NASA Astrophysics Data System (ADS)
Weiss, E.; Skene, J.; Tran, L.
2011-12-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.
NASA Astrophysics Data System (ADS)
Strang, C.; Lemus, J.; Schoedinger, S.
2006-12-01
Ocean sciences were idiosyncratically left out of the National Science Education Standards and most state standards, resulting in a decline in the public's attention to ocean issues. Concepts about the ocean are hardly taught in K-12 schools, and hardly appear in K-12 curriculum materials, textbooks, assessments or standards. NGS, COSEE, NMEA, NOAA, the US Commission on Ocean Policy, the Pew Ocean Commission have all urgently called for inclusion of the ocean in science standards as a means to increase ocean literacy nationwide. There has never been consensus, however, about what ocean literacy is or what concepts should be included in future standards. Scientists interested in education and outreach activities have not had a framework to guide them in prioritizing the content they present or in determining how that content fits into the context of what K-12 students and the public need to know about science in general. In 2004, an on-line workshop on Ocean Literacy Through Science Standards began the process of developing consensus about what that framework should include. Approximately 100 ocean scientists and educators participated in the workshop, followed by a series of meetings and extensive review by leading scientists, resulting in a series of draft documents and statements. The importance of community-wide involvement and consensus was reinforced through circulation of the draft documents for public comment April -May, 2005. The community agreed on an Ocean Literacy definition, tagline, seven ocean principles, 44 concepts and a matrix aligning the concepts to the National Science Education Standards (NSES). The elements are described in more detail in the final Ocean Literacy brochure. Broad ownership of the resulting documents is a tribute to the inclusiveness of the process used to develop them. The emerging consensus on Ocean Literacy has become an instrument for change, and has served as an important tool guiding the ocean sciences education efforts of scientists, educators, and most importantly, has provided a common language for scientists and educators working together. In this past year, a similar community-wide effort has been mounted to develop an "Ocean Literacy Scope and Sequence" to serve as a critical companion to "Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12." The Scope and Sequence shows how the principles and concepts develop and build in logical and developmentally sound learning progressions across grade spans K-12. This document will provide further guidance to teachers, curriculum developers, textbook writers, and ocean scientists, as to what concepts about the ocean are appropriate to introduce at various grade spans. It will show the relationship between the new discoveries of cutting edge science and the basic science concepts on which they are built and which students are accountable to understand. Those concerned about science education and about the future health of the ocean must be poised to influence the development of science standards by local educational agencies, state departments of education and professional societies and associations. In order to be effective, we must have tools, products, documents, web sites that contain agreed upon science content and processes related to the ocean.
NASA Astrophysics Data System (ADS)
Halversen, C.; Weiss, E. L.; Pedemonte, S.
2016-02-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere interact?; (2) How does carbon flow through the ocean, land, and atmosphere?; and (3) What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems and challenges students to use scientific evidence to make explanations about climate change.
Open science resources for the discovery and analysis of Tara Oceans data
Pesant, Stéphane; Not, Fabrice; Picheral, Marc; Kandels-Lewis, Stefanie; Le Bescot, Noan; Gorsky, Gabriel; Iudicone, Daniele; Karsenti, Eric; Speich, Sabrina; Troublé, Romain; Dimier, Céline; Searson, Sarah; Acinas, Silvia G.; Bork, Peer; Boss, Emmanuel; Bowler, Chris; Vargas, Colomban De; Follows, Michael; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Kandels-Lewis, Stefanie; Karp-Boss, Lee; Karsenti, Eric; Krzic, Uros; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Raes, Jeroen; Reynaud, Emmanuel G.; Sardet, Christian; Sieracki, Mike; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B.; Sunagawa, Shinichi; Velayoudon, Didier; Weissenbach, Jean; Wincker, Patrick
2015-01-01
The Tara Oceans expedition (2009–2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events. PMID:26029378
Open science resources for the discovery and analysis of Tara Oceans data
NASA Astrophysics Data System (ADS)
2015-05-01
The Tara Oceans expedition (2009-2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.
Open science resources for the discovery and analysis of Tara Oceans data.
Pesant, Stéphane; Not, Fabrice; Picheral, Marc; Kandels-Lewis, Stefanie; Le Bescot, Noan; Gorsky, Gabriel; Iudicone, Daniele; Karsenti, Eric; Speich, Sabrina; Troublé, Romain; Dimier, Céline; Searson, Sarah
2015-01-01
The Tara Oceans expedition (2009-2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.
NASA Astrophysics Data System (ADS)
Pedemonte, S.; Weiss, E. L.
2016-02-01
Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
... Climate Science Center; the Navy Fleet Forces Command; the Bureau of Ocean Energy Management, Regulation... Governors South Atlantic Alliance; the Southeast Aquatic Resource Partnership; the Southeast Coastal Ocean... to the meeting. Note: The times and sequence specified in this agenda are subject to change. Dated...
Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition
Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Bazire, Pascal; Beluche, Odette; Bertrand, Laurie; Besnard-Gonnet, Marielle; Bordelais, Isabelle; Boutard, Magali; Dubois, Maria; Dumont, Corinne; Ettedgui, Evelyne; Fernandez, Patricia; Garcia, Espérance; Aiach, Nathalie Giordanenco; Guerin, Thomas; Hamon, Chadia; Brun, Elodie; Lebled, Sandrine; Lenoble, Patricia; Louesse, Claudine; Mahieu, Eric; Mairey, Barbara; Martins, Nathalie; Megret, Catherine; Milani, Claire; Muanga, Jacqueline; Orvain, Céline; Payen, Emilie; Perroud, Peggy; Petit, Emmanuelle; Robert, Dominique; Ronsin, Murielle; Vacherie, Benoit; Acinas, Silvia G.; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M.; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E.; Stepanauskas, Ramunas; Sullivan, Matthew B.; Brum, Jennifer R.; Duhaime, Melissa B.; Poulos, Bonnie T.; Hurwitz, Bonnie L.; Acinas, Silvia G.; Bork, Peer; Boss, Emmanuel; Bowler, Chris; De Vargas, Colomban; Follows, Michael; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Kandels-Lewis, Stefanie; Karp-Boss, Lee; Karsenti, Eric; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Raes, Jeroen; Sardet, Christian; Sieracki, Michael E.; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B.; Sunagawa, Shinichi; Wincker, Patrick; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick
2017-01-01
A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009–2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world’s planktonic ecosystems. PMID:28763055
Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition.
Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Acinas, Silvia G; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E; Stepanauskas, Ramunas; Sullivan, Matthew B; Brum, Jennifer R; Duhaime, Melissa B; Poulos, Bonnie T; Hurwitz, Bonnie L; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick
2017-08-01
A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems.
Exploring the functional side of the Ocean Sampling Day metagenomes
NASA Astrophysics Data System (ADS)
Antonio, F. G.; Kottmann, R.; Wallom, D.; Glöckner, F. O.
2016-02-01
The Ocean Sampling Day (OSD) is a simultaneous, collaborative, standardized, and global mega-sequencing campaign to analyze marine microbial community composition and functional traits. 150 metagenomes were sequenced from the first OSD in June 2014 including a rich set of environmental and oceanographic measurements. Unlike other ocean mega-surveys such as Global Ocean Sampling (GOS) or the TARA expedition that mostly sampled open ocean waters most of the OSD samples are from coastal sampling sites, an area not previously well studied in this regard. The result is that OSD adds more than three million new genes to the recently published Ocean Microbial-Reference Gene Catalog (Sunawaga et al., 2015). This allows us to significantly increase our knowledge of the ocean microbiome, identify hot-spots of novelty in terms of function and investigate the impact of human activities on oceans coastal areas where there is the largest interaction between dense human populations and the marine world. Additionally, these cumulative samples, related in time, space and environmental parameters, are providing insights into fundamental rules describing microbial diversity and function and contribute to the blue economy through the identification of novel ocean-derived biotechnologies. References: Sunagawa, Coelho, Chaffron, et al. (2015, May). Structure and function of the global ocean microbiome. Science, 348(6237), 126135.
Bender, Andrea; Schlimm, Dirk; Beller, Sieghard
2015-10-01
The domain of numbers provides a paradigmatic case for investigating interactions of culture, language, and cognition: Numerical competencies are considered a core domain of knowledge, and yet the development of specifically human abilities presupposes cultural and linguistic input by way of counting sequences. These sequences constitute systems with distinct structural properties, the cross-linguistic variability of which has implications for number representation and processing. Such representational effects are scrutinized for two types of verbal numeration systems-general and object-specific ones-that were in parallel use in several Oceanic languages (English with its general system is included for comparison). The analysis indicates that the object-specific systems outperform the general systems with respect to counting and mental arithmetic, largely due to their regular and more compact representation. What these findings reveal on cognitive diversity, how the conjectures involved speak to more general issues in cognitive science, and how the approach taken here might help to bridge the gap between anthropology and other cognitive sciences is discussed in the conclusion. Copyright © 2015 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Schoedinger, S. E.; Weiss, E. L.
2016-12-01
K-5 science teachers, who often lack a science background, have been tasked with a huge challenge in implementing NGSS—to completely change their instructional approach from one that views science as a body of knowledge to be imparted to one that is epistemic in nature. We have found that providing high-quality professional learning (PL) experiences is often not enough and that teachers must have instructional materials that align with their instructional goals. We describe a case study in which the Lawrence Hall of Science (the Hall) used the Hall-developed Ocean Sciences Sequence for Grades 3-5 (OSS 3-5) to support a rigorous PL program for grade 3-5 teachers focused on the NGSS science and engineering practice, engaging in argument from evidence. Developed prior to the release of NGSS, the Ocean Literacy Framework and the NGSS precursor, A Framework for K-12 Science Education, informed the content and instructional approaches of OSS 3-5. OSS 3-5 provides a substantial focus on making evidence-based explanations (and other science practices), while building students' ocean sciences content knowledge. From 2013-2015, the Hall engaged cohorts of teachers in a rigorous PL experience focused on engaging in argument from evidence. During the summer, teachers attended a week-long institute, in which exemplar activities from OSS 3-5 were used to model instructional practices to support arguing from evidence and related practices, e.g., developing and using models and constructing explanations. Immediately afterward, teachers enacted what they'd learned during a two-week summer school practicum. Here, they team-taught the OSS 3-5 curriculum, participated in video reflection groups, and received coaching and just-in-time input from instructors. In the subsequent academic year, many teachers began by teaching OSS 3-5 so that they could practice engaging students in argumentation in curriculum they'd already used for that purpose. Throughout the year, teachers participated in four follow-up PL sessions, which included planning time. Project staff found that teachers struggled to find and/or create appropriate opportunities to engage students in argumentation when using the district-adopted curriculum, which was not created with these goals in mind.
Ocean plankton. Structure and function of the global ocean microbiome.
Sunagawa, Shinichi; Coelho, Luis Pedro; Chaffron, Samuel; Kultima, Jens Roat; Labadie, Karine; Salazar, Guillem; Djahanschiri, Bardya; Zeller, Georg; Mende, Daniel R; Alberti, Adriana; Cornejo-Castillo, Francisco M; Costea, Paul I; Cruaud, Corinne; d'Ovidio, Francesco; Engelen, Stefan; Ferrera, Isabel; Gasol, Josep M; Guidi, Lionel; Hildebrand, Falk; Kokoszka, Florian; Lepoivre, Cyrille; Lima-Mendez, Gipsi; Poulain, Julie; Poulos, Bonnie T; Royo-Llonch, Marta; Sarmento, Hugo; Vieira-Silva, Sara; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Bowler, Chris; de Vargas, Colomban; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric; Raes, Jeroen; Acinas, Silvia G; Bork, Peer
2015-05-22
Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.
2016-02-01
EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.
Ocean biogeochemistry modeled with emergent trait-based genomics.
Coles, V J; Stukel, M R; Brooks, M T; Burd, A; Crump, B C; Moran, M A; Paul, J H; Satinsky, B M; Yager, P L; Zielinski, B L; Hood, R R
2017-12-01
Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and "omics" data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Baldauf, J.; Denton, J.
2003-12-01
In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history, sea level change and geological time). This objective will be achieved by correctly answering 8 of 10 multiple choice items on course posttest on science themes of ODP/IODP. 2. Describe the technical tools and processes for determining sea level history by preparing and presenting a multimedia presentation on coring. 3. Describe the processes for describing a drill core and apply those processes to core samples from Leg 194 by developing a laboratory analysis report on core samples based on protocol for analyzing cores. 4. Explain the distinguishing features of scientific from industrial coring processes by developing a paper that contrasts scientific from industrial coring processes. 5. Describe the substructure of the ocean basin and the scientific tools (equipment and processes) used to explore this substructure by preparing and presenting a multimedia presentation on bore hole data interpretation. 6. Analyze and interpret data sets from a bore hole by developing a laboratory analysis report on bore-hole data. Student performance data for objectives indicate a 16% average positive change on the science themes addressed in instruction related to objective one occurred. Similarly, a 12% average positive change occurred on science education topics related to earth science among the students in this class. Ongoing contact between faculty members during the academic year is planned as these summer participants engage in implementing IT interventions and professional development experiences based on ocean science data experienced in the summer experience.
Clark Receives Ocean Sciences Award
NASA Astrophysics Data System (ADS)
Roman, Michael R.; Clark, H. Lawrence
2008-09-01
H. Lawrence Clark received the 2008 Ocean Sciences Award at the 2008 Ocean Sciences Meeting, held 2-7 March 2008 in Orlando, Fla. The award is given in recognition of outstanding and long-standing service to the ocean sciences.
Building a Global Ocean Science Education Network
NASA Astrophysics Data System (ADS)
Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.
2016-02-01
It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html
Achieving high confidence protein annotations in a sea of unknowns
NASA Astrophysics Data System (ADS)
Timmins-Schiffman, E.; May, D. H.; Noble, W. S.; Nunn, B. L.; Mikan, M.; Harvey, H. R.
2016-02-01
Increased sensitivity of mass spectrometry (MS) technology allows deep and broad insight into community functional analyses. Metaproteomics holds the promise to reveal functional responses of natural microbial communities, whereas metagenomics alone can only hint at potential functions. The complex datasets resulting from ocean MS have the potential to inform diverse realms of the biological, chemical, and physical ocean sciences, yet the extent of bacterial functional diversity and redundancy has not been fully explored. To take advantage of these impressive datasets, we need a clear bioinformatics pipeline for metaproteomics peptide identification and annotation with a database that can provide confident identifications. Researchers must consider whether it is sufficient to leverage the vast quantities of available ocean sequence data or if they must invest in site-specific metagenomic sequencing. We have sequenced, to our knowledge, the first western arctic metagenomes from the Bering Strait and the Chukchi Sea. We have addressed the long standing question: Is a metagenome required to accurately complete metaproteomics and assess the biological distribution of metabolic functions controlling nutrient acquisition in the ocean? Two different protein databases were constructed from 1) a site-specific metagenome and 2) subarctic/arctic groups available in NCBI's non-redundant database. Multiple proteomic search strategies were employed, against each individual database and against both databases combined, to determine the algorithm and approach that yielded the balance of high sensitivity and confident identification. Results yielded over 8200 confidently identified proteins. Our comparison of these results allows us to quantify the utility of investing resources in a metagenome versus using the constantly expanding and immediately available public databases for metaproteomic studies.
Engaging Students In The Science Of Climate Change
NASA Astrophysics Data System (ADS)
Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.
2013-12-01
Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest research on learning this curriculum provides numerous opportunities for students to use real data to make evidence-based explanations. During the session, we will discuss ways in which students can use scientific data related to climate change as evidence in their construction of scientific arguments.
NASA Astrophysics Data System (ADS)
Gillan, Amy Larrison
The demand for a more ocean literate citizenry is growing rapidly in response to an ocean increasingly in peril. Discovering how to include students far removed from the ocean in our teaching about the ocean is imperative to meeting that charge. The purpose of the present study was to investigate the extent to which middle school science teachers in landlocked states addressed important ocean literacy concepts and what they perceived to be barriers and motivators to their doing so. This descriptive study was based on a nation-wide survey of middle school science teachers and content analyses of their most commonly used science textbooks and their state science standards. Data was analyzed quantitatively. Results indicated that landlocked and coastal teachers are similar in terms of their infrequency of teaching about the ocean, yet a number of their perceptions of barriers and motivators to do so vary. The barrier most often mentioned was middle school state science standards, which characteristically ignore the ocean sciences. The results are discussed in terms of their impact on ocean literacy professional development providers, science textbook publishers, and state science standards revision committees.
Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy
NASA Astrophysics Data System (ADS)
Keener-Chavis, P.
2004-12-01
The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).
Discovery of Sound in the Sea (DOSITS) Website Development
2013-03-04
life affect ocean sound levels? • Science of Sound > Sounds in the Sea > How will ocean acidification affect ocean sound levels? • Science of Sound...Science of Sound > Sounds in the Sea > How does shipping affect ocean sound levels? • Science of Sound > Sounds in the Sea > How does marine
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Wren, J. L.; Ayau, J. F.
2013-12-01
Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and undergraduates from diverse backgrounds serve as teaching assistants. Pre-college and community college students can more easily relate to these young role models, which can make pursuing an ocean or earth science career seem more attainable. (7) Organizing career fairs and informal career mixers, to promote one-on-one interactions between students of all ages and diverse career professionals in a range of ocean, earth and environmental science occupations. (8) Forming relationships with minority-serving recruiting organizations and programs to ensure we reach our intended audience. Through such partnerships, we have reached students from underrepresented communities in Hawai';i and throughout the Pacific.
Ocean Science Video Challenge Aims to Improve Science Communication
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-10-01
Given today's enormous management and protection challenges related to the world's oceans, a new competition calls on ocean scientists to effectively communicate their research in videos that last up to 3 minutes. The Ocean 180 Video Challenge, named for the number of seconds in 3 minutes, aims to improve ocean science communication while providing high school and middle school teachers and students with new and interesting educational materials about current science topics.
Highlights of the 2014 Ocean Sciences Meeting
NASA Astrophysics Data System (ADS)
Sharp, Jonathan; Briscoe, Melbourne; Itsweire, Eric
2014-07-01
The 2014 Ocean Sciences Meeting was the 17th biennial gathering since the inception of ocean sciences meetings in 1982. A joint venture of the Association for the Sciences of Limnology and Oceanography (ASLO), The Oceanography Society (TOS), and the Ocean Sciences section of AGU, the meeting was by far the largest ever: More than 5600 attendees made this meeting more than 30% larger than any previous one. Forty percent of attendees live outside the United States, hailing from 55 countries, showing the importance of this meeting as an international gathering of ocean scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehr, J.P.; Mellon, M.T.; Zani, S.
1998-09-01
Oligotrophic oceanic waters of the central ocean gyres typically have extremely low dissolved fixed inorganic nitrogen concentrations, but few nitrogen-fixing microorganisms from the oceanic environment have been cultivated. Nitrogenase gene (nifH) sequences amplified directly from oceanic waters showed that the open ocean contains more diverse diazotrophic microbial populations and more diverse habitats for nitrogen fixers than previously observed by classical microbiological techniques. Nitrogenase genes derived from unicellular and filamentous cyanobacteria, as well as from the {alpha} and {gamma} subdivisions of the class Proteobacteria, were found in both the Atlantic and Pacific oceans. nifH sequences that cluster phylogenetically with sequences frommore » sulfate reducers or clostridia were found associated with planktonic crustaceans. Nitrogenase sequence types obtained from invertebrates represented phylotypes distinct from the phylotypes detected in the picoplankton size fraction. The results indicate that there are in the oceanic environment several distinct potentially nitrogen-fixing microbial assemblages that include representatives of diverse phylotypes.« less
78 FR 35984 - Proposal Review Panel for Ocean Sciences; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Ocean Sciences; Notice of Meeting In accordance with the Federal Advisory Committee Act Pub. L. 92- 463, as amended), the National Science Foundation announces the following meeting. Name: Proposal Review Panel for Ocean Sciences ( 10752). Date...
76 FR 38709 - Proposal Review Panel for Ocean Sciences; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Ocean Sciences; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Proposal Review Panel for Ocean Sciences ( 10752). Date...
Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification
Danielson, Kathryn I.; Tanner, Kimberly D.
2015-01-01
Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563
The Ocean Gene Atlas: exploring the biogeography of plankton genes online.
Villar, Emilie; Vannier, Thomas; Vernette, Caroline; Lescot, Magali; Cuenca, Miguelangel; Alexandre, Aurélien; Bachelerie, Paul; Rosnet, Thomas; Pelletier, Eric; Sunagawa, Shinichi; Hingamp, Pascal
2018-05-21
The Ocean Gene Atlas is a web service to explore the biogeography of genes from marine planktonic organisms. It allows users to query protein or nucleotide sequences against global ocean reference gene catalogs. With just one click, the abundance and location of target sequences are visualized on world maps as well as their taxonomic distribution. Interactive results panels allow for adjusting cutoffs for alignment quality and displaying the abundances of genes in the context of environmental features (temperature, nutrients, etc.) measured at the time of sampling. The ease of use enables non-bioinformaticians to explore quantitative and contextualized information on genes of interest in the global ocean ecosystem. Currently the Ocean Gene Atlas is deployed with (i) the Ocean Microbial Reference Gene Catalog (OM-RGC) comprising 40 million non-redundant mostly prokaryotic gene sequences associated with both Tara Oceans and Global Ocean Sampling (GOS) gene abundances and (ii) the Marine Atlas of Tara Ocean Unigenes (MATOU) composed of >116 million eukaryote unigenes. Additional datasets will be added upon availability of further marine environmental datasets that provide the required complement of sequence assemblies, raw reads and contextual environmental parameters. Ocean Gene Atlas is a freely-available web service at: http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.
International Search for Life in Ocean Worlds
NASA Astrophysics Data System (ADS)
Sherwood, B.
2015-12-01
We now know that our solar system contains diverse "ocean worlds." One has abundant surface water and life; another had significant surface water in the distant past and has drawn significant exploration attention; several contain large amounts of water beneath ice shells; and several others evince unexpected, diverse transient or dynamic water-related processes. In this century, humanity will explore these worlds, searching for life beyond Earth and seeking thereby to understand the limits of habitability. Of our ocean worlds, Enceladus presents a unique combination of attributes: large reservoir of subsurface water already known to contain salts, organics, and silica nanoparticles originating from hydrothermal activity; and able to be sampled via a plume predictably expressed into space. These special circumstances immediately tag Enceladus as a key destination for potential missions to search for evidence of non-Earth life, and lead to a range of potential mission concepts: for orbital reconnaissance; in situ and returned-sample analysis of plume and surface-fallback material; and direct sulcus, vent, cavern, and ocean exploration. Each mission type can address a unique set of science questions, and would require a unique set of capabilities, most of which are not yet developed. Both the questions and the capability developments can be sequenced into a programmatic precedence network, the realization of which requires international cooperation. Three factors make this true: exploring remote oceans autonomously will cost a lot; the Outer Space Treaty governs planetary protection; and discovery of non-Earth life is an epochal human imperative. Results of current planning will be presented in AGU session 8599: how ocean-world science questions and capability requirements can be parsed into programmatically acceptable mission increments; how one mission proposed into the Discovery program in 2015 would take the next step on this path; the Decadal calendar of decision points and program options that will constrain ocean-world exploration through mid-century; and findings of the COSPAR Planetary Protection Panel colloquium for ocean-world exploration held in September 2015.
ERIC Educational Resources Information Center
Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq
2014-01-01
We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…
Building Ocean Learning Communities: A COSEE Science and Education Partnership
NASA Astrophysics Data System (ADS)
Robigou, V.; Bullerdick, S.; Anderson, A.
2007-12-01
The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups including research scientists, formal and informal educators, business representatives, and non-profit groups to identify ocean-related problems, and develop solutions to share with their own communities. COSEE OLC practices and studies the skills of developing these collaborations.
NASA Astrophysics Data System (ADS)
Crane, N. L.; Wasser, A.; Weiss, T.; Sullivan, M.; Jones, A.
2004-12-01
Educators, policymakers, employers and other stakeholders in ocean and other geo-science fields face the continuing challenge of a lack of diversity in these fields. A particular challenge for educators and geo-science professionals promoting ocean sciences is to create programs that have broad access, including access for underrepresented youth. Experiential learning in environments such as intensive multi-day science and summer camps can be a critical captivator and motivator for young people. Our data suggest that youth, especially underrepresented youth, may benefit from exposure to the oceans and ocean science through intensive, sustained (eg more than just an afternoon), hands-on, science-based experiences. Data from the more than 570 youth who have participated in Camp SEA Lab's academically based experiential ocean science camp and summer programs provide compelling evidence for the importance of such programs in motivating young people. We have paid special attention to factors that might play a role in recruiting and retaining these young people in ocean science fields. Over 50% of program attendees were underrepresented youth and on scholarship, which gives us a closer look at the impact of such programs on youth who would otherwise not have the opportunity to participate. Both cognitive (knowledge) and affective (personal growth and motivation) indicators were assessed through surveys and questionnaires. Major themes drawn from the data for knowledge growth and personal growth in Camp SEA Lab youth attendees will be presented. These will be placed into the larger context of critical factors that enhance recruitment and retention in the geo-science pipeline. Successful strategies and challenges for involving families and broadening access to specialized programs such as Camp SEA Lab will also be discussed.
A transcriptome resource for the Antarctic pteropod Limacina helicina antarctica.
Johnson, Kevin M; Hofmann, Gretchen E
2016-08-01
The pteropod Limacina helicina antarctica is a dominant member of the zooplankton assemblage in the Antarctic marine ecosystem, and is part of a relatively simple food web in nearshore marine Antarctic waters. As a shelled pteropod, Limacina has been suggested as a candidate sentinel organism for the impacts of ocean acidification, due to the potential for shell dissolution in undersaturated waters. In this study, our goal was to develop a transcriptomic resource for Limacina that would support mechanistic studies to explore the physiological response of Limacina to abiotic stressors such as ocean acidification and ocean warming. To this end, RNA sequencing libraries were prepared from Limacina that had been exposed to a range of pH levels and an elevated temperature to maximize the diversity of expressed genes. RNA sequencing (RNA-seq) was conducted on an Illumina NextSeq500 which produced 339,000,000 150bp paired-end reads. The de novo transcriptome was produced using Trinity and annotation of the assembled transcriptome resulted in the identification of 81,229 transcripts in 137 KEGG pathways. This RNA-seq effort resulted in a transcriptome for the Antarctic pteropod, Limacina helicina antarctica, that is a major resource for an international marine science research community studying these pelagic molluscs in a global change context. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pelz, M.; Hoeberechts, M.; Hale, C.; McLean, M. A.
2017-12-01
This presentation describes Ocean Networks Canada's (ONC) Youth Science Ambassador Program. The Youth Science Ambassadors are a growing network of youth in Canadian coastal communities whose role is to connect ocean science, ONC data, and Indigenous knowledge. By directly employing Indigenous youth in communities in which ONC operates monitoring equipment, ONC aims to encourage wider participation and interest in ocean science and exploration. Further, the Youth Science Ambassadors act as role models and mentors to other local youth by highlighting connections between Indigenous and local knowledge and current marine science efforts. Ocean Networks Canada, an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories as well as community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. Youth Science Ambassadors are part of the Learning and Engagement team whose role includes engaging Indigenous communities and schools in ocean science through ONC's K-12 Ocean Sense education program. All of the data collected by ONC are freely available over the Internet for non-profit use, including disaster planning, community-based decision making, and education. The Youth Science Ambassadors support collaboration with Indigenous communities and schools by facilitating educational programming, encouraging participation in ocean data collection and analysis, and fostering interest in ocean science. In addition, the Youth Science Ambassadors support community collaboration in decision-making for instrument deployment locations and identify ways in which ONC can help to address any areas of concern raised by the community. This presentation will share the successes and challenges of the Youth Science Ambassador program in engaging both rural and urban Indigenous communities. We will share activities and experiences, discuss how we have adapted to meet the needs of each community, and outline ideas we have for the future development of the program.
Strategic Map for Achieving Enceladus Ocean Exploration in Our Time
NASA Astrophysics Data System (ADS)
Sherwood, B.
2015-12-01
At AGU 2014, the author presented a decomposition and sequencing of science questions and technical capabilities that define viable programmatic pathways to enable sample return and advanced in situ exploration of the Enceladan ocean, consistent with NASA mission-opportunity constraints. Elaborated and refined in 2015 via JpGU, AbSciCon, IAC, and COSPAR Water, this plan is now specific: discrete and integrated analyses and coordination actions that, if acted on by the community over the next 45 months, could result in Enceladus ocean exploration appearing in the next Planetary Decadal Survey's mission priorities, issued in 2021. At AGU 2015, a product-based, outcome-measurable, stepwise milestone plan is presented to catalyze the next level of community discussion. Topics covered by the action plan include: hypothesis-driven science questions; mission cost as a function of mission capability; mission selectability as a function of programmatic constraints and evaluation process; exploration technologies as a function of funding and schedule; international consensus on forward and backward planetary protection requirements and solutions for exploring worlds with astrobiologically significant liquid water; and strategic balance among major NASA planetary science initiatives. Key Decadal-runup milestones are analyzed with respect to stakeholders, success criteria, and - critically - calendar and precedence. These results then inform a multi-year action plan to generate, vet, and socialize throughout the community a set of technically and fiscally viable mission concepts, respectively enabled by an achievable technology development roadmap also detailed in the presentation. This can begin to align advocate actions toward a broad community goal of exploring the Enceladan ocean. Without such coordination, which must reach fruition by Sep 2019, the probability that the next Decadal could explicitly prioritize mission objectives for Enceladus ocean exploration - as one of the top Flagship or as New Frontiers priorities - will be low. Missing the 2023-2032 Decadal window would in turn force such missions beyond the career horizon even of today's graduate students.
ERIC Educational Resources Information Center
Halversen, Catherine; Tran, Lynn Uyen
2010-01-01
Communicating Ocean Sciences to Informal Audiences (COSIA) is a college course that creates and develops partnerships between science educators in informal science education institutions, such as museums, science centers and aquariums, and ocean scientists in colleges and universities. For the course, a scientist and educator team-teach…
Genomic Insights into Geothermal Spring Community Members using a 16S Agnostic Single-Cell Approach
NASA Astrophysics Data System (ADS)
Bowers, R. M.
2016-12-01
INSTUTIONS (ALL): DOE Joint Genome Institute, Walnut Creek, CA USA. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME USA. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada. ABSTRACT BODY: With recent advances in DNA sequencing, rapid and affordable screening of single-cell genomes has become a reality. Single-cell sequencing is a multi-step process that takes advantage of any number of single-cell sorting techniques, whole genome amplification (WGA), and 16S rRNA gene based PCR screening to identify the microbes of interest prior to shotgun sequencing. However, the 16S PCR based screening step is costly and may lead to unanticipated losses of microbial diversity, as cells that do not produce a clean 16S amplicon are typically omitted from downstream shotgun sequencing. While many of the sorted cells that fail the 16S PCR step likely originate from poor quality amplified DNA, some of the cells with good WGA kinetics may instead represent bacteria or archaea with 16S genes that fail to amplify due to primer mis-matches or the presence of intervening sequences. Using cell material from Dewar Creek, a hot spring in British Columbia, we sequenced all sorted cells with good WGA kinetics irrespective of their 16S amplification success. We show that this high-throughput approach to single-cell sequencing (i) can reduce the overall cost of single-cell genome production, and (ii). may lead to the discovery of previously unknown branches on the microbial tree of life.
Is Privately Funded Research on the Rise in Ocean Science?
NASA Astrophysics Data System (ADS)
Spring, M.; Cooksey, S. W.; Orcutt, J. A.; Ramberg, S. E.; Jankowski, J. E.; Mengelt, C.
2014-12-01
While federal funding for oceanography is leveling off or declining, private sector funding from industry and philanthropy appears to be on the rise. The Ocean Studies Board of the National Research Council is discussing these changes in the ocean science funding landscape. In 2014 the Board convened experts to better understand the long term public and private funding trends for the ocean sciences and the implications of such trends for the ocean science enterprise and the nation. Specific topics of discussion included: (1) the current scope of philanthropic and industry funding for the ocean sciences; (2) the long-term trends in the funding balance between federal and other sources of funding; (3) the priorities and goals for private funders; and (4) the characteristics of various modes of engagement for private funders. Although public funding remains the dominant source of research funding, it is unclear how far or fast that balance might shift in the future nor what a shifting balance may mean. There has been no comprehensive assessment of the magnitude and impact of privately-funded science, particularly the ocean sciences, as public funding sources decline. Nevertheless, the existing data can shed some light on these questions. We will present available data on long-term trends in federal and other sources of funding for science (focusing on ocean science) and report on preliminary findings from a panel discussion with key private foundations and industry funders.
The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...
Undergraduate Research Experience in Ocean/Marine Science (URE-OMS) with African Student Component
2011-01-01
The Undergraduate Research Experience in Ocean/Marine Science program supports active participation by underrepresented undergraduate students in remote sensing and Ocean/Marine Science research training activities. The program is based on a model for undergraduate research programs supported by the National Science Foundation . The
Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification
ERIC Educational Resources Information Center
Danielson, Kathryn I.; Tanner, Kimberly D.
2015-01-01
Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…
Amicarelli, Giulia; Adlerstein, Daniel; Shehi, Erlet; Wang, Fengfei; Makrigiorgos, G Mike
2006-10-01
Genotyping methods that reveal single-nucleotide differences are useful for a wide range of applications. We used digestion of 3-way DNA junctions in a novel technology, OneCutEventAmplificatioN (OCEAN) that allows sequence-specific signal generation and amplification. We combined OCEAN with peptide-nucleic-acid (PNA)-based variant enrichment to detect and simultaneously genotype v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) codon 12 sequence variants in human tissue specimens. We analyzed KRAS codon 12 sequence variants in 106 lung cancer surgical specimens. We conducted a PNA-PCR reaction that suppresses wild-type KRAS amplification and genotyped the product with a set of OCEAN reactions carried out in fluorescence microplate format. The isothermal OCEAN assay enabled a 3-way DNA junction to form between the specific target nucleic acid, a fluorescently labeled "amplifier", and an "anchor". The amplifier-anchor contact contains the recognition site for a restriction enzyme. Digestion produces a cleaved amplifier and generation of a fluorescent signal. The cleaved amplifier dissociates from the 3-way DNA junction, allowing a new amplifier to bind and propagate the reaction. The system detected and genotyped KRAS sequence variants down to approximately 0.3% variant-to-wild-type alleles. PNA-PCR/OCEAN had a concordance rate with PNA-PCR/sequencing of 93% to 98%, depending on the exact implementation. Concordance rate with restriction endonuclease-mediated selective-PCR/sequencing was 89%. OCEAN is a practical and low-cost novel technology for sequence-specific signal generation. Reliable analysis of KRAS sequence alterations in human specimens circumvents the requirement for sequencing. Application is expected in genotyping KRAS codon 12 sequence variants in surgical specimens or in bodily fluids, as well as single-base variations and sequence alterations in other genes.
National Ocean Sciences Bowl in 2013: A National Competition for High School Ocean Science Education
2013-09-30
The school even has begun to list oceanography as an extracurricular activity in its advertisements! I have seen firsthand how NOSB has raised an...event at the NOSB Finals; • Develop a career booklet to help guide students selecting a career related to ocean sciences; and • Actively encourage...students from diverse communities to participate in NOSB activities . APPROACH The National Ocean Sciences Bowl® (NOSB ®) is a nationally
Science on Sunday: The Prospective Graduate Student Workshop in Ocean Sciences
NASA Astrophysics Data System (ADS)
Jacox, M. G.; Powers, M. L.
2010-12-01
Here, we present the design and implementation of the Prospective Graduate Student Workshop (PGSW) in Ocean Sciences, a new teaching venue developed within the University of California's Center for Adaptive Optics (CfAO). The one-day workshop introduced undergraduate and community college students interested in pursuing graduate school to the field of ocean sciences through a series of inquiry-based activities. Throughout the activity design process, two important themes were emphasized; 1) physical, chemical, and biological properties are tightly coupled in the ocean; 2) ocean sciences is a highly inter-disciplinary field that includes scientists from diverse backgrounds. With these ideas in mind the workshop was split into two activities, morning and afternoon, each of which concentrated on teaching certain process skills thought to be useful for prospective graduate students. The morning covered density and mixing in the ocean and the afternoon was focused on phytoplankton and how they experience the ocean as a low Reynolds number environment. Attendees were instructed to complete pre- and post-activity questionnaires, which enabled assessment of individual components and the workshop as a whole. Response was very positive, students gained knowledge about ocean sciences, scientific inquiry, and graduate school in general, and most importantly had fun voluntarily participating in science on a Sunday.
Science Cafes: Engaging graduate students one drink at a time!
NASA Astrophysics Data System (ADS)
Schiebel, H.; Chen, R. F.
2016-02-01
Science Cafes are events that take place in casual settings (pubs, coffeehouses) that are typically open to a broad audience and feature engaging conversations with scientists about particular topics. Science Cafes are a grassroots movement and exist on an international scale with a common goal of engaging broad audiences in informal scientific discussions. Graduate Students for Ocean Education (GrOE), funded by COSEE OCEAN (Center for Ocean Science Education Excellence—Ocean Communities in Science Education And social Networks), has taken this model and honed in on a specific audience: graduate students. Through monthly Science Cafes with varying themes (ocean acidification to remote sensing), GrOE has engaged over two hundred graduate students throughout New England. While attendance at the Science Cafes is consistent, the presence and engagement of graduate students on the GrOE Facebook page is now growing, a trend attributed to having face-to-face contact with scientists and other graduate students.
NASA Astrophysics Data System (ADS)
Holloway, A. E.
2016-02-01
The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.
NASA Astrophysics Data System (ADS)
Zielinski, Sarah
A draft plan setting out priorities for U.S. ocean research generally was lauded for its clear and well-articulated view in a recent report from a committee of the U.S. National Research Council (NRC) of the US. National Academies. However, the committee advised that the plan would benefit from a bold vision for the future of ocean science research, additional details, and a reorganization to include cross-cutting research.The draft "Charting the Course for Ocean Science in the United States: Research Priorities for the Next Decade" was made available for public comment in September 2006 by the U.S. National Science and Technology Council's Joint Subcommittee on Ocean Science and Technology.
Kou, Qi; Chen, Jun; Li, Xinzheng; He, Lisheng; Wang, Yong
2017-07-01
Several specimens of the giant deep-sea isopod genus Bathynomus were collected by a deep-sea lander at a depth of 898 m near Hainan Island in the northern South China Sea. After careful examination, this material and the specimens collected from the Gulf of Aden, north-western Indian Ocean, previously reported as Bathynomus sp., were identified to be the same as a new species to the genus. Bathynomus jamesi sp. nov. can be distinguished from the congeners by: the distal margin of pleotelson with 11 or 13 short straight spines and central spine not bifid; uropodal endopod and exopod with distolateral corner slightly pronounced; clypeus with lateral margins concave; and antennal flagellum extending when extended posteriorly reaches the pereonite 3. In addition, Bathynomus jamesi sp. nov. is also supported by molecular analyses based on mitochondrial COI and 16S rRNA gene sequences. The distribution range of the new species includes the western Pacific and north-western Indian Ocean. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Ocean FEST: Families Exploring Science Together
ERIC Educational Resources Information Center
Bruno, Barbara C.; Wiener, Carlie; Kimura, Arthur; Kimura, Rene
2011-01-01
This project engages elementary school students, parents, teachers, and administrators in ocean-themed family science nights based on a proven model. Our key goals are to: (1) educate participants about ocean and earth science issues that are relevant to their communities; and (2) inspire more underrepresented students, including Native Hawaiians,…
NASA Astrophysics Data System (ADS)
Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.
2016-02-01
The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young students and scientists, and encouraged interest of underrepresented minorities in STEM education.
Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification.
Danielson, Kathryn I; Tanner, Kimberly D
2015-01-01
Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. © 2015 K. I. Danielson and K. D. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Cohen, E.; Quan, T. M.
2012-12-01
The mass extinction event at the Cretaceous-Paleogene (K-Pg) boundary was the result of a bolide impact, and is popularly known for the extinction of the dinosaurs, but is also one of the largest Paleogene mass extinctions identified. In addition, it was followed by a period of drastic changes in ecological conditions, including a complete alteration of the global carbon cycle; the root cause of this change is still debated. Little information is known regarding changes in the nitrogen cycle during these periods of mass extinction and recovery. Given the importance of the nitrogen cycle to primary production and its relationship to the redox state of the local environment, determining changes in the nitrogen cycle will provide important information as to the processes of global mass extinction and the subsequent recovery. Three lessons for students' grade 6-12 were created to support the content surrounding: National Science Education Content Standards: Standard A: Science as Inquiry Standard D: Earth and Space Science Ocean Literacy Essential Principles: 3. The ocean is a major influence on weather and climate 7. The ocean is largely unexplored In the Nature of Science activity, students sequence a series of photographs to illustrate the scientific process of one scientist, Dr. Tracy Quan, of Oklahoma State University as she uses deep sea core data obtained by the JOIDES Resolution research vessel to investigate the climate during the mass extinction that took place ~ 65 million years ago. By reading the information contained on each card and studying the pictures, students learn that science is a dynamic, non-linear, and creative process. Students do not have to create the exact order Dr. Quan uses as her scientific process, but they need to justify their reasoning for placing the pictures in the order they did. The activity begins with a photo of the JOIDES Resolution and ends during a presentation at a scientific conference. There are 21 other photo cards showing the conduction of the science on the ship and shore.
OceanGLOBE: an Outdoor Research and Environmental Education Program for K-12 Students
NASA Astrophysics Data System (ADS)
Perry, R. B.; Hamner, W. M.
2006-12-01
OceanGLOBE is an outdoor environmental research and education program for upper elementary, middle and high school students, supplemented by online instructional materials that are available without charge to any educator. OceanGLOBE was piloted in 1995 with support from a National Science Foundation Teacher Enhancement project, "Leadership in Marine Science" (award no.ESI-9454413 to UCLA). Continuing support by a second NSF Teacher Enhancement project (award no. ESI-9819424 to UCLA) and by COSEE-West (NSF awards OCE-215506 to UCLA and OCE-0215497 to USC) has enabled OceanGLOBE to expand to a growing number of schools and to provide an increasingly robust collection of marine science instructional materials on its website, http://www.msc.ucla.edu/oceanglobe/ OceanGLOBE provides a mechanism for students to conduct inquiry-based, hands-on marine science research, providing experiences that anchor the national and state science content standards learned in the classroom. Students regularly collect environmental and biological data from a beach site over an extended period of time. In the classroom they organize, graph and analyze their data, which can lead to a variety of student-created science products. Beach research is supported by instructional marine science materials on the OceanGLOBE website. These online materials also can be used in the classroom independent of the field component. Annotated PowerPoint slide shows explain research protocols and provide marine science content. Field guides and photographs of marine organisms (with emphasis on the Southern California Bight) and a growing collection of classroom investigations (applicable to any ocean location) support the science content presented in the beach research program and slide shows. In summary, OceanGLOBE is a comprehensive learning package grounded in hands-on, outdoor marine science research project in which students are the principal investigators. By doing scientific work repetitively over an extended time period students learn about how science is done as much as they learn science content.
NASA Astrophysics Data System (ADS)
Gingras, A.; Knowlton, C. W.; Scowcroft, G. A.; Babb, I.; Coleman, D.; Morin, H.
2016-02-01
The Marine Technology for Teachers and Students (MaTTS) Project implements a year-long continuum of activities beginning with educators reading and reporting on peer-reviewed publications, followed by face-to-face, hands-on weekend workshops and virtual professional development activities. Teams of teacher and student leaders then participate in an intensive, residential Summer Institute (SI) that emphasizes hands-on building of marine related technologies and exposure to career pathways through direct interactions with ocean scientists and engineers. During the school year, teachers integrate ocean science technology and data into their classrooms and participate, along with colleagues and students from their schools, in science cafes and webinars. Student leaders transfer knowledge gained by engaging their district's middle school students in ocean science activities and technologies by serving as hosts for live broadcasts that connect classrooms with ocean scientists and engineers though the Inner Space Center, a national ocean science telecommunications hub. Communication technologies bridge formal and informal learning environments, allowing MaTTS participants to interact with their fellow cohort members, scientists, and engineers both during and outside of school. Evaluation results indicate that for teachers both the weekend workshops and SI were most effective in preparing them to integrate ocean science and technology in STEM curricula and increase their ocean science content knowledge and leadership characteristics. For students the SI and the middle school interactions supported gains in knowledge, awareness, leadership skills and interest in ocean sciences and technologies, and related STEM careers. In particular, the connections made by working directly with scientists have positively impacted both student and teacher leaders. This presentation will provide an overview of the MaTTS model and early evaluation results.
Priorities in Ocean Science Study
ERIC Educational Resources Information Center
Awkerman, Gary L.; And Others
1974-01-01
Reports on a national survey conducted to determine priorities in ocean science study as identified by oceanographers. The priority determinations gave equal weight to relevance and academic importance of ocean problems. (Author/GS)
Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng (Editor)
1995-01-01
This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.
VIIRS On-Orbit Calibration for Ocean Color Data Processing
NASA Technical Reports Server (NTRS)
Eplee, Robert E., Jr.; Turpie, Kevin R.; Fireman, Gwyn F.; Meister, Gerhard; Stone, Thomas C.; Patt, Frederick S.; Franz, Bryan; Bailey, Sean W.; Robinson, Wayne D.; McClain, Charles R.
2012-01-01
The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.
Sulfur oxidation genes in diverse deep-sea viruses.
Anantharaman, Karthik; Duhaime, Melissa B; Breier, John A; Wendt, Kathleen A; Toner, Brandy M; Dick, Gregory J
2014-05-16
Viruses are the most abundant biological entities in the oceans and a pervasive cause of mortality of microorganisms that drive biogeochemical cycles. Although the ecological and evolutionary effects of viruses on marine phototrophs are well recognized, little is known about their impact on ubiquitous marine lithotrophs. Here, we report 18 genome sequences of double-stranded DNA viruses that putatively infect widespread sulfur-oxidizing bacteria. Fifteen of these viral genomes contain auxiliary metabolic genes for the α and γ subunits of reverse dissimilatory sulfite reductase (rdsr). This enzyme oxidizes elemental sulfur, which is abundant in the hydrothermal plumes studied here. Our findings implicate viruses as a key agent in the sulfur cycle and as a reservoir of genetic diversity for bacterial enzymes that underpin chemosynthesis in the deep oceans. Copyright © 2014, American Association for the Advancement of Science.
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters
2006-01-01
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters
2007-09-30
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of
Visions of our Planet's Atmosphere, Land & Oceans
NASA Technical Reports Server (NTRS)
Hasler, Arthur F.
2002-01-01
The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to South Africa, Cape Town and Johannesburg using NASA Terra MODIS data, Landsat data and 1m IKONOS "Spy Satellite" data. Zoom in to any place South Africa using Earth Viewer 3D from Keyhole Inc. and Landsat data at 30 m resolution. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we present science to the public. See dust storms and flooding in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the north and south polar ice packs and with icebergs on the coasts of Greenland and off the coast of Antarctica. Spectacular new visualizations of the global land, atmosphere & oceans are shown. Listen to the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite. The presentation will be made using the latest HDTV and video projection technology that is now done from a laptop computer through an entirely digital path.
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Starr, David (Technical Monitor)
2002-01-01
Spectacular Visualizations of our Blue Marble The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC). See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nicola Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite.
Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002
NASA Technical Reports Server (NTRS)
Haser, Fritz; Starr, David (Technical Monitor)
2002-01-01
The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.
A Shifting Baseline: Higher Degrees and Career Options for Ocean Scientists
NASA Astrophysics Data System (ADS)
Yoder, J. A.; Briscoe, M. G.; Glickson, D.; Roberts, S.; Spinrad, R. W.
2016-02-01
As for other fields of science, a Ph.D. degree in the ocean sciences no longer guarantees an academic position. In fact, recent studies show that while most earning a Ph.D. in the ocean sciences today may start in academia as a postdoc, an undetermined number of postdocs may not move into university faculty positions or comparable positions at basic research institutions. Although the data are few, some believe that most of those now earning Ph.D. degrees in ocean science are eventually employed outside of academia. Changes to the career path for those entering ocean science graduate programs today is both a challenge and an opportunity for graduate programs. Some graduates of course do continue in academia. For those students who are determined to follow that path, graduate programs need to prepare them for that choice. On the other hand, graduate programs also have an obligation to provide students with the information they need to make educated career decisions - there are interesting career choices other than academia for those earning a Ph.D. or finishing with a terminal M.S. degree. Furthermore, graduate programs need to encourage students to think hard about their career expectations early in their graduate program to ensure they acquire the skills needed to keep career options open. This talk will briefly review some of the recent studies related to the career paths of those who recently acquired a Ph.D. in ocean sciences and other fields; describe possible career options for those who enter ocean science graduate programs; encourage more attention on the career possibilities of a terminal ocean science M.S. degree perhaps combined with another higher degree in a different field; and discuss the skills a graduate student can acquire that increase the breadth of career path opportunities.
Focus: knowing the ocean: a role for the history of science.
Rozwadowski, Helen M
2014-06-01
While most historians have treated the sea as a surface or a void, the history of science is well positioned to draw the ocean itself into history. The contributors to this Focus section build on the modest existing tradition of history of oceanography and extend that tradition to demonstrate both the insights to be gained by studying oceans historically and the critical role that the history of science should play in future environmental history of the ocean.
Ocean Drilling Program: Science Operator
: www.odplegacy.org Integrated Ocean Drilling Program (IODP): www.iodp.org IODP U.S. Implementing Organization (IODP -USIO): www.iodp-usio.org The Ocean Drilling Program (ODP) was funded by the U.S. National Science Foundation and 22 international partners (JOIDES) to conduct basic research into the history of the ocean
Ocean science research is key for a sustainable future.
Visbeck, Martin
2018-02-15
Human activity has already affected all parts of the ocean, with pollution increasing and fish-stocks plummeting. The UN's recent announcement of a Decade of Ocean Science provides a glimmer of hope, but scientists will need to work closely with decision-makers and society at large to get the ocean back on track.
NASA Astrophysics Data System (ADS)
Williamson, V. A.; Pyrtle, A. J.
