonu Moana: Exploring Deep waters off Hawaii Expeditions, and will focus on "hybrid" Exploration Command Centers established at institutions of higher education that were engaged during the expeditions, including Florida Atlantic University, the University of Hawaii at Manoa, and the College of Charleston and how they can be used to support graduate level courses on ocean exploration. Input for the development for an upcoming online course designed around the methods and content for these new learning styles will be solicited during the session.
NASA Astrophysics Data System (ADS)
Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party
2010-12-01
We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the public at large to cutting-edge, exploratory research and for engaging students in active learning.
Antarctic Starfish (Echinodermata, Asteroidea) from the ANDEEP3 expedition.
Danis, Bruno; Jangoux, Michel; Wilmes, Jennifer
2012-01-01
This dataset includes information on sea stars collected during the ANDEEP3 expedition, which took place in 2005. The expedition focused on deep-sea stations in the Powell Basin and Weddell Sea.Sea stars were collected using an Agassiz trawl (3m, mesh-size 500µm), deployed in 16 stations during the ANTXXII/3 (ANDEEP3, PS72) expedition of the RV Polarstern. Sampling depth ranged from 1047 to 4931m. Trawling distance ranged from 731 to 3841m. The sampling area ranges from -41°S to -71°S (latitude) and from 0 to -65°W (longitude). A complete list of stations is available from the PANGAEA data system (http://www.pangaea.de/PHP/CruiseReports.php?b=Polarstern), including a cruise report (http://epic-reports.awi.de/3694/1/PE_72.pdf).The dataset includes 50 records, with individual counts ranging from 1-10, reaching a total of 132 specimens.The andeep3-Asteroidea is a unique dataset as it covers an under-explored region of the Southern Ocean, and that very little information was available regarding Antarctic deep-sea starfish. Before this study, most of the information available focused on starfish from shallower depths than 1000m. This dataset allowed to make unique observations, such as the fact that some species were only present at very high depths (Hymenaster crucifer, Hymenaster pellucidus, Hymenaster praecoquis, Psilaster charcoti, Freyella attenuata, Freyastera tuberculata, Styrachaster chuni and Vemaster sudatlanticus were all found below -3770m), while others displayed remarkable eurybathy, with very high depths amplitudes (Bathybiaster loripes (4842m), Lysasterias adeliae (4832m), Lophaster stellans (4752m), Cheiraster planeta (4708m), Eremicaster crassus (4626m), Lophaster gaini (4560m) and Ctenodiscus australis (4489m)).Even if the number of records is relatively small, the data bring many new insights on the taxonomic, bathymetric and geographic distributions of Southern starfish, covering a very large sampling zone. The dataset also brings to light six species, newly reported in the Southern Ocean.The quality of the data was controlled very thoroughly, by means of on-board Polarstern GPS systems, checking of identification by a renowned specialist (Prof. Michel Jangoux, Université Libre de Bruxelles), and matching to the Register of Antarctic Marine Species (RAMS) and World Register of Marine Species (WoRMS). The data is therefore fit for completing checklists, for inclusion in biodiversity patterns analysis, or niche modeling. It also nicely fills an information gap regarding deep-sea starfish from the Southern Ocean, for which data is very scarce at this time. The authors may be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies.
Rusch, Douglas B; Halpern, Aaron L; Sutton, Granger; Heidelberg, Karla B; Williamson, Shannon; Yooseph, Shibu; Wu, Dongying; Eisen, Jonathan A; Hoffman, Jeff M; Remington, Karin; Beeson, Karen; Tran, Bao; Smith, Hamilton; Baden-Tillson, Holly; Stewart, Clare; Thorpe, Joyce; Freeman, Jason; Andrews-Pfannkoch, Cynthia; Venter, Joseph E; Li, Kelvin; Kravitz, Saul; Heidelberg, John F; Utterback, Terry; Rogers, Yu-Hui; Falcón, Luisa I; Souza, Valeria; Bonilla-Rosso, Germán; Eguiarte, Luis E; Karl, David M; Sathyendranath, Shubha; Platt, Trevor; Bermingham, Eldredge; Gallardo, Victor; Tamayo-Castillo, Giselle; Ferrari, Michael R; Strausberg, Robert L; Nealson, Kenneth; Friedman, Robert; Frazier, Marvin; Venter, J. Craig
2007-01-01
The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed “fragment recruitment,” addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed “extreme assembly,” made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS. PMID:17355176
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Schleicher, Anja
2015-04-01
Our research focused on the characterization of fracture and fault structures from the deep Nankai Trough accretionary prism in Japan. Logging Data and cuttings samples from the two most recent International Ocean Discovery Program (IODP) Expeditions 338 and 348 of the NanTroSEIZE project were analyzed by Logging While Drilling (LWD) oriented images, geophysical logs and clay mineralogy. Both expeditions took place at Site C0002, but whereas Hole C0002F (Expedition 338) was drilled down to 2004.5 mbsf, Hole C0002N and C0002P (Expedition 348) reached a depth of 2325.5 mbsf and 3058.8 mbsf respectively. The structural interpretation of borehole imaging data illustrates the deformation within the fractured and faulted sections of the accretionary prism. All drill holes show distinct areas of intense fracturing and faulting within a very clay-dominated lithology. Here, smectite and illite are the most common clay minerals, but the properties and the role they may play in influencing the fractures, faults and folds in the accretionary prism is still not well understood. When comparing clay mineralogy and fracture/fault areas in hole C0002F (Expedition 338), a trend in the abundance of illite and smectite, and in particular the swelling behavior of smectite is recognizable. In general, the log data provided a good correlation with the actual mineralogy and the relative abundance of clay. Ongoing postcruise preliminary research on hole C0002 N and C0002P (Expedition 348) should confirm these results. The relationship between fracture and fault structures and the changes in clay mineralogy could be explained by the deformation of specific areas with different compaction features, fluid-rock interaction processes, but could also be related to beginning diagenetic processes related to depth. Our results show the integration of logging data and cutting sample analyses as a valuable tool for characterization of petrophysical and mineralogical changes of the structures of the Nankai accretionary prism. This is critical for our understanding of clay-fluid interaction and mechanical properties duing fault displacements and seismogenesis.
NASA Astrophysics Data System (ADS)
Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald
2018-03-01
Arctic sea ice has been in rapid decline the last decade and the Norwegian young sea ICE (N-ICE2015) expedition sought to investigate key processes in a thin Arctic sea ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and sea ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of processes in a thin sea ice regime in the high Arctic. All data from the campaign are made freely available to the research community.
NASA Astrophysics Data System (ADS)
Linville, L. M.; Housen, B.; Sager, W.
2005-12-01
Pairs of young (3.5 Ma) altered and unaltered MORB from the Juan de Fuca Ridge collected from IODP Expedition 301, Hole 1301B were studied to better understand how hydrothermal alteration affects the magnetization of oceanic crust. Thermomagnetic analysis (performed with both a VSM and Kappabridge) revealed characteristically different Curie temperatures and degree of non-reversibility between altered and unaltered samples. Magnetic contributions outlined by these methods, in addition to IRM and hysteresis parameters, indicate that samples are dominated by single domain titanomagnetite and titanomaghemite, with a titanium content of approximately TM45. Petrological analysis with a SEM confirmed the presence of abundant Fe-Ti oxides. Despite the preponderance of titanomagnetite in unaltered samples, shrinkage cracks, which offer direct evidence of maghemitization, were seen in both altered and unaltered samples, indicating (as do irreversible cooling curves for all samples) that even supposedly unaltered samples have undergone some degree of low temperature oxidation. Preliminary paleomagnetic data in related samples indicates normal polarity and inclinations that are approximately what is expected for this site. The samples also exhibit both streaked and well defined, non-streaked magnetizations. This study intends to utilize the information obtained by procedures described above to test for correlations between characteristic magnetization directions and degree of oxidation, in order to further our understanding of the effect maghemitization has on the paleomagnetism of oceanic rocks.
NASA Astrophysics Data System (ADS)
Strasser, Michael; Moore, Gregory F.; Kanagawa, Kyuichi; Dugan, Brandon; Fabbri, Olivier; Toczko, Sean; Maeda, Lena
2013-04-01
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multi-expedition Integrated Ocean Drilling Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. IODP Expedition 338 (1 October 2012 - 13 January 2013), extended riser Hole C0002F from 856 meters below the sea floor (mbsf) to 2005 mbsf. Site C0002 is the centerpiece of the NanTroSEIZE project, and is planned to be deepened to eventually reach the seismogenic fault zone during upcoming drilling expeditions. The original Exp. 338 operational plan to case the hole to 3600 mbsf had to be revised as sudden changes in sea conditions resulted in damage to parts of the riser system, thus the hole was suspended at 2005 mbsf but left for future re-entry. The revised operation plan included additional riserless logging and coring of key targets not sampled during previous NanTroSEIZE expeditions, but relevant to comprehensively characterize the alteration stage of the oceanic basement input to the subduction zone, the early stage of Kumano Basin evolution and the recent activity of the shallow mega splay fault zone system and submarine landslides. Here we present preliminary results from IODP Exp. 338: Logging While Drilling (LWD), mud gas monitoring and analysis on cuttings from the deep riser hole characterize two lithological units within the internal accretionary prism, separated by a prominent fault zone at ~1640 mbsf. Internal style of deformation, downhole increase of thermogenically formed formation gas and evidence for mechanical compaction and cementation document a complex structural evolution and provide unprecedented insights into the mechanical state and behavior of the wedge at depth. Additionally, multiple samples of the unconformity between the Kumano Basin and accretionary prism at Site C0002 shed new light on this debatable unconformity boundary and suggest variable erosional processes active on small spatial scales. Results from riserless drilling at input Site C0012 include 178.7 m of detailed LWD characterization of the oceanic basement, indicating an upper ~100 m zone of altered pillow basalts and sheet flow deposits, and a lower, presumably less altered basement unit without indication for interlayered sediment horizons. Low angle faults identified in X-ray Computed Tomography images and structural investigation on cores from Site C0022, located in the slope basin immediately seaward of the megasplay fault zone, indicate splay-fault-related, out-of-sequence thrusting within slope basin sediments and shed new light on recent activity of the megasplay. Lastly, Exp. 338 added additional coring to improve our understanding of submarine landslides in the slope basins seaward of the splay fault and yields new LWD data to characterize in situ internal structures and properties of mass-transport deposits as it relates to the dynamics and kinematics of submarine landslides.
Brum, Jennifer R; Schenck, Ryan O; Sullivan, Matthew B
2013-01-01
Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51–92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research. PMID:23635867
ERIC Educational Resources Information Center
National Oceanic and Atmospheric Administration (DOC), Rockville, MD.
This activity introduces students to major groups of invertebrates that have been found in other polar ocean expeditions and acquaints them with the feeding habits of these animals as a basis for making inferences about benthic communities and their connection to other components of the Artic Ocean ecosystem. The activity provides learning…
Remote sensing of the boundary layer over the oceans. [by IRIS measurements
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Dalu, G.; Nath, N. R.; Lo, R.
1978-01-01
The paper explores the possibility of remotely sensing the boundary layer structure over the oceans by means of the Nimbus 4 IR Interferometric Spectrometer (IRIS) measurements in the water vapor bands. It is found from theoretical considerations that the moderately strong spectral lines in the 9-micron water vapor window region contain useful information about the lowest layers in the atmosphere. The difference between the observed line strength and the theoretically predicted line strength provides information about the departure in the atmospheric temperature and water vapor profiles from standard conditions. The observations of METEOR oceanographic expedition over the North and South Atlantic, and the Indian Ocean expedition make it possible to model the inversion conditions. It is concluded that significant characteristics of the temperature and water vapor profiles in the boundary layer of the atmosphere can be remotely sensed using the water vapor spectral measurements over the oceans.
Forschner, Stephanie R; Sheffer, Roberta; Rowley, David C; Smith, David C
2009-03-01
The current understanding of microbes inhabiting deeply buried marine sediments is based largely on samples collected from continental shelves in tropical and temperate latitudes. The geographical range of marine subsurface coring was expanded during the Integrated Ocean Drilling Program Arctic Coring Expedition (IODP ACEX). This expedition to the ice-covered central Arctic Ocean successfully cored the entire 428 m sediment stack on the Lomonosov Ridge during August and September 2004. The recovered cores vary from siliciclastic sediment low in organic carbon (< 0.2%) to organic rich ( approximately 3%) black sediments that rapidly accumulated in the early middle Eocene. Three geochemical environments were characterized based on chemical analyses of porewater: an upper ammonium oxidation zone, a carbonate dissolution zone and a deep (> 200 m below sea floor) sulfate reduction zone. The diversity of microbes within each zone was assessed using 16S rRNA phylogenetic markers. Bacterial 16S rRNA genes were successfully amplified from each of the biogeochemical zones, while archaea was only amplified from the deep sulfate reduction zone. The microbial communities at each zone are phylogenetically different and are most closely related to those from other deep subsurface environments.
Come On Down! Galapagos Rift Expedition--Grades 7-8. Overview: Ocean Exploration.
ERIC Educational Resources Information Center
National Oceanic and Atmospheric Administration (DOC), Rockville, MD.
These activities are designed to teach about ocean exploration. Students are expected to research the development and implementation of a research vessel/vehicle used for deep ocean exploration, calculate the density of objects by determining the mass and volume, and construct a device that exhibits neutral buoyancy. The activity provides learning…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-26
... vessel cruises (expeditions) as the predominate means to make direct measurements of the ocean. Remote sensing (use of satellites) has greatly advanced abilities to measure ocean surface characteristics over... sensing in the Eastern Pacific and Atlantic oceans. The Regional-Scale Nodes (RSN) off the coast of...
Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses.
Roux, Simon; Brum, Jennifer R; Dutilh, Bas E; Sunagawa, Shinichi; Duhaime, Melissa B; Loy, Alexander; Poulos, Bonnie T; Solonenko, Natalie; Lara, Elena; Poulain, Julie; Pesant, Stéphane; Kandels-Lewis, Stefanie; Dimier, Céline; Picheral, Marc; Searson, Sarah; Cruaud, Corinne; Alberti, Adriana; Duarte, Carlos M; Gasol, Josep M; Vaqué, Dolors; Bork, Peer; Acinas, Silvia G; Wincker, Patrick; Sullivan, Matthew B
2016-09-29
Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting 'global ocean virome' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they act as key players in nutrient cycling and trophic networks.
Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses
NASA Astrophysics Data System (ADS)
2016-09-01
Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting ‘global ocean virome’ dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they act as key players in nutrient cycling and trophic networks.
NASA Astrophysics Data System (ADS)
Weller, P.; Stein, R.
2006-12-01
In order to reconstruct the long-term Cenozoic climate history of the central Arctic Ocean and its role in earth's transition from Paleogene greenhouse to the Neogene icehouse conditions, IODP Expedition 302 (Arctic Ocean Coring Experiment ACEX) visited the Lomonosov Ridge in August 2004. Here, we present new data of organic-geochemical compounds determined in ACEX sediment samples to identify organic matter sources and biomarker proxies to decipher processes controlling organic-carbon accumulation and their paleo- environmental significance. Of special interest was the reconstruction of organic carbon composition, preservation and accumulation (i.e. high productivity vs. anoxia vs. terrigenous input) during periods of extreme global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers (e.g. n-alkanes, fatty acids, isoprenoids, carotenoids, steranes/sterenes, hopanes/hopenes, hopanoic acids, aromatic terpenoids, benzohopanes, long-chain alkenones, organic sulfur compounds) and Rock-Eval parameters were determined in the ACEX sediment samples, ranging from the late Paleocene to the middle Miocene in age. The records show highly variable TOC-contents and a large variety and variability of compounds derived from marine, terrestrial and bacterial origin. The distribution of hopanoic acid isomers was dominated by compounds with the biological 17 beta (H), 21 beta (H) configuration indicating a low level of maturity, which was in good agreement with the data from Rock-Eval pyrolysis. Based on the biomarker data, the terrestrial organic matter supply was significantly enriched during the late Paleocene and part of the early Eocene, whereas n-alkanes and n-fatty acids in samples from the PETM and Elmo events as well as the middle Eocene indicate increased aquatic contributions. Furthermore samples from the middle Eocene were characterized by the occurrence of long-chain alkenones, high proportions of lycopane and high ratios (>0.6) of (n-C35+lycopane)/n-C31. Interestingly, lycopane which might indicate photic-zone anoxia was not detected in co-occurrence with highly source-specific isorenieratene derivates.The occurrence in samples of the "freshwater" Azolla-event suggest that lycopane was more likely derived from freshwater algae (Botriococcus braunii, race L genus).
Earth Observations taken by the Expedition 39 Crew
2014-05-03
ISS039-E-018314 (3 May 2014) --- One of the Expedition 39 crew members aboard the International Space Station recorded this still image of the Aurora Australis when the orbital outpost was passing over the Indian Ocean on May 3, 2014. Hardware on the station is seen as a silhouette in upper left.
Drilling Polar Oceans with the European Research Icebreaker AURORA BOREALIS: the IODP Context
NASA Astrophysics Data System (ADS)
Lembke-Jene, Lester; Wolff-Boenisch, Bonnie; Azzolini, Roberto; Thiede, Joern; Biebow, Nicole; Eldholm, Olav; Egerton, Paul
2010-05-01
Polar oceans are characterized by extreme environmental conditions for humans and materials, and have remained the least accessible regions to scientists of the IODP. DSDP and ODP have for long faced specific technical and logistical problems when attempting to drill in ice-covered polar deep-sea basins. The Arctic Ocean and large areas of the high-latitude Southern Ocean remained largely un-sampled by ODP and remain one of the major scientific and technological challenges for IODP. Drilling in these regions has been discussed and anticipated for decades and the scientific rationales are reflected in the science plans of the international Nansen Arctic Drilling Program (NAD) or the Arctic Program Planning Group (APPG) of ODP/IODP, amongst others. More recently, the rationale to investigate the polar oceans in a holistic approach has been outlined by workshops, leading to strategic assessments of the scientific potential and new drilling proposals. The European Polar Board took the initiative to develop a plan for a novel and dedicated research icebreaker with technical capabilities hitherto unrealised. This research icebreaker will enable autonomous operations in the central Arctic Ocean and the Southern Ocean, even during the severest ice conditions in the deep winter, serving all marine disciplines of polar research including scientific drilling: The European Research Icebreaker and Deep-Sea Drilling Vessel AURORA BOREALIS. AURORA BOREALIS is presently planned as a multi-purpose vessel. The ship can be deployed as a research icebreaker in all polar waters during any season of the year, as it shall meet the specifications of the highest ice-class attainable (IACS Polar Code 1) for icebreakers. During the times when it is not employed for drilling, it will operate as the most technically advanced multi-disciplinary research vessel in the Arctic or polar Southern Ocean. AURORA BOREALIS will be a "European scientific flagship facility" (fully open to non-European partners), a multidisciplinary platform for studies ranging from the sub-seafloor into the atmosphere. AURORA BOREALIS was planned for her role in deep-sea drilling in consultation with engineers and technical experts familiar with the program and the operation of these vessels. All techniques currently deployed on IODP expeditions can be implemented onboard the vessel under polar weather and ice conditions, including the full range of re-entry, casing and cementing, and instrumentation options and the entire suite of downhole logging tools. Due to sufficient laboratory space, a full analytical workflow can be easily established comparable to existing permanent platforms, including clean rooms, diverse scanning and logging or incubation facilities. While the vessel is equipped with a dedicated deep-sea drilling rig, other coring and drilling techniques can be employed if needed (e.g. Rockdrill, MEBO, large diameter Kasten cores). AURORA BOREALIS is fitted to operate a CALYPSO Piston Coring System in polar waters. Future mud-return systems under consideration and testing for IODP to provide controlled borehole conditions in difficult facies are compatible with the layout of AURORA BOREALIS. The berthing capacity of 120 personnel total (scientists, technical support and crew) allows to accommodate a sufficient number of science party members offshore. The present scientific implementation documents plan for about one polar scientific drilling expedition per year in a to-be-determined configuration. As the vessel is a multi-dsiciplinary platform, operations for the entire year are not dependant on drilling operations alone. While principal access to the vessel will be based on a competitive proposal review and evaluation system, the allocation of timeslots specifically for drilling would preferably be given over to IODP handling and planning systems in a cooperative mode using the strengths and capacitites of the future program. Depending on interests and needs of the scientific communities a preferential focus in non-drilling expedition planning could be established e.g. for dedicated geophysical pre-site survey works in areas inaccessible by other vessels to secure critical data needed for later drilling expeditions. Based on ongoing expert consultations, it is safe to assume that the average costs for an Arctic or polar drilling expedition will be considerably lower than with an otherwise necessary multi-ship setup based on modelled expedition scenarios and annual operational cost calculations. Still, AURORA BOREALIS shall provide substantially enhanced scientific, operational, personnel and technical capacities offshore.
James Cameron discusses record dive and science concerns
NASA Astrophysics Data System (ADS)
Showstack, Randy; Balcerak, Ernie
2012-12-01
James Cameron, the explorer and filmmaker, led a 4 December panel at the AGU Fall Meeting in San Francisco to discuss his daring dive on 26 March to the bottom of the ocean in a one-person vertical "torpedo" submarine, the Deepsea Challenger, and to present some initial science findings from expedition samples and data. The dive touched the bottom of the Challenger Deep, a valley in the floor of the nearly 11-kilometer-deep Mariana Trench in the western Pacific Ocean. The vessel landed close to the same depth and at a location similar to where Don Walsh and Jacques Piccard descended in the Trieste bathyscaphe on 23 January 1960 at a then record-setting depth of 10,911 meters.
Trials at Sea: Successful Implementation of a Unique Two-Month Professional Development Program
NASA Astrophysics Data System (ADS)
Peart, L. W.; Orcutt, B. N.; Fisher, A. T.; Tsuji, T.; Petronotis, K. E.; Iodp Expedition 327 Participants
2010-12-01
During the summer of 2010, Integrated Ocean Drilling Program (IODP) Expedition 327 conducted coring and observatory installations on the Juan de Fuca Plate to characterize the hydrogeology of ridge-flank ocean crust. Due to the nature of the expedition, a smaller science party than usual was needed. IODP took this opportunity to expand education, outreach, and communication (EOC) activities with a previously untested model. Up to now, the IODP U.S. Implementing Organization had sailed either individual teachers on regular (2-month long) expeditions or groups of teachers and informal educators during short (2-week long) transits (School of Rock workshops). After two shipboard (Expeditions 312 and 321T) and two shore-based (Gulf Coast Repository) programs, we have recognized that sailing a group of educators is a beneficial model for IODP and the participants. What has been unavoidable is that these workshops took place outside typical expedition activities. Expedition 327 provided a unique opportunity to sail a diverse group of outreach officers on a regular expedition with a full range of scientific activities. The group included individuals with a wide variety of skills and backgrounds. US participants included a late-career high school physics teacher, a visualization graduate student, an undergraduate engineering student from an historically black university, and an artist. French participants included two middle and high school earth and life science teachers. This diversity made the group more dynamic but it also posed a challenge. Numerous scientific and technical staff also participated in EOC activity design and leadership, including development of dedicated web sites and blogs. After a seminar on constructivist and inquiry-based methods, we spent the first few weeks investigating earth science concepts so EOC participants could gain a basic understanding of the regional geology and the scientific objectives of the expedition. Close to the beginning of the cruise, projects that had been outlined in general terms precruise were clarified and strategies were developed for completing them. Individuals were able to work on projects that benefited their future goals, were beneficial to the ocean drilling community, and relied on each person’s special set of skills to carry out. Projects ranged from earth science classroom activities to robotics, computer animation, and fine arts. The outreach group also facilitated interactive videoconferences around the world, two websites, Facebook, YouTube and audio recordings for COSEE NOW’s Ocean Gazing podcasts. The scientists benefited from their interactions with the group by experiencing and contributing to alternative teaching methods. Although more challenging in some ways, we found the outcome justified the effort and resources that made this endeavor possible. We encourage funding agencies in general and IODP in particular to continue supporting education and outreach activities of this nature.
NASA Astrophysics Data System (ADS)
Bay Hasager, Charlotte; Brøgger Sørensen, Peter; Baltazar Andersen, Ole; Badger, Merete; Højerslev, Niels Kristian; Høyer, Jacob L.; Løkkegaard, Bo; Lichtenegger, Jürg; Nyborg, Lotte; Saldo, Roberto
2010-05-01
Students and teachers may use ONLINE satellite image in the classroom. Images have been archived since August 2006 and the archive is updated every day since. This means that series of nearly four years of daily global images are available online. The parameters include ocean surface temperature, sea level anomaly, ocean wave height, ocean winds, global ozone in the atmosphere and clouds, and sea ice in the Arctic and Antarctica. During the Galathea 3 expedition that took place from August 2006 to April 2007 also many other high-resolution (local to regional) satellite images were acquired and stored in the archive. However after the end of the expedition only global satellite data are collected and stored. Use Google Earth at http://galathea.dtu.dk/GE_e.html to access the images. The expedition included 50 science projects and based on this educational material has been developed. There are around 20 educational projects in English at http://galathea3.emu.dk/satelliteeye/index_uk.html and 90 in Danish at http://vg3.dk/ freely available based on the science. All the educational projects in English deal with satellite image analysis and information. In addition, the short educational film (15min) for students and teachers at higher upper level on the use of satellite images during the expedition and in some science projects onboard is available in English. The film is called ‘Galathea's Eye' and is available at http://virtuelgalathea3.dk/om/videoer. All projects in English were developed in the ‘Satellite Eye for Galathea 3' projected supported by Egmontfonden and ESA Eduspace. The satellite images were mainly from ESA and Eduspace. The Danish projects are support also by Tips og Lottopuljen of Ministry of Education.
NASA Astrophysics Data System (ADS)
De Vleeschouwer, David; Dunlea, Ann G.; Auer, Gerald; Anderson, Chloe H.; Brumsack, Hans; de Loach, Aaron; Gurnis, Michael C.; Huh, Youngsook; Ishiwa, Takeshige; Jang, Kwangchul; Kominz, Michelle A.; März, Christian; Schnetger, Bernhard; Murray, Richard W.; Pälike, Heiko; Expedition 356 shipboard scientists, IODP
2017-04-01
During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. [2013] quantified K, Th and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost. Dunlea, A. G., R. W. Murray, R. N. Harris, M. A. Vasiliev, H. Evans, A. J. Spivack, and S. D'Hondt (2013), Assessment and use of NGR instrumentation on the JOIDES Resolution to quantify U, Th, and K concentrations in marine sediment, Scientific Drilling, 15, 57-63.
NASA Astrophysics Data System (ADS)
Ziebis, W.; Patel, A.; Krupke, A.; Ferdelman, T. G.
2012-12-01
The vast majority of scientific drilling expeditions have focused on continental margins where oxygen is depleted within the surface (1 m) layer of the sediment and buried organic carbon sustains anaerobic microbial communities. IODP expeditions 329 (South Pacific Gyre) and 336 (Mid-Atlantic Ridge - North Pond) took place in oligotrophic open ocean regions, which constitute 48% of the world ocean. These expeditions have revealed that unlike continental margins the seafloor underneath oligotrophic ocean gyres is oxic. Within the South Pacific Gyre (SPG) dissolved oxygen persists throughout the sediment cover and reaches the basement even at the sites with thickest sediment cover (62 and 75 mbsf). North Pond is a sedimented pond (< 300 m sediment cover) located on the flank of the Mid-Atlantic Ridge underlying the oligotrophic central Atlantic. Here, oxygen diffuses upward from the basaltic aquifer underlying the sediment package in addition to deep oxygen penetration from the overlying water. Oxygen is the main electron acceptor available for sub-seafloor microbial activity in these vast oligotrophic open ocean regions. Microbial cells are present and active in the organic poor sediments, albeit numbers are near or below the detection limit (<103 cm-3 sediment) in the extremely organic-poor sediment of the SPG (below 2 -15 m sediment depth, depending on the location). However, we have very limited knowledge on the microbial community compositions and metabolic activities. Even the dominance of bacteria or archaea remains largely elusive. It has been suggested that while archaea dominate in the anoxic sediments of continental margins bacteria might be more abundant in the oxic seafloor underlying oligotrophic ocean gyres where aerobic respiration prevails. Experiments were conducted with sediment samples from the SPG and North Pond to explore the pattern of microbial diversity and metabolic activity using a suite of radio and stable isotopes in combination with single cell analyses. Our goal was to track the uptake and turnover of metabolically important elements (C, N, P) and to compare metabolic activities (heterotrophy / autotrophy) between sites and with depth. Labeling of cells using fluorescent oligonucleotide probes (HISH and CARD-FISH) in combination with nanoSIMS has thus far revealed a clear dominance of bacteria in SPG sub-seafloor sediments, which showed a high uptake of nitrogen (ammonium). Current experiments using cell extractions and cell encapsulations followed by incubations with radiotracers will further reveal carbon turnover pathways of specific microorganisms.
Metagenomic Exploration of Viruses throughout the Indian Ocean
Lorenzi, Hernan A.; Fadrosh, Douglas W.; Brami, Daniel; Thiagarajan, Mathangi; McCrow, John P.; Tovchigrechko, Andrey; Yooseph, Shibu; Venter, J. Craig
2012-01-01
The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm). Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study to holistically explore virioplankton dynamics across multiple size classes and provides unprecedented insight into virus diversity, metabolic potential and virus-host interactions. PMID:23082107
Communicating polar sciences to school children through a scientific expedition
NASA Astrophysics Data System (ADS)
Lacarra, Maite; Lamarque, Gaelle; Koenig, Zoé; Bourgain, Pascaline; Mathilde Thierry, Anne
2015-04-01
APECS-France, the French national committee of the Association of Polar Early Career Scientists (APECS), was created in 2013 to improve the dissemination of polar sciences towards the general public and school children in particular, through activities developed in French for French schools. During the autumn of 2014, a young polar oceanographer from the University Pierre and Marie Curie, Zoé Koenig, participated in an expedition on board a sailing vessel in the Southern Ocean. APECS-France set up a new education and outreach project called "Zoé en Expé". Using different media, about 800 children, aged 6 to 12, and from 40 schools, were actively involved in the project. Interactions between Zoé and the students occurred before, during, and after the expedition, through a newsletter, a blog updated in real-time during the expedition, webinars (interactive video-conferences), and visits in classrooms when possible. Teachers were given a list of websites dedicated to polar and oceanographic science outreach and activities adapted to the age and level of the students were offered. Different activities were developed around the expedition, depending on teachers' objectives and children affinities. In particular, students were able to relate to the expedition by imagining a day in the life of Chippy, the mascot of the expedition. They were then asked to draw and/or write Chippy's adventures. APECS-France is now planning to edit a children's book using students' drawings as well as photographs taken during the expedition. Older students were also able to follow in real-time sensors released in the Southern Ocean by Zoé, measuring salinity and temperature. Throughout this 3-month project, children were able to study a wide range of topics (oceanography, biology, history, geography…). The expedition and the educational project allowed raising the awareness of children about the fragile and badly known Antarctic environment.
Earth Observations taken by the Expedition 27 Crew
2011-03-20
ISS027-E-006500 (20 March 2011) --- A low pressure system in the eastern North Pacific Ocean is featured in this image photographed by an Expedition 27 crew member in the Cupola of the International Space Station. Although weak, the low pressure area still has the appropriate conditions to maintain cloud development accompanying the counter-clockwise winds.
Aurora Australis view taken by the Expedition 29 crew
2011-09-18
ISS029-E-006406 (18 Sept. 2011) --- This is one of a series of night time images photographed by one of the Expedition 29 crew members from the International Space Station. It features Aurora Australis and parts of the southeastern Indian Ocean. Nadir coordinates are 49.30 degrees south latitude and 121.56 degrees east longitude.
Aurora Australis view taken by the Expedition 29 crew
2011-09-18
ISS029-E-006404 (18 Sept. 2011) --- This is one of a series of night time images photographed by one of the Expedition 29 crew members from the International Space Station. It features Aurora Australis and parts of the southeastern Indian Ocean. Nadir coordinates are 49.42 degrees south latitude and 121.01 degrees east longitude.
Results of the fourth joint U.S.-Russian Bering and Chukchi Seas expedition (BERPAC)
USDA-ARS?s Scientific Manuscript database
It is important to monitor the status of arctic oceans especially in terms of the impact human activities are making on these sensitive ecosystems. This is a compilation of research findings from a joint US/Russian expedition to the Bering and Chukchi seas that focuses on the significance of long-t...
CCN and IN concentration measurements during the Antarctic Circumnavigation Expedition
NASA Astrophysics Data System (ADS)
Stratmann, F.; Henning, S.; Löffler, M.; Welti, A.; Hartmann, M.; Wernli, H.; Baccarini, A.; Schmale, J.
2017-12-01
Cloud condensation nuclei (CCN) and ice nuclei (IN) concentrations measured during the Antarctic Circumnavigation Expedition (ACE) within the Study of Preindustrial-like Aerosol-Climate Effects (SPACE) are presented. The measurements give a circumpolar transect through the Sub Antarctic Ocean, where existing measurements are scarce. ACE took place during the austral summer 2016/17 and included exploration of different environments from pristine open Ocean to Antarctic islands and the southernmost ports of the 3 surrounding continents. CCN concentrations are measured over the entire range of expected in-cloud supersaturations from 0.1 to 1% using a CCNc instrument from DMT. IN concentrations are determined from filter samples at water saturated conditions from -5°C to -25°C, covering common temperatures of mixed-phase cloud glaciation. The sensitivity of measured IN and CCN concentrations to meteorological parameters, activity of marine biology and location is assessed to gain insight into potential sources of CCN and IN. Back trajectory modelling is used to allocate regional variations to aerosol sources originating in the marine boundary layer or long-range transport. The gained datasets constrain CCN and IN concentrations in the marine boundary layer along the cruise track. The comprehensive set of parallel measured parameters during ACE allow to evaluate contributions of local ocean-surface sources versus long-range transport to Sub-Antarctic CCN and IN. The measurements can be used as input to climate models, e.g. pristine Sub Antarctic conditions can provide an approximation for a pre-industrial environment.
NASA Astrophysics Data System (ADS)
Pfirman, S.; Tremblay, B.; Fowler, C.
2007-12-01
One hundred years ago, the heroic age of polar exploration was underway. At first glance the Arctic-based Fridtjof Nansen and Antarctic-based Sir Ernest Shackleton, and their most famous expeditions, are literally poles apart. But the expeditions wound up having much in common, including the fact that their fates were largely dependent on their drift trajectory in the sea ice pack and, in Shackleton's case, the wind and ocean currents. These are natural forces, outside the control of the expedition leaders. Were Nansen and Shackleton lucky that the ice and ocean delivered them and their crew to locations from which they could return? Or were their fates more or less inevitable, within the normal range of natural conditions? While we cannot reconstruct the wind and ocean patterns that actually existed 100 years ago to answer this question, we looked at variability over the past three decades to explore potential alternate fates of these expeditions. Our analysis indicates that Nansen and Shackleton were both lucky and unlucky in the natural conditions that they encountered during their expeditions. Most years since 1979, Nansen would have gotten much closer to the North Pole - his goal -- than his ship did in 1895, so he was unlucky in that respect. On the other hand, he was lucky with the relatively short drift duration of his ship in the Arctic pack ice. Shackleton was also lucky in the rapid pace of drift within the pack. The fact that his trajectory was so far to the west might have been a factor in the crushing and sinking of his ship, but it did allow him to land most of his men on Elephant Island while he went for help. Shackleton's heroic, and harrowing, boat journey to South Georgia turned out to be helped by prevailing conditions: it was within the likely ocean drift trajectory from Elephant Island. Analyses such as these, including "Nansen's Luck" by Roger Colony, and "The Coldest March" by Susan Solomon, help set history and profiles of leadership within a scientific framework, engaging an interdisciplinary suite of scholars, students and the general public in understanding the role of the environment, environmental variability, and environmental change.
NASA Astrophysics Data System (ADS)
Sun, Z.; Ding, W.; Zhao, X.; Qiu, N.; Lin, J.; Li, C.
2017-12-01
In Internaltional Ocean Discovery Program (IODP) Expedition 349, four sites were drilled and cored successfully in the South China Sea (SCS). Three of them are close to the central spreading ridge (Sites U1431, U1433 and U1434), and one (Site U1435) is located on an outer rise,,providingsignificant information on the spreading history of the SCS.In order to constrain the spreading historymore accurately with the core results, we analyzed the identifiable macrostructures (over 300 fractures, veins and slickensides)from all the consolidated samples of these four drill sites. Then we made a retrograde reconstruction of the SCS spreading history with the constraints of the estimated fractures and veins, post-spreading volcanism,seismic interpretation, as well as free-air gravity and magnetic anomaly and topography analysis. Our study indicates that the spreading of the SCS experienced at least one ridge jump event and two events of ridge orientation and spreading direction adjustment, which mademagnetic anomaly orientation, ridge positionand facture zone directionskeep changing in the South China Sea. During the last spreading stage, the spreading direction was north-southward but lasted for a very short time period. The oceanic crust is wider in the eastern SCS and tapers out toward west.Due to the subductionof SCS beneath the Philippine Sea plate, the seafloor began to develop new fractures:the NWW-to EW-trending R' shear faults and the NE-trending P faultsbecame dominant faults and controlled the eruption of post-drift volcanism.
NASA Astrophysics Data System (ADS)
Steinbach, Julia; Holmstrand, Henry; Semiletov, Igor; Shakhova, Natalia; Shcherbakova, Kseniia; Kosmach, Denis; Sapart, Célia J.; Gustafsson, Örjan
2015-04-01
We present a method for measurements of the stable and radiocarbon isotope systems of methane in seawater and sediments. The triple isotope characterization of methane is useful in distinguishing different sources and for improving our understanding of biogeochemical processes affecting methane in the water column. D14C-CH4 is an especially powerful addition to stable isotope analyses in distinguishing between thermogenic and biogenic origins of the methane. Such measurements require large sample sizes, due to low natural abundance of the radiocarbon in CH4. Our system for sample collection, methane extraction and purification builds on the approach by Kessler and Reeburgh (Limn. & Ocean. Meth., 2005). An in-field system extracts methane from 30 -120 l water or 1-2 l sediment (depending on the in-situ methane concentration) by purging the samples with Helium to transfer the dissolved methane to the headspace and circulating it through cryogenically cooled absorbent traps where methane is collected. The in-field preparation eliminates the risks of storage and transport of large seawater quantities and subsequent leakage of sample gas as well as ongoing microbial processes and chemical reactions that may alter the sample composition. In the subsequent shore-based treatment, a laboratory system is used to purify and combust the collected CH4 to AMS-amenable CO2. Subsamples from the methane traps are analyzed for stable isotopes and compared to stable isotope measurements directly measured from small water samples taken in parallel, to correct for any potential fractionation occurring during this process. The system has been successfully tested and used on several shorter shipboard expeditions in the Baltic Sea and on a long summer expedition across the Arctic Ocean. Here we present the details of the method and testing, as well as first triple isotope field data from two cruises to the Landsort Deep area in the Central Baltic Sea.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Geophysicist, born in New York City, professor of geology at Princeton, led Project Mohole, the first expedition to drill through the Earth's oceanic crust to the mantle beneath, theorized that spreading of mid-ocean ridges was the source of new mantle-derived continental material. Also a lunar geologist....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyr, Alex
This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO 2), total alkalinity (TALK), and pH at hydrographic stations during the R/V Maurice Ewing cruise in the South Atlantic Ocean on the A17 WOCE section. Conducted as part of the World Ocean Circulation Experiment (WOCE), this cruise was also a part of the French WOCE program consisting of three expeditions (CITHER 1, 2, and 3) focused on the South Atlantic Ocean. The A17 section was occupied during the CITHER 2 expedition, which began in Montevideo, Uruguay, on January 4, 1994 and finished in Cayenne, French Guyana,more » on March 21, 1994. During this period the ship stopped in Salvador de Bahia and Recife, Brazil, to take on supplies and exchange personnel. Upon completion of the cruise the ship transited to Fort de France, Martinique. Instructions for accessing the data are provided.« less
NASA Astrophysics Data System (ADS)
Weller, Petra; Stein, Ruediger
2008-03-01
During Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition (ACEX)) a more than 200 m thick sequence of Paleogene organic carbon (OC)-rich (black shale type) sediments was drilled. Here we present new biomarker data determined in ACEX sediment samples to decipher processes controlling OC accumulation and their paleoenvironmental significance during periods of Paleogene global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers including n-alkanes, fatty acids, isoprenoids, carotenoids, hopanes/hopenes, hopanoic acids, aromatic terpenoids, and long-chain alkenones show a high variability of components, derived from marine and terrestrial origin. The distribution of hopanoic acid isomers is dominated by compounds with the biological 17β(H), 21β(H) configuration indicating a low level of maturity. On the basis of the biomarker data the terrestrial OC supply was significantly enriched during the late Paleocene and part of the earliest Eocene, whereas increased aquatic contributions and euxinic conditions of variable intensity were determined for the Paleocene-Eocene thermal maximum and Eocene thermal maximum 2 events as well as the middle Eocene time interval. Furthermore, samples from the middle Eocene are characterized by the occurrence of long-chain alkenones, high proportions of lycopane, and high ratios (>0.6) of (n-C35 + lycopane)/n-C31. The occurrence of C37-alkenenones, which were first determined toward the end of the Azolla freshwater event, indicates that the OC becomes more marine in origin during the middle Eocene. Preliminary U37K'-based sea surface temperature (SST) values display a long-term temperature decrease of about 15°C during the time interval 49-44.5 Ma (25° to 10°C), coinciding with the global benthic δ18O cooling trend after the early Eocene climatic optimum. At about 46 Ma, parallel with onset of ice-rafted debris, SST (interpreted as summer temperatures) decreased to values <15°C. For the late early Miocene a SST of 11°-15°C was determined. Most of the middle Eocene ACEX sediments are characterized by a smooth short-chain n-alkane distribution, which may point to natural oil-type hydrocarbons from leakage of petroleum reservoirs or erosion of related source rocks and redeposition.
Earth Observations taken by Expedition 38 crewmember
2013-11-11
ISS038-E-000232 (11 Nov. 2013) --- One of the Expedition 38 crew members aboard the International Space Station used a 180mm lens to photograph this oblique image featuring the Galapagos Islands or Islas Galapagos, distributed on either side of the Equator in the eastern Pacific Ocean. An archipelago of volcanic islands, the group?s official name is Archipielago de Colon.
Air glow and Terminator view taken by the Expedition 29 crew
2011-09-18
ISS029-E-006855 (18 Sept. 2011) --- This is one of a series of night time images photographed by one of the Expedition 29 crew members from the International Space Station. It features airglow, Earth?s terminator and parts of the Central Pacific Ocean. Nadir coordinates are 10.11 degrees north latitude and 169.92 degrees west longitude.
"Aurora Australis, Airglow, Terminator view taken by the Expedition 29 crew"
2011-09-18
ISS029-E-007455 (18 Sept. 2011) --- This is one of a series of night time images photographed by one of the Expedition 29 crew members from the International Space Station. It features Aurora Australis, airglow, Earth?s Terminator and the southeastern Indian Ocean. Nadir coordinates are 51.78 degrees south latitude and 124.41 degrees east longitude.
"Aurora Australis, Airglow, Terminator view taken by the Expedition 29 crew"
2011-09-18
ISS029-E-007500 (18 Sept. 2011) --- This is one of a series of night time images photographed by one of the Expedition 29 crew members from the International Space Station. It features the Aurora Australis, airglow and parts of the southeastern Indian Ocean. Nadir coordinates are 50.66 degrees south latitude and 137.70 degrees east longitude.
"Aurora Australis, Airglow, Terminator view taken by the Expedition 29 crew"
2011-09-18
ISS029-E-007502 (18 Sept. 2011) --- This is one of a series of night time images photographed by one of the Expedition 29 crew members from the International Space Station. It features Aurora Australis, airglow, and parts of the southeast Indian Ocean. Nadir coordinates are 50.58 degrees south latitude and 138.28 degrees east longitude.
"Aurora Australis, Airglow, Terminator view taken by the Expedition 29 crew"
2011-09-18
ISS029-E-007473 (18 Sept. 2011) --- This is one of a series of night time images photographed by one of the Expedition 29 crew members from the International Space Station. It features Aurora Australis, airglow, Earth?s Terminator and parts of the southeast Indian Ocean. Nadir coordinates are 51.53 degrees south latitude and 129.80 degrees east longitude.
NASA Astrophysics Data System (ADS)
Brandão, Manoela Costa; Koettker, Andréa Green; Freire, Andrea Santarosa
2013-03-01
Two different decapod larval assemblages inhabit the marine environment of Saint Paul's Rocks, differentiating the inlet from the surrounding oceanic waters. Larvae of the crab Grapsus grapsus and of the holopelagic shrimp Sergestes edwardsi are abundant in superficial waters of the archipelago and have previously been shown to be good indicators of the inlet and adjacent oceanic waters, respectively. We investigated the horizontal, diel and temporal distribution of these species at Saint Paul's Rocks. Horizontal surface hauls were conducted from 2003 to 2005, in the inlet and at four increasing distances from the archipelago, in the morning and at night, using a 200-μm mesh net. Larvae of G. grapsus were identified in samples from all expeditions and abundance was found significantly higher at night in the inlet site. Only larvae in the first zoeal stage were found in samples, highlighting the importance of the area for this species reproduction. On the contrary, the distribution of larvae of S. edwardsi was typical of a holopelagic species, which are permanent residents of the water column and spawn in oceanic areas, indicating that the islands are of little influence to them.
Monier, Adam; Worden, Alexandra Z; Richards, Thomas A
2016-08-01
High-throughput diversity amplicon sequencing of marine microbial samples has revealed that members of the Mamiellophyceae lineage are successful phytoplankton in many oceanic habitats. Indeed, these eukaryotic green algae can dominate the picoplanktonic biomass, however, given the broad expanses of the oceans, their geographical distributions and the phylogenetic diversity of some groups remain poorly characterized. As these algae play a foundational role in marine food webs, it is crucial to assess their global distribution in order to better predict potential changes in abundance and community structure. To this end, we analyzed the V9-18S small subunit rDNA sequences deposited from the Tara Oceans expedition to evaluate the diversity and biogeography of these phytoplankton. Our results show that the phylogenetic composition of Mamiellophyceae communities is in part determined by geographical provenance, and do not appear to be influenced - in the samples recovered - by water depth, at least at the resolution possible with the V9-18S. Phylogenetic classification of Mamiellophyceae sequences revealed that the Dolichomastigales order encompasses more sequence diversity than other orders in this lineage. These results indicate that a large fraction of the Mamiellophyceae diversity has been hitherto overlooked, likely because of a combination of size fraction, sequencing and geographical limitations. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gimmler, Anna; Korn, Ralf; de Vargas, Colomban; Audic, Stéphane; Stoeck, Thorsten
2016-01-01
Illumina reads of the SSU-rDNA-V9 region obtained from the circumglobal Tara Oceans expedition allow the investigation of protistan plankton diversity patterns on a global scale. We analyzed 6,137,350 V9-amplicons from ocean surface waters and the deep chlorophyll maximum, which were taxonomically assigned to the phylum Ciliophora. For open ocean samples global planktonic ciliate diversity is relatively low (ca. 1,300 observed and predicted ciliate OTUs). We found that 17% of all detected ciliate OTUs occurred in all oceanic regions under study. On average, local ciliate OTU richness represented 27% of the global ciliate OTU richness, indicating that a large proportion of ciliates is widely distributed. Yet, more than half of these OTUs shared <90% sequence similarity with reference sequences of described ciliates. While alpha-diversity measures (richness and exp(Shannon H)) are hardly affected by contemporary environmental conditions, species (OTU) turnover and community similarity (β-diversity) across taxonomic groups showed strong correlation to environmental parameters. Logistic regression models predicted significant correlations between the occurrence of specific ciliate genera and individual nutrients, the oceanic carbonate system and temperature. Planktonic ciliates displayed distinct vertical distributions relative to chlorophyll a. In contrast, the Tara Oceans dataset did not reveal any evidence that latitude is structuring ciliate communities. PMID:27633177
Exploring frontiers of the deep biosphere through scientific ocean drilling
NASA Astrophysics Data System (ADS)
Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.
2015-12-01
Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly differs from those in shallower marine sediments and instead resembles organotrophic communities in forest soils. These findings suggest that the terrigenous microbial ecosystem has been partly retained from the original depositional setting over 20 million years and contributed to deep carbon cycling ever since.
AMS measurements of 14C and 129I in seawater around radioactive waste dump sites
NASA Astrophysics Data System (ADS)
Povinec, P. P.; Oregioni, B.; Jull, A. J. T.; Kieser, W. E.; Zhao, X.-L.