2004-12-01
How did the 2003 Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Ocean Sciences Program customize evaluative methodology and instruments to align with program goals and processes? How is data captured to document cognitive and affective impact? How are words and numbers utilized to accurately illustrate programmatic outcomes? How is compliance with implicit and explicit funding regulations demonstrated? The 2003 MS PHD'S in Ocean Sciences Program case study provides insightful responses to each of these questions. MS PHD'S was developed by and for underrepresented minorities to facilitate increased and sustained participation in Earth system science. Key components of this initiative include development of a community of scholars sustained by face-to-face and virtual mentoring partnerships; establishment of networking activities between and among undergraduate, graduate, postgraduate students, scientists, faculty, professional organization representatives, and federal program officers; and provision of forums to address real world issues as identified by each constituent group. The evaluative case study of the 2003 MS PHD'S in Ocean Sciences Program consists of an analysis of four data sets. Each data set was aligned to document progress in the achievement of the following program goals: Goal 1: The MS PHD'S Ocean Sciences Program will successfully market, recruit, select, and engage underrepresented student and non-student participants with interest/ involvement in Ocean Sciences; Goal 2: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by quantitative analysis of user-feedback; Goal 3: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by qualitative analysis of user-feedback, and; Goal 4: The MS PHD'S Ocean Sciences Program will develop a constituent base adequate to demonstrate evidence of interest, value, need and sustainability in its vision, mission, goals and activities. In addition to the documentation of evaluative process, the case study also provides insight on the establishment of mutually supportive principal investigator and evaluator partnerships as necessary foundations for building effective teams. The study addresses frequently asked questions (FAQ's) on the formation and sustenance of partnerships among visionaries and evaluators and the impact of this partnership on the achievement of program outcomes.
Communicating Ocean Sciences to Informal Audiences (COSIA): Interim Evaluation Report
ERIC Educational Resources Information Center
St. John, Mark; Phillips, Michelle; Smith, Anita; Castori, Pam
2009-01-01
Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of seven long-term three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the…
Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report
ERIC Educational Resources Information Center
Phillips, Michelle; St. John, Mark
2010-01-01
Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…
NASA Astrophysics Data System (ADS)
Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Baker, A.; Weber, M. E.; Woodward, J.; van Ommen, T. D.; Moy, A. D.; Davies, S. M.; Bird, M. I.; Winter, K.; Munksgaard, N.; Menviel, L.; Rootes, C.; Vohra, J.; Rivera, A.; Cooper, A.
2016-12-01
Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to identify ice-climate feedbacks that could improve future projections1,2. Whilst the sequence of events during this period are reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records2, making it difficult to assess relationships between Antarctic ice-sheet dynamics, climate change and sea-level rise3-5. Here we present results from a highly-resolved `horizontal ice core'6,7 from the Weddell Sea Embayment, which records millennial-scale ice-sheet dynamics across this extensive sector of Antarctica. Counterintuitively, we find ice-sheet surface drawdown of 600 m across the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago)5, with stabilisation during the subsequent millennia of atmospheric warming. Earth system and ice-sheet modelling highlights that this response was likely sustained by strong ocean-ice feedbacks4,8; however, the drivers remain uncertain. Given the coincidence of the ice-sheet changes recorded with marked shifts in atmospheric circulation9,10,11we suggest that millennial-scale Antarctic ice-sheet behaviour was initiated and sustained by global atmospheric teleconnections across the LGT. This has important ramifications ice-sheet stability under contemporary climate change, with changing atmospheric and oceanic circulation patterns. 1 Collins, M. et al. in Climate Change 2013: The Physical Science Basis. 2 Weber, M. E. et al. Nature 510, 134-138, (2014). 3 Weaver, A. J., et al., Science 299, 1709-1713, (2003). 4 Golledge, N. R. et al. Nat Commun 5, (2014). 5 Pedro, J. B. et al. Nature Geosci9. 51-55 (2015). 6 Turney, C. S. M. et al. Journal of Quaternary Science 28, 697-704 (2013). 7 Winter, K. et al. Geophys. Res. Lett.43. 5. 2019-2026 (2016). 8 Menviel, L., A. et al., Quaternary Science Reviews 30, 1155-1172 (2011). 9 Hogg, A. et al. Scientific Reports 6(2016). 10 Hughen, K. A., et al., Radiocarbon 46, 1161-1187 (2004). 11 Anderson, R. F. et al. Science 323, 1443-1448, doi:10.1126/science.1167441 (2009).
NASA Astrophysics Data System (ADS)
Roberts, S.; Glickson, D.; Mengelt, C.; Forrest, S.; Waddell, K.
2012-12-01
The National Research Council is a private, nonprofit organization chartered by Congress in 1916 as an expansion of the U.S. National Academy of Sciences. Its mission is to improve the use of science in government decision making and public policy, increase public understanding, and promote the acquisition and dissemination of knowledge in matters involving science, engineering, technology, and health. Within the National Research Council, the Ocean Studies Board (OSB) mission is to explore the science, policies, and infrastructure needed to understand, manage, and conserve coastal and marine environments and resources. OSB undertakes studies and workshops on emerging scientific and policy issues at the request of federal agencies, Congress, and others; provides program reviews and guidance; and facilitates communication on oceanographic issues among different sectors. OSB also serves as the U.S. National Committee to the international, nongovernmental Scientific Committee on Oceanic Research (SCOR). OSB has produced reports on a wide range of topics of interest to researchers and educators, the federal government, the non-profit sector, and industry. Recent reports have focused on ecosystem services in the Gulf of Mexico after the Deepwater Horizon oil spill, sea level rise on the U.S. west coast, scientific ocean drilling needs and accomplishments, requirements for sustained ocean color measurements, critical infrastructure for ocean research, tsunami warning and preparedness, ocean acidification, and marine and hydrokinetic power resource assessments. Studies that are currently underway include responding to oil spills in the Arctic, evaluating the effectiveness of fishery stock rebuilding plans, and reviewing the National Ocean Acidification Research Plan. OSB plays an important role in helping create policy decisions and disseminating important information regarding various aspects of ocean science.
ERIC Educational Resources Information Center
Eidietis, L.; Jewkes, A. M.
2011-01-01
This study examined teachers' dispositions toward and choices to teach ocean science using a survey design. A sample of 89 in-service K-8 teachers in the United States reported their (1) feelings of preparedness to teach about ocean literacy and (2) attitudes toward ocean science on three measures. Results of multiple linear regression showed that…
The Waves and Tsunamis Project
NASA Astrophysics Data System (ADS)
Lavin, M.; Strohschneider, D.; Maichle, R.; Frashure, K.; Micozzi, N.; Stephen, R. A.
2005-12-01
The goals of the Waves and Tsunamis Project are "to make waves real" to middle school students and to teach them some fundamental concepts of waves. The curriculum was designed in Fall 2004 (before the Sumatra Tsunami) and involves an ocean scientist classroom visit, hands-on demonstrations, and an interactive website designed to explain ocean wave properties. The website is called 'The Plymouth Wave Lab' and it has had more than 40,000 hits since the Sumatra event. One inexpensive and interesting demonstration is based on a string composed of alternating elastic bands and paper clips. Washers can be added to the paper clips to construct strings with varying mass. For example, a tapered string with mass decreasing in the wave propagation direction is an analog of tsunami waves propagating from deep to shallow water. The Waves and Tsunamis Project evolved as a collaborative effort involving an ocean science researcher and middle school science teachers. It was carried out through the direction of the Centers of Ocean Science Education Excellence New England (COSEE-NE) Ocean Science Education Institute (OSEI). COSEE-NE is involved in developing models for sustainable involvement of ocean science researchers in K-12 education ( http://necosee.net ). This work is supported by the National Science Foundation.
77 FR 65176 - Science Advisory Board (SAB)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-25
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Science Advisory Board (SAB... Science Advisory Board (SAB) was established by a Decision Memorandum dated September 25, 1997, and is the... Oceans and Atmosphere on strategies for research, education, and application of science to operations and...
Ocean FEST (Families Exploring Science Together)
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Wiener, C. S.
2009-12-01
Ocean FEST (Families Exploring Science Together) exposes families to cutting-edge ocean science research and technology in a fun, engaging way. Research has shown that family involvement in science education adds significant value to the experience. Our overarching goal is to attract underrepresented students (including Native Hawaiians, Pacific Islanders and girls) to geoscience careers. A second goal is to communicate to diverse audiences that geoscience is directly relevant and applicable to their lives, and critical in solving challenges related to global climate change. Ocean FEST engages elementary school students, parents, teachers, and administrators in family science nights based on a proven model developed by Art and Rene Kimura of the Hawaii Space Grant Consortium. Our content focuses on the role of the oceans in climate change, and is based on the transformative research of the NSF Center for Microbial Oceanography: Research and Education (C-MORE) and the Hawaii Institute of Marine Biology (HIMB). Through Ocean FEST, underrepresented students and their parents and teachers learn about new knowledge being generated at Hawaii’s world-renowned ocean research institutes. In the process, they learn about fundamental geoscience concepts and career opportunities. This project is aligned with C-MORE’s goal of increasing the number of underrepresented students pursuing careers in the ocean and earth sciences, and related disciplines. Following a successful round of pilot events at elementary schools on Oahu, funding was obtained through NSF Opportunities for Enhancing Diversity in the Geosciences to implement a three-year program at minority-serving elementary schools in Hawaii. Deliverables include 20 Ocean FEST events per year (each preceded by teacher professional development training), a standards-based program that will be disseminated locally and nationally, three workshops to train educators in program delivery, and an Ocean FEST science kit. In addition, we are currently conducting a series of pilot events at the middle school level at underserved schools at neighbor islands, funded through the Hawaii Innovation Initiative (Act 111). Themes addressed include community outreach, capacity building, teacher preparation, and use of technology.
Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary
2015-01-01
The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.
National Ocean Sciences Bowl in 2014: A National Competition for High School Ocean Science Education
2015-03-31
the 2014 National Finals Competition. The Finals were held May 1-4, 2014 in Seattle, WA with a theme of ocean acidification . A longitudinal study and...Washington (UW) in Seattle, WA on May 1-4, 2014. The theme for the 2014 Finals Competition was ocean acidification , exploring the progressive increase in...and environmental and societal effects of ocean acidification . They became more aware of ocean acidification’s potential to disrupt ecosystems in a
The spaces in between: science, ocean, empire.
Reidy, Michael S; Rozwadowski, Helen M
2014-06-01
Historians of science have richly documented the interconnections between science and empire in the nineteenth century. These studies primarily begin with Britain, Europe, or the United States at the center and have focused almost entirely on lands far off in the periphery--India or Australia, for instance. The spaces in between have received scant attention. Because use of the ocean in this period was infused with the doctrine of the freedom of the seas, the ocean was constructed as a space amenable to control by any nation that could master its surface and use its resources effectively. Oceans transformed in the mid-nineteenth century from highway to destination, becoming--among other things--the focus of sustained scientific interest for the first time in history. Use of the sea rested on reliable knowledge of the ocean. Particularly significant were the graphical representations of knowledge that could be passed from scientists to publishers to captains or other agents of empire. This process also motivated early government patronage of science and crystallized scientists' rising authority in society. The advance of science, the creation of empire, and the construction of the ocean were mutually sustaining.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
...: January 20, 2010. Mark E. Brown, Chief Financial Officer, Office of Oceanic and Atmospheric Research... decide to entertain: (1) What are NOAA's unique and important scientific roles in addressing ocean health...
Jiang, Xuexia; Jiao, Nianzhi
2016-09-01
Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.
NASA Astrophysics Data System (ADS)
Fine, Rana A.; Walker, Dan
In June 1996, the National Research Council (NRC) formed the Committee on Major U.S. Oceanographic Research Programs to foster coordination among the large programs (e.g., World Ocean Circulation Experiment, Ocean Drilling Program, Ridge Interdisciplinary Global Experiment, and others) and examine their role in ocean research. In particular, the committee is charged with (1) enhancing information sharing and the coordinated implementation of the research plans of the major ongoing and future programs; (2) assisting the federal agencies and ocean sciences community in identifying gaps, as well as appropriate followon activities to existing programs; (3) making recommendations on how future major ocean programs should be planned, structured and organized; and (4) evaluating the impact of major ocean programs on the understanding of the oceans, development of research facilities, education, and collegiality in the academic community. The activity was initiated at the request of the National Science Foundation (NSF) Division of Ocean Sciences, is overseen by the NRC's Ocean Studies Board (OSB), and is funded by both NSF and the Office of Naval Research.
NASA Astrophysics Data System (ADS)
Lodico, J. M.; Greely, T.; Lodge, A.; Pyrtle, A.; Ivey, S.; Madeiros, A.; Saleem, S.
2005-12-01
The University of South Florida, College of Marine Science Oceans: GK-12 Teaching Fellowship Program is successfully enriching science learning via the oceans. Funded by the National Science Foundation, the program provides a unique opportunity among scientists and K-12 teachers to interact with the intention of bringing ocean science concepts and research to the classroom environment enhance the experience of learning and doing science, and to promote `citizen scientists' for the 21st century. The success of the program relies heavily on the extensive summer training program where graduate students develop teaching skills, create inquiry based science activities for a summer Oceanography Camp for Girls program and build a relationship with their mentor teacher. For the last year and a half, two graduate students from the College of Marine Science have worked in cooperation with teachers from the Pinellas county School District, Southside Fundamental Middle School. Successful lesson plans brought into a 6th grade Earth Science classroom include Weather and climate: Global warming, The Geologic timescale: It's all about time, Density: Layering liquids, and Erosion processes: What moves water and sediment. The school and students have benefited greatly from the program experiencing hands-on inquiry based science and the establishment of an after school science club providing opportunities for students to work on their science fair projects and pursuit other science interests. Students are provided scoring rubrics and their progress is creatively assessed through KWL worksheets, concept maps, surveys, oral one on one and classroom discussions and writing samples. The year culminated with a series of hands on lessons at the nearby beach, where students demonstrated their mastery of skills through practical application. Benefits to the graduate student include improved communication of current science research to a diverse audience, a better understanding of the perspective of teachers and their content knowledge, and experience working with children and youth. The GK-12 teacher mentor benefits include a resource of inquiry based ocean science activities and increased knowledge of current scientific ocean research. The K-12 students gain an opportunity to be engage with young passionate scientists, learn about current ocean science research, and experience inquiry based science activities relating to concepts already being taught in their classroom. This program benefits all involved including the graduate students, the teachers, the K-12 students and the community.
The Science Behind the NASA/NOAA Electronic Theater 2002
NASA Technical Reports Server (NTRS)
Hasler, A. Fritz; Starr, David (Technical Monitor)
2002-01-01
Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after shots of lower Manhattan and the Pentagon after the September 11 disaster as well as shots of Afghanistan from the Space Imaging IKONOS as well as debris plume images from Terra MODIS and SPOT Image. Shown by the SGI-Octane Graphics-Supercomputer are visualizations of hurricanes Michelle 2001, Floyd, Mitch, Fran and Linda. Our visualizations of these storms have been featured on the covers of the National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA's large collection of High Definition TV (HDTV) visualizations clips New visualizations of a Los Alamos global ocean model, and high-resolution results of a NASA/JPL Atlantic ocean basin model showing currents, and salinity features will be shown. El Nino/La Nina effects on sea surface temperature and sea surface height of the Pacific Ocean will also be shown. The SST simulations will be compared with GOES Gulf Stream animations and ocean productivity observations. Tours will be given of the entire Earth's land surface at 500 m resolution from recently composited Terra MODIS data, Visualizations will be shown from the Earth Science Etheater 2001 recently presented over the last years in New Zealand, Johannesburg, Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York City, Pasadena, UCAR/Boulder, and Penn State University. The presentation will use a 2-CPU SGI/CRAY Octane Super Graphics workstation with 4 GB RAM and terabyte disk array at 2048 x 768 resolution plus multimedia laptop with three high resolution projectors. Visualizations will also be featured from museum exhibits and presentations including: the Smithsonian Air & Space Museum in Washington, IMAX theater at the Maryland Science Center in Baltimore, the James Lovell Discovery World Science museum in Milwaukee, the American Museum of Natural History (NYC) Hayden Planetarium IMAX theater, etc. The Etheater is sponsored by NASA, NOAA and the American Meteorological Society. This presentation is brought to you by the University of Utah College of Mines and Earth Sciences and, the Utah Museum of Natural History.
NASA Astrophysics Data System (ADS)
Keil, R. G.; Bell, P. L.; Bittner, M. S.; Robigou, V.; Sider, K.
2005-12-01
The College of Ocean and Fishery Sciences and the College of Education at the University of Washington, the Seattle Aquarium, and the California Maritime Academy formed a partnership to establish a Center for Ocean Sciences Education Excellence (COSEE) labeled "Ocean Learning Communities." The COSEE-OLC will join the national network of NSF-funded centers that provide a catalytic environment in which partnerships between ocean researchers and educators flourish. The COSEE network contributes to the national advancement of ocean science education by sharing high-quality K-12 or informal education programs, best practices and methodologies, and offering exemplary courses through the network and at national professional meetings. Building on the successes and lessons of the existing COSEE centers, the COSEE-OLC will foster collaborations among the oceanography research community, the science of learning community, informal and formal educators, the general public, and the maritime industry in the Northwest region and the West coast. The concept for this partnership is based on reaching out to traditionally underserved populations (from the businesses that use the sea or for which economic success depends on the oceans to the united native tribes), listening to their concerns and needs and how these can be addressed within the context of ocean-based research. The challenges of integrating education and outreach with scientific research programs are addressed by the center's main catalytic activity to create Ocean Learning Communities. These communities will be gatherings of traditionally disparate stakeholders including scientists, educators, representatives of businesses with a connection to the oceans, and citizens who derive economic or recreational sustenance from the oceans. The center's principal goal is to, through time and structured learning activities, support various communities 1) to develop a common language and 2) to make a commitment to creating collaborations that will improve ocean research and public awareness at the regional scale. Researchers in the science of learning will evaluate and study the successes and challenges of these regional approaches to better understand the development and sustainability of productive partnerships and to develop learning models to share and apply at the national level.
The Artistic Oceanographer Program
ERIC Educational Resources Information Center
Haley, Sheean T.; Dyhrman, Sonya T.
2009-01-01
The Artistic Oceanographer Program (AOP) was designed to engage elementary school students in ocean sciences and to illustrate basic fifth-grade science and art standards with ocean-based examples. The program combines short science lessons, hands-on observational science, and art, and focuses on phytoplankton, the tiny marine organisms that form…
Ocean Sciences as a Foundation for Curriculum Design
NASA Astrophysics Data System (ADS)
Rakhmenkulova, I.; Gorshkalev, S.; Odriozola, A.; Dominguez, A.; Greely, T.; Pyrtle, A.; Keiper, T.; Watkins, J.
2005-05-01
The GK-12 OCEANS program is an initiative of the National Science Foundation (NSF). This program provides marine science graduate students within the College of Marine Science, USF, weekly interactions with K-12 teachers and students in Pinellas County schools with the overall purpose of enhancing the quality and effectiveness of science teaching. The GK-12 OCEANS program provides hands-on and minds-on ocean science learning inquiries. Campbell Park Elementary is a Marine Science attractor school designed to provide a child-centered approach to learning that integrates marine science activities into the daily curriculum while meeting the required state education standards. In 2003-04 a GK-12 Fellow helped third and fourth grade teachers design new teaching curricula that integrated ocean sciences. The current 2004-04 Fellow and teachers are implementing the new curriculum, assessing feasibility and impact on students' learning. One characteristic of the new curriculum includes several field trips to local natural settings during which students have the opportunity to collect data the way scientists do, and use real scientific instruments and approaches. The information collected is then used in different activities within the classroom. These activities encourage the students to use inquiry as the basis of their learning experience, in which the application of scientific thinking and methods are keys. This process also requires the students to apply skills from other disciplines such as writing, reading, and math. Towards the end of the school year the students have the opportunity to highlight their accomplishments through two projects, 1) a hall display of different ocean zones, which includes habitat characteristics and species adaptations, and 2) a marine science experiment presented at the school science fair. The results and accomplishments from the implementation of these new curricula will be presented at the conference.
NASA Astrophysics Data System (ADS)
Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.
2007-12-01
Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting informal institutions. The following COSIA partners have taught the course: Hampton University - Virginia Aquarium; Oregon State University - Hatfield Marine Science Visitor's Center; Rutgers University - Liberty Science Center; University of California, Berkeley - Lawrence Hall of Science; University of Southern California - Aquarium of the Pacific; and Scripps Institution of Oceanography - Birch Aquarium. Communicating Ocean Sciences has also been taught at Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), University of Washington, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.
NASA Astrophysics Data System (ADS)
McLean, M. A.; Brown, J.; Hoeberechts, M.
2016-02-01
Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. In 2014, ONC pioneered an innovative educational program, Ocean Sense: Local observations, global connections, which introduces students and teachers to the technologies installed on community observatories. The program introduces middle and high school students to research methods in biology, oceanography and ocean engineering through hands-on activities. Ocean Sense includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. The connection to place and local relevance of the program is further enhanced through an emphasis on Indigenous and place-based knowledge. ONC is working with coastal Indigenous communities in a collaborative process to include local knowledge, culture, and language in Ocean Sense materials. For this process to meaningful and culturally appropriate, ONC is relying on the guidance and oversight of Indigenous community educators and knowledge holders. Ocean Sense also includes opportunities for Indigenous youth and teachers in remote communities to connect in person, including an annual Ocean Science Symposium and professional development events for teachers. Building a program which embraces multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking Indigenous knowledge and place-based knowledge to ocean science.
Public affairs events at Ocean Sciences Meeting
NASA Astrophysics Data System (ADS)
Uhlenbrock, Kristan
2012-02-01
AGU public affairs will be cohosting two special events at Ocean Sciences 2012 that offer scientists opportunities to expand their communication, policy, and media experience. Join the conversations that highlight two important topics to connect science to society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Researchers at the National Oceanic and Atmospheric Administration developed Science on a Sphere to help explain Earth system science to people of all ages. Animated images, ranging from space to ocean temperatures and more, can be seen on this interactive sphere.
Ocean Science in the Classroom
ERIC Educational Resources Information Center
Lambert, Julie; Sundburg, Suzanne Smith
2006-01-01
In one form or another, ocean or marine science courses have existed for decades. Although these courses can effectively integrate the sciences in ways that stimulate student curiosity and interest, they have not yet received formal recognition for the role they could play in improving science education for secondary students. In this article, the…
The Aquarius Ocean Salinity Mission High Stability L-band Radiometer
NASA Technical Reports Server (NTRS)
Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia;
2006-01-01
The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.
75 FR 44770 - Science Advisory Board, Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
...: July 23, 2010. Mark E. Brown, Chief Financial Officer, Office of Oceanic and Atmospheric Research..., Notice of Public Meeting AGENCY: Office of Oceanic and Atmospheric Research (OAR), National Oceanic and... on strategies for research, education, and application of science to operations and information...
Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation
NASA Astrophysics Data System (ADS)
Brasseur, L. H.; Banahan, S.; Cowles, T.
2009-05-01
The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.
Assessment of NPP VIIRS Ocean Color Data Products: Hope and Risk
NASA Technical Reports Server (NTRS)
Turpie, Kevin R.; Meister, Gerhard; Eplee, Gene; Barnes, Robert A.; Franz, Bryan; Patt, Frederick S.; Robinson, Wayne d.; McClain, Charles R.
2010-01-01
For several years, the NASA/Goddard Space Flight Center (GSFC) NPP VIIRS Ocean Science Team (VOST) provided substantial scientific input to the NPP project regarding the use of Visible Infrared Imaging Radiometer Suite (VIIRS) to create science quality ocean color data products. This work has culminated into an assessment of the NPP project and the VIIRS instrument's capability to produce science quality Ocean Color data products. The VOST concluded that many characteristics were similar to earlier instruments, including SeaWiFS or MODIS Aqua. Though instrument performance and calibration risks do exist, it was concluded that programmatic and algorithm issues dominate concerns. Keywords: NPP, VIIRS, Ocean Color, satellite remote sensing, climate data record.
Communicating Ocean Science at the Lower-Division Level
NASA Astrophysics Data System (ADS)
Coopersmith, A.
2011-12-01
Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their activities and presentations with the advice of local practitioners who share their experiences for incorporating both Hawaiian ways of learning and environmental practices.
The NASA Decadal Survey Aerosol, Cloud, Ecosystems Mission
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Bontempi, Paula; Maring, Hal
2011-01-01
In 2007, the National Academy of Sciences delivered a Decadal Survey (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond) for NASA, NOAA, and USGS, which is a prioritization of future satellite Earth observations. The recommendations included 15 missions (13 for NASA, two for NOAA), which were prioritized into three groups or tiers. One of the second tier missions is the Aerosol, Cloud, (ocean) Ecosystems (ACE) mission, which focuses on climate forcing, cloud and aerosol properties and interactions, and ocean ecology, carbon cycle science, and fluxes. The baseline instruments recommended for ACE are a cloud radar, an aerosol/cloud lidar, an aerosol/cloud polarimeter, and an ocean radiometer. The instrumental heritage for these measurements are derived from the Cloudsat, CALIPSO, Glory, SeaWiFS and Aqua (MODIS) missions. In 2008, NASA HQ, lead by Hal Maring and Paula Bontempi, organized an interdisciplinary science working group to help formulate the ACE mission by refining the science objectives and approaches, identifying measurement (satellite and field) and mission (e.g., orbit, data processing) requirements, technology requirements, and mission costs. Originally, the disciplines included the cloud, aerosol, and ocean biogeochemistry communities. Subsequently, an ocean-aerosol interaction science working group was formed to ensure the mission addresses the broadest range of science questions possible given the baseline measurements, The ACE mission is a unique opportunity for ocean scientists to work closely with the aerosol and cloud communities. The science working groups are collaborating on science objectives and are defining joint field studies and modeling activities. The presentation will outline the present status of the ACE mission, the science questions each discipline has defined, the measurement requirements identified to date, the current ACE schedule, and future opportunities for broader community participation.
Onboard Decision Making For a New Class of AUV Science
NASA Astrophysics Data System (ADS)
Rajan, K.; McGann, C.; Py, F.; Thomas, H.; Henthorn, R.; McEwen, R.
2007-12-01
Autonomous Underwater Vehicles (AUVs) are an increasingly important tool for oceanographic research. They routinely and cost effectively sample the water column at depths far beyond what humans are capable of visiting. However, control of these platforms has relied on fixed sequences for execution of pre-planned actions limiting their effectiveness for measuring dynamic and episodic ocean phenomenon. At the Monterey Bay Aquarium Research Institute (MBARI), we are developing an advanced Artificial Intelligence (AI) based control system to enable our AUV's to dynamically adapt to the environment by deliberating in-situ about mission plans while tracking onboard resource consumption, dealing with plan failures by allowing dynamic re-planning and being cognizant of vehicle health and safety in the course of executing science plans. Existing behavior-based approaches require an operator to script plans a priori while anticipating where and how the vehicle will transect the water column. While adequate for current needs to do routine pre-defined transects, it has limited flexibility in dealing with opportunistic science needs, is unable to deal with uncertainty in the oceanic environment and puts undue burden on the mission operators to manage complex interactions between behaviors. Our approach, informed by a decades worth of experience in intelligent control of NASA spacecraft, uses a constraint-based representation to manage mission goals, react to exogenous or endogenous failure conditions, respond to sensory feedback by using AI-based search techniques to sort thru a space of likely responses and picking one which is satisfies the completion of mission goals. The system encapsulates the long-standing notion of a sense-deliberate-act cycle at the heart of a control loop and reflects the goal-oriented nature of control allowing operators to specify abstract mission goals rather than detailed command sequences. To date we have tested T- REX (the Teleo-Reactive Executive) on an MBARI Dorado 21" vehicle with a range of scientific instruments for water-column surveys in Monterey Bay. Results to date are available at http://www.mbari.org/autonomy/TREX/index.htm which are very encouraging. Our year-end goals revolve on mapping unstructured phenomenon such as Ocean Fronts and Thin Layers, which we expect will lead to work in adaptive observatory control and autonomous exploration of hydrothermal vents.
New Community Education Program on Oceans and Global Climate Change: Results from Our Pilot Year
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Wiener, C.
2010-12-01
Ocean FEST (Families Exploring Science Together) engages elementary school students and their parents and teachers in hands-on science. Through this evening program, we educate participants about ocean and earth science issues that are relevant to their local communities. In the process, we hope to inspire more underrepresented students, including Native Hawaiians, Pacific Islanders and girls, to pursue careers in the ocean and earth sciences. Hawaii and the Pacific Islands will be disproportionately affected by the impacts of global climate change, including rising sea levels, coastal erosion, coral reef degradation and ocean acidification. It is therefore critically important to train ocean and earth scientists within these communities. This two-hour program explores ocean properties and timely environmental topics through six hands-on science activities. Activities are designed so students can see how globally important issues (e.g., climate change and ocean acidification) have local effects (e.g., sea level rise, coastal erosion, coral bleaching) which are particularly relevant to island communities. The Ocean FEST program ends with a career component, drawing parallel between the program activities and the activities done by "real scientists" in their jobs. The take-home message is that we are all scientists, we do science every day, and we can choose to do this as a career. Ocean FEST just completed our pilot year. During the 2009-2010 academic year, we conducted 20 events, including 16 formal events held at elementary schools and 4 informal outreach events. Evaluation data were collected at all formal events. Formative feedback from adult participants (parents, teachers, administrators and volunteers) was solicited through written questionnaires. Students were invited to respond to a survey of five questions both before and after the program to see if there were any changes in content knowledge and career attitudes. In our presentation, we will present our evaluation results from the first year and discuss how our program has been informed by this feedback.
NASA Astrophysics Data System (ADS)
Gamage, K. R.
2016-02-01
An effective approach to introduce 2YC students to ocean science research is through propagating inquiry-based experiences into existing geosciences courses using a series of research activities. The proposed activity is based on scientific ocean drilling, where students begin their research experience (pre-field activity) by reading articles from scientific journals and analyzing and interpreting core and log data on a specific research topic. At the end of the pre-field activity, students will visit the Gulf Coast Repository to examine actual cores, smear slides, thin sections etc. After the visit, students will integrate findings from their pre-field and field activities to produce a term paper. These simple activities allow students to experience in the iterative process of scientific research, illuminates how scientists approach ocean science, and can be the hook to get students interested in pursuing ocean science as a career.
Ocean images in music compositions and folksongs
NASA Astrophysics Data System (ADS)
Liu, C. M.
2017-12-01
In general, ocean study usually ranges from physical oceanography, chemical oceanography, marine biology, marine geology, and other related fields. In addition to pure scientific fields, ocean phenomenon influence not only human mood but also the shaping of local cultures. In this paper, we present some ocean images and concepts appeared in music compositions and folksongs to show the mixing, influence and interaction between them. This may give a novel way not for science teachers but also music teachers to deliver the knowledge of ocean science in classes.
Complete Genome Sequence of a Putative New Bacterial Strain, I507, Isolated from the Indian Ocean
Wang, Shu-yan; Wei, Jia-qiang
2018-01-01
ABSTRACT Bacterial strain I507 was isolated from the central Indian Ocean and may be a potential novel species, according to the 16S rRNA gene sequence. Here, we present its complete genome sequence and expect that it will provide researchers with valuable information to further understand its classification and function in the future. PMID:29674539
Atmospheric Nitrogen Inputs to the Ocean and their Impact
NASA Astrophysics Data System (ADS)
Jickells, Tim D.
2016-04-01
Atmospheric Nitrogen Inputs to the Ocean and their Impact T Jickells (1), K. Altieri (2), D. Capone (3), E. Buitenhuis (1), R. Duce (4), F. Dentener (5), K. Fennel (6), J. Galloway (7), M. Kanakidou (8), J. LaRoche (9), K. Lee (10), P. Liss (1), J. Middleburg (11), K. Moore (12), S. Nickovic (13), G. Okin (14), A. Oschilies (15), J. Prospero (16), M. Sarin (17), S. Seitzinger (18), J. Scharples (19), P. Suntharalingram (1), M. Uematsu (20), L. Zamora (21) Atmospheric nitrogen inputs to the ocean have been identified as an important source of nitrogen to the oceans which has increased greatly as a result of human activity. The significance of atmospheric inputs for ocean biogeochemistry were evaluated in a seminal paper by Duce et al., 2008 (Science 320, 893-7). In this presentation we will update the Duce et al 2008 study estimating the impact of atmospheric deposition on the oceans. We will summarise the latest model estimates of total atmospheric nitrogen deposition to the ocean, their chemical form (nitrate, ammonium and organic nitrogen) and spatial distribution from the TM4 model. The model estimates are somewhat smaller than the Duce et al estimate, but with similar spatial distributions. We will compare these flux estimates with a new estimate of the impact of fluvial nitrogen inputs on the open ocean (Sharples submitted) which estimates some transfer of fluvial nitrogen to the open ocean, particularly at low latitudes, compared to the complete trapping of fluvial inputs on the continental shelf assumed by Duce et al. We will then estimate the impact of atmospheric deposition on ocean primary productivity and N2O emissions from the oceans using the PlankTOM10 model. The impacts of atmospheric deposition we estimate on ocean productivity here are smaller than those predicted by Duce et al impacts, consistent with the smaller atmospheric deposition estimates. However, the atmospheric input is still larger than the estimated fluvial inputs to the open ocean, even with the increased transport across shelf to the open ocean from low latitude fluvial systems identified. 1. School of Environmental Science University of East Anglia UK 2. Energy Research Centre University of Cape Town SA 3. Department of Biological Sciences University of S California USA 4. Departments of Oceanography and Atmospheric Sciences Texas A&M University USA 5. JRC Ispra Italy 6. Department of Oceanography Dalhousie University Canada 7. Department of Environmental Sciences U. Virginia USA 8. Department of Chemistry, University of Crete, Greece 9. Department of Biology Dalhousie University, Canada 10. School of Environmental Science and Engineering Pohang University S Korea. 11. Faculty of Geosciences University of Utrecht Netherlands 12. Department of Earth System Science University of California at Irvine USA 13. WMO Geneva 14. Department of Geography University of California USA 15. GEOMAR Keil Germany 16. Department of Atmospheric Sciences, University of Miami, USA 17. Geosciences Division at Physical Research Laboratory, Ahmedabad, India 18. Department of Environmental Studies, University of Victoria, Canada 19. School of Environmentak Sciences, U Liverpool UK 20. Center for International Collaboration, Atmosphere and Ocean Research Institute, The University of Tokyo Japan 21. Oak Ridge Associated Universities USA
NASA Astrophysics Data System (ADS)
Hicks, T.
2004-12-01
The School of Ocean and Earth Sciences and Technology (SOEST) at the University of Hawaii at Manoa is home to twelve diverse research institutes, programs and academic departments that focus on a wide range of earth and planetary sciences. SOEST's main outreach goals at the K-12 level are to increase the awareness of Hawaii's schoolchildren regarding earth, ocean, and space science, and to inspire them to consider a career in science. Education and public outreach efforts in SOEST include a variety of programs that engage students and the public in formal as well as informal educational settings, such as our biennial Open House, expedition web sites, Hawaii Ocean Science Bowl, museum exhibits, and programs with local schools. Some of the projects that allow for scientist involvement in E/PO include visiting local classrooms, volunteering in our outreach programs, submitting lessons and media files to our educational database of outreach materials relating to earth and space science research in Hawaii, developing E/PO materials to supplement research grants, and working with local museum staff as science experts.
Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students
NASA Astrophysics Data System (ADS)
Young, Victoria Jewel
Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The purpose of this study was to describe the impact of a marine science summer enrichment camp located in the eastern region of the United States on the ocean literacy skills of middle school students who participated in this camp. Weimar's learner centered teaching approach and the definition and principles of ocean literacy formed the conceptual framework. The central research question focused on how a marine science summer enrichment camp impacted the ocean literacy skills of middle grade students. A single case study research design was used with ten participants including 3 camp teachers, four students, and 3 parents of Grade 6-8 students who participated this camp in 2016. Data were collected from multiple sources including individual interviews of camp teachers, students, and parents, as well as camp documents and archival records. A constant comparative method was used to construct categories, determine emergent themes and discrepant data. Results indicated that the marine science camp positively impacted the ocean literacy skills of middle school students through an emphasis on a learner centered instructional approach. The findings of this study may provide a positive social impact by demonstrating active science literacy instructional strategies for teachers which can motivate students to continue studies in science and science related fields.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
.../index.html . Dated: September 3, 2013. Jason Donaldson, Chief Financial Officer/Chief Administrative Officer, Office of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration... Act Science Program's roles within the context of NOAA's ocean missions and policies. They should be...
75 FR 38079 - National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... Board (SAB) AGENCY: Office of Oceanic and Atmospheric Research (OAR), National Oceanic and Atmospheric... Atmosphere on strategies for research, education, and application of science to operations and information... Deep Water Horizon Oil Spill in the Gulf of Mexico; (2) Grand Scientific Challenges: Results From the...
Promoting Ocean Literacy through American Meteorological Society Programs
NASA Astrophysics Data System (ADS)
Passow, Michael; Abshire, Wendy; Weinbeck, Robert; Geer, Ira; Mills, Elizabeth
2017-04-01
American Meteorological Society Education Programs provide course materials, online and physical resources, educator instruction, and specialized training in ocean, weather, and climate sciences (https://www.ametsoc.org/ams/index.cfm/education-careers/education-program/k-12-teachers/). Ocean Science literacy efforts are supported through the Maury Project, DataStreme Ocean, and AMS Ocean Studies. The Maury Project is a summer professional development program held at the US Naval Academy designed to enhance effective teaching of the science, technology, engineering, and mathematics of oceanography. DataStreme Ocean is a semester-long course offered twice a year to participants nationwide. Created and sustained with major support from NOAA, DS Ocean explores key concepts in marine geology, physical and chemical oceanography, marine biology, and climate change. It utilizes electronically-transmitted text readings, investigations and current environmental data. AMS Ocean Studies provides complete packages for undergraduate courses. These include online textbooks, investigations manuals, RealTime Ocean Portal (course website), and course management system-compatible files. It can be offered in traditional lecture/laboratory, completely online, and hybrid learning environments. Assistance from AMS staff and other course users is available.
How can we make Science Education and Careers more attractive for Young People?
NASA Astrophysics Data System (ADS)
Knickmeier, K.; Kruse, K.
2016-02-01
The Kiel Science Factory (Kieler Forschungswerkstatt) is a school and teaching laboratory, which breaches the gap between school education and university research. Since opening in October 2012, 3.430 pupils worked at the Kiel Science Factory, and joined the different programs (ocean:lab, nano:lab, geo:lab), the numbers of visitors are increasing. The combination of experts in research and experts in education is very effective to attract young peoplés interest for a scientific career, to communicate science and to increase interest of teachers in current science. The biggest lab is the ocean:lab, it is jointly offered by Kiel University, Cluster of Excellence "Future Ocean" and Leibniz Institute for Science and Mathematics Education at Kiel University (IPN). The ocean:lab is addressing to school classes from grade 3 to 13, and it is strongly involved in pre-service teacher education. Appropriate to their respective level of study, pupils and students get fascinating insights into marine sciences and the working methods of real scientists. Furthermore teacher trainings and summer schools are producing an enthusiasm, which affects as well teachers as their students. The visiting pupils are mainly from Northern Germany, but also from e.g. Austria, Poland and Japan. Topics are the ocean as an ecosystem and how it is affected by anthropogenic impacts. The program offers an integrated investigation of the ecosystem "ocean" (from Plankton to marine mammals) with an interdisciplinary focus on biological aspects and abiotic factors of the habitat. In addition to pollution of the ocean through plastic waste and noise, the effects of climate change and eutrophication plays a role in discussions and tasks. New formats (e.g. an international Citizen Science Project and Expeditionary Learning) are carried out. The developed material is part of expedition boxes, which can be borrowed for project work in schools and science centers. http://www.forschungs-werkstatt.de/
NASA Astrophysics Data System (ADS)
McDonnell, J.; Duncan, R. G.; Glenn, S.
2007-12-01
Current reforms in science education place increasing demands on teachers and students to engage not only with scientific content but also to develop an understanding of the nature of scientific inquiry (AAAS, 1993; NRC, 1996). Teachers are expected to engage students with authentic scientific practices including posing questions, conducting observations, analyzing data, developing explanations and arguing about them using evidence. This charge is challenging for many reasons most notably the difficulty in obtaining meaningful data about complex scientific phenomena that can be used to address relevant scientific questions that are interesting and understandable to K-12 students. We believe that ocean sciences provide an excellent context for fostering scientific inquiry in the classroom. Of particular interest are the technological and scientific advances of Ocean Observing Systems, which allow scientists to continuously interact with instruments, facilities, and other scientists to explore the earth-ocean- atmosphere system remotely. Oceanographers are making long-term measurements that can also resolve episodic oceanic processes on a wide range of spatial and temporal scales crucial to resolving scientific questions related to Earth's climate, geodynamics, and marine ecosystems. The availability of a diverse array of large data sets that are easily accessible provides a unique opportunity to develop inquiry-based learning environments in which students can explore many important questions that reflect current research trends in ocean sciences. In addition, due to the interdisciplinary nature of the ocean sciences these data sets can be used to examine ocean phenomena from a chemical, physical, or biological perspective; making them particularly useful for science teaching across the disciplines. In this session we will describe some of the efforts of the Centers for Ocean Sciences Education Excellence- Mid Atlantic (COSEE MA) to develop instructional materials, in which students use real-time-data (RTD) to generate explanations about important ocean phenomena. We will discuss our use of an Instructional Design Model (Gauge 1987) to: 1) assess our audience need, 2) develop an effective collaborative design team, 3) develop and evaluate the instructional product, and 4) implement professional development designed to familiarize teachers with oceans sciences as a context for scientific inquiry.
Real-Time Ocean Data in the Classroom
ERIC Educational Resources Information Center
Murray, Laura; Gibson, Deidre; Ward, Angela
2008-01-01
To apply students' savvy internet skills in the science classroom--as well as capture their interest in science and investigation, and provide opportunities for authentic research--introduce them to real-time data from ocean-observing systems. Students can use data from these ocean-observing systems to discover the winds and waves from storms or…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
..., the academic community and the private sector in providing IOOS environmental information, products... Subcommittee on Ocean Science and Technology--Interagency Ocean Observation Committee Public-Private Use Policy... a 60-day public comment period for the Public-Private Use Policy mandated by the Integrated Coastal...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Ocean Council; Development of Strategic Action Plans for the National Policy for the Stewardship of the Ocean, Our Coasts, and the Great Lakes ACTION... the Great Lakes. The National Policy provides a comprehensive approach, based on science and...
Science Enabled by Ocean Observatory Acoustics
NASA Astrophysics Data System (ADS)
Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.
2004-12-01
Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.
1984-11-01
1,746 N. RAL HAZARDS AND RESEARCH NEEDS IN COASTAL AND OCEAN I ENEERING SUMMA..W NATIONAL SCIENCE FOUNDATION WA ;NG ON OC 1NAVE F AL NOV 84 FG02 N N...and Research Needs in Coastal and Ocean Engineering Summary and Recommendations to the National Science Foundation and the Office of Naval Research A T...Recommendations to the National Science Foundation and the Office of Naval Research by the Ad Hoc Committee for the Civil and Environmental Engineering
Ocean Tracks: Investigating Marine Migrations in a Changing Ocean
NASA Astrophysics Data System (ADS)
Krumhansl, R.; Kochevar, R. E.; Aluwihare, L.; Bardar, E. W.; Hirsch, L.; Hoyle, C.; Krumhansl, K.; Louie, J.; Madura, J.; Mueller-Northcott, J.; Peach, C. L.; Trujillo, A.; Winney, B.; Zetterlind, V.; Busey, A.
2015-12-01
The availability of scientific data sets online opens up exciting new opportunities to raise students' understanding of the worlds' oceans and the potential impacts of climate change. The Oceans of Data Institute at EDC; Stanford University; and the Scripps Institution of Oceanography have been collaborating, with the support of three National Science Foundation grants over the past 5 years, to bring marine science data sets into high school and undergraduate classrooms. These efforts have culminated in the development of a web-based student interface to data from the Tagging of Pacific Predators (TOPP) program, NOAA's Global Drifter Program, and NASA Earth-orbiting satellites through a student-friendly Web interface, customized data analysis tools, multimedia supports, and course modules. Ocean Tracks (http://oceantracks.org), which incorporates design principles based on a broad range of research findings in fields such as cognitive science, visual design, mathematics education and learning science, focuses on optimizing students' opportunities to focus their cognitive resources on viewing and comparing data to test hypotheses, while minimizing the time spent on downloading, filtering and creating displays. Ocean Tracks allows students to display the tracks of elephant seals, white sharks, Bluefin tuna, albatross, and drifting buoys along with sea surface temperature, chlorophyll-A, bathymetry, ocean currents, and human impacts overlays. A graphing tool allows students to dynamically display parameters associated with the track such as speed, deepest daily dive and track tortuosity (curviness). These interface features allow students to engage in investigations that mirror those currently being conducted by scientists to understand the broad-scale effects of changes in climate and other human activities on ocean ecosystems. In addition to supporting the teaching of the Ocean and Climate Literacy principles, high school curriculum modules facilitate the teaching of content, practices and cross-cutting concepts in the Framework for K-12 Science Education. Undergraduate modules currently under development support the teaching of content related to marine productivity, ocean circulation and upwelling, animal-environment interactions, ocean ecosystems, and human impacts.
Ocean Instruments Web Site for Undergraduate, Secondary and Informal Education
NASA Astrophysics Data System (ADS)
Farrington, J. W.; Nevala, A.; Dolby, L. A.
2004-12-01
An Ocean Instruments web site has been developed that makes available information about ocean sampling and measurement instruments and platforms. The site features text, pictures, diagrams and background information written or edited by experts in ocean science and engineering and contains links to glossaries and multimedia technologies including video streaming, audio packages, and searchable databases. The site was developed after advisory meetings with selected professors teaching undergraduate classes who responded to the question, what could Woods Hole Oceanographic Institution supply to enhance undergraduate education in ocean sciences, life sciences, and geosciences? Prototypes were developed and tested with students, potential users, and potential contributors. The site is hosted by WHOI. The initial five instruments featured were provided by four WHOI scientists and engineers and by one Sea Education Association faculty member. The site is now open to contributions from scientists and engineers worldwide. The site will not advertise or promote the use of individual ocean instruments.
Suomi NPP VIIRS Ocean Color Data Product Early Mission Assessment
NASA Technical Reports Server (NTRS)
Turpie, Kevin R.; Robinson, Wayne D.; Franz, Bryan A.; Eplee, Robert E., Jr.; Meister, Gerhard; Fireman, Gwyn F.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2013-01-01
Following the launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polarorbiting Partnership (NPP) spacecraft, the NASA NPP VIIRS Ocean Science Team (VOST) began an evaluation of ocean color data products to determine whether they could continue the existing NASA ocean color climate data record (CDR). The VOST developed an independent evaluation product based on NASA algorithms with a reprocessing capability. Here we present a preliminary assessment of both the operational ocean color data products and the NASA evaluation data products regarding their applicability to NASA science objectives.
Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar
1998-01-01
Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar Burton H. Jones Wrigley Institute of Environmental Science and Department of... Environmental Science and,Department of Biological Sciences,Los Angeles,CA,90089-0371 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
Worden, Alexandra Z; Follows, Michael J; Giovannoni, Stephen J; Wilken, Susanne; Zimmerman, Amy E; Keeling, Patrick J
2015-02-13
The profound influence of marine plankton on the global carbon cycle has been recognized for decades, particularly for photosynthetic microbes that form the base of ocean food chains. However, a comprehensive model of the carbon cycle is challenged by unicellular eukaryotes (protists) having evolved complex behavioral strategies and organismal interactions that extend far beyond photosynthetic lifestyles. As is also true for multicellular eukaryotes, these strategies and their associated physiological changes are difficult to deduce from genome sequences or gene repertoires—a problem compounded by numerous unknown function proteins. Here, we explore protistan trophic modes in marine food webs and broader biogeochemical influences. We also evaluate approaches that could resolve their activities, link them to biotic and abiotic factors, and integrate them into an ecosystems biology framework. Copyright © 2015, American Association for the Advancement of Science.
Innovations in Ocean Sciences Education at the University of Washington
NASA Astrophysics Data System (ADS)
Robigou, V.
2003-12-01
A new wave of education collaborations began when the national science education reform documents (AAAS Project 2061 and National Science Education Standards) recommended that scientific researchers become engaged stakeholders in science education. Collaborations between research institutions, universities, nonprofits, corporations, parent groups, and school districts can provide scientists original avenues to contribute to education for all. The University of Washington strongly responded to the national call by promoting partnerships between the university research community, the K-12 community and the general public. The College of Ocean and Fishery Sciences and the School of Oceanography spearheaded the creation of several innovative programs in ocean sciences to contribute to the improvement of Earth science education. Two of these programs are the REVEL Project and the Marine Science Student Mobility (MSSM) program that share the philosophy of involving school districts, K-12 science teachers, their students and undergraduate students in current, international, cutting-edge oceanographic research. The REVEL Project (Research and Education: Volcanoes, Exploration and Life) is an NSF-funded, professional development program for middle and high school science teachers that are determined to use deep-sea research and seafloor exploration as tools to implement inquiry-based science in their classrooms, schools, and districts, and to share their experiences with their communities. Initiated in 1996 as a regional program for Northwest science educators, REVEL evolved into a multi-institutional program inviting teachers to practice doing research on sea-going research expeditions. Today, in its 7th year, the project offers teachers throughout the U. S. an opportunity to participate and contribute to international, multidisciplinary, deep-sea research in the Northeast Pacific ocean to study the relationship between geological processes such as earthquakes and volcanism, fluid circulation and life on our planet. http://www.ocean.washington.edu/outreach/revel/ The Marine Science Student Mobility program is a FIPSE-funded program that fosters communication and collaboration across cultural and linguistic boundaries for undergraduate students interested in pursuing careers in marine sciences. A consortium of six universities in Florida, Hawaii, Washington, Belgium, Spain and France offers a unique way to study abroad. During a six month exchange, students acquire foreign language skills, cultural awareness and ocean sciences field study in one of the four major oceanographic areas: the Atlantic, the Pacific, the Gulf of Mexico and the Mediterranean. The program not only promotes cultural understanding among the participant students but among faculty members from different educational systems, and even among language and science faculty members. Understanding how different cultures approach, implement, and interpret scientific research to better study the world's oceans is the cornerstone of this educational approach. http://www.marine-language-exch.org/ Similar collaborative, educational activities could be adapted by other research institutions on many campuses to provide many opportunities for students, teachers and the general public to get involved in Earth and ocean sciences.
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters
2008-09-30
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean...umb.edu G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA...02125-3393 phone: (617) 287-7451 fax: (617) 287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences
Making Real-Time Data "Real" for General Interest Users
NASA Astrophysics Data System (ADS)
Hotaling, L.
2003-04-01
Helping educators realize the benefits of integrating technology into curricula to effectively engage student learning and improve student achievement, particularly in science and mathematics, is the core mission of the Center for Improved Engineering and Science Education (CIESE). To achieve our mission, we focus on projects utilizing real-time data available from the Internet, and collaborative projects utilizing the Internet's potential to reach peers and experts around the world. As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (COSEE), the Center for Improved Engineering and Science Education (CIESE), is committed to delivering relevant ocean science education to diverse audiences, including K-12 teachers, students, coastal managers, families and tourists. The highest priority of the Mid-Atlantic COSEE is to involve scientists and educators in the translation of data and information from the coastal observatories into instructional materials and products usable by educators and the public. A combination of three regional observing systems, the New Jersey Shelf Observing System (NJSOS), Chesapeake Bay Observing System (CBOS), and the York River observing system will provide the scientific backbone for an integrated program of science and education that improves user access to, and understanding of, modern ocean science and how it affects our daily lives. At present, the Mid-Atlantic COSEE offers three projects that enable users to apply and validate scientific concepts to real world situations. (1) The Gulf Stream Voyage is an online multidisciplinary project that utilizes both real-time data and primary source materials to help guide students to discover the science and history of the Gulf Stream current. (2) C.O.O.L. Classroom is an online project that utilizes concepts and real-time data collected through the NJSOS. The C.O.O.L. Classroom is based on the concept of the Rutgers-IMCS Coastal Ocean Observation Laboratory, a real place where ocean scientists from various disciplines study the coastal ocean collaboratively. (3) Oceans Connecting the Nation is an online collaborative project currently in development. The core activities will involve the study of Nonpoint Source Pollution (NPS). Students will conduct water quality (nutrient) testing and share that data, along with climate data and local characteristics with other participants. This will promote discussions about how NPS affects local communities as well as the oceans, and allow users to develop an understanding of how the oceans affect their daily lives.
ERIC Educational Resources Information Center
Kaneps, Ansis
1977-01-01
Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)
NASA Astrophysics Data System (ADS)
Schoedinger, S. E.; Strang, C.
2008-12-01
"Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.
Advancing Ocean Science Through Coordination, Community Building, and Outreach
NASA Astrophysics Data System (ADS)
Benway, H. M.
2016-02-01
The US Ocean Carbon and Biogeochemistry (OCB) Program (www.us-ocb.org) is a dynamic network of scientists working across disciplines to understand the ocean's role in the global carbon cycle and how marine ecosystems and biogeochemical cycles are responding to environmental change. The OCB Project Office, which is based at the Woods Hole Oceanographic Institution (WHOI), serves as a central information hub for this network, bringing different scientific disciplines together and cultivating partnerships with complementary US and international programs to address high-priority research questions. The OCB Project Office plays multiple important support roles, such as hosting and co-sponsoring workshops, short courses, working groups, and synthesis activities on emerging research issues; engaging with relevant national and international science planning initiatives; and developing education and outreach activities and products with the goal of promoting ocean carbon science to broader audiences. Current scientific focus areas of OCB include ocean observations (shipboard, autonomous, satellite, etc.); changing ocean chemistry (acidification, expanding low-oxygen conditions, etc.); ocean carbon uptake and storage; estuarine and coastal carbon cycling; biological pump and associated biological and biogeochemical processes and carbon fluxes; and marine ecosystem response to environmental and evolutionary changes, including physiological and molecular-level responses of individual organisms, as well as shifts in community structure and function. OCB is a bottom-up organization that responds to the continually evolving priorities and needs of its network and engages marine scientists at all career stages. The scientific leadership of OCB includes a scientific steering committee and subcommittees on ocean time-series, ocean acidification, and ocean fertilization. This presentation will highlight recent OCB activities and products of interest to the ocean science community.
Ocean Sciences meets Big Data Analytics
NASA Astrophysics Data System (ADS)
Hurwitz, B. L.; Choi, I.; Hartman, J.
2016-02-01
Hundreds of researchers worldwide have joined forces in the Tara Oceans Expedition to create an unprecedented planetary-scale dataset comprised of state-of-the-art next generation sequencing, microscopy, and physical/chemical metadata to explore ocean biodiversity. This summer the complete collection of data from the 2009-2013 Tara voyage was released. Yet, despite herculean efforts by the Tara Oceans Consortium to make raw data and computationally derived assemblies and gene catalogs available, most researchers are stymied by the sheer volume of the data. Specifically, the most tantalizing research questions lie in understanding the unifying principles that guide the distribution of organisms across the sea and affect climate and ecosystem function. To use the data in this capacity researchers must download, integrate, and analyze more than 7.2 trillion bases of metagenomic data and associated metadata from viruses, bacteria, archaea and small eukaryotes at their own data centers ( 9 TB of raw data). Accessing large-scale data sets in this way impedes scientists' from replicating and building on prior work. To this end, we are developing a data platform called the Ocean Cloud Commons (OCC) as part of the iMicrobe project. The OCC is built using an algorithm we developed to pre-compute massive comparative metagenomic analyses in a Hadoop big data framework. By maintaining data in a cloud commons researchers have access to scalable computation and real-time analytics to promote the integrated and broad use of planetary-scale datasets, such as Tara.
SOLAS Science and the Environmental Impacts of Geoengineering
NASA Astrophysics Data System (ADS)
Boyd, P.; Law, C. S.
2016-02-01
SOLAS (Surface Ocean Lower Atmosphere Study) has played a major role in establishing the elemental and ecosystem responses in the in situ mesoscale iron addition experiments. The outcomes of these experiments have included a Summary for Policymakers and an amendment on ocean fertilisation in the London Convention on marine dumping, which have informed both the debate and international regulation on this potential geoengineering approach. As part of Future Earth the next ten years of SOLAS Science will develop understanding and fundamental science in 5 major themes, including Greenhouse Gases and the Ocean, Interconnections between Aerosol, Clouds and Ecosystems, and Ocean Biogeochemical Controls on Atmospheric Chemistry. This poster will review the SOLAS science areas that provide fundamental knowledge on processes and ecosystem impacts, which is required for the robust assessment of potential Solar Radiation Management and Carbon Dioxide Removal techniques.
Computation, Mathematics and Logistics Department Report for Fiscal Year 1978.
1980-03-01
storage technology. A reference library on these and related areas is now composed of two thousand documents. The most comprehensive tool available...at DTNSRDC on the CDC 6000 Computer System for a variety of applications including Navy Logistics, Library Science, Ocean Science, Contract Manage... Library Science) Track technical documents on advanced ship design Univ. of Virginia at Charlottesville - (Ocean Science) Monitor research projects for
ERIC Educational Resources Information Center
Bishop, Kristina; Walters, Howard
2007-01-01
Researchers have begun tracking a group of high ability high school students from high school into college study. These students indicated an interest in Science, Technology, Engineering, and Mathematics (STEM) content areas, and specifically ocean sciences, through participation in a regional or national academic competition in high school--The…
NASA Astrophysics Data System (ADS)
Clarkston, B. E.; Garza, C.
2015-12-01
Diversity within the Ocean Sciences workforce is still underperforming relative to other scientific disciplines, a problem that will be only be solved by recruiting, engaging and retaining a more diverse student population. The Monterey Bay Regional Ocean Science Research Experiences for Undergraduates program is housed at California State University, Monterey Bay (CSUMB), an HSI with strong connections to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system. From this unique position, 11 sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students engage in rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for a program designed to prepare students for 21st century Ocean Science careers.
Presidential Citation for Science and Society
NASA Astrophysics Data System (ADS)
2012-07-01
AGU presented its Presidential Citation for Science and Society to three recipients at a reception on 1 May 2012 in the Rayburn House Office Building as part of the inaugural AGU Science Policy Conference. Google Earth, Jane Lubchenco, who is the under secretary of Commerce for oceans and atmosphere and administrator of the National Oceanic and Atmospheric Administration, and Sen. Olympia Snowe (R-Maine) were recognized for their leadership and vision in shaping policy and heightening public awareness of the value of Earth and space science. “This is an important award because with it AGU brings to light the importance of cutting-edge use-inspired science that helps people, communities, and businesses adapt to climate change and sustainably manage our oceans and coasts,” Lubchenco said.
A Multicomponent Large Ringlaser for Seismology: First Observations
NASA Astrophysics Data System (ADS)
Igel, H.; Gebauer, A.; Simonelli, A.; Kodet, J.; Bernauer, F.; Donner, S.; Wassermann, J. M.; Tanimoto, T.; Schreiber, K. U.
2017-12-01
During 2016 a large 4-component ring laser structure called "Romy" was built and implemented underground in the Geophysical Observatory of the Ludwig-Maximilians-University (LMU) 20km outside Munich primarily funded by the European Research Council and LMU. The ring laser has a tetrahedral top-down shape with four triangles of 12m side length. The independent triangular He-Ne ring lasers with 12 m side length are expected to resolve rotational motions down to 12 prad/s/sqrt(Hz), allowing us to record below the assumed low-noise model for rotational ground motions in a wide frequency band (e.g., ocean-generated noise, free oscillations, local regional and global earthquakes). Recently, Romy was described in a feature article in Science (Hand, DOI: 10.1126/science.aal1069). We will present the current state of the instrument and discuss the operation principle and quality of the ring laser components. First observations include the ocean-generated noise, the late 2016 earthquake sequence of Italy, and several teleseismic events. We compare ring laser observations from different sites (Gran Sasso Underground Laboratory, Italy, and G-ring Wettzell, Germany) in relation with their local site conditions. We report on future plans to stabilize the ring geometry providing long-term stability for geodetic applications such as the precise measurement of the Earth's complete rotation vector.
Undergraduate Research Experience in Ocean/Marine Science (URE-OMS)
2003-09-30
The URE-Ocean/Marine Science program supports active research participation by undergraduate students in remote sensing and GIS. The program is based on a model for undergraduate research programs supported by the National Science Foundation . URE project features mentors, research projects, and professional development opportunities. It is the long-term goal
NASA Astrophysics Data System (ADS)
Schneider, S.; Ellger, C.
2017-12-01
As a contribution to Germany's "Science Year 2016*17 - Seas and Oceans", a large science outreach program organized and financed by the National Ministry for Education and Research, GeoUnion, the umbrella organization of Earth science associations and institutions in Germany, has conducted a series of advance level workshops for out-of-school educators and interpreters in Germany. The workshops were organized in co-operation with geoparks, biosphere reserve areas and other environmental management institutions all over Germany. The goal was to convey various perspectives of modern marine sciences to inland venues, linking important present-day marine themes with the presentation of marine phases in the geological history of the host region. The workshops were designed for park rangers, museum educationalists and other science communicators, initiating a broader impact on target groups such as school classes, (geo-)tourists and stakeholder groups. Our approach has been to combine lectures by top-level scientists (on both ocean literacy aspects and regional geology) with discussions and an on-the-spot learning-and-presenting module based on prepared text and visual material. Beyond earth science issues we have integrated economy, ecology, social sciences as well as arts and humanities aspects. One central topic was the role of the world ocean in climate change; other themes highlighted sea level rise, the thermohaline circulation, sea-floor spreading, coral reefs, over-fishing, various marine species and the problem of plastic waste in the ocean. We had anticipated that marine issues are actually very rarely discussed in inland Germany. A structured presentation of ocean literacy elements has proved to be a new range of topical issues from earth and environmental sciences highly appreciated by the participants.
Ocean Literacy Alliance-Hawaii (OLA-HI) Resource Guide
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Rivera, M.; Hicks Johnson, T.; Baumgartner, E.; Davidson, K.
2008-05-01
The Ocean Literacy Alliance-Hawaii (OLA-HI) was founded in 2007 to establish a framework for collaboration in ocean science education in Hawaii. OLA-HI is supported by the federal Interagency Working Group-Ocean Education (IWG-OE) and funded through NSF and NOAA. Hawaii support is provided through the organizations listed above in the authors' block. Our inaugural workshop was attended by 55 key stakeholders, including scientists, educators, legislators, and representatives of federal, state, and private organizations and projects in Hawaii. Participants reviewed ongoing efforts, strengthened existing collaborations, and developed strategies to build new partnerships. Evaluations showed high satisfaction with the workshop, with 100% of respondents ranking the overall quality as `good' or `excellent'. Expected outcomes include a calendar of events, a website (www.soest.hawaii.edu/OLAHawaii), a list serve, and a resource guide for ocean science education in Hawaii. These products are all designed to facilitate online and offline networking and collaboration among Hawaii's ocean science educators. The OLA-HI resource guide covers a gamut of marine resources and opportunities, including K-12 curriculum, community outreach programs, museum exhibits and lecture series, internships and scholarships, undergraduate and graduate degree programs, and teacher professional development workshops. This guide is designed to share existing activities and products, minimize duplication of efforts, and help provide gap analysis to steer the direction of future ocean science projects and programs in Hawaii. We ultimately plan on using the resource guide to develop pathways to guide Hawaii's students toward ocean-related careers. We are especially interested in developing pathways for under-represented students in the sciences, particularly Native Hawaiians and Pacific Islanders, and will focus on this topic at a future OLA-HI workshop.
Numerical Modeling of Ocean Circulation
NASA Astrophysics Data System (ADS)
Miller, Robert N.
2007-01-01
The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details
Taking Poseidon's Measure from Space: Advances in our Understanding of the Ocean
NASA Astrophysics Data System (ADS)
Avery, S. K.
2017-12-01
In many ways the ocean defines our planet and makes it livable. It provides marine resources and ecosystem services that are critical to a sustainable society. Today we understand that there is a growing need to predict, manage, and adapt to changes on our planet - changes that occur not only in the atmosphere but also in the ocean. Over the last 40 years remarkable advances in measuring key ocean quantities have been made - through the development of new satellite technologies and successful missions as well as through in-situ observing systems enabled by advances in robotics, communications, navigation, and sensors. Ocean science (and atmospheric science) is a science of numbers, imaging, and numerical models. Predictability of the ocean is tied to the scale of variability in space and time. Satellite observations have spectacularly showed us the incredible structure and variability of the ocean. It has been the combination of satellites and in-situ sensors that have allowed us to advance understanding and prediction. This presentation will highlight some of the key scientific advances that have been enabled by satellites.
NASA Technical Reports Server (NTRS)
Koskela, P. E.; Bollman, W. E.; Freeman, J. E.; Helton, M. R.; Reichert, R. J.; Travers, E. S.; Zawacki, S. J.
1973-01-01
The activities of the following members of the Navigation Team are recorded: the Science Sequence Design Group, responsible for preparing the final science sequence designs; the Advanced Sequence Planning Group, responsible for sequence planning; and the Science Recommendation Team (SRT) representatives, responsible for conducting the necessary sequence design interfaces with the teams during the mission. The interface task included science support in both advance planning and daily operations. Science sequences designed during the mission are also discussed.
Ocean Filmmaking Camp @ Duke Marine Lab: Building Community with Ocean Science for a Better World
NASA Astrophysics Data System (ADS)
De Oca, M.; Noll, S.
2016-02-01
A democratic society requires that its citizens are informed of everyday's global issues. Out of all issues those related to ocean conservation can be hard to grasp for the general public and especially so for disadvantaged racial and ethnic groups. Opportunity-scarce communities generally have more limited access to the ocean and to science literacy programs. The Ocean Filmmaking Camp @ Duke Marine Lab (OFC@DUML) is an effort to address this gap at the level of high school students in a small coastal town. We designed a six-week summer program to nurture the talents of high school students from under-represented communities in North Carolina with training in filmmaking, marine science and conservation. Our science curriculum is especially designed to present the science in a locally and globally-relevant context. Class discussions, field trips and site visits develop the students' cognitive abilities while they learn the value of the natural environment they live in. Through filmmaking students develop their voice and their media literacy, while connecting with their local community, crossing class and racial barriers. By the end of the summer this program succeeds in encouraging students to engage in the democratic process on ocean conservation, climate change and other everyday affairs affecting their local communities. This presentation will cover the guiding principles followed in the design of the program, and how this high impact-low cost program is implemented. In its first year the program was co-directed by a graduate student and a local high school teacher, who managed more than 20 volunteers with a total budget of $1,500. The program's success was featured in the local newspaper and Duke University's Environment Magazine. This program is an example of how ocean science can play a part in building a better world, knitting diverse communities into the fabric of the larger society with engaged and science-literate citizens living rewarding lives.
Seeleuthner, Yoann; Mondy, Samuel; Lombard, Vincent; Carradec, Quentin; Pelletier, Eric; Wessner, Marc; Leconte, Jade; Mangot, Jean-François; Poulain, Julie; Labadie, Karine; Logares, Ramiro; Sunagawa, Shinichi; de Berardinis, Véronique; Salanoubat, Marcel; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Searson, Sarah; Pesant, Stephane; Poulton, Nicole; Stepanauskas, Ramunas; Bork, Peer; Bowler, Chris; Hingamp, Pascal; Sullivan, Matthew B; Iudicone, Daniele; Massana, Ramon; Aury, Jean-Marc; Henrissat, Bernard; Karsenti, Eric; Jaillon, Olivier; Sieracki, Mike; de Vargas, Colomban; Wincker, Patrick
2018-01-22
Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology.
Zhang, Xiao-yong; Tang, Gui-ling; Xu, Xin-ya; Nong, Xu-hua; Qi, Shu-Hua
2014-01-01
The fungal diversity in deep-sea environments has recently gained an increasing amount attention. Our knowledge and understanding of the true fungal diversity and the role it plays in deep-sea environments, however, is still limited. We investigated the fungal community structure in five sediments from a depth of ∼4000 m in the East India Ocean using a combination of targeted environmental sequencing and traditional cultivation. This approach resulted in the recovery of a total of 45 fungal operational taxonomic units (OTUs) and 20 culturable fungal phylotypes. This finding indicates that there is a great amount of fungal diversity in the deep-sea sediments collected in the East Indian Ocean. Three fungal OTUs and one culturable phylotype demonstrated high divergence (89%–97%) from the existing sequences in the GenBank. Moreover, 44.4% fungal OTUs and 30% culturable fungal phylotypes are new reports for deep-sea sediments. These results suggest that the deep-sea sediments from the East India Ocean can serve as habitats for new fungal communities compared with other deep-sea environments. In addition, different fungal community could be detected when using targeted environmental sequencing compared with traditional cultivation in this study, which suggests that a combination of targeted environmental sequencing and traditional cultivation will generate a more diverse fungal community in deep-sea environments than using either targeted environmental sequencing or traditional cultivation alone. This study is the first to report new insights into the fungal communities in deep-sea sediments from the East Indian Ocean, which increases our knowledge and understanding of the fungal diversity in deep-sea environments. PMID:25272044
Monier, Adam; Worden, Alexandra Z; Richards, Thomas A
2016-08-01
High-throughput diversity amplicon sequencing of marine microbial samples has revealed that members of the Mamiellophyceae lineage are successful phytoplankton in many oceanic habitats. Indeed, these eukaryotic green algae can dominate the picoplanktonic biomass, however, given the broad expanses of the oceans, their geographical distributions and the phylogenetic diversity of some groups remain poorly characterized. As these algae play a foundational role in marine food webs, it is crucial to assess their global distribution in order to better predict potential changes in abundance and community structure. To this end, we analyzed the V9-18S small subunit rDNA sequences deposited from the Tara Oceans expedition to evaluate the diversity and biogeography of these phytoplankton. Our results show that the phylogenetic composition of Mamiellophyceae communities is in part determined by geographical provenance, and do not appear to be influenced - in the samples recovered - by water depth, at least at the resolution possible with the V9-18S. Phylogenetic classification of Mamiellophyceae sequences revealed that the Dolichomastigales order encompasses more sequence diversity than other orders in this lineage. These results indicate that a large fraction of the Mamiellophyceae diversity has been hitherto overlooked, likely because of a combination of size fraction, sequencing and geographical limitations. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel
NASA Astrophysics Data System (ADS)
Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan
2016-04-01
Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication, global sustainability etc.). The primary advisor and at least one co-advisor form an advisory committee, committing to support the candidate in two mandatory meetings per year. Contrasting to other PhD programmes, ISOS emphasises on an open policy with voluntary participation for all other aspects of the programme, creating a unique environment that lives upon personal involvement and maximises tangible benefits for individual PhD candidates.
Portable coastal observatories
Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven
2000-01-01
Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.
NASA Astrophysics Data System (ADS)
The Ocean Research Institute of the University of Tokyo and the National Science Foundation (NSF) have signed a Memorandum of Understanding for cooperation in the Ocean Drilling Program (ODP). The agreement calls for Japanese participation in ODP and an annual contribution of $2.5 million in U.S. currency for the project's 9 remaining years, according to NSF.ODP is an international project whose mission is to learn more about the formation and development of the earth through the collection and examination of core samples from beneath the ocean. The program uses the drillship JOIDES Resolution, which is equipped with laboratories and computer facilities. The Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), an international group of scientists, provides overall science planning and program advice regarding ODP's science goals and objectives.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... Center, Center of Excellence in Coral Reef Ecosystems Science, 8000 North Ocean Drive; Dania Beach, FL... Center, Center of Excellence in Coral Reef Ecosystems Science, 8000 North Ocean Drive, Dania Beach, FL... science workshops will focus on two themes: ``Climate Change and Climate Impacts on Coral Reef Ecosystems...
NASA Astrophysics Data System (ADS)
Gibbard, Philip L.; Lewin, John
2016-11-01
We review the historical purposes and procedures for stratigraphical division and naming within the Quaternary, and summarize the current requirements for formal partitioning through the International Commission on Stratigraphy (ICS). A raft of new data and evidence has impacted traditional approaches: quasi-continuous records from ocean sediments and ice cores, new numerical dating techniques, and alternative macro-models, such as those provided through Sequence Stratigraphy and Earth-System Science. The practical usefulness of division remains, but there is now greater appreciation of complex Quaternary detail and the modelling of time continua, the latter also extending into the future. There are problems both of commission (what is done, but could be done better) and of omission (what gets left out) in partitioning the Quaternary. These include the challenge set by the use of unconformities as stage boundaries, how to deal with multiphase records in ocean and terrestrial sediments, what happened at the 'Early-Mid- (Middle) Pleistocene Transition', dealing with trends that cross phase boundaries, and the current controversial focus on how to subdivide the Holocene and formally define an 'Anthropocene'.
U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science
Kinsinger, Anne E.
2009-01-01
USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.
11th National Conference on Science, Policy, and the Environment: Our Changing Oceans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Saundry
2012-04-17
On January 19-21, 2011, The National Council for Science and the Environment (NCSE) successfully convened its 11th National Conference on Science, Policy and the Environment: Our Changing Oceans in Washington, DC at the Ronald Reagan Building and International Trade Center. Over 1,247 participants attended the conference, representing federal, state and local governments, university and colleges across the US, civil society organizations, the business community, and international entities. In addition, the conference was webcast to an audience across several states. The conference provided a forum to examine the profound changes our ocean will undergo over the next 25-50 years and sharemore » various perspectives on the new research, tools, and policy initiatives to protect and sustain our ocean. Conference highlights and recommendations are available to the public on NCSE's conference website, www.OurChangingOceans.org.« less
Ocean Drilling Science Plan to be released soon
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-04-01
The upcoming International Ocean Discovery Program, which is slated to operate from 2013 to 2023 and calls for an internationally funded program focused around four science themes, will pick up right where its predecessor, the Integrated Ocean Drilling Program, ends, explained Kiyoshi Suyehiro, president and chief executive officer of IODP, a convenient acronym that covers both programs. At a 5 April briefing at the 2011 European Geosciences Union General Assembly in Vienna, Austria, he outlined four general themes the new program will address. IODP involves 24 nations and utilizes different ocean drilling platforms that complement each other in drilling in different environments in the oceans.
NASA Astrophysics Data System (ADS)
Arabshahi, P.; Howe, B. M.; Chao, Y.; Businger, S.; Chien, S.
2010-12-01
We present a virtual ocean observatory (VOO) that supports climate and ocean science as addressed in the NRC decadal survey. The VOO is composed of an autonomous software system, in-situ and space-based sensing assets, data sets, and interfaces to ocean and atmosphere models. The purpose of this observatory and its output data products are: 1) to support SWOT mission planning, 2) to serve as a vanguard for fusing SWOT, XOVWM, and in-situ data sets through fusion of OSTM (SWOT proxy) and QuikSCAT (XOVWM proxy) data with in-situ data, and 3) to serve as a feed-forward platform for high-resolution measurements of ocean surface topography (OST) in island and coastal environments utilizing space-based and in-situ adaptive sampling. The VOO will enable models capable of simulating and estimating realistic oceanic processes and atmospheric forcing of the ocean in these environments. Such measurements are critical in understanding the oceans' effects on global climate. The information systems innovations of the VOO are: 1. Development of an autonomous software platform for automated mission planning and combining science data products of QuikSCAT and OSTM with complementary in-situ data sets to deliver new data products. This software will present first-step demonstrations of technology that, once matured, will offer increased operational capability to SWOT by providing automated planning, and new science data sets using automated workflows. The future data sets to be integrated include those from SWOT and XOVWM. 2. A capstone demonstration of the effort utilizes the elements developed in (1) above to achieve adaptive in-situ sampling through feedback from space-based-assets via the SWOT simulator. This effort will directly contribute to orbit design during the experimental phase (first 6-9 months) of the SWOT mission by high resolution regional atmospheric and ocean modeling and sampling. It will also contribute to SWOT science via integration of in-situ data, QuikSCAT, and OSTM data sets, and models, thus serving as technology pathfinder for SWOT and XOVWM data fusion; and will contribute to SWOT operations via data fusion and mission planning technology. The goals of our project are as follows: (a) Develop and test the VOO, including hardware, in-situ science platforms (Seagliders) and instruments, and two autonomous software modules: 1) automated data fusion/assimilation, and 2) automated planning technology; (b) Generate new data sets (OST data in the Hawaiian Islands region) from fusion of in-situ data with QuikSCAT and OSTM data; (c) Integrate data sets derived from the VOO into the SWOT simulator for improved SWOT mission planning; (d) Demonstrate via Hawaiian Islands region field experiments and simulation the operational capability of the VOO to generate improved hydrologic cycle/ocean science, in particular: mesoscale and submesoscale ocean circulation including velocities, vorticity, and stress measurements, that are important to the modeling of ocean currents, eddies and mixing.
Lindstrom Receives 2013 Ocean Sciences Award: Citation
NASA Astrophysics Data System (ADS)
Gordon, Arnold L.; Lagerloef, Gary S. E.
2014-09-01
Eric J. Lindstrom's record over the last 3 decades exemplifies both leadership and service to the ocean science community. Advancement of ocean science not only depends on innovative research but is enabled by support of government agencies. As NASA program scientist for physical oceanography for the last 15 years, Eric combined his proven scientific knowledge and skilled leadership abilities with understanding the inner workings of our government bureaucracy, for the betterment of all. He is a four-time NASA headquarters medalist for his achievements in developing a unified physical oceanography program that is well integrated with those of other federal agencies.
Myths in funding ocean research at the National Science Foundation
NASA Astrophysics Data System (ADS)
Duce, Robert A.; Benoit-Bird, Kelly J.; Ortiz, Joseph; Woodgate, Rebecca A.; Bontempi, Paula; Delaney, Margaret; Gaines, Steven D.; Harper, Scott; Jones, Brandon; White, Lisa D.
2012-12-01
Every 3 years the U.S. National Science Foundation (NSF), through its Advisory Committee on Geosciences, forms a Committee of Visitors (COV) to review different aspects of the Directorate for Geosciences (GEO). This year a COV was formed to review the Biological Oceanography (BO), Chemical Oceanography (CO), and Physical Oceanography (PO) programs in the Ocean Section; the Marine Geology and Geophysics (MGG) and Integrated Ocean Drilling Program (IODP) science programs in the Marine Geosciences Section; and the Ocean Education and Ocean Technology and Interdisciplinary Coordination (OTIC) programs in the Integrative Programs Section of the Ocean Sciences Division (OCE). The 2012 COV assessed the proposal review process for fiscal year (FY) 2009-2011, when 3843 proposal actions were considered, resulting in 1141 awards. To do this, COV evaluated the documents associated with 206 projects that were randomly selected from the following categories: low-rated proposals that were funded, high-rated proposals that were funded, low-rated proposals that were declined, high-rated proposals that were declined, some in the middle (53 awarded, 106 declined), and all (47) proposals submitted to the Rapid Response Research (RAPID) funding mechanism. NSF provided additional data as requested by the COV in the form of graphs and tables. The full COV report, including graphs and tables, is available at http://www.nsf.gov/geo/acgeo_cov.jsp.
From Scientist to Educator: Oceanography in the Formal and Informal Classroom
NASA Astrophysics Data System (ADS)
Richardson, A. H.; Jasnow, M.; Srinivasan, M. S.; Rosmorduc, V.; Blanc, F.
2002-12-01
The TOPEX/Poseidon and Jason-1 ocean altimeter missions offer the educator in the middle school or informal education venue a unique opportunity for reinforcing ocean science studies. Two new educational posters from the United States' NASA/Jet Propulsion Laboratory and France's Centre National d'Etudes Spatiales provide teachers and students a tool to examine topics such as the dynamics of ocean circulation, ocean research, and the oceans role in climate. "Voyage on the High Seas; A Jason-1 Oceanic Adventure" is a poster/board game that offers learning opportunities through a non-textbook activity designed to stimulate interest in ocean science in a fun and instructive environment. The object of the game is to be the first to sail your research vessel from the Mediterranean Sea to Seattle, Washington while gaining Discovery Points. The starting point in the Mediterranean is where the mythological adventurers Jason and the Argonauts set out on their epic voyage to find the golden fleece. Discovery and Quiz Cards are used to challenge players to gain knowledge and points by correctly answering questions using clues from the board. Teachers can directly photocopy additional activities from the reverse side of the board game for use in a middle school Earth science curriculum. The game is also a stand-alone poster that is an engaging world map depicting the world's oceans and continents, major ocean currents, and other important geographic features. A second poster has been developed as a joint JPL/CNES effort. "Oceans' Music: Climate's Dance" highlights the ocean/climate link and provides educational activities that can be used directly in the classroom. The eye-catching poster is appropriate for display in both the formal and informal education setting. In both venues it should stimulate conversation about the ocean and provide a point of entry into inquiry-based learning about the connections between ocean circulation and global climate. It also seeks to emphasize the role of the ocean in sustaining life on Earth. Activities on the back of the poster can be used as supplemental material in a middle school Earth science curriculum, and are suitable for individual instruction and for classroom or group exercises. This poster will be published in both English and French. Educational research indicates that an inquiry-based method of student engagement is an appropriate and effective teaching tool. These posters offer a fun and instructive environment to promote student interest in Earth Science in general and particularly in oceanography.
SPESS: A New Instrument for Measuring Student Perceptions in Earth and Ocean Science
ERIC Educational Resources Information Center
Jolley, Allison; Lane, Erin; Kennedy, Ben; Frappé-Sénéclauze, Tom-Pierre
2012-01-01
This paper discusses the development and results of a new tool used for measuring shifts in students' perceptions of earth and ocean sciences called the Student Perceptions about Earth Sciences Survey (SPESS). The survey measures where students lie on the novice--expert continuum, and how their perceptions change after taking one or more earth and…
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document reviews the Pacific Region Junior Science and Humanities Symposium (PJSHS) program for 2003-2004 which is a 10-month, precollege student research program held in Japan. The theme is AtmosphereThe Other Ocean. The program includes a one-week symposium of student delegates who have completed research projects in the sciences or have…
Ocean Drilling Program: Public Information: News
site ODP's main web site ODP/TAMU Science Operator Home Ocean Drilling Program News The Ocean Drilling Program was succeeded in 2003 by the Integrated Ocean Drilling Program (IODP). The IODP U.S. Implementing
Thoughts on Multi-sphere Study in the Indo-Pacific Convergent Zone
NASA Astrophysics Data System (ADS)
Wang, F.
2016-12-01
Interactions of the ocean with other components of the earth system, such as atmosphere, lithosphere, and biosphere are the front and hotspot of the ocean and earth sciences. In the Indonesian Archipelago and adjacent western Pacific and eastern Indian Oceans, both the upper oceanic circulation and lower atmospheric circulation convergent and consequently enhance the fresh water and heat fluxes, affecting the East Asian and global climate. This region is considered as the world's center of marine bio-diversity and sediment discharge, as well as the collision center of the Eurasian, Indian and Pacific plates. Why and how the energy and material of multiple spheres convergent toward the region are important scientific issues on the front of earth system science and marine sciences, and need to be investigated through international cooperation.
Sandifer, Paul A; Trtanj, Juli M; Collier, Tracy K
2013-05-01
We review recent history and evolution of Oceans and Human Health programs and related activities in the USA from a perspective within the Federal government. As a result of about a decade of support by the US Congress and through a few Federal agencies, notably the National Science Foundation, National Institute of Environmental Health Sciences, and National Ocean and Atmospheric Administration, robust Oceans and Human Health (OHH) research and application activities are now relatively widespread, although still small, in a number of agencies and academic institutions. OHH themes and issues have been incorporated into comprehensive federal ocean research plans and are reflected in the new National Ocean Policy enunciated by Executive Order 13547. In just a decade, OHH has matured into a recognized "metadiscipline," with development of a small, but robust and diverse community of science and practice, incorporation into academic educational programs, regular participation in ocean and coastal science and public health societies, and active engagement with public health decision makers. In addition to substantial increases in scientific information, the OHH community has demonstrated ability to respond rapidly and effectively to emergency situations such as those associated with extreme weather events (e.g., hurricanes, floods) and human-caused disasters (e.g., the Deep Water Horizon oil spill). Among many other things, next steps include development and implementation of agency health strategies and provision of specific services, such as ecological forecasts to provide routine early warnings for ocean health threats and opportunities for prevention and mitigation of these risks.
The OOI Ocean Education Portal: Enabling the Development of Online Data Investigations
NASA Astrophysics Data System (ADS)
Lichtenwalner, C. S.; McDonnell, J. D.; Crowley, M. F.; deCharon, A.; Companion, C. J.; Glenn, S. M.
2016-02-01
The Ocean Observatories Initiative (OOI) was designed to transform ocean science, by establishing a long-term, multi-instrument, multi-platform research infrastructure at 7 arrays around the word. This unprecedented investment in ocean observation, funded by the National Science Foundation, provides a rich opportunity to reshape ocean science education as well. As part of the initial construction effort, an online Ocean Education Portal was developed to support the creation and sharing of educational resources by undergraduate faculty at universities and community colleges. The portal includes a suite of tools that enable the development of online activities for use as group or individual projects, which can be used during lectures or as homework assignments. The site includes: 1) a suite of interactive educational data visualization tools that provide simple and targeted interfaces to interact with OOI datasets; 2) a concept map builder that can be used by both educators and students to build networked diagrams of their knowledge; and 3) a "data investigation" builder that allows faculty to assemble resources into coherent learning modules. The site also includes a "vocabulary navigator" that provides a visual way to discover and learn about the OOI's infrastructure and scientific design. The site allows users to browse an ever-growing database of resources created by the community, and likewise, users can share resources they create with others. As the OOI begins its 25-year operational phase, it is our hope that faculty will be able to use the tools and investigations on the Ocean Education Portal to bring real ocean science research to their undergraduate students.
77 FR 31329 - Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of a public meeting...
Thompson Receives 2013 Ocean Sciences Early Career Award: Response
NASA Astrophysics Data System (ADS)
Thompson, Andrew
2014-09-01
I would like to thank my nominator, Jess Adkins, as well as my supporters for their contributions to my nomination and the AGU Ocean Sciences section for its selection. It is an honor to join the past recipients of this award.
NASA Astrophysics Data System (ADS)
Cooper, S. K.; Petronotis, K. E.; Ferraro, C.; Johnson, K. T. M.; Yarincik, K.
2017-12-01
The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. The JOIDES Resolution is the flagship vessel of IODP and is operated by the National Science Foundation. It is an inspirational hook for STEM Earth and ocean topics for children and the general public of all ages, but is not easily accessible due to its international travels and infrequent U.S. port calls. In response, a consortium of partners has created the Pop-Up/Drill Down Science project. The multi-year project, funded by NSF's Advancing Informal Science Learning program, aims to bring the JR and its science to under-served and rural populations throughout the country. Consisting of an inflatable walk-through ship, a multi-media experience, a giant interactive seafloor map and a series of interactive exhibit kiosks, the exhibit, entitled, In Search of Earth's Secrets: A Pop-Up Science Encounter, will travel to 12 communities throughout the next four years. In each community, the project will partner with local institutions like public libraries and small museums as hosts and to train local Girl Scouts to serve as exhibit facilitators. By working with local communities to select events and venues for pop-up events, the project hopes to bring cutting edge Earth and ocean science in creative new ways to underserved populations and inspire diverse audiences to explore further. This presentation will provide details of the project's goals, objectives and development and provide avenues to become involved.
NASA Astrophysics Data System (ADS)
Clarkston, B. E.; Garza, C.
2016-02-01
The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for an innovative program designed to recruit, engage and prepare students for Ocean Science careers.
Women in ocean sciences: A status report
NASA Astrophysics Data System (ADS)
Gross, M. Grant
Science has long been dominated by men, but women are now entering the sciences [Widnall, 1988[, including ocean sciences, in large numbers. Indeed, women constitute 64% of the entering work force [Task Force, 1988]—white women 42%, nonwhite women 13%, and immigrant women 9%. Thus, meeting oceanography's human resource needs requires that it attract and retain women.This paper addresses the question, How are we doing? I hope also to stimulate discussion on these issues, leading to identification of activites appropriate for research-funding agencies, such as the National Science Foundation, to undertake.
NASA Astrophysics Data System (ADS)
Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.
2006-12-01
Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course (http://www.cacosee.net/collegecourse) from COSEE California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project will leverage these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort will be one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course derived from COS that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach to informal institutions and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting ISEI. COSIA partners include: Hampton University Virginia Aquarium; Oregon State University Hatfield Marine Science Visitor's Center; Rutgers University Liberty Science Center; University of California, Berkeley Lawrence Hall of Science; and University of Southern California Aquarium of the Pacific. COS has been or will soon be taught at Rutgers University, UC Berkeley, Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), Scripps Institution of Oceanography, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. For example, there was a decrease in agreement with statements describing traditional didactic teaching strategies suggesting that students who took the course developed a more sophisticated, inquiry-based philosophy of learning. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.
Stone Soup Projects: Using real-time resources and creative partnering to meet multiple needs
NASA Astrophysics Data System (ADS)
McLean, S.; Searle, R.; Zala, K.
2010-12-01
Ocean Networks Canada oversees the VENUS and NEPTUNE Canada undersea cabled observatories. Its Centre for Enterprise and Engagement communicates the scientific discoveries and technological innovations happening at the two systems. Not surprisingly, funders in ocean science are interested in seeing evidence of increased recruitment of Highly Qualified Personnel into marine science and industry. This demand creates a series of opportunities for inspiring students, ranging from graduate school down to middle school, to pursue studies in chemistry, biology, physics, geology, engineering, and beyond. As the Engagement section is a small operation, we partner with others to produce educational assets incorporating real-time data from VENUS and NEPTUNE Canada observatories that enable frontline educators to create exciting ocean science experiences for students and the public. In one project, the lab component of an entire undergraduate course lets students conduct their own investigations into marine oxygen levels by using VENUS data. In another, Fine Arts graduate and undergraduate students are using high-tech tools to create a series of webisodes that map the principles of Ocean Literacy onto the science themes of VENUS and NEPTUNE Canada. In a third project, we hosted a website for a collaborative expedition to small coastal towns that focused on the marine science happening in the Salish Sea, British Columbia. Our projects and challenges for engaging students and the public with ocean science using real-time and other data offer strategies for outreach and education sections of similar organizations.
NASA Astrophysics Data System (ADS)
Hoffman, P. L.; Green, R. E.; Kohanowich, K. M.
2016-02-01
The National Ocean Partnership Program (NOPP) was created in 1997 by federal public law to identify "and carry out partnerships among federal agencies, academia, industry, and other members of the oceanographic scientific community in the areas of data, resources, education, and communications." Since that time, numerous federal agencies have pooled talent, funding, and scientific resources (e.g. ships, aircraft, remote sensors and computing capability) to address pressing ocean science needs which no one entity can manage alone. In this presentation, we will address the ways the National Ocean Policy identifies ecosystem-based management (EBM) as a foundation for providing sound science-based and adaptable management to maintain the health, productivity, and resilience of U.S. ocean, coastal, and Great Lakes ecosystems. Because EBM is an important approach for efficient and effective interagency, multi-jurisdictional, and cross-sectoral marine planning and management, ocean science partnerships such as those provided by NOPP create a pool of regionally-pertinent, nationally-available data from which EBM decision makers can draw to address critical management issues. Specifically, we will provide examples drawn from the last five years of funding to illustrate how the NOPP process works, how it is managed by a federal Interagency Working Group (IWG-OP), and how EBM practitioners can both partner with others through the NOPP and offer guidance on the implementation of projects beneficial to the regional needs of the EBM community. Projects to be discussed have been carried out under the following themes: Arctic Cumulative Impacts: Marine Arctic Ecosystem Study (MARES) - Ecosystem Dynamics and Monitoring of the Beaufort Sea: An Integrated Science Approach. Biodiversity Indicators: Demonstration of a U.S. Marine Biodiversity Observation Network (Marine BON) Long-Term Observations: Coordinated Regional Efforts That Further the U.S. Integrated Ocean Observing System (IOOS) Best Practices: Developing Environmental Protocols and Monitoring to Support Ocean Renewable Energy and Stewardship. We intend to leave the EBM community with a recognition that the NOPP already serves as a valuable partner source for science to inform EBM and to encourage participation in the process.
NASA Astrophysics Data System (ADS)
Hoffman, P. L.; Green, R. E.; Kohanowich, K. M.
2016-12-01
The National Ocean Partnership Program (NOPP) was created in 1997 by federal public law to identify "and carry out partnerships among federal agencies, academia, industry, and other members of the oceanographic scientific community in the areas of data, resources, education, and communications." Since that time, numerous federal agencies have pooled talent, funding, and scientific resources (e.g. ships, aircraft, remote sensors and computing capability) to address pressing ocean science needs which no one entity can manage alone. In this presentation, we will address the ways the National Ocean Policy identifies ecosystem-based management (EBM) as a foundation for providing sound science-based and adaptable management to maintain the health, productivity, and resilience of U.S. ocean, coastal, and Great Lakes ecosystems. Because EBM is an important approach for efficient and effective interagency, multi-jurisdictional, and cross-sectoral marine planning and management, ocean science partnerships such as those provided by NOPP create a pool of regionally-pertinent, nationally-available data from which EBM decision makers can draw to address critical management issues. Specifically, we will provide examples drawn from the last five years of funding to illustrate how the NOPP process works, how it is managed by a federal Interagency Working Group (IWG-OP), and how EBM practitioners can both partner with others through the NOPP and offer guidance on the implementation of projects beneficial to the regional needs of the EBM community. Projects to be discussed have been carried out under the following themes: Arctic Cumulative Impacts: Marine Arctic Ecosystem Study (MARES) - Ecosystem Dynamics and Monitoring of the Beaufort Sea: An Integrated Science Approach. Biodiversity Indicators: Demonstration of a U.S. Marine Biodiversity Observation Network (Marine BON) Long-Term Observations: Coordinated Regional Efforts That Further the U.S. Integrated Ocean Observing System (IOOS) Best Practices: Developing Environmental Protocols and Monitoring to Support Ocean Renewable Energy and Stewardship. We intend to leave the EBM community with a recognition that the NOPP already serves as a valuable partner source for science to inform EBM and to encourage participation in the process.
The Marine Language Exchange Program: an International Approach to Ocean Sciences
NASA Astrophysics Data System (ADS)
Nowell, A.; Robigou, V.
2004-12-01
The ability of scientists to communicate across cultural and linguistic barriers is crucial for the global economic sustainability and protection of the world's oceans. Yet students with majors in the sciences and engineering constitute less than 2% of those who study abroad each year. And even fewer are students who study in countries where English is not the first language. The Marine Language Exchange program is a case study of an international and interdisciplinary collaboration between faculties in the languages and the sciences that address this gap. A consortium of U.S. and European institutions including University of Washington (Washington), Eckerd College (Florida), University of Hilo (Hawaii), Université de la Rochelle (France), Université de Liège (Belgium), and Universidad de Las Palmas (Spain) is developing a multilingual, marine sciences exchange program in an effort to internationalize their ocean sciences departments. The program includes a three-week, intensive "bridge" course designed to reinforce second language skills in the context of marine sciences, and prepare undergraduate students for the cultural and educational differences of their host country. Following this preparatory immersion experience students from each institution enroll in courses abroad for 6 to 12 months to study marine sciences for full academic credit. Different disciplinary approaches -Second Language Acquisition, English as a Second Language and Marine Science- prepare science students to contribute to the study and the management of the world\\'{}s oceans with an awareness of the cultural issues reflected by national marine policies.
Tejada, M L G; Ravizza, G; Suzuki, K; Paquay, F S
2012-01-01
The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with (187)Os/(188)Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism.
Tejada, M. L. G.; Ravizza, G.; Suzuki, K.; Paquay, F. S.
2012-01-01
The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with 187Os/188Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism. PMID:22355780
Xu, Yiyuan; Ren, Chong; Chen, Ruixuan
2016-01-01
Gallaecimonas pentaromativorans has been previously reported to be capable of degrading crude oil and diesel oil. G. pentaromativorans strain YA_1 was isolated from the southwest Indian Ocean and can degrade crude oil. This study reports the draft genome sequence of G. pentaromativorans, which can provide insights into the mechanisms of microbial oil biodegradation. PMID:27491993
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Hsia, M.; Wiener, C.
2012-12-01
Climate change is not just an atmospheric phenomenon. It has serious impacts on the ocean, such as sea level rise, ocean acidification, and coral bleaching. Ocean FEST (Families Exploring Science Together) aims to educate participants about how increasing carbon dioxide is affecting our oceans, and to inspire students to pursue ocean, earth and environmental science careers. Throughout the program, participants examine their everyday decisions and the impact of their choices on the planet's climate and oceans. Ocean FEST is a two-hour program that explores the ocean and relevant environmental topics through six hands-on science activities. Activities are designed so students can see how globally important issues (e.g., climate change and ocean acidification) have local effects (e.g., sea level rise, coastal erosion, coral bleaching). The program ends with a career component, drawing parallels between the program activities and the activities done by "real scientists" in their jobs. Over the past three years, we have conducted over 60 Ocean FEST events. Evaluations are conducted at selected events using electronic surveys, which students and parents complete immediately prior to (pre-survey) and following (post-survey) the program. Survey items were developed and cognitively tested in collaboration with professional evaluators from the American Institute of Research. The nine-item survey includes items on science content knowledge, personal responsibility, and career interest. For each survey item, participants are asked to indicate agreement (coded as 2.0), disagreement (1.0) or don't know (1.5). By comparing the pre- and post-survey results, we can evaluate program efficacy. For example, one survey item is: "I can do something every day to help fight global climate change." Student mean data moved from 1.78 pre-survey to 1.89 post-survey, which is a statistically significant gain at p<.000. Mean parent data for this same item moved from 1.90 pre-survey to 1.96 post-survey, which is again a statistically significant gain at p<.000. In summary, we have found positive statistically significant gains on all survey items for students, and on all but one survey item for parents. These results strongly indicate program efficacy. For more information, please visit our web site: oceanfest.soest.hawaii.edu
NASA Astrophysics Data System (ADS)
Yoshimaru, S.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Nyame, F. K.; Tetteh, G. M.
2015-12-01
The Paleoproterozoic Era is thought to have experienced one of the most significant changes in earth's environment during earth history. Early continents started to diverge and collide accompanied by first major oxidation of the atmosphere-oceanic system known as the Great Oxidation Environment (GOE). Due to their well-preserved oceanic sedimentary sequences, Paleoproterozoic belts are usually good targets for studies on the history of earth's past environment. In addition, these belts provide great help to understand the nature of the Paleoproterozoic deeper oceanic environments. Birimian greenstone belt in southwestern Ghana is likely to have made up of subduction of oceanic basin to form a volcanic island arc. Birimian rocks are separated by nonconformity from the Tarkwaian Group which is a younger paleoplacer deposit (Perrouty et al., 2012). The Birimian is made up of island-arc volcanic rocks; foreland basin made up of shale, sandstone, quartzite and turbidities derived from 2.17 Ga granite intrusions during Birimian volcanism. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Ashanti (Axim-Konongo) belt in Ghana. In the eastern part of the area, excellently preserved Paleoprotorozoic deeper oceanic sedimentary sequences extensively outcrop for over 4km stretch. This volcano-sedimentary sequence has been affected by greenschist facies metamorphism. Structurally, this region preserves S1 cleavage and asymmetrical synform with west vergence and S0 younging to the east. Provisional stratigraphy is very continuous up to more than 2000m thick and, in addition, suggests at least four different fining upward sequences in the area to the east and west of Atwepo, west of Kwetakora and Akodda. These sub-sequences are mainly composed of volcaniclasitc, sandstone, black shale and rare volcanics such as pillow basalt or massive volcanic lava. In other words, this continuous sequence suggests distal submarine volcaniclastic rocks in an oceanic island arc around the West African Craton. Preliminary δ13C analysis gave values of -23.7~ -36.5 ‰ for black shale occupying the middle to upper part of the whole section. The very light carbon isotope ratios suggest deposition of the black shale under highly euxinic conditions like today's Black sea.
15 CFR 922.93 - Permit procedures and criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Sanctuary, 10 Ocean Science Circle, Savannah, GA 31411. (c) The Director, at his or her discretion may issue...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE...
15 CFR 922.93 - Permit procedures and criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Sanctuary, 10 Ocean Science Circle, Savannah, GA 31411. (c) The Director, at his or her discretion may issue...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE...
15 CFR 922.93 - Permit procedures and criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Sanctuary, 10 Ocean Science Circle, Savannah, GA 31411. (c) The Director, at his or her discretion may issue...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE...
Ocean to outback: Léonie Rennie's contribution to science education in Australia
NASA Astrophysics Data System (ADS)
Venville, Grady
2009-06-01
In this article I initially borrow a metaphor from an art exhibition, Ocean to Outback, as a way to express my perspective on the contribution that Léonie Rennie has made to science education in Australia. I then consider Léonie's contributions as overlapping themes. In particular, Léonie's well-known research on gender and issues of equity in science education is explored as well as her highly regarded work on learning science in out-of-school settings. Curriculum integration is a less well-known aspect of Léonie's research that also is considered. Léonie's important contributions to research training and policy in science education are briefly described and commented on. Finally, I return to the metaphor of Ocean to Outback that reflects the enormity of the contribution that Léonie has made but also gives insight into her personal journey and qualities.