2000-10-01
According to a recent IAEA compilation of inventories of radioactive wastes dumped in the world ocean, a total of 85 PBq of radioactive wastes were dumped, in the Atlantic (45 PBq), the Pacific (1.4 PBq) and the Arctic (38 PBq) Oceans and their marginal seas between 1946 and 1993, mostly in the form of low-level wastes. 3H, and 14C formed an important part of the beta-activity of these dumped wastes. Because of its long half-life, 14C will be the main constituent in possible leakages from the wastes in the future. On the other hand, 14C and 129I are important radioactive tracers which have been artificially introduced into the oceans. Small amounts of 14C and 129I can be easily measured by accelerator mass spectrometry (AMS) on mg-size samples of carbon and iodine extracted from 500 ml seawater samples. The high analytical sensitivity enables one therefore to find even trace amounts of 14C and 129I which could be released from radioactive wastes, and to compare the measured levels with the global distribution of these radionuclides. The IAEAs Marine Environment Laboratory (IAEA-MEL) has been engaged in an assessment program related to radioactive waste dumping in the oceans since 1992 and has participated in several expeditions to the Atlantic, Arctic, Indian and Pacific Oceans to sample seawater, biota and sediment for radiological assessment studies. In the present paper, we report on methods of 14C and 129I measurements in seawater by AMS and present data on the NE Atlantic, the Arctic and the NW Pacific Ocean dumping sites. A small increase of 14C was observed at the NE Atlantic dumping site.
NASA Astrophysics Data System (ADS)
Kavanagh, L.; Martinez, A. O.; Burgio, M.; Zhang, J.; Expedition 360 Scientists, I.
2016-12-01
In order to increase classroom engagement for the next generation of scientists, teachers must include current research in their curriculum. The JOIDES Resolution offers this opportunity to teachers worldwide. We recently served as four Education and Outreach Officers during Exp. 360: Southwest Indian Ridge Lower Crust and Moho. Our aim was to communicate the goals of the expedition to students and the general public through webcasts, social media, videos, and interviews. Prior to the expedition, I visited a number of schools in Texas and shared my upcoming experience with 800 teachers and students. Webcasts hosted during the expedition were tailored to the teacher's specifications of subject area and grade level. Students and teachers were able to witness cutting edge science during a tour of the ship and ask questions of those directly involved in the research. Lessons, resources, and videos featuring the scientific activities taking place and highlighting the workings of a research vessel were developed and will be featured at science teacher conferences at the state and national level. Upon my return home I visited schools that participated in webcasts and provided samples of peripheral rock material for instructional purposes. This expedition has also led to post cruise collaboration with some of the Expedition 360 scientists. My students will have the opportunity to do research with the microbiologists along the Rio Grande River and at Texas A&M University. Expedition 360 has opened up a multitude of opportunities for my students and those around the world that participated in the live webcasts. I was able to reach out to the same students multiple times during this experience which made it possible for them to connect with the science before, during, and after the expedition. These types of opportunities will inspire the next generation of scientists who will make advances towards new understandings of Earth's processes.
International Ocean Discovery Program U.S. Implementing Organization
coordinates seagoing expeditions to study the history of the Earth recorded in sediments and rocks beneath the Internship :: Minorities in Scientific Ocean Drilling Fellowship Education Deep Earth Academy logo :: joidesresolution.org :: For students :: For teachers :: For scientists :: View drill sites in Google Earth Export
Earth observations taken by the Expedition 12 crew
2005-11-15
ISS012-E-10093 (3 Dec. 2005) --- This view of Hurricane Epsilon in the Atlantic Ocean was photographed at 15:36:13 GMT on Dec. 3, 2005 by one of the crewmembers of Expedition 12 aboard the International Space Station. The orbital outpost was flying at an altitude of 190 nautical miles. Center point coordinates are 34.5 degrees north latitude and 44.4 degrees west longitude.
Earth observations taken by the Expedition 12 crew
2005-11-15
ISS012-E-10097 (3 Dec. 2005) --- This view of Hurricane Epsilon in the Atlantic Ocean was photographed at 15:36:18 GMT on Dec. 3, 2005 by one of the crewmembers of Expedition 12 aboard the International Space Station. The orbital outpost was flying at an altitude of 190 nautical miles. Center point coordinates are 34.5 degrees north latitude and 44.4 degrees west longitude.
San Diego, California (with sunglint) as seen by Expedition Two crew
2001-04-16
ISS002-E-5661 (16 April 2001) --- As the International Space Station (ISS) recently passed over the Pacific Ocean, one of the Expedition Two crew members, using an 800mm lens on a digital still camera, photographed this high oblique image of the coastal metropolitan area of San Diego, California. The angle of the view allows one to see quite a distance inland.
NASA Astrophysics Data System (ADS)
Kulhanek, D. K.; Cooper, S. K.; Dadd, K. A.; Colwell, F. S.; Mote, A. S.; Christiansen, E. A.
2014-12-01
The International Ocean Discovery Program (IODP) cores sediment and rock below the seafloor during two-month expeditions to study Earth's history and dynamics. Most IODP expeditions sail dedicated education officers to lead outreach efforts, including live ship-to-shore video events. Expeditions conduct 30-90 events through close collaboration between the educators and science party members. In 2014, Expedition 349 collected cores in the South China Sea. Even though no educator sailed, the staff scientist filled this role, allowing the expedition to carry out an extensive program of 58 live events (led by scientists) with institutions in 13 countries, demonstrating that outreach is deeply engrained in IODP culture. Expedition 349 spoke to ~3700 people, including ~375 primary school students in China and the USA, ~1150 secondary school students in six countries, and ~1300 undergraduate and graduate students in seven countries. The scientists also conducted events with museums, science centers, and science conferences. Over the last six years of operations, we have gained significant insights that help us to capitalize on best practices and utilize the newest and most effective technology for live events from sea given bandwidth constraints. We currently conduct video events with an iPad using Zoom software. Educators and scientists work together to provide ship tours and educate audiences about expedition science, lab work, and life at sea, and also answer audience questions. One feature we use extensively is the ability to screen share with Zoom, which allows us to show images stored on the iPad. These images show the location of drill sites and provide background information about the expedition scientific objectives, the drilling and coring process, and more. Shipboard scientists are usually enthusiastic about outreach events and many contact friends and colleagues to schedule additional events. The audiences we connect with ask many great questions and often post photos and YouTube videos of the events to social media. In addition, we conduct surveys following each event to help us improve our outreach program. We apply these results to future expeditions, including Expedition 353 (Indian Monsoon), which will be at sea during AGU, giving us the opportunity to demonstrate our ship-to-shore capabilities.
Dive and Discover: Bringing Oceanographic Research into the Classroom and to the General Public
NASA Astrophysics Data System (ADS)
Fornari, D. J.; Fino, D.; Humphris, S. E.; Fruth, L. L.; Dean, S.
2001-12-01
We have developed the "Dive and Discover" web site for use in classrooms and for the general public to provide near real-time, daily access to oceanographic research expeditions, particularly those using deep submergence vehicles operated by Woods Hole Oceanographic Institution. The site was one of five science sites nominated for a 2001 Webby Award, was selected by Scientific American as one of the top five sites in the category of earth and environmental science, and was one of Eisenhower National Clearinghouse's "digital dozen" for science resources. The web site consists of two major components. A series of educational modules provide both general educational information about the oceans and the people that study them, as well as cruise-specific information about the natural systems being studied, the participating scientists, and the data and sample-collecting methodologies and technologies being used. The second component consists of modules that allow access to near real-time updates of the progress of the cruise, images of seafloor features and animals, samples of data being collected and used on board, and general information about life on board. In addition, a Mail Buoy provides e-mail access for students to ask questions of the scientists on board the ship during the course of the expedition. COSI Toledo have a linked Educator's Companion that gives access to COSI project management tips, background information, activities, correlations to national science education standards, assessment tools, and a vast array of resources to assist educators in using the web site. We have worked with teachers and students from all over the United States to test, evaluate, and refine the web site during five cruises in the Pacific and Indian Oceans over the last two years. These cruises focused on various problems associated with mid-ocean ridge volcanism, and the chemical, physical and biological processes associated with seafloor hydrothermal activity. Our intention is that the conceptual approach we have developed will have broad application for marine scientists to promote ocean science education and public outreach in the future.
STS-105 Flight Day 5 Highlights
NASA Technical Reports Server (NTRS)
2001-01-01
On this fifth day of the STS-105 mission, the transfer of supplies from the Leonardo Multipurpose Logistics Module to the International Space Station (ISS) and the handover of control of the ISS from the Expedition 2 crew (Yuriy Usachev, Jim Voss, and Susan Helms) to the Expedition 3 crew (Frank Culbertson, Jr., Mikhail Turin, and Vladimir Dezhurov) continue. Commanders Usachev and Culbertson answer questions about the ISS in an on-orbit interview, and the Expedition 3 crewmembers give a video tour of their new sleeping quarters on the ISS. The north Pacific Ocean and the United States Pacific northwest are seen from space.
Global distribution and vertical patterns of a prymnesiophyte–cyanobacteria obligate symbiosis
Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon
2016-01-01
A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte–UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte–UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml−1) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages. PMID:26405830
Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis.
Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon
2016-03-01
A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte-UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte-UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml(-1)) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages.
NASA Astrophysics Data System (ADS)
Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.; Almeev, R. R.; Michibayashi, K.; Sakuyama, T.; Ferré, E. C.; Kurz, W.
2016-12-01
Most of the well-preserved ophiolite complexes are believed to form in suprasubduction zone (SSZ) settings. We compare physical properties and seismic structure of SSZ crust at the Izu-Bonin-Mariana (IBM) fore arc with oceanic crust drilled at Holes 504B and 1256D to evaluate the similarities of SSZ and oceanic crust. Expedition 352 basement consists of fore-arc basalt (FAB) and boninite lavas and dikes. P-wave sonic log velocities are substantially lower for the IBM fore arc (mean values 3.1-3.4 km/s) compared to Holes 504B and 1256D (mean values 5.0-5.2 km/s) at depths of 0-300 m below the sediment-basement interface. For similar porosities, lower P-wave sonic log velocities are observed at the IBM fore arc than at Holes 504B and 1256D. We use a theoretical asperity compression model to calculate the fractional area of asperity contact Af across cracks. Af values are 0.021-0.025 at the IBM fore arc and 0.074-0.080 at Holes 504B and 1256D for similar depth intervals (0-300 m within basement). The Af values indicate more open (but not necessarily wider) cracks in the IBM fore arc than for the oceanic crust at Holes 504B and 1256D, which is consistent with observations of fracturing and alteration at the Expedition 352 sites. Seismic refraction data constrain a crustal thickness of 10-15 km along the IBM fore arc. Implications and inferences are that crust-composing ophiolites formed at SSZ settings could be thick and modified after accretion, and these processes should be considered when using ophiolites as an analog for oceanic crust.
NASA Astrophysics Data System (ADS)
Chegwidden, D.; Mote, A. S.; Manley, J.; Ledley, T. S.; Haddad, N.; Ellins, K.; Lynds, S. E.
2016-02-01
Texas is a state that values and supports an Earth Science curriculum, and as an experienced educator in Texas, I find it crucial to educate my students about the various Ocean Science careers that exist and also be able to use the valuable data that is obtained in a core sample from the ocean floor. "Climate Detective" is an EarthLabs module that is supported by TERC and International Ocean Discovery Program (IODP) Expedition 341. This module contains hands-on activities, many opportunities to interpret actual data from a core sample, and collaborative team skills to solve a problem. Through the module, students are able to make real connections with scientists when they understand various roles aboard the JOIDES Resolution. Students can also visually experience real-time research via live video streaming within the research vessel. In my classroom, the use of the "Climate Detective" not only establishes a beneficial relationship between teacher and marine scientists, but such access to the data also helps enhance the climate-related concepts and explanatory procedures involved in obtaining reports. Data is applied to a challenge question for all student groups to answer at the end of the module. This Project-based learning module emphasizes different forms of evidence and requires that learners apply different inquiry approaches to build the knowledge each one needs to acquire, as they become climate-literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's systems and climate change. In addition, this experience has led me to become an advocate who promotes vigorous classroom discussion among my students; additionally, I am encouraged to collaborate with other educators through the delivery of professional development across the state of Texas. Regularly, I connect with scientists in my classroom and such connection truly enriches not only my personal knowledge, but also provides a foundational understanding for my students.
NASA Astrophysics Data System (ADS)
Miller, J.; Dekens, P. S.; Weber, M. E.; Spiess, V.; France-Lanord, C.
2015-12-01
The International Ocean Discovery Program (IODP) Expedition 354 drilled 7 sites in the Bay of Bengal, providing a unique opportunity to improve our understanding of the link between glacial cycles, tropical oceanographic changes, and monsoon strength. Deep-sea sediment cores of the Bengal Fan fluctuate between sand, hemipelagic and terrestrial sediment layers. All but one of the sites (U1454) contain a layer of calcareous clay in the uppermost part of the core that is late Pleistocene in age. During Expedition 354 site U1452C was sampled at high resolution (every 2cm) by a broad group of collaborators with the goal of reconstructing monsoon strength and oceanographic conditions using a variety of proxies. The top 480 cm of site U1452C (8ºN, 87ºE, 3671m water depth) contains primarily nannofossil rich calcareous clay. The relatively high abundance of foraminifera will allow us to generate a high resolution record of sea surface temperature (SST) and sea surface salinity (SSS) using standard foraminifera proxies. We will present oxygen isotopes (δ18O) and Mg/Ca data of mixed layer planktonic foraminifera from the top 70cm of the core, representing the Holocene to the last glacial maximum. δ18O of planktonic foraminifera records global ice volume and local SST and SSS, while Mg/Ca of foraminifera is a proxy for SST. The paired Mg/Ca and δ18O measurements on the same samples of foraminifera, together with published estimates with global ocean δ18O, can be used to reconstruct both SST and local δ18O of seawater, which is a function of the evaporation/precipitation balance. In future work, the local SSS and SST during the LGM will be paired with terrestrial and other oceanic proxies to increase our understanding of how global climate is connected to monsoon strength.
NASA Astrophysics Data System (ADS)
McNeill, L. C.; Dugan, B.; Petronotis, K. E.; Expedition 362 Scientists, I.
2016-12-01
IODP Expedition 362, August-October, 2016, plans to drill two boreholes within the input section of the Indian oceanic plate entering the North Sumatran subduction zone. In 2004, a Mw 9.2 earthquake ruptured the Sunda subduction zone from North Sumatra to the Andaman Islands, a length of 1500 km. The earthquake and tsunami devastated coastal communities around the Indian Ocean. This earthquake and the 2011 Tohoku-Oki Mw 9.0 earthquake showed unexpectedly shallow megathrust slip. In the case of North Sumatra, this shallow slip was focused beneath a distinctive plateau of the accretionary prism. This intriguing seismogenic behavior and forearc structure are not explained by existing models or by observations at other margins where seismogenic slip typically occurs farther landward. Expedition 362 will use core and log data in conjunction with in situ temperature and pressure measurements to document the lithology, structures, and physical and chemical properties of the input sediments. The input materials of the North Sumatran subduction zone are a distinctive, thick (up to 4-5 km) sequence of primarily Bengal-Nicobar Fan-related sediments. This sequence geophysically shows strong evidence for induration and dewatering and has probably reached the temperatures required for sediment-strengthening diagenetic reactions, and input materials may be key to driving the distinctive slip behavior and long-term forearc structure. The plate boundary fault (décollement) originates within the lower pelagic and submarine fan sediments so sampling this interval will help determine what controls décollement development and how its properties evolve. Initial results from the Expedition and plans for post-expedition experiments and modeling will be presented. These methods will be used to predict physical, thermal, fluid, and mechanical properties and diagenetic evolution of the sediments as stresses and temperatures increase due to burial and subduction. Results will be used to test the role of sediment properties in shallow earthquake slip and in the unusual forearc structure. In addition, the results will contribute to our understanding of a) Bengal-Nicobar fan history and records of Himalayan uplift, erosion and monsoon development, and b) stress conditions in a complexly deforming region of the Indian plate.
NASA Astrophysics Data System (ADS)
Stein, Ruediger; Boucsein, Bettina; Meyer, Hanno
2006-09-01
Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition-ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global δ13C events such as the PETM and Elmo events. The Elmo δ13C Event has been identified in the Arctic Ocean for the first time.
Earth Observations taken by Expedition 38 crewmember
2013-12-26
ISS038-E-021401 (24 Dec. 2013) --- The Caribbean country of Cuba is pictured in this high oblique image, photographed by one of the Expedition 38 crew members aboard the International Space Station. Andros ISland, part of the Bahamas, is Cuba is an archipelago of islands in the northern Caribbean Sea at the confluence with the Gulf of Mexico and the Atlantic Ocean. A Russian Soyuz spacecraft is docked to the station.
Earth observations taken by the Expedition 12 crew
2005-11-15
ISS012-E-10111 (3 Dec. 2005) --- This view featuring the eye of Hurricane Epsilon in the Atlantic Ocean was photographed at 15:35:59 GMT on Dec. 3, 2005 by one of the crewmembers of Expedition 12 aboard the International Space Station. The orbital outpost was flying at an altitude of 190 nautical miles. Center point coordinates are 34.5 degrees north latitude and 44.4 degrees west longitude.
Earth observations taken by the Expedition 12 crew
2005-11-15
ISS012-E-10110 (3 Dec. 2005) --- This view featuring the eye of Hurricane Epsilon in the Atlantic Ocean was photographed at 15:35:58 GMT on Dec. 3, 2005 by one of the crewmembers of Expedition 12 aboard the International Space Station. The orbital outpost was flying at an altitude of 190 nautical miles. Center point coordinates are 34.5 degrees north latitude and 44.4 degrees west longitude.
Earth observations taken by the Expedition 12 crew
2005-11-15
ISS012-E-10079 (3 Dec. 2005) --- This picture of the eye of Hurricane Epsilon in the Atlantic Ocean was taken at 15:35:49 GMT on Dec. 3, 2005 by one of the crewmembers of Expedition 12 aboard the International Space Station. The orbital outpost was flying at an altitude of 190 nautical miles. Center point coordinates are 34.5 degrees north latitude and 44.4 degrees west longitude.
Earth observations taken by the Expedition 12 crew
2005-11-15
ISS012-E-10083 (3 Dec. 2005) --- This picture of the eye of Hurricane Epsilon in the Atlantic Ocean was taken at 15:35:56 GMT on Dec. 3, 2005 by one of the crewmembers of Expedition 12 aboard the International Space Station. The orbital outpost was flying at an altitude of 190 nautical miles. Center point coordinates are 34.5 degrees north latitude and 44.4 degrees west longitude.
Earth Observations taken by Expedition 47 Crewmember.
2016-03-27
ISS047e22133 (03/27/2016) ---The crew of Expedition 47 aboard the International Space Station captured this image of a massive iceberg causing shipping to pay close attention. It is floating in the southern Atlantic Ocean, near the South Georgia and South Sandwich Islands. Smaller pieces cluster around the main iceberg. causing further shipping concern. The closest continent is the bottom tip of South America (Argentina) and the Falkland Islands.
Russian deep-sea investigations of Antarctic fauna
NASA Astrophysics Data System (ADS)
Malyutina, Marina
2004-07-01
A review of the Russian deep-sea investigation of Antarctic fauna beginning from the first scientific collection of Soviet whaling fleet expeditions 1946-1952 is presented. The paper deals with the following expeditions, their main tasks and results. These expeditions include three cruises of research vessel (R.V.) Ob in the Indian sector of the Antarctic and in the Southern Pacific (1955-1958); 11 cruises of the R.V. Akademik Kurchatov in the southern Atlantic (November-December 1971); 16 cruises of the R.V. Dmitriy Mendeleev in the Australia-New Zealand area and adjacent water of the Antarctic (December 1975-March 1976); 43 cruises of the R.V. Akademik Kurchatov in the southern Atlantic (October 1985-February 1986); and 43 cruises of the R.V. Dmitriy Mendeleev in the Atlantic sector of the South Ocean (January-May 1989). A list of the main publications on the benthic taxa collected during these expeditions with data of their distribution is presented. The results of Russian explorations of the Antarctic fauna are presented as theoretical conclusions in the following topics: (1) Vertical zonation in the distribution of the Antarctic deep-sea fauna; (2) Biogeographic division of the abyssal and hadal zones; (3) Origin of the Antarctic deep-sea fauna; (4) Distributional pathways of the Antarctic abyssal fauna through the World Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank R. Rack; Peter Schultheiss; Melanie Holland
The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) follow-up logging of pressure cores containing hydrate-bearing sediment; and (2) opening of some of these cores to establish ground-truth understanding. The follow-up measurements made on pressure cores in storage are part of a hydrate geriatric study related to ODP Leg 204. These activities are described in detail in Appendices A and B of this report. Work also continued on developing plans for Phase 2 of this cooperative agreement based on evolving plans to schedule a scientific ocean drilling expedition to study marine methane hydratesmore » along the Cascadia margin, in the NE Pacific as part of the Integrated Ocean Drilling Program (IODP) using the R/V JOIDES Resolution.« less
Digital Curation of Marine Physical Samples at Ocean Networks Canada
NASA Astrophysics Data System (ADS)
Jenkyns, R.; Tomlin, M. C.; Timmerman, R.
2015-12-01
Ocean Networks Canada (ONC) has collected hundreds of geological, biological and fluid samples from the water column and seafloor during its maintenance expeditions. These samples have been collected by Remotely Operated Vehicles (ROVs), divers, networked and autonomously deployed instruments, and rosettes. Subsequent measurements are used for scientific experiments, calibration of in-situ and remote sensors, monitoring of Marine Protected Areas, and environment characterization. Tracking the life cycles of these samples from collection to dissemination of results with all the pertinent documents (e.g., protocols, imagery, reports), metadata (e.g., location, identifiers, purpose, method) and data (e.g., measurements, taxonomic classification) is a challenge. The initial collection of samples is normally documented in SeaScribe (an ROV dive logging tool within ONC's Oceans 2.0 software) for which ONC has defined semantics and syntax. Next, samples are often sent to individual scientists and institutions (e.g., Royal BC Museum) for processing and storage, making acquisition of results and life cycle metadata difficult. Finally, this information needs to be retrieved and collated such that multiple user scenarios can be addressed. ONC aims to improve and extend its digital infrastructure for physical samples to support this complex array of samples, workflows and applications. However, in order to promote effective data discovery and exchange, interoperability and community standards must be an integral part of the design. Thus, integrating recommendations and outcomes of initiatives like the EarthCube iSamples working groups are essential. Use cases, existing tools, schemas and identifiers are reviewed, while remaining gaps and challenges are identified. The current status, selected approaches and possible future directions to enhance ONC's digital infrastructure for each sample type are presented.
2002-10-15
KENNEDY SPACE CENTER, FLA. -- Sonar mapping equipment lies on the deck of the Liberty Star, one of NASA's solid rocket booster retrieval ships. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
Hurricane Edouard taken by Expedition 41 crewmember
2014-09-16
ISS041-E-011536 (16 Sept. 2014) --- This is the eye of Hurricane Edouard in the Atlantic Ocean, as photographed by one of the Expedition 41 crew members who utilized a 200mm focal length from a position onboard the International Space Station. The crew members photographed and distributed a series of images of the storm via station-to-ground downlinks and via social media. Though having been upgraded from a tropical storm to a Category 2 hurricane, the Atlantic-borne Edouard thus far has avoided land interests as it reached maximum sustained winds of 105 miles per hour, churning in ocean waters several hundred miles southeast of Bermuda. This photo was taken at 13:52:40 GMT on Sept. 16, 2014.
URI's ARMADA Research Experience Leads to Inspiring Middle School Students to Become Ocean Stewards
NASA Astrophysics Data System (ADS)
Barrett, M.
2010-12-01
After spending three weeks aboard NOAA’s David Starr Jordon, my classroom has come alive with ocean life. My research experience was part of URI’s ARMADA project. I worked alongside scientists as they conducted ‘business as usual’ on the CSCAPE expedition. CSCAPE’s mission was to survey the cetacean abundance in the Pacific Ocean. My leg of the voyage took us as far out as 300 nautical miles from the coast and from points between Newport, Oregon and San Francisco, California. Throughout the three weeks, I learned with the best of them how cetaceans are identified, photographed, counted, and biopsied. This 2005 research experience is still with me today in the classroom. I have created a “Bring the Sea to Me” program in which my middle school students teach elementary students about ocean life. My students also use video footage and photographs from my expedition to create wildlife documentaries shown at our annual Film Festival. My students have also worked with engineering students from a local university to create a life-size fin whale, which travels with us on our teaching trips, and I have since purchased a 100-gallon touch tank to give the students a hands-on experience with the organisms we collect while seining along the New Jersey coast. The science I learned while on the Jordan has allowed me to teach my students how cetaceans are surveyed, how to identify cetaceans by their blows and dorsal fins, and how to identify individuals within a species. Survey graphs are interpreted and conclusions are drawn. The students also see the importance of writing in science when they explore my journals from the expedition (www.armadaproject.org/journals/2005-2006/barrett/barrett-8-21.htm). My participation in CSCAPE inspired me beyond belief, and I can only hope that my enthusiasm for the ocean is inspiring students to become stewards of our oceans.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.; Gersonde, Rainer; Kuhn, Gerhard
2002-01-01
The late Pliocene impact of the Eltanin asteroid is the only known asteroid impact in a deep- ocean (-5 km) basin . This was first discovered in 1981 as an Ir anomaly in sediment cores collected by the USNS Eltanin in 1965. In 1995, Polarstern expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5 S, 91 W) contained well-preserved impact deposits that include disturbed ocean sediments and meteoritic impact ejecta. The latter is composed of shock-melted asteroidal materials and unmelted meteorites. In 2001, the FS Polarstern returned to the impact area during expedition ANT XVIIU5a. At least 16 cores were recovered that contain ejecta deposits. These cores and geophysical data from the expedition can be used to map the effects of the impact over a region of about 80,000 square km. To date we have measured Ir concentrations in sediments from seven of the new cores and preliminary data should be available for a few more by the time of the meeting. Our initial interpretation of these data is that there is a region in the vicinity of the San Martin Seamounts comprising at least 20,000 square km in which the average amount of meteoritic material deposited was more than 1 g per square cm. This alone is enough material to support a 500 m asteroid. Beyond this is a region of about 60,000 square km, mostly to the north and west, where the amount of ejecta probably averages about 0.2 g per square cm. Another 400 km to the east, USNS Eltanin core E10-2 has about 0.05 g per square cm, so we know that ejecta probably occurs across more than a million square km of ocean floor. A key to future exploration of this impact is to find evidence of the ejecta at more sites distant from the seamounts. We currently have almost no data from regions to the west or south of the San Martin seamounts.
IODP Expedition 360: Analyzing the Media Coverage of a High Profile Research Project
NASA Astrophysics Data System (ADS)
Kavanagh, L.; Martinez, A. O.; Burgio, M.; Zhang, J.; Expedition 360 Scientists, I.
2016-12-01
During Expedition 360 of the International Ocean Discovery Program (IODP), the JOIDES Resolution drilled 789 meters of lower crustal gabbro in the Southwest Indian Ocean. This hole began a multi-expedition project with the goal of one day drilling across the crust-mantle boundary for the first time. This simplified narrative of the research objectives struck a chord with media and the project received worldwide coverage in the form of over 50 stories with a total audience in the millions. This expedition is presented as a case study in science communication. A four-member education and outreach team onboard the ship acted as the point of contact for interested reporters. Major outlets that ran stories include the Australian Broadcasting Corporation, British Broadcasting Corporation, Boston Globe, Daily Express, Fox News, Nature, Smithsonian, and Chinese based Xinhua News Agency who sailed a reporter on the ship for the duration of the expedition. The majority of stories published provided accurate and favourable coverage of the project; however, a few contained critical errors and cast the expedition in a less positive light. Public reaction varied greatly depending on the article. Positive themes include interest in the scientific outcomes and encouragement of human exploration. Negative themes include the project being an inefficient use of money and a perceived risk of the drilling triggering an earthquake or volcano. Through a review of published articles and online comments, the successes and challenges faced by Expedition 360 are identified. Despite minimal preparation for media relations, the team successfully maintained a public profile while working in one of the most remote locations on Earth. Interviews were facilitated and videos, articles, and podcasts were produced onboard the ship. A simple, catchy narrative resulted in a large volume of coverage; however, this simplicity also formed the root of a number of misconceptions and issues of public concern.
Real-time Science and Educational Collaboration Online from the Indian Ocean
NASA Astrophysics Data System (ADS)
Wilson, R. H.; Sager, W. W.
2007-12-01
During Summer of 2007, scientists and students (via the web) jointly participated in research during the Ninety East Ridge Expedition (cruise KNOX06RR) . Staff organizers from Joint Oceanographic Institutions" JOI Learning and the Integrated Ocean Drilling Program planned and implemented an interactive website to allow students to directly participate with scientists during the site survey aboard the R/V Roger Revelle. Dr. Will Sager and middle school teacher Rory Wilson collaborated daily during the scientific expedition with science team, ship crew and students. From the outset, students were involved and helped to guide the program; this included coming up with the website name and initial design work. Communication with students included the website, individual and group emails and video conferences with student groups. Seven secondary schools from the USA, Europe, India and Thailand participated actively in the project from June to August. Students viewed daily updates on the website, sent in answers for weekly science challenge questions, and interacted with scientists and crew. Student participants learned about navigation, geophysics and petrology, as well as ship operations and technology. Students and educators tracked the expedition's progress in a multi-media environment. Website statistics were recorded; participation began well and increased during the expedition as more people became engaged with the website. All of the crew and scientists wrote self-profiles to help students learn about the range of ocean careers; several of the scientists and graduate students on board wrote or co- authored website articles for students. During this presentation, we will explore and review the major features of the outreach program using the Sea90e website to demonstrate how this real-time interaction engages students in science learning. We will discuss the benefits of collaboration for science and education in our "classroom at sea."
New Insights Into the Origin and Evolution of the Hikurangi Oceanic Plateau
NASA Astrophysics Data System (ADS)
Hoernle, Kaj; Hauff, Folkmar; Werner, Reinhard; Mortimer, Nicholas
2004-10-01
Oceanic plateaus and continental flood basalts, collectively referred to as large igneous provinces (LIPs), represent the most voluminous volcanic events on Earth. In contrast to continental LIPs, relatively little is known about the surface and internal structure, range in age and chemical composition, origin, and evolution of oceanic plateaus, which occur throughout the world's oceans. One of the major goals of the R/V Sonne SO168 ZEALANDIA expedition (deport Wellington, 3 December 2002, return Christchurch, 15 January 2003) was to investigate the Hikurangi oceanic plateau off the east coast of New Zealand.
Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13
NASA Technical Reports Server (NTRS)
Straub, John E. II; Plumlee, Deborah K.; Schultz, John R.
2007-01-01
The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12- months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11. The number and sensitivity of the chemical analyses performed on this sample were limited due to low sample volume. Shuttle flights STS-121 (ULF1.1) and STS-115 (12A) docked with the ISS in July and September of 2006, respectively. These flights returned to Earth with eight chemical archive potable water samples that were collected with U.S. hardware during Expedition 13. The average collected volume increased for these samples, allowing full chemical characterization to be performed. This paper presents a discussion of the results from chemical analyses performed on Expeditions 12 and 13 archive potable water samples. In addition to the results from the U.S. samples analyzed, results from pre-flight samples of Russian potable water delivered to the ISS on Progress vehicles and in-flight samples collected with Russian hardware during Expeditions 12 and 13 and analyzed at JSC are also discussed.
Edwards, K.J.; Backert, N.; Bach, W.; Becker, K.; Klaus, A.; Griffin, Dale W.; Anderson, L.; Haddad, A.G.; Harigane, Y.; Campion, P.L.; Hirayama, H.; Mills, H.J.; Hulme, S.M.; Nakamura, K.; Jorgensen, S.L.; Orcutt, B.; Insua, T.L.; Park, Y.-S.; Rennie, V.; Salas, E.C.; Rouxel, O.; Wang, F.; Russel, J.A.; Wheat, C.G.; Sakata, K.; Brown, M.; Magnusson, J.L.; Ettlinger, Z.
2012-01-01
Integrated Ocean Drilling Program (IODP) Expedition 336 successfully initiated subseafloor observatory science at a young mid-ocean-ridge flank setting. All of the drilled sites are located in the North Pond region of the Atlantic Ocean (22??45'N, 46??05'W) in 4414-4483 m water depth. This area is known from previous ocean drilling and site survey investigations as a site of particularly vigorous circulation of seawater in permeable 8 Ma basaltic basement underlying a <300 m thick sedimentary pile. Understanding how this seawater circulation affects microbial and geochemical processes in the uppermost basement was the primary science objective of Expedition 336. Basement was cored and wireline-logged in Holes U1382A and U1383C. Upper oceanic crust in Hole U1382A, which is only 50 m west of Deep Sea Drilling Project (DSDP) Hole 395A, recovered 32 m of core between 110 and 210 meters below seafloor (mbsf). Core recovery in basement was 32%, yielding a number of volcanic flow units with distinct geochemical and petrographic characteristics. A unit of sedimentary breccia containing clasts of basalt, gabbroic rocks, and mantle peridotite was found intercalated between two volcanic flow units and was interpreted as a rock slide deposit. From Hole U1383C we recovered 50.3 m of core between 69.5 and 331.5 mbsf (19%). The basalts are aphyric to highly plagioclase-olivine-phyric tholeiites that fall on a liquid line of descent controlled by olivine fractionation. They are fresh to moderately altered, with clay minerals (saponite, nontronite, and celadonite), Fe oxyhydroxide, carbonate, and zeolite as secondary phases replacing glass and olivine to variable extents. In addition to traditional downhole logs, we also used a new logging tool for detecting in situ microbial life in ocean floor boreholes-the Deep Exploration Biosphere Investigative tool (DEBI-t). Sediment thickness was ???90 m at Sites U1382 and U1384 and varied between 38 and 53 m at Site U1383. The sediments are predominantly nannofossil ooze with layers of coarse foraminiferal sand and occasional pebble-size clasts of basalt, serpentinite, gabbroic rocks, and bivalve debris. The bottommost meters of sections cored with the advanced piston corer feature brown clay. Extended core barrel coring at the sediment/basement interface recovered <1 m of brecciated basalt with micritic limestone. Sediments were intensely sampled for geochemical pore water analyses and microbiological work. In addition, high-resolution measurements of dissolved oxygen concentration were performed on the whole-round sediment cores. Major strides in ridge-flank studies have been made with subseafloor borehole observatories (CORKs) because they facilitate combined hydrological, geochemical, and microbiological studies and controlled experimentation in the subseafloor. During Expedition 336, two fully functional observatories were installed in two newly drilled holes (U1382A and U1383C) and an instrument and sampling string were placed in an existing hole (395A). Although the CORK wellhead in Hole 395A broke off and Hole U1383B was abandoned after a bit failure, these holes and installations are intended for future observatory science targets. The CORK observatory in Hole U1382A has a packer seal in the bottom of the casing and monitors/samples a single zone in uppermost oceanic crust extending from 90 to 210 mbsf. Hole U1383C was equipped with a three-level CORK observatory that spans a zone of thin basalt flows with intercalated limestone (???70-146 mbsf), a zone of glassy, thin basaltic flows and hyaloclastites (146-200 mbsf), and a lowermost zone (???200-331.5 mbsf) of more massive pillow flows with occasional hyaloclastites in the upper part.
NASA Astrophysics Data System (ADS)
Shi, G.; Teng, J.; Ma, H.; Li, Y.; Sun, B.
2015-06-01
Metals and metalloids in continental precipitation have been widely observed, but the data over open oceans are still very limited. Investigation of metals and metalloids in marine precipitation is of great significance to understand global transport of these elements in the atmosphere and their input fluxes to the oceans. So shipboard sampling of precipitation was conducted during a Chinese National Antarctic Research Expedition campaign from Shanghai, China, to Zhongshan Station, East Antarctica, and 22 samples (including 17 rainfall and 5 snowfall events) were collected and analyzed for concentrations of Pb, Ni, Cr, Cu, Co, Hg, As, Cd, Sb, Se, Zn, Mn, and Ti. Results show that concentrations of both metals and metalloids vary considerably along the cruise, with higher concentrations at coastal sites and lower values on the south Indian Ocean. Although only soluble fractions were determined for elements, concentrations in this study are generally comparable to the reported values of marine rain. Enrichment factor analysis shows that most of metals and metalloids are enriched versus crustal sources, even in the samples collected from remote south Indian Ocean. In addition, metals and metalloids in precipitation are also very enriched above sea-salt abundance, indicating that impacts of sea-salt aerosols on their concentrations are negligible. Main sources of metals and metalloids were explored with the aid of multivariate statistical analyses. The results show that human emissions have far-reaching distribution, which may exert an important influence on the solubility of elements in precipitation. This investigation provides valuable information on spatial variation and possible sources of trace elements in precipitation over the open oceans corresponding to understudied region.
Aurora Astralis taken by the Expedition Seven crew
2003-06-03
ISS007-E-06077 (3 June 2003) --- This view featuring the Aurora Australis or southern lights was photographed by astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer aboard the International Space Station (ISS). When this was taken, the Station was in a position over the Indian Ocean, southwest of Australia. The four stars hanging above Earths limb are the brightest stars of the southern constellation Corvus.
Earth Observations taken by the Expedition 10 crew
2005-01-14
ISS010-E-13088 (15 January 2005) --- Tsunami damage, northwestern Sumatra (Indonesia) is featured in this image photographed by an Expedition 10 crewmember on the International Space Station. On December 26, 2004 a large (magnitude 9.0) earthquake occurred off the western coast of Sumatra in the Indian Ocean. Scientists believe the earthquake was caused by the release of stresses accumulated as the India tectonic plate is overridden by the Burma tectonic plate. Movement of the seafloor due to the earthquake generated a tsunami, or seismic sea wave, that affected coastal regions around the Indian Ocean. The northwestern Sumatra coastline in particular suffered extensive damage and loss of life. This photo, along with image ISS010-E-13079, illustrates damage along the southwestern coast of Aceh Province in the vicinity of the city of Lho Kruet, Indonesia. The image captures the sunglint illuminating the Indian Ocean and standing water inland (light gray). Distortion and scale differences are caused by increased obliquity of the view from the Station.
USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 403
1977-08-17
34Akademik Kurchatov" Departs for " Polimode " Ocean Experiment.... 11 Scientists Perform Oceanic Studies Near Wrangel Island 11 Abstracts of...stratosphere. [198] 10 III. OCEANOGRAPHY News "AKADEMIK KURCHATOV" DEPARTS FOR " POLIMODE " OCEAN EXPERIMENT Moscow PRAVDA in Russian 30 Jun 77 p 6 [Article...studies under the POLIMODE program. The head of the expedition, Professor V. Kort, commented on the pur- poses and tasks of the experiment: "Several
ISS Expeditions 16 through 20: Chemical Analysis Results for Potable Water
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.
2010-01-01
During the 2-year span from Expedition 16 through Expedition 20, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of archival water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principal sources of potable water for Expeditions 16 through 18. During Expedition 18 the U.S. water processor assembly was delivered, installed, and tested during a 90-day checkout period. Beginning with Expedition 19, U.S. potable water recovered from a combined waste stream of humidity condensate and pretreated urine was also available for ISS crew use. A total of 74 potable water samples were collected using U.S. sampling hardware during Expeditions 16 through 20 and returned on both Shuttle and Soyuz vehicles. The results of JSC chemical analyses of these ISS potable water samples are presented in this paper. Eight potable water samples collected in flight with Russian hardware were also received for analysis, as well as 5 preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 34. Analytical results for these additional potable water samples are also reported and discussed.
NASA Astrophysics Data System (ADS)
Hickok, K.; Nguyen, T.; Orcutt, B.; Fruh-Green, G. L.; Wanamaker, E.; Lang, S. Q.
2016-12-01
The high concentrations of hydrogen created during serpentinization can promote the formation of abiotic organic carbon molecules such as methane, formate, short chain hydrocarbons and, in laboratory experiments, larger molecules containing up to 32 carbon atoms. Subsurface archaeal and bacterial communities can use these reduced compounds for metabolic energy. International Ocean Discovery Project Expedition 357 drilled into the Atlantis Massif with the goals of investigating carbon cycling and the presence of life in a zone of active serpentinization. The expedition recovered multiple rock lithologies including gabbros, basalts, carbonate sands, and serpentinites. A subset of these samples are being analyzed to determine if non-volatile organic molecules are produced abiotically in serpentinizing environments and to identify `hot spots' of microbial life in the subsurface. Rock samples of contrasting representative lithologies are being analyzed for the presence of n-alkanes and fatty acids. Preliminary results have so far indicated the presence of alkanes in some samples. The isotopic (13C, 2H) characteristics of these compounds are being compared to a suite of oils, greases, and drilling fluids used during sample collection to distinguish in situ abiotic and biotic signatures from contaminant compounds. Other initial results have shown the efficacy of various sample-handling procedures designed to reduce surface contamination. This study will contribute to the overall understanding of the role serpentinization plays in the global carbon cycle and its implications for pre-biotic chemistry.
Fossil ostracodes of continental shelf cores at IODP Site U1354 (Expedition 317)
NASA Astrophysics Data System (ADS)
Kusunoki, S.; Ohi, T.; Kawagata, S.; Ishida, K.; Shipboard Scientific Party, E.
2010-12-01
Integrated Ocean Drilling Program (IODP) Expedition 317 was devoted to understanding the relative importance of global sea level (eustasy) versus local tectonic and sedimentary processes in controlling continental margin sedimentary cycles. The expedition recovered sediments from the Eocene to recent period, with a particular focus on the sequence stratigraphy of the late Miocene to recent, when global sea level change was dominated by glacioeustasy. Drilling in the Canterbury Basin, on the eastern margin of the South Island of New Zealand took advantage of high rates of Neogene sediment supply, which preserved a high-frequency (0.1-0.5 m.y.) record of depositional cyclicity. Ostracodes are crustaceans that widely inhabit marine, brackish, and non-marine environments. Shallow marine species have more restricted habitat and respond sensitively to environmental changes. Therefore they are a useful tool for high-resolution analyses of paleoenvironmental changes. We study samples older than ~1.0 Ma from Site U1354, which is in an intermediate position within the three shelf sites transect of Expedition 317. Quaternary to early Pliocene (~4.5 Ma) sediments were cored in this site with best core recovery (81%) among the shelf sites. The period from the Pliocene to Pleistocene is known for distinct paleoclimatic changes, from the intensive warming at around 3.5 Ma, to the cooling stage starting from 2.75 Ma. We expect that high-resolution analyses of fossil ostracode assemblages reveal detailed sea level and paleoceanographic changes on the continental shelf of the Canterbury Basin caused by global climate changes. Samples were examined at 1.5 m depth intervals. Samples of ~20 cc were freeze-dried and washed through a 63 µm opening sieve. The residues were dried and then divided into aliquot parts containing around 200 specimens using a sample splitter. All individual ostracodes were picked from residues coarser than 125 µm. Valves and carapaces were counted as one specimen. Well preserved ostracodes were found abundantly between the interval of 75 to 100 m (1 to 1.5 Ma) below the sea floor, although many of them are juvenile sized 125-250 µm. The numbers of ostracode specimens in each sample are from 20 to around 1100 per 20 cc and increase upward.
2002-10-15
KENNEDY SPACE CENTER, FLA. -- A diver helps lower sonar mapping equipment into the water alongside the Liberty Star, one of NASA's solid rocket booster retrieval ships. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
2002-10-15
KENNEDY SPACE CENTER, FLA. -- A diver helps lower sonar mapping equipment into the water alongside the Liberty Star, one of NASA's solid rocket booster retrieval ships. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
2002-10-15
KENNEDY SPACE CENTER, FLA. -- Workers on the deck of the Liberty Star, one of NASA's solid rocket booster retrieval ships, help guide sonar mapping equipment toward the side of the ship. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
Cruise to the Chukchi Borderland, Arctic Ocean
Grantz, Arthur; ,
1993-01-01
Oceanography and geology were the principal focuses of the U.S. Geological Survey-sponsored expedition Arctic Summer West '92, which traveled to the eastern part of the Chukchi Borderland of the Amerasia Basin, western Arctic Ocean. The expedition took place from August 20 to September 25, 1992, aboard the Coast Guard cutter Polar Star. USGS investigated the geologic framework and tectonic origin of the borderland, Arctic Quaternary paleoclimate, sea-ice transport of particulate matter in the Beaufort Gyre, and possible radionuclide contamination of the water column and seafloor off Alaska from sources in the Russian Arctic. Researchers from five other institutions studied the area's oceanography, age of the water column, paleoenvironment of the Holocene sediment, physical properties and synthetic-aperture radar backscatter of sea ice, and the drop-stone content of late Quaternary sediment.
Earth Observations taken by the Expedition 15 Crew
2007-05-30
ISS015-E-10125 (30 May 2007) --- An iceberg in the South Atlantic Ocean is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. This iceberg illustrates the remains of a giant iceberg -- designated A22A that broke off Antarctica in 2002. This is one of the largest icebergs to drift as far north as 50 degrees south latitude, bringing it beneath the daylight path of the station. Crewmembers aboard the orbital complex were able to locate the ice mass and photograph it, despite great cloud masses of winter storms in the Southern Ocean. Dimensions of A22A in early June were 49.9 x 23.4 kilometers, giving it an area of 622 square kilometers, or seven times the area of Manhattan Island.
Earth Observations taken by the Expedition 16 Crew
2008-01-15
ISS016-E-023196 (15 Jan. 2008) --- A portion of Mega-iceberg A53a in the South Atlantic Ocean is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. At the time this image was taken in mid-January 2008, the entire iceberg measured close to 50 kilometers x 22 kilometers, about seven times the area of Manhattan Island. Icebergs of the Southern Atlantic Ocean contain rock material from Antarctica, eroded by the moving ice and also as wind-borne dust from deserts in Africa, South America and Australia. According to NASA scientists, the finest powdery rock material acts as nutrient for sea organisms. As icebergs melt, the surrounding seawater is enriched. The area of enrichment is significantly enlarged when a mega-iceberg disintegrates into many small pieces.
Earth Observations taken by the Expedition 16 Crew
2008-01-15
ISS016-E-023197 (15 Jan. 2008) --- A portion of Mega-iceberg A53a in the South Atlantic Ocean is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. At the time this image was taken in mid-January 2008, the entire iceberg measured close to 50 kilometers x 22 kilometers, about seven times the area of Manhattan Island. Icebergs of the Southern Atlantic Ocean contain rock material from Antarctica, eroded by the moving ice and also as wind-borne dust from deserts in Africa, South America and Australia. According to NASA scientists, the finest powdery rock material acts as nutrient for sea organisms. As icebergs melt, the surrounding seawater is enriched. The area of enrichment is significantly enlarged when a mega-iceberg disintegrates into many small pieces.
Earth Observations taken by the Expedition 16 Crew
2008-01-15
ISS016-E-023198 (15 Jan. 2008) --- A portion of Mega-iceberg A53a in the South Atlantic Ocean is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. At the time this image was taken in mid-January 2008, the entire iceberg measured close to 50 kilometers x 22 kilometers, about seven times the area of Manhattan Island. Icebergs of the Southern Atlantic Ocean contain rock material from Antarctica, eroded by the moving ice and also as wind-borne dust from deserts in Africa, South America and Australia. According to NASA scientists, the finest powdery rock material acts as nutrient for sea organisms. As icebergs melt, the surrounding seawater is enriched. The area of enrichment is significantly enlarged when a mega-iceberg disintegrates into many small pieces.
Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre.
Brach, Laurent; Deixonne, Patrick; Bernard, Marie-France; Durand, Edmée; Desjean, Marie-Christine; Perez, Emile; van Sebille, Erik; Ter Halle, Alexandra
2018-01-01
There are fundamental gaps in our understanding of the fates of microplastics in the ocean, which must be overcome if the severity of this pollution is to be fully assessed. The predominant pattern is high accumulation of microplastic in subtropical gyres. Using in situ measurements from the 7th Continent expedition in the North Atlantic subtropical gyre, data from satellite observations and models, we show how microplastic concentrations were up to 9.4 times higher in an anticyclonic eddy explored, compared to the cyclonic eddy. Although our sample size is small, this is the first suggestive evidence that mesoscale eddies might trap, concentrate and potentially transport microplastics. As eddies are known to congregate nutrients and organisms, this phenomenon should be considered with regards to the potential impact of plastic pollution on the ecosystem in the open ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.