Effective Broader Impacts - Lessons Learned by the Ocean Science Community
NASA Astrophysics Data System (ADS)
Scowcroft, G.
2014-12-01
Effective broader impact activities have the potential for scientists to engage with educators, students, and the public in meaningful ways that lead to increased scientific literacy. These interactions provide opportunities for the results and discoveries of federally funded research projects, along with their implications for society, to reach non-scientist audiences. This is especially important for climate, ocean, and environmental science research that will aid citizens in better understanding how they affect Earth's systems and how these systems affect their daily lives. The National Centers for Ocean Sciences Excellence (COSEE) Network has over 12 years of experience in conducting successful broader impact activities and has provided thousands of ocean scientists the opportunity to share the fruits of their research well beyond the scientific enterprise. COSEE evaluators and principal investigators collaborated over several years to determine the impacts of COSEE broader impact activities and to identify best practices. The lessons learned by the ocean science community can help to inform other disciplines. Fruitful broader impact activities require key elements, no matter the composition of the audience. For example, a high degree of success can be achieved when a "bridge builder" facilitates the interactions between scientists and non-science audiences. This presentation will offer other examples of best practices and successful strategies for engaging scientists in broader impact activities, increasing societal impacts of scientific research, and providing opportunities for collaboration on a national scale. http://www.cosee.net
NOAA Ocean Exploration: Science, Education and Ocean Literacy Online and in Social Media
NASA Astrophysics Data System (ADS)
Keener-Chavis, P.
2012-12-01
"Engagement" in ocean science initially might seem like a simple concept, however within an agency like NOAA, with a broad mission and a wide variety of stakeholders, the concept of engagement becomes quite complex. Several years ago, a Kellogg Commission Report was submitted to NOAA's Science Advisory Board to assist the Agency with more closely defining-and refining-how it could more effectively engage with the multiple audiences with which it works. For NOAA, engagement is a two-way relationship that unfolds in a commitment of service to society. It is an Enterprise-wide capability represented in NOAA's Next Generation Strategic Plan and carries the same weight across the Agency as science and technology. NOAA's Office of Ocean Exploration and Research (OER) engages scientists, educators and the public through a variety of online and social media offerings explicitly tied to the exploration science of its expeditions. The principle platform for this engagement is the Ocean Explorer website (http://oceanexplorer.noaa.gov). It is the single point of entry for formal and informal educators and the public to chronicled OER expeditions to little known regions of the world ocean. The site also enables access to live streaming video and audio from the United States' first ship solely dedicated to ocean exploration, the NOAA Ship Okeanos Explorer and the Institute for Exploration's E/V Nautilus. Video includes footage from the remotely operated vehicles, sonar displays, navigation displays, and mapping data displays. Through telepresence technologies and other online communication tools, scientists at remote locations around the world, including Exploration Command Centers, collaborate in deep-sea exploration conducted by the Okeanos Explorer. Those wanting access to the ship's track, oceanographic data, daily updates, web logs, and imagery during an expedition can access the online Okeanos Explorer Digital Atlas. Information on archived expeditions can be accessed through the OER Digital Atlas, a Google map application that displays expedition locations searchable by year, expedition theme or by a text-entry. Information on expedition-specific collection data, education and outreach is also provided. Educators have access to online interactive courses; entitled Why Do We Explore? and How Do We Explore?; that convey the exploration science, capabilities, and assets of the Okeanos Explorer. Hundreds of online lessons, multimedia learning tools, OceanAGE Career Connections and other resources assist educators with bringing authentic ocean exploration and the scientists behind it into classrooms. Live webcasts by San Francisco's Exploratorium and the use of social media; including Twitter, YouTube, Facebook, the Apple iTunes Channel, and conversations with ITunes University have had immediate and profound impacts on OER's ability to successfully engage diverse partners with a ride range of ocean exploration science and education needs. This presentation will highlight several OER's approaches to engaging scientists, educators and others in ocean exploration, including efforts associated with the upcoming Fall 2012 Submarine Ring of Fire: Lau Basin Expedition onboard the Scripps Institution of Oceanography R/V Roger Revelle.
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Podnar, Gregg W.; Dolan, John M.; Stancliff, Stephen; Lin, Ellie; Hosler, Jeffrey C.; Ames, Troy J.; Higinbotham, John; Moisan, John R.; Moisan, Tiffany A.;
2008-01-01
Earth science research must bridge the gap between the atmosphere and the ocean to foster understanding of Earth s climate and ecology. Ocean sensing is typically done with satellites, buoys, and crewed research ships. The limitations of these systems include the fact that satellites are often blocked by cloud cover, and buoys and ships have spatial coverage limitations. This paper describes a multi-robot science exploration software architecture and system called the Telesupervised Adaptive Ocean Sensor Fleet (TAOSF). TAOSF supervises and coordinates a group of robotic boats, the OASIS platforms, to enable in-situ study of phenomena in the ocean/atmosphere interface, as well as on the ocean surface and sub-surface. The OASIS platforms are extended deployment autonomous ocean surface vehicles, whose development is funded separately by the National Oceanic and Atmospheric Administration (NOAA). TAOSF allows a human operator to effectively supervise and coordinate multiple robotic assets using a sliding autonomy control architecture, where the operating mode of the vessels ranges from autonomous control to teleoperated human control. TAOSF increases data-gathering effectiveness and science return while reducing demands on scientists for robotic asset tasking, control, and monitoring. The first field application chosen for TAOSF is the characterization of Harmful Algal Blooms (HABs). We discuss the overall TAOSF architecture, describe field tests conducted under controlled conditions using rhodamine dye as a HAB simulant, present initial results from these tests, and outline the next steps in the development of TAOSF.
Only One Ocean: Marine Science Activities for Grades 5-8. Teacher's Guide.
ERIC Educational Resources Information Center
Halversen, Catherine; Strang, Craig
This guide was designed by the Marine Activities, Resources & Education (MARE) Program through the Great Explorations in Math and Science (GEMS) ongoing curriculum development program for middle school students. This GEMS guide addresses the concepts of the interconnectedness of the ocean basins, respect for organisms, oceanography, physical…
Lindstrom Receives 2013 Ocean Sciences Award: Response
NASA Astrophysics Data System (ADS)
Lindstrom, Eric J.
2014-09-01
My sincere thanks go to the AGU Ocean Sciences section for this award. Is there any higher honor than recognition by one's peers? To join the illustrious list of prior recipients is deeply moving. Thanks so much to Arnold and Gary for their abundant praise and support over many years.
NASA Technical Reports Server (NTRS)
1988-01-01
A review is made of the activities of the Laboratory for Oceans. The staff and the research activities are nearly evenly divided between engineering and scientific endeavors. The Laboratory contributes engineering design skills to aircraft and ground based experiments in terrestrial and atmospheric sciences in cooperation with scientists from labs in Earth sciences.
77 FR 8810 - Availability of Seats for the Gray's Reef National Marine Sanctuary Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... Sanctuary Advisory Council: Sport diving and charter/commercial fishing. Applicants are chosen based upon..., Council Coordinator ( [email protected] , 10 Ocean Science Circle, Savannah, GA 31411; 912-598-2381..., Council Coordinator ( [email protected] , 10 Ocean Science Circle, Savannah, GA 31411; 912-598-2381...
77 FR 27719 - Availability of Seats for the Gray's Reef National Marine Sanctuary Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
...: sport fishing, conservation and charter/commercial fishing. Applicants are chosen based upon their..., Council Coordinator ( [email protected] , 10 Ocean Science Circle, Savannah, GA 31411; 912-598-2381..., Council Coordinator ( [email protected] , 10 Ocean Science Circle, Savannah, GA 31411; 912-598-2381...
NASA Astrophysics Data System (ADS)
Cowles, S.; Collier, R.; Torres, M. K.
2004-12-01
Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing learning activities that link ocean sciences with real-life issues relevant to employment, environment and economic concerns.
NASA Astrophysics Data System (ADS)
Tankersley, R. A.; Windsor, J. G.; Briceno, K. V.
2016-02-01
Recognizing the need for scientists to engage and communicate more effectively with the public, the Florida Center for Ocean Sciences Education Excellence (COSEE Florida) created an opportunity to connect the two through film. The Ocean 180 Video Challenge taps into the competitive spirit of scientists and encourages them to submit short, 3-minute video abstracts summarizing the important findings of recent peer-reviewed papers and highlighting the relevance, meaning, and implications of the research to persons outside their discipline. Although the videos are initially screened and evaluated by a team of science and communication experts, the winners (from a field of ten finalists) are selected by middle school students in classrooms all over the world. Since its inception in 2013, Ocean 180 has grown in popularity, with more than 38,000 middle school students from 1,637 classrooms in 21 countries participating as judges. Results of a Draw-a-Scientist Test administered during the 2015 competition indicate Ocean 180 is an successful intervention that has a positive impact on students' views of science, including their perception and attitudes toward scientists and science careers. Thus, our presentation will discuss how video competitions can serve as effective outreach strategies for encouraging scientists to share new discoveries and their enthusiasm for science with K-12 students. We will also highlight the outcomes and lessons-learned from the 2014 and 2015 competitions, including (1) strategies for recruiting teachers and students to participate as judges, (2) approaches used by educators to align the content of videos with state and national science standards, and (3) ways contest videos can be integrated into science training and professional development programs, including workshops focusing on effective video storytelling techniques.
NASA Astrophysics Data System (ADS)
Fauville, Géraldine
2017-11-01
In this article, 61 high-school students learned about ocean acidification through a virtual laboratory followed by a virtual lecture and an asynchronous discussion with a marine scientist on an online platform: VoiceThread. This study focuses on the students' development of ocean literacy when prompted to ask questions to the scientist. The students' questions were thematically analysed to assess (1) the kind of reasoning that can be discerned as premises of the students' questions and (2) what possibilities for enhancing ocean literacy emerge in this instructional activity. The results show how interacting with a scientist gives the students an entry point to the world of natural sciences with its complexity, uncertainty and choices that go beyond the idealised form in which natural sciences often are presented in school. This activity offers an affordable way of bringing marine science to school by providing extensive expertise from a marine scientist. Students get a chance to mobilise their pre-existing knowledge in the field of marine science. The holistic expertise of the marine scientist allows students to explore and reason around a very wide range of ideas and aspect of natural sciences that goes beyond the range offered by the school settings.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Suzuki, T.; Ikehara, M.; Horie, K.; Takehara, M.; Abd-Elmonem, H.; Dawoud, A. D. M.; El-Hasan, M. M.
2017-12-01
El-Dabbah area Central Eastern Desert of the Nubia Shield preserved Neoproterozoic lower green schist faces volcaniclastics greenstone sequence and covered strike-slip deformation related subaerial sedimentary sequence (Hammamat Group). The volcaniclastics greenstone sequence (El-Dabbah Formation) preserved several iron beds bearing well stratified sequence. Four tectonic deformation identified as this area; thrust deformation (D1), strike-slip deformation with transtension normal fault and strong left-lateral shear (D2), subaerial pull apart sediments basin formed strike-slip deformations (D3), and extensional deformation after the Hammamat Group sedimentation (D4). New age data from intrusions identified about 638 Ma white granite and about 660 Ma quartz porphyry. Based on the detail mapping, we reconstruct more than 5000m thick volcano sedimentary succession. At least, 10 iron rich sections were identified within 3500m thick volcano-sedimentary sequence. There are 14 iron formation sequence identified in this greenstone sequence. Each Iron sequences are bedded with greenish-black shales within massive volcaniclastics and lava flow. Iron formation is formed mostly fine grain magnetite deposited within volcanic mudstone and siltstone with gradual distribution. Timing of this iron sediment is identified within Sturtian glaciation (730-700Ma). However, there is no geological direct support evidence in the Snowball earth event at this greenstone sequence. The volcanic activities at this ocean already produced many Fe2+ to ocean water. Repeated iron precipitation occur during volcanic activity interphase period which produced oxidation of iron and produce oxyhydroxide with mud-silt sediment at bottom of ocean.
Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy
NASA Astrophysics Data System (ADS)
Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia
2017-04-01
Beginning with confirmation of sea floor spreading in Leg 3 of the Deep Sea Drilling Project in 1968, scientific ocean drilling has provided much of the evidence supporting modern understanding of the Earth System, global climate changes, and many other important concepts. But for more than three decades, results of discoveries were published primarily in scientific journals and cruise volumes. On occasion, science journalists would write articles for the general public, but organized educational outreach efforts were rare. Starting about a decade ago, educators were included in the scientific party aboard the JOIDES Resolution. These "teachers-at-sea" developed formats to translate the technical and scientific activities into language understandable to students, teachers, and the public. Several "Schools of Rock" have enabled groups of teachers and informal science educators to experience what happens aboard the JOIDES Resolution. Over the past few years, educational outreach efforts based on scientific drilling expanded to create a large body of resources that promote Ocean Science Literacy. Partnerships between scientists and educators have produced a searchable database of inquiry-centered classroom and informal science activities. These are available for free through the JOIDES Resolution website, joidesresolution.org. Activities are aligned with the Ocean Literacy Principles (http://oceanliteracy.wp2.coexploration.org/) and Science Education Standards. In addition to a suite of lessons based on the science behind scientific drilling, participants have developed a range of educational resources that include graphic novels ("Tales of the Resolution" (http://joidesresolution.org/node/263) ; children's books ("Uncovering Earth's Secrets" and "Where the Wild Microbes Grow" http://joidesresolution.org/node/2998); posters, videos, and other materials. Cooper and Kurtz are currently overseeing improvements and revisions to the JR education website pages. The International Ocean Discovery Program continues to offer annual School of Rock professional development workshops to which educators can apply for participation. During these all-expense paid experiences, they learn about IODP science and develop new activities for their audiences. Cicconi and Passow will describe their experiences during some of these programs. European teachers have also participated in "teacher-at-sea" programs sponsored by ECORD aboard the JOIDES Resolution. Burgio participated in Expedition 360 from December 2015 to the end of January 2016 (http://joidesresolution.org/node/4253). This cruise focused on the global effort to drill to the Moho through the Southwest Indian Ridge. As they drilled down to the Moho, scientists obtained new discoveries about life in the crust, interactions between water and rocks, and magmatic processes that build the oceanic crust at very slow spreading ridges. The Education Officers team used a panel of strategies to communicate during the efforts during their two months onboard. She used social media and live-streaming to share the last discoveries about the oceanic crust with students all over the world. Additional materials have been created by teachers and other non-science participants from many countries across the globe. Educational outreach programs associated with scientific ocean drilling provide effective opportunities to enhance Ocean Science Literacy.
NASA Astrophysics Data System (ADS)
Gilligan, M. R.; Cox, T. M.; Hintz, C. J.
2011-12-01
Formal support for undergraduates to participate in marine/ocean science research at Savannah State University (SSU), a historically-Black unit of the University System of Georgia, began in 1989 with funding from the National Science Foundation for an unsolicited proposal (OCE-8919102, 34,935). Today SSU, which has offered B.S degrees since 1979 and M.S. degrees since 2001 in Marine Sciences, is making major contributions nationally to demographic diversity in ocean sciences. 33% of Master's degrees in marine/ocean sciences earned by African Americans in the U.S. from 2004-2007 were earned at SSU. 10% of African American Master's and Doctoral students in marine/ ocean sciences in 2007 were either enrolled in the Master's program at SSU or were former SSU students enrolled in Doctoral programs elsewhere. Collaborative REU programs that focus on early (freshman and sophomore) undergraduate students have been a consistent and vital part of that success. In the most recent iteration of our summer REU program we used six of the best practices outlined in the literature to increase success and retention of underrepresented minority students in STEM fields: early intervention, strong mentoring, research experience, career counseling, financial support, workshops and seminars. The early intervention with strong mentoring has proven successful in several metrics: retention in STEM majors (96%), progression to graduate school (50%), and continuation to later research experiences (75%). Research mentors include faculty at staff at SSU, the Skidaway Institute of Oceanography, Gray's Reef National Marine Sanctuary and Georgia Tech-Savannah. Formal collaborative and cooperative agreements, externally-funded grants, and contracts in support of student research training have proven to be critical in providing resources for growth and improvement marine science curricular options at the University. Since 1981 the program has had four formal partnerships and 36 funded grant awards and contracts totaling 11.7 million. HBCUs are disproportionately more effective in training significant numbers of African American students in the sciences. Although they enrolled only 11.1% of African-American undergraduates and 9.4% of African American graduate students in fall 2007 in the U.S., they awarded 33.3% of undergraduate and 24% of master's degrees earned by African-Americans in Biological, biomedical and, physical sciences, and science technologies in 2006 and 2007. Commitments to the development of non-traditional academic and research programs at HBCUs and other minority serving institutions should be expanded to increase demographic diversity in the ocean sciences.
NASA Astrophysics Data System (ADS)
Mayo, M.; Williams, C.; Rodriguez, T.; Greely, T.; Pyrtle, A. J.; Rivera-Rentas, A. L.; Vilches, M.
2004-12-01
The National Science Foundation's Graduate Teaching Fellows in K-12 Education (GK-12) Program has enabled science, technology, engineering and mathematics (STEM) graduate schools across the country to become more active in local area K-12 schools. An overview of a graduate student's experiences, insights gained and lessons learned as a Fellow in the 2003-2004 Universidad Metropolitana's (UMET) environmental science and the 2004-2005 University of South Florida's (USF) ocean science GK-12 Programs is presented. The major goals of the 2003-2004 UMET GK-12 Program were 1) to enrich environmental science teaching and learning via a thematic approach in eight local public schools and 2) to provide UMET graduate students with exposure to teaching methodologies and practical teaching experience. Utilizing examples from local environments in and nearby Carolina, Puerto Rico to teach key science principles at Escuela de la Comunidad Juana Rodriguez Mundo provided numerous opportunities to relate science topics to students' daily life experiences. By 2004, the UMET GK-12 Program had successfully engaged the entire student body (primarily comprised of bilingual minority kindergarten to sixth graders), teachers and school administrators in environment-focused teaching and learning activities. Examples of such activities include tree planting projects to minimize local erosion, conducting a science fair for the first time in many years, and numerous opportunities to experience what "real scientists do" while conducting environmental science investigations. During the 2004-2005 academic year, skills, insights and lessons learned as a UMET GK-12 Fellow are being further enhanced through participation in the USF GK-12 OCEANS Program. The overall objectives of the 2004-2005 USF GK-12 OCEANS assignment at Madeira Beach Elementary School in Saint Petersburg, Florida are to 1) engage students from various ethnic backgrounds and cultures in hands-on science activities, 2) enhance the school's third grade ocean science education curriculum, and 3) foster dialog between students at Madeira Beach Elementary School and Escuela de la Comunidad Juana Rodriguez Mundo, via exchange of pictures, video recordings, letters and emails related to environment-focused learning activities being undertaken at the two schools. In addition to these objectives, during the 2004-2005 academic year several ocean science-focused activities, the majority of which were adapted and/or identified from either the UMET GK-12 or USF OCEAN GK-12 Programs, will be utilized to further stimulate Madeira Beach Elementary School third graders' critical thinking skills. Examples of such activities, including hands-on exercises, case studies, games and field trips are highlighted in this presentation.
NASA Astrophysics Data System (ADS)
Plumley, F. G.; Sathyendranath, S.; Frouin, R.; Knap, T.
2008-05-01
Building on previous experience in capacity building for ocean observations, the Nippon Foundation (NF) and the Partnership for Observations of the Global Oceans (POGO) have announced a new Centre of Excellence (C of E) at the Bermuda Institute of Ocean Sciences (BIOS). The goals of the C of E are to expand the world-wide capacity and expertise to observe the oceans and to expand capacity-building projects and promote international collaboration and networking in ocean sciences. Over the past 104 years, BIOS has built a global reputation in blue-water oceanography, coral reef ecology, and the relationships between ocean health and human health coupled with high quality education programmes that provide direct, hands-on experience with BIOS-based research. The C of E at BIOS will build upon this model to establish a new, graduate-level education and training programme in operational oceanography. The 10 month Programme will offer course modules in ocean disciplines with a focus on observatory sciences complemented by hands-on training in observational methods and techniques based on the multi-disciplinary expertise of BIOS and BIOS-affiliated scientists who direct ongoing, ocean observational programmes such as: - Hydrostation S, since 1954; - Bermuda Atlantic Time-series Study, since 1988; - Oceanic Flux Program sediment trap time-series, since 1978; - Bermuda Test-Bed and Science Mooring, since 1994; - Bermuda Microbial Observatory, since 1997; - Bermuda Bio-Optics Program, since 1992; - Atmospheric chemistry and air-sea fluxes, since 1990 Additional areas of BIOS research expertise will be incorporated in the C of E to broaden the scope of education and training. These include the nearshore observational network of the BIOS Marine Environmental Program and the environmental air-water chemistry network of the Bermuda Environmental Quality Program. A key resource of the C of E is the newly acquired 168 ft. research vessel, the RV Atlantic Explorer, which was specifically designed to provide for ocean research and education (e.g., sufficient berths for scientists and the NF- POGO Scholars; an education-specific classroom). The Atlantic Explorer will serve as a unique platform for the NF-POGO Scholars to gain hands-on, at-sea experience as participants on all scheduled research cruises. The NF-POGO Scholars will take courses that focus on the theoretical and policy side of observational oceanography and participate in a Core Skills module that emphasizes numeracy, data analysis, science management, and written and oral scientific communication. There will be one Regional Training Programme for a Developing Country each year, focused on local issues and how to resolve them. The course is open to 10 participants from developing countries (or countries with economies in transition). NF- POGO Scholars must have at least a first degree in science. Preference will be given to applicants who currently hold a position in a research or academic institution in a developing country and anticipate returning to the country after the training period. Candidates must demonstrate immediate relevance of their training to on-going or planned ocean observations in their home country.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Ito, T.; Frank, N. K.; George, T. M.
2014-12-01
The Birimian greenstone belt likely formed through collision between the West African and Congo Cratons ~2.2 Ga. Accreted greenstone belts that formed through collision especially during the Palaeoproterozoic are usually not only good targets for preservation of oceanic sedimentary sequences but also greatly help understand the nature of the Paleoproterozoic deeper oceanic environments. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Axim-Konongo (Ashanti) greenstone belt in Ghana where excellently preserved Paleoprotrozoic deeper oceanic sedimentary sequences extensively outcrop. The Birimian greenstone belt in both the Birimian rock (partly Sefwi Group) and Ashanti belts are separated from the Tarkwaian Group which is a paleoplacer deposit (Perrouty et al., 2012). The Birimian rock was identified as volcanic rich greenstone belt; Kumasi Group is foreland basin with shale and sandstone, quartzite and turbidite derived from 2.1 Ga granite in the Birimian; Tarkwaian Group is composed of coarse detrital sedimentary rocks deposited along a strike-slip fault in the Birimian. In the eastern part of the Cape Three Point area, over 4km long of volcanic-sedimentary sequence outcrops and is affected by greenschist facies metamorphism. Four demarcated zones along the coast as Kutike, Atwepo, Kwtakor and Akodaa zones. The boundaries of each zone were not observed, but each zone displays a well preserved and continuous sedimentary sequence. Structurally, this region is west vergent structure and younging direction to the East. Kutike zone exhibits synform structure with S0 younging direction. Provisional stratigraphic columns in all the zones total about 500m thick. Kutike, Atwepo zones (> 200m thick) have coarsening upward characteristics from black shale to bedded volcanic sandstone. Kwtakor zone (> 150m) is the thickest volcaniclastic sequence and has fining upward sections. Akodaa zone (> 150m) consists of finer bed of volcaniclastics with black shales and has fining upward character. This continuous sequence indicate distal portion of submarine volcaniclastic section in an oceanic island arc between the West African and Congo Cratons.
NASA Technical Reports Server (NTRS)
Meeson, Blanche
2006-01-01
The coming ocean observing systems provide an unprecedented opportunity to change both the public perception of our oceans, and to inspire, captivate and motivate our children, our young adults and even our fellow adults to pursue careers allied with the oceans and to become stewards of our Planet's last unexplored environment. Education plans for the operational component, the Integrated Ocean Observing System (IOOS), and for the research component, Ocean Research Interactive Observatory Networks (ORION), are designed to take advantage of this opportunity. In both cases, community recommendations were developed within the context of the following assumptions: 1. Utilize research on how people learn, especially the four-pronged model of simultaneous learner-centered, knowledge-center, assessment-centered and community-centered learning 2. Strive for maximum impact on national needs in science and technology learning 3. Build on the best of what is already in place 4. Pay special attention to quality, sustainability, and scalability of efforts 5. Use partnerships across federal, state and local government, academia, and industry. Community recommendations for 100s and ORION education have much in common and offer the opportunity to create a coherent education effort allied with ocean observing systems. Both efforts focus on developing the science and technology workforce of the future, and the science and technology literacy of the public within the context of the Earth system and the role of the oceans and Great Lakes in that system. Both also recognize that an organized education infrastructure that supports sustainability and scalability of education efforts is required if ocean observing education efforts are to achieve a small but measurable improvement in either of these areas. Efforts have begun to develop the education infrastructure by beginning to form a community of educators from existing ocean and aquatic education networks and by exploring needs and issues associated with using ocean observing information assets in education. Likewise efforts are underway to address workforce issues by a systematic analysis of current and future workforce and educational needs. These activities will be described as will upcoming opportunities for the community to participate in these efforts.
Novel lineages of Prochlorococcus and Synechococcus in the global oceans.
Huang, Sijun; Wilhelm, Steven W; Harvey, H Rodger; Taylor, Karen; Jiao, Nianzhi; Chen, Feng
2012-02-01
Picocyanobacteria represented by Prochlorococcus and Synechococcus have an important role in oceanic carbon fixation and nutrient cycling. In this study, we compared the community composition of picocyanobacteria from diverse marine ecosystems ranging from estuary to open oceans, tropical to polar oceans and surface to deep water, based on the sequences of 16S-23S rRNA internal transcribed spacer (ITS). A total of 1339 ITS sequences recovered from 20 samples unveiled diverse and several previously unknown clades of Prochlorococcus and Synechococcus. Six high-light (HL)-adapted Prochlorococcus clades were identified, among which clade HLVI had not been described previously. Prochlorococcus clades HLIII, HLIV and HLV, detected in the Equatorial Pacific samples, could be related to the HNLC clades recently found in the high-nutrient, low-chlorophyll (HNLC), iron-depleted tropical oceans. At least four novel Synechococcus clades (out of six clades in total) in subcluster 5.3 were found in subtropical open oceans and the South China Sea. A niche partitioning with depth was observed in the Synechococcus subcluster 5.3. Members of Synechococcus subcluster 5.2 were dominant in the high-latitude waters (northern Bering Sea and Chukchi Sea), suggesting a possible cold-adaptation of some marine Synechococcus in this subcluster. A distinct shift of the picocyanobacterial community was observed from the Bering Sea to the Chukchi Sea, which reflected the change of water temperature. Our study demonstrates that oceanic systems contain a large pool of diverse picocyanobacteria, and further suggest that new genotypes or ecotypes of picocyanobacteria will continue to emerge, as microbial consortia are explored with advanced sequencing technology.
Trends and frontiers for the science and management of the oceans.
Mumby, Peter J
2017-06-05
People have an enduring fascination with the biology of the oceans. When the BBC's 'Blue Planet' series first aired on British television almost a quarter of the nation tuned in. As the diversity of science in this special issue of Current Biology attests, the ocean presents a challenging environment for study while also exhibiting some of the most profound and disruptive symptoms of global change. Marine science has made major advances in the past few decades, which were primarily made possible through important technological innovations. This progress notwithstanding, there are persistent challenges in achieving an understanding of marine processes at appropriate scales and delivering meaningful insights to guide ocean policy and management. Naturally, the examples chosen below betray my ecological leanings, but I hope that many of the issues raised resonate with readers in many different disciplines. Copyright © 2017 Elsevier Ltd. All rights reserved.
76 FR 64329 - Meeting of the Ocean Research and Resources Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... for Ocean Leadership, 1201 New York Avenue, NW., 4th Floor, Washington DC 20005. FOR FURTHER... discussions on ocean research, resource management, and other current issues in the ocean science and management communities. Dated: October 11, 2011. J.M. Beal, Lieutenant Commander, Office of the Judge...
76 FR 13999 - Meeting of the Ocean Research and Resources Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
..., and other current issues in the ocean science and management communities; including, the review and... DEPARTMENT OF DEFENSE Department of the Navy Meeting of the Ocean Research and Resources Advisory Panel AGENCY: Department of the Navy, DoD. ACTION: Notice of open meeting. SUMMARY: The Ocean Research...
Earth and space science - Oceans
NASA Technical Reports Server (NTRS)
Stewart, R. H.
1983-01-01
Satellite observations of the oceans are now being used to obtain new information about the oceanic geoid, currents, winds, tides and the interaction of the ocean with the atmosphere. In addition, satellites routinely relay information from the sea surface to laboratories on land, and determine the position of instruments drifting on the sea surface.
76 FR 22083 - Meeting of the Ocean Research and Resources Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... other current issues in the ocean science and management communities; including, the review and... DEPARTMENT OF DEFENSE Department of the Navy Meeting of the Ocean Research and Resources Advisory Panel AGENCY: Department of the Navy, DoD. ACTION: Notice of open meeting. SUMMARY: The Ocean Research...
NASA Astrophysics Data System (ADS)
Polat, Ali; Kerrich, Robert
2000-01-01
An extensive database, including Th-;U-Nb-REE systematics, for diverse magmatic and sedimentary lithologies of 2.7 Ga Wawa greenstone belts provide new constraints on the mechanism of crustal growth in the southern Superior Province, and controls on its composition. The greenstone belts are characterized by collages of oceanic plateaus, oceanic island arcs, and trench turbidites; these lithotectonic fragments were tectonically assembled in a large subduction-accretion complex. Following juxtaposition, these diverse lithologies were collectively intruded by syn-kinematic TTG (tonalite-trondhjemite-granodiorite) plutons and ultramafic to felsic dykes and sills, with subduction zone geochemical signatures. Intra-oceanic basalts are characterized by near-flat REE patterns, and Nb/U and Nb/Th ratios generally greater than primitive mantle values, consistent with positive ɛNd values. They are associated with komatiites, the association being interpreted as an ocean plateau sequence erupted from a mantle plume. Bimodal arc volcanic sequences, trench turbidites, and contemporaneous TTG suites are characterized by fractionated REE, with Nb/U and Nb/Th ratios less than primitive mantle values. Mixing hyperbolae between oceanic plateau and magmatic arc sequences pass through the estimated composition of bulk continental crust, suggesting that crustal growth in the late Archean was by tectonic, sedimentary, and chemical mixing of oceanic plateau and arc sequences at convergent plate boundaries. Mixing calculations suggest that oceanic plateau and subduction zone components in the Wawa continental crust are represented by 6-12% and 88-94%, respectively. High Nb/U and Nb/Th ratios of plateau tholeiitic basalts are interpreted as a complementary reservoir to arc magmatism (low Nb/U and Nb/Th), hundreds of millions of years prior to recycling of oceanic lithosphere through a subduction zone (high Nb/U, Nb/Th), and its incorporation into a mantle plume from which 2.7 Ga plateau tholeiites erupted. The variably high Nb/U ratios of the plateau basalts are consistent with early extraction of large quantities of the protoliths (magmatic precursor) of continental crust from the southern Superior Province asthenospheric mantle.
Critical Infrastructure for Ocean Research and Societal Needs in 2030
NASA Astrophysics Data System (ADS)
Glickson, D.; Barron, E. J.; Fine, R. A.; Bellingham, J. G.; Boss, E.; Boyle, E. A.; Edwards, M.; Johnson, K. S.; Kelley, D. S.; Kite-Powell, H.; Ramberg, S. E.; Rudnick, D. L.; Schofield, O.; Tamburri, M.; Wiebe, P. H.; Wright, D. J.; Committee on an Ocean Infrastructure StrategyU. S. Ocean Research in 2030
2011-12-01
At the request of the Subcommittee on Ocean Science and Technology, an expert committee was convened by the National Research Council to identify major research questions anticipated to be at the forefront of ocean science in 2030, define categories of infrastructure that should be included in planning, provide advice on criteria and processes that could be used to set priorities, and recommend ways to maximize the value of investments in ocean infrastructure. The committee identified 32 future ocean research questions in four themes: enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions reflect challenging, multidisciplinary science questions that are clearly relevant now and are likely to take decades to solve. U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations and autonomous monitoring at a broad range of spatial and temporal scales. A coordinated national plan for making future strategic investments will be needed and should be based upon known priorities and reviewed every 5-10 years. After assessing trends in ocean infrastructure and technology development, the committee recommended implementing a comprehensive, long-term research fleet plan in order to retain access to the sea; continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. They also recommended that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit. Particular consideration should be given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. Estimating the economic costs and benefits of each potential infrastructure investment using these criteria would allow funding of investments that produce the largest expected net benefit over time.
Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean
2010-06-01
meridional transport of heat (Hoskins and Valdes, 1990). Formation of North Atlantic Subtropical Mode Water is thought to take place during the...North Atlantic Ocean MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...Oceanographic Institution MITIWHOI 2010-16 Near-inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean by
Imagine...Opportunities and Resources for Academically Talented Youth.
ERIC Educational Resources Information Center
Hartman, Melissa E., Ed.
2000-01-01
These five issues of a magazine designed for highly gifted and talented secondary students address marine science, anthropology and archaeology, making the most of summer, medicine and health sciences, and the World Wide Web. Featured articles include: (1) "The Ocean's Call: How My Love for the Ocean Grew into a Career" (Jessica Schulman Farrar);…
Using Bibliometrics to Demonstrate the Value of Library Journal Collections
ERIC Educational Resources Information Center
Belter, Christopher W.; Kaske, Neal K.
2016-01-01
Although cited reference studies are common in the library and information science literature, they are rarely performed in nonacademic institutions or in the atmospheric and oceanic sciences. In this paper, we analyze more than 400,000 cited references made by authors affiliated with the National Oceanic and Atmospheric Administration between…
Seasat--A 25-Year Legacy of Success
NASA Technical Reports Server (NTRS)
Evans, Diane L.; Alpers, Werner; Cazenave, Anny; Elachi, Charles; Farr, Tom; Glackin, David; Holt, Benjamin; Jones, Linwood; Liu, W. Timothy; McCandless, Walt;
2005-01-01
Thousands of scientific publications and dozens of textbooks include data from instruments derived from NASA's Seasat. The Seasat mission was launched on June 26, 1978, on an Atlas-Agena rocket from Vandenberg Air Force Base. It was the first Earth-orbiting satellite to carry four complementary microwave experiments--the Radar Altimeter (ALT) to measure ocean surface topography by measuring spacecraft altitude above the ocean surface; the Seasat-A Satellite Scatterometer (SASS), to measure wind speed and direction over the ocean; the Scanning Multichannel Microwave Radiometer (SMMR) to measure surface wind speed, ocean surface temperature, atmospheric water vapor content, rain rate, and ice coverage; and the Synthetic Aperture Radar (SAR), to image the ocean surface, polar ice caps, and coastal regions. While originally designed for remote sensing of the Earth's oceans, the legacy of Seasat has had a profound impact in many other areas including solid earth science, hydrology, ecology and planetary science.
SUBMERGE! bringing the ocean closer to New York City
NASA Astrophysics Data System (ADS)
Rosengard, S.; Alexander, H.; Cramer, C.
2016-02-01
The annual SUBMERGE!-NYC marine science festival started in October 2014 as an effort to bring the ocean closer to the millions who live and work in the great estuary that is New York City. Organized by the Hudson River Park and the New York Hall of Science, the event brings together oceanography groups, musicians, and food vendors with distinct connections to the coastal ocean and the Hudson River estuary. Oceanography groups can either participate in the festival by giving a science talk during a specific time slot, or presenting science stations to teach concepts through a more interactive, exhibition-type format. Here, we discuss the experiences of graduate students from Woods Hole Oceanographic Institution who created a biological pump-themed science station for the first and second SUBMERGE! festivals (2014 and 2015). We will explore strategies for communicating different processes of the biological pump and its global significance for the oceans and climate. This festival-style setting also presents unique challenges in transferring knowledge, including how to evaluate successful transfer of knowledge. The festival is free and open to the public; the first year drew an audience of 4500, half of which were adults over 30 years old and a third of which were children under 11 years old. Therefore, SUBMERGE! provides an opportunity for graduate students to contribute to the ocean literacy of thousands of New Yorkers as well as a unique experience for graduate students to develop their skills in talking to the public.
NASA Astrophysics Data System (ADS)
Kochevar, R. E.; Krumhansl, R.; Louie, J.; Aluwihare, L.; Bardar, E. W.; Hirsch, L.; Hoyle, C.; Krumhansl, K.; Madura, J.; Mueller-Northcott, J.; Peach, C. L.; Trujillo, A.; Winney, B.; Zetterlind, V.
2015-12-01
Ocean Tracks is a Web-based interactive learning experience which allows users to explore the migrations of marine apex predators, and the way their behaviors relate to the physical and chemical environment surrounding them. Ocean Tracks provides access to data from the Tagging of Pelagic Predators (TOPP) program, NOAA's Global Drifter Program, and Earth-orbiting satellites via the Ocean Tracks interactive map interface; customized data analysis tools; multimedia supports; along with laboratory modules customized for undergraduate student use. It is part of a broader portfolio of projects comprising the Oceans of Data Institute, dedicated to transforming education to prepare citizens for a data-intensive world. Although originally developed for use in high school science classrooms, the Ocean Tracks interface and associated curriculum has generated interest among instructors at the undergraduate level, who wanted to engage their students in hands-on work with real scientific datasets. In 2014, EDC and the Scripps Institution of Oceanography received funding from NSF's IUSE program for Ocean Tracks: College Edition, to investigate how a learning model that includes a data interface, set of analysis tools, and curricula can be used to motivate students to learn and do science with real data; bringing opportunities to engage broad student populations, including both in-classroom and remote, on-line participants, in scientific practice. Phase 1, completed in the summer of 2015, was a needs assessment, consisting of a survey and interviews with students in oceanography classes at the Scripps Institution of Oceanography and Palomar Community College; a document review of course syllabi and primary textbooks used in current college marine science courses across the country; and interviews and a national survey of marine science faculty. We will present the results of this work, and will discuss new curriculum materials that are being classroom tested in the fall of 2015.
NASA Astrophysics Data System (ADS)
Farnsworth, K. L.; House, M.; Hovan, S. A.
2013-12-01
A recent workshop sponsored by SERC-On the Cutting Edge brought together science educators from a range of schools across the country to discuss new approaches in teaching oceanography. In discussing student interest in our classes, we were struck by the fact that students are drawn to emotional or controversial topics such as whale hunting and tsunami hazard and that these kinds of topics are a great vehicle for introducing more complex concepts such as wave propagation, ocean upwelling and marine chemistry. Thus, we have developed an approach to introductory oceanography that presents students with real-world issues in the ocean sciences and requires them to explore the science behind them in order to improve overall ocean science literacy among non-majors and majors at 2 and 4 year colleges. We have designed a project-based curriculum built around topics that include, but are not limited to: tsunami hazard, whale migration, ocean fertilization, ocean territorial claims, rapid climate change, the pacific trash patch, overfishing, and ocean acidification. Each case study or project consists of three weeks of class time and is structured around three elements: 1) a media analysis; 2) the role of ocean science in addressing the issue; 3) human impact/response. Content resources range from textbook readings, popular or current print news, documentary film and television, and data available on the world wide web from a range of sources. We employ a variety of formative assessments for each case study in order to monitor student access and understanding of content and include a significant component of in-class student discussion and brainstorming guided by faculty input to develop the case study. Each study culminates in summative assessments ranging from exams to student posters to presentations, depending on the class size and environment. We envision this approach for a range of classroom environments including large group face-to-face instruction as well as hybrid and fully online courses.
Exploring the Oceans With OOI and IODP: A New Partnership in Education and Outreach
NASA Astrophysics Data System (ADS)
Gröschel, H.; Robigou, V.; Whitman, J.; Jagoda, S. K.; Randle, D.
2003-12-01
The Ocean Observatories Initiative (OOI), a new program supported by the National Science Foundation (NSF), will investigate ocean and Earth processes using deep-sea and coastal observatories, as well as a lithospheric plate-scale cabled observatory that spans most of the geological and oceanographic processes of our planet. October 2003 marked the beginning of the Integrated Ocean Drilling Program (IODP), the third phase of a scientific ocean drilling effort known for its international cooperation, multidisciplinary research, and technological innovation. A workshop exploring the scientific, technical, and educational linkages between OOI and IODP was held in July 2003. Four scientific thematic groups discussed and prioritized common goals of the two programs, and identified experiments and technologies needed to achieve these objectives. The Education and Outreach (E&O) group attended the science sessions and presented seed ideas on activities for all participants to discuss and evaluate. A multidisciplinary dialogue between E&O facilitators, research scientists, and technology specialists was initiated. OOI/IODP participants support the recommendation of the IODP Education Workshop (May 2003) that the IODP and US Science Support Program (USSSP)-successor program have clear commitments to education and outreach. Specific organizational recommendations for OOI/IODP are: (1) E&O should have equal status with science and engineering in the OOI management/planning structure, and enjoy adequate staffing at a US program office; (2) an E&O Advisory Committee of scientists, engineers, technology experts, and educators should be established to develop and implement a viable, vibrant E&O plan; (3) E&O staff and advisors should (a) provide assistance to researchers in fulfilling E&O proposal requirements from preparation to review stages, (b) promote submittal of proposals to government agencies specifically for OOI/IODP-related E&O activities, and (c) identify and foster partners, networks, and funding opportunities. Specific E&O strategies include: (1) present observatory science and ocean drilling content, and the sense of discovery and international cooperation unique to OOI/IODP, to a broad audience; (2) develop and maintain an effective website with distinct resources for K-20 educators, students, and the public; (3) provide pre-service, in-service, and in-residence programs for K-12 teachers that are synergistic with national and local education standards; (4) focus K-12 education efforts on middle school students in grades 5-8; (5) continue and expand existing, successful Ocean Drilling Program activities for undergraduate and graduate students and educators; and (6) try to avoid redundancy with existing E&O efforts within the ocean sciences community by adopting successful models and exploring partnership opportunities with other NSF-funded ocean science education centers and initiatives.
Comparison of Deep-Water Viromes from the Atlantic Ocean and the Mediterranean Sea
Winter, Christian; Garcia, Juan A. L.; Weinbauer, Markus G.; DuBow, Michael S.; Herndl, Gerhard J.
2014-01-01
The aim of this study was to compare the composition of two deep-sea viral communities obtained from the Romanche Fracture Zone in the Atlantic Ocean (collected at 5200 m depth) and the southwest Mediterranean Sea (from 2400 m depth) using a pyro-sequencing approach. The results are based on 18.7% and 6.9% of the sequences obtained from the Atlantic Ocean and the Mediterranean Sea, respectively, with hits to genomes in the non-redundant viral RefSeq database. The identifiable richness and relative abundance in both viromes were dominated by archaeal and bacterial viruses accounting for 92.3% of the relative abundance in the Atlantic Ocean and for 83.6% in the Mediterranean Sea. Despite characteristic differences in hydrographic features between the sampling sites in the Atlantic Ocean and the Mediterranean Sea, 440 virus genomes were found in both viromes. An additional 431 virus genomes were identified in the Atlantic Ocean and 75 virus genomes were only found in the Mediterranean Sea. The results indicate that the rather contrasting deep-sea environments of the Atlantic Ocean and the Mediterranean Sea share a common core set of virus types constituting the majority of both virus communities in terms of relative abundance (Atlantic Ocean: 81.4%; Mediterranean Sea: 88.7%). PMID:24959907
U.S. and U.S.S.R agree on ocean research
NASA Astrophysics Data System (ADS)
Ostenso, Ned A.
On June 1, 1990, George Bush and Mikhail S. Gorbachev signed a renegotiated bilateral agreement for cooperation in oceanographic research. The original agreement for “Studies of the World Ocean,” signed in 1972, did not provide for the protection of intellectual property. The new agreement is administered by executive secretaries from both countries working under the U.S.-U.S.S.R. Joint Committee on Cooperation in Ocean Studies. The committee held its first meeting in Moscow September 14-17, 1990, at the headquarters of the U.S.S.R. State Committee for Science and Technology (GKNT).The U.S. delegation was led by John A. Knauss, undersecretary of commerce for oceans and atmosphere and administrator of the National Oceanic and Atmospheric Administration (NOAA), and included Ned A. Ostenso, executive secretary of the agreement; Thomas E. Murray, NOAA; M. Grant Gross, National Science Foundation; Robert S. Winokur, U.S. Navy; Bonnie McGregor Stubblefield, U.S. Geological Survey; William S. Busch, Office of Science and Technology Policy; and William A. Erb, Eric Green, and Sidney Smith, Department of State.
Facing Climate Change: Connecting Coastal Communities with Place-Based Ocean Science
NASA Astrophysics Data System (ADS)
Pelz, M.; Dewey, R. K.; Hoeberechts, M.; McLean, M. A.; Brown, J. C.; Ewing, N.; Riddell, D. J.
2016-12-01
As coastal communities face a wide range of environmental changes, including threats from climate change, real-time data from cabled observatories can be used to support community members in making informed decisions about their coast and marine resources. Ocean Networks Canada (ONC) deploys and operates an expanding network of community observatories in the Arctic and coastal British Columbia, which enable communities to monitor real-time and historical data from the local marine environment. Community observatories comprise an underwater cabled seafloor platform and shore station equipped with a variety of sensors that collect environmental data 24/7. It is essential that data being collected by ONC instruments are relevant to community members and can contribute to priorities identified within the community. Using a community-based science approach, ONC is engaging local parties at all stages of each project from location planning, to instrument deployment, to data analysis. Alongside the science objectives, place-based educational programming is being developed with local educators and students. As coastal populations continue to grow and our use of and impacts on the ocean increase, it is vital that global citizens develop an understanding that the health of the ocean reflects the health of the planet. This presentation will focus on programs developed by ONC emphasizing the connection to place and local relevance with an emphasis on Indigenous knowledge. Building programs which embrace multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking place-based knowledge to ocean science. The inclusion of Indigenous Knowledge into science-based monitoring programs also helps develop a more complete understanding of local conditions. We present a case study from the Canadian Arctic, in which ONC is working with Inuit community members to develop a snow and ice monitoring program to assist with predictions and modelling of sea-ice.
NASA Astrophysics Data System (ADS)
Good, L. H.; Erickson, A.
2016-02-01
Academic learning and research experiences alone cannot prepare our emerging ocean leaders to take on the challenges facing our oceans. Developing solutions that incorporate environmental and ocean sciences necessitates an interdisciplinary approach, requiring emerging leaders to be able to work in collaborative knowledge to action systems, rather than on micro-discipline islands. Professional and informal learning experiences can enhance graduate marine education by helping learners gain the communication, collaboration, and innovative problem-solving skills necessary for them to interact with peers at the interface of science and policy. These rich experiences can also provide case-based and hands-on opportunities for graduate learners to explore real-world examples of ocean science, policy, and management in action. However, academic programs are often limited in their capacity to offer such experiences as a part of a traditional curriculum. Rather than expecting learners to rely on their academic training, one approach is to encourage and support graduates to seek professional development beyond their university's walls, and think more holistically about their learning as it relates to their career interests. During this session we discuss current thinking around the professional learning needs of emerging ocean leaders, what this means for academic epistemologies, and examine initial evaluation outcomes from activities in our cross-campus consortium model in Monterey Bay, California. This innovative model includes seven regional academic institutions working together to develop an interdisciplinary ocean community and increase access to professional development opportunities to better prepare regional ocean-interested graduate students and early career researchers as future leaders.
Abundance of genes involved in mercury methylation in oceanic environments
NASA Astrophysics Data System (ADS)
Palumbo, A. V.; Podar, M.; Gilmour, C. C.; Brandt, C. C.; Brown, S. D.; Crable, B. R.; Weighill, D.; Jacobson, D. A.; Somenahally, A. C.; Elias, D. A.
2016-02-01
The distribution and diversity of genes involved in mercury methylation in oceanic environments is of interest in determining the source of mercury in ocean environments and may have predictive value for mercury methylation rates. The highly conserved hgcAB genes involved in mercury methylation provide an avenue for evaluating the genetic potential for mercury methylation. The genes are sporadically present in a few diverse groups of bacteria and Archaea including Deltaproteobacteria, Firmicutes and Archaea and of over 7000 sequenced species they are only present in about 100 genomes. Examination of sequence data from methylators and non-methylators indicates that these genes are associated with other genes involved in metal transformations and transport. We examined hgcAB presence in over 3500 microbial metagenomes (from all environments) and found the hgcAB genes were present in anaerobic oceanic environments but not in aerobic layers of the open ocean. The genes were common in sediments from marine, coastal and estuarine sources as well as polluted environments. The genes were rare, found in 7 of 138 samples, in metagenomes from the pelagic water column including profiles though the oxygen minimum zone. Other oxic and sub-oxic coastal waters also demonstrated a lack of hgcAB genes including the OMZ in the Eastern North Pacific Ocean. There were some unique hgcA like unique sequences found in metagenomes from depth in the Pacific and Southern Atlantic Ocean. Coastal "dead zone" waters may be important sources of MeHg as the hgcAB genes were abundant in the anoxic waters of a stratified fjord. The genes were absent in microbiomes from vertebrates but were in invertebrate microbiomes However, oceanic species were underrepresented in these samples. Climate change could provide an additional flux of MeHg to the oceans as we found the most abundant representation of hgcAB genes in arctic permafrost. Thus warming could increase flux of methyl mercury to arctic waters.
NASA Astrophysics Data System (ADS)
Sezen-Barrie, A.; Stapleton, M.; Wolfson, J.
2017-12-01
This qualitative study focuses on students evidence-based explanatory models on how ocean acidification impacts oysters. Explanatory models are the crucial components of scientific endeavors as it helps scientists explain how the natural world functions and the reasons for the ways it functions. Moreover, these models assemble individual practices to understand how they work together to reach clear conclusions through scientific investigations. Due to their critical roles in making sense of authentic science, recent studies in science education suggest that these models should be part of the curriculum aligned with new science standards, i.e. Next Generation Science Standards, which stress the importance of engaging students in scientific practices. By collecting data from 400 secondary school students in Maryland, we aim to respond to the question: How can we use secondary school students' explanatory models to provide students with constructive feedback for more comprehensive learning of ocean acidification (the related evidence, causes and impact)? The data were analyzed through discourse analysis method. We highlighted and coded students' inscriptions (e.g., drawings, writings, and representations) that are signs of students' understanding (or lack thereof) of ocean acidification. These signs included explanations of pH levels, drawings of oyster growth, and inclusions of relevant data. The findings showed that the explanatory models can be critical forms of feedback as they reveal a) students' alternative conceptions on how ocean acidification impacts oysters or how acidification works in general; b) students' interpretations of oceans' (non)connectedness to Earth system; c) the choice of scientific representations and their sources; and d) the way students' integrate evidence or data from the investigations. Our work tackles an understanding of one of the most vital signs of modern climatic changes. Recent scientific evidence shows that if the change in ocean pH becomes too extreme, many organisms may not be able to adjust to this change. Based on our findings, we suggest that teachers can use explanatory models as sources of feedback to recognize how well their students conceptualize ocean acidification, integrate scientific practices, and use cultural artifacts of doing science.
NASA Astrophysics Data System (ADS)
Schofield, O.; McDonnell, J. D.; Kohut, J. T.; Glenn, S. M.
2016-02-01
Many regions of the ocean are exhibiting significant change, suggesting the need to develop effective focused education programs for a range of constituencies (K-12, undergraduate, and general public). We have been focused on developing a range of educational tools in a multi-pronged strategy built around using streaming data delivered through customized web services, focused undergraduate tiger teams, teacher training and video/documentary film-making. Core to the efforts is on engaging the undergraduate community by leveraging the data management tools of the U.S. Integrated Ocean Observing System (IOOS) and the education tools of the U.S. National Science Foundation's (NSF) Ocean Observing Initiative (OOI). These intuitive interactive browser-based tools reduce the barriers for student participation in sea exploration and discovery, and allowing them to become "field going" oceanographers while sitting at their desk. Those undergraduate student efforts complement efforts to improve educator and student engagement in ocean sciences through exposure to scientists and data. Through professional development and the creation of data tools, we will reduce the logistical costs of bringing ocean science to students in grades 6-16. We are providing opportunities to: 1) build capacity of scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia. We are using a blended learning approach to promote partnerships and cross-disciplinary sharing. Finally we use data and video products to entrain public support through the development of science documentaries about the science and people who conduct it. For example Antarctic Edge is a feature length award-winning documentary about climate change that has garnered interest in movie theatres and on social media stores (NetFlix, ITunes). These combined efforts provide a range of products that all leverage off each other and provide a large suite of tools to bring the ocean to as many people as possible.
Environmental science: Oceans lose oxygen
NASA Astrophysics Data System (ADS)
Gilbert, Denis
2017-02-01
Oxygen is essential to most life in the ocean. An analysis shows that oxygen levels have declined by 2% in the global ocean over the past five decades, probably causing habitat loss for many fish and invertebrate species. See Letter p.335
77 FR 72831 - Meeting of the Ocean Research Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... commentary. ADDRESSES: The meeting will be held at the Consortium for Ocean Leadership, 1201 New York Avenue... Committee Act (5 U.S.C. App. 2). The meeting will include discussions on ocean research, resource management, and other current issues in the ocean science and management communities. Dated: November 29, 2012. L...
76 FR 12088 - Meeting of the Ocean Research and Resources Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
...: The meeting will be held at the Consortium for Ocean Leadership, 1201 New York Avenue, NW., 4th Floor... U.S.C. App. 2). The meeting will include discussions on ocean research, resource management, and other current issues in the ocean science and management communities; including, the review and...
Ocean Planet. Interdisciplinary Marine Science Activities.
ERIC Educational Resources Information Center
Branca, Barbara
The Ocean Planet is a traveling exhibition from the Smithsonian Institution designed to share with the public what recent research has revealed about the oceans and to encourage ocean conservation. This booklet of lessons and activities adapts several themes from the exhibition for use in middle and high school classrooms. Lesson plans include:…
77 FR 42297 - Meeting of the Ocean Research and Resources Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-18
... Consortium for Ocean Leadership, 1201 New York Avenue NW., 4th Floor, Washington, DC 2005. FOR FURTHER... discussions on ocean research, resource management, and other current issues in the ocean science and management communities. J.M. Beal, Lieutenant Commander, Office of the Judge Advocate General, U.S. Navy...
ERIC Educational Resources Information Center
Markos, Angelos; Boubonari, Theodora; Mogias, Athanasios; Kevrekidis, Theodoros
2017-01-01
The aim of the present study was to respond to the increasing demand for comprehensive tools for the measurement of ocean literacy, by investigating the psychometric characteristics of a Greek version of the Survey of Ocean Literacy and Experience (SOLE), an instrument that assesses conceptual understanding of general ocean sciences content,…
Oceanography in the formal and informal classroom
NASA Technical Reports Server (NTRS)
Richardson, A.; Jasnow, M.; Srinivasan, M.; Rosmorduc, V.; Blanc, F.
2002-01-01
The TOPEX/Poseidon and Jason-1 ocean altimeter missions offer the educator in the middle school or informal education venue a unique opportunity for reinforcing ocean science studies. An educational poster from NASA's Jet Propulsion Laboratory and France's Centre National d'Etudes Spatiales provide teachers and students a tool to examine topics such as the dynamics of ocean circulation, ocean research, and the oceans' role in climate.
NASA Astrophysics Data System (ADS)
Sutton, M.; Marchetti, A.
2016-02-01
Broader impacts have become a vital component of scientific research projects. A variety of outreach avenues are available to assist scientists in reaching larger audiences, however, the translation of cutting-edge scientific content and concepts can be challenging. Collaborating with educators is a viable option to assist researchers in fulfilling NSF's broader impact requirements. A broader impacts model based on collaborations between a teacher and 28 researchers from 14 institutions will demonstrate successful science outreach and engagement through interactions between teachers, researchers, students, and general audiences. Communication styles (i.e., blogs, social media) and outreach data incorporated by researchers and the teacher will be shared to illustrate the magnitude of the broader impacts achieved with this partnership. Inquiry-based investigations and activities developed to translate the science into the classroom will also be demonstrated, including the use of real scientific data collected during the research cruise. "Finding Microbe Needles in a Haystack of Oceans" provides an understanding of how remote sensing technology is used to locate specific ocean environments (e.g. High Nutrient Low Chlorophyll - HNLC) that support diverse microbial food webs. A board game ("Diatom Adventures©") designed to explore the physiology of microbial organisms and microscopic food webs will also be demonstrated. The tentative nature of science requires a constant vigil to stay abreast of the latest hypotheses and discoveries. Researcher/Teacher collaborations allow each professional to focus on his/her strengths while meeting broader impact requirements. These partnerships encourage lifelong learning as educators observe and work with scientists first-hand and then follow appropriate scope, sequence, and pedagogy to assist various audiences in understanding the innovative technologies being used to explore new scientific frontiers.
Attached comment submitted to Environmental Science and Technology entitled, Comments on "Measurements of Atmospheric Mercury Species at a Costal Site in the Antarctic and over the South Atlantic Ocean during Polar Summer" by Temme et al. Environmental Science and Technology 37 (...
Ocean to Outback: Leonie Rennie's Contribution to Science Education in Australia
ERIC Educational Resources Information Center
Venville, Grady
2009-01-01
In this article I initially borrow a metaphor from an art exhibition, "Ocean to Outback," as a way to express my perspective on the contribution that Leonie Rennie has made to science education in Australia. I then consider Leonie's contributions as overlapping themes. In particular, Leonie's well-known research on gender and issues of…
Geosat follow-on satellite to supply ocean sciences data
NASA Astrophysics Data System (ADS)
Barry, Robert; Finkelstein, Jay; Kilgus, Charles; Mooers, C. N. K.; Needham, Bruce; Crawford, Mike
After successfully completing a critical design review for its Geosat Follow-On (GFO) radar altimeter satellite, the Navy is giving the green light for an early 1996 launch. GFO is a small (347 kg) highly capable satellite that capitalizes on both Geosat and TOPEX experience. GFO will fly in the exact orbit of Geosat, delivering real-time data directly to ships at sea and making global observations for shore-based ocean prediction and scientific research. The National Oceanographic and Atmospheric Administration (NOAA) will distribute GFO data to the ocean science community.
Satellite Ocean Color Sensor Design Concepts and Performance Requirements
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan
2014-01-01
In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to 800 nanometers with three additional discrete near infrared (NIR) and shortwave infrared (SWIR) ocean aerosol correction bands. Also, to avoid drift in sensor sensitivity from being interpreted as environmental change, climate change research requires rigorous monitoring of sensor stability. For SeaWiFS, monthly lunar imaging accurately tracked stability at an accuracy of approximately 0.1% that allowed the data to be used for climate studies [2]. It is now acknowledged by the international community that future missions and sensor designs need to accommodate lunar calibrations. An overview of ocean color remote sensing and a review of the progress made in ocean color remote sensing and the variety of research applications derived from global satellite ocean color data are provided. The purpose of this chapter is to discuss the design options for ocean color satellite radiometers, performance and testing criteria, and sensor components (optics, detectors, electronics, etc.) that must be integrated into an instrument concept. These ultimately dictate the quality and quantity of data that can be delivered as a trade against mission cost. Historically, science and sensor technology have advanced in a "leap-frog" manner in that sensor design requirements for a mission are defined many years before a sensor is launched and by the end of the mission, perhaps 15-20 years later, science applications and requirements are well beyond the capabilities of the sensor. Section 3 provides a summary of historical mission science objectives and sensor requirements. This progression is expected to continue in the future as long as sensor costs can be constrained to affordable levels and still allow the incorporation of new technologies without incurring unacceptable risk to mission success. The IOCCG Report Number 13 discusses future ocean biology mission Level-1 requirements in depth.
Melting and Crystallization at Core Mantle Boundary
NASA Astrophysics Data System (ADS)
Fiquet, G.; Pradhan, G. K.; Siebert, J.; Auzende, A. L.; Morard, G.; Antonangeli, D.; Garbarino, G.
2015-12-01
Early crystallization of magma oceans may generate original compositional heterogeneities in the mantle. Dense basal melts may also be trapped in the lowermost mantle and explain mantle regions with ultralow seismic velocities (ULVZs) near the core-mantle boundary [1]. To test this hypothesis, we first constructed the solidus curve of a natural peridotite between 36 and 140 gigapascals using laser-heated diamond anvil cells. In our experiments, melting at core-mantle boundary pressures occurs around 4100 ± 150 K, which is a value that can match estimated mantle geotherms. Similar results were found for a chondritic mantle [2] whereas much lower pyrolitic melting temperatures were recently proposed from textural and chemical characterizations of quenched samples [3]. We also investigated the melting properties of natural mid ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures. At CMB pressure (135 GPa), we obtain a MORB solidus temperature of 3950 ±150 K. If our solidus temperatures are in good agreement with recent results proposed for a similar composition [4], the textural and chemical characterizations of our recovered samples made by analytical transmission electron microscope indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition is enriched in FeO, which suggests that such partial melts could be gravitationnally stable at the core mantle boundary. Our observations are tested against calculations made using a self-consistent thermodynamic database for the MgO-FeO-SiO2 system from 20 GPa to 140 GPa [5]. These observations and calculations provide a first step towards a consistent thermodynamic modelling of the crystallization sequence of the magma ocean, which shows that the existence of a dense iron rich and fusible layer above the CMB at the end of the crystallization is plausible [5], which is in contradiction with the conclusions drawn in [4]. [1] Williams & Garnero (1996) Science 273, 1528. [2] Andrault et al. (2011), EPSL 304, 251. [3] Nomura et al. (2014) Science 343, 522. [4] Andrault et al. (2014) Science 344, 892. [5] Boukaré et al (2015) J.Geophys. Res, in press.
Atmospheric environment for Space Shuttle (STS-41D) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.
1984-01-01
Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.
Communicating the Benefits of a Full Sequence of High School Science Courses
ERIC Educational Resources Information Center
Nicholas, Catherine Marie
2014-01-01
High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit…
Lecture No More! Creative Ways to Engage New Audiences and Encourage Dialogue
NASA Astrophysics Data System (ADS)
Diederick, L.; Paul, V. J.
2016-02-01
For almost five years, COSEE Florida has been experimenting with new and creative ways of engaging ocean scientists with dialogue-driven outreach events. From science cafes and science festivals to science trivia nights and guerrilla-style events, COSEE Florida has been actively pursuing new ways of reaching under-tapped audiences. This presentation will highlight various models of outreach events - including both homeruns and failures to launch - and will share lessons learned and feedback from both ocean scientist and audience participants.
Ocean-atmosphere science from the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission
NASA Astrophysics Data System (ADS)
Werdell, J.
2016-12-01
The new NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is a strategic climate continuity activity that will not only extend key heritage ocean color, cloud, and aerosol data records, but also enable new insight into oceanographic and atmospheric responses to Earth's changing climate. The primary PACE instrument will be a spectroradiometer that spans the ultraviolet to shortwave infrared region at 5 nm resolution with a ground sample distance of 1 km at nadir. This payload will likely be complemented by a multi-angle polarimeter with a similar spectral range. Scheduled for launch in 2022, this PACE instrument pair will revolutionize studies of global biogeochemistry and carbon cycles in the ocean-atmosphere system. Here, I present a PACE mission overview, with focus on instrument characteristics, core and advanced data products, and overarching science objectives.
Ocean Commission Report Includes Key Recommendations for Science and Governance
NASA Astrophysics Data System (ADS)
Showstack, Randy
2004-05-01
The preliminary report of the U.S. Commission on Ocean Policy, released on 20 April, calls for ecosystem-based management of the oceans, dramatically restructuring federal governance oversight of ocean issues, and doubling the federal ocean and coastal research budget over the next five years to $1.3 billion per year. The report by the congressionally-mandated and presidentially-appointed commission includes nearly 200 recommendations for establishing a coordinated and comprehensive national ocean policy framework.
Grass Roots Design for the Ocean Science of Tomorrow
NASA Astrophysics Data System (ADS)
Jul, S.; Peach, C. L.; Kilb, D. L.; Schofield, O.; Fisher, C.; Quintana, C.; Keen, C. S.
2010-12-01
Current technologies offer the opportunity for ocean science to expand its traditional expeditionary base by embracing e-science methods of continuous interactive real-time research. The Ocean Observatories Initiative Cyberinfrastructure (OOI CI) is an NSF-funded effort to develop a national cyberinfrastructure that will allow researchers, educators and others to share in this new type of oceanography. The OOI is an environmental observatory spanning coastal waters to the deep ocean, enabled by the CI to offer scientists continuous interactive access to instruments in the ocean, and allow them to search, subscribe to and access real-time or archival data streams. It will also supply interactive analysis and visualization tools, and a virtual social environment for discovering and realizing collaborative opportunities. Most importantly, it provides an extensible open-access cyberinfrastructure that supports integration of new technologies and observatories, and which will allow adoption of its tools elsewhere, such as by the Integrated Ocean Observing System (IOOS). The eventual success of such a large and flexible system requires the input of a large number of people, and user-centered design has been a driving philosophy of the OOI CI from its beginning. Support for users’ real needs cannot be designed as an add-on or casual afterthought, but must be deeply embedded in all aspects of a project, from inception through architecture, implementation, and deployment. The OOI CI strategy is to employ the skills and knowledge of a small number of user experience professionals to channel and guide a very large collective effort to deliver tools, interfaces and interactions that are intellectually stimulating, scientifically productive, and conducive to innovation. Participation from all parts of the user community early in the design process is vital to meeting these goals. The OOI user experience team will be on hand to meet members of the Earth and ocean sciences community, and invites them to become partners in the design of the Ocean Observatory by offering their thoughts, ideas and observations.
ERIC Educational Resources Information Center
National Oceanic and Atmospheric Administration (DOC), Washington, DC. Environmental Data Service.
OASIS (Oceanic and Atmospheric Scientific Information System) is an information retrieval service that furnishes ready reference to the technical literature and research efforts concerning the environmental sciences and marine and coastal resources. It provides computerized searches of both NOAA (National Oceanic and Atmospheric Administration)…
Muths, Delphine; Le Couls, Sarah; Evano, Hugues; Grewe, Peter; Bourjea, Jerome
2013-01-01
Genetic population structure of swordfish Xiphias gladius was examined based on 2231 individual samples, collected mainly between 2009 and 2010, among three major sampling areas within the Indian Ocean (IO; twelve distinct sites), Atlantic (two sites) and Pacific (one site) Oceans using analysis of nineteen microsatellite loci (n = 2146) and mitochondrial ND2 sequences (n = 2001) data. Sample collection was stratified in time and space in order to investigate the stability of the genetic structure observed with a special focus on the South West Indian Ocean. Significant AMOVA variance was observed for both markers indicating genetic population subdivision was present between oceans. Overall value of F-statistics for ND2 sequences confirmed that Atlantic and Indian Oceans swordfish represent two distinct genetic stocks. Indo-Pacific differentiation was also significant but lower than that observed between Atlantic and Indian Oceans. However, microsatellite F-statistics failed to reveal structure even at the inter-oceanic scale, indicating that resolving power of our microsatellite loci was insufficient for detecting population subdivision. At the scale of the Indian Ocean, results obtained from both markers are consistent with swordfish belonging to a single unique panmictic population. Analyses partitioned by sampling area, season, or sex also failed to identify any clear structure within this ocean. Such large spatial and temporal homogeneity of genetic structure, observed for such a large highly mobile pelagic species, suggests as satisfactory to consider swordfish as a single panmictic population in the Indian Ocean. PMID:23717447
U.S. Geological Survey (USGS) Western Region: Alaska Coastal and Ocean Science
Holland-Bartels, Leslie
2009-01-01
The U.S. Geological Survey (USGS), a bureau of the Department of the Interior (DOI), is the Nation's largest water, earth, and biological science and mapping agency. The bureau's science strategy 'Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017' describes the USGS vision for its science in six integrated areas of societal concern: Understanding Ecosystems and Predicting Ecosystem Change; Climate Variability and Change; Energy and Minerals; Hazards, Risk, and Resilience; Environment and Wildlife in Human Health; and Water Census of the United States. USGS has three Regions that encompass nine geographic Areas. This fact sheet describes examples of USGS science conducted in coastal, nearshore terrestrial, and ocean environments in the Alaska Area.
GOCI Level-2 Processing Improvements and Cloud Motion Analysis
NASA Technical Reports Server (NTRS)
Robinson, Wayne D.
2015-01-01
The Ocean Biology Processing Group has been working with the Korean Institute of Ocean Science and Technology (KIOST) to process geosynchronous ocean color data from the GOCI (Geostationary Ocean Color Instrument) aboard the COMS (Communications, Ocean and Meteorological Satellite). The level-2 processing program, l2gen has GOCI processing as an option. Improvements made to that processing are discussed here as well as a discussion about cloud motion effects.
NASA Astrophysics Data System (ADS)
van den Bogaard, Christel; Dullo, Christian; Devey, Colin; Kienast, Markus; Wallace, Douglas
2016-04-01
The worldwide growth in population and standards of living is leading to ever increasing human pressure on the oceans: as a source of resources, a transportation/trade pathway, and a sink for pollutants. However, use of the world's ocean is not presently guided by any over-arching management plan at either national or international level. Marine science and technology provide the necessary foundation, both in terms of system understanding and observational and modeling tools, to address these issues and to ensure that management of ocean activities can be placed on the best-possible scientific footing. The transatlantic Helmholtz Research School Ocean Science and Technology pools the complementary expertise of the Helmholtz Centre for Ocean Research Kiel (GEOMAR), the Christian-Albrechts-Universität zu Kiel, Dalhousie University and the Institute for Ocean Research Enterprise (IORE), to train the next generation of researchers in the key scientific areas critical for responsible resource utilization and management of the ocean with special emphasis on our "local ocean" - the North Atlantic. The Research School is organized around three themes which encompass key sensitivities of the North Atlantic to external forcing and resource exploitation: 4D Ocean Dynamics, Ecosystem Hotspots, and Seafloor Structures. Interactions within and between these themes regulate how the ocean system responds to both anthropogenic and natural change. The HOSST/TOSST fellows gain an in-depth understanding of how these ocean systems interact, which in turn provides a solid understanding for the formulation of scientifically-sound management practices. Given the broad scope of the school, student education is two-pronged: it provides excellent institutional support where needed, including scientific input, personal support and financial incentives, while simultaneously generating an open "intellectual space" in which ingenious, often unpredictable, ideas can take root, overcoming ideological and institutional boundaries. The combination of both will define the spirit of cross-disciplinary research that HOSST and TOSST fellows are expected to imbibe. Initiated in 2012, the joint school currently has 38 PhD students on both sides of the Atlantic. The students are jointly supervised by Canadian and German PI's, and take part in 4 to 6-month research stays at the partner institutes, weekly seminars, annual summer schools and meetings, as well as in structured training in expert and transferable skills. An early contact with the job market outside academia and applied sciences is fostered. Further details about HOSST/TOSST are available at: www.HOSST.org; www.TOSST.org
Equal Opportunities for Women in Marine Sciences in Kiel: Activities and Measures
NASA Astrophysics Data System (ADS)
Kamm, Ruth
2016-04-01
Women are still largely underrepresented in geosciences in general. Particularly at the level of professorships and permanent research staff positions this also applies to marine science institutions in Kiel, i.e. the research focus Kiel Marine Sciences at Kiel University and the GEOMAR Helmholtz Centre for Ocean Research Kiel. Both institutions are closely collaborating, for instance in the frame of two major third-party funded collaborative projects: The Cluster of Excellence 'The Future Ocean', funded within the German Excellence Initiative, and the Collaborative Research Centre 'Climate - Biogeochemistry Interactions in the Tropical Ocean' (SFB 754) financed through the German Research Foundation (DFG). Both funding schemes request for measures to increase the participation of female scientists in leading positions. As an innovative approach, The Future Ocean and SFB 754 jointly finance the position of a coordinator for gender measures who is based at the university's Central Office for Gender Equality, Diversity & Family since 2012. This allows for the coordinated development and implementation of programmes to support female marine scientists, with a focus on the postdoctoral phase, and to offer a broader spectrum of activities to raise awareness of gender imbalance in the research community. The aim of this presentation is to give insight into activities and achievements, among them the mentoring programme via:mento_ocean for female postdocs in marine sciences. The programme via:mento_ocean has been acknowledged as a best practice instrument to support women scientists in a close disciplinary but international setting and was incorporated into the DFG's online toolbox of gender equality measures.
NASA Astrophysics Data System (ADS)
Farrington, J.; Pantoja, S.
2007-05-01
The Woods Hole Oceanographic Institution, USA (WHOI) and the University of Concepcion, Chile (UDEC) entered into an MOU to enhance graduate education and research in ocean sciences in Chile and enhance research for understanding the Southeastern Pacific Ocean. The MOU was drafted and signed after exchange visits of faculty. The formulation of a five year program of activities included: exchange of faculty for purposes of enhancing research, teaching and advising; visits of Chilean graduate students to WHOI for several months of supplemental study and research in the area of their thesis research; participation of Chilean faculty and graduate students in WHOI faculty led cruises off Chile and Peru (with Peruvian colleagues); a postdoctoral fellowship program for Chilean ocean scientists at WHOI; and the establishment of an Austral Summer Institute of advanced undergraduate and graduate level intensive two to three week courses on diverse topics at the cutting edge of ocean science research co-sponsored by WHOI and UDEC for Chilean and South American students with faculty drawn from WHOI and other U.S. universities with ocean sciences graduate schools and departments, e.g. Scripps Institution of Oceanography, University of Delaware. The program has been evaluated by external review and received excellent comments. The success of the program has been due mainly to: (1) the cooperative attitude and enthusiasm of the faculty colleagues of both Chilean Universities (especially UDEC) and WHOI, students and postdoctoral fellows, and (2) a generous grant from the Fundacion Andes- Chile enabling these activities.
What can Citizen Science do for Ocean Science and Ocean Scientists?
NASA Astrophysics Data System (ADS)
Best, M.; Hoeberechts, M.; Mangin, A.; Oggioni, A.; Orcutt, J. A.; Parrish, J.; Pearlman, J.; Piera, J.; Tagliolato, P.
2016-12-01
The ocean represents over 70% of our planet's surface area, over 90% of the living space. Humans are not marine creatures, we therefore have fundamentally not built up knowledge of the ocean in the same way we have on land. The more we learn about the ocean, the more we understand it is the regulatory engine of our planet…How do we catch up? Answers to this question will need to come from many quarters; A powerful and strategic option to complement existing observation programs and infrastructure is Citizen Science. There has been significant and relevant discussion of the importance of Citizen Science to citizens and stakeholders. The missing effective question is sometimes what is the potential of citizen science for scientists? The answers for both scientists and society are: spatial coverage, remote locations, temporal coverage, event response, early detection of harmful processes, sufficient data volume for statistical analysis and identification of outliers, integrating local knowledge, data access in exchange for analysis (e.g. with industry) and cost-effective monitoring systems. Citizens can be involved in: instrument manufacture and maintenance, instrument deployment/sample collection, data collection and transmission, data analysis, data validation/verification, and proposals of new topics of research. Such opportunities are balanced by concern on the part of scientists about the quality, the consistency and the reliability of citizen observations and analyses. Experience working with citizen science groups continues to suggest that with proper training and mentoring, these issues can be addressed, understanding both benefits and limitations. How to do it- implementation and maintenance of citizen science: How to recruit, engage, train, and maintain Citizen Scientists. Data systems for acquisition, assessment, access, analysis, and visualisation of distributed data sources. Tools/methods for acquiring observations: Simple instruments, Smartphone Apps, DIY-Instruments Community Online Platforms: websites, social networks, discussion forums. Crowdsourcing Tools: image acquisition, web and smartphone applications, surveys/questionnaires. Information, Engagement, and Training Resources: webinars, public lectures, websites, public/museum displays.
NASA Astrophysics Data System (ADS)
Kurtz, N.
2017-12-01
Scientists observe the world around them in an attempt to understand it. Artists observe the world around them in an attempt to create a reflection or response to the environment. It is critical for the two fields to work together in order to engage and inform the general population. The Consortium for Ocean Leadership, the International Ocean Discovery Program and a series of collaborators are designing a traveling exhibit that will inspire underserved communities in the excitement of exploration, the process of science, and the people and tools required to get there. The project aims to learn more about how to increase access to and awareness of ocean/earth science by bringing a pop-up style museum exhibit to local libraries and public events. As an artist with a science and education background and the graphic designer for this exhibit, this author will highlight the ways this project utilizes art and design to educate underserved populations in ocean and geosciences.
An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems
ERIC Educational Resources Information Center
Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia
2016-01-01
We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…
ERIC Educational Resources Information Center
Mangelsdorf, Frederick E.; And Others
Reported are the papers presented at the New England Conference on Ocean Science Education. The purpose of the conference was to bring together prominent oceanographers and New England educators at the primary and secondary level to discuss current progress in oceanographic research and to relate this progress to the needs of schools for materials…
The 360 Degree Fulldome Production "Clockwork Ocean"
NASA Astrophysics Data System (ADS)
Baschek, B.; Heinsohn, R.; Opitz, D.; Fischer, T.; Baschek, T.
2016-02-01
The investigation of submesoscale eddies and fronts is one of the leading oceanographic topics at the Ocean Sciences Meeting 2016. In order to observe these small and short-lived phenomena, planes equipped with high-resolution cameras and fast vessels were deployed during the Submesoscale Experiments (SubEx) leading to some of the first high-resolution observations of these eddies. In a future experiment, a zeppelin will be used the first time in marine sciences. The relevance of submesoscale processes for the oceans and the work of the eddy hunters is described in the fascinating 9-minute long 360 degree fulldome production Clockwork Ocean. The fully animated movie is introduced in this presentation taking the observer from the bioluminescence in the deep ocean to a view of our blue planet from space. The immersive media is used to combine fascination for a yet unknown environment with scientific education of a broad audience. Detailed background information is available at the parallax website www.clockwork-ocean.com. The Film is also available for Virtual Reality glasses and smartphones to reach a broader distribution. A unique Mobile Dome with an area of 70 m² and seats for 40 people is used for science education at events, festivals, for politicians and school classes. The spectators are also invited to participate in the experiments by presenting 360 degree footage of the measurements. The premiere of Clockwork Ocean was in July 2015 in Hamburg, Germany and will be worldwide available in English and German as of fall 2015. Clockwork Ocean is a film of the Helmholtz-Zentrum Geesthacht produced by Daniel Opitz and Ralph Heinsohn.
Gimmler, Anna; Korn, Ralf; de Vargas, Colomban; Audic, Stéphane; Stoeck, Thorsten
2016-01-01
Illumina reads of the SSU-rDNA-V9 region obtained from the circumglobal Tara Oceans expedition allow the investigation of protistan plankton diversity patterns on a global scale. We analyzed 6,137,350 V9-amplicons from ocean surface waters and the deep chlorophyll maximum, which were taxonomically assigned to the phylum Ciliophora. For open ocean samples global planktonic ciliate diversity is relatively low (ca. 1,300 observed and predicted ciliate OTUs). We found that 17% of all detected ciliate OTUs occurred in all oceanic regions under study. On average, local ciliate OTU richness represented 27% of the global ciliate OTU richness, indicating that a large proportion of ciliates is widely distributed. Yet, more than half of these OTUs shared <90% sequence similarity with reference sequences of described ciliates. While alpha-diversity measures (richness and exp(Shannon H)) are hardly affected by contemporary environmental conditions, species (OTU) turnover and community similarity (β-diversity) across taxonomic groups showed strong correlation to environmental parameters. Logistic regression models predicted significant correlations between the occurrence of specific ciliate genera and individual nutrients, the oceanic carbonate system and temperature. Planktonic ciliates displayed distinct vertical distributions relative to chlorophyll a. In contrast, the Tara Oceans dataset did not reveal any evidence that latitude is structuring ciliate communities. PMID:27633177
In Memoriam; Recent Ph.D.s; Honors
NASA Astrophysics Data System (ADS)
James Bush died this year, at age 83. He had been an AGU member (Ocean Sciences) since 1950. Faure Hugues died this year. He had been an AGU member (Hydrology) since 1986. Murphy Manson died this year. He became an AGU member (Planetology) in 2002. Edgar O. McCutchen died this year, at age 78. He had been an AGU member (Ocean Sciences) since 1966. Willard James Pierson, Jr. died on 7 June 2003, at age 81. He was an AGU Fellow (Ocean Sciences) who joined in 1948.Atmospheric Sciences:Evaluation of land surface models using ground-based point-scale measurements, Lifeng Luo, Rutgers University, New Brunswick, New Jersey, Alan Robock, May 2003.Hydrology: Studies of solute transport through fractured till in Iowa, Martin F. Helmke, Iowa State University, Ames, William W. Simpkins and Robert Horton, May 2003.; Controls on the persistence of water within perched basins of the Peace-Athabasca Delta, northern Canada, Daniel Lee Peters, Trent University, Peterborough, Ontario, Canada, Terry D. Prowse and James M. Buttle, January 2003.Ocean Sciences: Oceanographic conditions around the Galapagos Archipelago and their influence on cetacean community structure, Daniel M. Palacios, Oregon State University, Corvallis, Bruce R. Mate, April 2003.Klaus Keil has received the Honorary Degree of Doctor of Science (DSc) from the University of New Mexico, Albuquerque, in recognition of his contributions to the understanding of the mineralogy and petrology of meteorites and the early history of the solar system.Richard (Rick) Sibson has been elected a Fellow of the Royal Society of London, U.K.
ERIC Educational Resources Information Center
MacMillan, Mark W.
1997-01-01
Describes a school program in which two sixth-grade science classes researched, created, and put together an ocean museum targeted at kindergarten through eighth graders who are geographically distanced from the ocean. Details the process for investigating topical areas, organizing teams of students, researching, writing, creating displays, and…
15 CFR 922.93 - Permit procedures and criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE... Director, National Marine Sanctuary Program, ATTN: Manager, Gray's Reef National Marine Sanctuary, 10 Ocean Science Circle, Savannah, GA 31411. (c) The Director, at his or her discretion may issue a permit, subject...
DOE Office of Scientific and Technical Information (OSTI.GOV)
National Research Council
The United States has jurisdiction over 3.4 million square miles of ocean expanse greater than the land area of all fifty states combined. This vast marine area offers researchers opportunities to investigate the ocean's role in an integrated Earth system, but also presents challenges to society, including damaging tsunamis and hurricanes, industrial accidents, and outbreaks of waterborne diseases. The 2010 Gulf of Mexico Deepwater Horizon oil spill and 2011 Japanese earthquake and tsunami are vivid reminders that a broad range of infrastructure is needed to advance our still-incomplete understanding of the ocean. The National Research Council (NRC)'s Ocean Studies Boardmore » was asked by the National Science and Technology Council's Subcommittee on Ocean Science and Technology, comprised of 25 U.S. government agencies, to examine infrastructure needs for ocean research in the year 2030. This request reflects concern, among a myriad of marine issues, over the present state of aging and obsolete infrastructure, insufficient capacity, growing technological gaps, and declining national leadership in marine technological development; issues brought to the nation's attention in 2004 by the U.S. Commission on Ocean Policy. A 15-member committee of experts identified four themes that encompass 32 future ocean research questions enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions in the report (e.g., sea level rise, sustainable fisheries, the global water cycle) reflect challenging, multidisciplinary science questions that are clearly relevant today, and are likely to take decades of effort to solve. As such, U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations or autonomous monitoring at a broad range of spatial and temporal scales. Consequently, a coordinated national plan for making future strategic investments becomes an imperative to address societal needs. Such a plan should be based upon known priorities and should be reviewed every 5-10 years to optimize the federal investment. The committee examined the past 20 years of technological advances and ocean infrastructure investments (such as the rise in use of self-propelled, uncrewed, underwater autonomous vehicles), assessed infrastructure that would be required to address future ocean research questions, and characterized ocean infrastructure trends for 2030. One conclusion was that ships will continue to be essential, especially because they provide a platform for enabling other infrastructure autonomous and remotely operated vehicles; samplers and sensors; moorings and cabled systems; and perhaps most importantly, the human assets of scientists, technical staff, and students. A comprehensive, long-term research fleet plan should be implemented in order to retain access to the sea. The current report also calls for continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. The committee also provided a framework for prioritizing future investment in ocean infrastructure. They recommend that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit, with particular consideration given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. These criteria are the foundation for prioritizing ocean research infrastructure investments by estimating the economic costs and benefits of each potential infrastructure investment, and funding those investments that collectively produce the largest expected net benefit over time. While this type of process is clearly subject to budget constraints, it could quantify the often informal evaluation of linkages between infrastructure, ocean research, the value of information produced, societal objectives, and economic benefits. Addressing the numerous complex science questions facing the entire ocean research enterprise in 2030 from government to academia, industry to nonprofits, local to global scale represents a major challenge, requiring collaboration across the breadth of the ocean sciences community and nearly seamless coordination between ocean-related federal agencies.« less
NASA Astrophysics Data System (ADS)
Ombres, E. H.
2016-02-01
NOAA's Ocean Acidification Program (OAP) was created as a mandate of the 2009 Federal Ocean Acidification Research and Monitoring (FOARAM) Act and has been directly funding species response research since 2012. Although OA species response is a relatively young field of science, this program built on research already underway across NOAA. That research platform included experimental facilities in the Fishery Sciences Centers of the National Marine Fishery Service (NMFS), `wet' labs of Oceanic and Atmospheric Research (OAR), and the coral reef monitoring studies within the National Ocean Service (NOS). The diversity of research across NOAA allows the program to make interdisciplinary connections among chemists, biologists and oceanographers and creates a more comprehensive and robust approach to understanding species response to this change in the carbon cycle. To date, the program has studied a range of taxa including phytoplankton, molluscs, crustaceans, and fish. This poster describes representative results from the collection of OAP-funded species at nationwide NOAA facilities.
Strategies for reducing ocean plastic debris should be diverse and guided by science
NASA Astrophysics Data System (ADS)
Rochman, Chelsea M.
2016-04-01
Studies suggest that trillions of microplastic particles are floating on the surface of the global oceans and that the total amount of plastic waste entering the ocean will increase by an order of magnitude by 2025. As such, this ever-increasing problem demands immediate mitigation and reduction. Diverse solutions have been proposed, ranging from source reduction to ocean-based cleanup. These solutions are most effective when guided by scientific evidence. A study published in Environmental Research Letters (Sherman and van Sebille 2016 Environ. Res. Lett. 11 014006) took a closer look at the potential effectiveness of ocean-based cleanup. They conclude that it will be most cost-effective and ecologically beneficial if clean-up efforts focus on the flux of microplastics from the coasts rather than in the center of the oceans where plastic accumulates in so called ‘garbage patches’. If followed, this example may become one of a series of examples where science has informed a solution to the complex problem of plastic pollution.
Report for Oregon State University Reporting Period: June 2016 to June 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, Jennifer
The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less
Determining critical infrastructure for ocean research and societal needs in 2030
NASA Astrophysics Data System (ADS)
Glickson, Deborah; Barron, Eric; Fine, Rana
2011-06-01
The United States has jurisdiction over 3.4 million square miles of ocean—an expanse greater than the land area of all 50 states combined. This vast marine area offers researchers opportunities to investigate the ocean's role in an integrated Earth system but also presents challenges to society, including damaging tsunamis and hurricanes, industrial accidents, and outbreaks of waterborne diseases. The 2010 Gulf of Mexico Deepwater Horizon oil spill and 2011 Japanese earthquake and tsunami are vivid reminders that a broad range of infrastructure is needed to advance scientists' still incomplete understanding of the ocean. The National Research Council's (NRC) Ocean Studies Board was asked by the National Science and Technology Council's Subcommittee on Ocean Science and Technology, comprising 25 U.S. government agencies, to examine infrastructure needs for ocean research in the year 2030. This request reflects concern, among a myriad of marine issues, over the present state of aging and obsolete infrastructure, insufficient capacity, growing technological gaps, and declining national leadership in marine technological development; these issues were brought to the nation's attention in 2004 by the U.S. Commission on Ocean Policy.
Informatics for multi-disciplinary ocean sciences
NASA Astrophysics Data System (ADS)
Pearlman, Jay; Delory, Eric; Pissierssens, Peter; Raymond, Lisa; Simpson, Pauline; Waldmann, Christoph; Williams 3rd, Albert; Yoder, Jim
2014-05-01
Ocean researchers must work across disciplines to provide clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions at the time and space scales that are relevant to our state of the art research needs. This presentation will address three areas of the informatics of the end-to-end process: sensors and information extraction in the sensing environment; using diverse data for understanding selected ocean processes; and supporting open data initiatives. A National Science Foundation funded Ocean Observations Research Coordination Network (RCN) is addressing these areas from the perspective of improving interdisciplinary research. The work includes an assessment of Open Data Access with a paper in preparation. Interoperability and sensors is a new activity that couples with European projects, COOPEUS and NeXOS, in looking at sensors and related information systems for a new generation of measurement capability. A working group on synergies of in-situ and satellite remote sensing is analyzing approaches for more effective use of these measurements. This presentation will examine the steps forward for data exchange and for addressing gaps in communication and informatics.
Microbial oceanography: Killers of the winners
NASA Astrophysics Data System (ADS)
Kirchman, David L.
2013-02-01
Viruses that infect the SAR11 group of oceanic bacteria have finally been found and sequenced. Because SAR11 is ubiquitous, these viruses may be the most abundant in the oceans -- and perhaps in the entire biosphere. See Letter p.357
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Onoue, T.; Horie, K.; Sakamoto, R.; Aihara, Y.; Miki, T.
2013-12-01
The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved Banded Iron Formation (BIF) within hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The stratigraphy of the Dixon Island (3195+15Ma) -Cleaverville (3108+13Ma) formations shows the well preserved environmental condition at the Mesoarchean ocean floor. The stratigraphy of these formations are formed about volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling of DXCL project at 2007 and 2011, detail lithology between BIF sequence was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. Coarsening and thickening upward black shale-BIF sequences are well preserved of the stratigraphy form the core samples. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. The CL3 core, which drilled through BIF, shows siderite-chert beds above black shale identified before magnetite lamination bed. U-Pb SHRIMP data of the tuff in lower Dixon Island Formation is 3195+15 Ma and the pyroclastic sequence below the Cleaverville BIF is 3108+13 Ma. Sedimentation rate of these sequence is 2-8 cm/ 1000year. The hole section of the organic carbon rich black shales below BIF are similar amount of organic content and 13C isotope (around -30per mill). There are very weak sulfur MIF signal (less 0.2%) in these black shale sequence. Our result show that thick organic rich sediments may be triggered to form iron rich siderite and magnetite iron beds. The stratigraphy in this sequence quite resemble to other Iron formation (eg. Hamersley BIF). So we investigate that the Cleaverville iron formation, which is one of the best well known Mesoarchean iron formation, was already started cyanobacteria oxygen production system to used pre-syn iron sedimentation at anoxic oceanic condition.
40 CFR 262.10 - Purpose, scope, and applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Life Sciences, Arts and Sciences, Medicine, and Engineering and Mathematics; and Schools of..., Biology, Psychology, Anthropology, Geology and Earth Sciences, and Environmental, Coastal and Ocean Sciences Science Building (Bldg. #080); McCormack Building (Bldg. #020); and Wheatley Building (Bldg. #010...
40 CFR 262.10 - Purpose, scope, and applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and Life Sciences, Arts and Sciences, Medicine, and Engineering and Mathematics; and Schools of..., Biology, Psychology, Anthropology, Geology and Earth Sciences, and Environmental, Coastal and Ocean Sciences Science Building (Bldg. #080); McCormack Building (Bldg. #020); and Wheatley Building (Bldg. #010...
40 CFR 262.10 - Purpose, scope, and applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Life Sciences, Arts and Sciences, Medicine, and Engineering and Mathematics; and Schools of..., Biology, Psychology, Anthropology, Geology and Earth Sciences, and Environmental, Coastal and Ocean Sciences Science Building (Bldg. #080); McCormack Building (Bldg. #020); and Wheatley Building (Bldg. #010...
40 CFR 262.10 - Purpose, scope, and applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Life Sciences, Arts and Sciences, Medicine, and Engineering and Mathematics; and Schools of..., Biology, Psychology, Anthropology, Geology and Earth Sciences, and Environmental, Coastal and Ocean Sciences Science Building (Bldg. #080); McCormack Building (Bldg. #020); and Wheatley Building (Bldg. #010...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... Scientist, Marine Pollution Control Branch, Oceans and Coastal Protection Division (4504T), U.S... requires the NSF to report by June 30 of every year to the Director of the Oceans and Coastal Protection... the Director of the Oceans and Coastal Protection Division, in the Office of Water, at EPA...
Physical Controls on Copepod Aggregations in the Gulf of Maine
2013-06-01
endangered North Atlantic right whales . Certain ocean processes may generate dense copepod aggrega- tions, while others may destroy them; this thesis...for tropical ocean - global atmosphere coupled- ocean atmosphere response experiment. Journal of Geophysical Research, 101, 3747–3764. Fong, D., W...Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole Oceanographic Institution MIT/WHOI 2013-18
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, Jennifer; Joseph, Renu
2013-09-14
The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less
Engaging wider publics with studying and protecting the ocean
NASA Astrophysics Data System (ADS)
Nauen, Cornelia E.
2015-04-01
The ocean is dying. The vast scientific literature diagnoses massive reductions in the biomass of fish and invertebrates from overfishing, increasing destruction of coral ecosystems in the tropics from climate change, extensive dead zones from eutrophication and collapse of marine bird populations from ingesting plastic. Even though Darwin suspected already The scale is becoming apparent only from meta-analyses at regional or even global scales as individual studies tend to focus on one fishery or one type of organisms or geographic location. In combination with deep rooted perceptions of the vastness of the ocean the changes are difficult to comprehend for specialists and the general public alike. Even though more than half of humanity is estimated to live in coastal zones as defined by some, urbanisation is removing about half from regular, more direct exposure. Yet, there is much still to be explored, not only in the deep, little studied, parts. The ocean exercises great fascination on many people heightened since the period of discovery and the mystery of far-flung places, but the days, when Darwin's research results were regularly discussed in public spaces are gone. Rachel Carson's prize-winning and best selling book "The Sea Around Us", some serialised chapters in magazines and condensations in "Reader's Digest" transported the poetic rendering of science again to a wider public. But compared to the diversity of scientific inquiry about the ocean and importance for life-support system earth there is much room for engaging ocean science in the broad sense with larger and diverse publics. Developing new narratives rooted in the best available sciences is among the most promising modes of connecting different areas of scientific inquiry and non-specialists alike. We know at latest since Poincaré's famous dictum that "the facts don't speak". However, contextualised information can capture the imagination of the many and thus also reveal unexpected connections, when the story travels further than the "usual suspects". The paper argues that it is essential for our societies to get better access to the sciences in order to inform and update our perceptions of the ocean and that transitions towards living within the reproductive capacity of the ocean and planet Earth require much greater conscious efforts towards story telling by the science. It presents some first hand experience with different strategies on how the sciences can critically engage and invites creative use of social media and other new ways to meet this need.
A New Approach to Data Publication in Ocean Sciences
NASA Astrophysics Data System (ADS)
Lowry, Roy; Urban, Ed; Pissierssens, Peter
2009-12-01
Data are collected from ocean sciences activities that range from a single investigator working in a laboratory to large teams of scientists cooperating on big, multinational, global ocean research projects. What these activities have in common is that all result in data, some of which are used as the basis for publications in peer-reviewed journals. However, two major problems regarding data remain. First, many data valuable for understanding ocean physics, chemistry, geology, biology, and how the oceans operate in the Earth system are never archived or made accessible to other scientists. Data underlying traditional journal articles are often difficult to obtain. Second, when scientists do contribute data to databases, their data become freely available, with little acknowledgment and no contribution to their career advancement. To address these problems, stronger ties must be made between data repositories and academic journals, and a “digital backbone” needs to be created for data related to journal publications.
Communicating Ocean Acidification
ERIC Educational Resources Information Center
Pope, Aaron; Selna, Elizabeth
2013-01-01
Participation in a study circle through the National Network of Ocean and Climate Change Interpretation (NNOCCI) project enabled staff at the California Academy of Sciences to effectively engage visitors on climate change and ocean acidification topics. Strategic framing tactics were used as staff revised the scripted Coral Reef Dive program,…
Our Storied Sea: Crafting a Collective Narrative of the Ocean through Accompaniment
NASA Astrophysics Data System (ADS)
Savoie, Gianna M.
Never before have we had such broad access to scientific information about the sea, yet as the world's oceans slip into a state of crisis, the American public's grasp of the issues is far from firm. But how do we begin to understand something as vast as the ocean, an area that covers more than two-thirds of our planet, when less than ten-percent of it has been explored? The ocean we "know" represents many things to many people; for some, it is a realm to be feared, for others, it is a resource to be exploited, and yet for others, it is a home to protect. This dissertation tracks an ever-evolving narrative of the ocean and examines how we come to infuse it with meaning. I contend that many Westerners relate to this space that we call the sea as a place not through a personal history, but via a translated history by those who have conveyed that experience to the public through visual storytelling. As we have been primarily on the receiving end of narratives "owned" and dictated by select voices, I argue there has remained a disconnect with the sea that has troubled our relationship with it. In today's rapidly expanding media landscape, we now have the opportunity to participate in the ocean's story as never before. I propose we disrupt the notion of "narrative ownership" as it may serve to limit understanding, and turn instead to a shared narrative that embraces diverse perspectives in order to broaden our depth of knowledge and our relationship with the sea. Further, this work examines the ways in which the shifting digital and social media terrain is enabling ocean scientists to blur the lines between science and advocacy in order to invest the public in stewardship. I argue that in order to be effective, the science narrative can no longer simply inform; it must engage the public by incorporating human agency into the story of the ocean. Only when we share a collective narrative of the ocean, will we be able to fully invest in its protection. To that end, I explore how the confluence of science, storytelling and the human experience has culminated in my establishment of the non-profit organization, the Ocean Media Institute which serves to expand the public's understanding of ocean science through the collaborative creation and open distribution of innovative visual media and artistic approaches to ocean literacy.
Emergence of a global science-business initiative for ocean stewardship.
Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Rockström, Johan
2017-08-22
The ocean represents a fundamental source of micronutrients and protein for a growing world population. Seafood is a highly traded and sought after commodity on international markets, and is critically dependent on healthy marine ecosystems. A global trend of wild stocks being overfished and in decline, as well as multiple sustainability challenges associated with a rapid growth of aquaculture, represent key concerns in relation to the United Nations Sustainable Development Goals. Existing efforts aimed to improve the sustainability of seafood production have generated important progress, primarily at the local and national levels, but have yet to effectively address the global challenges associated with the ocean. This study highlights the importance of transnational corporations in enabling transformative change, and thereby contributes to advancing the limited understanding of large-scale private actors within the sustainability science literature. We describe how we engaged with large seafood producers to coproduce a global science-business initiative for ocean stewardship. We suggest that this initiative is improving the prospects for transformative change by providing novel links between science and business, between wild-capture fisheries and aquaculture, and across geographical space. We argue that scientists can play an important role in facilitating change by connecting knowledge to action among global actors, while recognizing risks associated with such engagement. The methods developed through this case study contribute to identifying key competences in sustainability science and hold promises for other sectors as well.
78 FR 68037 - Science Advisory Board (SAB)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... INFORMATION: None. Dated: November 6, 2013. Jamie Krauk, Acting Chief Financial Officer/Chief Administrative Officer, Office of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration. [FR...
NASA Astrophysics Data System (ADS)
Spencer, E. A.; Russ, S.; Clark, D. C.; Latif, S.; Montalvo, C.