Earth Observations taken by the Expedition 39 Crew
2014-04-26
ISS039-E-016292 (26 April 2014) --- A wish-bone shaped display of Aurora Australis over the Indian Ocean serves as a very colorful backdrop for the SpaceX Dragon spacecraft which is docked to the International Space Station, 226 miles above Earth. Earth's horizon divides the scene horizontally between the blackness of space and the dark portion of the planet. The photograph was taken by one of the Expedition 39 crew members aboard the orbital outpost.
Earth Observations taken by Expedition 38 crewmember
2013-12-23
ISS038-E-019899 (23 Dec. 2013) --- The Caribbean country of Cuba appears at the top of this high oblique image, photographed by one of the Expedition 38 crew members aboard the International Space Station. Andros Island, part of the Bahamas, is in the bottom of the frame. Cuba is an archipelago of islands in the northern Caribbean Sea at the confluence with the Gulf of Mexico and the Atlantic Ocean. A Russian Soyuz spacecraft is docked to the station.
Earth observation taken by Expedition 35 crew
2013-05-05
ISS035-E-034848 (5 May 2013) --- The sun is about to come up over the South Pacific Ocean in this colorful scene photographed by one of the Expedition 35 crew members aboard the Earth-orbiting International Space Station between 4 and 5 a.m. local time, May 5, 2013. The outpost was at a point above Earth located at 27.4 degrees south latitude and 110.1 degrees west longitude, a few hundred miles east of Easter Island.
Morard, Raphaël; Garet-Delmas, Marie-José; Mahé, Frédéric; Romac, Sarah; Poulain, Julie; Kucera, Michal; de Vargas, Colomban
2018-02-07
Since the advent of DNA metabarcoding surveys, the planktonic realm is considered a treasure trove of diversity, inhabited by a small number of abundant taxa, and a hugely diverse and taxonomically uncharacterized consortium of rare species. Here we assess if the apparent underestimation of plankton diversity applies universally. We target planktonic foraminifera, a group of protists whose known morphological diversity is limited, taxonomically resolved and linked to ribosomal DNA barcodes. We generated a pyrosequencing dataset of ~100,000 partial 18S rRNA foraminiferal sequences from 32 size fractioned photic-zone plankton samples collected at 8 stations in the Indian and Atlantic Oceans during the Tara Oceans expedition (2009-2012). We identified 69 genetic types belonging to 41 morphotaxa in our metabarcoding dataset. The diversity saturated at local and regional scale as well as in the three size fractions and the two depths sampled indicating that the diversity of foraminifera is modest and finite. The large majority of the newly discovered lineages occur in the small size fraction, neglected by classical taxonomy. These unknown lineages dominate the bulk [>0.8 µm] size fraction, implying that a considerable part of the planktonic foraminifera community biomass has its origin in unknown lineages.
Quantification of ikaite in Antarctic sea ice
NASA Astrophysics Data System (ADS)
Fischer, M.; Thomas, D. N.; Krell, A.; Nehrke, G.; Göttlicher, J.; Norman, L.; Riaux-Gobin, C.; Dieckmann, G. S.
2012-02-01
Calcium carbonate precipitation in sea ice can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea ice and discusses its potential significance for the carbon cycle in polar oceans. Ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during an expedition in the East Antarctic and another off Terre Adélie, Antarctica. Samples were analysed for CaCO3, Salinity, DOC, DON, Phosphate, and total alkalinity. A relationship between the measured parameters and CaCO3 precipitation could not be observed. We found calcium carbonate, as ikaite, mostly in the top layer of sea ice with values up to 126 mg ikaite per liter melted sea ice. This potentially represents a contribution between 0.12 and 9 Tg C to the annual carbon flux in polar oceans. The horizontal distribution of ikaite in sea ice was heterogenous. We also found the precipitate in the snow on top of the sea ice.
NASA Astrophysics Data System (ADS)
Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.
2015-12-01
Most of the well-preserved ophiolite complexes are believed to form in supra-subduction zone settings. One of the goals of IODP Expedition 352 was to test the supra-subduction zone ophiolite model by drilling forearc crust at the northern Izu-Bonin-Mariana (IBM) system. IBM forearc drilling successfully cored 1.22 km of volcanic lavas and underlying dikes at four sites. A surprising observation is that basement compressional velocities measured from downhole logging average ~3.0 km/s, compared to values of 5 km/s at similar basement depths at oceanic crust sites 504B and 1256D. Typically there is an inverse relationship in extrusive lavas between velocity and porosity, but downhole logging shows similar porosities for the IBM and oceanic crust sites, despite the large difference in measured compressional velocities. These observations can be explained by a difference in crack morphologies between IBM forearc and oceanic crust, with a smaller fractional area of asperity contact across cracks at EXP 352 sites than at sites 504B and 1256D. Seismic profiles at the IBM forearc image many faults, which may be related to the crack population.
Liberty Bell 7 is retrieved from Atlantic Ocean
NASA Technical Reports Server (NTRS)
1999-01-01
Retrieved from the ocean floor three miles deep, the Liberty Bell 7 Project Mercury capsule is revealed to photographers and the media in Port Canaveral, Fla. The capsule was found and raised by Curt Newport (left), leading an expedition sponsored by the Discovery Channel. After its successful 16-minute suborbital flight on July 21, 1961, the Liberty Bell 7, with astronaut Virgil 'Gus' Grissom aboard, splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. An underwater salvage expert, Newport located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.
The Lone Ranger Mission: Understanding Synthetic Polymer Microbe Interactions In the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Mielke, R.; Neal, A.; Stam, C. N.; Ferry, J. G.; Schlegel, R.; Tsapin, A. I.; Park, S.; Bhartia, R.; Salas, E.; Hug, W.; Behar, A. E.; Nadeau, J.
2011-12-01
Pollution is one of the most ubiquitous and insidious problems currently facing the oceans. As synthetic polymer debris degrades, it becomes increasingly accessible to organisms that forage or absorb food particles. However, research on this significant environmental pollution problem has not been able to keep up with the scope of the issue, since some of the first studies published in 1972 by Edward Carpenter. In January 2011, The Lone Ranger Atlantic Expedition, a collaboration between Blue Ocean Sciences (BOS) and the Schmidt Ocean Institute (SOI) transected the Atlantic Ocean covering 3,100 nautical miles sampling the first 15cm of the water column to investigate microbial interactions with synthetic polymer marine debris. Using established and novel techniques of Fourier transform infrared spectroscopy (FT-IR), scanning transmission electron microscopy (STEM), environmental scanning electron microscopy (ESEM), and gas chromatography-mass spectrometry (GC-MS), we were able to image and locate material degradation of pre-production, association of microbial biofilms, and accumulation of persistent organic pollutants (POP's) on environmental microplastics. We then used Spectroscopic Organic Analysis and ArcGIS mapping systems to observe the material degradation and the associated biofilm lattice on the environmental microplastics. This data sheds light on possible mechanisms of material weathering of synthetic polymers in deep ocean environments and new methods for identifying POP's association with them. These new techniques are highly transferable to many studies on material biofilm interactions in the environment.
Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies
NASA Astrophysics Data System (ADS)
Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.
2012-04-01
In spite of the critical role of the Arctic Ocean in climate evolution, our understanding of the short- and long-term paleoceanographic and paleoclimatic history through late Mesozoic-Cenozoic times, as well as its plate-tectonic evolution, remains behind that from the other world's oceans. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the Arctic Coring Expedition - ACEX (or IODP Expedition 302), the first Mission Specific Platform (MSP) expedition within IODP, a new era in Arctic research began (Backman, Moran, Mayer, McInroy et al., 2006). ACEX proved that, with an intensive ice-management strategy, successful scientific drilling in the permanently ice-covered central Arctic Ocean is possible. ACEX is certainly a milestone in Arctic Ocean research, but - of course - further drilling activities are needed in this poorly studied ocean. Furthermore, despite the success of ACEX fundamental questions related to the long- and short-term climate history of the Arctic Ocean during Mesozoic-Cenozoic times remain unanswered. This is partly due to poor core recovery during ACEX and, especially, because of a major mid-Cenozoic hiatus in this single record. Since ACEX, a series of workshops were held to develop a scientific drilling strategy for investigating the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system: - "Arctic Ocean History: From Speculation to Reality" (Bremerhaven/Germany, November 2008); - "Overcoming barriers to Arctic Ocean scientific drilling: the site survey challenge" (Copenhagen/Denmark, November 2011); - Circum-Arctic shelf/upper continental slope scientific drilling workshop on "Catching Climate Change in Progress" (San Francisco/USA, December 2011); - "Coordinated Scientific Drilling in the Beaufort Sea: Addressing Past, Present and Future Changes in Arctic Terrestrial and Marine Systems" (Kananaskis, Alberta/Canada, February 2012). During these workshops, key areas and key scientific themes as well as drilling and site-survey strategies were discussed. Major scientific themes for future Arctic drilling will include: - The Arctic Ocean during the transition from greenhouse to icehouse conditions and millennial scale climate changes; - Physical and chemical changes of the evolving Polar Ocean and Arctic gateways; - Impact of Pleistocene/Holocene warming and sea-level rise on upper continental slope and shelf gas hydrates and on shelf permafrost; - Land-ocean interactions; - Tectonic evolution and birth of the Arctic Ocean basin: Arctic ridges, sea floor spreading and global lithosphere processes. When thinking about future Arctic drilling, it should be clearly emphasized that for the precise planning of future Arctic Ocean drilling campaigns, including site selection, evaluation of proposed drill sites for safety and environmental protection, etc., comprehensive site survey data are needed first. This means that the development of a detailed site survey strategy is a major challenge for the coming years. Here, an overview of perspectives and plans for future Arctic Ocean drilling will be presented.
[Oceanography and King Dom Carlos I's collection of iconography].
Jardim, Maria Estela; Peres, Isabel Marília; Ré, Pedro Barcia; Costa, Fernanda Madalena
2014-01-01
After the Challenger expedition (1872-1878), other nations started to show interest in oceanographic research and organizing their own expeditions. As of 1885, Prince Albert I of Monaco conducted oceanographic campaigns with the collaboration of some of the best marine biologists and physical oceanographers of the day, inventing new techniques and instruments for the oceanographic work. Prince Albert's scientific activity certainly helped kindle the interest of his friend, Dom Carlos I, king of Portugal, in the study of the oceans and marine life. Both shared the need to use photography to document their studies. This article analyzes the role of scientific photography in oceanography, especially in the expeditions organized by the Portuguese monarch.
NASA Astrophysics Data System (ADS)
Peart, L.; Niemitz, M.; Boa, S.; Corsiglia, J.; Klaus, A.; Petronotis, K.; Iturrino, G.
2005-12-01
For 37 years, scientific ocean drilling programs have sponsored hundreds of expeditions, drilled at over 1,800 sites and recovered over 200 miles of core. The discoveries of these programs have led to important realizations of how our earth works. Past expeditions have validated the theory of plate tectonics, provided unparalleled ancient climate records and recovered evidence of the asteroid impact that wiped out the dinosaurs 65 million years ago - and new discoveries occur with every expedition. By producing education materials and programs and encouraging mass media journalists' interest in our news, we strive to fulfill our commitment to communicate our programs' scientific discoveries to the public, in a way that people - not just other scientists - understand. With the advent of the Integrated Ocean Drilling Program (IODP), education and outreach efforts have expanded to pursue new opportunities and engage wider audiences. Through our strategy of Teaching for Science, Learning for LifeTM, our education efforts seek to utilize the interdisciplinary nature of scientific ocean drilling to teach career awareness, scientific methods, teamwork, and problem solving techniques for a lifetime of learning, decision making and good citizenship. In pursuit of this goal, we have implemented professional and resource development programs and expanded our outreach at education-focused conferences to help teachers use IODP science to satiate the student's need to learn the methods of science that apply to everyday life. We believe that this message also applies to life-long learners and thus we have focused our efforts on news media outreach and education opportunities surrounding ports of call of the JOIDES Resolution, permanent and traveling museum exhibits. In addition, our outreach to undergraduate and graduate audiences, through a lecture series, research fellowships and internships, helps to create future generations of science leaders.
The Deglacial to Holocene Paleoceanography of Bering Strait: Results From the SWERUS-C3 Program
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Anderson, L. G.; Backman, J.; Barrientos, N.; Björk, G. M.; Coxall, H.; Cronin, T. M.; De Boer, A. M.; Gemery, L.; Jerram, K.; Johansson, C.; Kirchner, N.; Mayer, L. A.; Mörth, C. M.; Nilsson, J.; Noormets, R. R. N. N.; O'Regan, M.; Pearce, C.; Semiletov, I. P.; Stranne, C.
2017-12-01
The climate-carbon-cryosphere (C3) interactions in the East Siberian Arctic Ocean and related ocean, river and land areas of the Arctic have been the focus for the SWERUS-C3 Program (Swedish - Russian - US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions). This multi-investigator, multi-disciplinary program was carried out on a two-leg 90-day long expedition in 2014 with Swedish icebreaker Oden. One component of the expedition consisted of geophysical mapping and coring of Herald Canyon, located on the Chukchi Sea shelf north of the Bering Strait in the western Arctic Ocean. Herald Canyon is strategically placed to capture the history of the Pacific-Arctic Ocean connection and related changes in Arctic Ocean paleoceanography. Here we present a summary of key results from analyses of the marine geophysical mapping data and cores collected from Herald Canyon on the shelf and slope that proved to be particularly well suited for paleoceanographic reconstruction. For example, we provide a new age constraint of 11 cal ka BP on sediments from the uppermost slope for the initial flooding of the Bering Land Bridge and reestablishment of the Pacific-Arctic Ocean connection following the last glaciation. This age corresponds to meltwater pulse 1b (MWP1b) known as a post-Younger Dryas warming in many sea level and paleoclimate records. In addition, high late Holocene sedimentation rates that range between about 100 and 300 cm kyr-1, in Herald Canyon permitted paleoceanographic reconstructions of ocean circulation and sea ice cover at centennial scales throughout the late Holocene. Evidence suggests varying influence from inflowing Pacific water into the western Arctic Ocean including some evidence for quasi-cyclic variability in several paleoceanographic parameters, e.g. micropaleontological assemblages, isotope geochemistry and sediment physical properties.
Whole Air Sampling During NASA's March-April 1999 Pacific Exploratory Expedition (PEM-Tropics B)
NASA Technical Reports Server (NTRS)
Blake, Donald R.
2001-01-01
University of California, Irvine (UCI) collected more than 4500 samples whole air samples collected over the remote Pacific Ocean during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) in March and early April 1999. Approximately 140 samples during a typical 8-hour DC-8 flight, and 120 canisters for each 8-hour flight aboard the P-3B. These samples were obtained roughly every 3-7 min during horizontal flight legs and 1-3 min during vertical legs. The filled canisters were analyzed in the laboratory at UCI within ten days of collection. The mixing ratios of 58 trace gases comprising hydrocarbons, halocarbons, alkyl nitrates and DMS were reported (and archived) for each sample. Two identical analytical systems sharing the same standards were operated simultaneously around the clock to improve canister turn-around time and to keep our measurement precision optimal. This report presents a summary of the results for sample collected.
Opening of the South China Sea and Upwelling of the Hainan Plume
NASA Astrophysics Data System (ADS)
Yu, Mengming; Yan, Yi; Huang, Chi-Yue; Zhang, Xinchang; Tian, Zhixian; Chen, Wen-Huang; Santosh, M.
2018-03-01
Opening of the South China Sea and upwelling of the Hainan Plume are among the most challenging issues related to the tectonic evolution of East Asia. However, when and how the Hainan Plume affected the opening of the South China Sea remains unclear. Here we investigate the geochemical and isotopic features of the 25 Ma mid-ocean ridge basalt (MORB) in the Kenting Mélange, southern Taiwan, 16 Ma MORB drilled by the IODP Expedition 349, and 9 Ma ocean island basalt-type dredged seamount basalt. The 25 Ma MORBs reveal a less metasomatic depleted MORB mantle-like source. In contrast, the Miocene samples record progressive mantle enrichment and possibly signal the contribution of the Hainan Plume. We speculate that MORBs of the South China Sea which could have recorded plume-ridge source mixing perhaps appear since 23.8 Ma. On the contrary, the Paleocene-Eocene ocean island basalt-type intraplate volcanism of the South China continental margin is correlated to decompression melting of a passively upwelling fertile asthenosphere due to continental rifting.
2018-04-10
iss055e020372 (April 10, 2018) --- Reunion Island, a French region off the coast of Madagascar, was pictured by an Expedition 55 crew member as the International Space Station orbited over the Indian Ocean.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-05
A sensor-laden buoy is lifted onboard the Woods Hole Oceanographic Institution's research vessel Knorr on wednesday, Sept. 5, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Recent scientific and operational achievements of D/V Chikyu
NASA Astrophysics Data System (ADS)
Taira, Asahiko; Toczko, Sean; Eguchi, Nobu; Kuramoto, Shin'ichi; Kubo, Yusuke; Azuma, Wataru
2014-12-01
The D/V Chikyu, a scientific drilling vessel, is equipped with industry-standard riser capabilities. Riser drilling technology enables remarkable drilling and downhole logging capabilities and provides unprecedented hole-stability, enabling the shipboard team to retrieve high-quality wire-line logging data as well as well-preserved core samples. The 11 March 2011 Tohoku Oki mega-earthquake and tsunami cost over 18,000 casualties in NE Japan. Chikyu, docked in the Port of Hachinohe, was damaged by the tsunami. By April 2012, the ship was back in operation; drilling the toe of the Japan Trench fault zone where topographic surveys suggested there was up to 50 m eastward motion, the largest earthquake rupture ever recorded. During Integrated Ocean Drilling Program (IODP) Expeditions 343 and 343 T, Chikyu drilled 850 m below sea floor (mbsf) in 6,900+ m water depth and recovered core samples of a highly brecciated shear zone composed of pelagic claystone. A subseafloor observatory looking for temperature signatures caused by the fault friction during the earthquake, was installed and later successfully recovered. The recovered temperature loggers recorded data from which the level of friction during the mega-earthquake slip could be determined. Following Exp. 343, Chikyu began IODP Exp. 337, a riser drilling expedition into the Shimokita coal beds off Hachinohe, to study the deep subsurface biosphere in sedimentary units including Paleogene-Neogene coal beds. New records in scientific ocean drilling were achieved in deepest penetration (drilling reached 2,466 mbsf) and sample recovery. Currently Chikyu is conducting deep riser drilling at the Nankai Trough in the final stage of the NanTroSEIZE campaign. During the years 2011 to 2013, including drilling in the Okinawa Hydrothermal System, Chikyu's operational and scientific achievements have demonstrated that the ship's capabilities are vital for opening new frontiers in earth and biological sciences.
Deriving Equations of State for Specific Lakes and Inland Seas from Laboratory Measurements
NASA Astrophysics Data System (ADS)
Andrulionis, Natalia; Zavialov, Ivan; Zavialov, Peter; Osadchiev, Alexander; Kolokolova, Alexandra; Alukaeva, Alevtina; Izhitskiy, Alexander; Izhitskaya, Elena
2017-04-01
The equation of state is the dependence of water density on temperature, salinity, and pressure. It is important in many respects, in particular, for numerical modeling of marine systems. The widely used UNESCO equation of state, as well as the more recent and general TEOS-10 equation, are intended for the ocean waters. Hence, they are confined to salinities below 40 ‰ and, even more restrictively, valid only for ionic salt composition characteristic for the ocean. Both conditions do not hold for many lakes. Moreover, significant deviations of the ionic composition from the oceanic one have been documented for coastal zones, especially those exposed to river discharges. Therefore, the objective of this study was to find equations of state for areas or water bodies with non-oceanic ionic salt composition. In order to obtain the required equations, we analyzed water samples obtained in expeditions of 2014-2016 from the Black Sea, the Aral Sea, Lake Issyk-Kul and Caspian Sea. The filtered samples were submitted to high accuracy (up to 0.00001 g/cm3) density measurements in laboratory using the Anton Paar DMA 5000M in the temperature range from 1 to 29°C. The absolute salinity values of the initial samples were obtained through the dry residue method. Further, we diluted the samples by purified deionized water to produce different salinities. To control the accuracy of the dilution process, we used a reference sample of standard IAPSO-certified seawater at 35‰. The density versus salinity and temperature data obtained thereby were then approximated by a best fitting 2-order polynomial surface using the least squares method. This procedure yielded the approximate empirical equations of state for the selected marine areas (the Russian Black Sea shelf) and inland water bodies (the Aral Sea, the Lake Issyk-Kul, the Caspian Sea). The newly derived equations - even the one for the Black Sea shelf - are different from the oceanic equation significantly within the confidence intervals. We also analyzed the salt content in all samples using the ionic chromotography method and the potentiometric titration method and discussed the relations between the ionic composition on the one hand and density on the other.
Hurricane Edouard taken by Expedition 41 crewmember
2014-09-16
ISS041-E-011535 (16 Sept. 2014) --- Though having been upgraded from a tropical storm to a Category 2 hurricane, the Atlantic-borne Edouard thus far has avoided land interests as it reached maximum sustained winds, churning in ocean waters several hundred miles southeast of Bermuda. The Expedition 41 crew members onboard the International Space Station photographed and distributed a series of images via station-to-ground downlinks and via social media. This photo was taken at 13:51:53 GMT on Sept. 16, 2014.
NASA Astrophysics Data System (ADS)
Pickering, K. T.; Pouderoux, H.; Milliken, K. L.; Carter, A.; Chemale, F., Jr.; Kutterolf, S.; Mukoyoshi, H.; Backman, J.; McNeill, L. C.; Dugan, B.; Expedition 362 Scientists, I.
2017-12-01
IODP Expedition 362 (6 Aug-6 Oct 2016) was designed to drill the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction system and to understand the origin of the Mw 9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004 linked to unexpectedly shallow seismogenic slip and a distinctive forearc prism structure (1,2,3). Two sites, U1480 and U1481 on the Indian oceanic plate 250 km SW of the subduction zone on the eastern flank of the Ninetyeast Ridge, were drilled, cored, and logged to a maximum depth of 1500 m below seafloor. The input materials of the north Sumatran subduction zone are a thick (up to 4-5 km) succession mainly of Bengal-Nicobar Fan siliciclastic sediments overlying a mainly pelagic/hemipelagic succession, with igneous and volcaniclastic material above oceanic basement. At Sites U1480 and U1481, above the igneous basement ( 60-70 Ma), the sedimentary succession comprises deep-marine tuffaceous deposits with igneous intrusions, overlain by pelagic deposits, including chalk, and a thick Nicobar Fan succession of sediment gravity-flow (SGF) deposits, mainly turbidites and muddy debrites. The Nicobar Fan deposits (estimated total volume of 9.2 x 106 km3: 3) represent >90% of the input section at the drill sites and many of the beds are rich in plant material. These beds are intercalated with calcareous clays. Sediment accumulation rates reached 10-40 cm/kyr in the late Miocene to Pliocene, but were much reduced since 1.6 Ma. The onset of Nicobar Fan deposition at the drill sites ( 9.5 Ma; 2) is much younger than was anticipated precruise ( 30-40 Ma), based on previous regional analyses of Bengal-Nicobar Fan history and presumptions of gradual fan progradation. Our preliminary results suggest that the Nicobar Fan was active between 1.6 and 9.5 Ma, and possibly since 30 Ma (3). The observed mineralogical assemblage of the SGF deposits and zircon age dating are consistent with a provenance from a northerly Himalayan and Indo-Burmese source area. 1. Dugan, McNeill, Petronotis, and the Expedition 362 Scientists, 2017. https://doi.org/10.14379/iodp.pr.362.2017. 2. Hüpers, and the Expedition 362 Scientists. Science, 356, 841-844. 3. McNeill, and the Expedition 362 Scientists 2017. Earth and Planetary Science Letters, in press.
U.S. Commercial Cargo Spacecraft Departs International Space Station
2018-01-13
After spending a month at the International Space Station and delivering several tons of supplies and scientific experiments, the SpaceX Dragon cargo craft departed Jan. 13, headed for a parachute-assisted splashdown in the Pacific Ocean southwest of Long Beach, California. Ground controllers at NASA’s Johnson Space Center in Houston sent commands to release Dragon from the Canadarm2 robotic arm while Expedition 54 Flight Engineers Joe Acaba and Scott Tingle of NASA monitored the activity from the station’s cupola. Loaded with scientific samples and other cargo, Dragon was scheduled to conduct a deorbit burn a few hours after its release for its descent back to Earth.
2002-10-15
KENNEDY SPACE CENTER, FLA. -- Workers on the deck of the Liberty Star, one of NASA's solid rocket booster retrieval ships, as well as divers in the water, help lower sonar mapping equipment alongside the ship. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
2002-10-15
KENNEDY SPACE CENTER, FLA. -- Workers on the deck of the Liberty Star, one of NASA's solid rocket booster retrieval ships, oversee the lifting of sonar mapping equipment from the deck toward the side of the ship. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
NASA Astrophysics Data System (ADS)
Pearson, B.; Franzese, A. M.
2017-12-01
The Agulhas Current, the strongest western boundary current in the southern hemisphere, is uniquely characterized by its strong retroflection. The current carries water southward from the Indian Ocean toward the cape of South Africa, before turning back on itself. At this point of retroflection, some of the current's flow escapes into the southern Atlantic Ocean. This transfer of water from the Indian Ocean to Atlantic Ocean makes up the Agulhas Leakage. The Leakage occurs in a series of eddies and rings located in the Cape Basin south of the African continent. Scientific literature demonstrates that relatively buoyant leakage water has been a determining factor varying strength of the Atlantic Meridional Ocean Current (AMOC), during glacial-interglacial cycles. It has been demonstrated that radiogenic isotope, major, and trace element concentrations serve as a proxy for terrigenous sediment provenance in the Agulhas region. Current understanding is that terrigenous sediment provenance is older during warmer periods of deposition. This corresponds to more input from southeastern African end members, and thus a stronger Agulhas Current, during warming periods in the paleoclimate record. Conversely, younger terrigenous sediment deposited during colder periods, such as the Last Glacial Maximum, suggests a weaker Agulhas Current, and less Agulhas Leakage. In 2016, on the International Ocean Discovery Program Expedition 361, sediment cores were drilled at 6 sites in the Greater Agulhas region. A major goal of the expedition was to expand knowledge of the relation between changes in the Agulhas System and changes in paleoclimate, southern African climate, and AMOC. We analyzed sediment from Expedition 361 Site U1479 (35°03.53'S; 17°24.06'E; 2615 mbsl) located where the Agulhas Leakage occurs. We measured Argon, strontium isotope ratios, ɛNd, trace and major element concentrations on the <2 micron clay fraction. Preliminary results foretell promising findings. For instance, for the Early Pleistocene ( 1.3 - 1.5 Ma), K-Ar model ages correlate with shipboard measurements of natural gamma radiation, which show approximate 41 kyr periodicity.
MITAS - 2009 Expedition US Beaufort Shelf Slope of Alaska - Lithostratigraphy
Kelly Rose; Joel Johnson; Stephen Phillips; Joe Smith; Alan Reed; Corinne Disenhof; Jennifer Presley
2012-01-01
The volume of methane released through the Arctic Ocean to the atmosphere and its potential role in the global climate cycle has increasingly become the focus of studies seeking to understand the source and origin of this methane. In 2009, an international, multi-disciplinary science party aboard the U.S. Coast Guard icebreaker Polar Sea successfully completed a trans-U.S. Beaufort shelf expedition aimed at understanding the sources and volumes of methane across this region. Following more than a year of preliminary cruise planning and a thorough site evaluation, the Methane in the Arctic Shelf/Slope (MITAS) expedition departed from the waters off the coast of Barrow, Alaska in September 2009. The expedition, led by researchers with the U.S. Naval Research Laboratory (NRL), the Royal Netherlands Institute for Sea Research (NIOZ), and the U.S. Department of Energys National Energy Technology Laboratory (NETL), was organized with an international shipboard science team consisting of 33 scientists with the breadth of expertise necessary to meet the expedition goals. NETL researchers led the expeditions initial core processing and lithostratigraphic evaluations, which are the focus of this report. A full expedition summary is available at in First Trans-Shelf-Slope Climate Study in the U.S. Beaufort Sea Completed by Coffin et al.,( 2010).
Scientists as Communicators: Inclusion of a Science/Education Liaison on Research Expeditions
NASA Astrophysics Data System (ADS)
Sautter, L. R.
2004-12-01
Communication of research and scientific results to an audience outside of one's field poses a challenge to many scientists. Many research scientists have a natural ability to address the challenge, while others may chose to seek assistance. Research cruise PIs maywish to consider including a Science/Education Liaison (SEL) on future grants. The SEL is a marine scientist whose job before, during and after the cruise is to work with the shipboard scientists to document the science conducted. The SEL's role is three-fold: (1) to communicate shipboard science activities near-real-time to the public via the web; (2) to develop a variety of web-based resources based on the scientific operations; and (3) to assist educators with the integration of these resources into classroom curricula. The first role involves at-sea writing and relaying from ship-to-shore (via email) a series of Daily Logs. NOAA Ocean Exploration (OE) has mastered the use of web-posted Daily Logs for their major expeditions (see their OceanExplorer website), introducing millions of users to deep sea exploration. Project Oceanica uses the OE daily log model to document research expeditions. In addition to writing daily logs and participating on OE expeditions, Oceanica's SEL also documents the cruise's scientific operations and preliminary findings using video and photos, so that web-based resources (photo galleries, video galleries, and PhotoDocumentaries) can be developed during and following the cruise, and posted on the expedition's home page within the Oceanica web site (see URL). We have created templates for constructing these science resources which allow the shipboard scientists to assist with web resource development. Bringing users to the site is achieved through email communications to a growing list of educators, scientists, and students, and through collaboration with the COSEE network. With a large research expedition-based inventory of web resources now available, Oceanica is training teachers and college faculty on the use and incorporation of these resources into middle school, high school and introductory college classrooms. Support for a SEL on shipboard expeditions serves to catalyze the dissemination of the scientific operations to a broad audience of users.
Physical properties of the Nankai inner accretionary prism at Site C0002, IODP Expedition 348
NASA Astrophysics Data System (ADS)
Kitamura, Manami; Kitajima, Hiroko; Henry, Pierre; Valdez, Robert; Josh, Matthew
2014-05-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of 2.68 g/cm3 and 2.72 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density (2.66-2.70 g/cm3), but higher bulk density (2.05-2.41 g/cm3) and lower porosity (37-18%), respectively. The grain density agreement suggests that the measurements on both bulk cuttings and intact cuttings are of good quality, and the differences in porosity and density are real, but the values from the bulk cuttings are affected strongly by artifacts of the drilling process. Thus, the bulk density and porosity data on handpicked cuttings are better representative of formation properties. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity (a reciprocal of conductivity) on discrete samples is generally higher than the LWD resistivity data but the overall depth trends are similar. On the other hand, the P-wave velocity on discrete samples is lower than the LWD P-wave velocity between 2200 mbsf and 2600 mbsf, while the P-wave velocity on discrete samples and LWD P-wave velocity are in a closer agreement below 2600 mbsf. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
NASA Astrophysics Data System (ADS)
Cares, Z.; Farr, C. L.; LeVay, L.; Tangunan, D.; Brentegani, L.
2017-12-01
International Ocean Discovery Program (IODP) Expedition 361 cored six sites along the greater Agulhas Current System to track its intensity through time and to better understand its role in global oceanic circulation and climate. One of the main scientific objectives of this expedition was to determine the dynamics of the Indian-Atlantic Ocean Gateway circulation during Pliocene-Pleistocene climate changes in association with changing wind fields and migrating ocean fronts. The Indian-Atlantic Ocean Gateway contains a pronounced oceanic frontal system, the position of which has the potential to influence global climate on millennial scales. Owing to the physical differences between the frontal zones, this region has complex biogeochemistry, changes in phytoplankton distribution, and variations in primary productivity. Site U1475 was cored on the Agulhas Plateau in the Southwestern Indian Ocean and recovered a complete sequence of calcareous ooze spanning the last 7 Ma. Previous studies at this locality have shown latitudinal migrations of the frontal zones over the past 350 kyr that resulted in prominent millennial shifts in primary production, biological pump efficiency, and microfossil assemblages that coincide with Antarctic climate variability. Here we present initial results comprised of calcareous nannoplankton assemblages in order to test if similar latitudinal frontal migrations occurred during the Pliocene-Pleistocene transition (PPT; 2.7 Ma). The calcareous nannoplankton assemblage shows an abundance increase of taxa associated with cooler water and higher primary production across the PPT interval. In addition to a change in species abudance, the Shannon diversity index drops notably across the transition, which is typical of nannoplankton communities in more productive regions. These data suggest that a long-term change in sea surface temperature and nutrient availability took place across the PPT, potentially linked to the northward migration of frontal zones.
Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes
Hingamp, Pascal; Grimsley, Nigel; Acinas, Silvia G; Clerissi, Camille; Subirana, Lucie; Poulain, Julie; Ferrera, Isabel; Sarmento, Hugo; Villar, Emilie; Lima-Mendez, Gipsi; Faust, Karoline; Sunagawa, Shinichi; Claverie, Jean-Michel; Moreau, Hervé; Desdevises, Yves; Bork, Peer; Raes, Jeroen; de Vargas, Colomban; Karsenti, Eric; Kandels-Lewis, Stefanie; Jaillon, Olivier; Not, Fabrice; Pesant, Stéphane; Wincker, Patrick; Ogata, Hiroyuki
2013-01-01
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts. PMID:23575371
Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes.
Hingamp, Pascal; Grimsley, Nigel; Acinas, Silvia G; Clerissi, Camille; Subirana, Lucie; Poulain, Julie; Ferrera, Isabel; Sarmento, Hugo; Villar, Emilie; Lima-Mendez, Gipsi; Faust, Karoline; Sunagawa, Shinichi; Claverie, Jean-Michel; Moreau, Hervé; Desdevises, Yves; Bork, Peer; Raes, Jeroen; de Vargas, Colomban; Karsenti, Eric; Kandels-Lewis, Stefanie; Jaillon, Olivier; Not, Fabrice; Pesant, Stéphane; Wincker, Patrick; Ogata, Hiroyuki
2013-09-01
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2-1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 10(4)-10(5) genomes ml(-1) for the samples from the photic zone and 10(2)-10(3) genomes ml(-1) for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.
NASA Astrophysics Data System (ADS)
Mamo, B. L.; McHugh, C.; Renema, W.; Gallagher, S. J.; Fulthorpe, C.; Bogus, K.
2017-12-01
In 2015, International Ocean Discovery Program Expedition 356 cored a transect along the margin off Western Australian to investigate the history of the Indonesian Throughflow (ITF) and its integral role in the development of global thermohaline circulation and climate. Throughout the expedition, a suite of foraminiferal analyses were employed wherein an incredibly diverse benthic fauna ( 260 species) was used to reveal palaeo-water depth, palaeobathymetric setting and variable conditions at the sediment-water interface. Benthic foraminiferal biofacies are particularly sensitive to changes in environmental conditions, have a rapid turnover and are ideal proxies for monitoring physical and chemical changes in marine environments. When this information is combined with lithostratigraphic and other microfossil data, a robust understanding of past environments and past geological events can be reconstructed. Shipboard data were used to isolate horizons of interest for more intense sampling at Site U1461, situated on the Northwest Shelf (127 m water depth). The shipboard data revealed a large ( 150 m-thick) turbidite horizon hosting benthic foraminifera from a substantially shallower water depth than the horizon immediately preceding. We present preliminary foraminiferal results combined with shipboard sedimentological descriptions to better constrain the deposit's occurrence in the biostratigraphic record, use benthic foraminifera to elucidate the deposit's sedimentary origins and link this event with others in the region to investigate potential catalysts for its deposition.
NASA Astrophysics Data System (ADS)
Micheuz, Peter; Quandt, Dennis; Kurz, Walter
2017-04-01
International Ocean Discovery Program (IODP) expeditions 352 and 351 drilled through oceanic crust of the Philippine Sea plate. The two study areas are located near the outer Izu-Bonin-Mariana (IBM) fore arc and in the Amami Sankaku Basin. The primary objective was to improve our understanding of supra-subduction zones (SSZ) and the process of subduction initiation. The recovered drill cores during IODP expedition 352 represent approximately 50 Ma old fore arc basalts (FAB) and boninites revealing an entire volcanic sequence of a SSZ. Expedition 351 drilled FAB like oceanic crust similar in age to the FABs of expedition 352. In this study we present data on vein microstructures, geochemical data and isotopic signatures of vein precipitates to give new insights into fluid flow and precipitation processes and deformation within the Izu-Bonin fore arc. Veins formed predominantly as a consequence of hydrofracturing resulting in the occurrence of branched vein systems and brecciated samples. Along these hydrofractures the amount of altered host rock fragments varies and locally alters the host rock completely to zeolites and carbonates. Subordinately extensional veins released after the formation of the host rocks. Cross-cutting relationships of different vein types point to multiple fracturing events subsequently filled with minerals originating from a fluid with isotopic seawater signature. Based on vein precipitates, their morphology and their growth patterns four vein types have been defined. Major vein components are (Mg-) calcite and various zeolites determined by Raman spectra and electron microprobe analyses. Zeolites result from alteration of volcanic glass during interaction with a seawaterlike fluid. Type I veins which are characterized by micritic infill represent neptunian dykes. They predominantly occur in the upper levels of drill cores being the result of an initial volume change subsequently to crystallization of the host rocks. Type II veins are characterized by blocky carbonates and idiomorphic to blocky zeolites. Blocky carbonates locally exhibit zonation patterns. Type III and type IV veins are both assumed to be extensional veins. Type III is characterized by syntaxial growth and elongate blocky carbonate minerals. They predominantly occur as asymmetric syntaxial veins, locally exhibiting more than one crack-seal event. Type IV veins are defined as antitaxial fibrous carbonates. Type II veins commonly show deformation microstructures like twinning (type I/II twins), slightly curved twins, and subgrain boundaries indicative of incipient plastic deformation. Based on these observations differential stresses around 50 MPa were needed to deform vein minerals, presumably related to IBM fore arc extension due to the retreat of the subducted Pacific plate. We acknowledge financial support by the Austrian Research Fund (P27982-N29) to W. Kurz
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
The top bow deck of the Woods Hole Oceanographic Institution's research vessel Knorr is seen on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Woods Hole Oceanographic Institution workers load scientific instruments onboard the Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
The Woods Hole Oceanographic Institution's research vessel Knorr is seen docked on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Scientific instruments are loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
The Bridge of the Woods Hole Oceanographic Institution's research vessel Knorr is seen on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Food and supplies are loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom boards the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Lindstrom will depart on Knorr Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
A full suite of instruments are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The various instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Autonomous wave gliders are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Graduate Student Jesse Anderson settles into her cabin onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Anderson will work with the Argo Floats instruments in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
CTD instruments used to measure Conductivity, Temperature, and Depth, are seen onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The CTDs will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Autonomous wave gliders, right, are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
A sensor-laden buoy is seen prior to being loaded onboard the Woods Hole Oceanographic Institution's vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Ken Decoteau, left, and Chip Beniot, both of the Woods Hole Oceanographic Institution, move scientific instruments to the research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Chip Beniot, left, and Ken Decoteau, both of the Woods Hole Oceanographic Institution, move scientific instruments to the research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom talks about the instruments onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Various scientific instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom inspects an autonomous wave glider onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Woods Hole Oceanographic Institution Scientist Dave Fratantoni works on the EcoMapper AUVs (autonomous underwater vehicles) onboard the Institute's research vessel Knorr, Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The EcoMappers will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Two EcoMapper AUVs (autonomous underwater vehicles) are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The EcoMappers will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Macnab, R.; Edwards, M.; Schenke, H.; Hatzky, J.
2007-12-01
The International Bathymetric Chart of the Arctic Ocean (IBCAO) was first released to the public after its introduction at the American Geophysical Union (AGU) Fall Meeting in 1999 (Jakobsson et al., 2000). This first release consisted of a Digital Bathymetric Model (DBM) on a Polar stereographic projection with grid cell spacing of 2.5 x 2.5 km derived from an accumulated database of all available bathymetric data at the time of compilation. The IBCAO bathymetric database included soundings collected during past and modern expeditions as well as digitized isobaths and depth soundings from published maps. Compared to previous bathymetric maps of the Arctic Ocean, the first released IBCAO compilation was based upon a significantly enhanced database, particularly in the high Arctic. For example, de-classified echo soundings acquired during US and British submarine cruises between 1958 and 1988 were included as well as soundings from icebreaker cruises conducted by Sweden and Germany at the end of the last century. Despite the newly available data in 1999, there were still large areas of the Arctic Ocean where publicly available data were completely absent. Some of these areas had been mapped by Russian agencies, and since these observations were not available to IBCAO, depth contours from the bathymetric contour map published by the Head Department of Navigation and Hydrography (HDNO) (Naryshkin, 1999) were digitized and incorporated in the database. The new IBCAO Version 2.0 comprises the largest update since the first release; moreover, the grid spacing has been decreased to 2 x 2 km. Numerous multibeam data sets that were collected by ice breakers, e.g. USCGC Healy, R/V James Clarke Ross, R/V Polarstern, IB Oden, now form part of the database, as do the swath bathymetric observations acquired during the 1999 SCICEX expedition. The portrayal of the Eastern Arctic Basin is vastly improved due to e.g. the Arctic Mid Ocean Ridge Expedition 2001 (AMORE) and Arctic Gakkel Vents 2007 (AGAVE) expedition while mapping missions aboard the USCGC Healy have revealed the "real" shape of the sea floor of the central Lomonosov Ridge and in areas off Northern Alaska in the Western Arctic. This paper presents an overview of the new data included in Version 2.0 as well as a brief discussion on the improvements and their possible implications for IBCAO users. Jakobsson, M., Cherkis, N., Woodward, J., Macnab, R. and Coakley, B., 2000. New grid of Arctic bathymetry aids scientists and mapmakers. EOS, Transactions American Geophysical Union, 81: 89, 93, 96. Naryshkin, G., 1999. Bottom relief of the Arctic Ocean. In: H.D.o.N.a. Oceanography and A.-R.R.I.f.G.a.M.R.o.t.W. Ocean (Editors). Russian Academy of Sciences, pp. Bathymetric contour map.
NASA Astrophysics Data System (ADS)
Burgio, M.; Zhang, J.; Kavanagh, L.; Martinez, A. O.; Expedition 360 Scientists, I.
2016-12-01
The International Ocean Discovery Program (IODP) expeditions provide an excellent opportunity for onboard Education Officers (EO) to communicate and disseminate exciting shipboard research and discoveries to students around the world. During expedition 360, the EOs carried out 140 live webcasts, using different strategies to create an effective link between both students and scientists. Below are examples of strategies we used: -Primary school: The Beauty of Gabbro! and Life in the rocks! During the webcasts, students could virtually tour the ship, interview scientists, and see and discuss samples of the cored gabbro and minerals in thin sections. Artistic contextualization by J. Zhang, facilitated these activities. Moreover, highlighting the search for microbes in the Earth's crust , was particularly successful in engaging the students. -Middle and High school: Fun and relationships in science. Students were able to email expert scientists in the scientific discipline they chose to research and interview them during a live webcast. Some students created a song about the expedition. "on the boat - cup song - IODP project" https://www.youtube.com/watch?v=qex-w9aSV7c-University: Travels, research and the everyday life of professors onboard. We used webcasts to connect with universities in France, Japan and Italy, to create vibrant interactions between students and scientists that enabled students to get closer to their professors and understand better the life of onboard researchers. In collaboration with the science party we developed new strategies to keep in touch with students after completion of the cruise. We generated teaching kits consisting of pedaqgoical sets of pictures, exercises using onboard data, a continuously updated map "tracking geologists", and live webcasts to be organized from laboratories to schools. We already have had enthusiastic feedback from teachers that took part in our webcasts and the challenge is to continue to foster the relationships we created.
Cózar, Andrés; Martí, Elisa; Duarte, Carlos M.; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J.; Eguíluz, Victor M.; González-Gordillo, J. Ignacio; Pedrotti, Maria L.; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier
2017-01-01
The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris. PMID:28439534
Cózar, Andrés; Martí, Elisa; Duarte, Carlos M; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J; Eguíluz, Victor M; González-Gordillo, J Ignacio; Pedrotti, Maria L; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier
2017-04-01
The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.
Wu, Jieying; Gao, Weimin; Johnson, Roger H.; Zhang, Weiwen; Meldrum, Deirdre R.
2013-01-01
Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle. PMID:24152557
NASA Astrophysics Data System (ADS)
Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.
2007-12-01
Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries shed new light on the nature of volcanic and hydrothermal processes in the Arctic basin, and also demonstrate the importance of new technologies for advancing science beneath ice-covered oceans. Operationally, the AUV missions pushed the envelope of deep-sea technology. The recoveries were particularly difficult as it was necessary to have the vehicle find small pools of open water next to the ship, but in some cases the ice was in a state of regional compression such that no open water could be found or created. In these cases a well-calibrated, ship-based, short-baseline acoustic system was essential for successful vehicle recoveries. In all we were able to achieve a variety of operational and technological advances that provide stepping stones for future under-ice robotic missions, both on Earth and perhaps eventually on Europa.
NASA Astrophysics Data System (ADS)
Hashimoto, S.; Yamaguchi, K. E.; Takahashi, K.
2012-12-01
The modern Arctic Ocean plays crucial roles in controlling global climate system with the driving force of global thermohaline circulation through the formation of dense deep water and high albedo due to the presence of perennial sea-ice. However, the Arctic sea-ice has not always existed in the past. Integrated Ocean Drilling Program (IODP) Expedition 302 Arctic Coring Expedition (ACEX) has clarified that global warming (water temperature: ca. 14~16○C) during 48~49 Ma Azolla Event induced the loss of sea-ice and desalination of surface ocean, and that sea-ice formed again some million years later (45 Ma). In the Arctic Ocean, warming and cooling events repeated over and over (e.g., Brinkhuis et al., 2006; Moran et al., 2006; März et al., 2010). Large variations in the extent of thermohaline circulation through time often caused stagnation of seawater and appearance of anaerobic environment where hydrogen sulfide was produced by bacterial sulfate reduction. Ogawa et al. (2009) confirmed occurrence of framboidal pyrite in the ACEX sediments, and suggested that the Arctic Ocean at the time was anoxic, analogous to the modern Black Sea, mainly based on sulfur isotope analysis. To further clarify the variations in the nutrient status of the Arctic Ocean, we focus on the geochemical cycle of phosphorus. We performed sequential extraction analysis of sedimentary phosphorus in the ACEX sediments, using the method that we improvped based on the original SEDEX method by Ruttenberg (1992) and Schenau et al. (2000). In our method, phosphorus fractions are divided into five forms; (1) absorbed P, (2) Feoxide-P, (4) carbonate fluorapatite (CFAP) + CaCO3-P + hydroxylapatite (HAP), (4) detrital P, and (5) organic P. Schenau et al. (2000) divided the (3) fraction into non-biological CFAP and biological HAP and CaCO3-P. When the Arctic Ocean was closed and in its warming period, the water mass was most likely stratified and an anaerobic condition would have prevailed where bacterial sulfate reduction was active. In this case, most of the phosphorus in sediment was stored as organic P, which was originally derived as sinking particles of detrital plankton from the surface ocean. Increased rainfalls during such a warming period would have enhanced continental weathering and delivery of phosphorus to the surface ocean, and biological activity using increased amounts of phosphorus supply would also have increased. Feoxide-P is considered to be less important as a sink for phosphorus because of the likely formation of pyrite through the reductive dissolution of Fe oxide. CFAP could be a sink for phosphorus, because the formation of CFAP tends to increase with increasing age and depth.
NASA Astrophysics Data System (ADS)
Yan, Q.; Shi, X.
2015-12-01
The drilling sites of IODP 334 and 344 lie in the being subducted part of Cocos Ridge, offshore Costa Rica. Some seamount clusters distributed in the northwest side of the sites. Most scientists accepted that the Cocos ridge is intimately related to the activity of Galapagos plume (e.g., Hoernle et al., 2000, 2004, 2008). In this study we have selected some basaltic samples from U1381A, U1381C and U1414A (IODP 334 and 344) (Harris et al., 2015a, b) to carry out petrogenetic study. Major element compositions show that these basaltic rocks belong to sub-alkaline rocks, which is consistent with previous study on basalts from northern side of Cocos ridge. The characteristics of trace element composition are similar to that of EMORB, and the compositional differences in trace elements among samples reflect the influence of fractional crystallization. Sr-Nd-Pb isotopic compositions of these basaltic rocks show that there exist mantle heterogeneity beneath the Cocos ridge, and they may be the product of mixing between DMM/GSC and EMII. The new data show more enriched source feature than those from Galapagos hotspot (and its tracks) in previous study (Hoernle et al., 2000,2004), and slightly more enriched than those Miocene to Pliocene arc volcanics from Central America (Gazel et al., 2009). Partial melting model show that the parental basalts for these basaltic rocks may be produced by 13 to 28% partial melting of garnet pyroxenite. ReferencesGazel et al., 2009. G-cubed.10, Q02S11, doi:10.1029/2008GC002246.//Harris, R.N., Sakaguchi, A., Petronotis, K., and the Expedition 344 Scientists. 2015a. Input Site U1381. Proceedings of the Integrated Ocean Drilling Program, Volume 344//Harris, R.N., Sakaguchi, A., Petronotis, K., and the Expedition 344 Scientists. 2015b. Input Site U1414.Proceedings of the Integrated Ocean Drilling Program, Volume 344//Hoernle et al., 2000. Geology, 28(5),435-438//Hoernle et al., 2004. Geology, 32,697-700//Hoernle et al., 2008. Nature, 451,1094-1098 (This study was supported by National Natural Science Foundation of China (NSFC nos. 41296030 and 41322036, and IODP-China.)