2016-12-01
This qualitative study focuses on students evidence-based explanatory models on how ocean acidification impacts oysters. Explanatory models are the crucial components of scientific endeavors as it helps scientists explain how the natural world functions and the reasons for the ways it functions. Moreover, these models assemble individual practices to understand how they work together to reach clear conclusions through scientific investigations. Due to their critical roles in making sense of authentic science, recent studies in science education suggest that these models should be part of the curriculum aligned with new science standards, i.e. Next Generation Science Standards, which stress the importance of engaging students in scientific practices. By collecting data from 400 secondary school students in Maryland, we aim to respond to the question: How can we use secondary school students' explanatory models to provide students with constructive feedback for more comprehensive learning of ocean acidification (the related evidence, causes and impact)? The data were analyzed through discourse analysis method. We highlighted and coded students' inscriptions (e.g., drawings, writings, and representations) that are signs of students' understanding (or lack thereof) of ocean acidification. These signs included explanations of pH levels, drawings of oyster growth, and inclusions of relevant data. The findings showed that the explanatory models can be critical forms of feedback as they reveal a) students' alternative conceptions on how ocean acidification impacts oysters or how acidification works in general; b) students' interpretations of oceans' (non)connectedness to Earth system; c) the choice of scientific representations and their sources; and d) the way students' integrate evidence or data from the investigations. Our work tackles an understanding of one of the most vital signs of modern climatic changes. Recent scientific evidence shows that if the change in ocean pH becomes too extreme, many organisms may not be able to adjust to this change. Based on our findings, we suggest that teachers can use explanatory models as sources of feedback to recognize how well their students conceptualize ocean acidification, integrate scientific practices, and use cultural artifacts of doing science.
C-MORE Scholars Program: Encouraging Hawaii`s Undergraduates to Explore the Ocean and Earth Sciences
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Gibson, B.
2008-05-01
Hawaii residents make up 60% of the undergraduate student body at the University of Hawaii at Manoa (UHM), but they are not studying ocean and earth science. The UHM School of Ocean and Earth Science and Technology offers four undergraduate majors: Geology (22%), Geology & Geophysics (19%), Meteorology (16%), and Global Environmental Science (23%). The numbers in parentheses show the proportion of Hawaii residents in each major, based on 2006 data obtained from the UHM Institutional Research Office. The numbers of Native Hawaiians and Pacific Islanders (NHPI) are considerably smaller. The primary goal of the C-MORE Scholars Program, which will launch in Summer 2008, is to recruit and retain local Hawaii students (esp. NHPI) into earth and ocean science majors. To achieve this goal, the C-MORE Scholars Program will: 1. Actively recruit local students, partly by introducing them and their families to job opportunities in their community. Recruiting will be done in partnership with organizations that have successful track records in working with NHPI students; 2. Retain existing students through proactive counseling and course tutoring. Math and physics courses are stumbling blocks for many ocean and earth science majors, often delaying or even preventing graduation. By offering individual and group tutoring, we hope to help local students succeed in these courses; 3. Provide closely mentored, paid undergraduate research experiences at three different academic levels (trainee, intern, and fellow). This research is the cornerstone of the C-MORE Scholars Program. As students progress through the levels, they conduct higher level research with less supervision. Fellows (the highest level) may serve as peer advisors and tutors to underclassmen and assist with recruitment-related activities; and 4. Create a sense of community among the cohort of C-MORE scholars. A two-day summer residential experience will be instrumental in developing a strong cohort, emphasizing links between Hawaiian culture and science, and establishing pathways towards a science career. During the academic year, cohort-building activities will be scheduled each month or so, and will include career-oriented activities.
76 FR 67715 - Science Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Science Advisory Board... (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science Advisory... on strategies for research, education, and application of science to operations and information...
US GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM)
2009-06-01
Administration, New York, NY, USA, and Earth Systems Research Laboratory, NOAA, Boulder, CO, USA. Remy Baraille is Research Scientist, Service Hydrographique...Coastal Sciences, Rutgers University, New Brunswick, NJ, USA. John Wilkin is Associate Professor, Institute of Marine and Coastal Sciences, Rutgers...University, New Brunswick, NJ, USA. Oceanography June 2009 67 coordinates (depth, density, and terrain- following) provide universal optimality, it is
Pardiñas, A F; Campo, D; Pola, I G; Miralles, L; Juanes, F; Garcia-Vazquez, E
2010-11-01
Nucleotide variation of partial cytochrome b sequences was analysed in the bluefish Pomatomus saltatrix to investigate the population-structuring roles of climate change and oceanic barriers. Western and eastern North Atlantic Ocean populations appeared to be totally isolated, with the latter connected to the Mediterranean Sea within which further structuring occurred. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.
Agreements/subagreements Applicable to Wallops, 12 Nov. 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The status of space science agreements are noted. A general overview of the Wallops Flight Facility (WFF) is given. The geography, history, and mission of the facility are briefly surveyed. Brief accounts are given of NASA earth science activities at the WFF, including atmospheric dynamics, atmospheric optics, ocean physics, microwave altimetry, ocean color research, wind-wave-current interaction, flight support activities, the Sounding Rocket Program, and the NASA Balloon Program. Also discussed are the WFF launch range, the research airport, aircraft airborne science, telemetry, data systems, communications, and command and control.
The Ocean Observatories Initiative: Getting Wet Behind the Ears
NASA Astrophysics Data System (ADS)
Given, H. K.; Banahan, S.
2007-12-01
The U.S. National Science Foundation's Ocean Observatories Initiative (OOI) is constructing an integrated network to provide the oceanographic research and education communities with continuous, interactive access to the oceans. The program will build permanent science-focused infrastructure that will enable geoscientists to simultaneously study multiple phenomena in the oceans over time scales from milliseconds to decades, and over spatial scales from sub-meter to global. An integrative computer architecture or cyberinfrastructure will allow researchers to communicate with and configure globally situated experiments in near-real time, forming virtual observatories by designing customized data streams readily incorporated into adaptive models. The project, approved for planning activities by the National Science Board in 2000, will undergo its Preliminary Design Review for readiness in December 2007 and is expected to receive the first installment of a total anticipated capital investment of $330M in 2008. Specific assets include autonomous platforms at high-latitude sites in the northern and southern hemispheres, a submarine ackbone cable spanning the seafloor of the Juan de Fuca tectonic plate, and moorings and mobile assets studying the coastal ocean continental shelf and slope in the Middle Atlantic Bight and offshore the Pacific Northwest. With its global dimension and unifying cyberinfrastructure, the OOI is expected to catalyze new understanding of the oceans in a way that ship-based measurements and experiments, with their shorter observation window and inherent limitations on power and bandwidth, are unable to accomplish.
Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Starr, David (Technical Monitor)
2001-01-01
The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with two CPUs, 4 Gigabytes of RAM and 0.5 Terabyte of disk using two projectors across a super sized panoramic 48 foot screen. In addition new HDTV technology will be demonstrated from a portable computer server.
Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Starr, David (Technical Monitor)
2002-01-01
The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies Including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers Of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software. tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tin) algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with two CPUs, 4 Gigabytes of RAM and 0.5 Terabyte of disk using two projectors across a super sized panoramic 48 foot screen. In addition new HDTV technology will be demonstrated from a portable computer server.
NASA Astrophysics Data System (ADS)
Crane, N. L.
2004-12-01
Experiential learning, engaging students in the process of science, can not only teach students important skills and knowledge, it can also help them become connected with the process on a personal level. This study investigates the role that Inquiry-Driven Field-Based (IDFB) experiences (primarily field classes) in ocean science have on undergraduate science students' development as ocean scientists. Both cognitive (knowledge-based) and affective (motivation and attitude) measures most important to students were used as indicators of development. Major themes will be presented to illustrate how IDFB science experiences can enhance the academic and personal development of students of science. Through their active engagement in the process of science, students gain important skills and knowledge as well as increased confidence, motivation, and ability to plan for their future (in particular their career and educational pathways). This growth is an important part of their development as scientists; the IDFB experience provides them a way to build a relationship with the world of science, and to better understand what science is, what scientists do, and their own future role as scientists. IDFB experiences have a particularly important role in affective measures of development: students develop an important personal connection to science. By doing science, students learn to be scientists and to understand science and science concepts in context. Many underrepresented students do not have the opportunity to take IDFB classes, and addressing this access issue could be an important step towards engaging more underrepresented students in the field. The nature of IDFB experiences and their impact on students makes them a potentially important mechanism for retaining students in the geo-science `pipeline'.
ERIC Educational Resources Information Center
Australian Science Teachers Journal, 1976
1976-01-01
Presents synopses of five papers presented at a conference of the Science Teachers of Australia. Topics include the technology of wine making, integrated science, individualized science instruction, formal operational thinking, and deep ocean drilling. (MLH)
76 FR 51353 - Nominations for Membership on the Ocean Research Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
... Leadership Council (NORLC), the governing body of the National Oceanographic Partnership Program (NOPP... extended expertise and experience in the field of ocean science and/or ocean resource management... balance a range of geographic and sector representation and experience. Applicants must be U.S. citizens...
78 FR 9891 - Extension of Nominations for Membership on the Ocean Research Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Leadership Council (NORLC), the governing body of the National Oceanographic Partnership Program (NOPP... experience in the field of ocean science and/or ocean resource management. Nominations should be identified... set of nominees will seek to balance a range of geographic and sector representation and experience...
2007-01-26
ocean affects calcifying organisms, such as corals , with significant effects to reefs , the ecosystems they support, and their ability to pro- tect...water coral reefs , to open- ocean systems. For example, increasing ocean acidity, altered biogeochemistry, changing current patterns, loss of sea ice...for example, large swings in the populations of commercial fisheries, changes in seabird-population distributions, and coral - reef -bleaching events
NASA Astrophysics Data System (ADS)
Doel, R.
2016-12-01
Fundamental tensions affected planning for United States involvement in the International Indian Ocean Expedition (IIOE). At the highest levels of the US state, science advisors and State Department officials praised the proposed Indian Ocean research plan—loosely modeled on the recently completed International Geophysical Year of 1957-58—as a way of promoting scientific internationalism, seeing this undertaking as a way to help bring India more firmly within the Western sphere amid Cold War East-West conflicts. Dwight D. Eisenhower's presidential science advisor, George Kistiakowsky, had the IIOE in mind when he advised the National Security Council that a key role science could play in American foreign relations lay "in relation with the neutral and less-developed countries." At the same time, American scientists invited to take part in the Indian Ocean Expedition—while generally sympathetic with U.S. foreign policy aims—prioritized research programs in the physical branches of the environmental sciences. While policy-makers hoped to encourage biological research, with the aim of encouraging fisheries and protein production to aid Indian citizens, earth scientists—better-funded, better-organized, supported by military agencies because their studies were crucial to national security—came to dominate the IIOE. While the IIOE was later judged a success, for it extended long-running research programs in physical and chemical oceanography into a less-explored ocean, hopes to advance biological programs on an equal footing proved premature.
A Roadmap for Antarctic and Southern Ocean Science for the Next Two Decades and Beyond
NASA Astrophysics Data System (ADS)
Kennicutt, M. C., II
2015-12-01
Abstract: Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to 'scan the horizon' to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
Wells, Peter G
2014-06-15
Information is the foundation of evidence-based policies for effective marine environmental protection and conservation. In Canada, the cutback of marine science libraries introduces key questions about the role of such institutions and the management of ocean information in the digital age. How vital are such libraries in the mission of studying and protecting the oceans? What is the fate and value of the massive grey literature holdings, including archival materials, much of which is not in digital form but which often contains vital data? How important is this literature generally in the marine environmental sciences? Are we likely to forget the history of the marine pollution field if our digital focus eclipses the need for and access to comprehensive collections and skilled information specialists? This paper explores these and other questions against the backdrop of unprecedented changes in the federal libraries, marine environmental science and legislation in Canada. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
Design of Mariner 9 Science Sequences using Interactive Graphics Software
NASA Technical Reports Server (NTRS)
Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.
1973-01-01
This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.
Shamblin, Brian M.; Bolten, Alan B.; Abreu-Grobois, F. Alberto; Bjorndal, Karen A.; Cardona, Luis; Carreras, Carlos; Clusa, Marcel; Monzón-Argüello, Catalina; Nairn, Campbell J.; Nielsen, Janne T.; Nel, Ronel; Soares, Luciano S.; Stewart, Kelly R.; Vilaça, Sibelle T.; Türkozan, Oguz; Yilmaz, Can; Dutton, Peter H.
2014-01-01
Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology. PMID:24465810
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Yoshimaru, S.; Miki, T.; Sakai, S.; Ikehara, M.; Yamaguchi, K. E.; Ito, T.; Onoue, T.; Takehara, M.; Tetteh, G. M.; Nyame, F. K.
2016-12-01
The Paleoproterozoic Era are one of the most rapid environmental change when the earth surface environment was affected by formation of continents and increasing atmospheric oxygen levels. Major oxidation of Great Oxidation Event (GOE) are reported this ages (eg. Holland, 2006; Condie, 2001; Lyons et al., 2014). The nature of deep sea environments at this time have not been clearly identified and oceanic sediments are mostly involved in subduction. The Paleoproterozoic Birimian Greenstone Belt is an ophiolitic volcaniclastic sequence in Ghana, with depositional age of over 2.3-2.2 Ga (Petersson et al., 2016). Detail research was conducted of the Ashanti (Axim-Konongo) Belt of the Birimian Greenstone Belt along the coast near Cape Three Points area. Very thick volcaniclastic and organic-rich sedimentary rocks, which we now refer to as the Cape Three Points Group, crop out in the lower part of the Birimian Greenstone Belt. Stratigraphically, three unit identified; the lower portion contains thick vesicular volcaniclastic rocks, the middle portion is made up of laminated volcaniclastics and black shale, and the upper portion dominated by fine laminated volcaniclastics with more black shale sequence. Continuous core drilling from Dec 3-12th 2015 of the upper part of the sequence intersected saprolite to a depth of 30m and fresh, well preserved stratigraphy with graded bedding and lamination to a depth of 195m. Half cut cores show well laminated organic rich black shale and relative carbonate rich layers with very fine pyrite grains. SHRIMP age data from a porphyry intrusion into this sequence indicate an age of 2250 Ma. Carbon isotope analysis shows δ13C = -43 to -37‰ for black shale with the very light isotope values for cyanobacterial signature.The fining-upward sequences, well laminated bed and black shales and REE data suggest this sequence situated partly silent stagnant with volcanic activity ocean floor environment around an oceanic island arc condition.
78 FR 60851 - Science Advisory Board Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Science Advisory Board... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The NOAA Science... Atmosphere on strategies for research, education, and application of science to operations and information...
78 FR 16254 - (NOAA) Science Advisory Board (SAB)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) Science Advisory... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science... Atmosphere on strategies for research, education, and application of science to operations and information...
76 FR 35410 - Science Advisory Board; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Science Advisory Board... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science... Atmosphere on strategies for research, education, and application of science to operations and information...
76 FR 57023 - Science Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) Science Advisory... forth the schedule and proposed agenda of a forthcoming meeting of the NOAA Science Advisory Board. The... date. SUPPLEMENTARY INFORMATION: The Science Advisory Board (SAB) was established by a Decision...
78 FR 38297 - Science Advisory Board (SAB)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Science Advisory Board (SAB... (NOAA), Department of Commerce (DOC). ACTION: Notice of Open Meeting. SUMMARY: The Science Advisory... on strategies for research, education, and application of science to operations and information...
75 FR 69920 - (NOAA) Science Advisory Board (SAB)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) Science Advisory... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science... Atmosphere on strategies for research, education, and application of science to operations and information...
75 FR 54854 - Science Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Science Advisory Board... the schedule and proposed agenda of a forthcoming meeting of the NOAA Science Advisory Board. The... FURTHER INFORMATION CONTACT: Dr. Cynthia Decker, Executive Director, Science Advisory Board, NOAA, Rm...
NASA Astrophysics Data System (ADS)
Lee, C. M.; Omar, A. H.; Hook, S. J.; Tzortziou, M.; Luvall, J. C.; Turner, W. W.
2016-02-01
Observations from the Pre-Aerosol Cloud and ocean Ecosystem (PACE) and Hyperspectral InfraRed Imager (HyspIRI) satellite missions are highly complementary and have the potential to significantly advance understanding of various science and applications challenges in the ocean sciences and water quality communities. Scheduled for launch in the 2022 timeframe, PACE is designed to make climate-quality global measurements essential for understanding ocean biology, biogeochemistry and ecology, and determining the role of the ocean in global biogeochemical cycling and ocean ecology, and how it affects and is affected by climate change. PACE will provide high signal-to-noise, hyperspectral observations over an extended spectral range (UV to SWIR) and will have global coverage every 1-2 days, at approximately 1 km spatial resolution; furthermore, PACE is currently designed to include a polarimeter, which will vastly improve atmospheric correction algorithms over water bodies. The PACE mission will enable advances in applications across a range of areas, including oceans, climate, water resources, ecological forecasting, disasters, human health and air quality. HyspIRI, with contiguous measurements in VSWIR, and multispectral measurements in TIR, will be able to provide detailed spectral observations and higher spatial resolution (30 to 60-m) over aquatic systems, but at a temporal resolution that is approximately 5-16 days. HyspIRI would enable improved, detailed studies of aquatic ecosystems, including benthic communities, algal blooms, coral reefs, and wetland species distribution as well as studies of water quality indicators or pollutants such as oil spills, suspended sediment, and colored dissolved organic matter. Together, PACE and HyspIRI will be able to address numerous applications and science priorities, including improving and extending climate data records, and studies of inland, coastal and ocean environments.
NASA Astrophysics Data System (ADS)
Piotrowski, A. M.; Elderfield, H.; Howe, J. N. W.
2014-12-01
The last few million years saw changing boundary conditions to the Earth system which set the stage for bi-polar glaciation and Milankovich-forced glacial-interglacial cycles which dominate Quaternary climate variability. Recent studies have highlighted the relative importance of temperature, ice volume and ocean circulation changes during the Mid-Pleistocene Transition at ~900 ka (Elderfield et al., 2012, Pena and Goldstein, 2014). Reconstructing the history of global deep water mass propagation and its carbon content is important for fully understanding the ocean's role in amplifying Milankovich changes to cause glacial-interglacial transitions. A new foraminiferal-coating Nd isotope record from ODP Site 1123 on the deep Chatham Rise is interpreted as showing glacial-interglacial changes in the bottom water propagation of Atlantic-sourced waters into the Pacific via the Southern Ocean during the last 1 million years. This is compared to globally-distributed bottom water Nd isotope records; including a new deep western equatorial Atlantic Ocean record from ODP Site 929, as well as published records from ODP 1088 and Site 1090 in the South Atlantic (Pena and Goldstein, 2014), and ODP 758 in the deep Indian Ocean (Gourlan et al., 2010). Atlantic-to-Pacific gradients in deep ocean neodymium isotopes are constructed for key time intervals to elucidate changes in deep water sourcing and circulation pathways through the global ocean. Benthic carbon isotopes are used to estimate deep water nutrient contents of deep water masses and constrain locations and modes of deep water formation. References: Elderfield et al. Science 337, 704 (2012) Pena and Goldstein, Science 345, 318 (2014) Gourlan et al., Quaternary Science Reviews 29, 2484-2498 (2010)
Automated sensor networks to advance ocean science
NASA Astrophysics Data System (ADS)
Schofield, O.; Orcutt, J. A.; Arrott, M.; Vernon, F. L.; Peach, C. L.; Meisinger, M.; Krueger, I.; Kleinert, J.; Chao, Y.; Chien, S.; Thompson, D. R.; Chave, A. D.; Balasuriya, A.
2010-12-01
The National Science Foundation has funded the Ocean Observatories Initiative (OOI), which over the next five years will deploy infrastructure to expand scientist’s ability to remotely study the ocean. The deployed infrastructure will be linked by a robust cyberinfrastructure (CI) that will integrate marine observatories into a coherent system-of-systems. OOI is committed to engaging the ocean sciences community during the construction pahse. For the CI, this is being enabled by using a “spiral design strategy” allowing for input throughout the construction phase. In Fall 2009, the OOI CI development team used an existing ocean observing network in the Mid-Atlantic Bight (MAB) to test OOI CI software. The objective of this CI test was to aggregate data from ships, autonomous underwater vehicles (AUVs), shore-based radars, and satellites and make it available to five different data-assimilating ocean forecast models. Scientists used these multi-model forecasts to automate future glider missions in order to demonstrate the feasibility of two-way interactivity between the sensor web and predictive models. The CI software coordinated and prioritized the shared resources that allowed for the semi-automated reconfiguration of assett-tasking, and thus enabled an autonomous execution of observation plans for the fixed and mobile observation platforms. Efforts were coordinated through a web portal that provided an access point for the observational data and model forecasts. Researchers could use the CI software in tandem with the web data portal to assess the performance of individual numerical model results, or multi-model ensembles, through real-time comparisons with satellite, shore-based radar, and in situ robotic measurements. The resulting sensor net will enable a new means to explore and study the world’s oceans by providing scientists a responsive network in the world’s oceans that can be accessed via any wireless network.
Communicating the Benefits of a Full Sequence of High School Science Courses
NASA Astrophysics Data System (ADS)
Nicholas, Catherine Marie
High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.
NASA Astrophysics Data System (ADS)
Halversen, C.; Apple, J. K.; McDonnell, J. D.; Weiss, E.
2014-12-01
The Next Generation Science Standards (NGSS) call for 5th grade students to "obtain and combine information about ways individual communities use science ideas to protect Earth's resources and environment". Achieving this, and other objectives in NGSS, will require changes in the educational system for both students and teachers. Teachers need access to high quality instructional materials and continuous professional learning opportunities starting in pre-service education. Students need highly engaging and authentic learning experiences focused on content that is strategically interwoven with science practices. Pre-service and early career teachers, even at the secondary level, often have relatively weak understandings of the complex Earth systems science required for understanding climate change and hold alternative ideas and naïve beliefs about the nature of science. These naïve understandings cause difficulties in portraying and teaching science, especially considering what is being called for in NGSS. The ACLIPSE program focuses on middle school pre-service science teachers and education faculty because: (1) the concepts that underlie climate change align well with the disciplinary core ideas and practices in NGSS for middle grades; and (2) middle school is a critical time for capturing students interest in science as student engagement by eighth grade is the most effective predictor of student pursuit of science in high school and college. Capturing student attention at this age is critical for recruitment to STEM careers and lifelong climate literacy. THE ACLIPSE program uses cutting edge research and technology in ocean observing systems to provide educators with new tools to engage students that will lead to deeper understanding of the interactions between the ocean and climate systems. Establishing authentic, meaningful connections between indigenous and place-based, and technological climate observations will help generate a more holistic perspective on climate change and demonstrate that observing systems can enhance understanding. ACLIPSE materials strive to translate research about climate change effectively into understandable narratives of real world phenomena using ocean data, creating meaningful pathways into ocean-climate science for students in ALL communities.
78 FR 1594 - Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... Ocean Energy Management--Completed Actions Regulation Sequence No. Title Identifier No. 328 Revised Requirements for 1010-AD61 Well Plugging and Platform Decommissioning. Office of Surface Mining Reclamation and... DEPARTMENT OF THE INTERIOR (DOI) Bureau of Ocean Energy Management (BOEM) Completed Actions 328. Revised...
NASA Technical Reports Server (NTRS)
Stutzman, Warren L. (Editor); Brown, Gary S. (Editor)
1991-01-01
The primary objective of the Large Space Antenna (LSA) Science Panel was to evaluate the science benefits that can be realized with a 25-meter class antenna in a microwave/millimeter wave remote sensing system in geostationary orbit. The panel concluded that a 25-meter or larger antenna in geostationary orbit can serve significant passive remote sensing needs in the 10 to 60 GHz frequency range, including measurements of precipitation, water vapor, atmospheric temperature profile, ocean surface wind speed, oceanic cloud liquid water content, and snow cover. In addition, cloud base height, atmospheric wind profile, and ocean currents can potentially be measured using active sensors with the 25-meter antenna. Other environmental parameters, particularly those that do not require high temporal resolution, are better served by low Earth orbit based sensors.
Corporate control and global governance of marine genetic resources
Österblom, Henrik
2018-01-01
Who owns ocean biodiversity? This is an increasingly relevant question, given the legal uncertainties associated with the use of genetic resources from areas beyond national jurisdiction, which cover half of the Earth’s surface. We accessed 38 million records of genetic sequences associated with patents and created a database of 12,998 sequences extracted from 862 marine species. We identified >1600 sequences from 91 species associated with deep-sea and hydrothermal vent systems, reflecting commercial interest in organisms from remote ocean areas, as well as a capacity to collect and use the genes of such species. A single corporation registered 47% of all marine sequences included in gene patents, exceeding the combined share of 220 other companies (37%). Universities and their commercialization partners registered 12%. Actors located or headquartered in 10 countries registered 98% of all patent sequences, and 165 countries were unrepresented. Our findings highlight the importance of inclusive participation by all states in international negotiations and the urgency of clarifying the legal regime around access and benefit sharing of marine genetic resources. We identify a need for greater transparency regarding species provenance, transfer of patent ownership, and activities of corporations with a disproportionate influence over the patenting of marine biodiversity. We suggest that identifying these key actors is a critical step toward encouraging innovation, fostering greater equity, and promoting better ocean stewardship. PMID:29881777
NASA Astrophysics Data System (ADS)
Mary, Michael Todd
High school students in the United States for the past century have typically taken science courses in a sequence of biology followed by chemistry and concluding with physics. An alternative sequence, typically referred to as "physics first" inverts the traditional sequence by having students begin with physics and end with biology. Proponents of physics first cite advances in biological sciences that have dramatically changed the nature of high school biology and the potential benefit to student learning in math that would accompany taking an algebra-based physics course in the early years of high school to support changing the sequence. Using a quasi-experimental, quantitative research design, the purpose of this study was to investigate the impact of science course sequencing on student achievement in math and science at a school district that offered both course sequences. The Texas state end-of-course exams in biology, chemistry, physics, algebra I and geometry were used as the instruments measuring student achievement in math and science at the end of each academic year. Various statistical models were used to analyze these achievement data. The conclusion was, for students in this study, the sequence in which students took biology, chemistry, and physics had little or no impact on performance on the end-of-course assessments in each of these courses. Additionally there was only a minimal effect found with respect to math performance, leading to the conclusion that neither the traditional or "physics first" science course sequence presented an advantage for student achievement in math or science.
Naval Research Laboratory Overview
2012-10-01
Electronics Science & Tech Biomolecular Science & Engineering Ocean and Atmospheric Science & Technology Dr. E. Franchi Acoustics Remote...Operational Global Atmospheric Model 1982 NQR detection for explosives & narcotics 1992 Clementine Spacecraft 1991-1994 Timation - GPS 1964-1977
NASA Astrophysics Data System (ADS)
Clark, H. L.; Isern, A. R.
2003-04-01
The Division of Ocean Sciences of the American National Science Foundation (NSF) plans to initiate construction of an integrated observatory network that will provide the oceanographic research and education communities with a new mode of access to the ocean. This observatory system will have three elements: 1) a regional cabled network consisting of interconnected sites on the seafloor spanning several geological and oceanographic features and processes, 2) several relocatable deep-sea buoys that could also be deployed in harsh environments such as the Southern Ocean, and 3) new construction or enhancements to existing facilities leading to an expanded network of coastal observatories. The primary infrastructure for all components of the Ocean Observatories Initiative (OOI) consists of an array of seafloor junction boxes connected to cables running along the seafloor to individual instruments or instrument clusters. These junction boxes include undersea connectors that provide not only the power and two-way communication needed to support seafloor instrumentation, but also the capability to exchange instrumentation in situ when necessary for conducting new experiments or for repairing existing instruments. Depending upon proximity to the coast and other engineering requirements, the junction box will be either terminated by a long dedicated fiber-optic cable to shore, or by a shorter cable to a surface buoy that is capable of two-way communications with a shore station. The scientific problems driving the need for an ocean observing system are broad in scope and encompass nearly every area of ocean science including: ecological characterizations; role of the ocean in climate; fluids, chemistry, and life in the oceanic crust; dynamics of the oceanic lithosphere and imaging of the earth’s interior; seafloor spreading and subduction; organic carbon fluxes; turbulent mixing and biophysical interaction; and coastal ocean processes. Thirty years ago, NSF leadership helped establish the system of support for the U.S academic research fleet accessible to all investigators that enabled the spatial exploration of our oceans. In the same manner, this initiative will start building a network of ocean observatories that will facilitate the collection of long time-series data streams needed to understand the dynamics of biological, chemical, geological and physical processes and facilitate the 'temporal' exploration of the oceans.
Coastal Ocean Processes: A Science Prospectus
1992-04-01
Approved for public release; distribution unlimited Woods Hole Oceanographic Institution Woods Hole, MA 02543. _DTIC , 93-04231 MAR 0,2 1993...LEGIBLY ON BLACK AND WHITE MICROFICHE. WHOI-92-18 Coastal Ocean Processes: A Science Prospectus by KH. Brink Woods Hole Oceanographic Institution J.M...whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept
ERIC Educational Resources Information Center
Duncan, Ravit Golan; El-Moslimany, Hebbah; McDonnell, Janice; Lichtenwalner, Sage
2011-01-01
The development of inquiry and project-based materials is challenging in many ways, not the least of which is the design of supports for teachers implementing such materials. We report on the design of educative and just-in-time teacher supports for an online project-based unit in ocean science. The teacher supports were visible as tabs on the…
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1990-12-01
Larry Jendro 22 4260 Undersea Warfare Systems Technology .... CDR John A. Sampson 23 4471 Ocean/Atmosphere ................ Mr. Hans Dolezalek 24 4539...and ocean acoustics are receiving renewed attention from investigators in a variety of other scientific disciplines. Recently the SACLANT Undersea ...similar efforts in the U.S. in terms of civil Samples of their work were presented at Undersea applications. I have avoided contact with the military
European Science Notes Information Bulletin. Report on Current European and Middle Eastern Science
1992-10-01
oceanographers. This has occurred at a time of current radar systems . The independent develop- rapidly increasing government interest in and fund...over each area in which surface current is ment of the waves (some motions caused by wave determined (for HF systems , averaging time spans action and...Ocean Observing System ; high-resolution model capabilities; ocean- atmosphere interface; Surface Density Depression Pool; forecasting INTRODUCTION tion
Visions of our Planet's Atmosphere, Land and Oceans
NASA Technical Reports Server (NTRS)
Hasler, A. F.
2002-01-01
The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to South Africa, Cape Town and Johannesburg using NASA Terra/MODIS data, Landsat data and 1 m IKONOS 'Spy Satellite' data. Zoom in to any place South Africa using Earth Viewer 3D from Keyhole Inc. and Landsat data at 30 m resolution Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & 'tornadoes'. See the latest visualizations of spectacular images from NASANOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained.
Evans, Tyler G; Padilla-Gamiño, Jacqueline L; Kelly, Morgan W; Pespeni, Melissa H; Chan, Francis; Menge, Bruce A; Gaylord, Brian; Hill, Tessa M; Russell, Ann D; Palumbi, Stephen R; Sanford, Eric; Hofmann, Gretchen E
2015-07-01
Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species. Copyright © 2015 Elsevier Inc. All rights reserved.
77 FR 476 - Science Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) Science Advisory... forth the schedule and proposed agenda of a forthcoming meeting of the NOAA Science Advisory Board. The... INFORMATION: The Science Advisory Board (SAB) was established by a Decision Memorandum dated September 25...
Climate change in the oceans: Human impacts and responses.
Allison, Edward H; Bassett, Hannah R
2015-11-13
Although it has far-reaching consequences for humanity, attention to climate change impacts on the ocean lags behind concern for impacts on the atmosphere and land. Understanding these impacts, as well as society's diverse perspectives and multiscale responses to the changing oceans, requires a correspondingly diverse body of scholarship in the physical, biological, and social sciences and humanities. This can ensure that a plurality of values and viewpoints is reflected in the research that informs climate policy and may enable the concerns of maritime societies and economic sectors to be heard in key adaptation and mitigation discussions. Copyright © 2015, American Association for the Advancement of Science.
ERIC Educational Resources Information Center
Gaubatz, Julie
2013-01-01
Studies of high-school science course sequences have been limited primarily to a small number of site-specific investigations comparing traditional science sequences (e.g., Biology-Chemistry-Physics: BCP) to various Physics First-influenced sequences (Physics-Chemistry-Biology: PCB). The present study summarizes a five-year program evaluation…
Ocean Modeling and Visualization on Massively Parallel Computer
NASA Technical Reports Server (NTRS)
Chao, Yi; Li, P. Peggy; Wang, Ping; Katz, Daniel S.; Cheng, Benny N.
1997-01-01
Climate modeling is one of the grand challenges of computational science, and ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change.
NASA Technical Reports Server (NTRS)
Duda, James L.; Barth, Suzanna C
2005-01-01
The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.
Sheridan, R.E.; Ashley, G.M.; Miller, K.G.; Waldner, J.S.; Hall, D.W.; Uptegrove, J.
2000-01-01
High-resolution seismic reflection profiles (~ 1-5 m resolution), including Geopulse(TM), Uniboom(TM), minisparker, small air gun, and water gun sources, are used to trace the ?? 18O stage 5 portion of the outcropping Cape May Formation across the shelf to the continental slope. The ?? 18O stage 5/6 boundary identified at Ocean Drilling Project (ODP) Site 903 on the continental slope anchors the onshore-offshore seismic correlations. Above the ?? 18O stage 5 sequence, there are distinguishable lowstand systems tracts (LST), transgressive systems tracts (TST) and highstand systems tracts (HST) that correlate with ?? 18O stages 4 through 1. Atlantic Margin Coring Project (AMCOR) holes 6009, 6010, 6011, 6020, and 6021C provide age and paleoenvironmental indicators that agree with these correlations. The sub-arctic paleoenvironmental indicators in sequences of ?? 18O stage 3 agree with the cooler temperatures and lower sea-level highstands of that time. Thicker ?? 18O stage 3 and 4 sequences are preserved in the Paleo-Hudson River incised valley across the shelf. The expanded ice sheets during stage ?? 18O 3 compared to ?? 18O stages 1 and 5 probably increased sediment discharge in the Hudson River drainage system. (C) 2000 Elsevier Science B.V. All rights reserved.
Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons.
Kim, Yihwan; Jeon, Jehyun; Kwak, Min Seok; Kim, Gwang Hoon; Koh, InSong; Rho, Mina
2018-01-01
Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.
Ocean Research - Perspectives from an international Ocean Research Coordination Network
NASA Astrophysics Data System (ADS)
Pearlman, Jay; Williams, Albert, III
2013-04-01
The need for improved coordination in ocean observations is more urgent now given the issues of climate change, sustainable food sources and increased need for energy. Ocean researchers must work across disciplines to provide policy makers with clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions asked over the last 100 years at the time and space scales that are relevant. Programs like GLOBEC moved us forward but we are still challenged by the disciplinary divide. Interdisciplinary problem solving must be addressed not only by the exchange of data between the many sides, but through levels where questions require day-to-day collaboration. A National Science Foundation-funded Research Coordination Network (RCN) is addressing approaches for improving interdisciplinary research capabilities in the ocean sciences. During the last year, the RCN had a working group for Open Data led by John Orcutt, Peter Pissierssens and Albert Williams III. The teams has focused on three areas: 1. Data and Information formats and standards; 2. Data access models (including IPR, business models for open data, data policies,...); 3. Data publishing, data citation. There has been a significant trend toward free and open access to data in the last few years. In 2007, the US announced that Landsat data would be available at no charge. Float data from the US (NDBC), JCOMM and OceanSites offer web-based access. The IODE is developing its Ocean Data Portal giving immediate and free access to ocean data. However, from the aspect of long-term collaborations across communities, this global trend is less robust than might appear at the surface. While there are many standard data formats for data exchange, there is not yet widespread uniformity in their adoption. Use of standard data formats can be encouraged in several ways: sponsors of observational science programs can encourage or require standard formats for data storage; scientific journals can require that data in support of publication be deposited in a standard format; and finally, communities of scientists can recognize that observational or model-developed data sets are professional contributions deserving citation. Even with standards for exchange, the availability of data and models can limited by cultural and policy issues. Investigators on NSF grants are expected to share with other researchers the primary data, samples, physical collections and other supporting materials created under their grants. Broader approaches to data availability are seen in the model of the human genome project; according to the Bermuda Agreement (1996), the funding agencies required that all scientists working on the human genome make the data quickly and openly available. Is this a model for ocean data? This presentation will examine the steps forward in stimulating interdisciplinary research through data exchange and better addressing the gaps in communication and approaches that are still common across the ocean sciences.
The Effects of a Marine Science Curriculum and Training Project on Collegiality.
ERIC Educational Resources Information Center
Estrin, Elise Trumbull; Lash, Andrea A.
This paper reports some of the results of an evaluation of Project OCEAN (Oceanic Classroom Education and Networking), a teacher training and curriculum reform project. The paper focuses on results that suggest that Project OCEAN was able to stimulate important collegial behaviors among teachers in all participating schools, and attempts to…
Dispersal of Fine Sediment in the Coastal Ocean: Sensitivity to Aggregation and Stratification
2008-01-01
Venice. They have used this model as both a research tool (Bignami et al., 2007) and to construct an operational model ( Chiggiato and Oddo, 2006... Chiggiato , J. and Oddo, P., 2006. Operational ocean models in the Adriatic Sea: a skill assessment. Ocean Science Discussions, 3: 2087 - 2116. Haidvogel
Welcome to NOAA Communications | National Oceanic and Atmospheric
oceans. Monica Allen, 301-734-1123 Earth System Research Laboratory Atmospheric science, climate change ; Coasts Infographic: How does climate change affect coral reefs? Coral bleaching at Lizard Island on the Administration Jump to Content Enter Search Terms Weather Climate Oceans & Coasts Fisheries
Fostering Eroticism in Science Education to Promote Erotic Generosities for the Ocean-Other
ERIC Educational Resources Information Center
Luther, Rachel
2013-01-01
Despite the increase in marine science curriculum in secondary schools, marine science is not generally required curricula and has been largely deemphasized or ignored in relation to earth science, biology, chemistry, and physics. I call for the integration and implementation of marine science more fully in secondary science education through…
ERIC Educational Resources Information Center
Lemus, Judith D.; Bishop, Kristina; Walters, Howard
2010-01-01
The QuikSCience Challenge science education program combines a cooperative team project emphasizing community service with an academic competition for middle and high school students. The program aims to develop leadership abilities, motivate interest in ocean sciences, engage students in community service and environmental stewardship, and…
77 FR 58356 - Science Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Science Advisory Board... the schedule and proposed agenda of a forthcoming meeting of the NOAA Science Advisory Board. The... Science Advisory Board (SAB) was established by a Decision Memorandum dated September 25, 1997, and is the...
76 FR 2672 - Science Advisory Board Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Science Advisory Board... forth the schedule and proposed agenda of a forthcoming meeting of the NOAA Science Advisory Board. The... CONTACT: Dr. Cynthia Decker, Executive Director, Science Advisory Board, NOAA, Rm. 11230, 1315 East-West...
FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Peter Brewer; Dr. James Barry
2002-09-30
We have continued to carry out creative small-scale experiments in the deep ocean to investigate the science underlying questions of possible future large-scale deep-ocean CO{sub 2} sequestration as a means of ameliorating greenhouse gas growth rates in the atmosphere. This project is closely linked to additional research funded by the DoE Office of Science, and to support from the Monterey Bay Aquarium Research Institute. The listing of project achievements here over the past year reflects these combined resources. Within the last project year we have: (1) Published a significant workshop report (58 pages) entitled ''Direct Ocean Sequestration Expert's Workshop'', basedmore » upon a meeting held at MBARI in 2001. The report is available both in hard copy, and on the NETL web site. (2) Carried out three major, deep ocean, (3600m) cruises to examine the physical chemistry, and biological consequences, of several liter quantities released on the ocean floor. (3) Carried out two successful short cruises in collaboration with Dr. Izuo Aya and colleagues (NMRI, Osaka, Japan) to examine the fate of cold (-55 C) CO{sub 2} released at relatively shallow ocean depth. (4) Carried out two short cruises in collaboration with Dr. Costas Tsouris, ORNL, to field test an injection nozzle designed to transform liquid CO{sub 2} into a hydrate slurry at {approx}1000m depth. (5) In collaboration with Prof. Jill Pasteris (Washington University) we have successfully accomplished the first field test of a deep ocean laser Raman spectrometer for probing in situ the physical chemistry of the CO{sub 2} system. (6) Submitted the first major paper on biological impacts as determined from our field studies. (7) Submitted a paper on our measurements of the fate of a rising stream of liquid CO{sub 2} droplets to Environmental Science & Technology. (8) Have had accepted for publication in Eos the first brief account of the laser Raman spectrometer success. (9) Have had two papers submitted for the Greenhouse Gas Technology--6 Conference (Kyoto) accepted. (10) Been nominated by the U.S. Dept. of State to attend the Nov. 2002 IPCC Workshop on Carbon Capture and Storage. (11) Given presentations at national meetings, including the AGU Ocean Sciences Meeting, the American Chemical Society, the Minerals, Materials, and Metals Society, the National Academy of Engineering, and given numerous invited lectures.« less
Writing in Science: Beyond the Lab Report.
ERIC Educational Resources Information Center
Stallsworth, Dana
2002-01-01
Discusses the importance of writing in learning science. Describes a science lesson designed as a part of an ocean unit using many genres of literature. Includes activity length, objectives, goals, and material for the lesson. (KHR)
76 FR 36094 - Draft NOAA Scientific Integrity Policy and Handbook; Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
..., Deputy Chief Financial Officer, Office of Oceanic and Atmospheric Research, National Oceanic and... the key role of science in informing policy; Encourages scientists to publish data and findings to...
Ocean science: The rise of Rhizaria
NASA Astrophysics Data System (ADS)
Caron, David A.
2016-04-01
Large amoeba-like organisms known as Rhizaria have often been overlooked in studies of ocean biology and biogeochemistry. Underwater imaging and ecological network analyses are revealing their roles. See Article p.465 & Letter p.504
Facilitymetrics for Big Ocean Science: Towards Improved Measurement of Scientific Impact
NASA Astrophysics Data System (ADS)
Juniper, K.; Owens, D.; Moran, K.; Pirenne, B.; Hallonsten, O.; Matthews, K.
2016-12-01
Cabled ocean observatories are examples of "Big Science" facilities requiring significant public investments for installation and ongoing maintenance. Large observatory networks in Canada and the United States, for example, have been established after extensive up-front planning and hundreds of millions of dollars in start-up costs. As such, they are analogous to particle accelerators and astronomical observatories, which may often be required to compete for public funding in an environment of ever-tightening national science budget allocations. Additionally, the globalization of Big Science compels these facilities to respond to increasing demands for demonstrable productivity, excellence and competitiveness. How should public expenditures on "Big Science" facilities be evaluated and justified in terms of benefits to the countries that invest in them? Published literature counts are one quantitative measure often highlighted in the annual reports of large science facilities. But, as recent research has demonstrated, publication counts can lead to distorted characterizations of scientific impact, inviting evaluators to calculate scientific outputs in terms of costs per publication—a ratio that can be simplistically misconstrued to conclude Big Science is wildly expensive. Other commonly promoted measurements of Big Science facilities include technical reliability (a.k.a. uptime), provision of training opportunities for Highly Qualified Personnel, generation of commercialization opportunities, and so forth. "Facilitymetrics" is a new empirical focus for scientometrical studies, which has been applied to the evaluation and comparison of synchrotron facilities. This paper extends that quantitative and qualitative examination to a broader inter-disciplinary comparison of Big Science facilities in the ocean science realm to established facilities in the fields of astronomy and particle physics.
Facilitymetrics for Big Ocean Science: Towards Improved Measurement of Scientific Impact
NASA Astrophysics Data System (ADS)
Juniper, K.; Owens, D.; Moran, K.; Pirenne, B.; Hallonsten, O.; Matthews, K.
2016-02-01
Cabled ocean observatories are examples of "Big Science" facilities requiring significant public investments for installation and ongoing maintenance. Large observatory networks in Canada and the United States, for example, have been established after extensive up-front planning and hundreds of millions of dollars in start-up costs. As such, they are analogous to particle accelerators and astronomical observatories, which may often be required to compete for public funding in an environment of ever-tightening national science budget allocations. Additionally, the globalization of Big Science compels these facilities to respond to increasing demands for demonstrable productivity, excellence and competitiveness. How should public expenditures on "Big Science" facilities be evaluated and justified in terms of benefits to the countries that invest in them? Published literature counts are one quantitative measure often highlighted in the annual reports of large science facilities. But, as recent research has demonstrated, publication counts can lead to distorted characterizations of scientific impact, inviting evaluators to calculate scientific outputs in terms of costs per publication—a ratio that can be simplistically misconstrued to conclude Big Science is wildly expensive. Other commonly promoted measurements of Big Science facilities include technical reliability (a.k.a. uptime), provision of training opportunities for Highly Qualified Personnel, generation of commercialization opportunities, and so forth. "Facilitymetrics" is a new empirical focus for scientometrical studies, which has been applied to the evaluation and comparison of synchrotron facilities. This paper extends that quantitative and qualitative examination to a broader inter-disciplinary comparison of Big Science facilities in the ocean science realm to established facilities in the fields of astronomy and particle physics.
Ocean science. Enhanced: internal tides and ocean mixing.
Garrett, Chris
2003-09-26
Recent satellite and in situ observations have shown that at ocean ridges and other seafloor topographic features, a substantial amount of energy is transferred from the main ocean tides into "internal tides." In his Perspective, Garrett explains how these internal waves with tidal periods propagate through the density-stratified deep ocean and eventually break down into turbulence. The resulting mixing affects ocean stratification and ocean circulation. It thus influences climate as well as biological production. The energy for the internal tides is derived from the rotational energy of the Earth-Moon system changes of the length of the day and the distance to the Moon.
NASA Astrophysics Data System (ADS)
Salmun, H.; Buonaiuto, F. S.
2016-12-01
The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships for academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics (STEM). Led by Earth scientists the Program awarded scholarships to students in their junior or senior years majoring in computer science, geosciences, mathematics and physics to create two cohorts of students that spent a total of four semesters in an interdisciplinary community. The program included mentoring of undergraduate students by faculty and graduate students (peer-mentoring), a sequence of three semesters of a one-credit seminar course and opportunities to engage in research activities, research seminars and other enriching academic experiences. Faculty and peer-mentoring were integrated into all parts of the scholarship activities. The one-credit seminar course, although designed to expose scholars to the diversity STEM disciplines and to highlight research options and careers in these disciplines, was thematically focused on geoscience, specifically on ocean and atmospheric science. The program resulted in increased retention rates relative to institutional averages. In this presentation we will discuss the process of establishing the program, from the original plans to its implementation, as well as the impact of this multidisciplinary approach to geoscience education at our institution and beyond. An overview of accomplishments, lessons learned and potential for best practices will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zak, D. B.; Church, H.; Ivey, M.
2000-04-04
Since the 1997 Atmospheric Radiation Measurement (ARM) Science Team Meeting, the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site has come into being. Much has happened even since the 1998 Science Team Meeting at which this paper was presented. To maximize its usefulness, this paper has been updated to include developments through July 1998.
2009-09-30
Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have... Fisheries and Ocean Sciences,903 Koyukuk Drive,Fairbanks,AK,99775 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND
IOMEDEX Sound Velocity Analysis and Environmental Data Summary
1974-08-01
WORK UNIT NUMBERS INaval OceaIoogra-~hic Office Coup 61,S0 - Lashi..qton, DC 20373 _____________________ I - CNTOLIN OFIE AM AD DDES...exact nature of the exercise can be found in the IOMEDEX LRAPP Operation Order (Maury Center for Ocean Science , 1971). Much of the analysis contained...in this report has appeared previously in the IOM[DEX Synopsis Report (Maury Center for Ocean Science , 1972a) and in the IGMEDEX Summary Report (Maury
Protective Chafing Gear for Salvage Operations - Field Report
1980-05-01
1980J E Approved for public release; distribution unlimited - INAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CALIFORNIA 92152 80 6 20 008 * NAVAL OCEAN SYSTEMS...Officer of Reserve Harbor Clear- ance Unit 620. The initial suits were hand carried and evaluated during the cleanup task. A Navy Science Assistance...Systems Division Environmental Sciences Department II ? .4 F ~ ~~~~UNCLASSIFIED__ _ _ _ _ _ _ _ I7 f S~ECU I TY CLASSIFICATION OF THIS PAGE (ften
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1991-12-01
50 m); innovative acoustic, substances laser, and biosensors; fluxes through the seabed, and . Biological processes real - time measurement of seabed...Woodhouse, Lowestoft, U.K. 4 r ESNIB 91-07 Title Coordinator and Partners FAX Number European River Ocean System (EROS 2000): J.M. Martin, tcole Normale...Athens, Greece; F. Voutsinou, Athens, Greece European River Ocean System (EROS 2000) - J.-M. Martin, Icole Normale Superierre, Montrouge, 33 1 46570497
Sample classroom activities based on climate science
NASA Astrophysics Data System (ADS)
Miler, T.
2009-09-01
We present several activities developed for the middle school education based on a climate science. The first activity was designed to teach about the ocean acidification. A simple experiment can prove that absorption of CO2 in water increases its acidity. A liquid pH indicator is suitable for the demonstration in a classroom. The second activity uses data containing coordinates of a hurricane position. Pupils draw a path of a hurricane eye in a tracking chart (map of the Atlantic ocean). They calculate an average speed of the hurricane, investigate its direction and intensity development. The third activity uses pictures of the Arctic ocean on September when ice extend is usually the lowest. Students measure the ice extend for several years using a square grid printed on a plastic foil. Then they plot a graph and discuss the results. All these activities can be used to improve the natural science education and increase the climate change literacy.
NASA Astrophysics Data System (ADS)
Bridges, Jon P.
Improving the STEM readiness of students from historically underserved groups is a moral and economic imperative requiring greater attention and effort than has been shown to date. The current literature suggests a high school science sequence beginning with physics and centered on developing conceptual understanding, using inquiry labs and modeling to allow students to explore new ideas, and addressing and correcting student misconceptions can increase student interest in and preparation for STEM careers. The purpose of this study was to determine if the science college readiness of historically underserved students can be improved by implementing an inquiry-based high school science sequence comprised of coursework in physics, chemistry, and biology for every student. The study used a retrospective cohort observational design to address the primary research question: are there differences between historically underserved students completing a Physics First science sequence and their peers completing a traditional science sequence in 1) science college-readiness test scores, 2) rates of science college-and career-readiness, and 3) interest in STEM? Small positive effects were found for all three outcomes for historically underserved students in the Physics First sequence.
Planetary Education and Outreach Using the NOAA Science on a Sphere
NASA Technical Reports Server (NTRS)
Simon-Miller, A. A.; Williams, D. R.; Smith, S. M.; Friedlander, J. S.; Mayo, L. A.; Clark, P. E.; Henderson, M. A.
2011-01-01
Science On a Sphere (SOS) is a large visualization system, developed by the National Oceanic and Atmospheric Administration (NOAH), that uses computers running Redhat Linux and four video projectors to display animated data onto the outside of a sphere. Said another way, SOS is a stationary globe that can show dynamic, animated images in spherical form. Visualization of cylindrical data maps show planets, their atmosphere, oceans, and land, in very realistic form. The SOS system uses 4 video projectors to display images onto the sphere. Each projector is driven by a separate computer, and a fifth computer is used to control the operation of the display computers. Each computer is a relatively powerful PC with a high-end graphics card. The video projectors have native XGA resolution. The projectors are placed at the corners of a 30' x 30' square with a 68" carbon fiber sphere suspended in the center of the square. The equator of the sphere is typically located 86" off the floor. SOS uses common image formats such as JPEG, or TIFF in a very specific, but simple form; the images are plotted on an equatorial cylindrical equidistant projection, or as it is commonly known, a latitude/longitude grid, where the image is twice as wide as it is high (rectangular). 2048x] 024 is the minimum usable spatial resolution without some noticeable pixelation. Labels and text can be applied within the image, or using a timestamp-like feature within the SOS system software. There are two basic modes of operation for SOS: displaying a single image or an animated sequence of frames. The frame or frames can be setup to rotate or tilt, as in a planetary rotation. Sequences of images that animate through time produce a movie visualization, with or without an overlain soundtrack. After the images are processed, SOS will display the images in sequence and play them like a movie across the entire sphere surface. Movies can be of any arbitrary length, limited mainly by disk space and can be animated at frame rates up to 30 frames per second. Transitions, special effects, and other computer graphics techniques can be added to a sequence through the use of off-the-shelf software, like Final Cut Pro. However, one drawback is that the Sphere cannot be used in the same manner as a flat movie screen; images cannot be pushed to a "side", a highlighted area must be viewable to all sides of the room simultaneously, and some transitions do not work as well as others. We discuss these issues and workarounds in our poster.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.
This report, which examines expected major trends in ocean research up to the year 2000, focuses on the most important ocean research problems that should receive particular attention during the next decades, what major advances should be expected and what kinds of research should be encouraged for them to be achieved, and impediments to achieving…
Environmental Conditions in the Norwegian-Iceland Seas, May 1987.
1987-06-01
Ocanography Division auI W May Joseph W. McCaffrey Ocean Science Directorate Ocean Sensing and Prediction Division June 1987 88330 8 I - I PRELIMINARY REPORT...Leonard Walstad) using an open ocean model; and (4) ship observations aboard the West German ship PLANET . This report concentrates on the first two...validation and delivery for operational use of oceanic and acoustic numerical forecast systems, and the assimilation of in-situ and remotely sensed data
The role of coastal fog in increased viability of marine microbial aerosols
NASA Astrophysics Data System (ADS)
Dueker, M.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.
2011-12-01
Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. Despite the ubiquity of these bacteria (concentration estimates range from 1 x 10^4 to 6 x 10^5 cells m-3), much is still being learned about their source, viability, and interactions with climatic controls. They can be attached to ambient aerosol particles or exist singly in the air. They affect climate by serving as ice, cloud, and fog nucleators, and have the metabolic potential to alter atmospheric chemistry. Fog presence in particular has been shown to greatly increase the deposition of viable microbial aerosols in both urban and coastal environments, but the mechanisms behind this are not fully understood. To address this gap, we examined the diversity of culturable microbial aerosols from a relatively pristine coastal environment in Maine (USA) and determined the effect of fog presence on viability and community composition of microbial aerosols. 16S rRNA sequencing of culturable ocean surface bacteria and depositing microbial aerosols (under clear and foggy conditions) resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66% of all sequences. Seventy-five percent of the viable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. The fog and ocean surface sequence libraries were significantly more similar in microbial community composition than clear (non-foggy) and ocean surface libraries. These findings support a dual role for fog in enhancing the fallout of viable marine microbial aerosols via increased gravitational settling rates and decreased aerosolization stress on the organisms. The dominant presence of marine bacteria in coastal microbial aerosols provides a strong case for an ecologically-relevant ocean to terrestrial transport of microbes, creating a potential connection between water and air quality in the coastal environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
...), Joint Subcommittee on Ocean Science and Technology (JSOST), National Research Council report on Marine p... ideas for effective strategies for Federal, State, and local officials to use to address the potential... particularly suited to gathering information about acidification of ocean waters? ii. Are there new programs...
Ocean Currents: Marine Science Activities for Grades 5-8. Teacher's Guide.
ERIC Educational Resources Information Center
Halversen, Catherine; Beals, Kevin; Strang, Craig
This teacher's guide attempts to answer questions such as: What causes ocean currents? What impact do they have on Earth's environment? and How have they influenced human history? Seven innovative activities are provided in which students can gain fascinating insights into the earth as the ocean planet. Activities focus on how wind, temperature,…
Detangling Spaghetti: Tracking Deep Ocean Currents in the Gulf of Mexico
ERIC Educational Resources Information Center
Curran, Mary Carla; Bower, Amy S.; Furey, Heather H.
2017-01-01
Creation of physical models can help students learn science by enabling them to be more involved in the scientific process of discovery and to use multiple senses during investigations. This activity achieves these goals by having students model ocean currents in the Gulf of Mexico. In general, oceans play a key role in influencing weather…
Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students
ERIC Educational Resources Information Center
Young, Victoria Jewel
2017-01-01
Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The…
Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean
NASA Astrophysics Data System (ADS)
Johnson, B. C.; Bowling, T.; Trowbridge, A.; Freed, A. M.
2016-12-01
Since the New Horizons flyby, evidence has been mounting that Pluto's Sputnik Planum (SP; informal name) (1,2) is associated with a 800-1000 km diameter elliptical impact basin (3,4). Global tectonics and the location of SP suggests that Pluto reoriented to align the basin with its tidal axis (4,5). This indicates there is a large positive mass anomaly associated with SP (4,5). However, even with loading of 3-10 km of dense convecting N2 ice (6,7), a positive mass anomaly associated with the deep basin requires that Pluto has a liquid ocean and the ice shell under the basin is substantially thinned (4). Although the possibility of a slowly freezing current day subsurface ocean is supported by thermal modeling (8,9) and the ubiquity of young extensional tectonic features (1), the thickness of the putative ocean is unconstrained. Here, we simulate the SP basin-forming impact into targets with a range of thermal states and ocean thicknesses. We find that SP can only achieve a large positive mass anomaly if Pluto has a more than 100 km thick salty ocean (i.e. ocean density exceeding 1100 kg/m3). This conclusion may help us better understand the composition and thermal evolution of Pluto. 1. Moore, J. M. et al. Science 351,1284-1293 (2016). 2. Stern, S. A. et al. Science 350,aad1815-aad1815 (2015). 3. Schenk, P. M. et al. A Large Impact Origin for Sputnik Planum and Surrounding Terrains, Pluto? AAS/Division for Planetary Sciences Meeting Abstracts 47,(2015). 4. Nimmo, F. et al. Loading, Relaxation, and Tidal Wander at Sputnik Planum, Pluto. 47th Lunar and Planetary Science Conference 47,2207 (2016). 5. Keane, J. T. & Matsuyama, I. Pluto Followed Its Heart: True Polar Wander of Pluto Due to the Formation and Evolution of Sputnik Planum. 47th Lunar and Planetary Science Conference 47,2348 (2016). 6. Trowbridge, A. J., Melosh, H. J., Steckloff, J. K. & Freed, A. M. Nature 534,79-81 (2016). 7. McKinnon, W. B. et al. Nature 534,82-85 (2016). 8. Robuchon, G. & Nimmo, F. Icarus 216,426-439 (2011). 9. Hammond, N. P., Barr, A. C. & Parmentier, E. M. Geophys. Res. Lett. (2016). doi:10.1002/2016GL069220
SeaWiFS Technical Report Series. Volume 8: Proceedings of the First SeaWiFS Science Team Meeting
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Esaias, Wayne E.; Rexrode, Lisa A.; Firestone, Elaine R. (Editor)
1993-01-01
The first meeting of the SeaWiFS Science Team was held in preparation for a launch of the SeaStar satellite carrying the SeaWiFS ocean color scanner in the October 1993 time frame. The primary goals of the meeting were: (1) to brief Science Team members, agency representatives, and international collaborators on the status of the mission by representatives from the SeaWiFS Project, the prime contractor Orbital Sciences Corporation (OSC), and the Goddard Distributed Active Archive Center (DAAC); (2) to provide for briefings on the science investigations undertaken by Science Team members and to solicit comments and recommendations from meeting attendees for improvements; and (3) to improve coordination of research and validation activities both inter- and intra-nationally with respect to collection, validation, and application of ocean color data from the SeaWiFS mission. Presentations and recommendations are summarized.
NASA Astrophysics Data System (ADS)
Duncan, B.; Carter, H.; Knight, E.; Meyer, R.
2015-12-01
California Ocean Science Trust is a boundary organization formed by the state of California. We work across traditional boundaries between government, science, and communities to build trust and understanding in ocean and coastal science. We work closely with decision makers to understand their priority needs and identify opportunities for science to have a meaningful impact, and we engage scientists and other experts to compile and translate information into innovative products that help to meet those needs. This often sparks new collaborations that live well beyond the products themselves. Through this unique model, we are deepening relationships and facilitating an ongoing dialogue between scientists, decision-makers, and communities. The West Coast of the United States is already experiencing climate-driven changes in marine conditions at both large and small spatial scales. Decision makers are increasingly concerned with the potential threats that these changes pose to coastal communities, industries, ecosystems, and species. Detecting and understanding these multi-stressor changes requires consideration across scientific disciplines and management jurisdictions. Research and monitoring programs must reflect this new reality: they should be designed to connect with the decision makers who may use their results. In this presentation, I will share how we are drawing from the West Coast Ocean Acidification and Hypoxia Science Panel - an interdisciplinary team of scientists convened by Ocean Science Trust from California, Oregon, Washington, and British Columbia - to develop actionable guidance for long-term monitoring for long-term change. Building on our experiences working with the Panel, I will discuss the unique model that boundary organizations provide for sustained dialog across traditionally siloed disciplines and management regimes, and share best practices and lessons learned in working across those boundaries.
On the Ocean, Communicating Science Through Radio Broadcasts
NASA Astrophysics Data System (ADS)
Daugherty, M.; Campbell, L.
2016-02-01
The outcomes of oceanic research are of critical importance to the general public. Communicating these results in a relatable and efficient manner however, is no simple task. To further the cause of scientific outreach done for the benefit of society, a weekly radio show was created at Texas A&M University, taking cutting edge research and translating it into applicable, interesting radio segments. The show, named "On the Ocean", was created by the Department of Oceanography to inform and entertain listeners of the general public on marine issues affecting their lives. On the Ocean is an effort to present high-level research without sacrificing the complexity of the science conducted. On the Ocean is a uniquely designed module with a systematic approach in teaching a new oceanographic concept each month. On the Ocean has a format of monthly topics with a two minute show each week. The first monthly installment is general, introducing the topic and its relevancy. The second and third shows are cause or effect, or possibly something very interesting the public would not already know. The fourth installment highlights how researchers study the topic, with the contributing professor's specific research methods emphasized. All shows are co-created with, and inspected for validity, by Texas A&M University professors, and edited for radio adaption by graduate students. In addition to airing on public broadcast radio to the College Station/Bryan TX area, the show also includes a globally accessible interactive website with podcasts, additional figures, and links to better elaborate on the material presented, as well as credit the contributing professors. The website also allows these professors the opportunity to present their research visually and link to their current work. Overall, On the Ocean is a new tool to deliver applicable science.
Exploring Ocean-World Habitability within the Planned Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.
2017-12-01
A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of Europa, thereby addressing the potential habitability of this intriguing ocean world.
NASA Astrophysics Data System (ADS)
Weiss, N. K.; Wood, J. H.
2017-12-01
TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.
Marine Structural Biomaterials in Medical Biomimicry.
Green, David W; Lee, Jong-Min; Jung, Han-Sung
2015-10-01
Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.
NASA Astrophysics Data System (ADS)
Zhang, Xiu-Zheng; Dong, Yong-Sheng; Wang, Qiang; Dan, Wei; Zhang, Chunfu; Deng, Ming-Rong; Xu, Wang; Xia, Xiao-Ping; Zeng, Ji-Peng; Liang, He
2016-07-01
Reconstructing the evolutionary history of the Paleo-Tethys Ocean remains at the center of debates over the linkage between Gondwana dispersion and Asian accretion. Identifying the remnants of oceanic lithosphere (ophiolites) has very important implications for identifying suture zones, unveiling the evolutionary history of fossil oceans, and reconstructing the amalgamation history between different blocks. Here we report newly documented ophiolite suites from the Longmu Co-Shuanghu Suture zone (LSSZ) in the Xiangtaohu area, central Qiangtang block, Tibet. Detailed geological investigations and zircon U-Pb dating reveal that the Xiangtaohu ophiolites are composed of a suite of Permian (281-275 Ma) ophiolites with a nearly complete Penrose sequence and a suite of Early Carboniferous (circa 350 Ma) ophiolite remnants containing only part of the lower oceanic crust. Geochemical and Sr-Nd-O isotopic data show that the Permian and Carboniferous ophiolites in this study were derived from an N-mid-ocean ridge basalts-like mantle source with varied suprasubduction-zone (SSZ) signatures and were characterized by crystallization sequences from wet magmas, suggesting typical SSZ-affinity ophiolites. Permian and Carboniferous SSZ ophiolites in the central Qiangtang provide robust evidence for the existence and evolution of an ancient ocean basin. Combining with previous studies on high-pressure metamorphic rocks and pelagic radiolarian cherts, and with tectonostratigraphic and paleontological data, we support the LSSZ as representing the main suture of the Paleo-Tethys Ocean which probably existed and evolved from Devonian to Triassic. The opening and demise of the Paleo-Tethys Ocean dominated the formation of the major framework for the East and/or Southeast Asia.
Tracking changes in ocean redox during the PETM using stable chromium isotopes
NASA Astrophysics Data System (ADS)
Dixon, S. K.; Parkinson, I. J.; Sexton, P.; Fehr, M.; James, R. H.; Peacock, C.
2012-12-01
Climate models predict a decline in oceanic dissolved oxygen under global warming conditions and observations suggest the expansion of tropical oxygen minimum zones is already underway1, with concern over the trend for future seawater oxygen levels. Therefore, previous deoxygenation events in the geological record may provide insight into the dynamics of changing oxygen levels in the Earth's oceans. One such event, is the Palaeocene-Eocene Thermal Maximum (PETM) at ~55Ma which represents a period of rapid global warming. Multiple lines of evidence suggest that at least on a local scale, near bottom anoxia occurred during the event2,3 and further understanding of changing redox conditions during this period may provide insight into future sea level oxygenation. To track seawater oxygenation during the PETM, we are utilising stable Cr isotope composition of marine carbonates, a new palaeo-redox proxy, which has shown potential when applied to modern and ancient carbonates 4,5. We present δ53Cr, trace element and REE data of foraminiferal ooze deposits over the PETM interval. Samples were taken from the North East Atlantic DSDP site 401, which preserves an exceptional and complete carbonate sequence over the interval, at a time when ocean acidification lead to massive sea floor carbonate dissolution6. Foraminifera were taken from the 63 - 150μm size fraction and planktic count data indicate that the relative proportions of dominant species do not change significantly over the event7. Systematic changes occur in REEs, Cr concentration and δ53Cr coincident with the onset of the negative δ13C excursion. The Cr concentrations of the carbonates decrease into the event, which suggests the sea level Cr concentration has fallen. We interpret this to reflect falling oxygen concentration in the seawater, leading to a decrease in aqueous Cr (VI) via precipitation of Cr out of the water column in the form of insoluble Cr (III) hydroxide. Additionally, we will demonstrate how stable Cr isotopes in carbonates respond to changes in ocean chemistry during the PETM. (1) Stramma et al. (2008). Science, 320, 655-658. (2) Dickson et al. (2012). Geology, 40, 639-642. (3) Dypvik et al. (2011). Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 156-169. (4) Bonnand (2011). PhD thesis, The Open University ; (5) Frei et al. (2011). Earth and Planet. Sci. Lett., 312, 114-125. (6) Zachos et al. (2005). Science, 308, 1611-1615. (7) Pardo et al. (1997). Marine Micropaleontology, 29, 129-158.
Seafarers, Secchi Disk; Lavender, Samantha; Beaugrand, Gregory; Outram, Nicholas; Barlow, Nigel; Crotty, David; Evans, Jake; Kirby, Richard
2017-01-01
The oceans' phytoplankton that underpin the marine food chain appear to be changing in abundance due to global climate change. Here, we compare the first four years of data from a citizen science ocean transparency study, conducted by seafarers using home-made Secchi Disks and a free Smartphone application called Secchi, with contemporaneous satellite ocean colour measurements. Our results show seafarers collect useful Secchi Disk measurements of ocean transparency that could help future assessments of climate-induced changes in the phytoplankton when used to extend historical Secchi Disk data.
Díez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina; Dupont, Christopher L.; Allen, Andrew E.; Yooseph, Shibu; Rusch, Douglas B.; Bergman, Birgitta
2016-01-01
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important. PMID:27196065
Diez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina; ...
2016-05-19
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the generamore » Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin ( apcAB), phycocyanin ( cpcAB) and phycoerythin ( cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. As a result, comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the generamore » Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin ( apcAB), phycocyanin ( cpcAB) and phycoerythin ( cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. As a result, comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.« less
Understanding our Changing Planet: NASA's Earth Science Enterprise
NASA Technical Reports Server (NTRS)
Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)
1999-01-01
NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.
Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements
NASA Technical Reports Server (NTRS)
Hu,Yongxiang
2009-01-01
CALIPSO's main mission objective is studying the climate impact of clouds and aerosols in the atmosphere. CALIPSO also collects information about other components of the Earth's ecosystem, such as oceans and land. This paper introduces the physics concepts and presents preliminary results for the valueadded CALIPSO Earth system science products. These include ocean surface wind speeds, column atmospheric optical depths, ocean subsurface backscatter, land surface elevations, atmospheric temperature profiles, and A-train data fusion products.
New directions for the National Ocean Service
NASA Astrophysics Data System (ADS)
Wolff, Paul M.
The National Ocean Service, which I've headed since December 1983, is one of the major line components of the National Oceanic and Atmospheric Administration (NOAA). NOAA, in turn, is part of the Department of Commerce and is the leading federal agency in the oceanic and atmospheric sciences. Other agencies are involved in the earth sciences, such as the Department of the Interior's Geological Survey, or are in the business of environmental regulations, like the U.S. Environmental Protection Agency, but NOAA is the one federal agency charged specifically with analyzing and predicting oceanic and atmospheric components of the earth's environment as a whole. The importance of this global, integrated air-sea approach is reflected in the five NOAA line offices.This past December, NOAA line offices were reorganized to consolidate programs as part of the Reagan Administration's general government-wide belt tightening (see Figure 1). The idea was for NOAA to grow leaner but stronger. The main thrust of the work of the Weather Service and the Marine Fisheries Service remained the same. The Office of Oceanic and Atmospheric Research continued to provide research support to the other NOAA components. A trimmed down Environmental Data and Information Service merged with the National Environmental Satellite Service to become today's National Environmental Satellite, Data, and Information Service. Also, this past December the NOAA Office of Coastal Zone Management joined forces with the National Ocean Survey to become the National Ocean Service.
Needs, opportunities and strategies for a long-term oceanic sciences satellite program
NASA Technical Reports Server (NTRS)
Ruttenberg, S. (Editor)
1981-01-01
Several areas of the National Oceanic Satellite System are addressed including Satellite-borne communication systems, subsurface remote sensing, data coordination, color scanners, formatting important historical data sets, and sea surface temperature observations.
75 FR 68773 - Meeting of the Ocean Research and Resources Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... Consortium for Ocean Leadership, 1201 New York Avenue, NW., 4th Floor, Washington, DC 20005. FOR FURTHER... science and management communities. Dated: November 2, 2010. D.J. Werner, Lieutenant Commander, Office of...
All About Oxygen in the Ocean: Cheap, Quick and Easy Experiments for Pupils Grades 5 to 10
NASA Astrophysics Data System (ADS)
Soria-Dengg, S.
2015-12-01
The collaborative research project (SFB 754) at GEOMAR Helmholtz-Centre for Ocean Research Kiel, Germany addresses among others the decreasing concentrations of oxygen in the oceans. The school outreach component of the SFB 754 a project funded by the German Science Foundation aims to spread the science behind ocean de-oxygenation in secondary schools in Germany. To realise this goal, a series of hands-on experiments have been developed on different topics like gas solubility in water, gas transport in the ocean, oxygen production by phytoplankton, oxygen consumption by bacteria and experiments on nutrient uptake by phytoplankton. The experiments developed are simple, using low cost and reusable materials thus ensuring affordability in schools. For the hands-on session the following experiments will be presented: (1) The effects of temperature, oxygen partial pressure, nature of solute and nature of solvent on the solubility of oxygen in water will be demonstrated using Luer-Lock syringes, (2) Oxygen transport from the ocean surface to the deep will be shown in an experiment using a modification of the "blue-bottle" experiment, and (3) Simulation of ocean circulation employing a 2-dimensional tank. Applications and experiment ideas using immobilised phytoplankton and other procedures suitable for schools for measuring oxygen consumption by bacteria will be introduced in a poster presentation.
The deep ocean under climate change.
Levin, Lisa A; Le Bris, Nadine
2015-11-13
The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.
Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems
NASA Astrophysics Data System (ADS)
Martin Taylor, S.
2009-04-01
The health of the world's oceans and their impact on global environmental and climate change make the development of cabled observing systems vital and timely as a data source and archive of unparalleled importance for new discoveries. The VENUS and NEPTUNE Canada observatories are on the forefront of a new generation of ocean science and technology. Funding of over $100M, principally from the Governments of Canada and BC, for these two observatories supports integrated ocean systems science at a regional scale enabled by new developments in powered sub-sea cable technology and in cyber-infrastructure that streams continuous real-time data to Internet-based web platforms. VENUS is a coastal observatory supporting two instrumented arrays in the Saanich Inlet, near Victoria, and in the Strait of Georgia, off Vancouver. NEPTUNE Canada is an 800 km system on the Juan de Fuca Plate off the west coast of British Columbia, which will have five instrumented nodes in operation over the next 18 months. This paper describes the development and management of these two observatories, the principal research themes, and the applications of the research to public policy, economic development, and public education and outreach. Both observatories depend on partnerships with universities, government agencies, private sector companies, and NGOs. International collaboration is central to the development of the research programs, including partnerships with initiatives in the EU, US, Japan, Taiwan and China.
Chemistry, the Central Science? The History of the High School Science Sequence
ERIC Educational Resources Information Center
Sheppard, Keith; Robbins, Dennis M.
2005-01-01
Chemistry became the ''central science'' not by design but by accident in the US high schools. The three important factors, which had their influence on the high school science, are sequenced and their impact on the development of US science education, are mentioned.
A Successful Collaborative: Scientists and Middle School Teachers!
NASA Astrophysics Data System (ADS)
Walker, S. H.; Brown, S. A.; Culipher-Ross, S.; Spranger, M.; Dindo, J.; Tinnin, R.; Kastler, J.; Brook, R. D.; Bishop, T.; Tuddenham, P.
2004-12-01
This NSF/ONR-NOPP/NOAA-Sea Grant funded Center for Ocean Sciences Education Excellence:Central Gulf Of Mexico (COSEE:CGOM) presentation will review "best practices" and lessons learned in a successful ocean sciences and science education based graduate course, offered in a face-to-face and online format. Implementation strategies which will be discussed include: participant recruitment, the "face to face" and online graduate course infrastructure, as well as teachers-to-sea, website development, and cognitive and affective formation and summative evaluations. This COSEE:CGOM effort is helping research scientists meet the "broader impact" requirement being mandated by many funding agencies. Various URLs will also be provided to attendees.
Science opportunities using the NASA scatterometer on N-ROSS
NASA Technical Reports Server (NTRS)
Freilich, M. H.
1985-01-01
The National Aeronautics and Space Administration scatterometer (NSCAT) is to be flown as part of the Navy Remote Ocean Sensing System (N-ROSS) scheduled for launch in 1989. The NSCAT will provide frequent accurate and high-resolution measurements of vector winds over the global oceans. NSCAT data will be applicable to a wide range of studies in oceanography, meteorology, and instrument science. The N-ROSS mission, is outlined, are described. The capabilities of the NSCAT flight instrument and an associated NASA research ground data-processing and distribution system, and representative oceanographic meteorological, and instrument science studies that may benefit from NSCAT data are surveyed.
NASA Global Hawk: A New Tool for Earth Science Research
NASA Technical Reports Server (NTRS)
Hall, Phill
2009-01-01
This slide presentation reviews the Global Hawk, a unmanned aerial vehicle (UAV) that NASA plans to use for Earth Sciences research. The Global Hawk is the world's first fully autonomous high-altitude, long-endurance aircraft, and is capable of conducting long duration missions. Plans are being made for the use of the aircraft on missions in the Arctic, Pacific and Western Atlantic Oceans. There are slides showing the Global Hawk Operations Center (GHOC), Flight Control and Air Traffic Control Communications Architecture, and Payload Integration and Accommodations on the Global Hawk. The first science campaign, planned for a study of the Pacific Ocean, is reviewed.
A strategy for Earth science from space in the 1980s. Part 1: Solid earth and oceans
NASA Technical Reports Server (NTRS)
1982-01-01
The report develops a ten-year science strategy for investigating the solid earth and dynamics of world oceans from Earth orbit. The strategy begins from the premise that earth studies have proceeded to the point where further advances in understanding Earth processes must be based on a global perspective and that the U.S. is technically ready to begin a global study approach from Earth orbit. The major areas of study and their fundamental problems are identified. The strategy defines the primary science objectives to be addressed and the essential measurements and precision to achieve them.
ISEES: an institute for sustainable software to accelerate environmental science
NASA Astrophysics Data System (ADS)
Jones, M. B.; Schildhauer, M.; Fox, P. A.
2013-12-01
Software is essential to the full science lifecycle, spanning data acquisition, processing, quality assessment, data integration, analysis, modeling, and visualization. Software runs our meteorological sensor systems, our data loggers, and our ocean gliders. Every aspect of science is impacted by, and improved by, software. Scientific advances ranging from modeling climate change to the sequencing of the human genome have been rendered possible in the last few decades due to the massive improvements in the capabilities of computers to process data through software. This pivotal role of software in science is broadly acknowledged, while simultaneously being systematically undervalued through minimal investments in maintenance and innovation. As a community, we need to embrace the creation, use, and maintenance of software within science, and address problems such as code complexity, openness,reproducibility, and accessibility. We also need to fully develop new skills and practices in software engineering as a core competency in our earth science disciplines, starting with undergraduate and graduate education and extending into university and agency professional positions. The Institute for Sustainable Earth and Environmental Software (ISEES) is being envisioned as a community-driven activity that can facilitate and galvanize activites around scientific software in an analogous way to synthesis centers such as NCEAS and NESCent that have stimulated massive advances in ecology and evolution. We will describe the results of six workshops (Science Drivers, Software Lifecycles, Software Components, Workforce Development and Training, Sustainability and Governance, and Community Engagement) that have been held in 2013 to envision such an institute. We will present community recommendations from these workshops and our strategic vision for how ISEES will address the technical issues in the software lifecycle, sustainability of the whole software ecosystem, and the critical issue of computational training for the scientific community. Process for envisioning ISEES.
Education in Marine Science and Technology--Historical and Current Issues.
ERIC Educational Resources Information Center
Abel, Robert B.
This review of marine science and technology education and related issues was presented to the American Association for the Advancement of Science, December 27, 1967. Areas reviewed include manpower supply and demand, oceanography education history, oceanography and the social sciences, training of technicians, the ocean engineer, education for…
National Science Foundation Grants and Awards for Fiscal Year 1982.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Provided is a listing of all National Science Foundation (NSF) program grants and contracts awarded in Fiscal Year 1982. The listing is organized by specific NSF programs within these areas: (1) mathematical and physical sciences; (2) engineering; (3) biological, behavioral, and social sciences; (4) astronomical, earth, and ocean sciences…
Sea Changes. Topics in Marine Earth Science.
ERIC Educational Resources Information Center
Awkerman, Gary L.
This publication is designed for use in standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations designed to impart ocean science understanding to high school students. The principal theme of Changes in the Sea is presented in this particular…
Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability
NASA Astrophysics Data System (ADS)
Pappalardo, Robert; Senske, David; Prockter, Louise; Paczkowski, Brian; Vance, Steve; Goldstein, Barry; Magner, Thomas; Cooke, Brian
2015-04-01
Europa is recognized by the Planetary Science De-cadal Survey as a prime candidate to search for a pre-sent-day habitable environment in our solar system. As such, NASA has pursued a series of studies, facilitated by a Europa Science Definition Team (SDT), to define a strategy to best advance our scientific understanding of this icy world with the science goal: Explore Europa to investigate its habitability. (In June of 2014, the SDT completed its task of identifying the overarching science objectives and investigations.) Working in concert with a technical team, a set of mission archi-tectures were evaluated to determine the best way to achieve the SDT defined science objectives. The fa-vored architecture would consist of a spacecraft in Ju-piter orbit making many close flybys of Europa, con-centrating on remote sensing to explore the moon. In-novative mission design would use gravitational per-turbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's sur-face, with nominally 45 close flybys, typically at alti-tudes from 25 to 100 km. This concept has become known as the Europa Clipper. The Europa SDT recommended three science ob-jectives for the Europa Clipper: Ice Shell and Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition: Understand the habitability of Europa's ocean through composition and chemistry; and Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa SDT also considered implications of the Hubble Space Telescope detection of possible plumes at Europa. To feed forward to potential subsequent future ex-ploration that could be enabled by a lander, it was deemed that the Europa Clipper mission concept should provide the capability to perform reconnais-sance for a future lander. In consultation with NASA Headquarters, the SDT developed a reconnaissance goal: Characterize Scientifically Compelling Sites, and Hazards, for a Potential Future Landed Mission to Europa. This leads to two reconnaissance objectives: Site Safety: Assess the distribution of surface hazards, the load-bearing capacity of the surface, the structure of the subsurface, and the regolith thickness; and Sci-ence Value: Assess the composition of surface materi-als, the geologic context of the surface, the potential for geological activity, the proximity of near surface water, and the potential for active upwelling of ocean material. The Europa Clipper mission concept provides an efficient means to explore Europa and investigate its habitability through understanding the satellite's ice shell and ocean, composition, and geology. It also provides for surface reconnaissance for potential future landed exploration of Europa. Development of the Eu-ropa Clipper mission concept is ongoing, with current studies focusing on spacecraft design trades and re-finements, launch vehicle options (EELV and SLS), and power source (MMRTG and solar), to name a few. We will provide an update on status of the science and reconnaissance effort, as well as the results of trade studies as relevant to the science and reconnaissance potential of the mission concept.
Ocean-ice interaction in the marginal ice zone
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Peng, Chich Y.
1994-01-01
Ocean ice interaction processes in the Marginal Ice Zone (MIZ) by wind, waves, and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) images and ocean ice interaction model. A sequence of SAR images of the Chukchi Sea MIZ with three days interval are studied for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea as well as the Barrow wind record are used to interpret the MIZ dynamics.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Onoue, T.; Horie, K.; Sakamoto, R.; Teraji, S.; Aihara, Y.
2012-12-01
The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The Dixon Island (3195+15 Ma) - Cleaverville (3108+13 Ma) formations formed volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling as DXCL1 at 2007 and DXCL2 at 2011, lithology was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. These sequences formed coarsening and thickening upward black shale-BIF sequences. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. Especially, CL3 core, which drilled through the Iron formation, shows siderite-chert beds above black shale identified before magnetite lamination bed. The magnetite bed formed very thin laminated bed with siderite lamination. This magnetite bed was covered by black shale beds again. New U-Pb SHRIMP data of the pyroclastic in black shale is 3109Ma. Estimated 2-8 cm/1000year sedimentation rate are identified in these sequences. Our preliminary result show that siderite and chert layers formed before magnetite iron sedimentation. The lower-upper sequence of organic carbon rich black shales are similar amount of organic content and 13C isotope (around -30per mill). So we investigate that the Archean iron formation, especially Cleaverville iron formation, was highly related by hydrothermal input and started pre-syn iron sedimentation at anoxic oceanic condition.
Falcón, Luisa I.; Carpenter, Edward J.; Cipriano, Frank; Bergman, Birgitta; Capone, Douglas G.
2004-01-01
N2-fixing proteobacteria (α and γ) and unicellular cyanobacteria are common in both the tropical North Atlantic and Pacific oceans. In near-surface waters proteobacterial nifH transcripts were present during both night and day while unicellular cyanobacterial nifH transcripts were present during the nighttime only, suggesting separation of N2 fixation and photosynthesis by unicellular cyanobacteria. Phylogenetic relationships among unicellular cyanobacteria from both oceans were determined after sequencing of a conserved region of 16S ribosomal DNA (rDNA) of cyanobacteria, and results showed that they clustered together, regardless of the ocean of origin. However, sequencing of nifH transcripts of unicellular cyanobacteria from both oceans showed that they clustered separately. This suggests that unicellular cyanobacteria from the tropical North Atlantic and subtropical North Pacific share a common ancestry (16S rDNA) and that potential unicellular N2 fixers have diverged (nifH). N2 fixation rates for unicellular bacterioplankton (including small cyanobacteria) from both oceans were determined in situ according to the acetylene reduction and 15N2 protocols. The results showed that rates of fixation by bacterioplankton can be almost as high as those of fixation by the colonial N2-fixing marine cyanobacteria Trichodesmium spp. in the tropical North Atlantic but that rates are much lower in the subtropical North Pacific. PMID:14766553
Thurow, Jürgen
1988-01-01
Ocean Drilling Program Leg 123 drilled two sites in the Indian Ocean in order to study the rifting and early spreading of one of the world’s oldest ocean basins.Site 765 was drilled in 5714 meters of water on the Argo Abyssal Plain northwest of Australia. The sedimentary succession records the opening of an ocean basin, from the first sediments deposited atop young oceanic crust, to the present day. The oldest sediments are microlaminated brown silty claystones, locally rich in calcareous bioclasts. Most of the sequence is dominated by turbidites (primarily calcareous) which probably originated within canyons cut into the margin of the drowned platform of the North West Shelf of Australia.Site 766 is located in 3998 meters of water, at the base of the steep western margin of the Exmouth Plateau. The oldest sediments penetrated are glauconitic, volcaniclastic, and bioclastic sandstones and siltstones, which are interbedded with inclined basaltic sills. These sediments were deposited by a prograding submarine fan system which shed shallow marine sediments westward or northwestward off of the western rim of the Exmouth Plateau. Sandstones are succeeded by silty claystones, recording gradual abandonment or redirection of the fan system. An overlying sequence of pelagic and hemipelagic clayey and zeolitic calcareous oozes and chalks is succeeded by featureless and homogeneous pelagic nannofossil oozes.
Marine Biology and Oceanography, Grades Nine to Twelve. Part I.
ERIC Educational Resources Information Center
Kolb, James A.
This unit, one of a series designed to develop and foster an understanding of the marine environment, presents marine science activities for students in grades 9-12. The unit, focusing on physical factors influencing life in the sea, is divided into sections dealing with: (1) the ocean floor; (2) tides; (3) ocean waves; (4) ocean currents; (5)…
Mapping the Arctic: Online Undergraduate Education Using Scientific Research in International Policy
NASA Astrophysics Data System (ADS)
Reed, D. L.; Edwards, B. D.; Gibbons, H.
2011-12-01
Ocean science education has the opportunity to span traditional academic disciplines and undergraduate curricula because of its interdisciplinary approach to address contemporary issues on a global scale. Here we report one such opportunity, which involves the development of a virtual oceanographic expedition to map the seafloor in the Arctic Ocean for use in the online Global Studies program at San Jose State University. The U.S. Extended Continental Shelf Project provides an extensive online resource to follow the activities of the third joint U.S. and Canada expedition in the Arctic Ocean, the 2010 Extended Continental Shelf survey, involving the icebreakers USCGC Healy and CCGS Louis S. St-Laurent. In the virtual expedition, students join the work of scientists from the U.S. Geological Survey and the Canadian Geological Survey by working through 21 linked web pages that combine text, audio, video, animations and graphics to first learn about the U.N. Convention on the Law of the Sea (UNCLOS). Then, students gain insight into the complexity of science and policy interactions by relating the UNCLOS to issues in the Arctic Ocean, now increasingly accessible to exploration and development as a result of climate change. By participating on the virtual expedition, students learn the criteria contained in Article 76 of UNCLOS that are used to define the extended continental shelf and the scientific methods used to visualize the seafloor in three-dimensions. In addition to experiencing life at sea aboard a research vessel, at least virtually, students begin to interpret the meaning of seafloor features and the use of seafloor sediment samples to understand the application of ocean science to international issues, such as the implications of climate change, national sovereign rights as defined by the UNCLOS, and marine resources. The virtual expedition demonstrates that ocean science education can extend beyond traditional geoscience courses by taking advantage of emerging academic disciplines, contemporary global issues and new learning delivery systems.
The Sequencing of Basic Chemistry Topics by Physical Science Teachers
ERIC Educational Resources Information Center
Sibanda, Doras; Hobden, Paul
2016-01-01
The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…
Design of a hydrophone for an Ocean World lander
NASA Astrophysics Data System (ADS)
Smith, Heather D.; Duncan, Andrew G.
2017-10-01
For this presentation we describe the science return, and design of a microphone on- board a Europa lander mission. In addition to the E/PO benefit of a hydrophone to listen to the Europa Ocean, a microphone also provides scientific data on the properties of the subsurface ocean.A hydrophone is a small light-weight instrument that could be used to achieve two of the three Europa Lander mission anticipated science goals of: 1) Asses the habitability (particularly through quantitative compositional measurements of Europa via in situ techniques uniquely available to a landed mission. And 2) Characterize surface properties at the scale of the lander to support future exploration, including the local geologic context.Acoustic properties of the ocean would lead to a better understanding of the water density, currents, seafloor topography and other physical properties of the ocean as well as lead to an understanding of the salinity of the ocean. Sound from water movement (tidal movement, currents, subsurface out-gassing, ocean homogeneity (clines), sub-surface morphology, and biological sounds.The engineering design of the hydrophone instrument will be designed to fit within a portion of the resource allocation of the current best estimates of the Europa lander payload (26.6 Kg, 24,900 cm3, 2,500 W-hrs and 2700 Mbits). The hydrophone package will be designed to ensure planetary protection is maintained and will function under the cur- rent Europa lander mission operations scenario of a two-year cruise phase, and 30-day surface operational phase on Europa.Although the microphone could be used on the surface, it is designed to be lowered into the subsurface ocean. As such, planetary protection (forward contamination) is a primary challenge for a subsurface microphone/ camera. The preliminary design is based on the Navy COTS optical microphone.Reference: Pappalardo, R. T., et al. "Science potential from a Europa lander." Astrobiology 13.8 (2013): 740-773.
The ocean sampling day consortium.
Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z; Sonnenschein, Eva C; Cariou, Thierry; O'Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R; Kremp, Anke; DeLorenzo, Marie E; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion Mf; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C; Kandil, Mahrous M; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; Ten Hoopen, Petra; Cochrane, Guy; L'Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M; Martin, Patrick; Jensen, Rachelle M; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; Dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N; Gasol, Josep M; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M; Collins, R Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J; Amaral-Zettler, Linda A; Gilbert, Jack A; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver
2015-01-01
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
Visions of our Planet's Atmosphere, Land and Oceans: Spectacular Visualizations of our Blue Marble
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Starr, David (Technical Monitor)
2002-01-01
The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to South Africa, Cape Town and Johannesburg using NASA Terra/MODIS data, Landsat data and 1 m IKONOS 'Spy Satellite' data. Zoom in to any place South Africa using Earth Viewer 3D from Keyhole Inc. and Landsat data at 30 m resolution. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and 'tornadoes'. See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained.
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
As scientists carefully study some aspects of the ocean environment, are they unintentionally distressing others? That is a question to be answered by Robert Benson and his colleagues in the Center for Bioacoustics at Texas A&M University.With help from a 3-year, $316,000 grant from the U.S. Office of Naval Research, Benson will study how underwater noise produced by naval operations and other sources may affect marine mammals. In Benson's study, researchers will generate random sequences of low-frequency, high-intensity (180-decibel) sounds in the Gulf of Mexico, working at an approximate distance of 1 km from sperm whale herds. Using an array of hydrophones, the scientists will listen to the characteristic clicks and whistles of the sperm whales to detect changes in the animals' direction, speed, and depth, as derived from fluctuations in their calls.
Optofluidic Single-Cell Genome Amplification of Sub-micron Bacteria in the Ocean Subsurface
Landry, Zachary C.; Vergin, Kevin; Mannenbach, Christopher; Block, Stephen; Yang, Qiao; Blainey, Paul; Carlson, Craig; Giovannoni, Stephen
2018-01-01
Optofluidic single-cell genome amplification was used to obtain genome sequences from sub-micron cells collected from the euphotic and mesopelagic zones of the northwestern Sargasso Sea. Plankton cells were visually selected and manually sorted with an optical trap, yielding 20 partial genome sequences representing seven bacterial phyla. Two organisms, E01-9C-26 (Gammaproteobacteria), represented by four single cell genomes, and Opi.OSU.00C, an uncharacterized Verrucomicrobia, were the first of their types retrieved by single cell genome sequencing and were studied in detail. Metagenomic data showed that E01-9C-26 is found throughout the dark ocean, while Opi.OSU.00C was observed to bloom transiently in the nutrient-depleted euphotic zone of the late spring and early summer. The E01-9C-26 genomes had an estimated size of 4.76–5.05 Mbps, and contained “O” and “W”-type monooxygenase genes related to methane and ammonium monooxygenases that were previously reported from ocean metagenomes. Metabolic reconstruction indicated E01-9C-26 are likely versatile methylotrophs capable of scavenging C1 compounds, methylated compounds, reduced sulfur compounds, and a wide range of amines, including D-amino acids. The genome sequences identified E01-9C-26 as a source of “O” and “W”-type monooxygenase genes related to methane and ammonium monooxygenases that were previously reported from ocean metagenomes, but are of unknown function. In contrast, Opi.OSU.00C genomes encode genes for catabolizing carbohydrate compounds normally associated with eukaryotic phytoplankton. This exploration of optofluidics showed that it was effective for retrieving diverse single-cell bacterioplankton genomes and has potential advantages in microbiology applications that require working with small sample volumes or targeting cells by their morphology.
Transforming Research Data into Resource Data
NASA Astrophysics Data System (ADS)
Chandler, C. L.; Shepherd, A.; Groman, R. C.; Kinkade, D.; Rauch, S.; Allison, M. D.; Copley, N. J.; Ake, H.; York, A.; Wiebe, P. H.; Glover, D. M.
2016-12-01
Many of the Grand Challenge science questions are of interest to the marine science research community funded by the United States National Science Foundation (NSF). The highly diverse range of environmental data from the oceans, coastal regions, and Great Lakes are collected using a variety of platforms, instrument systems and sensors and are complemented by experimental results including sequence data, and model results. The data are often collected with a particular research purpose in mind. Such data are costly to acquire and environmental data, temporally and geographically unique, cannot be acquired again. The NSF-funded research community comprising funded investigators and their research teams, operators of the US academic research fleet, data managers, marine librarians, and NSF program managers are working together to transform `research data' into `resource data'. The objective is to ensure that the original research data become available to a much wider community, and have potential to be used as `resource data' for new and different types of research well beyond the initial focus of the NSF research grant. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) manages a community-driven data repository that serves some of these data: the data and results from research funded by NSF Ocean Sciences and Polar Programs. Individually such data sets are typically small in size, but when integrated these data become a valuable resource for the global research effort. The data are analyzed, quality controlled, finalized by the original investigators and their research teams, and then contributed to BCO-DMO. The BCO-DMO data managers reformat the data if they were submitted in proprietary formats, perform quality assessment review, augment the data sets with additional documentation, and create structured, machine-actionable metadata. The BCO-DMO data system allows researchers to make connections between related data sets within the BCO-DMO catalog, and also to follow links to complementary data sets curated at other research data repositories. The key is to expose, in standards compliant ways, essential elements of domain-specific metadata that enable discovery of related data, results, products, and publications from scientific research activities.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-26
... sciences, and social sciences) to review the specific studies plans of the BOEM regional offices for Fiscal... process and U.S. Geological Survey science with respect to the Deepwater Horizon incident. Following these...
A Coastal Citizen Science Project - How to run an international Citizen Science Project?
NASA Astrophysics Data System (ADS)
Kruse, K.; Knickmeier, K.; Thiel, M.; Gatta, M.
2016-02-01
"Searching for plastic garbage" is an international Citizen Science project that aims to participate school students in the public discussion on the topic "plastic pollution in the ocean". For this, young people apply various research methods, evaluate their data, communicate and publish their results and investigate solutions solving this problem. The project will be carried out in Chile and Germany at the same time, which allows the participating students to share and compare their results and discuss their ideas with an international partner. This takes place on the website www.save-ocean.org. The project promotes intercultural and scientific skills of the students. They get insights into scientific research, get into another culture and experiences plastic pollution as an important global problem. Since May 2015, 450 pupils aged 10 to 15 years and 20 teachers in Germany and Chile have explored the plastic garbage on beaches. Where are the largest plastic garbage deposits? Which items of plastic are mostly found in Germany and Chile? Or where does this garbage comes from? These and other research questions are being answered by an international network between students, teachers and scientists. After completing the first Citizen Science pilot study successfully in summer 2015, the entire German and Chilean coast will be explored in spring 2016 by around 2500 participating school students. The project "Searching for plastic garbage" is the first international Citizen Science project that is a cooperation between the ocean:lab of Kiel Science Factory and the "Cientificos de la Basura", a project of the department of marine biology at University Catolica del Norte in Coquimbo, Chile. The project is supported by the Cluster of Excellence "The Future Ocean", the Leibniz Institute for Science Education and Mathematics (IPN), the Ministry of School and Professional Education of Land Schleswig-Holstein and the University Catolica del Norte in Coquimbo, Chile
Data Stewardship in the Ocean Sciences Needs to Include Physical Samples
NASA Astrophysics Data System (ADS)
Carter, M.; Lehnert, K.
2016-02-01
Across the Ocean Sciences, research involves the collection and study of samples collected above, at, and below the seafloor, including but not limited to rocks, sediments, fluids, gases, and living organisms. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). iSamples (Internet of Samples in the Earth Sciences) is a Research Coordination Network within the EarthCube program that aims to advance the use of innovative cyberinfrastructure to support and advance the utility of physical samples and sample collections for science and ensure reproducibility of sample-based data and research results. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture for a shared cyberinfrastructure to manage collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical samples. Repositories that curate marine sediment cores and dredge samples from the oceanic crust are participating in iSamples, but many other samples collected in the Ocean sciences are not yet represented. This presentation aims to engage a wider spectrum of Ocean scientists and sample curators in iSamples.
Designing Innovative Lessons Plans to Support the Next Generation Science Standards (NGSS)
NASA Astrophysics Data System (ADS)
Passow, M. J.
2013-12-01
The Next Generation Science Standards (NGSS) issued earlier in 2013 provide the opportunity to enhance pre-college curricula through a new focus on the ';Big Ideas' in Science, more attention to reading and writing skills needed for college and career readiness, and incorporation of engineering and technology. We introduce a set of lesson plans about scientific ocean drilling which can serve as a exemplars for developing curricula to meet NGSS approaches. Designed for middle and high school students, these can also be utilized in undergraduate courses. Development of these lessons was supported through a grant from the Deep Earth Academy of the Consortium for Ocean Leadership. They will be disseminated through websites of the Deep Earth Academy (http://www.oceanleadership.org/education/deep-earth-academy/) and Earth2Class Workshops for Teachers (http://www.earth2class.org), as well as through workshops at science education conferences sponsored by the National Earth Science Teachers Association (www.nestanet.org) and other organizations. Topics include 'Downhole Logging,' 'Age of the Ocean Floors,' 'Tales of the Resolution,' and 'Continental Shelf Sediments and Climate Change Patterns.' 'Downhole Logging' focuses on the engineering and technology utilized to obtain more information about sediments and rocks cored by the JOIDES Resolution scientific drilling vessel. 'Age of the Ocean Floor' incorporates the GeoMap App visualization tools (http://www.geomapapp.org/) to compare sea bottom materials in various parts of the world. 'Tales of the Resolution' is a series of ';graphic novels' created to describe the scientific discoveries, refitting of the JOIDES Resolution, and variety of careers available in the marine sciences (http://www.ldeo.columbia.edu/BRG/outreach/media/tales/). The fourth lesson focuses on discoveries made during Integrated Ocean Drilling Program Expedition 313, which investigated patterns in the sediments beneath the continental shelf off New Jersey with respect to climate changes. The lesson plans include examples of addressing new demands to incorporate more English Language Arts and Math Common Core Standards, engineering design, and cutting-edge scientific investigations.
Ocean Disposal of Man-Made Ice Piers
The National Science Foundation is permitted to ocean dump man-made ice piers from its base at McMurdo Sound in Antarctica under a MPRSA general permit. Information is provided about ice piers and impacts of ice pier disposal.
NASA Astrophysics Data System (ADS)
Prouhet, T.; Cook, J.
2006-12-01
Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.
How To Promote Data Quality And Access? Publish It!
NASA Astrophysics Data System (ADS)
Carlson, D. J.; Pfeiffenberger, H.
2011-12-01
Started during IPY 2007-2008, the Earth System Science Data journal (Copernicus) has now 'tested the waters' of earth system data publishing for approximately 2 years with some success. The journal has published more than 30 data sets, of remarkable breadth and variety, all under a Creative Commons Attribution license. Users can now find well-described, quality-controlled and freely accessible data on soils, permafrost, sediment transport, ice sheets, surface radiation, ocean-atmosphere fluxes, ocean chemistry, gravity fields, and combined radar and web cam observations of the Eyjafjallajökull eruption plume. Several of the data sets derive specifically from IPY or from polar regions, but a large portion, including a substantial special issue on ocean carbon, cover broad temporal and geographic domains; the contributors themselves come from leading science institutions around the world. ESSD has attracted the particular interest of international research teams, particularly those who, as in the case of ocean carbon data, have spent many years gathering, collating and calibrating global data sets under long-term named programs, but who lack within those programs the mechanisms to distribute those data sets widely outside their specialist teams and to ensure proper citation credit for those remarkable collaborative data processing efforts. An in-progress special issue on global ocean plankton function types, again representing years of international data collaboration, provides a further example of ESSD utility to large research programs. We anticipate an interesting test case of parallel special issues with companion science journals - data sets in ESSD to accompany science publications in a prominent research journal. We see the ESSD practices and products as useful steps to increase quality of and access to important data sets.