Earth Observations taken by Expedition 41 crewmember
2014-09-27
ISS041-E-045469 (27 Sept. 2014) --- One of the Expedition 41 crew members aboard the International Space Station, flying at an altitude of 222 nautical miles above a point in the Atlantic Ocean several hundred miles off the coast of Africa near the Tropic of Cancer, photographed this eye-catching panorama of the night sky on Sept. 27. NASA astronaut Reid Wiseman, flight engineer, tweeted the image, which was taken with an electronic still camera, set with a 24mm focal length. In his accompanying comments, Wiseman stated, "Sahara sands make the Earth glow orange."
NASA Astrophysics Data System (ADS)
Cantwell, K. L.; Kennedy, B. R.; Malik, M.; Gray, L. M.; Elliott, K.; Lobecker, E.; Drewniak, J.; Reser, B.; Crum, E.; Lovalvo, D.
2016-02-01
Since it's commissioning in 2008, NOAA Ship Okeanos Explorer has used telepresence technology both as an outreach tool and as a new way to conduct interdisciplinary science expeditions. NOAA's Office of Ocean Exploration and Research (OER) has developed a set of collaboration tools and protocols to enable extensive shore-based participation. Telepresence offers unique advantages including access to a large pool of expertise on shore and flexibility to react to new discoveries as they occur. During early years, the telepresence experience was limited to Internet 2 enabled Exploration Command Centers, but with advent of improved bandwidth and new video transcoders, scientists from anywhere with an internet connection can participate in a telepresence expedition. Scientists have also capitalized on social media (Twitter, Facebook, Reddit etc.) by sharing discoveries to leverage the intellectual capital of scientists worldwide and engaging the general public in real-time. Aside from using telepresence to stream video off the ship, the high-bandwidth satellite connection allows for the transfer of large quantities of data in near real-time. This enables not only ship - shore data transfers, but can also support ship - ship collaborations as demonstrated during the 2015 and 2014 seasons where Okeanos worked directly with science teams onboard other vessels to share data and immediately follow up on features of interest, leading to additional discoveries. OER continues to expand its use of telepresence by experimenting with procedures to offload roles previously tied to the ship, such as data acquisition watch standers; prototyping tools for distributed user data analysis and video annotation; and incorporating in-situ sampling devices. OER has also developed improved tools to provide access to archived data to increase data distribution and facilitate additional discoveries post-expedition.
Exploration of the Eltanin Impact Area (Bellingshausen Sea): Expedition ANT XVIII5a
NASA Technical Reports Server (NTRS)
Gersonde, Rainer; Kyte, Frank T.
2001-01-01
The impact of the Eltanin asteroid into the Bellingshausen Sea (2.15 Ma) is the only known impact in a deep-ocean (approx. 5 km) basin. On 26 March 2001, the FS Polarstern returned to the impact area during expedition ANT XVIII/5a. Over a period of 14 days, this region was explored by detailed bathymetric mapping, acoustic profiling of sediment deposits, and direct sampling with 18 piston cores and four gravity cores. Preliminary shipboard examination of microfossils showed that sixteen of the piston cores and three gravity cores contained sediments at least as old as the impact event and have a high probability of containing a record of the disturbances caused by the impact. During the expedition, portions of eleven piston cores were opened for preliminary examination of the impact deposits. Visual examination of cores and microscopic identification of suspect impact melt particles were were used to identify ejecta and X-ray radiographs of the opened core segments permitted analysis of sediment structures. Impact deposits were found in nine of the eleven opened cores, and a similar success rate is anticipated in the seven cores remaining to be opened. These preliminary observations indicate that the highest concentrations of meteoritic ejecta and the largest particle sizes appear to occur in the region north of the San Martin seamounts. Recovered debris includes cm-sized melt rocks and a 2.5 cm meteorite. This expedition has confirmed the presence of high concentrations of meteoritic ejecta across a region at least as large as 10(exp 5) sq km. Quantitative analyses of ejecta distribution within this region will require further study, but previous estimates of 1 km for the minimum diameter of the Eltanin asteroid, appear safe.
Composition and abundance of epibenthic-sledge catches in the South Polar Front of the Atlantic
NASA Astrophysics Data System (ADS)
Brandt, A.; Havermans, C.; Janussen, D.; Jörger, K. M.; Meyer-Löbbecke, A.; Schnurr, S.; Schüller, M.; Schwabe, E.; Brandão, S. N.; Würzberg, L.
2014-10-01
An epibenthic sledge (EBS) was deployed at seven different deep-sea stations along the South Polar Front of the Atlantic in order to explore the composition and abundance of macrofaunal organisms and to identify the most abundant taxa in this transition zone to the Southern Ocean. In total 3,130 specimens were sampled by means of the EBS on board of RV Polarstern during the expedition ANT-XXVIII/3 in the austral summer of 2012. Benthic and suprabenthic Crustacea occurred to be most frequent in the samples. Among those, copepods were by far most numerous, with 1,585 specimens followed by the peracarid taxa Isopoda (236 ind.), Amphipoda (103 ind.), Tanaidacea (78 ind.) and Cumacea (50 ind.). Annelida were represented by a high number of specimens belonging to different polychaete taxa (404 ind.). The molluscan fauna was clearly dominated by Bivalvia (255 ind.), followed in numbers of specimens by Gastropoda (47 ind.). The deep-sea benthos sampled along the Southern Polar Front occurred in surprisingly low abundances, contrasting the largely high surface productivity of the area. Numbers of specimens across different macrofaunal taxa and especially of peracarid crustaceans underscored by far those from South Ocean sites at higher latitudes in the Weddell Sea.
Composition of Sediment Inputs to the Hikurangi Subduction Margin: A Prelude to IODP Expedition 375
NASA Astrophysics Data System (ADS)
Underwood, M.
2017-12-01
Expedition 375 of the International Ocean Discovery Program is scheduled to begin drilling offshore New Zealand in March 2018. Two sites will be cored seaward of the Hikurangi subduction front (subduction inputs), plus one site at the toe of the accretionary prism, and one site in the forearc above a zone of well-documented slow-slip events. One of the challenges during planning for Expedition 375 has been the total absence of pre-existing compositional data from the region; that lack of basic information impacts such tasks as mixing and analysis of appropriate standards for X-ray diffraction, error analysis, computation of accurate normalization factors, and QA/QC. To help overcome those deficiencies, I analyzed a total of 152 samples from ODP Sites 1123 (Quaternary to Eocene), 1124 (Quaternary to Cretaceous), and 1125 (Quaternary to Miocene), plus piston/gravity-core samples from the repositories at Lamont-Doherty, Oregon State, and NIWA. The results reveal an unusually large range of compositions for the bulk sediments. The relative abundance of total clay minerals ranges from 3 to 64 wt%. Quartz ranges from 0 to 39 wt%. Feldspar ranges from 0 to 40 wt%, and calcite ranges from 0 to 93 wt%. Samples from the Hikurangi Plateau and Chatham Rise are carbonate-rich, with many bordering on almost-pure nannofossil chalk. Hemipelagic muds from the floor of Hikurangi Trough, Ruatoria slide, and the landward slope of the trench are fairly uniform, with averages of 36 wt% total clay minerals, 27 wt% quartz, 24 wt% feldspar, and 13 wt% calcite. Unlike many other subduction zones, this diversity of lithologies will save shipboard scientists from repetitive, mind-numbing descriptions and analyses, and shorebased experiments for frictional properties, permeability, and consolidation will need to pay close attention to the compositional attributes of the specimens. In addition, results from the four IODP boreholes can be interpreted within a broader, regional-scale framework of sediment provenance and dispersal.
NASA Astrophysics Data System (ADS)
Sanfilippo, A.; France, L.; Ghosh, B.; Liu, C. Z.; Morishita, T.; Natland, J. H.; Dick, H. J.; MacLeod, C. J.; Expedition 360 Scientists, I.
2016-12-01
International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling programme ('SloMo' project) aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. As an initial phase of the SloMo project, IODP Exp. 360 intended to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. During this expedition, 89 cores of gabbroic rocks were recovered at Hole U1473A, drilled to 789.7 m below seafloor. This hole was subsequently deepened to 809.4 mbsf during transit Expedition 362T, which recovered additional 7 cores. The gabbroic section recovered at Hole U1473A consists of several types of gabbro, diabase, and felsic veins. The main lithology is dominated by olivine gabbro (76.5% in abundance), followed by gabbro containing 1-2% oxide (9.5%), gabbro with >2% oxide (7.4%), gabbro sensu stricto (5.1%), felsic veins (1.5%) and diabase (<0.5%). The different lithologies appear randomly distributed throughout the section, although oxide abundance seems to decrease slightly downhole, except for the lowermost intervals where oxide gabbros are more abundant. Based on changes in rock types, grain size, texture, and the occurrence of felsic material, we identified eight lithologic units, which locally define separate geochemical trends. Each unit is characterized by meter-scale heterogeneity which classically characterizes gabbros formed at slow spreading ridges. Reaction textures in olivine gabbros, crosscutting relationships between oxide gabbros and host rocks, the presence of intrusive to sutured contacts, igneous layering and the widespread occurrence of felsic veins and segregations indicate that the evolution of this section was controlled by complicated interactions of magmatic processes, e.g., fractional crystallization, melt-rock reaction, late-stage melt migration, which were active in a crystal mush formed by multiple injections of magma. This contribution describes the main features of these rocks and discusses the complexity of the igneous processes producing this 800 m-long transect of oceanic crust that was formed in a robust magmatic segment of an ultraslow spreading ridge.
Maximizing ship-to-shore connections via telepresence technologies
NASA Astrophysics Data System (ADS)
Fundis, A. T.; Kelley, D. S.; Proskurowski, G.; Delaney, J. R.
2012-12-01
Live connections to offshore oceanographic research via telepresence technologies enable onshore scientists, students, and the public to observe and participate in active research as it is happening. As part of the ongoing construction effort of the NSF's Ocean Observatories Initiative's cabled network, the VISIONS'12 expedition included a wide breadth of activities to allow the public, students, and scientists to interact with a sea-going expedition. Here we describe our successes and lessons learned in engaging these onshore audiences through the various outreach efforts employed during the expedition including: 1) live high-resolution video and audio streams from the seafloor and ship; 2) live connections to science centers, aquaria, movie theaters, and undergraduate classrooms; 3) social media interactions; and 4) an onboard immersion experience for undergraduate and graduate students.
NASA Astrophysics Data System (ADS)
Wilner, J.; Hofmann, A.; Hand, K. P.
2017-12-01
Accurately modelling the intensification of greenhouse gas effects in the polar regions ("polar amplification") necessitates a thorough understanding of the geochemical balance between atmospheric, sea ice, and oceanic layers. Sea ice is highly permeable to CO2 and therefore represents a major sink of oceanic CO2 in winter and of atmospheric CO2 in summer, sinks that are typically either poorly constrained in or fully absent from global climate models. We present a novel method for sampling both trapped and dissolved gases (CO2, CH4 and δ13CH4) in sea ice with a Picarro 2132-i Methane Analyzer, taking the following sampling considerations into account: minimization of water and air contamination, full headspace sampling, prevention of inadvertent sample bag double-puncturing, and ease of use. This method involves melting of vacuum-sealed ice cores to evacuate trapped gases to the headspace and sampling the headspace gas with a blunt needle sheathed by a beveled puncturing needle. A gravity catchment tube prevents input of dangerous levels of liquid water to the Picarro cavity. Subsequent ultrasonic degassing allows for dissolved gas measurement. We are in the process of using this method to sample gases trapped and dissolved in Arctic autumn sea ice cores and atmospheric samples collected during the 2016 Polarstern Expedition and during a May 2017 field campaign north of Barrow, Alaska. We additionally employ this method, together with inductively coupled plasma mass spectrometry (ICP-MS), to analyze the transfer of potential biogeochemical signatures of underlying hydrothermal plumes to sea ice. This has particular relevance to Europa and Enceladus, where hypothetical hydrothermal plumes may deliver seafloor chemicals to the overlying ice shell. Hence, we are presently investigating the entrainment of methane and other hydrothermal material in sea ice cores collected along the Gakkel Ridge that may serve as biosignatures of methanogenic organisms in seafloor oases analogous to icy ocean worlds.
NASA Astrophysics Data System (ADS)
Doel, R.
2016-12-01
Fundamental tensions affected planning for United States involvement in the International Indian Ocean Expedition (IIOE). At the highest levels of the US state, science advisors and State Department officials praised the proposed Indian Ocean research plan—loosely modeled on the recently completed International Geophysical Year of 1957-58—as a way of promoting scientific internationalism, seeing this undertaking as a way to help bring India more firmly within the Western sphere amid Cold War East-West conflicts. Dwight D. Eisenhower's presidential science advisor, George Kistiakowsky, had the IIOE in mind when he advised the National Security Council that a key role science could play in American foreign relations lay "in relation with the neutral and less-developed countries." At the same time, American scientists invited to take part in the Indian Ocean Expedition—while generally sympathetic with U.S. foreign policy aims—prioritized research programs in the physical branches of the environmental sciences. While policy-makers hoped to encourage biological research, with the aim of encouraging fisheries and protein production to aid Indian citizens, earth scientists—better-funded, better-organized, supported by military agencies because their studies were crucial to national security—came to dominate the IIOE. While the IIOE was later judged a success, for it extended long-running research programs in physical and chemical oceanography into a less-explored ocean, hopes to advance biological programs on an equal footing proved premature.
NASA Astrophysics Data System (ADS)
Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel
2014-06-01
Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.
NASA Astrophysics Data System (ADS)
Kameda, Jun; Okamoto, Atsushi; Sato, Kiminori; Fujimoto, Koichiro; Yamaguchi, Asuka; Kimura, Gaku
2017-01-01
Thick accumulation of chert is a ubiquitous feature of old oceanic plates at convergent margins. In this study, we investigate chert fragments recovered by the Integrated Ocean Drilling Program expedition 343 at the Japan Trench where the 2011 Tohoku-Oki earthquake (Mw 9.0) occurred. This sample provides a unique opportunity to investigate in situ chert diagenesis at an active subduction margin and its influence on the kinematics of megathrust faulting. Our mineralogical analyses revealed that the chert is characterized by hydrous opal-CT and may therefore be highly deformable via pressure solution creep and readily accommodate shear strain between the converging plates at driving stresses of kilopascal order. As chert diagenesis advances, any further deformation requires stresses of >100 MPa, given the increasing transport distances for solutes as represented in cherts on land. The chert diagenesis is thus related to the mechanical transition from a weakly to strongly coupled plate interface at this margin.
Carnivorous sponges (Cladorhizidae) of the deep Weddell Sea, with descriptions of two new species
NASA Astrophysics Data System (ADS)
Dressler-Allame, Melina; Göcke, Christian; Kersken, Daniel; Plotkin, Alexander; Janussen, Dorte
2017-03-01
This paper presents 29 sponges of the family Cladorhizidae Dendy, 1922 sampled at 18 different stations in the Weddell Sea, Antarctic during two expeditions of RV Polarstern, PS61 ANT-XIX/2 ANDEEP 2 in 2002 and PS67 ANT-XXII/3 ANDEEP 3 in 2005. Fourteen species from four genera have been registered - one species of Asbestopluma Topsent, 1901, five species of Chondrocladia Thomson, 1873, three species of Cladorhiza Sars, 1872 and five species of Lycopodina Lundbeck, 1905. Six species are endemics of the Southern Ocean. Four species were previously only known from the areas north of the Antarctic and our records of them are thereby new for this region. Two species of Lycopodina, Lycopodina rhabdostylophora sp. nov. and Lycopodina pediculifera sp. nov., are new to science. Our study has considerably expanded the data on diversity of Cladorhizidae in the Southern Ocean. About 27 cladorhizid species (18-19% of global cladorhizid diversity) are now recorded for this region, of which 56% are endemics.
The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans.
Tully, Benjamin J; Graham, Elaina D; Heidelberg, John F
2018-01-16
Microorganisms play a crucial role in mediating global biogeochemical cycles in the marine environment. By reconstructing the genomes of environmental organisms through metagenomics, researchers are able to study the metabolic potential of Bacteria and Archaea that are resistant to isolation in the laboratory. Utilizing the large metagenomic dataset generated from 234 samples collected during the Tara Oceans circumnavigation expedition, we were able to assemble 102 billion paired-end reads into 562 million contigs, which in turn were co-assembled and consolidated in to 7.2 million contigs ≥2 kb in length. Approximately 1 million of these contigs were binned to reconstruct draft genomes. In total, 2,631 draft genomes with an estimated completion of ≥50% were generated (1,491 draft genomes >70% complete; 603 genomes >90% complete). A majority of the draft genomes were manually assigned phylogeny based on sets of concatenated phylogenetic marker genes and/or 16S rRNA gene sequences. The draft genomes are now publically available for the research community at-large.
An Early Middle Eocene Orbital Scale Benthic Isotope Record From IODP Site 1408, Newfoundland Rise
NASA Astrophysics Data System (ADS)
Wu, F.; Lawler, N.; Penman, D. E.; Zachos, J. C.; Kirtland Turner, S.; Norris, R. D.; Wilson, P. A.; Hull, P. M.
2014-12-01
The long-term Paleogene global cooling trend and eventual glaciation of Antarctica has been attributed to a reduction in greenhouse gas levels as well as changes in the configuration of high-latitude oceanic gateways. This major trend in climate and forcing is known to have initiated in the early middle Eocene, between 44-49 Mya, yet our understanding of the detailed evolution of climate and oceanic circulation and carbon chemistry of this critical interval has been limited for lack of high-resolution proxy climate records. Integrated Ocean Drilling Program (IODP) Expedition 342, designed in part to address this deficiency, successfully recovered highly expanded sequences of middle Eocene sediment from multiple sites in the western North Atlantic, with several sites characterized by high sedimentation rates (>2.8 cm/kyr) and pronounced lithologic cycles. Using samples from cores recovered at one of these sites, 1408, located on Southeast Newfoundland Ridge, we are reconstructing the first orbital-scale deep sea δ18O and δ13C records spanning a ~1.6 million year interval (~Chron 20r) of the middle Eocene. Based on analyses of benthic foraminifer N. truempyi, our preliminary data reveal distinct high-frequency cycles with periods matching those of the orbital cycles, particularly precession and obliquity. Cross spectral analysis of δ18O, δ13C and lithologic records reveal a high degree of coherency, implying a high sensitivity in local sediment fluxes and bottom water chemistry (and circulation) to orbital forcing. Also, given the location and depth (~2600 m at 50 Ma), Site 1408 constrains the end-member composition of northern component bathyal bottom waters so that comparison with benthic isotope records from the south Atlantic and other basins can be used to assess ocean circulation patterns in the mid-Eocene. In general, bottom water temperatures appear to have been warmer, and DIC δ13C lower than observed elsewhere. Thus, our preliminary results are consistent with the absence of significant bottom water production in the North Atlantic at this time. This record will eventually be part of a longer Eocene record being assembled by a consortium of Expedition 342 Scientists.
1999-07-21
KENNEDY SPACE CENTER, FLA. -- Gunther Wendt takes a turn at the podium after viewing the recovered Liberty Bell 7 Project Mercury capsule, seen in the background. At right is Curt Newport who led the expedition to find and retrieve the capsule. The expedition was sponsored by the Discovery Channel. Wendt worked on the Liberty Bell 7 before its launch July 21, 1961. After its successful 16-minute suborbital flight, the Liberty Bell 7, with astronaut Virgil "Gus" Grissom aboard, splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. An underwater salvage expert, Newport located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y
Assessment of marine weather forecasts over the Indian sector of Southern Ocean
NASA Astrophysics Data System (ADS)
Gera, Anitha; Mahapatra, D. K.; Sharma, Kuldeep; Prakash, Satya; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.; Anilkumar, N.
2017-09-01
The Southern Ocean (SO) is one of the important regions where significant processes and feedbacks of the Earth's climate take place. Expeditions to the SO provide useful data for improving global weather/climate simulations and understanding many processes. Some of the uncertainties in these weather/climate models arise during the first few days of simulation/forecast and do not grow much further. NCMRWF issued real-time five day weather forecasts of mean sea level pressure, surface winds, winds at 500 hPa & 850 hPa and rainfall, daily to NCAOR to provide guidance for their expedition to Indian sector of SO during the austral summer of 2014-2015. Evaluation of the skill of these forecasts indicates possible error growth in the atmospheric model at shorter time scales. The error growth is assessed using the model analysis/reanalysis, satellite data and observations made during the expedition. The observed variability of sub-seasonal rainfall associated with mid-latitude systems is seen to exhibit eastward propagations and are well reproduced in the model forecasts. All cyclonic disturbances including the sub-polar lows and tropical cyclones that occurred during this period were well captured in the model forecasts. Overall, this model performs reasonably well over the Indian sector of the SO in medium range time scale.
NASA Astrophysics Data System (ADS)
Coleman, D. F.
2012-12-01
Most research vessels are equipped with satellite Internet services with bandwidths capable of being upgraded to support telepresence technologies and live shore-based participation. This capability can be used for real-time data transmission to shore, where it can be distributed, managed, processed, and archived. The University of Rhode Island Inner Space Center utilizes telepresence technologies and a growing network of command centers on Internet2 to participate live with a variety of research vessels and their ocean observing and sampling systems. High-bandwidth video streaming, voice-over-IP telecommunications, and real-time data feeds and file transfers enable users on shore to take part in the oceanographic expeditions as if they were present on the ship, working in the lab. Telepresence-enabled systematic ocean exploration and similar programs represent a significant and growing paradigm shift that can change the future of seagoing ocean observations using research vessels. The required platform is the ship itself, and users of the technology rely on the ship-based technical teams, but remote and distributed shore-based science users, students, educators, and the general public can now take part by being aboard virtually.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Crates containing scientific instruments are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
The bow of the Woods Hole Oceanographic Institution's research vessel Knorr is seen from the bridge on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Scientific instruments are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Two NOAA Pacific Marine Environmental Laboratory (PMEL) buoys are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
An engineer is raised by crane to work on the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
A Rosette water sampler system that will be used during the Salinity Processes in the Upper Ocean Regional Study (SPURS) is seen onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart for the NASA-sponsored expedition on Sept. 6 and will head into the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Scientific instruments, buoys, and shipping crates are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
International maritime signal flags are seen on the bridge of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
A sculpture resembling the Roman god Neptune is seen dockside of the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom poses for a photograph next to the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Lindstrom will depart on Knorr Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Cuadrat, Rafael R C; Ferrera, Isabel; Grossart, Hans-Peter; Dávila, Alberto M R
2016-02-01
Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Graduate Student Jesse Anderson tries to find her cabin onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Anderson will work with the Argo Floats instruments in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Woods Hole Oceanographic Institution Senior Engineer Steve Faluotico works on the SPURS buoy prior to it being loaded onto the Institute's research vessel Knorr, Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The SPURS buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-05
An worker prepares to attached a crane hook onto a sensor-laden buoy so that it may be loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr on wednesday, Sept. 5, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Sean Whelan, a Marine Technician for the Woods Hole Oceanographic Institution, prepares CTD instruments used to measure Conductivity, Temperature, and Depth, onboard the Institute's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The CTDs will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom inspects a sensor-laden buoy prior to it being loaded onboard the Woods Hole Oceanographic Institution's vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Earth Observation - time lapse
2014-07-07
ISS040-E-050780 (7 July 2014) --- One of the Expedition 40 crew members aboard the International Space Station, flying 226 nautical miles above the Indian Ocean, south of Australia, recorded this image of Aurora Australis or the Southern Lights on July 7, 2014.
Earth observation taken by the Expedition 55 crew
2018-03-31
iss055e007531 (March 31, 2018) --- The tip of South Africa and its legislative capital city of Cape Town are pictured as the International Space Station comes out of the lowest portion of its orbit over the South Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Falcon-Suarez, Ismael; Bayrakci, Gaye; Minshull, Tim A.; North, Laurence J.; Best, Angus I.; Rouméjon, Stéphane
2017-11-01
Serpentinized peridotites co-exist with mafic rocks in a variety of marine environments including subduction zones, continental rifts and mid-ocean ridges. Remote geophysical methods are crucial to distinguish between them and improve the understanding of the tectonic, magmatic and metamorphic history of the oceanic crust. But, serpentinite peridotites exhibit a wide range of physical properties that complicate such a distinction. We analysed the ultrasonic P- and S-wave velocities (Vp, Vs) and their respective attenuation (Qp-1, Qs-1), electrical resistivity and permeability of four serpentinized peridotite samples from the southern wall of the Atlantis Massif, Mid-Atlantic Ridge, collected during International Ocean Discovery Program Expedition 357. The measurements were taken over a range of loading-unloading stress paths (5-45 MPa), using ∼1.7 cm length, 5 cm diameter samples horizontally extracted from the original cores drilled on the seafloor. The measured parameters showed variable degrees of stress dependence, but followed similar trends. Vp, Vs, resistivity and permeability show good inter-correlations, while relationships that included Qp-1 and Qs-1 are less clear. Resistivity showed high contrast between highly serpentinized ultramafic matrix (>50 Ω m) and mechanically/geochemically altered (magmatic/hydrothermal-driven alteration) domains (<20 Ω m). This information together with the elastic constants (Vp/Vs ratio and bulk moduli) of the samples allowed us to infer useful information about the degree of serpentinization and the alteration state of the rock, contrasted by petrographic analysis. This study shows the potential of combining seismic techniques and controlled source electromagnetic surveys for understanding tectonomagmatic processes and fluid pathways in hydrothermal systems.
Oceanic Impact: Mechanisms and Environmental Perturbations
NASA Technical Reports Server (NTRS)
Gersonde, Rainer (Editor); Deutsch, Alex (Editor); Ivanov, Boris A. (Editor); Kyte, Frank T. (Editor)
2002-01-01
The contents include the following: Oceanic impacts-a growing field of fundamental geoscience. Shock metamorphism on the ocean floor (numerical simulations). Numerical modeling of impact-induced modifications of the deep-sea floor. Computer modelling of the water resurge at a marine impact: the Lockne crater, Sweden. Experimental investigation of the role of water in impact vaporization chemistry. Calcareous plankton stratigraphy around the Pliocene Eltanin asteroid impact area (SE Pacific): documentation and application for geological and paleoceanographic reconstruction. Composition of impact melt debris from the Eltanin impact strewn field, Bellingshausen Sea. Iridium concentrations and abundances of meteoritic ejecta from the Eltanin impact in sediment cores from Polarstern expedition ANT XII/4. Unmelted meteoritic debris collected from Eltanin ejecta in Polarstern cores from expedition ANT XII/4. Impact tsunami-Eltanin. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America. The Mjolnir marine impact crater porosity anomaly. Kardla (Hiiu-maa Island, Estonia) - the buried and well-preserved Ordovician marine impact structure. Long-term effect of the Kardla crater (Hiiu-maa, Estonia) on Late Ordovician carbonate sedimentation. The middle Devonian Kaluga impact crater (Russia): new interpretation of marine setting.
1999-07-21
KENNEDY SPACE CENTER, FLA. -- Retrieved from the ocean floor three miles deep, the Liberty Bell 7 Project Mercury capsule is revealed to photographers and the media in Port Canaveral, Fla. The capsule was found and raised by Curt Newport (left), leading an expedition sponsored by the Discovery Channel. After its successful 16-minute suborbital flight on July 21, 1961, the Liberty Bell 7, with astronaut Virgil "Gus" Grissom aboard, splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. An underwater salvage expert, Newport located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y
1999-07-21
KENNEDY SPACE CENTER, FLA. -- Media and photographers get a close-up view of the Liberty Bell 7 Project Mercury capsule after its recovery from the Atlantic Ocean floor where it lay for 38 years. Launched July 21, 1961, the capsule made a successful 16-minute suborbital flight, with astronaut Virgil "Gus" Grissom aboard, and splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. Curt Newport, an underwater salvage expert, located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The expedition was sponsored by the Discovery Channel. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y.
1999-07-21
KENNEDY SPACE CENTER, FLA. -- Media and spectators get a close-up view of the Liberty Bell 7 Project Mercury capsule after its recovery from the Atlantic Ocean floor where it lay for 38 years. Launched July 21, 1961, the capsule made a successful 16-minute suborbital flight, with astronaut Virgil "Gus" Grissom aboard, and splashed down in the Atlantic Ocean. A prematurely jettisoned hatch caused the capsule to flood and a Marine rescue helicopter was unable to lift it. It quickly sank to a three-mile depth. Grissom was rescued but his spacecraft remained lost on the ocean floor, until now. Curt Newport, an underwater salvage expert, located the capsule through modern technology, and after one abortive attempt, successfully raised it and brought it to Port Canaveral. The recovery of Liberty Bell 7 fulfilled a 14-year dream for the expedition leader. The expedition was sponsored by the Discovery Channel. The capsule is being moved to the Kansas Cosmosphere and Space Center in Hutchinson, Kansas, where it will be restored for eventual public display. Newport has also been involved in salvage operations of the Space Shuttle Challenger and TWA Flight 800 that crashed off the coast of Long Island, N.Y
IODP Expedition 351 Izu-Bonin-Mariana Arc Origins: Age Model for Site U1438
NASA Astrophysics Data System (ADS)
Morris, A.; Aljahdali, M. H.; Bandini, A. N.; do Monte Guerra, R.; Kender, S.; Maffione, M.
2014-12-01
We report preliminary paleomagnetic and paleontological results from International Ocean Discovery Program (IODP) Expedition 351, which recovered an unprecedented ~1.4 km thick volcaniclastic sedimentary record documenting the initiation and subsequent evolution of the Izu-Bonin-Mariana (IBM) intra-oceanic arc-basin system. Magnetostratigraphic and biostratigraphic constraints provide a high-resolution temporal framework for interpretation of this record.Paleomagnetic analyses of archive half core samples provide a continuous record of the geomagnetic field inclination down to 847 mbsf that allows construction of a detailed site magnetostratigraphy that closely matches the Geomagnetic Polarity Timescale (Gradstein et al., 2012). A total of 87 geomagnetic reversals have been recognized in the studied succession, extending back to ~36 Ma. Despite sporadic microfossil occurrences in parts, calcareous nannofossils, planktonic foraminifera and radiolarians each contribute to the age model for the entire Site. All nannofossil marker species for Oligocene to Eocene Zones NP25 to NP19/20 are recognised. Beneath paleomagnetic control (847-1449 mbsf), foraminifera and radiolarians provide the only age control.The most salient features of the age model are that: (i) average linear sedimentation rates during the Plio-Pleistocene range from 1.4 to 2.2 cm/ka; (ii) there was a reduction in sedimentation rates to 0.25 - 0.5 cm/ka throughout the Miocene; and (iii) sedimentation rates sharply increase again in the Oligocene to Late Eocene to a maximum of ~20 cm/ka. These quantitative constraints closely match (non-quantitative) inferences based on the lithostratigraphy of the site, with fine-grained/coarse-grained sediments dominating in periods with low/high sedimentation rates respectively.
IODP Expedition 351 Izu-Bonin-Mariana Arc Origins: Age model for Site U1438
NASA Astrophysics Data System (ADS)
Morris, Antony; Maffione, Marco; Kender, Sev; Aljahdali, Mohammed; Bandini, Alexandre; Guerra, Rodrigo do Monte
2015-04-01
We report preliminary paleomagnetic and paleontological results from International Ocean Discovery Program (IODP) Expedition 351, which recovered an unprecedented ~1.4 km thick volcaniclastic sedimentary record documenting the initiation and subsequent evolution of the Izu-Bonin-Mariana (IBM) intra-oceanic arc-basin system. Magnetostratigraphic and biostratigraphic constraints provide a high-resolution temporal framework for interpretation of this record. Paleomagnetic analyses of archive half core samples provide a continuous record of the geomagnetic field inclination down to 847 mbsf that allows construction of a detailed site magnetostratigraphy that closely matches the Geomagnetic Polarity Timescale (Gradstein et al., 2012). A total of 87 geomagnetic reversals have been recognized in the studied succession, extending back to ~36 Ma. Despite sporadic microfossil occurrences in parts, calcareous nannofossils, planktonic foraminifera and radiolarians each contribute to the age model for the entire Site. All nannofossil marker species for Oligocene to Eocene Zones NP25 to NP19/20 are recognised. Beneath paleomagnetic control (847-1449 mbsf), foraminifera and radiolarians provide the only age control. The most salient features of the age model are that: (i) average linear sedimentation rates during the Plio-Pleistocene range from 1.4 to 2.2 cm/ka; (ii) there was a reduction in sedimentation rates to 0.25 - 0.5 cm/ka throughout the Miocene; and (iii) sedimentation rates sharply increase again in the Oligocene to Late Eocene to a maximum of ~20 cm/ka. These quantitative constraints closely match (non-quantitative) inferences based on the lithostratigraphy of the site, with fine-grained/coarse-grained sediments dominating in periods with low/high sedimentation rates respectively.
Modelling global distribution, risk and mitigation strategies of floating plastic pollution
NASA Astrophysics Data System (ADS)
van Sebille, Erik; Wilcox, Chris; Sherman, Peter; Hardesty, Britta Denise; Lavender Law, Kara
2016-04-01
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardise a global dataset of plastic marine debris measured using surface-trawling plankton nets and couple this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons. A large fraction of the uncertainty in these estimates comes from sparse sampling in coastal and Southern Hemisphere regions. We then use this global distribution of small floating plastic debris to map out where in the ocean the risk to marine life (in particular seabirds and plankton growth) is greatest, using a quantitative risk framework. We show that the largest risk occurs not necessarily in regions of high plastic concentration, but rather in regions of extensive foraging with medium-high plastic concentrations such as coastal upwelling regions and the Southern Ocean. Finally, we use the estimates of distribution to investigate where in the ocean plastic can most optimally be removed, assuming hypothetical clean-up booms following the ideas from The Ocean Cleanup project. We show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres. Based on these results, we propose more focus on the coastal zones when considering future efforts in sampling, risk management and mitigation.
Gemery, Laura; Cronin, Thomas M.; Poirier, Robert K.; Pearce, Christof; Barrientos, Natalia; O'Regan, Matt; Johansson, Carina; Koshurnikov, Andrey; Jakobsson, Martin
2017-01-01
Late Quaternary paleoceanographic changes at the Lomonosov Ridge, central Arctic Ocean, were reconstructed from a multicore and gravity core recovered during the 2014 SWERUS-C3 Expedition. Ostracode assemblages dated by accelerator mass spectrometry (AMS) indicate changing sea-ice conditions and warm Atlantic Water (AW)inflow to the Arctic Ocean from ∼50 ka to present. Key taxa used as environmental indicators include Acetabulastoma arcticum (perennial sea ice), Polycopes pp. (variable sea-ice margins, high surface productivity), Krithe hunti (Arctic Ocean deep water), and Rabilimis mirabilis (water mass change/AW inflow). Results indicate periodic seasonally sea-ice-free conditions during Marine Isotope Stage (MIS) 3 (∼57-29 ka), rapid deglacial changes in water mass conditions (15-11 ka), seasonally sea-ice-free conditions during the early Holocene (∼10-7 ka) and perennial sea ice during the late Holocene. Comparisons with faunal records from other cores from the Mendeleev and Lomonosov ridges suggest generally similar patterns, although sea-ice cover during the Last Glacial Maximum may have been less extensive at the new Lomonosov Ridge core site (∼85.15° N, 152° E) than farther north and towards Greenland. The new data provide evidence for abrupt, large-scale shifts in ostracode species depth and geographical distributions during rapid climatic transitions.
Earth Observations taken by Expedition 30 crewmember
2012-03-06
ISS030-E-122047 (6 March 2012) --- Pagan Island, Northern Marianas is featured in this image photographed by an Expedition 30 crew member on the International Space Station. A steam plume flows south from the peak of Pagan Island’s northernmost volcano in this photograph. Pagan is part of the Commonwealth of the Northern Marianas, an island chain of volcanoes that form the margin between the Pacific Ocean (to the east) and the Philippine Sea (to the west). Pagan is made up of two stratovolcanoes separated by an isthmus, and is one of the more volcanically active islands. The last eruption was in 2010, but the island was completely evacuated in 1981 when a large eruption forced the small Micronesian community to flee. According to NASA scientists, the islands themselves mark the tectonic boundary where the old, cold Pacific plate is subducted beneath the younger, less dense Philippine Sea crust at the Marianas Trench. The subduction results in substantial volcanic activity on the upper plate, forming the island arc of the Marianas. Considered to be one of the type examples for an oceanic subduction zone, the Marianas Trench includes the deepest spot in Earth’s oceans (more than 10,000 meters). The foreshortened appearance of the island is due to the viewing angle and distance from the space station, which was located over the Pacific Ocean approximately 480 kilometers to the southeast of Pagan Island when the image was taken.
NASA Astrophysics Data System (ADS)
Gemery, Laura; Cronin, Thomas M.; Poirier, Robert K.; Pearce, Christof; Barrientos, Natalia; O'Regan, Matt; Johansson, Carina; Koshurnikov, Andrey; Jakobsson, Martin
2017-11-01
Late Quaternary paleoceanographic changes at the Lomonosov Ridge, central Arctic Ocean, were reconstructed from a multicore and gravity core recovered during the 2014 SWERUS-C3 Expedition. Ostracode assemblages dated by accelerator mass spectrometry (AMS) indicate changing sea-ice conditions and warm Atlantic Water (AW) inflow to the Arctic Ocean from ˜ 50 ka to present. Key taxa used as environmental indicators include Acetabulastoma arcticum (perennial sea ice), Polycope spp. (variable sea-ice margins, high surface productivity), Krithe hunti (Arctic Ocean deep water), and Rabilimis mirabilis (water mass change/AW inflow). Results indicate periodic seasonally sea-ice-free conditions during Marine Isotope Stage (MIS) 3 ( ˜ 57-29 ka), rapid deglacial changes in water mass conditions (15-11 ka), seasonally sea-ice-free conditions during the early Holocene ( ˜ 10-7 ka) and perennial sea ice during the late Holocene. Comparisons with faunal records from other cores from the Mendeleev and Lomonosov ridges suggest generally similar patterns, although sea-ice cover during the Last Glacial Maximum may have been less extensive at the new Lomonosov Ridge core site ( ˜ 85.15° N, 152° E) than farther north and towards Greenland. The new data provide evidence for abrupt, large-scale shifts in ostracode species depth and geographical distributions during rapid climatic transitions.
NASA Astrophysics Data System (ADS)
Lund, Steve; Stoner, Joseph; Okada, Makoto; Mortazavi, Emily
2016-03-01
IODP Expedition 323 recovered six complete and replicate records of Brunhes-Chron paleomagnetic field variability (0-780,000 years BP) in 2820 m core depth below sea floor (CSF) of deep-sea sediments. On shipboard, we made more than 220,000 paleomagnetic measurements on the recovered sediments. Since then, we have u-channel sampled more than 300 m of Brunhes Chron sediments to corroborate our shipboard measurements and improve our paleomagnetic and rock magnetic understanding of these sediments. Several intervals of distinctive paleomagnetic secular variation (PSV) have been identified that appear to be correlatable among sites 1343, 1344, and 1345. One magnetic field excursion is recorded in sediments of sites 1339, 1343, 1344, and 1345. We identify this to be excursion 7α/Iceland Basin Event (192,000 years BP), which is also seen in the high-latitude North Atlantic Ocean (Channell et al., 1997). We have verified in u-channels the placement of the Brunhes/Matuyama boundary (780,000 years BP) at sites 1341 and 1343. Finally, we have developed a medium-quality relative paleointensity record for these sediments that is correlatable among the sites, even though it is still biased by large-amplitude environmental variability. On the basis of these observations we have built a magnetic chronostratigraphy of Expedition 323 sediments suitable for regional correlation and dating over the last 1 million years, and compared this with oxygen-isotope chronostratigraphy from sites U1339 and U1345.
Arctic summer school onboard an icebreaker
NASA Astrophysics Data System (ADS)
Alexeev, Vladimir A.; Repina, Irina A.
2014-05-01
The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to Kirkenes on September 23, 2013. In our presentation we will try to convey the spirit of learning and excitement of the students during the expedition and the summer school.
2014-07-07
ISS040-E-048027 (7 July 2014) --- One of the Expedition 40 crew members aboard the International Space Station, flying 226 nautical miles above the Indian Ocean, south of Australia, recorded this image of Aurora Australis or the Southern Lights on July 7, 2014.
2014-07-07
ISS040-E-048011 (7 July 2014) --- One of the Expedition 40 crew members aboard the International Space Station, flying 226 nautical miles above the Indian Ocean, south of Australia, recorded this image of Aurora Australis or the Southern Lights on July 7, 2014.
Earth Observations taken by Expedition 34 crewmember
2013-01-04
ISS034-E-016601 (4 Jan. 2013) --- On Jan. 4 a large presence of stratocumulus clouds was the central focus of camera lenses which remained aimed at the clouds as the Expedition 34 crew members aboard the International Space Station flew above the northwestern Pacific Ocean about 460 miles east of northern Honshu, Japan. This is a descending pass with a panoramic view looking southeast in late afternoon light with the terminator (upper left). The cloud pattern is typical for this part of the world. The low clouds carry cold air over a warmer sea with no discernable storm pattern.
Hurricane Bertha taken by the Expedition 17 Crew
2008-07-09
ISS017-E-010711 (9 July 2008) --- Hurricane Bertha was traveling northward at 10 knots (11.5 miles per hour) across the eastern part of the central Atlantic Ocean when this image was taken on July 9 by one of the Expedition 17 crewmembers aboard the International Space Station from a vantage point of 220 statute miles above the Earth. The sustained winds were 85 knots (97.9 miles per hour) with gusts up to 105 knots (121.0 miles per hour) and predicted to intensify. Mature and developing Cumulonimbus-type clouds are seen scattered through the cloud bands of the hurricane's system.
Hurricane Bertha taken by the Expedition 17 Crew
2008-07-09
ISS017-E-010706 (9 July 2008) --- Hurricane Bertha was traveling northward at 10 knots (11.5 miles per hour) across the eastern part of the central Atlantic Ocean when this image was taken on July 9 by one of the Expedition 17 crewmembers aboard the International Space Station from a vantage point of 220 statute miles above the Earth. The sustained winds were 85 knots (97.9 miles per hour) with gusts up to 105 knots (121.0 miles per hour) and predicted to intensify. Mature and developing Cumulonimbus-type clouds are seen scattered through the cloud bands of the hurricane's system.
Hurricane Bertha taken by the Expedition 17 Crew
2008-07-09
ISS017-E-010715 (9 July 2008) --- Hurricane Bertha was traveling northward at 10 knots (11.5 miles per hour) across the eastern part of the central Atlantic Ocean when this image was taken on July 9 by one of the Expedition 17 crewmembers aboard the International Space Station from a vantage point of 220 statute miles above the Earth. The sustained winds were 85 knots (97.9 miles per hour) with gusts up to 105 knots (121.0 miles per hour) and predicted to intensify. Mature and developing Cumulonimbus-type clouds are seen scattered through the cloud bands of the hurricane's system.
Hurricane Bertha taken by the Expedition 17 Crew
2008-07-09
ISS017-E-010709 (9 July 2008) --- Hurricane Bertha was traveling northward at 10 knots (11.5 miles per hour) across the eastern part of the central Atlantic Ocean when this image was taken on July 9 by one of the Expedition 17 crewmembers aboard the International Space Station from a vantage point of 220 statute miles above the Earth. The sustained winds were 85 knots (97.9 miles per hour) with gusts up to 105 knots (121.0 miles per hour) and predicted to intensify. Mature and developing Cumulonimbus-type clouds are seen scattered through the cloud bands of the hurricane's system.
Hurricane Bertha taken by the Expedition 17 Crew
2008-07-09
ISS017-E-010708 (9 July 2008) --- Hurricane Bertha was traveling northward at 10 knots (11.5 miles per hour) across the eastern part of the central Atlantic Ocean when this image was taken on July 9 by one of the Expedition 17 crewmembers aboard the International Space Station from a vantage point of 220 statute miles above the Earth. The sustained winds were 85 knots (97.9 miles per hour) with gusts up to 105 knots (121.0 miles per hour) and predicted to intensify. Mature and developing Cumulonimbus-type clouds are seen scattered through the cloud bands of the hurricane's system.
OCoc- from Ocean Colour to Organic Carbon
NASA Astrophysics Data System (ADS)
Heim, B.; Overduin, P. P.; Schirrmeister, L.; Lantuit, H.; Doerffer, R.
2009-12-01
Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. The ‘OCoc-from Ocean Colour to Organic Carbon’ project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Coastal Dynamics ACD network and Arctic Circum-polar Coastal Observatory Network ACCO-Net (IPY-project 90). OCoc uses Ocean Colour satellite data for synoptical monitoring of organic matter fluxes from fluvial and coastal sources. Initial results from German-Russian expeditions at the southeastern Laptev Sea Coast (Arctic Siberia, Russia) in August 2008 and August 2009 are presented. Large parts of this coastal zone are characterized by highly erosive organic-rich material. Ocean Colour MERIS Reduced Resolution (RR)-LIB data of the have been processed towards optical aquatic parameters using Beam-Visat4.2 and the MERIS case2 regional processor for coastal application (C2R). Calculated aquatic parameters are absorption and backscattering coefficients, apparent optical properties such as the first attenuation depth (‘Z90’) and calculated concentrations of chlorophyll, total suspended matter and coloured dissolved organic matter absorption from the water leaving reflectances. Initial comparisons with expedition data (Secchi depths, cDOM) show that the MERIS-C2R optical parameters ’total absorption’ and the first attenuation depth, ’Z90’, seem adequately to represent true conditions. High attenuation values in the spectral blue wavelength range may serve as tracer for the organic-rich terrigenous input. The synoptic information of Ocean Colour products will provide valuable spatial and dynamical information on the Organic Carbon and sediment fluxes from the Siberian permafrost coast.
The Ocean in Depth - Ideas for Using Marine Technology in Science Communication
NASA Astrophysics Data System (ADS)
Gerdes, A.
2009-04-01
By deploying camera and video systems on remotely operated diving vehicles (ROVs), new and fascinating insights concerning the functioning of deep ocean ecosystems like cold-water coral reef communities can be gained. Moreover, mapping hot vents at mid-ocean ridge locations, and exploring asphalt and mud volcanoes in the Gulf of Mexico and the Mediterranean Sea with the aid of video camera systems have illustrated the scientific value of state-of-the-art diving tools. In principle, the deployment of sophisticated marine technology on seagoing expeditions and their results - video tapes and photographs of fascinating submarine environments, publication of new scientific findings - offer unique opportunities for communicating marine sciences. Experience shows that an interest in marine technology can easily be stirred in laypersons if the deployment of underwater vehicles such as ROVs during seagoing expeditions can be presented using catchwords like "discovery", "new frontier", groundbreaking mission", etc. On the other hand, however, a number of restrictions and challenges have to be kept in mind. Communicating marine science in general, and the achievements of marine technology in particular, can only be successful with the application of a well-defined target-audience concept. While national and international TV stations and production companies are very much interested in using high quality underwater video footage, the involvement of journalists and camera teams in seagoing expeditions entails a number a challenges: berths onboard research vessels are limited; safety aspects have to be considered; copyright and utilisation questions of digitalized video and photo material has to be handled with special care. To cite one example: on-board video material produced by professional TV teams cannot be used by the research institute that operated the expedition. This presentation aims at (1)informing members of the scientific community about new opportunities related to marine technology, (2)discussing challenges and limitations in cooperative projects with media,(3) presenting new ways of marketing scientific findings, (4) promoting the interest of the media present at the EGU09 conference in cooperating with research institutes.
Exploring Microbial Life in Oxic Sediments Underlying Oligotrophic Ocean Gyres
NASA Astrophysics Data System (ADS)
Ziebis, W.; Orcutt, B.; Wankel, S. D.; D'Hondt, S.; Szubin, R.; Kim, J. N.; Zengler, K.
2015-12-01
Oxygen, carbon and nutrient availability are defining parameters for microbial life. In contrast to organic-rich sediments of the continental margins, where high respiration rates lead to a depletion of O2 within a thin layer at the sediment surface, it was discovered that O2 penetrates several tens of meters into organic-poor sediments underlying oligotrophic ocean gyres. In addition, nitrate, another important oxidant, which usually disappears rapidly with depth in anoxic sediments, tends to accumulate above seawater concentrations in the oxic subsurface, reflecting the importance of nitrogen cycling processes, including both nitrification and denitrification. Two IODP drilling expeditions were vital for exploring the nature of the deep subsurface beneath oligotrophic ocean gyres, expedition 329 to the South Pacific Gyre (SPG) and expedition 336 to North Pond, located on the western flank of the Mid-Atlantic ridge beneath the North Atlantic Gyre. Within the ultra-oligotrophic SPG O2 penetrates the entire sediment column from the sediment-water interface to the underlying basement to depths of > 75 m. At North Pond, a topographic depression filled with sediment and surrounded by steep basaltic outcrops, O2 penetrates deeply into the sediment (~ 30 m) until it eventually becomes depleted. O2 also diffuses upward into the sediment from seawater circulating within the young crust underlying the sediment, resulting in a deep oxic layer several meters above the basalt. Despite low organic carbon contents microbial cells persist throughout the entire sediment column within the SPG (> 75 m) and at North Pond, albeit at low abundances. We explored the nature of the subsurface microbial communities by extracting intact cells from large volumes of sediment obtained from drill cores of the two expeditions. By using CARD-FiSH, amplicon (16s rRNA) and metagenome sequencing we shed light on the phylogenetic and functional diversity of the elusive communities residing in the deep oxic sediments of these two different areas. Given the global extent of this oxic subsurface studies of the diversity and metabolic potential of its biome, together with the analyses of porewater geochemical and isotopic composition, are beginning to reveal its role in global biogeochemical cycles.
Ma, Yuxin; Xie, Zhiyong; Lohmann, Rainer; Mi, Wenying; Gao, Guoping
2017-04-04
The presence of organophosphate ester (OPE) flame retardants and plasticizers in surface sediment from the North Pacific to Arctic Ocean was observed for the first time during the fourth National Arctic Research Expedition of China in the summer of 2010. The samples were analyzed for three halogenated OPEs [tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(dichloroisopropyl) phosphate], three alkylated OPEs [triisobutyl phosphate (TiBP), tri-n-butyl phosphate, and tripentyl phosphate], and triphenyl phosphate. Σ 7 OPEs (total concentration of the observed OPEs) was in the range of 159-4658 pg/g of dry weight. Halogenated OPEs were generally more abundant than the nonhalogenated OPEs; TCEP and TiBP dominated the overall concentrations. Except for that of the Bering Sea, Σ 7 OPEs values increased with increasing latitudes from Bering Strait to the Central Arctic Ocean, while the contributions of halogenated OPEs (typically TCEP and TCPP) to the total OPE profile also increased from the Bering Strait to the Central Arctic Ocean, indicating they are more likely to be transported to the remote Arctic. The median budget of 52 (range of 17-292) tons for Σ 7 OPEs in sediment from the Central Arctic Ocean represents only a very small amount of their total production volume, yet the amount of OPEs in Arctic Ocean sediment was significantly larger than the sum of polybrominated diphenyl ethers (PBDEs) in the sediment, indicating they are equally prone to long-range transport away from source regions. Given the increasing level of production and usage of OPEs as substitutes of PBDEs, OPEs will continue to accumulate in the remote Arctic.
How well can we quantify dust deposition to the ocean?
Anderson, R F; Cheng, H; Edwards, R L; Fleisher, M Q; Hayes, C T; Huang, K-F; Kadko, D; Lam, P J; Landing, W M; Lao, Y; Lu, Y; Measures, C I; Moran, S B; Morton, P L; Ohnemus, D C; Robinson, L F; Shelley, R U
2016-11-28
Deposition of continental mineral aerosols (dust) in the Eastern Tropical North Atlantic Ocean, between the coast of Africa and the Mid-Atlantic Ridge, was estimated using several strategies based on the measurement of aerosols, trace metals dissolved in seawater, particulate material filtered from the water column, particles collected by sediment traps and sediments. Most of the data used in this synthesis involve samples collected during US GEOTRACES expeditions in 2010 and 2011, although some results from the literature are also used. Dust deposition generated by a global model serves as a reference against which the results from each observational strategy are compared. Observation-based dust fluxes disagree with one another by as much as two orders of magnitude, although most of the methods produce results that are consistent with the reference model to within a factor of 5. The large range of estimates indicates that further work is needed to reduce uncertainties associated with each method before it can be applied routinely to map dust deposition to the ocean. Calculated dust deposition using observational strategies thought to have the smallest uncertainties is lower than the reference model by a factor of 2-5, suggesting that the model may overestimate dust deposition in our study area.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).
How well can we quantify dust deposition to the ocean?
Cheng, H.; Edwards, R. L.; Fleisher, M. Q.; Hayes, C. T.; Huang, K.-F.; Kadko, D.; Lam, P. J.; Landing, W. M.; Lao, Y.; Lu, Y.; Measures, C. I.; Moran, S. B.; Morton, P. L.; Ohnemus, D. C.; Robinson, L. F.; Shelley, R. U.
2016-01-01
Deposition of continental mineral aerosols (dust) in the Eastern Tropical North Atlantic Ocean, between the coast of Africa and the Mid-Atlantic Ridge, was estimated using several strategies based on the measurement of aerosols, trace metals dissolved in seawater, particulate material filtered from the water column, particles collected by sediment traps and sediments. Most of the data used in this synthesis involve samples collected during US GEOTRACES expeditions in 2010 and 2011, although some results from the literature are also used. Dust deposition generated by a global model serves as a reference against which the results from each observational strategy are compared. Observation-based dust fluxes disagree with one another by as much as two orders of magnitude, although most of the methods produce results that are consistent with the reference model to within a factor of 5. The large range of estimates indicates that further work is needed to reduce uncertainties associated with each method before it can be applied routinely to map dust deposition to the ocean. Calculated dust deposition using observational strategies thought to have the smallest uncertainties is lower than the reference model by a factor of 2–5, suggesting that the model may overestimate dust deposition in our study area. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035251
NASA Astrophysics Data System (ADS)
West, G.; O'Regan, M.; Jakobsson, M.; Nilsson, A.; Pearce, C.; Snowball, I.; Wiers, S.
2017-12-01
The lack of high-temporal resolution and well-dated palaeomagnetic records from the Arctic Ocean hinders our understanding of geomagnetic field behaviour in the region, and limits the applicability of these records in the development of accurate age models for Arctic Ocean sediments. We present a palaeomagnetic secular variation (PSV) record from a sediment core recovered from the Chukchi Sea, Arctic Ocean during the SWERUS-C3 Leg 2 Expedition. The 8.24-metre-long core was collected at 57 m water depth in the Herald Canyon (72.52° N 175.32° W), and extends to 4200 years BP based on 14 AMS 14C dates and a tephra layer associated with the 3.6 cal ka BP Aniakchak eruption. Palaeomagnetic measurements and magnetic analyses of discrete samples reveal stable characteristic remanent magnetisation directions, and a magnetic mineralogy dominated by magnetite. Centennial to millennial scale declination and inclination features, which correlate well to other Western Arctic records, can be readily identified. The relative palaeointensity record of the core matches well with spherical harmonic field model outputs of pfm9k (Nilsson et al., 2014) and CALS10k.2 (Constable et al. 2016) for the site location. Supported by a robust chronology, the presented high-resolution PSV record can potentially play a key role in constructing a well-dated master chronology for the region.
2018-04-15
iss055e023899 (April 15, 2018) --- The United States island territory of Puerto Rico and the surrounding blue waters of the Caribbean Sea on its southern coast and the Atlantic Ocean on its northern coast were pictured by an Expedition 55 crew member aboard the International Space Station.
2014-06-04
ISS040-E-007404 (4 June 2014) --- One of the Expedition 40 crew members aboard the International Space Station on June 4, 2014, recorded this vertical image of Fangataufa Atoll, a small coral atoll on the eastern side of the Tuamotu Archipelago in French Polynesia in the South Pacific Ocean.
Crew Earth Observations (CEO) taken during Expedition 8
2004-03-25
ISS008-E-19233 (25 March 2004) --- This image featuring the Betsiboka estuary on the northwest coast of Madagascar was taken by an Expedition 8 crewmember on the International Space Station (ISS). The Betsiboka estuary is the mouth of Madagascars largest river and one of the worlds fast-changing coastlines. Nearly a century of extensive logging of Madagascars rainforests and coastal mangroves has resulted in nearly complete clearing of the land and fantastic rates of erosion. After every heavy rain, the bright red soils are washed from the hillsides into the streams and rivers to the coast. Astronauts describe their view of Madagascar as bleeding into the ocean. One impact of the extensive 20th century erosion is the filling and clogging of coastal waterways with sediment a process that is well illustrated in the Betsiboka estuary. In fact, ocean-going ships were once able to travel up the Betsiboka estuary, but must now berth at the coast.
Crew Earth Observations (CEO) taken during Expedition 8
2004-03-25
ISS008-E-19236 (25 March 2004) --- This image featuring the Betsiboka estuary on the northwest coast of Madagascar was taken by an Expedition 8 crewmember on the International Space Station (ISS). The Betsiboka estuary is the mouth of Madagascars largest river and one of the worlds fast-changing coastlines. Nearly a century of extensive logging of Madagascars rainforests and coastal mangroves has resulted in nearly complete clearing of the land and fantastic rates of erosion. After every heavy rain, the bright red soils are washed from the hillsides into the streams and rivers to the coast. Astronauts describe their view of Madagascar as bleeding into the ocean. One impact of the extensive 20th century erosion is the filling and clogging of coastal waterways with sediment a process that is well illustrated in the Betsiboka estuary. In fact, ocean-going ships were once able to travel up the Betsiboka estuary, but must now berth at the coast.
Earth Observations taken by the Expedition 10 crew
2005-01-14
ISS010-E-13079 (15 January 2005) --- Tsunami damage, northwestern Sumatra (Indonesia) is featured in this image photographed by an Expedition 10 crewmember on the International Space Station (ISS). On December 26, 2004 a large (magnitude 9.0) earthquake occurred off the western coast of Sumatra in the Indian Ocean. Scientists believe the earthquake was caused by the release of stresses accumulated as the India tectonic plate is overridden by the Burma tectonic plate. Movement of the seafloor due to the earthquake generated a tsunami, or seismic sea wave, that affected coastal regions around the Indian Ocean. The northwestern Sumatra coastline in particular suffered extensive damage and loss of life. This photo, along with image ISS010-E-13088, illustrates damage along the southwestern coast of Aceh Province in the vicinity of the city of Lho Kruet, Indonesia. Large areas of bare and disturbed soil (brownish gray) previously covered with vegetation are visible along the coastline. Embayments in the coastline were particularly hard hit, while adjacent headlands were less affected.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Buoys used to support scientific instruments at sea are seen in the foreground prior to being loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr, seen in the background, on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Woods Hole Oceanographic Institution Senior Scientist Ray Schmitt, left, and NASA Physical Oceanography Program Scientist Eric Lindstrom pose for a photograph in front of the Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Seeleuthner, Yoann; Mondy, Samuel; Lombard, Vincent; Carradec, Quentin; Pelletier, Eric; Wessner, Marc; Leconte, Jade; Mangot, Jean-François; Poulain, Julie; Labadie, Karine; Logares, Ramiro; Sunagawa, Shinichi; de Berardinis, Véronique; Salanoubat, Marcel; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Searson, Sarah; Pesant, Stephane; Poulton, Nicole; Stepanauskas, Ramunas; Bork, Peer; Bowler, Chris; Hingamp, Pascal; Sullivan, Matthew B; Iudicone, Daniele; Massana, Ramon; Aury, Jean-Marc; Henrissat, Bernard; Karsenti, Eric; Jaillon, Olivier; Sieracki, Mike; de Vargas, Colomban; Wincker, Patrick
2018-01-22
Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology.
NASA Astrophysics Data System (ADS)
Huepers, A.; Ikari, M.; Underwood, M.; Kopf, A.
2013-12-01
At convergent margins, the sedimentary section seaward of the trench on the subducting oceanic lithosphere provides the source material for accretionary prisms and eventually becomes the host rock of the plate boundary megathrust. The mechanical properties of the sediments seaward of the subduction zone have therefore a first order control on subduction zone forearc mechanics and hydrogeology. At the Nankai Trough (SW Japan) the majority of sediment approaching the subduction zone is clay-rich. Scientific drilling expeditions in the framework of the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) have revealed an anomalous zone of high porosity in a major lithologic unit known as the Upper Shikoku Basin facies (USB), which is associated with elevated volcanic ash content and high amounts of silica in the interstitial water. The existence of the high porosity zone has previously been associated with advanced silica cementation, driven by the dual diagenetic transition of opal-A to opal-CT, and opal-CT to quartz. However, temperature estimates from recent drilling expeditions offshore the Kii peninsula reveal different in situ temperatures at the proposed diagenetic boundary in the Shikoku Basin. Furthermore, laboratory measurements using core samples from the USB show that cohesive strength is not elevated in the high porosity zone, suggesting that a process other than cementation may be responsible. The USB sediment is characterized by abundant volcanic ash and pumice, therefore the high porosity zone in the USB may be closely linked to the mechanical behavior of this phase. We conducted consolidation tests in the range 0.1 to 8 MPa effective vertical stress on artificial ash-smectite and pumice-smectite mixtures, as well as intact and remolded natural samples from the IODP Sites C0011 and C0012 to investigate the role of the volcanic constituent on porosity loss with progressive burial. Our results show that both remolded and intact natural samples have high porosities of up to ~71 to 75% at a vertical effective stress of 0.1 MPa, which decreases to 39 to 49% at 8 MPa vertical effective stress. The behavior of the remolded samples is in good accordance with compiled in-situ porosity vs. depth profiles from the high porosity zone. This suggests that cementation is not the cause for the anomalously high porosity. The consolidation tests on the artificial samples document that pure ash and pumice samples are highly resistant to consolidation. Between 0.1 to 8 MPa vertical effective stress, the porosity decreases from 51 to 47% for the ash sample and 60% to 46% for the pumice sample. The higher initial porosity in the pumice may be explained by a porous internal grain structure that allows storage of additional water. Mixtures with smectite are characterized by higher compressibility and higher porosity. For a mixture of 80% smectite and 20% pumice the porosity decreases from 65% to 39%, similar to that of the natural samples. Our results suggest that the high porosity zone is caused by the bulk mechanical behavior of pumice in the USB.
NASA Astrophysics Data System (ADS)
Jungbluth, S.; Bowers, R.; Lin, H.; Hsieh, C.; Cowen, J. P.; Rappé, M.
2012-12-01
Three generations of sampling and instrumentation platforms known as Circulation Obviation Retrofit Kit (CORK) observatories affixed to Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) boreholes are providing unrivaled access to fluids originating from 1.2-3.5 million-years (Myr) old basaltic crust of the eastern flank of the Juan de Fuca ridge. Borehole fluid samples obtained via a custom seafloor fluid pumping and sampling system coupled to CORK continuous fluid delivery lines are yielding critical insights into the biogeochemistry and nature of microbial life inhabiting the sediment-covered basement environment. Direct microscopic enumeration revealed microbial cell abundances that are 2-41% of overlying bottom seawater. Snapshots of basement fluid microbial diversity and community structure have been obtained through small subunit ribosomal RNA (SSU rRNA) gene cloning and sequencing from five boreholes that access a range of basement ages and temperatures at the sediment-basement interface. SSU rRNA gene clones were derived from four different CORK installations (1026B, 1301A, 1362A, and 1362B) accessing relatively warmer (65°C) and older (3.5 Myr) ridge flank, and one location (1025C) accessing relatively cooler (39°C) and younger (1.2 Myr) ridge flank, revealing that warmer basement fluids had higher microbial diversity. A sampling time-series collected from borehole 1301A has revealed a microbial community that is temporally variable, with the dominant lineages changing between years. Each of the five boreholes sampled contained a unique microbial assemblage, however, common members are found from both cultivated and uncultivated lineages within the archaeal and bacterial domains, including meso- and thermophilic microbial lineages involved with sulfur cycling (e.g Thiomicrospira, Sulfurimonas, Desulfocapsa, Desulfobulbus). In addition, borehole fluid environmental gene clones were also closely related to uncultivated lineages recovered from both terrestrial and marine hydrothermal systems (e.g. Candidatus Desulforudis, Candidate Phylum OP8) as well as globally distributed marine sediments (e.g. Miscellaneous Crenarchaeotic Group, JTB35). This analysis provides a framework for future research investigating the evolutionary and functional diversity, population genetics, and activity of the poorly understood habitat. These ongoing sampling expeditions greatly benefit from improvements to both CORK observatories and evolving sampling equipment including microbiologically-friendly materials and dependable access to pristine fluids from the ocean crust.
Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications
NASA Astrophysics Data System (ADS)
Heim, B.; Abramova, E.; Doerffer, R.; Günther, F.; Hölemann, J.; Kraberg, A.; Lantuit, H.; Loginova, A.; Martynov, F.; Overduin, P. P.; Wegner, C.
2014-08-01
Enhanced permafrost warming and increased Arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. We used optical operational satellite data from the ocean colour sensor MERIS (Medium-Resolution Imaging Spectrometer) aboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigenous matter on the shallow Laptev Sea shelf. Despite the high cloud coverage in summer that is inherent to this Arctic region, time series from MERIS satellite data from 2006 on to 2011 could be acquired and were processed using the Case-2 Regional Processor (C2R) for optically complex surface waters installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using ocean colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS C2R parameters with surface water sampling data from the Russian-German ship expeditions LENA2008, LENA2010 and TRANSDRIFT-XVII taking place in August 2008 and August and September 2010 in the southern Laptev Sea. The shallow Siberian shelf waters are optically not comparable to the deeper, more transparent waters of the Arctic Ocean. The inner-shelf waters are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of suspended particulate matter and coloured dissolved organic matter. We compared the field-based measurements with the satellite data that are closest in time. The match-up analyses related to LENA2008 and LENA2010 expedition data show the technical limits of matching in optically highly heterogeneous and dynamic shallow inner-shelf waters. The match-up analyses using the data from the marine TRANSDRIFT expedition were constrained by several days' difference between a match-up pair of satellite-derived and in situ parameters but are also based on the more stable hydrodynamic conditions of the deeper inner- and the outer-shelf waters. The relationship of satellite-derived turbidity-related parameters versus in situ suspended matter from TRANSDRIFT data shows that the backscattering coefficient C2R_bb_spm can be used to derive a Laptev-Sea-adapted SPM algorithm. Satellite-derived Chl a estimates are highly overestimated by a minimum factor of 10 if applied to the inner-shelf region due to elevated concentrations of terrestrial organic matter. To evaluate the applicability of ocean colour remote sensing, we include the visual analysis of lateral hydrographical features. The mapped turbidity-related MERIS C2R parameters show that the Laptev Sea is dominated by resuspension above submarine shallow banks and by frontal instabilities such as frontal meanders with amplitudes up to 30 km and eddies and filaments with horizontal scales up to 100 km that prevail throughout the sea-ice-free season. The widespread turbidity above submarine shallow banks indicates inner-shelf vertical mixing that seems frequently to reach down to submarine depths of a minimum of 10 m. The resuspension events and the frontal meanders, filaments and eddies indicate enhanced vertical mixing being widespread on the inner shelf. It is a new finding for the Laptev Sea that numerous frontal instabilities are made visible, and how highly time-dependent and turbulent the Laptev Sea shelf is. The meanders, filaments and eddies revealed by the ocean colour parameters indicate the lateral transportation pathways of terrestrial and living biological material in surface waters.
2014-09-01
Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. Docked Soyuz and Progress spacecraft are visible. On crewmember's Flickr page - The Moon, about to dive into a glowing ocean of green᥿9.
2013-07-05
ISS040-E-040088 (5 July 2014) --- As the International Space Station was flying at an altitude of 226 nautical miles on July 5 above a point in the southern Indian Ocean near South Africa's Prince Edwards Islands, one of the Expedition 40 crew members photographed this image of Aurora Australis.
"There She Blows!" Off Long Island...Few, If Any, Were Aware.
ERIC Educational Resources Information Center
Lankshear, Gillian
1980-01-01
Describes public whale-watching expeditions initiated to cover expenses of the Okeanos Ocean Research Foundation, a group investigating whales and their migratory patterns off the shores of Long Island, New York. Discusses history of whales in the region and recent cetacean conservation efforts. (NEC)
2013-07-05
ISS040-E-040103 (5 July 2014) --- As the International Space Station was flying at an altitude of 226 nautical miles on July 5 above a point in the southern Indian Ocean near South Africa's Prince Edwards Islands, one of the Expedition 40 crew members photographed this image of Aurora Australis.
Student Experiences: the 2013 Cascadia Initiative Expedition Team's Apply to Sail Program
NASA Astrophysics Data System (ADS)
Mejia, H.; Hooft, E. E.; Fattaruso, L.
2013-12-01
During the summer of 2013, the Cascadia Initiative Expedition Team led six oceanographic expeditions to recover and redeploy ocean bottom seismometers (OBSs) across the Cascadia subduction zone and Juan de Fuca plate. The Cascadia Initiative (CI) is an onshore/offshore seismic and geodetic experiment to study questions ranging from megathrust earthquakes to volcanic arc structure to the formation, deformation and hydration of the Juan de Fuca and Gorda plates with the overarching goal of understanding the entire subduction zone system. The Cascadia Initiative Expedition Team is a team of scientists charged with leading the oceanographic expeditions to deploy and recover CI OBSs and developing the associated Education and Outreach effort. Students and early career scientists were encouraged to apply to join the cruises via the Cascadia Initiative Expedition Team's Apply to Sail Program. The goal of this call for open participation was to help expand the user base of OBS data by providing opportunities for students and scientists to directly experience at-sea acquisition of OBS data. Participants were required to have a strong interest in learning field techniques, be willing to work long hours at sea assisting in OBS deployment, recovery and preliminary data processing and have an interest in working with the data collected. In total, there were 51 applicants to the Apply to Sail Program from the US and 4 other countries; 21 graduate students as well as a few undergraduate students, postdocs and young scientists from the US and Canada were chosen to join the crew. The cruises lasted from 6 to 14 days in length. OBS retrievals comprised the three first legs, of which the first two were aboard the Research Vessel Oceanus. During each of the retrievals, multiple acoustic signals were sent while the vessel completed a semi-circle around the OBS to accurately determine its position, a final signal was sent to drop the seismometer's anchor, and finally the ship and crew waited as the OBS traveled at around 40 meters a minute to the surface. The entire retrieval process could take anywhere from 2 hours to 4 hours for each seismometer. The third retrieval leg was aboard the Research Vessel Atlantis and utilized the submersible Remotely Operated Vehicle (ROV) Jason. The ROV was used to recover 12 of the 30 seismometers for this last retrieval mission. The final three legs were OBS deployments conducted with the assistance of the Research Vessel Oceanus. The seismometers were dropped in a desired location and allowed to sink to the ocean bottom. The ship would then obtain an exact location of the deployed seismometer using the same method described above. Participants will share their newfound knowledge of everyday life at sea and learning about the science behind deploying and retrieving OBSs. Even though participants were on different legs of the 2013 Cascadia Expedition, they all shared similar experiences. Some of the most memorable moments include amazing food, learning about the different components of an ocean bottom seismometer, and some of the most beautiful blue water.
NASA Astrophysics Data System (ADS)
Pruss, S. B.; Higgins, J. A.; Bush, A. M.; Leckie, R. M.; Deeg, C.; Getzin, B. L.
2016-12-01
The role of the K-Pg extinction on biogeochemical cycling has been intensively studied in recent years. However, it remains unknown how extinctions in marine pelagic calcifiers impacted carbon cycling in the ocean. Low accumulation rates of microfossils in the aftermath of the extinction have been attributed to lowered production, which triggered a reduction in carbonate delivery to the seafloor. Interestingly, although microfossil abundance is lower and foraminifera are significantly smaller than in the latest Cretaceous, carbonate accumulated on the seafloor in the earliest Paleogene even in areas that should have been below the CCD. One such deep-water site in the South Pacific (U1370) was cored during IODP Expedition 329 in November 2010. We examined 16 samples from an anomalous carbonate layer provisionally assigned to lower Paleocene planktonic foraminiferal Zones P1a and P1b that preserves benthic and planktonic foraminifera. Carbon isotope values of the benthic species Nuttalies orealis range from 1.45 to 1.95‰ VPDB in the 16 samples. The planktonic species Parasubbotina pseudobulloides was only abundant enough for analysis in 4 samples, and these values range from 1.41 to 1.91‰ VPDB. We note, as others have, that no carbon isotope gradient existed between the benthic and planktonic foraminifera during the deposition of this carbonate layer, perhaps due to reduced primary production and/or export of organic carbon. The presence of this carbonate layer in the deep ocean and its preservation of a collapsed isotopic gradient are both consistent with a reduction in the surface-to-deep water gradient in carbonate saturation state during the unusual oceanographic conditions that followed the extinction. We speculate that this was associated with a sustained reduction in surface ocean saturation state with adverse consequences for neritic carbonate producers in the aftermath of the K-T extinction.
2014/2015 Investigations of the Ontong Java and Kerguelen Plateaus
NASA Astrophysics Data System (ADS)
Coffin, M. F.; Whittaker, J. M.
2013-12-01
The two largest oceanic plateaus, Ontong Java in the western Pacific, and Kerguelen in the southern Indian Ocean, will be the focus of scheduled multidisciplinary/interdisciplinary shipboard expeditions in 2014 and 2015. In mid-2014, scientists aboard the Schmidt Ocean Institute's RV Falkor will investigate the origin and evolution of two large atolls, Ontong Java and Nukumanu, surmounting the ca 122 Ma Ontong Java Plateau, as well how Kroenke Canyon, which deeply incises the plateau, formed and evolved. First-ever multibeam bathymetry and sub-bottom profiling data from the atolls and canyon will reveal their submarine and shallow sub-seafloor morphology, and, if combined with geochemical and geochronological analyses of potential igneous basement samples, will yield important information on their origin and evolution. The primary goals of this atoll and canyon project are: to test potential genetic relationships between a) the atolls and the OJP, and b) the atolls and Kroenke Canyon; to understand and model how atolls and canyons form and evolve on oceanic plateaus, isolated from terrestrial influences and subject to sea level fluctuations; and to contribute to understanding tsunami risk on low-lying atolls. In late 2014 and early 2015, researchers aboard Australia's new Marine National Facility, RV Investigator, will investigate active submarine hotspot volcanism on the Kerguelen Plateau and its consequences. The project's overall aim is to test the hypothesis that hydrothermal activity driven by active submarine magmatism fertilizes surface waters with iron that enhances primary biological productivity. Surmounting the Cretaceous plateau, Heard and McDonald Islands are among the world's most active hotspot volcanoes, and new multibeam bathymetry and sub-bottom profiling data will enable identification of candidate active submarine volcanoes, which we will sample. In the overlying water column, we will collect samples to test for the presence or absence of associated hydrothermalism as well as iron and other elemental enrichment. If present, we will compare our data to satellite images of primary biological productivity (eg, chlorophyll) to test for temporal and spatial correlations.
Pettit uses a Grab Sample Container in the FGB during Expedition Six
2003-01-22
ISS006-E-20835 (22 January 2003) --- Astronaut Donald R. Pettit, Expedition 6 NASA ISS science officer, holds a Grab Sample Container (GSC) in the functional cargo block (FGB), or Zarya, on the International Space Station (ISS). GSC is used for collecting air samples as part of ISS environmental monitoring.
Pettit uses a Grab Sample Container in the U.S. Laboratory during Expedition Six
2003-01-22
ISS006-E-20834 (22 January 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, holds a Grab Sample Container (GSC) in the Destiny laboratory on the International Space Station (ISS). GSC is used for collecting air samples as part of ISS environmental monitoring.
Overview of the 1988 GCE/CASE/WATOX Studies of biogeochemical cycles in the North Atlantic region
NASA Astrophysics Data System (ADS)
Pszenny, Alexander A. P.; Galloway, James N.; Artz, Richard S.; Boatman, Joseph F.
1990-06-01
The 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) was a multifaceted research program designed to study atmospheric and oceanic processes affecting the biogeochemical cycles of carbon, nitrogen, sulfur, and trace metals in the North Atlantic Ocean region. Field work included (1) a 49-day research cruise aboard NOAA ship Mt. Mitchell (Global Change Expedition) from Norfolk, Virginia, to Bermuda, Iceland, the Azores, and Barbados, (2) eight flights of the NOAA King Air research aircraft, four off the Virginia Capes and four near Bermuda (CASE/WATOX), and (3) a research cruise aboard the yacht Fleurtie near Bermuda (WATOX). Objectives of GCE/CASE/WATOX were (1) to examine processes controlling the mesoscale distributions of productivity, chlorophyll, and phytoplankton growth rates in Atlantic surface waters, (2) to identify factors controlling the distribution of ozone in the North Atlantic marine boundary layer, and (3) to estimate the contributions of sources on surrounding continents to the biogeochemical cycles of sulfur, nitrogen, and trace metals over the North Atlantic region during the boreal summer season. The individual papers in this and the next two issues of Global Biogeochemical Cycles provide details on the results and analyses of the individual measurement efforts. This paper provides a brief overview of GCE/CASE/WATOX.
NASA Astrophysics Data System (ADS)
Meyer, A.; Duarte, P.; Mork Olsen, L.; Kauko, H.; Assmy, P.; Rösel, A.; Itkin, P.; Hudson, S. R.; Granskog, M. A.; Gerland, S.; Sundfjord, A.; Steen, H.; Jeffery, N.; Hunke, E. C.; Elliott, S.; Turner, A. K.
2016-12-01
Changes in the sea ice regime of the Arctic Ocean over the last decades from a thick perennial multiyear ice to a first year ice have been well documented. These changes in the sea ice regime will affect feedback mechanisms between the sea ice, atmosphere and ocean. Here we evaluate the performance of the Los Alamos Sea Ice Model (CICE), a state of the art sea ice model, to predict sea ice physical and biogeochemical properties at time scales of a few weeks. We also identify the most problematic prognostic variables and what is necessary to improve their forecast. The availability of a complete data set of forcing collected during the Norwegian Young sea Ice (N-ICE-2015) expedition north of Svalbard opens the possibility to properly test CICE. Oceanographic, atmospheric, sea ice, snow, and biological data were collected above, on, and below the ice using R/V Lance as the base for the ice camps that were drifting south towards the Fram Strait. Over six months, four different drifts took place, from the Nansen Basin, through the marginal ice zone, to the open ocean. Obtained results from the model show a good performance regarding ice thickness, salinity and temperature. Nutrients and sea ice algae are however not modelled as accurately. We hypothesize that improvements in biogeochemical modeling may be achieved by complementing brine drainage with a diffusion parameterization and biogeochemical modeling with the introduction of an explicit formulation to forecast chlorophyll and regulate photosynthetic efficiency.
NASA Astrophysics Data System (ADS)
Bowen, M. G.; Kulhanek, D. K.; Lyle, M. W.; Hahn, A.
2017-12-01
Variations in CaCO3 accumulation on the seafloor depend on a number of factors, including productivity of carbonate-producing organisms in the overlying water column, input of siliciclastic material from nearby continents, and changes in ocean chemistry. These factors are affected by variations in tectonics and climate. Here we use X-ray fluorescence (XRF) core scanning data to develop high-resolution chemical profiles calibrated with discrete samples to examine changes in carbonate production and burial in the eastern Arabian Sea. International Ocean Discovery Program (IODP) Expedition 355 cored two sites in the Indus Fan in Laxmi Basin. We scanned the Pleistocene composite sections from both sites at 2 cm resolution ( 150-300 year sampling resolution) using the Avaatech XRF core scanner at the IODP Gulf Coast Repository. In addition, we scanned a hemipelagic interval dated to the late Miocene ( 8 to 6 Ma) that spans the late Miocene climate transition to drier conditions globally, as documented by an expansion in C4 plants. The 2 cm scanning resolution represents 500 years between samples for the upper Miocene section. We used carbonate measurements on discrete samples to calibrate the XRF data, supplemented by analysis using a quantitative benchtop XRF at the University of Bremen. We find large variability in carbonate content in the Pleistocene and upper Miocene, varying from 15-80 wt%, with higher carbonate content correlating with lighter colored sediment. The aluminosilicate composition varies in part because of carbonate dilution but also because of changes in the source of clays and turbidites through the section. We also explore the use of chemical ratios to better understand the variations through the section. Changes in Ca/Fe (biogenic/terrestrial component) and Rb/Zr (fine/coarse grained) match well with visual observation of sediment composition in the cores. We can combine these with the oxygen isotope-derived age model for the Pleistocene section to examine orbital-scale variations in carbonate production and terrigenous input at the sites. We also explore proxies for precipitation (Ti/Ca) and weathering (Fe/K and Al/K) to elucidate changes in monsoon strength during the Pleistocene, although these results are preliminary.
Chemical Fluxes from a Recently Erupted Submarine Volcano on the Mariana Arc
NASA Astrophysics Data System (ADS)
Buck, N. J.; Resing, J. A.; Lupton, J. E.; Larson, B. I.; Walker, S. L.; Baker, E. T.
2016-12-01
While hydrothermal circulation is paramount to the geochemical budget for a wide array of elements, relatively few flux estimates exist in the literature. To date most studies have concentrated on constraining global and vent-field scale inputs originating from ocean spreading ridges. The goal of this study is to directly measure the chemical flux from an active submarine volcano injecting hydrothermal fluids into the surface ocean. Ahyi Seamount, a submarine intraoceanic arc volcano located in the Northern Mariana Islands, has a summit depth <100 m and erupted in May 2014. In November 2014 a hydrothermal plume originating from Ahyi was sampled aboard the R/V Roger Revelle during the Submarine Ring of Fire 2014 Ironman Expedition. Shipboard hull mounted Acoustic Doppler Current Profile data was collected to provide current vector measurements to be used in combination with continuous and discrete CTD data. Towed CTD sections were conducted perpendicular to the current direction - a sampling strategy that optimizes chemical flux estimate calculations by reducing complexities introduced by temporal variability in the speed and direction of plume dispersion. The Ahyi plume had a significant optical backscatter signal accompanied by evidence of reduced chemical species and a lowered pH. It was sampled for He isotopes, CH4, H2, H2S, total CO2, nutrients, TSM and total and dissolved Fe and Mn. Laboratory analyses found enriched concentrations of H2, 3He, CO2 and Fe, consistent with a recent eruption. Preliminary flux calculations estimate a Fe input of 16 mmol s-1. This indicates shallow submarine arc volcanoes are capable of supplying appreciable quantities of Fe into the surface ocean. Further laboratory analyses and calculations to characterize and constrain the fluxes of other chemical constituents are underway.
Earth Observations taken by the Expedition 26 Crew
2010-12-28
ISS026-E-013147 (28 Dec. 2010) --- A southerly looking night view of the upper two thirds of the Florida peninsula was recorded by one of the Expedition 26 crew members aboard the International Space Station on Dec. 28, 2010. Cape Canaveral and the Kennedy Space Center are very well lighted on the left (Atlantic Ocean) side of the peninsula. The Tampa-St. Petersburg area is seen on the Gulf of Mexico or right side of the frame. At bottom or in the north areas of the picture are portions of the state?s panhandle as well as cities and communities in southern Georgia.
Earth Observations taken by the Expedition 26 Crew
2010-12-28
ISS026-E-013123 (28 Dec. 2010) --- A southerly looking night view of the upper two thirds of the Florida peninsula was recorded by one of the Expedition 26 crew members aboard the International Space Station on Dec. 28, 2010. Cape Canaveral and the Kennedy Space Center are very well lighted on the left (Atlantic Ocean) side of the peninsula. The Tampa-St. Petersburg area is seen on the Gulf of Mexico or right side of the frame. At bottom or in the north areas of the picture are portions of the state?s panhandle as well as cities and communities in southern Georgia.
Earth Observations taken by the Expedition 27 Crew
2011-03-20
ISS027-E-006501 (20 March 2011) --- A low pressure system in the eastern North Pacific Ocean is featured in this image photographed by an Expedition 27 crew member in the Cupola of the International Space Station. This vigorous low pressure system has started to occlude?a process associated with separation of warm air from the cyclone?s center at the Earth?s surface. This view shows the arc of strong convection beyond the center of the low pressure, formed as the low occludes when the cold front overtakes the warm front. This occurs around more mature low pressure areas, later in the process of the system?s life-cycle.
Earth observation taken by the Expedition 37 crew
2013-09-18
ISS037-E-002225 (18 Sept. 2013) --- One of three Expedition 37 crew members aboard the International Space Station on Sept. 18 photographed this high oblique night image showing dozens of major cities and communities on the east coast and points west toward the Great Lakes area, and even areas to the southwest. Long Island, NY is a tell-tale identifier as it juts out into the Atlantic Ocean in the lower right portion of the image. The estuary known as Long Island Sound is also visible at lower right. The New York metropolitan area is largely visible below the tip of one of the space station's solar array panels.
Earth observation taken by the Expedition 29 crew
2011-11-16
ISS029-E-042846 (16 Nov. 2011) --- Parts of the U.S. and Mexico are seen in this image photographed by one of the Expedition 29 crew members from the International Space Station as it flew above the Pacific Ocean on Nov. 16, 2011. The Salton Sea is in the center of the frame, with the Gulf of Cortez, Mexico's Baja California and the Colorado River in the upper right quadrant. The Los Angeles Basin and Santa Catalina and San Clemente islands are at the bottom center edge of the image. Lake Mead and the Las Vegas area of Nevada even made it into the frame in the upper left quadrant.
Earth observations taken by the Expedition Seven crew
2003-09-21
ISS007-E-15177 (21 September 2003) --- This view, photographed by an Expedition 7 crewmember onboard the International Space Station (ISS), features a small part of the coastal dune field which is now protected as the Lencois Maranhenses National Park, on Brazils north coast, about 700 kilometers east of the Amazon River mouth. Persistent winds blow off the equatorial Atlantic Ocean onto Brazil from the east, driving white sand inland from 100 kilometers stretch of coast, to form a large field of dunes. The dark areas between the white dunes are fresh water ponds that draw fishermen to this newly established park.
2009-09-24
ISS020-E-041981 (24 Sept. 2009) --- The exterior of the Japanese Kibo complex of the International Space Station and the station's Canadarm2 (bottom) are featured in this image photographed by an Expedition 20 crew member on the station. European Space Agency astronaut Frank De Winne and NASA astronaut Nicole Stott, both Expedition 20 flight engineers, used the controls of the Japanese Experiment Module Robotic Manipulator System (JEM-RMS) in Kibo to grapple and transfer two Japanese payloads from the Exposed Pallet to their Exposed Facility locations -- first HICO/Hyperspectral Imager for the Coastal Ocean & RAIDS/Remote Atmospheric and Ionospheric Detection System (HREP), then Superconducting Submillimeter-wave Limb-emission Sounder (SMILES).
NASA Astrophysics Data System (ADS)
Knierzinger, Wolfgang; Lee, Eun Young; Wagreich, Michael
2017-04-01
Porosity in sediments is influenced by various factors such as mineralogical composition, burial depth, connate fluids, and stratigraphic layering. This work focuses on processes underlying porosity anomalies in carbonate shelf deposits along the northwest shelf of Australia by using different techniques (polarization microscopy, electron microscopy, XRD, XRF). IODP expedition 356 recovered cored seven sites (U1458-U1464), covering a latitudinal range of 29°S-18°S on the northwest shelf. Strong negative deviations from general porosity-depth trends for these carbonate rich sediments are clear for samples with higher contents of dolomite, calcium sulfates, and non-skeletal calcite. No significant influence of aragonite on porosity values has yet been detected. However, it is likely that the occurrence of high amounts of aragonite is a crucial element with regard to porosity values in these carbonate rich deposits, since elongated aragonite needles commonly enhance interparticle porosity. Further insight might be gained through the application of electron microscopy. In general, sediments in the northern part of the study area (Sites U1462, U1463, U1464) tend to show slightly higher porosity values compared to sediments form the south (Sites U1459, U1460). This may reflect the influence of calcium sulfate, because mineralogical analyses show, calcium sulfate is relatively rare at the southern sites, whereas higher amounts of calcium sulfates occur in the north. The lack of detrital particles in calcium sulfate components indicates an evaporitic origin. Deposits at Site U 1461 differ from other analyzed sediments insofar as higher amounts of feldspars and micas are apparent. *This research is conducted within the frame of the 'International Ocean Discovery Program', funded by the Ministry of Oceans and Fisheries, Korea.
Advanced Datapresence From A New Generation Of Research Vessels
NASA Astrophysics Data System (ADS)
Romsos, C. G.; Nahorniak, J.; Watkins-Brandt, K.; Bailey, D.; Reimers, C.
2016-02-01
The design of the next generation Regional Class Research Vessels (RCRV) for the U.S. academic research fleet includes the development of advanced datapresence systems and capabilities. Datapresence is defined here as the real-time transfer of scientific and operational data between vessel and shore, to facilitate shore-based participation in oceanographic expeditions. Datapresent technologies on the RCRVs build upon the demonstrated success of telepresence activities on satellite-connected ships. Specifically, the RCRV datapresence design integrates a broad suite of ocean and meteorological sensors on the vessel into a networked environment with satellite communication access. In addition to enabling operational decisions from shore, these capabilities will bring ocean research to the classroom and local communities, advancing ocean and atmospheric literacy, via dynamic data products that support hands-on exercises and demonstrations of oceanographic and atmospheric processes. The operational requirements of data integration, management, visualization, and user-interaction are being developed and tested now and will be refined over the next 5-6 years during the RCRV construction and transition to operations phases. This presentation will illustrate the RCRV datapresence design and how datapresent technologies will transform these National Science Foundation-owned coastal ships into continuous sampling and data streaming platforms that leverage onshore resources for making efficient scientific and operational decisions.
2018-03-25
iss055e005323 (March 25, 2018) --- The International Space Station was orbiting above the Tasman Sea when an Expedition 55 crew member took this picture of New Zealand's North Island where the city of Auckland is located. The sun's glint over the South Pacific Ocean and the Tasman Sea clearly outlines the island nation.
McArthur photographs BCAT-3 samples during Expedition 12
2005-11-11
ISS012-E-07685 (11 Nov. 2005) --- Astronaut William S. (Bill) McArthur Jr., Expedition 12 commander and NASA space station science officer, photographs Binary Colloidal Alloy Test-3 (BCAT-3) experiment samples in the Destiny laboratory of the international space station.
NASA Astrophysics Data System (ADS)
Screaton, E.; Kimura, G.; Curewitz, D.; Scientists, E.
2008-12-01
Integrated Ocean Drilling Program (IODP) Expedition 316 examined the frontal thrust and the shallow portion of the megasplay fault offshore of the Kii peninsula, and was the third drilling expedition of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). NanTroSEIZE will integrate seafloor observations, drilling, and observatories to investigate the processes controlling slip along subduction zone plate boundary fault systems. Site C0004 examined a shallow portion of the splay fault system where it overrides slope basin sediments. Site C0008, located in the slope basin 1 km seaward of Site C0004, provided a reference site for the footwall sediments. Results of drilling indicate that the footwall sediments have dewatered significantly, suggesting permeable routes for fluid escape. These high-permeability pathways might be provided by coarse-grained layers within the slope sediments. In situ dewatering and multiple fluid escape paths will tend to obscure any geochemical signature of flow from depth. Sites C0006 and C0007 examined the frontal thrust system. Although poorly recovered, coarse-grained trench sediments were sampled within the footwall. These permeable sediments would be expected to allow rapid escape of any fluid pressures due to loading. At both sites, low porosities are observed at shallow depths, suggesting removal of overlying material. This observation is consistent with interpretations that the prism is unstable and currently in a period of collapse. Anomalously low temperatures were measured within boreholes at these sites. One possible explanation for the low temperatures is circulation of seawater along normal faults in the unstable prism.
NASA Astrophysics Data System (ADS)
Nemirovskaya, I. A.; Lisitzin, A. P.; Kravchishina, M. D.; Redzhepova, Z. Yu.
2015-10-01
Particulate matter and organic compounds (chlorophyll, lipids, and hydrocarbons) were analyzed in surface waters along the routes of R/Vs Akademik Fedorov (cruise 32) and Akademik Treshnikov (cruise 2) in February-May of 2012 and 2014, respectively, in the course of the 57th and 59th Russian Antarctic expeditions. It was found that the frontal zones exert the primary influence on the concentrations of the mentioned components in the Southern Ocean and in the western part of the Atlantic Ocean. The supply of pollutants into the Eastern Atlantic Ocean on the shelf of the Iberian peninsula results in a pronounced increase in the concentrations of lipids and hydrocarbons causing local anthropogenic pollution zones.
Scientific Drilling in the Arctic Ocean: A challenge for the next decades
NASA Astrophysics Data System (ADS)
Stein, R.; Coakley, B.
2009-04-01
Although major progress in Arctic Ocean research has been made during the last decades, the knowledge of its short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution is much behind that from the other world's oceans. That means - despite the importance of the Arctic in the climate system - the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. This lack of knowledge is mainly caused by the major technological/ logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the successful completion of IODP Expedition 302 ("Arctic Coring Expedition" - ACEX), the first Mission Specific Platform (MSP) expedition within the Integrated Ocean Drilling Program - IODP, a new era in Arctic research has begun. For the first time, a scientific drilling in the permanently ice-covered Arctic Ocean was carried out, penetrating about 430 meters of Quaternary, Neogene, Paleogene and Campanian sediment on the crest of Lomonosov Ridge close to the North Pole. The success of ACEX has certainly opened the door for further scientific drilling in the Arctic Ocean, and will frame the next round of questions to be answered from new drill holes to be taken during the next decades. In order to discuss and plan the future of scientific drilling in the Arctic Ocean, an international workshop was held at the Alfred Wegener Institute (AWI) in Bremerhaven/Germany, (Nov 03-05, 2008; convenors: Bernard Coakley/University of Alaska Fairbanks and Ruediger Stein/AWI Bremerhaven). About 95 scientists from Europe, US, Canada, Russia, Japan, and Korea, and observers from oil companies participated in the workshop. Funding of the workshop was provided by the Consortium for Ocean Leadership (US), the European Science Foundation, the Arctic Ocean Sciences Board, and the Nansen Arctic Drilling Program as well as by sponsorships from British Petroleum, ConocoPhillips, ExxonMobil, Norwegian Petroleum Directorate, StatoilHydro, and Shell International. The major targets of the workshop were: (1) to bring together an international group of Arctic scientists, young scientists and ocean drilling scientists to learn and exchange ideas, experience and enthusiasm about the Arctic Ocean; (2) to develop a scientific drilling strategy to investigate the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system; (3) to summarize the technical needs, opportunities, and limitations of drilling in the Arctic; (4) to define scientific and drilling targets for specific IODP-type campaigns in Arctic Ocean key areas to be finalized in the development of drilling proposals. Following overview presentations about the history of the Arctic Ocean, legacy of high-latitude ocean drilling, existing site-survey database, technical needs for high-latitude drilling, possibilities of collaboration with industry, and the process of developing ocean-drilling legs through IODP, the main part of the workshop was spent in thematic and regional break-out groups discussing the particular questions to be addressed by drilling and the particular targets for Arctic scientific drilling. Within the working groups, key scientific questions (related to the overall themes paleoceanography, tectonic evolution, petrology/geochemistry of basement, and gas hydrates) and strategies for reaching the overall goals were discussed and - as one of the main results - core groups for further developing drilling proposals were formed. Based on discussions at this workshop, approximately ten new pre-proposals are planned to be submitted to IODP for the April 01- 2009 deadline. We hope that the development of new scientific objectives through the pre-proposal process will help reshape plans for scientific ocean drilling beyond 2013 and direct the program north towards these critical priorities and advance exploration of the Arctic.
Onufrienko holds a Grab Sample Container (GSC) in the SM during Expedition Four
2002-05-23
ISS004-E-12368 (23 May 2002) --- Cosmonaut Yury I. Onufrienko, Expedition Four mission commander representing Rosaviakosmos, holds a Grab Sample Container (GSC) in the Zvezda Service Module on the International Space Station (ISS). The GSC is used to take air samples in various modules as part of environmental quality control.
View of Expedition 15 FE Anderson performing the ANITA Experiment in the Node 1
2007-10-06
ISS015-E-32200 (6 Oct. 2007) --- Astronaut Clay Anderson, Expedition 15 flight engineer, uses an air sample pump and 2.5 liter gas sample bag to gather and analyze air samples for the Analyzing Interferometer for Ambient Air (ANITA) experiment in the Unity node of the International Space Station.
The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans
Tully, Benjamin J.; Graham, Elaina D.; Heidelberg, John F.
2018-01-01
Microorganisms play a crucial role in mediating global biogeochemical cycles in the marine environment. By reconstructing the genomes of environmental organisms through metagenomics, researchers are able to study the metabolic potential of Bacteria and Archaea that are resistant to isolation in the laboratory. Utilizing the large metagenomic dataset generated from 234 samples collected during the Tara Oceans circumnavigation expedition, we were able to assemble 102 billion paired-end reads into 562 million contigs, which in turn were co-assembled and consolidated in to 7.2 million contigs ≥2 kb in length. Approximately 1 million of these contigs were binned to reconstruct draft genomes. In total, 2,631 draft genomes with an estimated completion of ≥50% were generated (1,491 draft genomes >70% complete; 603 genomes >90% complete). A majority of the draft genomes were manually assigned phylogeny based on sets of concatenated phylogenetic marker genes and/or 16S rRNA gene sequences. The draft genomes are now publically available for the research community at-large. PMID:29337314
NASA Astrophysics Data System (ADS)
Fundis, A.; Cook, M.; Sutton, K.; Garson, S.; Poulton, S.; Munro, S.
2016-02-01
By sparking interest in scientific inquiry and engineering design at a young age through exposure to ocean exploration and innovative technologies, and building on that interest throughout students' educational careers, the Ocean Exploration Trust (OET) aims to motivate more students to be lifelong learners and pursue careers in STEM fields. Utilizing research conducted aboard Exploration Vessel Nautilus, the ship's associated technologies, and shore-based facilities at the University of Rhode Island — including the Graduate School of Oceanography and the Inner Space Center — we guide students to early career professionals through a series of educational programs focused on STEM disciplines and vocational skills. OET also raises public awareness of ocean exploration and research through a growing online presence, live streaming video, and interactions with the team aboard the ship 24 hours a day via the Nautilus Live website (www.nautiluslive.org). Annually, our outreach efforts bring research launched from Nautilus to tens of millions worldwide and allow the public, students, and scientists to participate in expeditions virtually from shore. We share the Nautilus Exploration Program's strategies, successes, and lessons learned for a variety of our education and outreach efforts including: 1) enabling global audiences access to live ocean exploration online and via social media; 2) engaging onshore audiences in live and interactive conversations with scientists and engineers on board; 3) engaging young K-12 learners in current oceanographic research via newly developed lessons and curricula; 4) onshore and offshore professional development opportunities for formal and informal educators; 5) programs and authentic research opportunities for high school, undergraduate, and graduate students onshore and aboard Nautilus; and 6) collaborative opportunities for early career and seasoned researchers to participate virtually in telepresence-enabled, interdisciplinary expeditions.
NASA Astrophysics Data System (ADS)
Lin, J.; Li, C. F.; Kulhanek, D. K.; Zhao, X.; Liu, Q.; Xu, X.; Sun, Z.; Zhu, J.
2014-12-01
The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction. In January-March 2014, Expedition 349 of the International Ocean Discovery Program (IODP) drilled five sites in the deep basin of the SCS. Three sites (U1431, U1433, and U1434) cored into oceanic basement near the fossil spreading center on the East and Southwest Subbasins, whereas Sites U1432 and U1435 are located near the northern continent/ocean boundary of the East Subbasin. Shipboard biostratigraphy based on microfossils preserved in sediment directly above or within basement suggests that the preliminary cessation age of spreading in both the East and Southwest Subbasins is around early Miocene (16-20 Ma); however, post-cruise radiometric dating is being conducted to directly date the basement basalt in these subbasins. Prior to the IODP drilling, high-resolution near-seafloor magnetic surveys were conducted in 2012 and 2013 in the SCS with survey lines passing near the five IODP drilling sites. The deep-tow surveys revealed detailed patterns of the SCS magnetic anomalies with amplitude and spatial resolutions several times better than that of traditional sea surface measurements. Preliminary results reveal several episodes of magnetic reversal events that were not recognized by sea surface measurements. Together the IODP drilling and deep-tow magnetic surveys provide critical constraints for investigating the processes of seafloor spreading in the SCS and evolution of a mid-ocean ridge from active spreading to termination.
NASA Astrophysics Data System (ADS)
Wang, J.
2006-12-01
A total of 614 sediment samples at intervals of about 1.5 m from all 5 sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on Cascadia Margin were analyzed using a Beckman Coulter LS-230 Particle Analyzer. The grain-size data were then plotted in depth and compared with other proxies of gas hydrate- occurrence such as soupy/mousse-like structures in sediments, gas hydrate concentration (Sh) derived from LWD data using Archie's relation, IR core images (infrared image) and the recovered samples of gas hydrate¨Cbearing sediments. A good relationship between the distribution of coarse grains in size of 31-63¦Ìm and 63-125¦Ìm sediments and the potential occurrence of gas hydrate was found across the entire gas hydrate stability zone. The depth distribution of grain size from the Site U1326 shows clear excursions at depths of 5-8, 21-26, 50- 123, 132-140, 167-180, 195-206 and 220-240 mbsf, which coincide with the potential occurrence of gas hydrate suggested by soupy/mousse-like structures, logging-derived gas hydrate concentrations (Sh) and the recovered samples of the gas hydrate¨Cbearing sand layers. The lithology of sediments significantly affects the formation of gas hydrate. Gas hydrate forms preferentially within relatively coarse grain-size sediments above 31 ¦Ìm. Key words: grain size of sediments, constraint, occurrence of gas hydrate, IODP 311 IODP Expedition 311 Scientists: Michael Riedel (Co-chief Scientist), Timothy S. Collett (Co-chief Scientist), Mitchell Malone (Expedition Project Manager/Staff Scientist), Gilles Gu¨¨rin, Fumio Akiba, Marie-Madeleine Blanc-Valleron, Michelle Ellis, Yoshitaka Hashimoto, Verena Heuer, Yosuke Higashi, Melanie Holland, Peter D. Jackson, Masanori Kaneko, Miriam Kastner, Ji-Hoon Kim, Hiroko Kitajima, Philip E. Long, Alberto Malinverno, Greg Myers, Leena D. Palekar, John Pohlman, Peter Schultheiss, Barbara Teichert, Marta E. Torres, Anne M. Tr¨¦hu, Jiasheng Wang, Ulrich G. Wortmann, Hideyoshi Yoshioka. Acknowledgement: This study was supported by the IODP/JOI Alliance, IODP-China 863 Project (grant 2004AA615030) and NSFC Project (grant 40472063).
Extensive under-ice turbulence microstructure measurements in the central Arctic Ocean in 2015
NASA Astrophysics Data System (ADS)
Rabe, Benjamin; Janout, Markus; Graupner, Rainer; Hoelemann, Jens; Hampe, Hendrik; Hoppmann, Mario; Horn, Myriel; Juhls, Bennet; Korhonen, Meri; Nikolopoulos, Anna; Pisarev, Sergey; Randelhoff, Achim; Savy, John-Philippe; Villacieros, Nicolas
2016-04-01
The Arctic Ocean is a strongly stratified low-energy environment, where tides are weak and the upper ocean is protected by an ice cover during much of the year. Interior mixing processes are dominated by double diffusion. The upper Arctic Ocean features a cold surface mixed layer, which, separated by a sharp halocline, protects the sea ice from the warmer underlying Atlantic- and Pacific-derived water masses. These water masses carry nutrients that are important for the Arctic ecosystem. Hence vertical fluxes of heat, salt, and nutrients are crucial components in understanding the Arctic ecosystem. Yet, direct flux measurements are difficult to obtain and hence sparse. In 2015, two multidisciplinary R/V Polarstern expeditions to the Arctic Ocean resulted in a series of under-ice turbulence microstructure measurements. These cover different locations across the Eurasian and Makarov Basins, during the melt season in spring and early summer as well as during freeze-up in late summer. Sampling was carried out from ice floes with repeated profiles resulting in 4-24 hour-long time series. 2015 featured anomalously warm atmospheric conditions during summer followed by unusually low temperatures in September. Our measurements show elevated dissipation rates at the base of the mixed layer throughout all stations, with significantly higher levels above the Eurasian continental slope when compared with the Arctic Basin. Additional peaks were found between the mixed layer and the halocline, in particular at stations where Pacific Summer water was present. This contribution provides first flux estimates and presents first conclusions regarding the impact of atmospheric and sea ice conditions on vertical mixing in 2015.
Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken
2013-01-01
During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628
Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken
2013-01-01
During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.
NASA Astrophysics Data System (ADS)
Matsuzaki, Kenji M.; Suzuki, Noritoshi
2018-01-01
Expedition 341 of the Integrated Ocean Drilling Program (IODP) retrieved sediment cores spanning the time interval between the Pleistocene and Miocene from the southern Gulf of Alaska. Onboard Pleistocene radiolarian biostratigraphy is hereby refined by increasing the sampling resolution. The 178 core samples from the upper 190 m CCSF-B (Composite Core Depth Scale F-B) of Site U1417 contained faunal elements similar to the northwestern Pacific; for example, the three biozones in the northwestern Pacific (i.e., Eucyrtidium matuyamai, Stylatractus universus and Botryostrobus aquilonaris) were also recognized in the Gulf of Alaska, spanning 1.80-1.13 Ma, 1.13-0.45 Ma, and the last 0.45 Myr, respectively. Based on the age model that we used in this study and the shipboard paleomagnetic reversal events, the first occurrences (FOs) of Amphimelissa setosa and Schizodiscus japonicus in the northeastern Pacific were preliminarily determined to be 1.48 and 1.30 Ma, respectively. The last occurrence (LO) of Eucyrtidium matuyamai and the FO of Lychnocanoma sakaii, both well-established bioevents in the northwestern Pacific, were dated at 0.80 and 1.13 Ma, respectively. The LO of E. matuyamai is a synchronous event at 1.05 ± 0.1 Ma in the North Pacific, while the FOs of A. setosa and S. japonicus at 1.48 and 1.30 Ma, respectively, are significantly older than what has been found elsewhere.
Oceanic Communities in a Changing Planet - The Tara Oceans Project (GSC8 Meeting)
Raes, Jeroen
2018-01-10
The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding Research Coordination Network from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Jeroen Raes of the University of Brussels discusses the Tara-Oceans expedition at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, CA on Sept. 9, 2009.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat work one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat carry one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Eppley, R. W.; Stewart, E.; Abbott, M. R.; Owen, R. W.
1985-01-01
The EASTROPAC expedition took place in 1967-68 in the eastern tropical Pacific Ocean. Primary production was related to near-surface chlorophyll in these data. Much of the variability in the relation was due to the light-history of the phytoplankton and its photoadaptive state. This was due to changes in the depth of mixing of the surface waters more than changes in insolation. Accurate estimates of production from satellite chlorophyll measurements may require knowledge of the temporal and spatial variation in mixing of this region.
Plankton networks driving carbon export in the oligotrophic ocean
Larhlimi, Abdelhalim; Roux, Simon; Darzi, Youssef; Audic, Stephane; Berline, Léo; Brum, Jennifer; Coelho, Luis Pedro; Espinoza, Julio Cesar Ignacio; Malviya, Shruti; Sunagawa, Shinichi; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Poulain, Julie; Searson, Sarah; Stemmann, Lars; Not, Fabrice; Hingamp, Pascal; Speich, Sabrina; Follows, Mick; Karp-Boss, Lee; Boss, Emmanuel; Ogata, Hiroyuki; Pesant, Stephane; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G.; Bork, Peer; de Vargas, Colomban; Iudicone, Daniele; Sullivan, Matthew B.; Raes, Jeroen; Karsenti, Eric; Bowler, Chris; Gorsky, Gabriel
2015-01-01
The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterised. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria, alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of just a few bacterial and viral genes can predict most of the variability in carbon export in these regions. PMID:26863193
Large mesopelagic fishes biomass and trophic efficiency in the open ocean.
Irigoien, Xabier; Klevjer, T A; Røstad, A; Martinez, U; Boyra, G; Acuña, J L; Bode, A; Echevarria, F; Gonzalez-Gordillo, J I; Hernandez-Leon, S; Agusti, S; Aksnes, D L; Duarte, C M; Kaartvedt, S
2014-01-01
With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate. Here we combine modelling and a sensitivity analysis of the acoustic observations from the Malaspina 2010 Circumnavigation Expedition to show that the previous estimate needs to be revised to at least one order of magnitude higher. We show that there is a close relationship between the open ocean fishes biomass and primary production, and that the energy transfer efficiency from phytoplankton to mesopelagic fishes in the open ocean is higher than what is typically assumed. Our results indicate that the role of mesopelagic fishes in oceanic ecosystems and global ocean biogeochemical cycles needs to be revised as they may be respiring ~10% of the primary production in deep waters.
Large mesopelagic fishes biomass and trophic efficiency in the open ocean
Irigoien, Xabier; Klevjer, T. A.; Røstad, A.; Martinez, U.; Boyra, G.; Acuña, J. L.; Bode, A.; Echevarria, F.; Gonzalez-Gordillo, J. I.; Hernandez-Leon, S.; Agusti, S.; Aksnes, D. L.; Duarte, C. M.; Kaartvedt, S.
2014-01-01
With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate. Here we combine modelling and a sensitivity analysis of the acoustic observations from the Malaspina 2010 Circumnavigation Expedition to show that the previous estimate needs to be revised to at least one order of magnitude higher. We show that there is a close relationship between the open ocean fishes biomass and primary production, and that the energy transfer efficiency from phytoplankton to mesopelagic fishes in the open ocean is higher than what is typically assumed. Our results indicate that the role of mesopelagic fishes in oceanic ecosystems and global ocean biogeochemical cycles needs to be revised as they may be respiring ~10% of the primary production in deep waters. PMID:24509953
Plankton networks driving carbon export in the oligotrophic ocean
NASA Astrophysics Data System (ADS)
2016-04-01
The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.
AEROSE 2004 - An Interdisciplinary Atmosphere-Ocean Saharan Dust Expedition
NASA Astrophysics Data System (ADS)
Clemente-Colón, P.
2004-05-01
The NOAA Center for Atmospheric Sciences (NCAS) is sponsoring a Trans-Atlantic Saharan Dust AERosol and Ocean Science Expedition (AEROSE) aboard the NOAA Ship Ronald H. Brown in March 2004. The fundamental purpose of this aerosol cruise is to study the impacts and microphysical evolution of Saharan dust aerosol as it is transported across the Atlantic Ocean. The mission encompasses both, atmospheric and oceanographic components. Participating institutions include Howard University, NCAS lead institution, the University of Puerto Rico at Mayagüez, the Canary Institute of Marine Sciences, the Spanish Institute of Oceanography, the Laboratory of Atmospheric Physics Siméon Fongang, the University of Miami Rosenstiel School of Marine and Atmospheric Science, the University of Washington Applied Physics Laboratory, NASA Goddard Space Flight Center, the NOAA Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison, NASA Jet Propulsion Laboratory, and the NOAA/NESDIS Office of Research and Applications. This collaboration provides unique atmospheric and oceanic observations across the North Tropical Atlantic during eastward and westward tracks during a period of nearly one month. Characterization of microphysical properties of Saharan dust aerosol is done trough direct observations of mass, size, and particle number distributions, chemical composition, spatial distributions, and air chemistry. Aerosol radiative properties are studied through a suite of sensors that include a Multi-Angle Absorption Photometer (MAAP), the Marine-Atmosphere Emitted Radiance Interferometer (M-AERI), sunphotometers, and an assortment of other radiometers. Characterization of atmospheric conditions is done through a combination of over 250 radiosonde and ozonesonde launches at 3 to 5 hour intervals during the duration of the cruise and in coordination with satellite overpasses. AEROSE is also supporting the collection of bio-optics and oceanographic observations including water sampling, spectroradiometry, and continuous in-water optical measurements using and under-tow undulating instrument aimed at investigate deposition rates of aerosol and the response of oceanographic systems. Additionally, the cruise effort provides complementary in-situ and remote sensing observations that support the validation and improvement of AVHRR SST corrections under tropospheric aerosol conditions, the validation of MODIS aerosol and oceanographic data and products, the validation of AIRS soundings, and the validation of ICESat aerosol observations, among other activities. An overview of the cruise, available datasets, preliminary results, and follow-on research plans are be presented in this paper.
Chemical Analysis Results for Potable Water from ISS Expeditions 21 to 25
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2010-01-01
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 to 25. Over a 14-month period, the Space Shuttle visited the ISS on five occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), STS-132 (ULF4) and STS-133 (ULF5), as well as on Soyuz flights 19-22. This paper reports the analytical results for the returned archival water samples and evaluates their compliance with ISS water quality standards. The WAFAL also received and analyzed aliquots of some Russian potable water samples collected in-flight and pre-flight samples of Rodnik potable water delivered to the Station on the Russian Progress vehicle during Expeditions 21 to 25. These additional analytical results are also reported and discussed in this paper.
Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review.
Homoky, William B; Weber, Thomas; Berelson, William M; Conway, Tim M; Henderson, Gideon M; van Hulten, Marco; Jeandel, Catherine; Severmann, Silke; Tagliabue, Alessandro
2016-11-28
Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment-water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment-water boundary on many TEI cycles, and underline the fact that our knowledge of the source-sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment-water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.
Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review
NASA Astrophysics Data System (ADS)
Homoky, William B.; Weber, Thomas; Berelson, William M.; Conway, Tim M.; Henderson, Gideon M.; van Hulten, Marco; Jeandel, Catherine; Severmann, Silke; Tagliabue, Alessandro
2016-11-01
Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment-water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment-water boundary on many TEI cycles, and underline the fact that our knowledge of the source-sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment-water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
NASA Astrophysics Data System (ADS)
Heydolph, Ken; Murphy, David T.; Geldmacher, Jörg; Romanova, Irina V.; Greene, Andrew; Hoernle, Kaj; Weis, Dominique; Mahoney, John
2014-07-01
Shatsky Rise, an early Cretaceous igneous oceanic plateau in the NW Pacific, comprises characteristics that could be attributed to either formation by shallow, plate tectonic-controlled processes or to an origin by a mantle plume (head). The plateau was drilled during Integrated Ocean Drilling Program (IODP) Expedition 324. Complementary to a recent trace element study (Sano et al., 2012) this work presents Nd, Pb and Hf isotope data of recovered lava samples cored from the three major volcanic edifices of the Shatsky Rise. Whereas lavas from the oldest edifice yield fairly uniform compositions, a wider isotopic spread is found for lavas erupted on the younger parts of the plateau, suggesting that the Shatsky magma source became more heterogeneous with time. At least three isotopically distinct components can be identified in the magma source: 1) a volumetrically and spatially most common, moderately depleted component of similar composition to modern East Pacific Ridge basalt but with low 3He/4He, 2) an isotopically very depleted component which could represent local, early Cretaceous (entrained) depleted upper mantle, and 3) an isotopically enriched component, indicating the presence of (recycled) continental material in the magma source. The majority of analyzed Shatsky lavas, however, possess Nd-Hf-Pb isotope compositions consistent with a derivation from an early depleted, non-chondritic reservoir. By comparing these results with petrological and trace element data of mafic volcanic rock samples from all three massifs (Tamu, Ori, Shirshov), we discuss the origin of Shatsky Rise magmatism and evaluate the possible involvement of a mantle plume (head).
Hadfield prepares to insert biological samples in the MELFI-1
2013-01-07
View of Canadian Space Agency (CSA) Chris Hadfield,Expedition 34 Flight Engineer (FE),preparing to insert biological samples in the Minus Eighty Laboratory Freezer for International Space Station (ISS) - (MELFI-1),in the Japanese Experiment Module (JEM) Pressurized Module (JPM). Photo was taken during Expedition 34.
NASA Astrophysics Data System (ADS)
Harigane, Yumiko; Abe, Natsue; Michibayashi, Katsuyoshi; Kimura, Jun-Ichi; Chang, Qing
2016-06-01
North Pond is an isolated sedimentary pond on the western flank of the Kane area along the Mid-Atlantic Ridge. Drill-hole U1382A of IODP Expedition 336 recovered peridotite and gabbro samples from a sedimentary breccia layer in the pond, from which we collected six fresh peridotite samples. The peridotite samples came from the southern slope of the North Pond where an oceanic core complex is currently exposed. The samples were classified as spinel harzburgite, plagioclase-bearing harzburgite, and a vein-bearing peridotite that contains tiny gabbroic veins. No obvious macroscopic shear deformation related to the formation of a detachment fault was observed. The spinel harzburgite with a protogranular texture was classified as refractory peridotite. The degree of partial melting of the spinel harzburgite is estimated to be ˜17%, and melt depletion would have occurred at high temperatures in the uppermost mantle beneath the spreading axis. The progressive melt-rock interactions between the depleted spinel harzburgite and the percolating melts of Normal-Mid Ocean Ridge Basalt (N-MORB) produced the plagioclase-bearing harzburgite and the vein-bearing peridotite at relatively low temperatures. This implies that the subsequent refertilization occurred in an extinct spreading segment of the North Pond after spreading at the axis. Olivine fabrics in the spinel and plagioclase-bearing harzburgites are of types AG, A, and D, suggesting the remnants of a mantle flow regime beneath the spreading axis. The initial olivine fabrics appear to have been preserved despite the later melt-rock interactions. The peridotite samples noted above preserve evidence of mantle flow and melt-rock interactions beneath a spreading ridge that formed at ˜8 Ma.
ISS Expeditions 16 & 17: Chemical Analysis Results for Potable Water
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.
2009-01-01
During the twelve month span of Expeditions 16 and 17 beginning October of 2007, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principle sources of potable water and for the first time, European groundsupplied water was also available. Although water was transferred from Shuttle to ISS during Expeditions 16 and 17, no Shuttle potable water was consumed during this timeframe. A total of 12 potable water samples were collected using U.S. hardware during Expeditions 16 and 17 and returned on Shuttle flights 1E (STS122), 1JA (STS123), and 1J (STS124). The average sample volume was sufficient for complete chemical characterization to be performed. The results of JSC chemical analyses of these potable water samples are presented in this paper. The WAFAL also received potable water samples for analysis from the Russian side collected inflight with Russian hardware, as well as preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 30. Analytical results for these additional potable water samples are also reported and discussed herein. Although the potable water supplies available during Expeditions 16 and 17 were judged safe for crew consumption, a recent trending of elevated silver levels in the SVOZV water is a concern for longterm consumption and efforts are being made to lower these levels.
2014-08-03
ISS040-E-087412 (30 July 2014) --- An area of sun glint near the horizon caught the eye of one of the Expedition 40 crew members as the International Space Station was flying roughly 225 nautical miles above a point in the Pacific Ocean a few hundred miles southeast of the Philippines on July 30, 2014. The view is looking northwestward.
Interactive Video, The Next Step
NASA Astrophysics Data System (ADS)
Strong, L. R.; Wold-Brennon, R.; Cooper, S. K.; Brinkhuis, D.
2012-12-01
Video has the ingredients to reach us emotionally - with amazing images, enthusiastic interviews, music, and video game-like animations-- and it's emotion that motivates us to learn more about our new interest. However, watching video is usually passive. New web-based technology is expanding and enhancing the video experience, creating opportunities to use video with more direct interaction. This talk will look at an Educaton and Outreach team's experience producing video-centric curriculum using innovative interactive media tools from TED-Ed and FlixMaster. The Consortium for Ocean Leadership's Deep Earth Academy has partnered with the Center for Dark Energy Biosphere Investigations (C-DEBI) to send educators and a video producer aboard three deep sea research expeditions to the Juan de Fuca plate to install and service sub-seafloor observatories. This collaboration between teachers, students, scientists and media producers has proved a productive confluence, providing new ways of understanding both ground-breaking science and the process of science itself - by experimenting with new ways to use multimedia during ocean-going expeditions and developing curriculum and other projects post-cruise.
NASA Astrophysics Data System (ADS)
Tomlin, M. C.; Jenkyns, R.
2015-12-01
Ocean Networks Canada (ONC) collects data from observatories in the northeast Pacific, Salish Sea, Arctic Ocean, Atlantic Ocean, and land-based sites in British Columbia. Data are streamed, collected autonomously, or transmitted via satellite from a variety of instruments. The Software Engineering group at ONC develops and maintains Oceans 2.0, an in-house software system that acquires and archives data from sensors, and makes data available to scientists, the public, government and non-government agencies. The Oceans 2.0 workflow tool was developed by ONC to manage a large volume of tasks and processes required for instrument installation, recovery and maintenance activities. Since 2013, the workflow tool has supported 70 expeditions and grown to include 30 different workflow processes for the increasing complexity of infrastructures at ONC. The workflow tool strives to keep pace with an increasing heterogeneity of sensors, connections and environments by supporting versioning of existing workflows, and allowing the creation of new processes and tasks. Despite challenges in training and gaining mutual support from multidisciplinary teams, the workflow tool has become invaluable in project management in an innovative setting. It provides a collective place to contribute to ONC's diverse projects and expeditions and encourages more repeatable processes, while promoting interactions between the multidisciplinary teams who manage various aspects of instrument development and the data they produce. The workflow tool inspires documentation of terminologies and procedures, and effectively links to other tools at ONC such as JIRA, Alfresco and Wiki. Motivated by growing sensor schemes, modes of collecting data, archiving, and data distribution at ONC, the workflow tool ensures that infrastructure is managed completely from instrument purchase to data distribution. It integrates all areas of expertise and helps fulfill ONC's mandate to offer quality data to users.
NASA Astrophysics Data System (ADS)
Esiukova, Elena; Bagaeva, Margarita; Chubarenko, Natalia
2016-04-01
According to the tasks of the Russian Science Foundation project "Physical and dynamical properties of marine microplastics particles and their transport in a basin with vertical and horizontal salinity gradient on the example of the Baltic Sea" number 15-17-10020, a comprehensive expeditionary program of measurements in the South-Eastern Baltic started. The project is aimed at finding solutions for a number of problems caused by superfluous plastic pollution in the World Ocean and, in particular, in the Baltic Sea. This pollution has been accumulating for years and just recently it has become obvious that only multidisciplinary approach (geographical, biological, chemical, etc.) to the issues related to the processes of transformation of properties and propagation of plastic particles will allow the study of physical aspects of the problem. During the first stage of the study samples should be selected from the water surface, water column at various horizons, bottom sediments in the Baltic Sea, from different areas at the beaches - in order to further examine the qualitative and quantitative composition of microplastic particles in different seasons for different hydrophysical situations. Reconnaissance survey was begun to choose the fields for research close to point and distributed sources of microplastics. Preference is given to those beaches that are exposed to maximum anthropogenic pollution: areas around the town of Baltiysk, the northern part of the Vistula Spit (near the settlement of Kosa), and the Sambia peninsula coast (settlements of Yantarny, Donskoye, Primorye, Kulikovo, towns of Svetlogorsk, Pionersky, Zelenogradsk). Locations for experimental sites were found in order to assess time for formation of microplastics (Vistula Spit, Kosa settlement). In June-November, 2015 there were 5 expeditions in the waters of the South-Eastern Baltic, 7 expeditions along the coast line of the Baltic Sea (in Kaliningrad Oblast), and 5 expeditions to the Vistula lagoon to take samples and collect experimental materials. Altogether, 61 samples were taken from the surface of the beaches, water and bottom sediments in the Baltic Sea. The primary examination of those samples revealed abundant microplastic particles of the required sizes (0.5 - 5 mm) shaped as pellet of various configurations, spheres, threads, fragments, as well as particles of amber and small fractions of paraffin. The research is supported by the Russian Science Foundation grant number 15-17-10020.
Earth Observations taken by Expedition 41 crewmember
2014-09-16
ISS041-E-011814 (16 Sept. 2014) --- Though having been upgraded from a tropical storm to a Category 2 hurricane, the Atlantic-borne Edouard thus far has avoided land interests as it reached maximum sustained winds of 105 miles per hout, churning in ocean waters several hundred miles southeast of Bermuda. The Expedition 41 crew members onboard the International Space Station photographed and distributed a series of images via station-to-ground downlinks and via social media. This photo was taken at 15:29:04 GMT on Sept. 16, 2014. Though it had well-defined eye at this juncture, the eye does not show clearly in this image, as it does in others.
Laser Remote Sensing of Pollution on Water Surfaces
NASA Technical Reports Server (NTRS)
Bunkin, A. F.; Surovegin, Aleksander L.
1992-01-01
One of the most important problems of modern environmental science is the detection and identification of various impurities in the ocean. Sources of impurities in sea water are diverse. The most common of them are accidental transport, agricultural, and oil industry spills. Once the ecological balance is disturbed, biological processes in sea water become affected, resulting in changes in chlorophyll concentrations, water turbidity, and temperature. During the last few years, we have created new types of lidars and arranged nearly ten aircraft and shipboard expeditions. Some aircraft expeditions dealt with terrestrial investigations. Others were devoted to oceanological research, the results of which are discussed here. Emphasis is on the detection of phytoplankton chlorophyll and hydrocarbon in sea water.
NASA Astrophysics Data System (ADS)
Renz, Jasmin; Markhaseva, Elena L.
2015-11-01
Calanoid copepods constitute the most numerous organisms not only in the pelagic realm, but also in the benthic boundary layer, which gives them an important role in the turnover of organic matter in the benthopelagic habitat. During seven expeditions to the South Atlantic and Southern Ocean, the diversity and biogeography of deep-sea benthopelagic calanoid copepods were studied. The communities of calanoids living in the vicinity of the seabed were characterized by high diversity comparable to many pelagic habitats, but low abundance of individuals. Members of the taxon Clausocalanoidea dominated the communities, and within this taxon most individuals belonged to detritivore calanoids characterized by sensory setae on the second maxillae or aetideid copepods. 73% of all genera classified as obligate or predominantly benthopelagic copepods detected during these expeditions were new to science and a vast number of genera and species have been described since then. Comparing the communities of calanoid genera between different regions, the assemblages in the Southern Ocean differed significantly from the Southeast and Southwest Atlantic. A latitudinal diversity gradient could be observed, with highest numbers of genera in the Southwest Atlantic and low numbers at stations in the Southern Ocean. Reviewing the literature, endemism for benthopelagic calanoids appeared to be low on a latitudinal range caused by connectivity in benthopelagic habitats through spreading water masses. However, considering the habitats structuring the water column vertically, a high number of genera are endemic in the benthopelagial and specialized to living within the vicinity of the seabed.
Pleistocene calcareous nannofossil biochronology at IODP Site U1385 (Expedition 339)
NASA Astrophysics Data System (ADS)
Balestra, B.; Flores, J.-A.; Hodell, D. A.; Hernández-Molina, F. J.; Stow, D. A. V.
2015-12-01
During Integrated Ocean Drilling Program (IODP) Expedition 339, Site U1385 (37°34‧N, 10°7‧W, 2578 m below sea level) was drilled in the lower slope of the Portuguese margin, to provide a marine reference section of Pleistocene millennial-scale climate variability. Five holes were cored using the Advanced Piston Corer (APC) to a depth of ~ 151 m below sea floor (mbsf) recovering a continuous stratigraphic record covering the past 1.4 Ma. Here we present results of the succession of standard and unconventional calcareous nannofossil biostratigraphic events. The quantitative study of calcareous nannofossils showed well-preserved and abundant assemblages throughout the core. Most conventional Pleistocene events were recognized and the timing of bioevents were calibrated using correlation to the new oxygen isotope stratigraphy record developed for the Site U1385. The analyses provide further data on the stratigraphic distribution of selected species and genera, such as the large Emiliania huxleyi (> 4 μm), Gephyrocapsa caribbeanica, Helicosphaera inversa, Gephyrocapsa omega and Reticulofenestra asanoi (> 6 μm) and other circular-subcircular small reticulofenestrids, resulting in new insights into the environmental control of their stratigraphic patterns. Finally, the comparison between nannofossil datums and oxygen isotope stratigraphy on the same samples has resulted in an accurate revision of timing of the events, providing valuable biochronologic information.
Oxidation State of Iron in the Izu-Bonin Arc Initial Magma and Its Influence Factors
NASA Astrophysics Data System (ADS)
Li, H.; Arculus, R. J.; Brandl, P. A.; Hamada, M.; Savov, I. P.; Zhu, S.; Hickey-Vargas, R.; Tepley, F. J., III; Meffre, S.; Yogodzinski, G. M.; McCarthy, A.; Barth, A. P.; Kanayama, K.; Kusano, Y.; Sun, W.
2014-12-01
The redox state of mantle-derived magmas is a controversial issue, especially whether island arc basalts are more oxidized than those from mid-ocean ridges. Usually, arc magmas have higher Fe3+/Fe2+ and calculated oxygen fugacity (fO2) than mid-ocean ridge basalts (MORB). It is the high fO2 of arc magma that apparently delays onset of sulfide fractionation and sequestration of precious/base metals thereby facilitating the formation of many giant gold-copper deposits typically associated with subduction zones. But due to a paucity of Fe3+/Fe2+ data for primary mantle-derived arc magmas, the cause for high fO2 of these magma types is still controversial; causes may include inter alia subduction-released oxidized material addition to the mantle wedge source of arc magma, partial melting of subducted slab, and redox changes occurring during ascent of the magma. Fortunately, IODP expedition 351 drilling at IODP Site U1438 in the Amami-Sankaku Basin of the northwestern Philipine Sea, adjacent to the proto-Izu-Bonin Arc at the Kyushu-Palau Ridge (KPR), recovered not only volcaniclastics derived from the inception of Izu-Bonin Mariana (IBM) arc in the Eocene, but also similar materials for the Arc's subsequent evolution through to the Late Oligocene and abandonment of the KPR as a remnant arc. Samples of the pre-Arc oceanic crustal basement were also recovered enabling us to determine the fO2of the mantle preceding arc inception. As the oxidation state of iron in basaltic glass directly relates to the fO2 , the Fe3+/∑Fe ratio [Fe3+/(Fe3++ Fe2+)] of basaltic glass are quantified by synchrotron-facilitated micro X-ray Absorption Near Edge Structure (XANES) spectroscopy to reflect its fO2. Fe K-edge µ-XANES spectra were recorded in fluorescence mode at Beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF). Synthetic silicate glass with known Fe3+/∑Fe ratio was used in data handling. The experimental results as well as preliminary data from IODP Expedition 351 will be presented
IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere
NASA Astrophysics Data System (ADS)
Andrén, T.; Barker Jørgensen, B.; Cotterill, C.; Green, S.; IODP expedition 347 scientific party, the
2015-12-01
The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different settings of the Baltic Sea covering the last glacial-interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region with changing ice cover and major shifts in temperature, salinity, and biological communities. Using the Greatship Manisha as a European Consortium for Ocean Research Drilling (ECORD) mission-specific platform, we recovered 1.6 km of core from nine sites of which four were additionally cored for microbiology. The sites covered the gateway to the North Sea and Atlantic Ocean, several sub-basins in the southern Baltic Sea, a deep basin in the central Baltic Sea, and a river estuary in the north. The waxing and waning of the Scandinavian ice sheet has profoundly affected the Baltic Sea sediments. During the Weichselian, progressing glaciers reshaped the submarine landscape and displaced sedimentary deposits from earlier Quaternary time. As the glaciers retreated they left a complex pattern of till, sand, and lacustrine clay, which in the basins has since been covered by a thick deposit of Holocene, organic-rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly impacted by terrestrial runoff and nutrient fluxes. The Holocene deposits are recorded today to be up to 50 m deep and geochemically affected by diagenetic alterations driven by organic matter degradation. Many of the cored sequences were highly supersaturated with respect to methane, which caused strong degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to Holocene brackish mud. High-resolution sampling and analyses of interstitial water chemistry revealed the intensive mineralization and zonation of the predominant biogeochemical processes. Quantification of microbial cells in the sediments yielded some of the highest cell densities yet recorded by scientific drilling.
Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica.
Stanton, T P; Shaw, W J; Truffer, M; Corr, H F J; Peters, L E; Riverman, K L; Bindschadler, R; Holland, D M; Anandakrishnan, S
2013-09-13
Ice shelves play a key role in the mass balance of the Antarctic ice sheets by buttressing their seaward-flowing outlet glaciers; however, they are exposed to the underlying ocean and may weaken if ocean thermal forcing increases. An expedition to the ice shelf of the remote Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet that has rapidly thinned and accelerated in recent decades, has been completed. Observations from geophysical surveys and long-term oceanographic instruments deployed down bore holes into the ocean cavity reveal a buoyancy-driven boundary layer within a basal channel that melts the channel apex by 0.06 meter per day, with near-zero melt rates along the flanks of the channel. A complex pattern of such channels is visible throughout the Pine Island Glacier shelf.
Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge
O'Regan, M.; King, J.; Backman, J.; Jakobsson, M.; Palike, H.; Moran, K.; Heil, C.; Sakamoto, T.; Cronin, T. M.; Jordan, R.W.
2008-01-01
Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolultion of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record "glacial" and "interglacial" modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions. Copyright 2008 by the American Geophysical Union.
IODP Expedition 340T: Borehole Logging at Atlantis Massif Oceanic Core Complex
NASA Astrophysics Data System (ADS)
Blackman, D.; Slagle, A.; Harding, A.; Guerin, G.; McCaig, A.
2013-03-01
Integrated Ocean Drilling Program (IODP) Expedition 340T returned to the 1.4-km-deep Hole U1309D at Atlantis Massif to carry out borehole logging including vertical seismic profiling (VSP). Seismic, resistivity, and temperature logs were obtained throughout the geologic section in the footwall of this oceanic core complex. Reliable downhole temperature measurements throughout and the first seismic coverage of the 800-1400 meters below seafloor (mbsf) portion of the section were obtained. Distinct changes in velocity, resistivity, and magnetic susceptibility characterize the boundaries of altered, olivine-rich troctolite intervals within the otherwise dominantly gabbroic se-quence. Some narrow fault zones also are associated with downhole resistivity or velocity excursions. Small deviations in temperature were measured in borehole fluid adjacent to known faults at 750 mbsf and 1100 mbsf. This suggests that flow of seawater remains active along these zones of faulting and rock alteration. Vertical seismic profile station coverage at zero offset now extends the full length of the hole, including the uppermost 150 mbsf, where detachment processes are expected to have left their strongest imprint. Analysis of wallrock properties, together with alteration and structural characteristics of the cores from Site U1309, highlights the likely interplay between lithology, structure, lithospheric hydration, and core complex evolution. doi:10.2204/iodp.sd.15.04.2013
NASA Astrophysics Data System (ADS)
Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.
NASA Astrophysics Data System (ADS)
Povinec, P. P.; Aoyama, M.; Biddulph, D.; Breier, R.; Buesseler, K.; Chang, C. C.; Golser, R.; Hou, X. L.; Ješkovský, M.; Jull, A. J. T.; Kaizer, J.; Nakano, M.; Nies, H.; Palcsu, L.; Papp, L.; Pham, M. K.; Steier, P.; Zhang, L. Y.
2013-08-01
Radionuclide impact of the Fukushima Dai-ichi nuclear power plant accident on the distribution of radionuclides in seawater of the NW Pacific Ocean is compared with global fallout from atmospheric tests of nuclear weapons. Surface and water column samples collected during the Ka'imikai-o-Kanaloa (KOK) international expedition carried out in June 2011 were analyzed for 134Cs, 137Cs, 129I and 3H. The 137Cs, 129I and 3H levels in surface seawater offshore Fukushima varied between 0.002-3.5 Bq L-1, 0.01-0.8 μBq L-1, and 0.05-0.15 Bq L-1, respectively. At the sampling site about 40 km from the coast, where all three radionuclides were analyzed, the Fukushima impact on the levels of these three radionuclides represents an increase above the global fallout background by factors of about 1000, 50 and 3, respectively. The water column data indicate that the transport of Fukushima-derived radionuclides downward to the depth of 300 m has already occurred. The observed 137Cs levels in surface waters and in the water column are compared with predictions obtained from the ocean general circulation model, which indicates that the Kuroshio Current acts as a southern boundary for the transport of the radionuclides, which have been transported from the Fukushima coast eastward in the NW Pacific Ocean. The 137Cs inventory in the water column is estimated to be about 2.2 PBq, what can be regarded as a lower limit of the direct liquid discharges into the sea as the seawater sampling was carried out only in the area from 34 to 37° N, and from 142 to 147° E. About 4.6 GBq of 129I was deposited in the NW Pacific Ocean, and 2.4-7 GBq of 129I was directly discharged as liquid wastes into the sea offshore Fukushima. The total amount of 3H released and deposited over the NW Pacific Ocean was estimated to be 0.1-0.5 PBq. These estimations depend, however, on the evaluation of the total 137Cs activities released as liquid wastes directly into the sea, which should improve when more data are available. Due to a suitable residence time in the ocean, Fukushima-derived radionuclides will provide useful tracers for isotope oceanography studies on the transport of water masses during the next decades in the NW Pacific Ocean.
Krikalev holds tube within CPCF-2 Activation Mechanism during Expedition 10 / Expedition 11
2005-04-18
ISS010-E-24980 (18 April 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, holds a sample tube within the Commercial Protein Crystallization Facility-2 (CPCF-2) Activation Mechanism which is part of the Kriogem-03 refrigerator in the Zvezda Service Module of the International Space Station (ISS).
The SMORE Project: A Model for Transforming Authentic Research into Classroom Curricula
NASA Astrophysics Data System (ADS)
Abmayr, V.
2016-12-01
The SMORE (Students Monitoring Ocean Response to Eutrophication) Project is the direct result of a partnership between marine scientist Dr. Patricia Yager (UGA) and Lollie Garay, a middle school classroom teacher from Texas. Partnered by PolarTREC on an expedition to the Southern Ocean in 2007, they have since traveled together building not only a lasting teacher/scientist collaboration, but also a tri-state student collaboration based on authentic fieldwork. Inspired by Dr. Yager's research, this student -driven project has generated biogeochemical data from Alaska, Texas, and Georgia. Moreover, it has enhanced student understanding of ocean science topics traditionally underemphasized in classrooms. Engaging students in scientific practices and application benefits not only the students and teachers, but also the scientists.
NASA Astrophysics Data System (ADS)
Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists
2010-12-01
For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after the expedition, conducting post-expedition projects in conjunction with the U.S. Implementing Organization and their own institutions, and to participating actively in post-cruise evaluation. Since its inception in 2005, 75 SOR graduates and staff have conducted over 150 workshops and short courses for 3,000 participants in more than 30 U.S. states and five other nations. Integral to the success of the program is the evaluation process that takes place during and after each SOR. In particular, SOR evaluations take advantage of the power of video data collection to demonstrate the transformative nature of SOR expeditions. Video evaluations offer a unique opportunity to collect and preserve participant “voice” to document true transformative broader impacts. Along with video evaluations, the program also employs more traditional evaluation methods such as internal evaluator observations, open-ended questionnaires, and participant journals.
NASA Astrophysics Data System (ADS)
Ijiri, A.; Inagaki, F.
2015-12-01
During the Integrated Ocean Drilling Program (IODP) Expedition 337 in 2012, the riser-drilling vessel Chikyu extended the previous world depth record of scientific ocean drilling and made one of the deepest scientific borehole down to 2466 m below the seafloor (mbsf) at Site C0020 Hole A off the Shimokita Peninsula, Japan. The sedimentary sequence consists of 17 lignite layers below 1.5 km bellow the seafloor. Microbiological and geochemical data consistently showed evidence for the existence of microbial communities associated with lignite coal beds in the coal-bearing sediments (Inagaki and Hinrichs et al., Science, 2015). Since lignite coals produce substantial dissolved organic compounds during the burial alternation process, volatile fatty acids may play important roles for microbial life and its activity in the deep sedimentary environment. To address this hypothesis, we measured methanogenic and acetate-oxidation activities by radiotracer incubation experiments using 14C-labelled substrate ([2-14C]-acetate) immediately after core recovery. Activity of aceticlastic methanogenesis was observed in the sediment above the coal-baring layers (>1990 mbsf), ranging from 0.2 to 1.2 pmol cm-3 d-1. The highest activity was observed in a coal-bed horizon at 1990 mbsf. However, aceticlastic methanogenesis was below the detection limit in sediment samples below the 2 km-coal layers. Activity of acetate oxidation to CO2 was measured by 14CO2 production rate from [2-14C]-acetate. Interestingly, the acetate-oxidation activity was observed in sediments above the coal beds, which values were generally higher than those of methanogenesis with the maximum value of 33 pmol cm-3 d-1 at 1800 mbsf. The rates gradually decreased with increasing depth from 1800 mbsf and reached below the detection limit (i.e., 0.05 pmol cm-3 d-1) in 2 km-deep coal-bed samples. The occurrence of relatively high acetate oxidation at ~1800 mbsf above the coal formation suggests that microbes respire acetate with available electron acceptors such as glauconitic iron oxides in the deep sedimentary environment.
Telling the Story of Ridge Flank Research to all Ages and Audiences
NASA Astrophysics Data System (ADS)
Cooper, S. K.; Brennon, R.; Hamner, K.; Kane, J.; Ringlein, J.; Strong, L. R.; Orcutt, B. N.; Fisher, A. T.; Edwards, K. J.; Cowen, J. P.; Hulme, S.; Wheat, C. G.; Scientific Team of Expedition AT18-07
2011-12-01
A team of six education and communication specialists took part in Expedition AT18-07 onboard the R/V Atlantis during Summer 2011 as part of Hydrogeologic, Geochemical, and Microbiological Experiments in Young Ocean Crust of the Northeastern Pacific Ocean Using Subseafloor Observatories. Fully integrating into the science party of this expedition, educators brought their diverse backgrounds (middle school science, high school physics and biology, informal science institutions, and science media/communication) to bear as they participated in shipboard operations, laboratory analyses and scientific problem-solving. Their primary role, however, was to translate the excitement and significance of these investigations for a variety of non-science audiences on shore - including museum visitors, scout groups, summer camps, summer schools and college students - and provide rich opportunities for interaction surrounding transformative science in real time. Using a satellite-based internet link, educators took advantage of web-based tools, Skype and social networking sites Facebook, Twitter and YouTube, to bring the real process of science live from the seafloor to classrooms from Washington, D.C. to Taiwan. Activities and products included: 13 live ship-to-shore video broadcasts, development of classroom activities, partnerships among scientists and educators, web-based microbiology investigations, production of videos, development of museum exhibits and programs, and a video game based on the ROV Jason. In addition, several scientists initiated independent education projects, to which the education and communication team contributed their skills, including the Adopt a Microbe from the Seafloor web site, which provided regular art and science activities about microbiology and invites active participation from shore-based groups. Results of post-expedition work with students and the public will be shared, as will pre- and post-expedition evaluation reports on the impact of this experience directly on the team members. Special thanks to the Center for Dark Energy Biosphere Investigations and Deep Earth Academy for sponsoring this work.
NASA Astrophysics Data System (ADS)
Johnson, K. E.; Marsaglia, K. M.
2015-12-01
The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading in the Shikoku Basin was initiated. This information will be combined with volcanic provenance and geochemical information from other studies, ultimately creating a deep-marine facies model for intraoceanic arc systems.
The size, mass, and composition of plastic debris in the western North Atlantic Ocean.
Morét-Ferguson, Skye; Law, Kara Lavender; Proskurowski, Giora; Murphy, Ellen K; Peacock, Emily E; Reddy, Christopher M
2010-10-01
This study reports the first inventory of physical properties of individual plastic debris in the North Atlantic. We analyzed 748 samples for size, mass, and material composition collected from surface net tows on 11 expeditions from Cape Cod, Massachusetts to the Caribbean Sea between 1991 and 2007. Particles were mostly fragments less than 10mm in size with nearly all lighter than 0.05 g. Material densities ranged from 0.808 to 1.24 g ml(-1), with about half between 0.97 and 1.04 g ml(-1), a range not typically found in virgin plastics. Elemental analysis suggests that samples in this density range are consistent with polypropylene and polyethylene whose densities have increased, likely due to biofouling. Pelagic densities varied considerably from that of beach plastic debris, suggesting that plastic particles are modified during their residence at sea. These analyses provide clues in understanding particle fate and potential debris sources, and address ecological implications of pelagic plastic debris. Copyright © 2010 Elsevier Ltd. All rights reserved.
Quantifying trace element and isotope fluxes at the ocean–sediment boundary: a review
Berelson, William M.; Severmann, Silke
2016-01-01
Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment–water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment–water boundary on many TEI cycles, and underline the fact that our knowledge of the source–sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment–water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035270
NASA Astrophysics Data System (ADS)
Ennis, G.; Sievering, H.
1990-06-01
During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.
NASA Astrophysics Data System (ADS)
Glickson, D.; Amon, D.; Pomponi, S. A.; Fryer, P. B.; Elliott, K.; Lobecker, E.; Cantwell, K. L.; Kelley, C.
2016-12-01
From April to July 2016, an interdisciplinary team of ship-based and shore-based scientists investigated the biology and geology of the Marianas region as part of the 3-year NOAA Campaign to Address the Pacific monument Science, Technology, and Ocean NEeds (CAPSTONE) using the telepresence-enabled NOAA ship Okeanos Explorer. The focus of the expedition was on the Marianas Trench Marine National Monument and the waters of the Commonwealth of the Northern Mariana Islands. A variety of habitats were explored, including deep-sea coral and sponge communities, bottom fisheries, mud volcanoes, hydrothermal vents, Prime Crust Zone seamounts, and the Trench subduction zone. The expedition successfully collected baseline information at 41 sites at depths from 240 to 6,000 m. High-resolution imagery was obtained along the dive tracks, both in the water column and on the seafloor. Over 130 biological and geologic samples were collected. Many of the organisms documented are likely to be new species or new records of occurrence, and dozens of observations were the first ever collected in situ. Almost 74,000 square kilometers of seafloor were mapped, greatly improving both coverage and resolution in the region. New geologic features were mapped and explored, including ridges and new lava flow fields. Public engagement was substantial, with over 3.1 million total views of the live streaming video/audio feeds. The telepresence paradigm was tested rigorously, with active participation from 100 scientists in five countries and at least nine time zones. The shore-based team provided strong scientific expertise, complementing and expanding the knowledge of the ship-based science leads.
NASA Astrophysics Data System (ADS)
Gallagher, S. J.; McCaffrey, J.; Wallace, M. W.; Keep, M.; Fulthorpe, C.; Bogus, K.; McHugh, C.
2017-12-01
Mass-transport processes on continental margins may have catastrophic consequences, causing tsunamis, major rock falls and avalanches and can destroy offshore hydrocarbon installations. Mass-transport deposits (MTD's) with volumes 17 to >162 km3 are common along the northwest margin of Australia. One of the largest is the Gorgon slide which is offshore from Barrow Island with a minimum volume of 250 km3. Age estimates for slides on the Northwest Shelf are variable and range from Miocene to Recent (Gorgon MTD), late Pliocene to Recent (Thebe/Bonaventure MTD's) and Pleistocene to Recent. This age uncertainty is related to a lack of cored sections through these slides and relies on pre-existing ages and correlations from poorly dated sections (usually industry well sections with minimal samples in the upper 500 m) distal from the MTD's. Therefore, the age, origin and history of these MTD's is not well known. A recent International Ocean Discovery Program Expedition (IODP Expedition 356) to the region obtained a series of continuous cores from the upper 600m to 1.1 km of the Northern Carnarvon and Roebuck Basins. Four sites were cored adjacent to hydrocarbon wells; West Tryal Rocks-2 (Site U1461), Fisher-1 (Site U1462), Picard-1 (Site U1463) and Minilya-1 (Site U1464). Site U1461 yielded 100% core recovery through the Gorgon Slide. Preliminary data from this section suggests that it is relatively young (<1 Ma) with ongoing activity from 0.5 Ma continuing to today. We suggest neotectonism combined with the onset of high amplitude glacio-eustatic cycles may have been triggering factors for this slide.
Chemical Analysis Results for Potable Water from ISS Expeditions 21 Through 25
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2011-01-01
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 through 25. Over a 14-month period the Space Shuttle visited the ISS on four occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), and STS-132 (ULF4), as well as on Soyuz flights 19-23. This paper reports the analytical results for these returned potable water archival samples and their compliance with ISS water quality standards.
NASA Astrophysics Data System (ADS)
Prouhet, T.; Cook, J.
2006-12-01
Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.
NASA Astrophysics Data System (ADS)
Lee, Eun Young; Kominz, Michelle; Reuning, Lars; Takayanagi, Hideko; Knierzinger, Wolfgang; Wagreich, Michael; Expedition 356 shipboard scientists, IODP
2017-04-01
The northwest shelf (NWS) of Australia extends from northern tropical to southern temperate latitudes situated offshore from the low-moderate-relief and semi-arid Australian continent. The shelf environment is dominated throughout by carbonate sedimentation with warm-water and tropical carbonate deposits, connected to the long-term northward drift of Australia bringing the NWS into tropical latitudes. IODP expedition 356 cored seven sites (U1458-U1464) covering a latitudinal range of 29°S-18°S off the NWS. This study focuses on porosity-depth trends of the Miocene - Pleistocene carbonate sediment on the NWS. The NWS is an ideal area to study regional (and furthermore general) carbonate porosity-depth relationships, because it contains a nearly continuous sequence of carbonate sediment ranging in depth from the surface to about 1,100m and in age from Pleistocene to Miocene. Porosity-depth trends of sedimentary rocks are generally controlled by a variety of factors which govern the rates of porosity loss due to mechanical compaction and of porosity loss (or gain) due to chemical processes during diagenesis. This study derives porosity data from Moisture and Density (MAD) technique conducted during IODP Expedition 356. MAD samples were collected from packstone (44%), wackestone (27%), mudstone (15%) and grainstone (7%), with the rest from floatstone, rudstone, dolostone, sandstone and other subordinate lithologies. To understand porosity-depth trends, the porosity data are arranged both exponentially and linearly, and correlated with age models and lithologic descriptions provided by IODP shipboard scientists. Porosity(%)-depth(m) trends of all the porosity data are Porosity=52e-0.0008/Depth (exponential) and Porosity=-0.03Depth+52 (linear). Porosities near surface and in the deepest parts of each well are least well represented by these trend lines. Porosity values of Pleistocene sediment are generally higher than those of Miocene - Pliocene sediment. The initial porosity in porosity-depth trends increases from 52% to 57% with increasing mud content from grainstone to packstone, wackestone, and mudstone. Carbonate sediment that includes non-skeletal grains usually has lower porosity values than the trend lines. *This research was a part of the project titled 'International Ocean Discovery Program', funded by the Ministry of Oceans and Fisheries, Korea.
Physical characteristics of summer sea ice across the Arctic Ocean
Tucker, W. B.; Gow, A.J.; Meese, D.A.; Bosworth, H.W.; Reimnitz, E.
1999-01-01
Sea ice characteristics were investigated during July and August on the 1994 transect across the Arctic Ocean. Properties examined from ice cores included salinity, temperature, and ice structure. Salinities measured near zero at the surface, increasing to 3-4??? at the ice-water interface. Ice crystal texture was dominated by columnar ice, comprising 90% of the ice sampled. Surface albedos of various ice types, measured with radiometers, showed integrated shortwave albedos of 0.1 to 0.3 for melt ponds, 0.5 for bare, discolored ice, and 0.6 to 0.8 for a deteriorated surface or snow-covered ice. Aerial photography was utilized to document the distribution of open melt ponds, which decreased from 12% coverage of the ice surface in late July at 76??N to almost none in mid-August at 88??N. Most melt ponds were shallow, and depth bore no relationship to size. Sediment was pervasive from the southern Chukchi Sea to the north pole, occurring in bands or patches. It was absent in the Eurasian Arctic, where it had been observed on earlier expeditions. Calculations of reverse trajectories of the sediment-bearing floes suggest that the southernmost sediment was entrained during ice formation in the Beaufort Sea while more northerly samples probably originated in the East Siberian Sea, some as far west as the New Siberian Islands.
Occurrence and Risk Assessment of PAHs in Surface Sediments from Western Arctic and Subarctic Oceans
Lin, Yan; Cai, Minggang; Zhang, Jingjing; Zhang, Yuanbiao; Kuang, Weiming; Liu, Lin; Huang, Peng; Ke, Hongwei
2018-01-01
In the fourth Chinese National Arctic Research Expedition (from July to September, 2010), 14 surface sediment samples were collected from the Bering Sea, Chukchi Sea, and Canadian Basin to examine the spatial distributions, potential sources, as well as ecological and health risk assessment of polycyclic aromatic hydrocarbons (PAHs). The ∑PAH (refers to the sum of 16 priority PAHs) concentration range from 27.66 ng/g to 167.48 ng/g (dry weight, d.w.). Additionally, the concentrations of ∑PAH were highest in the margin edges of the Canadian Basin, which may originate from coal combustion with an accumulation of Canadian point sources and river runoff due to the surface ocean currents. The lowest levels occurred in the northern of Canadian Basin, and the levels of ∑PAH in the Chukchi Sea were slightly higher than those in the Being Sea. Three isomer ratios of PAHs (Phenanthrene/Anthracene, BaA/(BaA+Chy), and LMW/HMW) were used to investigate the potential sources of PAHs, which showed the main source of combustion combined with weaker petroleum contribution. Compared with four sediment quality guidelines, the concentrations of PAH are much lower, indicating a low potential ecological risk. All TEQPAH also showed a low risk to human health. Our study revealed the important role of the ocean current on the redistribution of PAHs in the Arctic. PMID:29649142
There and back again: An oceanographer's approach to delving into -and returning from- the unknown.
NASA Astrophysics Data System (ADS)
Girguis, P. R.; Hoer, D.; Michel, A.; Wankel, S. D.; Farr, N.; Pontbriand, C.; Raineault, N.
2017-12-01
Modern oceanographers explore the ocean through a combination of human-operated and autonomous instruments. Our understanding of the ocean and its denizens is advancing at a remarkable rate, and yet we still possess a rudimentary knowledge of the ocean. We largely view the ocean as the sum of its parts, and have a limited understanding of the relationships and synergies that exist within the ocean system. This tendency is, to a large extent, a result of how we conduct our science. Expedition-based science, in which scientists or autonomous vehicles set out on a mission for a prescribed period of time, tends to result in data with great spatial resolution (as samples are often taken while underway) but very limited temporal resolution (as ships cannot stay in one place for more than several weeks). The advent of seafloor and water-column "observatories" provided an unprecedented opportunity to conduct long-term studies with incredible temporal resolution, but limited spatial resolution. Therein lies the challenge of studying processes in the ocean, our world's most massive habitat. While we may never be able to "keep our thumb on the pulse" of every measurable factor in the ocean, we as a community are developing new technologies that permit us to better examine our oceans and to sustain a nearly continuous scientific presence in the deep sea. Here we present some of the latest developments -as well as the lessons- from exploring our own inner space. We will discuss technologies and methods that have helped us (and our community) bring autonomy to the exploration of our ocean. We will also present our data from recent efforts aimed at examining the relationships among abiotic and biological processes in our ocean. These technologies and methods can help us unlock the mysteries of the cosmos, in particular that enduring question of whether life exists on other celestial bodies. We posit that fostering a rich and extensive collaboration among ocean and space scientists is critical if we are to advance our understanding of other ocean worlds, such as Enceladus and Europa, beyond the scope of current missions and technologies. In essence, it may be our increasing ability to peer into the ocean depths that will allow us to better peer into the cosmos.
Expedition 28 Crew Members remove samples from the JPM MELFI
2011-07-08
ISS028-E-014918 (8 July 2011) --- NASA astronauts Ron Garan (left) and Mike Fossum, both Expedition 28 flight engineers, remove samples from the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) and insert in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI-1) in the Kibo laboratory of the International Space Station.
Expedition 28 Crew Members remove samples from the JPM MELFI
2011-07-08
ISS028-E-014916 (8 July 2011) --- NASA astronauts Ron Garan (left) and Mike Fossum, both Expedition 28 flight engineers, remove samples from the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) and insert in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI-1) in the Kibo laboratory of the International Space Station.
NASA Astrophysics Data System (ADS)
Rabe, Benjamin; Janout, Markus; Graupner, Rainer; Hoelemann, Jens; Hampe, Hendrik; Hoppmann, Mario; Horn, Myriel; Juhls, Bennet; Korhonen, Meri; Nikolopoulos, Anna; Pisarev, Sergey; Randelhoff, Achim; Savy, Jean-Philippe; Villacieros Robineau, Nicolas
2017-04-01
The Arctic Ocean is generally assumed to be fairly quiescent when compared to many other oceans. The sea-ice cover, a strong halocline and a shallow, cold mixed-layer prevents much of the ocean to be affected by atmospheric conditions and properties of the ocean mixed-layer. In turn, the mixed-layer and the sea-ice is largely isolated from the warm layer of Atlantic origin below by the lower halocline. Yet, the content of heat, freshwater and biologically important nutrients differs strongly between these different layers. Hence, it is crucial to be able to estimate vertical fluxes of salt, heat and nutrients to understand variability in the upper Arctic Ocean and the sea-ice, including the ecosystem. Yet, it is difficult to obtain direct flux measurements, and estimates are sparse. We present several sets of under-ice turbulent microstructure profiles in the Eurasian and Makarov Basin of the Arctic Ocean from two expeditions, in 2015. These cover melt during late spring north of Svalbard and freeze-up during late summer / autumn across the Eurasian and Makarov basins. Our results are presented against a background of the anomalously warm atmospheric conditions during summer 2015 followed by unusually low temperatures in September. 4 - 24 h averages of the measurements generally show elevated dissipation rates at the base of the mixed-layer. We found highest levels of dissipation near the Eurasian continental slope and smaller peaks in the profiles where Bering Sea Summer Water (sBSW) lead to additional stratification within the upper halocline in the Makarov Basin. The elevated levels of dissipation associated with sBSW and the base of the mixed-layer were associated with the relatively low levels of vertical eddy diffusivity. We discuss these findings in the light of the anomalous conditions in the upper ocean, sea-ice and the atmosphere during 2015 and present estimates of vertical fluxes of heat, salt and other dissolved substances measured in water samples.
Earth Observations taken by Expedition 38 crewmember
2013-12-26
ISS038-E-021397 (24 Dec. 2013) --- The Caribbean country of Cuba is pictured in this nadir image, photographed by one of the Expedition 38 crew members aboard the International Space Station. (Note: North is at the top of the picture.) Cuba is an archipelago of islands in the northern Caribbean Sea at the confluence with the Gulf of Mexico and the Atlantic Ocean. In the southeast, the dark coastal area is home to the Sierra Maestra mountains. It is the highest mountain range on the island, with Pico Turquino reaching nearly 2000 meters. On the central southern coast of the island is the Sierra Del Escambray mountain range, including the 1160 meter-high Pico San Juan, Cuba's second highest peak.
Halfway point of the one year mission on This Week @NASA – September 18, 2015
2015-09-18
Sept. 15 marked the halfway point in the yearlong mission on the International Space Station with NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko. An event the day before at the National Press Club in Washington included a discussion about the biomedical research conducted on the station, to help formulate future human missions to Mars. Kelly participated from the space station. His identical twin, retired NASA astronaut Mark Kelly, and NASA astronaut Terry Virts, who served as commander of Expedition 43, participated from the press club. Also, I spy the space station: Live!, Expedition 43 post-flight visit, Key milestone for Orion spacecraft, Global ocean on Enceladus, Connecting space to village and more!
NASA Astrophysics Data System (ADS)
This note is call for dive requests, coordinated to the extent practical, from those scientists interested in opportunities for an Alvin/Atlantis II expedition to some remote area. In an effort to facilitate planning for Alvin and to help focus the attention of investigators with diverse scientific interests in remote areas, Feenan Jennings of Texas A & M University, College Station, who chairs the University-National Oceanographic Laboratory System's (UNOLS') Alvin Review Committee (ARC), has announced establishment of an Alvin planning bulletin board on electronic mail. The bulletin board, ALVIN.PLANNING, is to help inform potential users of community interest in conducting Alvin/Atlantis II research projects, especially those involving expeditions to remote areas. ALVIN.PLANNING will be implemented early in 1990. Notice and further details will be broadcast throughout the ocean community.
Cerezo, Maria Isabel; Agusti, Susana
2015-12-30
One way organic pollutants reach remote oceanic regions is by atmospheric transport. During the Malaspina-2010 expedition, across the Atlantic, Indian, and Pacific Oceans, we analyzed the polycyclic aromatic hydrocarbon (PAH) effects on oceanic microbial food webs. We performed perturbation experiments adding PAHs to classic dilution experiments. The phytoplankton growth rates were reduced by more than 5 times, being Prochlorococcus spp. the most affected. 62% of the experiments showed a reduction in the grazing rates due to the presence of PAHs. For the remaining experiments, grazing usually increased likely due to cascading effects. We identified changes in the slope of the relation between the growth rate and the dilution fraction induced by the pollutants, moving from no grazing to V-shape, or to negative slope, indicative of grazing increase by cascade effects and alterations of the grazers' activity structure. Our perturbation experiments indicate that PAHs could influence the structure oceanic food-webs structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lofi, J.; Inwood, J.; Proust, J.; Monteverde, D.; Loggia, D.; Basile, C.; Hayashi, T.; Stadler, S.; Fehr, A.; Pezard, P.
2012-12-01
For the first time in the history of international scientific drillings, the Integrated Ocean Drilling Program (IODP) mission-specific platform (MSP) Expedition 313 drilled three 631-755 m-deep boreholes on the middle shelf of a clastic passive margin. This expedition gathered a full set of geophysical data tied to drillcores with 80% of recovery. It offers a unique opportunity to access the internal structure of a siliciclastic system, at scales ranging from the matrix to the margin, and to correlate the geological skeleton with the spatial distribution and salinity of saturating fluids. In addition to the discovery of very low salinity pore water (<3g/l) at depths exceeding 400 m below the middle shelf, this expedition provides evidence for a multi-layered reservoir, with fresh/brackish water intervals alternating vertically with salty intervals. Our observations suggest that the processes controlling salinity distribution are strongly influenced by lithology, porosity and permeability. Saltier pore waters are recovered in less porous, more permeable, intervals whereas fresher pore waters are recovered in more porous, less permeable, intervals. Pore water concentrations are inversely correlated to the Thorium content, with high salinities in low Th intervals (i.e. sandy formations). The transition from fresher to saltier intervals is often marked by cemented horizons acting as permeability barrier. In the lower part of some holes, the salinity varies independently of lithology, suggesting different mechanisms and/or sources of salinity. We have developed a 2D model of permeability distribution along a dip transect of the margin, extrapolated from combined clinoform geometries observed on seismic data and sedimentary facies described on cores. This model clearly illustrates the importance of taking into account the spatial heterogeneity of geological system at several scales. Lithology reflects permeability at a small scale whereas seismic facies and system tracts can be used to infer the reservoir geometry at a larger scale. Four main reservoirs (R1 to R4) that are relatively disconnected have been identified. These are essentially developed in coarse-grained deposits observed either in some clinoform topsets (R4), in upper foresets (R2, R3), or in both of them (R1). R2 to R4 contain salty water while the most proximal reservoir R1, located close to the coastline, is saturated with fresh water, and may form the seaward extension of onshore aquifers. Each of these four reservoirs is separated by confining units of varied thicknesses and of relatively broad spatial extension. At the Expedition 313 drilling sites, the fresh waters stored in confining units have a post-deposition age and may have a fossil origin (Pleistocene low-stands?), whereas saltier water recovered in distal reservoirs (R2 to R4) penetrated at a later stage. Further work must be done to clarify the emplacement mechanisms. Future studies should focus on the inclusion of our 2D permeability model in a groundwater model, in order to examine the specific flow processes that are active in this environment. This research used samples and data provided by the Integrated Ocean Drilling Program (IODP) and the International Continental Scientific Drilling Program (ICDP).
Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra
NASA Astrophysics Data System (ADS)
Hüpers, Andre; Torres, Marta E.; Owari, Satoko; McNeill, Lisa C.; Dugan, Brandon; Henstock, Timothy J.; Milliken, Kitty L.; Petronotis, Katerina E.; Backman, Jan; Bourlange, Sylvain; Chemale, Farid; Chen, Wenhuang; Colson, Tobias A.; Frederik, Marina C. G.; Guèrin, Gilles; Hamahashi, Mari; House, Brian M.; Jeppson, Tamara N.; Kachovich, Sarah; Kenigsberg, Abby R.; Kuranaga, Mebae; Kutterolf, Steffen; Mitchison, Freya L.; Mukoyoshi, Hideki; Nair, Nisha; Pickering, Kevin T.; Pouderoux, Hugo F. A.; Shan, Yehua; Song, Insun; Vannucchi, Paola; Vrolijk, Peter J.; Yang, Tao; Zhao, Xixi
2017-05-01
Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.
Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.
Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean
2013-12-06
The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.
Microbial Metagenomics: Beyond the Genome
NASA Astrophysics Data System (ADS)
Gilbert, Jack A.; Dupont, Christopher L.
2011-01-01
Metagenomics literally means “beyond the genome.” Marine microbial metagenomic databases presently comprise ˜400 billion base pairs of DNA, only ˜3% of that found in 1 ml of seawater. Very soon a trillion-base-pair sequence run will be feasible, so it is time to reflect on what we have learned from metagenomics. We review the impact of metagenomics on our understanding of marine microbial communities. We consider the studies facilitated by data generated through the Global Ocean Sampling expedition, as well as the revolution wrought at the individual laboratory level through next generation sequencing technologies. We review recent studies and discoveries since 2008, provide a discussion of bioinformatic analyses, including conceptual pipelines and sequence annotation and predict the future of metagenomics, with suggestions of collaborative community studies tailored toward answering some of the fundamental questions in marine microbial ecology.
Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores
NASA Astrophysics Data System (ADS)
Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.
2015-12-01
Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture where, and to what extent, the burrow tubes deviate from the sediment matrix. Future research will correlate changes in variance due to bioturbation to other features indicating ocean temperatures and nutrient flux, such as foraminifera counts and oxygen isotope data.
ISS Potable Water Quality for Expeditions 26 through 30
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2012-01-01
International Space Station (ISS) Expeditions 26-30 spanned a 16-month period beginning in November of 2010 wherein the final 3 flights of the Space Shuttle program finished ISS construction and delivered supplies to support the post-shuttle era of station operations. Expedition crews relied on several sources of potable water during this period, including water recovered from urine distillate and humidity condensate by the U.S. water processor, water regenerated from humidity condensate by the Russian water recovery system, and Russian ground-supplied potable water. Potable water samples collected during Expeditions 26-30 were returned on Shuttle flights STS-133 (ULF5), STS-134 (ULF6), and STS-135 (ULF7), as well as Soyuz flights 24-27. The chemical quality of the ISS potable water supplies continued to be verified by the Johnson Space Center s Water and Food Analytical Laboratory (WAFAL) via analyses of returned water samples. This paper presents the chemical analysis results for water samples returned from Expeditions 26-30 and discusses their compliance with ISS potable water standards. The presence or absence of dimethylsilanediol (DMSD) is specifically addressed, since DMSD was identified as the primary cause of the temporary rise and fall in total organic carbon of the U.S. product water that occurred in the summer of 2010.
Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments
NASA Astrophysics Data System (ADS)
Han, D.; Nam, S. I.
2017-12-01
Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).
Biomarker Constraints on Arctic Surface Water Conditions During the Middle Eocene
NASA Astrophysics Data System (ADS)
Speelman, E. N.; Reichart, G.; Brinkhuis, H.; Sinninghe Damste, J. S.; de Leeuw, J. M.; van Kempen, M.
2007-12-01
Through analyses of unique microlaminated sediments of Arctic drill cores, recovered from the Lomonosov Ridge in the central Arctic Ocean during Integrated Ocean Drilling Program (IODP) Expedition 302, it has been shown that enormous quantities of the free floating freshwater fern \\textit {Azolla} grew and reproduced in situ in the Arctic Ocean during the middle Eocene (Brinkhuis et al., Nature, 2006).The presence of the freshwater fern Azolla, both within the Arctic Basin and in all Nordic seas, suggests that at least the sea surface waters were frequently dominated by fresh- to brackish water during an interval of at least 800 kyr. However, to which degree the Arctic Basin became fresh and what the consequences of these enormous Azolla blooms were for regional and global nutrient cycles is still largely unknown. Comparing samples of extant Azolla, including its nitrogen fixing symbionts, with samples from the Arctic Azolla interval revealed the presence of a group of highly specific biomarkers. These biomarkers are closely related to similar organic compounds that have been suggested to play a crucial role in the biogeochemistry of nitrogen fixing bacteria. This finding, therefore, potentially implies that this symbioses dates back to at least the middle Eocene. Furthermore, this particular symbiosis was probably crucial in triggering basin wide Azolla blooms. We now aim to measure compound specific stable hydrogen isotope values of these biomarkers which should provide insight into the degree of mixing between high salinity (isotopically heavy) deeper and low salinity surface water (isotopically light). The results of these compound specific isotope analyses will be extrapolated using calibrations from controlled growth experiments and subsequently evaluated using climate modeling experiments.
Gerst and Swanson perform blood draw in Columbus module
2014-06-04
Astronaut Alexander Gerst,Expedition 40 flight engineer (background),and Expedition 40 Commander Steve Swanson are photographed performing blood sample collection in the Columbus module as part of HRF Generic Frozen Blood Collection Operations.
Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample
2002-12-18
ISS006-E-08628 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.
Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample
2002-12-18
ISS006-E-08616 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.
2002-12-04
International Space Station (ISS) crew members were able to document a rare occurrence. The dark area near the center of the frame is actually a shadow cast by the moon during the total solar eclipse of December 4, 2002. The shadow obscures an area of cloud cover. The Station, with three Expedition Six crew members aboard, was over the Indian Ocean at the time of the eclipse.
2014-06-23
ISS040-E-017316 (23 June 2014) --- As the International Space Station was passing over the North Atlantic Ocean, just east of Newfoundland, on June 23, 2014, one of the Expedition 40 crew members on the orbital outpost recorded this panoramic view of the swirling bands of a mature, not dangerous non-tropical, cyclone. Such cyclonic activity is not unusual for this time of year in that area.
2014-06-03
ISS040-E-007078 (3 June 2014) --- One of the Expedition 40 crew members aboard the International Space Station recorded this still image of much of New Zealand on June 3, 2014. Clouds cover the Tasman Sea at top. South Island is at left and North Island, at right. The orbital outpost was approximately 228 nautical miles above the South Pacific Ocean when the photograph was taken.
The Lewis and Clark Expedition: Documenting the Uncharted Northwest. Teaching with Historic Places.
ERIC Educational Resources Information Center
Campbell-Page, Theresa; Chin, Mike
Beginning a journey mid-May 1804, what became known as the Corps of Discovery, under the command of Meriwether Lewis and William Clark, set out to investigate the newly acquired Louisiana Territory, locate a water route to the Pacific Ocean, and strengthen U.S. claims to the northwest. The 55-member group navigated a variety of terrains and…
Sediments in Arctic sea ice: Implications for entrainment, transport and release
Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn
1994-01-01
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.
Depths and Ages of Deep-Sea Corals From the Medusa Expedition
NASA Astrophysics Data System (ADS)
Fernandez, D.; Adkins, J. F.; Robinson, L. F.; Scheirer, D.; Shank, T.
2003-12-01
From May-June 2003 we used the DSV Alvin and the RSV Atlantis to collect modern and fossil deep-sea corals from the New England and Muir Seamounts. Our goal was to collect depth transects of corals from a variety of ages to measure paleo chemical profiles in the North Atlantic. Because deep-sea corals can be dated with both U-series and radiocarbon methods, we are especially interested in measuring past D14C profiles to constrain the paleo overturning rate of the deep ocean. We collected over 3,300 fossil Desmophyllum cristagalli individuals, 10s of kgs of Solenosmillia sp. and numerous Enallopsamia rostrata and Caryophilia sp. These samples spanned a depth range from 1,150-2,500 meters and refute the notion that deep-sea corals are too sparsely distributed to be useful for paleoclimate reconstructions. Despite widespread evidence for mass wasting on the seamounts, fossil corals were almost always found in growth position. This observation alleviates some of the concern associated with dredge samples where down-slope transport of samples can not be characterized. Fossil scleractinia were often found to have recruited onto other carbonate skeletons, including large branching gorgonians. The U-series age distribution of these recruitment patterns will constrain how much paleoclimatic time a particular "patch" can represent. In addition, U-series ages, combined with the observed differences in species distribution, will begin to inform our understanding of deep-sea coral biogeography. A lack of modern D. cristagalli on Muir seamount, but an abundance of fossil samples at this site, is the most striking example of changes in oceanic conditions playing a role in where deep-sea corals grow.
OCoc- from Ocean Colour to Organic Carbon
NASA Astrophysics Data System (ADS)
Heim, B.; Overduin, P. P.; Schirrmeister, L.; Doerffer, R.
2009-04-01
Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. Especially, large parts of the Central and Eastern Siberian coastline are characterized by highly erosive sedimentary ice-rich material. The ‘OCoc-from Ocean Colour to Organic Carbon' project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Circum-polar Coastal Observatory Network Acco-Net (ACCO-Net: IPY-project 90) originating from the Arctic Coastal Dynamics ACD project . OCoc uses Ocean Colour satellite data for synoptic monitoring of the input of organic matter - from both fluvial and coastal sources - into the Arctic coastal waters. Initial results from the German-Russian Expedition Lena08 along the southeastern Laptev Sea Coast (Arctic Siberia, Russia) in August 2008 are presented. Ocean Colour MERIS Reduced Resolution (RR)-LIB data of the Laptev Sea Coast from August 2008 have been processed towards L2 parameters using Beam-Visat4.2© and the MERIS case2 regional processor for coastal application (C2R). C2R uses neural network procedures for the retrieval of water leaving reflectances and neural network procedures to derive the inherent optical properties (IOPs) from the water leaving reflectances. C2R output parameters are IOPs (absorption and backscattering coefficients), apparent optical properties (AOPs) (water leaving radiance reflectance, attenuation coefficient ‘k'), optical parameters such as the first attenuation depth (‘Z90') and calculated concentrations of chlorophyll, total suspended matter, and yellow substance absorption. Initial comparisons with Lena08-Expedition data (Secchi depths, cDOM) and water transparency data from former arctic cruises show that the MERIS-C2R optical parameters 'total absorption' and the first attenuation depth, 'Z90', seem adequately to represent true conditions. High attenuation values are the tracers for the organic-rich terrigenous input. The synoptic information of MERIS Ocean Colour products will provide valuable spatial and dynamical information on the Organic Carbon and sediment fluxes from the Siberian permafrost coast.
2001-08-10
KENNEDY SPACE CENTER, Fla. -- -- Space Shuttle Discovery lifts off Launch Pad 39A with a crew of seven on board. Flames from the solid rocket boosters and external tank are drawn away by a flame trench below while water jets flood the area to help suppress the deafening sound. A rainbird can be seen to the left of the white solid rocket booster. In the background is the Atlantic Ocean. Liftoff of Discovery on mission STS-105 occurred at 5:10:14 p.m. EDT. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station
Ramzaev, V; Nikitin, A; Sevastyanov, A; Artemiev, G; Bruk, G; Ivanov, S
2014-09-01
A total of 88 seawater samples were collected during two Russian research expeditions (April-May 2011 and August-September 2012) to the Sea of Japan, the Oyashio Current region near Kuril Islands and the Kuroshio-Oyashio transition area in the western North Pacific Ocean. The observations were made aboard the R/V Pavel Gordienko and Akademik Shokalsky in order to study the impact of the Fukushima accident on radioactive contamination of the marine environment. On the board of a ship, the water samples were passed through filters to retain particles with the size of >1 micron. Cesium was extracted from the large volumes (100-3000 L) of the filtrated water using a selective fiber chemisorbent impregnated with copper ferrocyanide. Measurements of (134)Cs and (137)Cs activities in 83 samples of sorbents and 21 samples of filters were performed in the ship-based laboratory with a semiconductor HP-Ge detector. The quantified activity concentrations of dissolved radiocesium ranged from 1 Bq m(-3) to 34 Bq m(-3) for (137)Cs and from 0.2 Bq m(-3) to 29 Bq m(-3) for (134)Cs. Activity concentrations of (137)Cs and (134)Cs were strongly correlated with each other (r = 0.993, n = 59). The (137)Cs/(134)Cs activities ratio in the Fukushima-derived radiocesium inventory for the study areas was deduced to be 0.99 ± 0.03 (on 15 March 2011) and the pre-Fukushima background level of (137)Cs in seawater was estimated as 1.3 ± 0.3 Bq m(-3). The lowest activities of both isotopes were determined in the western part of the Sea of Japan near the Russian coast, while the maximal levels were observed in the open Pacific Ocean, some 500-800 km offshore the Fukushima Dai-ichi Nuclear Power Plant. Contamination with (134)Cs at a level of 0.3-2.6 Bq m(-3) was registered in seawater samples collected in 2011 near the Kuril Islands and Kamchatka in the Oyashio Current region. During the period from April-May 2011 to August-September 2012, activity concentrations of (137)Cs and (134)Cs in surface waters had decreased for all seven stations repeatedly sampled in the study. A detailed observation of radiocesium distribution within the water column down to the depth of 200 m at nine stations from the Kuroshio-Oyashio Interfrontal Zone and Kuroshio Extension in 2012 revealed maximal activity concentrations of both cesium radionuclides in the 100-200 m depth layer. The average inventory of Fukushima-derived (137)Cs in the top 200 m of the water column for the nine stations was estimated as 1.19 kBq m(-2) (decay corrected to 15 March 2011) which is 4.6 times higher than the background value of 0.26 kBq m(-2) expected for this depth. The monitoring results obtained in the study and relevant data published by others show that following the Fukushima accident, the Oyashio current acts as a provider of low-contaminated subarctic waters to the heavily contaminated Kuroshio-Oyashio mixed water region. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marine Science and Education in one Word: "planeetzee.org"
NASA Astrophysics Data System (ADS)
Seys, J.; Copejans, E.; Ameije, K.
2009-04-01
It is a major challenge to bring science and technology to the public at large and more particular to young people. This is even more true for marine sciences, due to the very nature of the study field and the fact that the underwater world is difficult to experience and communicate. Therefore it is not surprising that in Europe there are only few examples of marine educational projects that try to go beyond the ‘observe and describe' approach. In 2004 SHE Consultancy, the Flanders Marine Institute VLIZ and DAB Vloot developed a first Belgian e-learning programme dedicated to oceans and seas, with the support of the Flemish government ("Action plan Science Communication"). This programme ‘Expedition Zeeleeuw' (www.expeditiezeeleeuw.be), ran from 2005 till 2007 and challenged some 3000 Flemish students of 16-18 years old all over Flanders to find creative solutions for 10 major marine issues at the Belgian coast. The class that could convince the jury to have discovered the most creative and intelligent solutions, wan a one-week scientific expedition at sea on board the vessel Zeeleeuw. As a successor to ‘Expedition Zeeleeuw', a new e-learning project on marine science was developed in 2007: ‘Planeet Zee' i.e. ‘Planet Ocean' (www.planeetzee.org; info via info@planeetzee.org + demo-site in English available at www.planetocean.eu). The new marine and coastal e-learning project is presented as a virtual sailing trip on the Atlantic Ocean. It follows the adventures of two youngsters "borrowing" the yacht of their father and getting into trouble on the open ocean. On this journey they face 21 problems (eg. out of food, drinking water or fuel, fear for whales, Bermuda triangle, tsunami's etc… ), each of them introduced by a short movie clip. When they realize they can not solve the problem, they ask for radio help and - what a surprise! - get interesting answers from the Zeeleeuw research vessel and its 21 marine scientists on board, that appears to be in the neighbourhood. Every answer is found on the website and consists of an animated lecture with pictures, movies, diagrams, simulations, etc.), followed by exercises, hints for field excursions, laboratory experiments, interactive games, etc. The seven major themes worked out in this project are derived from the ESF-Marine Board position paper on future marine research "Navigating the Future III": climate-ocean interactions, biodiversity, living and non-living resources, oceans and society, physical oceanography, harbours and shipping. The 21 topics are spread over the coastal areas, shallow seas and deep ocean habitats of the Atlantic, and make use of the best possible scientific know-how in Belgium and abroad. By providing 21 topics and more than 80 practical exercises, ‘Planeet Zee' hopes to present a challenging format for students and teachers in biology, physics, chemistry and geography (all levels for students as from 16 years). For marine scientists, it may well be a perfect way to have their know-how translated to a young public within a school context.
A critical review of existing innovative science and drilling proposals within IODP
NASA Astrophysics Data System (ADS)
Behrmann, J. H.
2009-04-01
In the present phase of the Integrated Ocean Drilling Program (IODP) activities are guided by the Initial Science Plan that identified three major themes: The Deep Biosphere and the Subseafloor Ocean; Environmental Change, Processes and Effects; and Solid Earth Cycles and Geodynamics. New initiatives and complex drilling proposals were developed that required major advances in drilling platforms and technologies, and expansion of the drilling community into new areas of specialization. The guiding themes in the Initial Science Plan are instrumental for the proposal development and evaluation, and will continue to represent the goals of IODP until 2013. A number of innovative and highly ranked individual proposals and coordinated sets of proposals ready to be drilled has been forwarded by the Science Planning Committee (SPC) to the IODP Operations Task Force (OTF) for scoping, planning and scheduling. For the Deep Biosphere theme these include proposals to drill targets in the Central Atlantic, the Okinawa Trough, and the Southern Pacific. The Environmental Change, Processes and Effects theme is proposed to - among others - be studied by a coordinated approach regarding the Southeast Asian Monsoon, but also by proposals addressing sdimentation, facies evolution and the paleoclimate record in the Atlantic and Indian Oceans. The Solid Earth Cycles and Geodynamics theme is represented by several proposals addressing subduction processes, seismogenesis, and oceanic crust formation mainly in the Pacific. Some of these have shaped drilling programs that are already in the process of being carried out, such as drilling in the Nankai Trough off Japan (the NantroSEIZE project), or drilling in oceanic crust created in a superfast spreading environment in the Eastern Pacific. There are many remaining issues to be addressed, and drilling programs to be completed before the end of the present phase of IODP in 2013. Planning of expeditions needs to be done in such a way that a balance between risk, cost, and scientific impact is achieved. At least part of the dilling also is required to be a necessary precursor for future investigations in coming phases of Ocean Drilling. Presently IODP faces the challenges of tight budgetary constraints, increasing operating costs of their platforms, and the need to develop drilling schedules that allow off-contract work of the R/V Chikyu and R/V Joides Resolution drilling vessels. Chikyu will operate within IODP for an average of 7 months per year over a 5-year period with the goals of achieving major milestones in NantroSEIZE, maximizing the use of the vessel for riser drilling, and start a new IODP project that requires riser drilling. Joides Resolution will also operate an average of 7 months per year with the goal of optimizing operating days within the restrictions imposed by the prioritized science. Mission Specific Platform expeditions will be carried out once every two years on average, with the goal of pioneering drilling in new, challenging environments. For the first time in IODP history, operations of Chikyu, Joides Resolution and Mission Specific Platform expeditions will be conducted simultaneously in 2009. This new phase of operations provides an unprecedented chance of progress in scientific ocean drilling.
Deep Play. Rationality in the Life World with Special Reference to Sailing
ERIC Educational Resources Information Center
Goold, Patrick
2014-01-01
In an essay on the rationality of play, the author characterizes rationality by the three distinct demands it makes on the individual--demands for autonomy, solidarity, and integrity. He develops each of these as they apply to the sport of sailing, using the example of two deep-ocean expeditions to arrive at a concept of deep play he sees as one…
Earth Observations taken by the Expedition 17 Crew
2008-09-04
ISS017-E-015166 (4 Sept. 2008) --- Hurricane Ike was still a Category 4 storm on the morning of Sept. 4 when this photo was taken from the International Space Station's vantage point of 220 miles above the Earth. The season's ninth named storm was churning west-northwestward through the mid-Atlantic Ocean sporting winds of 120 nautical miles per hour with gusts to 145.
Earth Observations taken by the Expedition 17 Crew
2008-09-04
ISS017-E-015170 (4 Sept. 2008) --- Hurricane Ike was still a Category 4 storm on the morning of Sept. 4 when this photo was taken from the International Space Station's vantage point of 220 miles above the Earth. The season's ninth named storm was churning west-northwestward through the mid-Atlantic Ocean sporting winds of 120 nautical miles per hour with gusts to 145.
Earth Observations taken by the Expedition 17 Crew
2008-09-04
ISS017-E-015163 (4 Sept. 2008) --- Hurricane Ike was still a Category 4 storm on the morning of Sept. 4 when this photo was taken from the International Space Station's vantage point of 220 miles above the Earth. The season's ninth named storm was churning west-northwestward through the mid-Atlantic Ocean sporting winds of 120 nautical miles per hour with gusts to 145.
Earth Observations taken by the Expedition 17 Crew
2008-09-04
ISS017-E-015162 (4 Sept. 2008) --- Hurricane Ike was still a Category 4 storm on the morning of Sept. 4 when this photo was taken from the International Space Station's vantage point of 220 miles above the Earth. The season's ninth named storm was churning west-northwestward through the mid-Atlantic Ocean sporting winds of 120 nautical miles per hour with gusts to 145.
2013-07-11
ISS036-E-017957 (11 July 2013) --- One of the Expedition 36 crew members aboard the International Space Station photographed this image of Typhoon Soulik just east of northern Taiwan in the Pacific Ocean. [Editor?s update: Thousands of people were evacuated in Taiwan; and the entire island was declared an "alert zone," as Typhoon Soulik made landfall early on July 13 (local time), pounding the country with powerful winds and heavy rain].
2013-07-11
ISS036-E-017952 (11 July 2013) --- One of the Expedition 36 crew members aboard the International Space Station photographed this image of Typhoon Soulik just east of northern Taiwan in the Pacific Ocean. [Editor?s update: Thousands of people were evacuated in Taiwan; and the entire island was declared an "alert zone," as Typhoon Soulik made landfall early on July 13 (local time), pounding the country with powerful winds and heavy rain].
Mavraki, Dimitra; Fanini, Lucia; Tsompanou, Marilena; Gerovasileiou, Vasilis; Nikolopoulou, Stamatina; Chatzinikolaou, Eva; Plaitis, Wanda
2016-01-01
Abstract Background This article describes the digitization of a series of historical datasets based οn the reports of the 1908–1910 Danish Oceanographical Expeditions to the Mediterranean and adjacent seas. All station and sampling metadata as well as biodiversity data regarding calcareous rhodophytes, pelagic polychaetes, and fish (families Engraulidae and Clupeidae) obtained during these expeditions were digitized within the activities of the LifeWatchGreece Research Ιnfrastructure project and presented in the present paper. The aim was to safeguard public data availability by using an open access infrastructure, and to prevent potential loss of valuable historical data on the Mediterranean marine biodiversity. New information The datasets digitized here cover 2,043 samples taken at 567 stations during a time period from 1904 to 1930 in the Mediterranean and adjacent seas. The samples resulted in 1,588 occurrence records of pelagic polychaetes, fish (Clupeiformes) and calcareous algae (Rhodophyta). In addition, basic environmental data (e.g. sea surface temperature, salinity) as well as meterological conditions are included for most sampling events. In addition to the description of the digitized datasets, a detailed description of the problems encountered during the digitization of this historical dataset and a discussion on the value of such data are provided. PMID:28174510
Columbia River Fishes of the Lewis and Clark Expedition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauble, Dennis D.
2007-06-21
The Lewis and Clark expedition crossed the Continental Divide in 1805 on the way west to the Pacific Ocean. Based on journal entries, members of the expedition probably encountered two species of resident salmonids and four of the six species of anadromous salmonids and steelhead (Family Salmonidae, genus Oncorhynchus). The salmonid species were called common salmon (now known as Chinook salmon O. tshawytscha), red char (sockeye salmon O.nerka) white salmon trout (coho salmon [also known as silver salmon] O. kisutch), salmon trout (steelhead O. mykiss), and spotted trout (cutthroat trout O. clarkii). There was no evidence of the expedition encounteringmore » pink salmon O. gorbuscha, chum salmon O. keta, or species of true char Salvelinus spp. Common fishes procured from Indian tribes living along the lower Columbia River included eulachon Thaleichthys pacificus and white sturgeon Acipenser transmontanus. The identity of three additional resident freshwater species is questionable. Available descriptions suggest that what they called mullet were largescale sucker Catastomus macrocheilus, and that chubb were peamouth Mylocheilus caurinus. The third questionable fish, which they called bottlenose, was probably mountain whitefish Prosopium williamsoni, although there is no evidence that the species was observed in the Columbia River drainage. Missing from the species list were more than 20 other fishes known to Sahaptin-speaking people from the mid-Columbia region. More complete documentation of the icthyofauna of the Pacific Northwest region did not occur until the latter half of the 19th century. However, journals from the Lewis and Clark expedition provide the first documentation of Columbia River fishes.« less
Long-range transport of airborne microbes over the global tropical and subtropical ocean.
Mayol, Eva; Arrieta, Jesús M; Jiménez, Maria A; Martínez-Asensio, Adrián; Garcias-Bonet, Neus; Dachs, Jordi; González-Gaya, Belén; Royer, Sarah-J; Benítez-Barrios, Verónica M; Fraile-Nuez, Eugenio; Duarte, Carlos M
2017-08-04
The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth's surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 10 21 and 2.1 × 10 21 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..
NABOS-II Observational Program in the Arctic Ocean: New Perspectives and New Challenges
NASA Astrophysics Data System (ADS)
Ivanov, V.; Polyakov, I.; Ashik, I. M.; Pnyushkov, A.; Alkire, M. B.; Repina, I.; Alexeev, V. A.; Waddington, I.; Kanzow, T.; Goszczko, I.; Rember, R.; Artamonov, A.
2016-02-01
NABOS-II observational program was launched in 2013 on the basis of new knowledge obtained during NABOS (=Nansen and Amundsen Basins Observations System) project back in 2000s. Up to now two large scale expeditions in the Eurasian sector of the Arctic Ocean were carried out in framework of NABOS-II: in 2013 and in 2015. These field studies were conducted by International Arctic Research Center (IARC) University of Alaska Fairbanks, USA in partnership with Arctic and Antarctic Research Institute (AARI) St.Petersburg Russia. The main goal of the NABOS-II project is to provide quantitative assessment of circulation and water mass transformation along the principal pathways transporting water from the Nordic Seas to the Arctic Basin under conditions of substantially reduced summer ice cover. Reduced sea ice causes changes in the water column and in the overlying atmosphere. Documenting of these changes was the main target of the NABOS-II cruises. The scope of this goal and the opportunities of extended scientific research in the Arctic, provided during NABOS expeditions, encouraged scientific institutions from the USA, Europe and Asia to raise funds, contribute to the cruise program and to send their personnel to expeditions, thus giving them a true multidisciplinary status. The ambitious mission of collecting a two year long time series of hydrographic data at 6 moorings along 126E meridian from the upper slope (250 m depth) to the deep basin (3900 m depth) in the Laptev Sea was successfully accomplished in 2015. The collected data are truly unique, since they shed new light on the structure and spatio-temporal variability of water properties and transports in the Lapev Sea, which is the key region for understanding of interaction between Atlantic water branches. This presentation describes preliminary results of performed analysis.
NABOS-II Observational Program in the Arctic Ocean: New Perspectives and new Challenges
NASA Astrophysics Data System (ADS)
Ivanov, Vladimir; Polyakov, Igor; Ashik, Igor; Pnyushkov, Andrey; Alkire, Matthew; Repina, Irina; Alexeev, Vladimir; Waddington, Ian; Kanzow, Torsten; Rember, Robert; Artamonov, Alexander; Goszczko, Ilona
2016-04-01
NABOS-II observational program was launched in 2013 on the basis of new knowledge obtained during NABOS (=Nansen and Amundsen Basins Observations System) project back in 2000s. Up to now two large scale expeditions in the Eurasian sector of the Arctic Ocean were carried out in framework of NABOS-II: in 2013 and in 2015. These field studies were conducted by International Arctic Research Center (IARC) University of Alaska Fairbanks, USA in partnership with Arctic and Antarctic Research Institute (AARI) St.Petersburg Russia. The main goal of the NABOS-II project is to provide quantitative assessment of circulation and water mass transformation along the principal pathways transporting water from the Nordic Seas to the Arctic Basin under conditions of substantially reduced summer ice cover. Reduced sea ice causes changes in the water column and in the overlying atmosphere. Documenting of these changes was the main target of the NABOS-II cruises. The scope of this goal and the opportunities of extended scientific research in the Arctic, provided during NABOS expeditions, encouraged scientific institutions from the USA, Europe and Asia to raise funds, contribute to the cruise program and to send their personnel to expeditions, thus giving them a true multidisciplinary status. The ambitious mission of collecting a two year long time series of hydrographic data at 6 moorings along 126E meridian from the upper slope (250 m depth) to the deep basin (3900 m depth) in the Laptev Sea was successfully accomplished in 2015. The collected data are truly unique, since they shed new light on the structure and spatio-temporal variability of water properties and transports in the Lapev Sea, which is the key region for understanding of interaction between Atlantic water branches. This presentation describes preliminary results of performed analysis.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.; Gersonde, Rainer
2003-01-01
Background The impact of the Eltanin asteroid into the Bellingshausen Sea (2.15 Ma) is the only known impact in a deep-ocean (approx. 5 km) basin. In 1995, Polarstern expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5 S, 91 W) contained well-preserved impact deposits. Sediments of Eocene age and younger were ripped up and redeposited by the impact. The depositional sequence produced by the impact has three units: a chaotic assemblage of sediment fragments up to 50 cm, followed by laminated sands deposited as a turbulent flow, and finally silts and clays that accumulated from dispersed sediments in the water column. The meteoritic impact ejecta, which is composed of shock-melted asteroidal materials and unmelted meteorites, settled through the water column and concentrated near the top of the laminated sands.
Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition
NASA Astrophysics Data System (ADS)
Raskoff, K. A.; Hopcroft, R. R.; Kosobokova, K. N.; Purcell, J. E.; Youngbluth, M.
2010-01-01
In order to provide a baseline understanding of gelatinous zooplankton biodiversity and distribution in the rapidly changing Arctic Ocean, 12 stations were sampled across the Canada Basin, Northwind Ridge, and Chukchi Plateau with detailed deep-water ROV observations and multinet tows down to 3000 m. The complex, multi-origin water layers of the Arctic Ocean provided the backdrop for examining the vertical and horizontal distributions of the poorly understood meso and bathypelagic gelatinous taxa. Over 50 different gelatinous taxa were observed across the stations, with cnidarians being the most common group. Medusae accounted for 60% of all observations, siphonophores for 24%, larvaceans for 10%, ctenophores for 5%, and numerous interesting and rarer taxa constituted the remaining 1% of observations. Several new species were found and many major range extensions were observed. Both the vertical and horizontal distribution of species appear to be linked to water mass characteristics, as well as bottom topography and geographic location within the study area. Shallow slope and ridge areas around the Canada Basin and Chukchi Plateau appear to harbor substantially lower gelatinous zooplankton biomass and diversity than the deeper locations. Shallow stations not only show reduced abundance, but also different relative abundance of the major taxa, where the shallow water stations are dominated by large numbers of siphonophores and ctenophores, the deep stations are dominated by medusae. Taxonomic issues and ecological observations of several important species are discussed, aided by the live collection of many undamaged and fragile species.
Bowersox works with the WMK in Destiny during Expedition Six
2003-02-17
ISS006-E-27226 (17 February 2003) --- Astronaut Kenneth D. Bowersox, Expedition Six mission commander, uses the water microbiology kit (WMK) to collect water samples for in-flight chemistry/microbiology analysis in the Destiny laboratory on the International Space Station (ISS).
Biomarker records and paleoenvironment of the central Arctic Ocean during Paleogene times
NASA Astrophysics Data System (ADS)
Weller, P.; Stein, R.
2007-12-01
During IODP Expedition 302 (Arctic Coring Expedition - ACEX), a more than 200 m thick sequence of Paleogene organic-carbon (OC)-rich (black shale-type) sediments has been drilled. Here, we present new biomarker data determined in ACEX sediment samples to decipher processes controlling OC accumulation and their paleo- environmental significance during periods of extreme global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers including n-alkanes, fatty acids, isoprenoids, carotenoids, steranes/sterenes, hopanes/hopenes, hopanoic acids, aromatic terpenoids, benzohopanes, long- chain alkenones and organic sulfur compounds show a high variable of compounds, derived from marine, terrestrial and bacterial origin. Based on the biomarker data, the terrestrial OC supply was significantly enriched during the late Paleocene and part of the earliest Eocene, whereas n-alkanes and n-fatty acids in samples from the PETM and Elmo events as well as the middle Eocene indicate increased aquatic contributions. For the latter, an anoxic environment similar to the modern Black Sea, and moderate primary productivity are proposed. The occurrence of C37-alkenenones, which were first determined in the middle part of the Azolla Freshwater Event (about 49 Ma), suggests that significant amounts of the OC is of marine origin during in middle Eocene. During the Eocene, a prominant cooling and onset of first significant IRD deposition near 45.4 Ma were recorded in the terrigenous coarse fraction of the ACEX sequence, related to iceberg and/or sea-ice transport (K. St. John, Paleoceanography, in press). This cooling trend is also reflected in the alkenone SST, showing a temperature decrease of about 10°C between about 49 and 44 Ma.
Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs
NASA Astrophysics Data System (ADS)
Smith, Joy N.; de'Ath, Glenn; Richter, Claudio; Cornils, Astrid; Hall-Spencer, Jason M.; Fabricius, Katharina E.
2016-12-01
The in situ effects of ocean acidification on zooplankton communities remain largely unexplored. Using natural volcanic CO2 seep sites around tropical coral communities, we show a threefold reduction in the biomass of demersal zooplankton in high-CO2 sites compared with sites with ambient CO2. Differences were consistent across two reefs and three expeditions. Abundances were reduced in most taxonomic groups. There were no regime shifts in zooplankton community composition and no differences in fatty acid composition between CO2 levels, suggesting that ocean acidification affects the food quantity but not the quality for nocturnal plankton feeders. Emergence trap data show that the observed reduction in demersal plankton may be partly attributable to altered habitat. Ocean acidification changes coral community composition from branching to massive bouldering coral species, and our data suggest that bouldering corals represent inferior daytime shelter for demersal zooplankton. Since zooplankton represent a major source of nutrients for corals, fish and other planktivores, this ecological feedback may represent an additional mechanism of how coral reefs will be affected by ocean acidification.
New roles of LWD and wireline logging in scientific ocean drilling
NASA Astrophysics Data System (ADS)
Sanada, Y.; Kido, Y. N.; Moe, K.; Aoike, K.
2014-12-01
D/V Chikyu implemented by CDEX/JAMSTEC joined IODP from 2007. Various LWD (Logging While Drilling) and wireline logging have been carried out in many expeditions and for various purposes. Significant features of logging in Chikyu expeditions are many use of LWD than wireline logging, and riser dirlling. riser selected specific tools for each scientific target, and 3) carried out various borehole experiments. LWD has been more popular than wireline logging in Chikyu expeditions, because its advantages match theirs science targets. The advantages are followings. 1) LWD has more opportunities for measurement in unstable borehole, such as in the series of Nankai trough drilling expeditions. 2) LWD realtime data allows us to make realtime interpretation and operational decision. Realtime interpretation was required to set obsevartory at the properposition. 3) LWD before coring allows us to make a strategy of spot coring.We can design coring intervals for our interest and core length to improve core recovery.Riser drilling brings us merits for logging. One is hole stability (good hole condition) and the other is the use of large diameter tools. Controled drilling mud in riser drilling system prevent mud invasion to formation and mitigates collapse of borehole wall. They reduce the risk of tool stack and improve data quality. Large diameter of riser pipe enhances variation of tool seizes. A couple of new tools were used for new measurement and improvement of the data quality. For example, SonicScanner (trademark of Schulumberger) successfully measured compressional and share velocity in very low velocities at the soft sediment, where it has been difficult to measure them with conventional DSI tool (Exp319). The stress and pore pressure in the borehole were measured with the wireline logging tool, (Schlumberger MDT). The single probe tool enable to measure temporal formation fluid pressure. The double packer tool enable to fracture test by sealing and pumping in the borehole. These in-situ measurement and stress experiment data are very important to understand physical properties and mechanism of fault zone (Exp319).Those new technologies and tools also expand the envelope of scientific ocean drilling.
NASA Astrophysics Data System (ADS)
Tobin, H. J.; Hirose, T.; Saffer, D. M.; Toczko, S.; Maeda, L.
2014-12-01
International Ocean Discovery Program (IODP) Expedition 348, the latest advance of the NanTroSEIZE project, started on 13 September 2013 and was completed on 29 January 2014. During Expedition 348, the drilling vessel Chikyu advanced the ultra-deep riser hole at Site C0002, located 80 km offshore of the Kii Peninsula, from a depth of 860 meters below sea floor (mbsf) to 3058.5 mbsf, the world record for the deepest scientific ocean drilling, and cased it for future deepening. The drilling operation successfully obtained data on formation physical properties from logging while drilling (LWD) tools, as well as from lithological analyses of cuttings and core from the interior of the active accretionary prism at the Nankai Trough. IODP Site C0002 is the currently only borehole to access the deep interior of an active convergent margin. Preliminary scientific results of Expedition 348 are as follows: (1) Fine-grained turbiditic mudstones with coarser silty and sandy interbeds, exhibiting steep dips (between ~60 and 90 degrees) are predominant in the prism down to ~3000 mbsf. The biostratigraphic age of the sediments in the lowermost part of the hole is thought to be 9-11 Ma, with an assumed age of accretion of 3-5 Ma. (2) Slickenlined surfaces, deformation bands and mineral veins are present throughout the drilled interval, while well-developed scaly clay fabrics are increasingly observed below ~2200 mbsf. A substantial fault zone with well-developed foliation was successfully cored from the deep interior of the prism at ~2205 mbsf. (3) Porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf. However, physical properties including grain density, electrical conductivity and P-wave velocity suggest fairly homogeneous properties in the interior of the prism between ~2000 and 3000 mbsf. (4) Mud gas analysis during the riser drilling indicates that a source of methane gas shifts from microbial origin to thermogenic at around 2325 mbsf. (5) The maximum horizontal principal stress at ~2200 mbsf is in the NE-SW direction. The inner wedge at ~ 2000 mbsf is currently in a strike-slip stress regime.
Utilizing the International GeoSample Number Concept during ICDP Expedition COSC
NASA Astrophysics Data System (ADS)
Conze, Ronald; Lorenz, Henning; Ulbricht, Damian; Gorgas, Thomas; Elger, Kirsten
2016-04-01
The concept of the International GeoSample Number (IGSN) was introduced to uniquely identify and register geo-related sample material, and make it retrievable via electronic media (e.g., SESAR - http://www.geosamples.org/igsnabout). The general aim of the IGSN concept is to improve accessing stored sample material worldwide, enable the exact identification, its origin and provenance, and also the exact and complete citation of acquired samples throughout the literature. The ICDP expedition COSC (Collisional Orogeny in the Scandinavian Caledonides, http://cosc.icdp-online.org) prompted for the first time in ICDP's history to assign and register IGSNs during an ongoing drilling campaign. ICDP drilling expeditions are using commonly the Drilling Information System DIS (http://doi.org/10.2204/iodp.sd.4.07.2007) for the inventory of recovered sample material. During COSC IGSNs were assigned to every drill hole, core run, core section, and sample taken from core material. The original IGSN specification has been extended to achieve the required uniqueness of IGSNs with our offline-procedure. The ICDP name space indicator and the Expedition ID (5054) are forming an extended prefix (ICDP5054). For every type of sample material, an encoded sequence of characters follows. This sequence is derived from the DIS naming convention which is unique from the beginning. Thereby every ICDP expedition has an unlimited name space for IGSN assignments. This direct derivation of IGSNs from the DIS database context ensures the distinct parent-child hierarchy of the IGSNs among each other. In the case of COSC this method of inventory-keeping of all drill cores was done routinely using the ExpeditionDIS during field work and subsequent sampling party. After completing the field campaign, all sample material was transferred to the "Nationales Bohrkernlager" in Berlin-Spandau, Germany. Corresponding data was subsequently imported into the CurationDIS used at the aforementioned core storage facility. This CurationDIS assigns IGSNs on samples newly taken in the repository in the identical fashion as done in the field. Thereby, the parent-child linkage of the IGSNs is ensured consistently throughout the entire sampling process. The only difference between ExpeditionDIS and CurationDIS sample curation is using the name space ICDP and BGRB respectively as part of the corresponding ID string. To prepare the IGSN registry, a set of metadata is generated for every assigned IGSN using the DIS, which is then exported from the DIS into one common xml-file. The xml-file is based on the SESAR schema and a proposal of IGSN e.V. (http://schema.igsn.org). This systematics has been recently extended for drilling data to achieve additional information for future retrieval options. The two allocation agents GFZ Potsdam und PANGAEA are currently involved in the registry of IGSNs in the case of COSC drill campaigns. An example for the IGSN registration of the COSC-1 drill hole A (5054_1_A) is "ICDP5054EEW1001" and can be resolved using the URL http://hdl.handle.net/10273/ICDP5054EEW1001. Opening the landing page for the complete COSC core material for this particular hole showcases graphically a hierarchical tree entitled "Sample Family". An example of an IGSN citation associated with a COSC sample set is featured on an EGU-2016 poster presentation by Ulrich Harms, Johannes Hierold et al. (EGU2016-8646).
Raman Spectroscopy: an essential tool for future IODP expeditions
NASA Astrophysics Data System (ADS)
Andò, Sergio; Garzanti, Eduardo; Kulhanek, Denise K.
2016-04-01
The scientific drilling of oceanic sedimentary sequences plays a fundamental part in provenance studies, paleoclimate recostructions, and source-to-sink investigations (e.g., France-Lanord et al., 2015; Pandey et al., 2015). When studying oceanic deposits, Raman spectroscopy can and does represent an essential flexible tool for the multidisciplinary approach necessary to integrate the insight provided by different disciplines. This new user-friendly technique opens up an innovative avenue to study in real time the composition of detrital mineral grains of any origin, complementing traditional methods of provenance analysis (e.g., sedimentary petrography, heavy minerals; Andò and Garzanti, 2014). Raman spectra can readily reveal the chemistry of foraminiferal tests, nannofossils and other biogenic debris for the study of ecosystem evolution and paleoclimate, or the Ca/Mg ratio in biogenic or terrigenous carbonates for geological or marine biological applications and oil exploration (Borromeo et al., 2015). For the study of pelagic or turbiditic muds, which represent the bulk of the deep-marine sedimentary record, Raman spectroscopy allows us to identify silt-sized grains down to the size of a few microns with the same precision level required in quantitative provenance analysis of sand-sized sediments (Andò et al., 2011). Silt and siltstone also represent a very conspicuous part of the stratigraphic record onshore and usually preserve original mineralogical assemblages better than more permeable interbedded sand and sandstone (Blatt, 1985). Raman spectra can be obtained on sample volumes of only a few cubic microns by a confocal micro-Raman coupled with a standard polarizing light microscope using a 50× objective. The size of this apparatus can be easily placed onboard an IODP vessel to provide crucial information and quickly solve identification problems for the benefit of a wide range of scientists during future expeditions. Cited references Andò, S., Vignola, P., Garzanti, E., 2011. Raman counting: a new method to determine provenance of silt. Rend. Fis. Acc. Lincei, 22: 327-347. Andò, S., Garzanti, E., 2014. Raman spectroscopy in heavy-mineral studies. Geological Society, London, Special Publications, 386 (1), 395-412. Blatt, H., (1985). Provenance studies and mudrocks. Journal of Sedimentary Research, 55 (1), 69-75. Borromeo, L., Zimmermann, U., Andò, S., Coletti, G., Bersani, D., Basso, D., Gentile, P., Garzanti, E., 2015. Raman Spectroscopy as a tool for magnesium estimation in Mg-calcite. Periodico di Mineralogia , ECMS, 35-36. France-Lanord, C., Spiess, V., Klaus, A., and the Expedition 354 Scientists, 2015. IODP, Exp. 354, Preliminary Report: Bengal Fan, Neogene and late Paleogene record of Himalayan orogeny and climate: a transect across the Middle Bengal Fan. Pandey, D.K., Clift, P.D., Kulhanek, D.K. and the Expedition 355 Scientists, 2015. IODP, Exp. 355, Preliminary Report: Arabian Sea Monsoon, Deep sea drilling in the Arabian Sea: constraining tectonic-monsoon interactions in South Asia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyr, Alex
This report discusses the procedures and methods used to measure total carbon dioxide (TCO 2), total alkalinity (TALK), and partial pressure of CO 2 (pCO 2) at hydrographic stations during the cruise of research vessel (R/V) Nathaniel B. Palmer in the Southern Indian Ocean on the S04I Section as a part of the Joint Global Ocean Flux Study (JGOFS)/World Ocean Circulation Experiment (WOCE). The carbon-related measurements were sponsored by the U.S. Department of Energy (DOE). The expedition started in Cape Town, South Africa, on May 3, 1996, and ended in Hobart, Australia, on July 4, 1996. Instructions for accessing themore » data are provided. The TCO 2 was measured in discrete water samples using the Lamont-Doherty Earth Observatory (LDEO) coulomteric system with an overall precision of ±1.7 μmol/kg. TALK was determined by potentiometric titration with an overall precision of ±1.7 μmol/kg. During the S04I cruise pCO 2 was also measured using the LDEO equilibrator-gas chromatograph system with a precision of 0.5% (including the station-to-station reproducibility) at a constant temperature of 4.0ºC. The R/V Nathaniel B. Palmer S04I data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of the oceanographic data files and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.« less
Deep sea authigenic clays as a sink for seawater Mg through the Cenozoic
NASA Astrophysics Data System (ADS)
Dunlea, A. G.; Murray, R. W.; Ramos, D. S.; Higgins, J. A.
2016-12-01
The most enigmatic sink of many elements in the global ocean is the formation of authigenic aluminosilicates. Pelagic clays cover 40% of the seafloor and "reverse weathering" type reactions within this lithology have the potential to be a large sink of seawater Mg and affect carbon cycling in the ocean. We use pelagic clays from Integrated Ocean Drilling Program Expedition 329 Site U1366 in the South Pacific Gyre to track authigenic aluminosilicates with two complementary methods: (1) Mg isotopic analyses, and (2) bulk sediment geochemistry with provenance modeling. Mg isotopic analyses of the bulk, unleached clay samples reveal isotopic values significantly heavier than average continental crust (δ26Mg = -0.1 to -0.3%o) indicating significant authigenic uptake. The bulk sediment geochemistry (i.e., major, trace, rare earth element concentrations) and multivariate statistical models of provenance determine the mass fraction of six different sediment sources that mixed to create the sediments: Fe/Mn-oxyhydroxides, apatite, excess Si, dust, and two altered volcanic ashes. A significant correlation between the mass fraction of one of the specific altered ash end-member and the δ26Mg signature allows us to characterize and track the abundance of the authigenic aluminosilicate component downcore. Trends in the provenance models suggest that the elements that compose the authigenic aluminosilicates may originate from volcanic ash, biogenic Si, and/or hydrothermal plume deposits. We examine variations in the spatial and temporal contributions of each of these sources and assess how these variations may have affected the amount of Mg authigenically consumed by deep sea authigenic clays through the Cenozoic. If the authigenic aluminosilicates are created by "reverse weathering" reactions, their formation also has important implications for carbon cycling in the global ocean.
NASA Astrophysics Data System (ADS)
Erdmann, Martin; Fischer, Lennart A.; France, Lydéric; Zhang, Chao; Godard, Marguerite; Koepke, Jürgen
2015-04-01
Replenished axial melt lenses at fast-spreading mid-oceanic ridges may move upward and intrude into the overlying hydrothermally altered sheeted dikes, resulting in high-grade contact metamorphism with the potential to trigger anatexis in the roof rocks. Assumed products of this process are anatectic melts of felsic composition and granoblastic, two-pyroxene hornfels, representing the residue after partial melting. Integrated Ocean Drilling Program Expeditions 309, 312, and 335 at Site 1256 (eastern equatorial Pacific) sampled such a fossilized oceanic magma chamber. In this study, we simulated magma chamber roof rock anatectic processes by performing partial melting experiments using six different protoliths from the Site 1256 sheeted dike complex, spanning a lithological range from poorly to strongly altered basalts to partially or fully recrystallized granoblastic hornfels. Results show that extensively altered starting material lacking primary magmatic minerals cannot reproduce the chemistry of natural felsic rocks recovered in ridge environments, especially elements sensitive to hydrothermal alteration (e.g., K, Cl). Natural geochemical trends are reproduced through partial melting of moderately altered basalts from the lower sheeted dikes. Two-pyroxene hornfels, the assumed residue, were reproduced only at low melting degrees (<20 vol%). The overall amphibole absence in the experiments confirms the natural observation that amphibole is not produced during peak metamorphism. Comparing experimental products with the natural equivalents reveals that water activity ( aH2O) was significantly reduced during anatectic processes, mainly based on lower melt aluminum oxide and lower plagioclase anorthite content at lower aH2O. High silica melt at the expected temperature (1000-1050 °C; peak thermal overprint of two-pyroxene hornfels) could only be reproduced in the experimental series performed at aH2O = 0.1.
Plankton networks driving carbon export in the oligotrophic ocean
NASA Astrophysics Data System (ADS)
Guidi, L.; Chaffron, S.; Bittner, L.; Eveillard, D.; Raes, J.; Karsenti, E.; Bowler, C.; Gorsky, G.
2016-02-01
The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis that sinks to the deep ocean as particles where it is sequestered. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure and interactions driving the process remain largely uncharacterised. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of the underlying processes. We show that specific plankton communities correlate with carbon export and highlight unexpected and overlooked taxa such as Radiolaria, alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical oligotrophic ocean. Additionally, we show that the relative abundance of just a few bacterial and viral genes can predict most of the variability in carbon export in these regions. Together these results help elucidate ecosystem drivers of the biological carbon pump and present a case study for scaling from genes-to-ecosystems.
Williams conducts SWAB Sampling during Expedition 22
2010-03-15
ISS022-E-094369 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.
Williams conducts SWAB Sampling during Expedition 22
2010-03-15
ISS022-E-094374 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.
Foale conducts MSG setup for PFMI experiment in U.S. Lab during Expedition 8
2003-11-28
ISS008-E-06301 (28 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, installs equipment in the Microgravity Science Glovebox (MSG) for the Pore Formation and Mobility Investigation (PFMI) experiment in the Destiny laboratory on the International Space Station (ISS). This experiment studies how bubbles form in metal and crystal samples, thus deteriorating the samples strength and usefulness in experiments.
Foale conducts MSG setup for PFMI experiment in U.S. Lab during Expedition 8
2003-11-28
ISS008-E-06309 (28 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, installs equipment in the Microgravity Science Glovebox (MSG) for the Pore Formation and Mobility Investigation (PFMI) experiment in the Destiny laboratory on the International Space Station (ISS). This experiment studies how bubbles form in metal and crystal samples, thus deteriorating the samples strength and usefulness in experiments.
Foale conducts MSG setup for PFMI experiment in U.S. Lab during Expedition 8
2003-11-28
ISS008-E-06300 (28 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, installs equipment in the Microgravity Science Glovebox (MSG) for the Pore Formation and Mobility Investigation (PFMI) experiment in the Destiny laboratory on the International Space Station (ISS). This experiment studies how bubbles form in metal and crystal samples, thus deteriorating the samples strength and usefulness in experiments.
Medieval Warm Period and Little Ice Age Signatures in the Distribution of Modern Ocean Temperatures
NASA Astrophysics Data System (ADS)
Gebbie, G.; Huybers, P. J.
2017-12-01
It is well established both that global temperatures have varied overthe last millenium and that the interior ocean reflects surfaceproperties inherited over these timescales. Signatures of theMedieval Warm Period and Little Ice Age are thus to be expected in themodern ocean state, though the magnitude of these effects and whetherthey are detectable is unclear. Analysis of changes in temperatureacross those obtained in the 1870s as part of the theH.M.S. Challenger expedition, the 1990s World Ocean CirculationExperiment, and recent Argo observations shows a consistent pattern:the upper ocean and Atlantic have warmed, but the oldest waters inthe deep Pacific appear to have cooled. The implications of pressureeffects on the H.M.S. Challenger thermometers and uncertainties indepth of observations are non-negligible but do not appear tofundamentally alter this pattern. Inversion of the modern hydrographyusing ocean transport estimates derived from passive tracer andradiocarbon observations indicates that deep Pacific cooling could bea vestige of the Medieval Warm Period, and that warming elsewhere reflects thecombined effects of emergence from the Little Ice Age and modernanthropogenic warming. Implications for longterm variations in oceanheat uptake and separating natural and anthropogenic contributions to themodern energy imbalance are discussed.
AURORA BOREALIS: a polar-dedicated European Research Platform
NASA Astrophysics Data System (ADS)
Wolff-Boenisch, Bonnie; Egerton, Paul; Thiede, Joern; Roberto, Azzolini; Lembke-Jene, Lester
2010-05-01
Polar research and in particular the properties of northern and southern high latitude oceans are currently a subject of intense scientific debate and investigations, because they are subject to rapid and dramatic climatic variations. Polar regions react more rapidly and intensively to global change than other regions of the earth. A shrinking of the Arctic sea-ice cover, potentially leading to an opening of sea passages to the north of North America and Eurasia, on the long to a "blue" Arctic Ocean would additionally have a strong impact on transport, commerce and tourism bearing potential risk for humans and complex ecosystems in the future. In spite of their critical role processes and feedbacks, especially in winter but not exclusively, are virtually unknown: The Arctic Ocean for example, it is the only basin of the world's oceans that has essentially not been sampled by the drill ships of the Deep-Sea Drilling Project (DSDP) or the Ocean Drilling Program (ODP) and its long-term environmental history and tectonic structure is therefore poorly known. Exceptions are the ODP Leg 151 and the more recent very successful ACEX-expedition of the Integrated Ocean Drilling Program (IODP) in 2004. To help to address the most pressing questions regarding climate change and related processes, a Pan-European initiative in the field of Earth system science has been put in place: AURORA BOREALIS is the largest environmental research infrastructure on the ESFRI roadmap of the European Community. AURORA BOREALIS is a very powerful research icebreaker, which will enable year-round operations in the Arctic and the Antarctic as well as in the adjacent ocean basins. Equipped with its drilling rig, the vessel is also capable to explore the presently completely unknown Arctic deep-sea floor. Last but not least, the ship is a floating observatory and mobile monitoring platform that permits to measure on a long-term basis comprehensive time series in all research fields relevant to global climate change. Chances and challenges rest in securing the construction and operation costs that need a dedicated consortium of interested countries and institutions to help tackling the biggest challenges of the next decades.
NASA Astrophysics Data System (ADS)
Brandstätter, Jennifer; Kurz, Walter; Micheuz, Peter; Krenn, Kurt
2015-04-01
The primary objective of Integrated Ocean Drilling Program (IODP) Expedition 344 offshore the Osa Peninsula in Costa Rica was to sample and quantify the material entering the seismogenic zone of the Costa Rican erosive subduction margin. Fundamental to this objective is an understanding of the nature of both the subducting Cocos plate crust and of the overriding Caribbean plate. The subducting Cocos plate is investigated trying to define its hydrologic system and thermal state. The forearc structures recorded by the sediment deposited on the forearc, instead, document periods of uplift and subsidence and provide important information about the process of tectonic erosion that characterizes the Costa Rica margin. Offshore the western margin of Costa Rica, the oceanic Cocos plate subducts under the Caribbean plate, forming the southern end of the Middle America Trench. Subduction parameters including the age, convergence rate, azimuth, obliquity, morphology, and slab dip all vary along strike. The age of the Cocos plate at the Middle America Trench decreases from 24 Ma offshore the Nicoya Peninsula to 15 Ma offshore the Osa Peninsula. Subduction rates vary from 70 mm/y offshore Guatemala to 90 mm/y offshore southern Costa Rica. Convergence obliquity across the trench varies from offshore Nicaragua, where it is as much as 25° oblique, to nearly orthogonal southeast of the Nicoya Peninsula. Passage of the Cocos plate over the Galapagos hotspot created the aseismic Cocos Ridge, an overthickened welt of oceanic crust. This ridge is ~25 km thick, greater than three times normal oceanic crustal thickness. During IODP Expedition 344, the incoming Cocos plate was drilled at sites U1381 and U1414. Site U1381 is located ~4.5 km seaward of the deformation front offshore the Osa Peninsula and Caño Island. It is located on a local basement high. Basement relief often focuses fluid flow, so data from this site are likely to document the vigor of fluid flow in this area. Site U1414 is located ~1 km seaward of the deformation front offshore the Osa Peninsula and Caño Island. Primary science goals at Site U1414 included characterization of the alteration state of the magmatic basement. Brittle structures within the incoming plate (sites U1380, U1414) are mineralized extensional fractures and shear fractures. The shear fractures mainly show a normal component of shear. Within the sedimentary sequence both types of fractures dip steeply (vertical to subvertical) and strike NNE-SSW. Deformation bands trend roughly ENE-WSW, sub-parallel to the trend of the Cocos ridge. Structures in the Cocos Ridge basalt mainly comprise mineralized veins at various orientations. A preferred orientation of strike directions was not observed. Some veins show straight boundaries, others are characterized by an irregular geometry characterized by brecciated wall rock clasts embedded within vein precipitates. The vein mineralization was analysed in detail by RAMAN spectroscopy. Precipitation conditions and fluid chemistry were analysed by fluid inclusions entrapped within vein minerals. Vein mineralizations mainly consist of carbonate (fibrous aragonite, calcite), chalcedony, and quartz. Vein mineralization is mainly characterized by zoned antitaxial growth of carbonate fibres including a suture along the central vein domains. Quartz is often characterized by fibre growth of crystals perpendicular to the vein boundaries, too. These zoned veins additinally have wall rock alteration seams consisting of clay minerals. The precipitation sequence basically indicates that fluid chemistry evolved from an CO2-rich towards a SiO2- rich fluid.
Wakata with Glacier on Middeck (MDDK)
2009-03-20
S119-E-006764 (20 March 2009) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata is pictured on Discovery's middeck with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER). The astronauts changed out the International Space Station's glacier with a new one on March 20 to return urine, saliva, and blood samples from the Expedition 18 crew to Earth with Discovery's STS-119 astronauts. Wakata will be serving with both the current (Expedition 18) and the following (Expedition 19) crews aboard the station.
1999-07-21
KENNEDY SPACE CENTER, FLA. -- Waiting for the arrival of the Liberty Bell 7 after its raising from the ocean floor. Liberty Bell 7 launched U.S. Air Force Captain Virgil "Gus" Grissom July 21, 1961 on a mission that lasted 15 minutes and 37 seconds before sinking to the floor of the Atlantic Ocean, three miles deep. It lay undetected for nearly four decades before a Discovery Channel expedition located it and recovered it. The space capsule is now restored and preserved, and part of an interactive exhibit touring science centers and museums in 12 cities throughout the United States until 2003. The exhibit includes hands-on elements such as a capsule simulator, a centrifuge, and ROV pilot.
NASA Astrophysics Data System (ADS)
Downey, Rachel V.; Janussen, Dorte
2015-01-01
The under-explored abyssal depths of the Kurile-Kamchatka region have been re-examined during the KuramBio (Kurile-Kamchatka Biodiversity Study) expedition. Combining new KuramBio data with previous expedition data in this region has enhanced our understanding abyssal sponge fauna, in particular, the patchiness, rarity, and exceptional richness of the Cladorhizidae family. In total, 14 sponge species, from 7 genera, in 5 families, within two classes (Demospongiae and Hexactinellida) were collected. Of the 14 species, 29% (4 spp.) have been found previously in this region, 36% (5 spp.) were new to the regional abyssal fauna, and 21% (3 spp.) were new to science. The number of abyssal species in this region has now been increased by 26% (8 spp.) and genera by nearly 15% (2 genera). Rarity is a prominent feature of this abyssal fauna, with more than half of species only found at one station, and 83% (19 spp.) of species found previously in this region were not re-found during KuramBio. Cladorhizid sponges dominate demosponge species and genera richness in the abyssal Kurile-Kamchatka region; accounting for 87% (20 spp.) of all demosponge species, and accounting for over 60% (5 genera) of all demosponge genera. Sponge richness in this region is potentially aided by the productivity of the ocean waters, the geological age of the Pacific Ocean, low population densities, and the varied topographic features (ridges, trenches, and seamounts) found in this region. Unusually, the dominance of demosponges in the Kurile-Kamchatka sponge faunal composition is not replicated in other well-sampled abyssal regions, which tend to be richer in deep-sea hexactinellid fauna. Broad depth, latitudinal and longitudinal ranges in Kurile-Kamchatka abyssal fauna are a key characteristic of this faunal assemblage. Strong abyssal faunal connectivity is found between the Kurile-Kamchatka region and North Pacific abyssal fauna, with weaker faunal connections found with the adjacent semi-enclosed seas of Japan and Okhotsk. The importance of the dominant sub-Polar Gyre currents, the vast area of abyssal plain and similar levels of productivity, are likely to be driving the strong faunal connectivity in the North Pacific. The importance of utilising several forms of sampling equipment has been illustrated in this study, with half of all specimens caught with non-AGT (Agassiz trawl) equipment.
NASA Astrophysics Data System (ADS)
Naito, K.; Park, J.
2012-12-01
The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake mechanism. Huge earthquakes have been repeated in the cycle of 100-150 years in the area, and in these days the next emergence of the earthquake becomes one of the most serious issue in Japan. Therefore, detailed descriptions of geological structure are urgently needed there. IODP (Integrated Ocean Drilling Program) have investigated this area in the NanTroSEIZE science plan. Seismic reflection, core sampling and borehole logging surveys have been executed during the NanTroSEIZE expeditions. Core-log-seismic data integration (CLSI) is useful for understanding the Nankai seismogenic zone. We use the seismic inversion method to do the CLSI. The seismic inversion (acoustic impedance inversion, A.I. inversion) is a method to estimate rock physical properties using seismic reflection and logging data. Acoustic impedance volume is inverted for seismic data with density and P-wave velocity of several boreholes with the technique. We use high-resolution 3D multi-channel seismic (MCS) reflection data obtained during KR06-02 cruise in 2006, and measured core sample properties by IODP Expeditions 322 and 333. P-wave velocities missing for some core sample are interpolated by the relationship between acoustic impedance and P-wave velocity. We used Hampson-Russell software for the seismic inversion. 3D porosity model is derived from the 3D acoustic impedance model to figure out rock physical properties of the incoming sedimentary sequence in the Nankai Trough off Kumano Basin. The result of our inversion analysis clearly shows heterogeneity of sediments; relatively high porosity sediments on the shallow layer of Kashinosaki Knoll, and distribution of many physical anomaly bands on volcanic and turbidite sediment layers around the 3D MCS survey area. In this talk, we will show 3D MCS, acoustic impedance, and porosity data for the incoming sedimentary sequence and discuss its possible implications for the Nankai seismogenic behavior.
Bubble composition of natural gas seeps discovered along the Cascadia Continental Margin
NASA Astrophysics Data System (ADS)
Baumberger, T.; Merle, S. G.; Embley, R. W.; Seabrook, S.; Raineault, N.; Lilley, M. D.; Evans, L. J.; Walker, S. L.; Lupton, J. E.
2016-12-01
Gas hydrates and gas-filled pockets present in sedimentary deposits have been recognized as large reservoirs for reduced carbon in the Earth's crust. This is particularly relevant in geological settings with high carbon input, such as continental margins. During expedition NA072 on the E/V Nautilus (operated by the Ocean Exploration Trust Inc.) in June 2016, the U.S. Cascadia Continental Margin (Washington, Oregon and northern California) was explored for gas seepage from sediments. During this expedition, over 400 bubble plumes at water depths ranging from 125 and 1640 m were newly discovered, and five of them were sampled for gas bubble composition using specially designed gas tight fluid samplers mounted on the Hercules remotely operated vehicle (ROV). These gas bubble samples were collected at four different depths, 494 m (rim of Astoria Canyon), 615 and 620 m (SW Coquille Bank), 849 m (floor of Astoria Canyon) and 1227 m (Heceta SW). At the two deeper sites, exposed hydrate was present in the same area where bubbles were seeping out from the seafloor. Other than the escaping gas bubbles, no other fluid flow was visible. However, the presence of bacterial mats point to diffuse fluid flow present in the affected area. In this study we present the results of the currently ongoing geochemical analysis of the gas bubbles released at the different sites and depths. Noble gas analysis, namely helium and neon, will give information about the source of the helium as well as about potential fractionation between helium and neon associated with gas hydrates. The characterization of these gas samples will also include total gas (CO2, H2, N2, O2, Ar, CH4 and other hydrocarbons) and stable isotope analysis (C and H). This dataset will reveal the chemical composition of the seeping bubbles as well as give information about the possible sources of the carbon contained in the seeping gas.
Earth Observations taken by the Expedition 21 Crew
2009-10-22
ISS021-E-011832 (22 Oct. 2009) --- The northern Savage Islands in the Atlantic Ocean are featured in this image photographed by an Expedition 21 crew member on the International Space Station. The Savage Islands, or Ilhas Selvagens in Portuguese, comprise a small archipelago in the eastern North Atlantic Ocean between the archipelago of Madeira to the north and the Canary Islands to the south. Like other island groups, the Savage Islands are thought to have been produced by volcanism related to a mantle plume or “hot spot”. Mantle plumes are relatively fixed regions of upwelling magma that can feed volcanoes on an overlying tectonic plate. Active volcanoes form over the plume, and become dormant as they are carried away on the moving tectonic plate. Scientists believe that over geologic time, this creates a line of older extinct volcanoes, seamounts, and islands extending from the leading active volcanoes that are currently over the plume. This view illustrates Selvagem Grande, the largest of the islands with an approximate area of four square kilometers. All of the islands of the archipelago are ringed by bright white breaking waves along the fringing beaches. Coral reefs that surround the Savage Islands make it very difficult to land boats there, and there is no permanent settlement on the islands.
NASA Astrophysics Data System (ADS)
Wold-Brennon, R.; Cooper, S. K.
2014-12-01
Through collaborations between scientists and educators, the Consortium for Ocean Leadership developed a series of marine geosciences classroom activities and lesson plans -- including the Adopt-a-Microbe project, a collection of hands-on science lessons that use the sub-seafloor microbiology topics to provide engaging pathways for K-12 students to learn about the world around them. The goal of these activities has been to introduce youth to deep ocean exploration, inspire interest in microbial oceanography, and foster higher education goals and career paths in related sciences for our youth. From the beginning, these lessons were developed in close working relationships between scientists and educators, and the lessons geared towards middle school have been recently piloted with the intent to maximize sustained student interest in STEM topics. While teaching these units, educators used surveys, polls, group discussions, and interviews to shed light on correlations between student interest in STEM and their close proximity to exemplary and enthusiastic educators and student leaders who are active in STEM activities such as research projects and expeditions. Educators continue to use Adopt-a-Microbe and related expedition science-based lessons to explore the broader impacts of their professional development in the Geosciences on their students' professed interest in STEM.
Earth observations taken by the Expedition Seven crew
2003-09-03
ISS007-E-14361 (4 September 2003) --- This view featuring Victoria Falls and the Zambezi River was photographed by one of the Expedition 7 crewmembers onboard the International Space Station (ISS). Victoria Falls is one of the most famous tourist sites in sub-Saharan Africa. The falls and their famous spray clouds are 1700 meters long, the longest sheet of falling water in the world. The falls appear as a ragged white line in this image. The small town of Victoria Falls in Zimbabwe appears just west of the falls, with smaller tourist facilities on the east bank in Zambia. A major river in south-central Africa, the Zambezi River flows from western Zambia to the Indian Ocean in Mozambique. It flows southeast in a wide bed before plunging suddenly 130 meters over the Victoria Falls into a narrow gorge.
2002-11-23
STS113-S-035 (23 November 2002) --- The Space Shuttle Endeavour arcs into the still-black sky over the Atlantic Ocean, casting a fiery glow on its way. Liftoff from the Kennedy Space Center's Launch Complex 39 occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Crewmembers onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crewmembers--astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin--who went on to replace Expedition 5 aboard the Station.
Zhang, Xinxu; Fang, Jing; Bach, Wolfgang; Edwards, Katrina J.; Orcutt, Beth N.; Wang, Fengping
2016-01-01
Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program. Enrichment experiments with different carbon (bicarbonate, acetate, methane) and nitrogen (nitrate and ammonium) sources revealed significant cell growth (one magnitude higher cell abundance), higher intracellular DNA content, and increased Fe3+/ΣFe ratios only when nitrogen substrates were added. Furthermore, a Marinobacter strain with neutrophilic iron-oxidizing capabilities was isolated from the basalt. This work reveals that basalt-associated microorganisms at North Pond had the potential for activity and that microbial growth could be stimulated by in vitro nitrogen addition. Furthermore, iron oxidation is supported as an important process for microbial communities in subsurface basalts from young and cool ridge flank basement. PMID:27199959
Trefault, N; Krock, B; Delherbe, N; Cembella, A; Vásquez, M
2011-10-01
Phycotoxin distribution and abundance was determined during an oceanographic expedition along a latitudinal transect of 27° extent in the southeastern Pacific Ocean, from the fjords of Tierra del Fuego Island to offshore Copiapó in the Atacama region along the Chilean coast. Plankton samples were harvested at regular intervals during the entire cruise and later analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for domoic acid (DA) and lipophilic toxins. Although no evident toxic algal bloom was encountered during this transect, several phycotoxin analogues from distinct toxin groups were detected. These phycotoxins included DA, the pectenotoxins PTX-2, PTX-2sa and PTX-11, dinophystoxin-1 (DTX-1) and gymnodimine (GYM), which is the first report of this latter toxin in the southeast Pacific. A region-specific and rather disjunct distribution of GYM, DA and DTX-1 was observed, whereas PTX-2, PTX-2sa and PTX-11 were more widely distributed over almost the entire transect. This work represents the first assessment of lipophilic toxins through a wide latitudinal transect of the southeastern Pacific, revealing a patchy distribution of several phycotoxins and pointing out the specific geographical distribution of the putative toxigenic organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families.
Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B; Halpern, Aaron L; Williamson, Shannon J; Remington, Karin; Eisen, Jonathan A; Heidelberg, Karla B; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S; Li, Huiying; Mashiyama, Susan T; Joachimiak, Marcin P; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael, Benjamin J; Bafna, Vineet; Friedman, Robert; Brenner, Steven E; Godzik, Adam; Eisenberg, David; Dixon, Jack E; Taylor, Susan S; Strausberg, Robert L; Frazier, Marvin; Venter, J Craig
2007-03-01
Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.
Enhanced POC export in the oligotrophic northwest Pacific Ocean after extreme weather events
NASA Astrophysics Data System (ADS)
Chen, Kuo-Shu; Hung, Chin-Chang; Gong, Gwo-Ching; Chou, Wen-Chen; Chung, Chih-Ching; Shih, Yung-Yen; Wang, Chau-Chang
2013-11-01
study effects of extreme weather events (EWEs, e.g., dust storm and typhoon) on the export of particulate organic carbon (POC) measured by a floating sediment trap in the oligotrophic ocean, eight sea-going expeditions were conducted in the oligotrophic northwest Pacific (NWP) in 2007 and 2008, covering all four seasons and the passage of several EWEs. Results of year-round field observations demonstrate that the POC export fluxes in the oligotrophic NWP did not exhibit apparent seasonal variations yielding an average flux of 36.9 ± 5.8 mg-C m-2 d-1 without EWE effects. With EWE effects, however, the POC export flux (51.7 ± 13.2 mg-C m-2 d-1) showed an approximately 40% increase compared to the average flux measured without EWE effects. These results suggest that EWEs can trigger elevated POC export from the euphotic zone in the oligotrophic ocean.
[Distribution pattern of microphytoplankton in the Bering Sea during the summer of 2010].
Lin, Geng-Ming; Yang, Qing-Liang; Wang, Yu
2013-09-01
Based on the analysis of 70 water samples collected by the Chinese icebreaker Xuelong in the areas of 52 degrees 42.29'-65 degrees 30.23' N and 169 degrees 20.85' E-179 degrees 30.37' W in the Bering Sea during the Chinese Arctic Research Expedition on July 10-19, 2010, a total of 143 phytoplankton species were identified, including 95 diatom species belonging to 37 genera, 44 dinoflagellate species belonging to 15 genera, 2 Chlorophyta species belonging to 2 genera, 1 Euglenophyta belonging to 1 genus, and 1 Chrysophyta species belonging to 1 genus. The cluster analysis revealed that the phytoplankton in the study areas could be divided as oceanic and shallow water groups. The oceanic group found in the western North Pacific Ocean and the Bering Basin was dominated by the boreal oceanic species such as Neodenticula seminae and Chaetoceros atlanticus and the cosmopolitan species such as Thalassionema nitzschioides and Chaetoceros compressus, with the characteristics of low abundance and high evenness of diversified species. The shallow water group found in the continental shelf and slope of Bering Sea was mostly composed of the pan-arctic neritic species such as Thalassiosira nordenskioldi and Chaetoceros furcellatus and the cosmopolitan species such as Leptocylindrus danicus and Chaetoceros curvisetus, with the characteristics of low species diversity and evenness index due to the high abundance in certain species. The phytoplankton abundance in the surface water layer distributed unevenly among the stations, ranging from 950 to 192400 cells x L(-1) and with an average of 58722 cells x L(-1). Horizontally, the abundance distribution trend was decreased in the order of the Bering Sea shelf, the Bering Sea slope, the Bering Sea basin, and the western North Pacific Ocean. Vertically, the abundance was lower in surface layer and maximized in the thermocline, suggesting that the phytoplankton abundance in vertical distribution varied with the regional thermocline.
Reiter works with SWAB ASD Filter Kit in the U.S. Laboratory during Expedition 13
2006-09-10
ISS013-E-80066 (10 Sept. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 13 flight engineer, works with the surface, water and air biocharacterization (SWAB) air sampling device (ASD) filter kit in the Destiny laboratory of the International Space Station.
View of Expedition 32 FE Hoshide during HTV3 Ingress
2012-07-28
ISS032-E-011406 (28 July 2012) --- Japan Aerospace Exploration Agency (JAXA) astronaut Aki Hoshide, Expedition 32 flight engineer, using a Russian AK-1M absorber, samples the air in the newly attached JAXA H-II Transfer Vehicle (HTV-3) docked to the International Space Station?s Harmony node.
Synchronous in-field application of life-detection techniques in planetary analog missions
NASA Astrophysics Data System (ADS)
Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf
2015-02-01
Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration missions.
NASA Astrophysics Data System (ADS)
Reichow, M. K.; Brewer, T. S.; Marvin, L. G.; Lee, S. V.
2008-12-01
Little information presently exists on the heterogeneity of hydrothermal alteration in the oceanic crust or the variability of the associated thermal, fluid, and chemical fluxes. Formation porosities are important controls on these fluxes and porosity measurements are routinely collected during wireline logging operations. These estimates on the formation porosity are measures of the moderating power of the formation in response to bombardment by neutrons. The neutron absorption macroscopic cross-section (Σ = σρ) is a representation of the ability of the rock to slow down neutrons, and as such can be used to invert the porosity of a sample. Boron, lithium and other trace elements are important controls on σ-values, and the distribution of these is influenced by secondary low-temperature alteration processes. Consequently, computed σ-values may be used to discriminate between various basalt types and to identify areas of secondary alteration. Critical in this analysis is the degree of alteration, since elements such as B and Li can dramatically affect the sigma value and leading to erroneous porosity values. We analysed over 150 'pool-samples' for S, Li, Be and B element concentrations to estimate their contribution to the measured neutron porosity. These chemical analyses allow the calculation of the model sigma values for individual samples. Using a range of variably altered samples recovered during IODP Expeditions 309 and 312 we provide bulk estimates of alteration within the drilled section using the measured neutron porosity. B concentration in Hole 1256D increases with depth, with sharp rises at 959 and 1139 mbsf. Elevated wireline neutron porosities cannot always be directly linked with high B content. However, our preliminary results imply that increased neutron porosity (~15) at depths below 1100 mbsf may reflect hydrothermal alteration rather than formation porosity. This interpretation is supported when compared with generally lower computed porosity estimates derived from resistivity measurements for the same intervals.
Howard, Matt; Bakker-Dyos, J; Gallagher, L; O'Hara, J P; Woods, D; Mellor, A
2018-02-01
The British Service Dhaulagiri Research Expedition (BSDMRE) took place from 27 March to 31 May 2016. The expedition involved 129 personnel, with voluntary participation in nine different study protocols. Studies were conducted in three research camps established at 3600, 4600 and 5140 m and involved taking and storing blood samples, cardiac echocardiography and investigations involving a balance plate. Research in this remote environment requires careful planning in order to provide a robust and resilient power plan. In this paper we aim to report the rationale for the choices we made in terms of power supply, the equipment used and potential military applicability. This is a descriptive account from the expedition members involved in planning and conducting the medical research. Power calculations were used to determine estimates of requirement prior to the expedition. The primary sources used to generate power were internal combustion engine (via petrol fuelled electric generators) and solar panels. Having been generated, power was stored using lithium-ion batteries. Special consideration was given to the storage of samples taken in the field, for which electric freezers and dry shippers were used. All equipment used functioned well during the expedition, with the challenges of altitude, temperature and transport all overcome due to extensive prior planning. Power was successfully generated, stored and delivered during the BSDMRE, allowing extensive medical research to be undertaken. The challenges faced and overcome are directly applicable to delivering military medical care in austere environments, and lessons learnt can help with the planning and delivery of future operations, training exercises or expeditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.