Jayakumar, Amal; Chang, Bonnie X; Widner, Brittany; Bernhardt, Peter; Mulholland, Margaret R; Ward, Bess B
2017-10-01
Biological nitrogen fixation (BNF) was investigated above and within the oxygen-depleted waters of the oxygen-minimum zone of the Eastern Tropical North Pacific Ocean. BNF rates were estimated using an isotope tracer method that overcame the uncertainty of the conventional bubble method by directly measuring the tracer enrichment during the incubations. Highest rates of BNF (~4 nM day -1 ) occurred in coastal surface waters and lowest detectable rates (~0.2 nM day -1 ) were found in the anoxic region of offshore stations. BNF was not detectable in most samples from oxygen-depleted waters. The composition of the N 2 -fixing assemblage was investigated by sequencing of nifH genes. The diazotrophic assemblage in surface waters contained mainly Proteobacterial sequences (Cluster I nifH), while both Proteobacterial sequences and sequences with high identities to those of anaerobic microbes characterized as Clusters III and IV type nifH sequences were found in the anoxic waters. Our results indicate modest input of N through BNF in oxygen-depleted zones mainly due to the activity of proteobacterial diazotrophs.
NASA Astrophysics Data System (ADS)
Haynes, S.
2012-12-01
The NOAA Ship Okeanos Explorer, America's first Federal ship dedicated to ocean exploration, is envisioned as the ship upon which learners of all ages embark together on scientific voyages of exploration to poorly-known or unexplored areas of the global ocean. Through a combination of lessons, web pages, a ship tracker and dynamic imagery and video, learners participate as ocean explorers in breakthrough discoveries leading to increased scientific understanding and enhanced literacy about our ocean world. The Okeanos Explorer Education Materials Collection was developed to encourage educators and students to become personally involved with the ship's voyages and discoveries. This collection is presented in two volumes: Volume 1: Why Do We Explore? (modern reasons for ocean exploration - specifically, climate change, energy, human health and ocean health) and Volume 2: How Do We Explore? (21st Century strategies and tools for ocean exploration, including telepresence, sonar mapping, water column exploration and remotely operated vehicles). These volumes have been developed into full-day professional development opportunities provided at NOAA OER Alliance Partner sites nationwide and include lessons for grades 5-12 designed to support the evolving science education needs currently articulated in the K-12 Framework for Science Education. Together, the lessons, web pages, ship tracker and videos provide a dynamic education package for teachers to share modern ocean exploration in the classroom and inspire the next generation of explorers. This presentation will share these two Volumes, highlights from current explorations of the Okeanos Explorer and how they are used in ocean explorer lessons, and methods for accessing ocean explorer resources and following along with expeditions.;
Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and Sea State and Air-Sea...Interaction in the Marginal Ice Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with ice . A nautical X-band radar on a vessel dedicated to science would be used to follow the
Black swans, wicked problems, and science during crises
Machlis, G.E.; McNutt, M.K.
2011-01-01
Oceanic resources face challenges that are significant and widespread, including (but not limited to) overharvesting, climate change, selected stock collapse, coral reef decline, species extinction, pollution, and more. These challenges are the focus of much ocean science, which is helping to inform policy and guide management actions. The steady growth of research results and the emergence of new research needs have been systematically reviewed through periodic assessments, such as those of the Intergovernmental Oceanographic Commission (Valdés et al., 2010).
NASA Astrophysics Data System (ADS)
Pelz, M. S.; Ewing, N.; Davidson, E.; Hoeberechts, M.
2016-02-01
This presentation focuses on Ocean Aware, a joint project between Ocean Networks Canada (ONC) and the British Columbia Girl Guides Canada (Girl Guides). On World Oceans Day 2014, Girl Guides launched a new challenge to its members: "Are you Ocean Aware?" To answer this question, girls of any age can now earn their Ocean Aware Challenge crest. Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates cabled ocean observatories which supply continuous power and Internet connectivity to a broad suite of subsea instruments from the coast to the deep sea. This Internet connectivity permits researchers, students and members of the public to download freely available data on their computers anywhere around the globe, in near real-time. Girl Guides provides a safe, all-girl environment that invites girls to challenge themselves, to find their voice, meet new friends, have fun and make a difference in the world. Girl Guides strives to ensure that girls and women from all walks of life, identities and lived experiences feel a sense of belonging and can fully participate. Girl Guides of Canada is a member of the World Association of Girl Guides and Girl Scouts. Through a partnership between ONC and Girl Guides, Ocean Aware was created to promote ocean literacy and ocean technology to thousands of Guiders in British Columbia and beyond. One of the most interesting challenges was to present STEM learning outcomes in such a way that they are accessible to girls, facilitators, and communities that are both on the coast and inland. With a creative eye to the preforming arts, hands-on experiments, interactive experiences and games, this challenge successfully brings the 7 Principles of Ocean Literacy to any girl, in any community. In this presentation we will share some of the strategies, challenges and impacts of creating a successful program that engages a large audience in ocean science through a novel partnership.
Outstanding Questions About the Ocean a Half Century After IGY
NASA Astrophysics Data System (ADS)
Brewer, P. G.; Moore, T.
2002-12-01
Ocean science circa 1952 seems far removed from today. While the IGY initiation of modern CO2 studies heralded the global change era, and the development of conductive salinometers revolutionized the study of water masses, plate tectonics, the study of complex ecosystem dynamics, rapid climate change, and a dazzling array of technological advances were all unknown. Where do we stand today? The National Science Foundation recently commissioned a community study of the future of the ocean sciences (1), which focused on the critical issues transcending disciplinary lines. An understanding of how Earth and its fluid envelope store and transport heat, carbon and other climate tracers involves an understanding of physical, chemical, biological and geological processes that present some of the most urgent questions we face today. The decadal variability of climate is such that scientists can experience only a very few cycles in their lifetime, yet geologic evidence has emerged of periods of very rapid climate change with puzzling linkages. Add to this the approximately 35 year lag time between introducing CO2 to the atmosphere and feeling the thermal impact, and the desire for a rational greenhouse gas policy now, and it is clear that outstanding questions remain. The emergence of mankind as an agent of oceanic change is felt keenly in the complex coastal ocean, where the majority of human habitation is established. Rising sea level, changing ground water flows, and increasing unidirectional flows of sediments and biologically active material all present hard problems. New eyes from satellites and coastal radar now provide needed tools. Water circulates below the sea floor, flowing one thousand times more slowly than the wind driven ocean circulation, but carrying often potent fluids. These flows are felt in phenomena as diverse as hot vents at ocean ridges, and as massive amounts of frozen methane hydrate at the ocean margins. Evidence of liberation of enormous quantities of methane in the geologic past challenges us today. The realization that marine ecosystems are commonly in dis-equilibrium presents a huge challenge for biological studies, where populations can oscillate between different states. The transport of exotic species, and the shifts of climate are now producing new and complex interactions. The linkages with ocean turbulence are key for it is through the ill understood linkages between small and large scales that biological populations sense, feed, reproduce, and are transported. Controlled ecosystem experiments now offer powerful new tools. The ocean basins have been mapped and sampled with sophistication, but the dynamics of the oceanic lithosphere at the ridge crests, and at subduction zones, present huge challenges. Sea floor observatory tools now promise to revolutionize this field by capturing events on time scales from seconds to decades, and discovering their interactions. (1) Ocean Sciences at the New Millenium (2001). Univ. Corp. Atmos. Res., P.G. Brewer and T. Moore, Eds. pp. 152.
The REVEL Project: Long-Term Investment in K-12 Education at a RIDGE 2000 Integrated Study Site
NASA Astrophysics Data System (ADS)
Robigou, V.
2005-12-01
The REVEL Project has provided dozens of science teachers from throughout the U.S. an opportunity to explore the links between mid-ocean ridge processes and life along the RIDGE 2000 Juan de Fuca Ridge Integrated Study Site. In turn, these educators have facilitated deep-sea, research-based teaching and learning in hundreds of classrooms, contributed to mid-ocean ridge curriculum and programs development ranging from IMAX movies and museum exhibits to the R2K-SEAS (Student Experiment At Sea) program. In addition, the REVEL educators take on the mission to champion the importance of science in education and to bring ocean sciences into their local and regional communities. For the scientific community, research in an environment as large, dynamic and remote as the ocean intrinsically requires long-term investment to advance the understanding of the interactions between the processes shaping our planet. Similarly, research-based education requires long-term investment to incrementally change the way science is taught in schools, informal settings or even at home. It takes even longer to perceptibly measure the result of new teaching methods on students' learning and the impact of these methods on citizens' scientific literacy. Research-based education involving teachers practicing research in the field, and collaborating with scientists to experience and understand the process of science is still in its infancy - despite 20 years of NSF's efforts in teachers' professional development. This poster reports on strategies that the REVEL Project has designed over 9 years to help teachers that adopt research-based education transform their way of teaching in the classroom and bring cutting-edge, exciting science into schools through rigorous science learning. Their teaching approaches encourage students' interest in science, and engage students in the life-long skills of reasoning and decision making through the practice of science. Evaluation results of how the research-based teacher development program REVEL contributes to changing the way teachers view the scientific process once they have 'done' science and how the program supports teachers to change their teaching methods will be presented. The REVEL Project is funded by the National Science Foundation and receives additional support from the University of Washington and private donors. REVEL - Research and Education: Volcanoes-Exploration-Life.
Gilbert, Jack A; Dick, Gregory J; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R M; DeLong, Edward F
2014-06-15
The National Science Foundation's EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on 'omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, "big-data capable" analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean 'omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the 'omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.
Gilbert, Jack A; Dick, Gregory J.; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R. M.
2014-01-01
The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography. PMID:25197495
Satellite Ocean Data Tools in the high school classroom.
NASA Astrophysics Data System (ADS)
Tweedie, M.; Snyder, H. D.
2007-12-01
The NASA-sponsored Ocean Motion website (http://www.oceanmotion.org) documents the story of humankind's interest in and observations of surface currents from the early seafaring Polynesians to present day satellite observations. Ocean surface current patterns impact our lives through their influences on the weather, climate, commerce, natural disasters and sea life. The Ocean Motion web site provides inquiry based, classroom ready materials for high school teachers and students to study ocean surface currents. In addition to the information resources posted on the website, there are also investigations that lead students to explore patterns and relationships through data products (color- coded map images, time series graphs and data tables). These investigations are done through an interactive browser interface that provides access to a wealth of oceanography data. This presentation focuses on use of surface current data and models in student investigations to illustrate application of basic science principles found in high school science curriculum. Skills developed using data to discover patterns and relationships will serve students in other courses as well as empower them to become stewards of the Earths environment.
NASA Technical Reports Server (NTRS)
2002-01-01
The Goddard Earth Sciences Distributed Active Archive Center (DAAC) is the designated archive for all of the ocean color data produced by NASA satellite missions. The DAAC is a long-term, high volume, secure repository for many different kinds of environmental data. With respect to ocean color, the Goddard DAAC holds all the data obtained during the eight-year mission of the Coastal Zone Color Scanner (CZCS). The DAAC is currently receiving data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the MODIS-Terra instrument. The DAAC recently received reformatted data from the Ocean Color and Temperature Scanner (OCTS) and will also archive MODIS-Aqua Ocean products. In addition to its archive and distribution services, the Goddard DAAC strives to improve data access, ease-of-use, and data applicability for a broad spectrum of customers. The DAAC's data support teams practice dual roles, both insuring the integrity of the DAAC data archive and serving the user community with answers to user inquiries, online and print documentation, and customized data services.
1992-01-01
AD-A283 895 S cientific Excellence • Resource Protection & Conservation • Benefits for Canadians Excellence scientifique • Protection et conservation...V8L 4B2 . 1992 Thi- :lci,,-nrit has been approved1 Icr P’--1iC •Lae•_se and sole; its J dIt:isbution is tuoni-ited. Canadian Data Report of...Hydrography and Ocean Sciences No. 106 94-27566 • 94 8 26 116 I I Fisheries Pdches and Oceans et Oceans Ca adc Canadian Data Report Of II’.drographý and Ocean
Satellite altimetric measurements of the ocean. Report of the TOPEX Science Working Group
NASA Technical Reports Server (NTRS)
Stewart, R.
1981-01-01
The scientific usefulness of satellite measurements of ocean topography for the study of ocean circulation was investigated. The following topics were studied: (1) scientific problems which use altimetric measurements of ocean topography; (2) the extent in which in situ measurements are complementary or required; (3) accuracy, precision, and spatial and temporal resolutions which are required of the topographic measurements; (4) errors associated with measurement techniques; and (5) influences of these errors on scientific problems. An operational system for measuring ocean topography, was defined and the cost of conducting such a topographic experiment, was estimated.
Contents of the NASA ocean data system archive, version 11-90
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)
1990-01-01
The National Aeronautics and Space Administration (NASA) Ocean Data System (NODS) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and surface pigment concentration. NODS will become the Data Archive and Distribution Service of the JPL Distributed Active Archive Center for the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
ERIC Educational Resources Information Center
Awkerman, Gary L.
This publication is designed for use in standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations to impart ocean science understanding, specifically, aspects of marine ecology, to high school students. The course objectives include the ability of…
NASA Astrophysics Data System (ADS)
Sandifer, P. A.; Trtanj, J.; Collier, T. K.
2012-12-01
Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and Human Health Act of 2004. Major outcomes of the OHH Act of 2004 include: --A national focus on ocean health and its relation to human health and well-being; --Enhanced interagency coordination and cooperation in research, development, and education; --Emphasis on development of a new, interdisciplinary community of practice; --Increased understanding of linkages between marine animal health and human health and the dangers of transmission of zoonotic diseases from the marine environment; --A richer understanding of factors affecting the occurrence and impacts of ocean health threats; --An enhanced ability of the ocean science and public health communities to respond to health-related emergencies; --A strong focus on development of ecological forecasts that are providing early warning of ocean health threats and impacts, thus improving the effectiveness of protection and mitigation actions. Taken together, these outcomes contribute significantly to more sustainable management of coastal resources and communities.
A novel cohabitation between two diazotrophic cyanobacteria in the oligotrophic ocean
Momper, Lily M; Reese, Brandi Kiel; Carvalho, Gustavo; Lee, Patrick; Webb, Eric A
2015-01-01
The cyanobacterial genus Trichodesmium is biogeochemically significant because of its dual role in nitrogen and carbon fixation in the oligotrophic ocean. Trichodesmium species form colonies that can be easily enriched from the water column and used for shipboard rate measurements to estimate their contribution to oceanic carbon and nitrogen budgets. During a July 2010 cruise near the Hawaiian Islands in the oligotrophic North Pacific Subtropical Gyre, a specific morphology of Trichodesmium puff-form colonies were examined under epifluorescent microscopy and found to harbor a colonial endobiont, morphologically identified as the heterocystous diazotrophic cyanobacterium Calothrix. Using unialgal enrichments obtained from this cruise, we show that these Calothrix-like heterocystous cyanobionts (hetDA for ‘Trichodesmium-associated heterocystous diazotroph') fix nitrogen on a diurnal cycle (maximally in the middle of the light cycle with a detectable minimum in the dark). Gene sequencing of nifH from the enrichments revealed that this genus was likely not quantified using currently described quantitative PCR (qPCR) primers. Guided by the sequence from the isolate, new hetDA-specific primers were designed and subsequent qPCR of environmental samples detected this diazotroph from surface water to a depth of 150 m, reaching densities up to ∼9 × 103 l−1. Based on phylogenetic relatedness of nifH and 16S rRNA gene sequences, it is predicted that the distribution of this cyanobiont is not limited to subtropical North Pacific but likely reaches to the South Pacific and Atlantic Oceans. Therefore, this previously unrecognized cohabitation, if it reaches beyond the oligotrophic North Pacific, could potentially influence Trichodesmium-derived nitrogen fixation budgets in the world ocean. PMID:25343510
Fernández-Méndez, Mar; Turk-Kubo, Kendra A; Buttigieg, Pier L; Rapp, Josephine Z; Krumpen, Thomas; Zehr, Jonathan P; Boetius, Antje
2016-01-01
The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.
Fernández-Méndez, Mar; Turk-Kubo, Kendra A.; Buttigieg, Pier L.; Rapp, Josephine Z.; Krumpen, Thomas; Zehr, Jonathan P.; Boetius, Antje
2016-01-01
The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed. PMID:27933047
A novel cohabitation between two diazotrophic cyanobacteria in the oligotrophic ocean.
Momper, Lily M; Reese, Brandi Kiel; Carvalho, Gustavo; Lee, Patrick; Webb, Eric A
2015-03-17
The cyanobacterial genus Trichodesmium is biogeochemically significant because of its dual role in nitrogen and carbon fixation in the oligotrophic ocean. Trichodesmium species form colonies that can be easily enriched from the water column and used for shipboard rate measurements to estimate their contribution to oceanic carbon and nitrogen budgets. During a July 2010 cruise near the Hawaiian Islands in the oligotrophic North Pacific Subtropical Gyre, a specific morphology of Trichodesmium puff-form colonies were examined under epifluorescent microscopy and found to harbor a colonial endobiont, morphologically identified as the heterocystous diazotrophic cyanobacterium Calothrix. Using unialgal enrichments obtained from this cruise, we show that these Calothrix-like heterocystous cyanobionts (hetDA for 'Trichodesmium-associated heterocystous diazotroph') fix nitrogen on a diurnal cycle (maximally in the middle of the light cycle with a detectable minimum in the dark). Gene sequencing of nifH from the enrichments revealed that this genus was likely not quantified using currently described quantitative PCR (qPCR) primers. Guided by the sequence from the isolate, new hetDA-specific primers were designed and subsequent qPCR of environmental samples detected this diazotroph from surface water to a depth of 150 m, reaching densities up to ∼ 9 × 10(3) l(-1). Based on phylogenetic relatedness of nifH and 16S rRNA gene sequences, it is predicted that the distribution of this cyanobiont is not limited to subtropical North Pacific but likely reaches to the South Pacific and Atlantic Oceans. Therefore, this previously unrecognized cohabitation, if it reaches beyond the oligotrophic North Pacific, could potentially influence Trichodesmium-derived nitrogen fixation budgets in the world ocean.
Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
2005-01-01
Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences. However, with routine observations from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate Resolution Imaging Spectroradometer (MODIS) Aqua, there is increasing interest in ocean color data assimilation. Here SeaWiFS chlorophyll data were assimilated with an established thre-dimentional global ocean model. The assimilation improved estimates of hlorophyll and primary production relative to a free-run (no assimilation) model. This represents the first attempt at ocean color data assimilation using NASA satellites in a global model. The results suggest the potential of assimilation of satellite ocean chlorophyll data for improving models.
Exploring the southern ocean response to climate change
NASA Technical Reports Server (NTRS)
Martinson, Douglas G.; Rind, David; Parkinson, Claire
1993-01-01
The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.
76 FR 4091 - Marine Mammals; File No. 15510
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA165 Marine Mammals; File No. 15510 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... Jennifer Burns, Ph.D., University of Alaska Anchorage, Biology Department, 3101 Science Circle, Anchorage...
Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae).
Jackson, Jennifer A; Steel, Debbie J; Beerli, P; Congdon, Bradley C; Olavarría, Carlos; Leslie, Matthew S; Pomilla, Cristina; Rosenbaum, Howard; Baker, C Scott
2014-07-07
Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550-1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae)
Jackson, Jennifer A.; Steel, Debbie J.; Beerli, P.; Congdon, Bradley C.; Olavarría, Carlos; Leslie, Matthew S.; Pomilla, Cristina; Rosenbaum, Howard; Baker, C. Scott
2014-01-01
Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550–1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies. PMID:24850919
2002-09-30
Burton H. Jones Wrigley Institute of Environmental Science and Department of Biological Sciences University of Southern California Los Angeles, CA...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Wrigley Institute of Environmental Science ,,and Department of Biological Sciences,University of Southern
A Catalyst for Ocean Acidification Research and Collaboration
NASA Astrophysics Data System (ADS)
Benway, Heather M.; Cooley, Sarah R.; Doney, Scott C.
2010-03-01
Ocean Carbon and Biogeochemistry Short Course on Ocean Acidification; Woods Hole, Massachusetts, 2-13 November 2009; The Ocean Carbon and Biogeochemistry (OCB) program is a coordinating body for the U.S. research community that focuses on the ocean's role in the global Earth system, bringing together research in geochemistry, ocean physics, and ecology. With support from its federal sponsors (U.S. National Science Foundation, NASA, and National Oceanic and Atmospheric Administration (NOAA)) and the European Project on Ocean Acidification (EPOCA), the OCB Project Office coordinated and hosted a hands-on ocean acidification short course at the Marine Biological Laboratory (MBL) and the Woods Hole Oceanographic Institution (WHOI). The OCB Ocean Acidification Subcommittee (http://www.us-ocb.org/about.html), chaired by Joan Kleypas (National Center for Atmospheric Research) and Richard Feely (Pacific Marine Environmental Laboratory, NOAA), provided critical guidance on the course scope, curriculum, and instructors.
Earth and Space Science Ph.D. Class of 2003 Report released
NASA Astrophysics Data System (ADS)
Keelor, Brad
AGU and the American Geological Institute (AGI) released on 26 July an employment study of 180 Earth and space science Ph.D. recipients who received degrees from U.S. universities in 2003. The AGU/AGI survey asked graduates about their education and employment, efforts to find their first job after graduation, and experiences in graduate school. Key results from the study include: The vast majority (87%) of 2003 graduates found work in the Earth and space sciences, earning salaries commensurate with or slightly higher than 2001 and 2002 salary averages. Most (64%) graduates were employed within academia (including postdoctoral appointments), with the remainder in government (19%), industry (10%), and other (7%) sectors. Most graduates were positive about their employment situation and found that their work was challenging, relevant, and appropriate for someone with a Ph.D. The percentage of Ph.D. recipients accepting postdoctoral positions (58%) increased slightly from 2002. In contrast, the fields of physics and chemistry showed significant increases in postdoctoral appointments for Ph.D.s during the same time period. As in previous years, recipients of Ph.D.s in the Earth, atmospheric, and ocean sciences (median age of 32.7 years) are slightly older than Ph.D. recipients in most other natural sciences (except computer sciences), which is attributed to time taken off between undergraduate and graduate studies. Women in the Earth, atmospheric,and ocean sciences earned 33% of Ph.D.s in the class of 2003, surpassing the percentage of Ph.D.s earned by women in chemistry (32%) and well ahead of the percentage in computer sciences (20%), physics (19%), and engineering (17%). Participation of other underrepresented groups in the Earth, atmospheric, and ocean sciences remained extremely low.
Obama Administration Announces Ocean Policy
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-08-01
With the U.S. Interagency Ocean Policy Task Force final report in hand, U.S. president Barack Obama issued an executive order on 19 July largely adopting its recommendations. These include establishing a National Policy for the Stewardship of the Ocean, Coasts, and Great Lakes; creating a National Ocean Council, which will hold its first meeting later this summer; strengthening the ocean governance structure; and providing for the development of coastal and marine spatial plans. The task force report indicates that U.S. ocean policy includes protecting, maintaining, and restoring ocean, coastal, and Great Lakes ecosystems and resources; increasing scientific understanding and using the best available science and knowledge to inform decisions about them; and improving the understanding and awareness of changing environmental conditions.
Improving an Atlantic Fisheries DSS using Sea Surface Salinity Data from NASA's Aquarius Mission
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
This report assesses the capacity of incorporating NASA#s Aquarius SSS (sea surface salinity) data into the SMAST (School of Marine Science and Technology) DSS for Fisheries Science. This data will enhance the SMAST DSS by providing SSS over a large area. Aquarius is a focused satellite mission designed to measure global SSS. SSS mapping is limited because conventional in situ SSS sampling is too sparse to give a large-scale view of the salinity variability. Aquarius will resolve missing physical processes that link the water cycle, the climate, and the ocean. The SMAST Fisheries program provides a DSS for fisheries science. It collects fisheries and environmental data, integrates them into a suite of data assimilation ocean models, and provides hindcasts, nowcasts, and forecasts for fisheries research, fisheries management, and the fishery industry. Currently, SMAST is using SSS data from the National Oceanic and Atmospheric Administration#s National Data Buoy Center. The SMAST DSS would be enhanced with SSS data from the Aquarius mission.
NASA Astrophysics Data System (ADS)
Choi, D. H.; Noh, J. H.; Selph, K. E.; Lee, C. M.
2016-02-01
Photosynthetic picoeukaryotes (PPEs) are major oceanic primary producers. However, the diversity of such communities remains poorly understood, especially in the northwestern (NW) Pacific. We investigated the abundance and diversity of PPEs, and recorded environmental variables, along a transect from the coast to the open Pacific Ocean. High-throughput tag sequencing (using the MiSeq system) revealed the diversity of plastid 16S rRNA genes. The dominant PPEs changed at the class level along the transect. Prymnesiophyceae were the only dominant PPEs in the warm pool of the NW Pacific, but Mamiellophyceae dominated in coastal waters of the East China Sea. Phylogenetically, most Prymnesiophyceae sequences could not be resolved at lower taxonomic levels because no close relatives have been cultured. Within the Mamiellophyceae, the genera Micromonas and Ostreococcus dominated in marginal coastal areas affected by open water, whereas Bathycoccus dominated in the lower euphotic depths of open oligotrophic waters. Cryptophyceae and Phaeocystis (of the Prymnesiophyceae) dominated in areas affected principally by coastal water. We also defined the biogeographical distributions of Chrysophyceae, Prasinophyceae, Bacillariophyceaea, and Pelagophyceae. These distributions were influenced by temperature, salinity, and chlorophyll a and nutrient concentrations.
NASA Astrophysics Data System (ADS)
Liu, Bo; Han, Bao-Fu; Chen, Jia-Fu; Ren, Rong; Zheng, Bo; Wang, Zeng-Zhen; Feng, Li-Xia
2017-12-01
The Junggar-Balkhash Ocean was a major branch of the southern Paleo-Asian Ocean. The timing of its closure is important for understanding the history of the Central Asian Orogenic Belt. New sedimentological and geochronological data from the Late Paleozoic volcano-sedimentary sequences in the Barleik Mountains of West Junggar, NW China, help to constrain the closure time of the Junggar-Balkhash Ocean. Tielieketi Formation (Fm) is dominated by littoral sediments, but its upper glauconite-bearing sandstone is interpreted to deposit rapidly in a shallow-water shelf setting. By contrast, Heishantou Fm consists chiefly of volcanic rocks, conformably overlying or in fault contact with Tielieketi Fm. Molaoba Fm is composed of parallel-stratified fine sandstone and sandy conglomerate with graded bedding, typical of nonmarine, fluvial deposition. This formation unconformably overlies the Tielieketi and Heishantou formations and is conformably covered by Kalagang Fm characterized by a continental bimodal volcanic association. The youngest U-Pb ages of detrital zircons from sandstones and zircon U-Pb ages from volcanic rocks suggest that the Tielieketi, Heishantou, Molaoba, and Kalagang formations were deposited during the Famennian-Tournaisian, Tournaisian-early Bashkirian, Gzhelian, and Asselian-Sakmarian, respectively. The absence of upper Bashkirian to Kasimovian was likely caused by tectonic uplifting of the West Junggar terrane. This is compatible with the occurrence of coeval stitching plutons in the West Junggar and adjacent areas. The Junggar-Balkhash Ocean should be finally closed before the Gzhelian, slightly later or concurrent with that of other ocean domains of the southern Paleo-Asian Ocean.
Global Climate Change and Ocean Education
NASA Astrophysics Data System (ADS)
Spitzer, W.; Anderson, J.
2011-12-01
The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in the Earth's climate system. The problem is not simply that the public lacks information. In fact, the problem is often that there is too much information available with much of it complicated and even contradictory. The news media, both print and electronic, tend to exacerbate this by aiming for "balance" even when there is an overwhelming scientific or policy consensus. An additional problem is "reinforcement bias," which tends to lead people to focus on information that supports what they already believe or think they know. Instead, we need an approach that facilitates "meaning-making." A "framing" approach to communication (Frameworks Institute, 2010) supports meaning-making by appealing to strongly held values, providing metaphoric language and models, and illustrating specific applications to real world problems. This approach translates complex science in a way that allows people to examine evidence, make well-informed decisions, and embrace science-based solutions. However, interpreters need specialized training, resources, up-to-date information, and ongoing support to help understand a complex topic such as climate change, its connections to the ocean, and how to relate it to the live animals, habitats and exhibits they interpret.
NASA Astrophysics Data System (ADS)
Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.
2012-12-01
Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and topography of the satellite to reveal its geological evolution. This architecture would provide for radiation-shielded instruments with low mass, power, and data rate, requiring limited spacecraft resources. The Clipper Mission concept concentrates on remote sensing science that can be accomplished through multiple close flybys of Europa. This includes exploring Europa's ice shell for evidence of liquid water within or beneath it, in order to understand the thickness of the ice shell and potential material pathways from the ocean to the surface and from the surface to the ocean. The mission concept also includes exploration of the surface and atmospheric composition of Europa, in order to address ocean composition and habitability. Detailed morphologic and topographic characterization of Europa's surface are included as well. This architecture would provide for radiation-shielded instruments with high mass, power, and data rate. NASA has directed the Europa team to refine, within a cost constrained budget, the ability of the Orbiter concept to characterize the ice shell and composition, and for the Clipper concept to address investigations to characterize the ocean. The status of these updated concepts will be reported.
@OceanSeaIceNPI: Positive Practice of Science Outreach via Social Media
NASA Astrophysics Data System (ADS)
Meyer, A.; Pavlov, A.; Rösel, A.; Granskog, M. A.; Gerland, S.; Hudson, S. R.; King, J.; Itkin, P.; Negrel, J.; Cohen, L.; Dodd, P. A.; de Steur, L.
2016-12-01
As researchers, we are keen to share our passion for science with the general public. We are encouraged to do so by colleagues, journalists, policy-makers and funding agencies. How can we best achieve this in a small research group without having specific resources and skills such as funding, dedicated staff, and training? How do we sustain communication on a regular basis as opposed to the limited lifetime of a specific project? The emerging platforms of social media have become powerful and inexpensive tools to communicate science for various audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. A small group of oceanographers, sea ice, and atmospheric scientists at the Norwegian Polar Institute have been running their social media science outreach for two years @OceanSeaIceNPI. Here we share our successful experience of developing and maintaining a researcher-driven outreach through Instagram, Twitter and Facebook. We present our framework for sharing responsibilities within the group to maximize effectiveness. Each media channel has a target audience for which the posts are tailored. Collaboration with other online organizations and institutes is key for the growth of the channels. The @OceanSeaIceNPI posts reach more than 4000 followers on a weekly basis. If you have questions about our @OceanSeaIceNPI initiative, you can tweet them with a #ask_oceanseaicenpi hashtag anytime.
Previously unknown and highly divergent ssDNA viruses populate the oceans.
Labonté, Jessica M; Suttle, Curtis A
2013-11-01
Single-stranded DNA (ssDNA) viruses are economically important pathogens of plants and animals, and are widespread in oceans; yet, the diversity and evolutionary relationships among marine ssDNA viruses remain largely unknown. Here we present the results from a metagenomic study of composite samples from temperate (Saanich Inlet, 11 samples; Strait of Georgia, 85 samples) and subtropical (46 samples, Gulf of Mexico) seawater. Most sequences (84%) had no evident similarity to sequenced viruses. In total, 608 putative complete genomes of ssDNA viruses were assembled, almost doubling the number of ssDNA viral genomes in databases. These comprised 129 genetically distinct groups, each represented by at least one complete genome that had no recognizable similarity to each other or to other virus sequences. Given that the seven recognized families of ssDNA viruses have considerable sequence homology within them, this suggests that many of these genetic groups may represent new viral families. Moreover, nearly 70% of the sequences were similar to one of these genomes, indicating that most of the sequences could be assigned to a genetically distinct group. Most sequences fell within 11 well-defined gene groups, each sharing a common gene. Some of these encoded putative replication and coat proteins that had similarity to sequences from viruses infecting eukaryotes, suggesting that these were likely from viruses infecting eukaryotic phytoplankton and zooplankton.
Engaging Middle School Students in Authentic Research based on a summer research cruise
NASA Astrophysics Data System (ADS)
Manley, J.; Ellins, K. K.; Conte, M. H.
2011-12-01
In summer 2010, as a participant in the TXESS Revolution, a National Science Foundation (NSF)-sponsored professional development program for teachers in support of Earth and Space Science, I participated in a scientific research cruise led by Dr. Maureen Conte of the Bermuda Institute of Ocean Sciences (BIOS). The primary purpose of the cruise was to collect water samples from different ocean depths, make temperature and conductivity measurements, and retrieve biologic particle debris collection equipment deployed as part of the NSF-sponsored Oceanic Flux Program to measure particle fluxes in the deep Sargasso Sea. A secondary objective involved the collection of plastic debris floating within the sargassum grass trapped in the North Atlantic gyre in order to investigate plastic pollution. As a member of the science team I worked alongside of Dr. Conte, scientists and graduate students, giving me a personal experience to inspire my students' interest in the marine ecosystem. In the classroom, I used a Project Based Learning (PBL) approach to translate my experience and knowledge gained into productive learning for my students. With Project Based Learning, teams of students solve a real world, open-ended challenge problem through research and experimentation. In this Problem, the challenge was to design a virtual product to motivate ordinary people to change their habits regarding their use and improper disposal of plastics. Team products included websites, social network pages, and in-school announcements to create awareness about plastic pollution in the ocean. Fulfilling one of the basic principles of the PBL approach to provide student access to experts, cruise participant and University of North Carolina graduate student Bonnie Monteleone dedicated an entire day to speak with each of my classes about her experiences studying ocean plastics and answer their questions via SKYPE. In addition, Ms. Monteleone used her extensive contacts to post the best of my students' projects on ocean environmental group webpages around the world. My partnership with the research scientists on the cruise has strengthened my teaching practice by allowing me to convey a deeper understanding of the nature of science and new knowledge to my middle school students, and to create learning experiences that motivate my students to become enthusiastic and passionate learners. The project has inspired a fellow teacher to create a challenge-based learning activity that features my experience. Web sites: (1) TXESS Revolution (http;//www.txessrevolution.org); (2) Bonnie Monteleone, The Plastic Ocean Project (http://www.theplasticocean.org/); (3) It's the Sea, Leave it Be Legacy Cycle (http://www.cooperclegacy.com).
Middle Level SS&C Energy Series.
ERIC Educational Resources Information Center
Crow, Linda W.; Aldridge, Bill G.
The project on Scope Sequence and Coordination of Secondary School Science (SS&C) was initiated by the National Science Teachers Association (NSTA) and recommends that all students study science every year and advocates carefully sequenced, well-coordinated instruction in biology, chemistry, earth/space science, and physics. This document…
78 FR 15933 - Marine Mammals; File No. 17952
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... Daniel P. Costa, Ph.D., Department of Biology and Institute of Marine Sciences, University of California... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC554 Marine Mammals; File No. 17952 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...
75 FR 28236 - Marine Mammals; File No. 13602
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XK54 Marine Mammals; File No. 13602 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... hereby given that Dr. Terrie Williams, Long Marine Lab, Institute of Marine Sciences, University of...
76 FR 7823 - Marine Mammals; File No. 13602
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XK54 Marine Mammals; File No. 13602 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... that Dr. Terrie Williams, Long Marine Lab, Institute of Marine Sciences, University of California at...
NASA Astrophysics Data System (ADS)
Griffies, Stephen M.; Danabasoglu, Gokhan; Durack, Paul J.; Adcroft, Alistair J.; Balaji, V.; Böning, Claus W.; Chassignet, Eric P.; Curchitser, Enrique; Deshayes, Julie; Drange, Helge; Fox-Kemper, Baylor; Gleckler, Peter J.; Gregory, Jonathan M.; Haak, Helmuth; Hallberg, Robert W.; Heimbach, Patrick; Hewitt, Helene T.; Holland, David M.; Ilyina, Tatiana; Jungclaus, Johann H.; Komuro, Yoshiki; Krasting, John P.; Large, William G.; Marsland, Simon J.; Masina, Simona; McDougall, Trevor J.; Nurser, A. J. George; Orr, James C.; Pirani, Anna; Qiao, Fangli; Stouffer, Ronald J.; Taylor, Karl E.; Treguier, Anne Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valdivieso, Maria; Wang, Qiang; Winton, Michael; Yeager, Stephen G.
2016-09-01
The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs.OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.
NASA Astrophysics Data System (ADS)
Newman, Joan T.
Any change, particularly on a large scale like a sequence change in a district with 75,000 students, is difficult. However, with the advent of the new TAKS science test and the new requirements for high school graduation in the state of Texas, educators and students alike are engaged in innovative educational approaches to meet these requirements. This study investigated a different, non-traditional science sequence to investigate relationships among secondary core-science course sequencing, student science-reasoning performance, and classroom pedagogy. The methodology adopted in the study led to a deeper understanding of the successes and challenges faced by teachers in teaching conceptual physics and chemistry to 8 th and 9th grade students. The qualitative analysis suggested a difference in pedagogy employed by middle and high school science teachers and a need for secondary science teachers to enhance their content knowledge and pedagogical skills, as well as change their underlying attitudes and beliefs about the abilities of students. The study examined scores of 495 randomly chosen students following three different matriculation patterns within one large independent school district. The study indicated that students who follow a sequence with 9th grade IPC generally increase their science-reasoning skills as demonstrated on the 10th grade TAKS science test when these scores are compared with those of students who do not have 9th grade IPC in the science sequence.
NASA Astrophysics Data System (ADS)
Di Iorio, D.
2011-12-01
An acoustic scintillation system was built in partnership with ASL Environmental Sciences (Sidney BC Canada), which provided a unique opportunity for two engineering undergraduate students to live and work abroad. The acoustic instrumentation was tested in coastal waters and then deployed to study deep-sea hydrothermal plume dynamics. Undergraduate students were involved in the deployment of instrumentation and the development of processing software to give vertical velocities and temperature fluctuations from a vigorous hydrothermal vent. A graduate student thesis has yielded insights into the vertical and azimuthal dependence of entrainment and into plume bending and rise height. Teachers and Ocean Science Bowl students also participated in research cruises describing physical oceanography of estuaries, coastal waters, and deep-sea hydrothermal vents and participated in data collection, processing and analysis. Teachers used the knowledge they gained to develop creative educational curricula at their schools, to present their experiences at national conferences and to publish an article in the National Science Teachers Association - The Science Journal. One of the teachers was recently recognized with the Presidential Award for Excellence in Mathematics and Science Teaching. Working with the ocean bowl team at Oconee County High School has led to top ten placements in the national championships in 2005 (fourth place) and 2006 (sixth place). In order to increase quantitative methods in an undergraduate class, students acquire data from an ocean observatory and analyze the data for specific quantities of interest. One such project led to the calculation of the upper ocean heat content for the Greenland Sea using 7 years of Argo profiles, which showed a 0.04oC/year trend. These results were then published in JGR.
The Planned Europa Clipper Mission: Exploring Europa to Investigate its Habitability
NASA Astrophysics Data System (ADS)
Pappalardo, Robert T.; Senske, David A.; Korth, Haje; Blaney, Diana L.; Blankenship, Donald D.; Christensen, Philip R.; Kempf, Sascha; Raymond, Carol Anne; Retherford, Kurt D.; Turtle, Elizabeth P.; Waite, J. Hunter; Westlake, Joseph H.; Collins, Geoffrey; Gudipati, Murthy; Lunine, Jonathan I.; Paty, Carol; Rathbun, Julie A.; Roberts, James; E Schmidt, Britney; Soderblom, Jason M.; Europa Clipper Science Team
2017-10-01
A key driver of planetary exploration is to understand the processes that lead to habitability across the solar system. In this context, the science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three Mission Objectives: 1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; 2) Understand the habitability of Europa's ocean through composition and chemistry; and 3) Understand the formation of surface features, including sites of recent or current activity, and characterize localities of high science interest. Folded into these three objectives is the desire to search for and characterize any current activity.To address the Europa science objectives, a highly capable and synergistic suite of nine instruments comprise the mission's scientific payload. This payload includes five remote-sensing instruments that observe the wavelength range from ultraviolet through radar, specifically: Europa UltraViolet Spectrograph (Europa-UVS), Europa Imaging System (EIS), Mapping Imaging Spectrometer for Europa (MISE), Europa THErMal Imaging System (E-THEMIS), and Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). In addition, four in-situ instruments measure fields and particles: Interior Characterization of Europa using MAGnetometry (ICEMAG), Plasma Instrument for Magnetic Sounding (PIMS), MAss Spectrometer for Planetary EXploration (MASPEX), and SUrface Dust Analyzer (SUDA). Moreover, gravity science can be addressed via the spacecraft's telecommunication system, and scientifically valuable engineering data from the radiation monitoring system would augment the plasma dataset. Working together, the planned Europa mission’s science payload would allow testing of hypotheses relevant to the composition, interior, and geology of Europa, to address the potential habitability of this intriguing moon.
Social media connecting ocean sciences and the general public: the @OceanSeaIceNPI experiment
NASA Astrophysics Data System (ADS)
Pavlov, A. K.; Granskog, M. A.; Gerland, S.; Meyer, A.; Hudson, S. R.; Rösel, A.; King, J.; Itkin, P.; Cohen, L.; Dodd, P. A.; de Steur, L.
2016-02-01
As researchers we are constantly being encouraged by funding agencies, policy-makers and journalists to conduct effective outreach and to communicate our latest research findings. As environmental scientists we also understand the necessity of communicating our research to the general public. Many of us wish to become better science communicators but have little time and limited funding available to do so. How can we expend our science communication past project-based efforts that have a limited lifetime? Most critically, how can a small research groups do it without additional resources such as funds and communication officers? Social media is one answer, and has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and researchers are exploring the full breadth of possibilities brought by social media for reaching out to the general public, journalists, policy-makers, stake-holders, and research community. However, smaller research groups and labs are still underrepresented in social media. When it comes to practice, some essential difficulties can be encountered: identifying key target groups, defining the framework for sharing responsibilities and interaction within the research group, and finally, choosing a currently up-to-date social medium as a technical solution for communicating your research. Here, a group of oceanography and sea ice researchers (@OceanSeaIceNPI) share the positive experience of developing and maintaining for more than one year a researcher-driven outreach effort currently implemented through Instagram, Twitter and Facebook. We will present potential pitfalls and challenges that small research groups could face, and how to better overcome them. This will hopefully inspire and help other research groups and labs to conduct their own effective ocean science communication.
A Cabled, High Bandwidth Instrument Platform for Continuous Scanning of the Upper Ocean Water Column
NASA Astrophysics Data System (ADS)
McRae, E.; Delaney, J. R.; Kelly, D.; Daly, K. L.; Luther, D. S.; Harkins, G.; Harrington, M.; McGuire, C.; Tilley, J.; Dosher, J.; Waite, P.; Cram, G.; Kawka, O. E.
2016-02-01
The Cabled Array portion of the National Science Foundation funded Ocean Observatories Initiative is a large scale, high bandwidth and high power subsea science network designed by the University of Washington Applied Physics Laboratory. Part of that system is a set of winched profilers which continuously scan the upper 200m of the ocean at their deployment sites. The custom built profilers leverage the Cabled Array's technology for interfacing collections of science instruments and add the ability to run predefined missions and to switch missions or mission parameters on the fly via command from shore. The profilers were designed to operate continuously for up to two years after deployment after which certain wearing components must be replaced. The data from the profiler's science and engineering sensors are streamed to shore via the seafloor network in real time. Data channel capacity from the profilers exceeds 40 Mbps. For profiler safety, mission execution is controlled within the platform. Inputs such as 3D gyro, pressure depth and deployed cable calculations are monitored to assure safe operation during any sea state. The profilers never surface but are designed to approach within 5m of the surface if conditions allow. Substantial engineering effort was focused on reliable cable handling under all ocean conditions. The profilers are currently operated from subsea moorings which also contain sets of fixed science and engineering sensors. The profilers and their associated mooring instrument assemblies are designed for rapid replacement using ROVs. We have operated this system for two years, including one annual maintenance turn and information relative to that experience will be included in the paper.[Image Caption] Cabled Array Shallow Profiler shown in its parking position.
Adult-Rated Oceanography Part 2: Examples from the Trenches
NASA Astrophysics Data System (ADS)
Torres, M. E.; Collier, R.; Cowles, S.
2004-12-01
We will share experiences and specific examples from an ongoing Ocean Science and Math Collaborative Project between OSU faculty and Community College instructors from the Oregon system of adult education and workforce development. The participants represent such diverse instructional programs as workforce training, workplace education (cannery workers), adult basic education, adult secondary education (GED preparation), English to Speakers of Other Languages, Family Literacy, and Tribal Education (Confederated Tribes of the Siletz Indians). This collaborative project is designed to integrate ocean sciences into the science, math, and critical thinking curriculum through the professional development activities of adult educators. Our strategy is to tailor new and existing ocean science resources to the needs of adult education instructors. This project provides a wide range of opportunities in time and effort for scientist involvement. Some scientists have chosen to participate in short interviews or conversations with adult educators, which give added value through real-world connections in the context of the larger project. Other participating scientists have made larger time investments, which include presentations at workshops, hosting teacher-at-sea opportunities and leading project planning and implementation efforts. This project serves as an efficient model for scientists to address the broader impact goals of their research. It takes advantage of a variety of established educational outreach resources funded through NSF (e.g. the national COSEE network and GeoEducation grants), NOAA (e.g. SeaGrant education and Ocean Explorer) as well as State and Federal adult education programs (e.g. The National Institute for Literacy Science and Numeracy Special Collection). We recognize the value and creativity inherent in these resources, and we are developing a model to "tune" their presentation, as well as their connection to new oceanographic research, in a manner that fits the needs of the adult education community.
NASA Technical Reports Server (NTRS)
Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.;
2012-01-01
The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.
NASA Astrophysics Data System (ADS)
Wen-Bo, Wang; Xiao-Dong, Zhang; Yuchan, Chang; Xiang-Li, Wang; Zhao, Wang; Xi, Chen; Lei, Zheng
2016-01-01
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. Project supported by the National Science and Technology, China (Grant No. 2012BAJ15B04), the National Natural Science Foundation of China (Grant Nos. 41071270 and 61473213), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303), and the Hubei Key Laboratory Foundation of Transportation Internet of Things, Wuhan University of Technology, China (Grant No.2015III015-B02).
The Ocean Sampling Day Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopf, Anna; Bicak, Mesude; Kottmann, Renzo
In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less
The Ocean Sampling Day Consortium
Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; ...
2015-06-19
In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less
Norwegian Ocean Observatory Network (NOON)
NASA Astrophysics Data System (ADS)
Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon
2010-05-01
The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle. More information about NOON is available at NOON's web site www.oceanobservatory.com. PIC
NASA Astrophysics Data System (ADS)
Nanez-James, S. E.; Sager, W.
2016-02-01
Research published in 2013 showed that TAMU Massif, the largest mountain in the Shatsky Rise oceanic plateau, located approximately 1500 kilometers east of Japan, is the "World's Largest Single Volcano." This claim garnered widespread public interest and wonder concerning how something so big could remain so mysterious in the 21st century. This disconnect highlights the fact that oceans are still widely unexplored, especially the middle of the deep ocean. Because there is so much interest in TAMU Massif, a diverse outreach team lead by chief scientist Dr. William Sager from the University of Houston in partnership with the Texas State Aquarium and the Schmidt Ocean Institute (SOI) conducted a multifaceted ship-to-shore outreach project that included secondary school students, formal and informal educators, university students and professors, the aquarium and museum audience, and the general public. The objective was to work in conjunction with SOI and various other partners, including the Texas Regional Collaborative, the Aquarium of the Pacific, and the Houston Museum of Natural Science, to promote science and ocean literacy while inspiring future scientists - especially those from underserved and underrepresented groups - through ocean connections. Participants were connected through live ship-to-shore distance learning broadcasts of ongoing marine research and discovery of TAMU Massif aboard the R/V Falkor, allowing audiences to participate in real-time research and apply real world science to curriculum in the classrooms. These ship-to-shore presentations connected to existing curriculums and standards, lessons, and career interests of the students and educators with special teacher events and professional development workshops conducted from aboard the R/V Falkor.
MODIS Data from the GES DISC DAAC: Moderate-Resolution Imaging Spectroradiometer (MODIS)
NASA Technical Reports Server (NTRS)
2002-01-01
The Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) is responsible for the distribution of the Level 1 data, and the higher levels of all Ocean and Atmosphere products (Land products are distributed through the Land Processes (LP) DAAC DAAC, and the Snow and Ice products are distributed though the National Snow and Ice Data Center (NSIDC) DAAC). Ocean products include sea surface temperature (SST), concentrations of chlorophyll, pigment and coccolithophores, fluorescence, absorptions, and primary productivity. Atmosphere products include aerosols, atmospheric water vapor, clouds and cloud masks, and atmospheric profiles from 20 layers. While most MODIS data products are archived in the Hierarchical Data Format-Earth Observing System (HDF-EOS 2.7) format, the ocean binned products and primary productivity products (Level 4) are in the native HDF4 format. MODIS Level 1 and 2 data are of the Swath type and are packaged in files representing five minutes of Files for Level 3 and 4 are global products at daily, weekly, monthly or yearly resolutions. Apart from the ocean binned and Level 4 products, these are in Grid type, and the maps are in the Cylindrical Equidistant projection with rectangular grid. Terra viewing (scenes of approximately 2000 by 2330 km). MODIS data have several levels of maturity. Most products are released with a provisional level of maturity and only announced as validated after rigorous testing by the MODIS Science Teams. MODIS/Terra Level 1, and all MODIS/Terra 11 micron SST products are announced as validated. At the time of this publication, the MODIS Data Support Team (MDST) is working with the Ocean Science Team toward announcing the validated status of the remainder of MODIS/Terra Ocean products. MODIS/Aqua Level 1 and cloud mask products are released with provisional maturity.
Rosas-Valdez, Rogelio; Morrone, Juan J; García-Varela, Martín
2012-08-01
Species of Floridosentis (Acanthocephala) are common parasites of mullets (Mugil spp., Mugilidae) found in tropical marine and brackish water in the Americas. Floridosentis includes 2 species distributed in Mexico, i.e., Floridosentis pacifica, restricted to the Pacific Ocean near Salina Cruz, Oaxaca, and Floridosentis mugilis, distributed along the coast of the Pacific Ocean and the Gulf of Mexico. We sampled 18 populations of F. mugilis and F. pacifica (12 from the Pacific and 6 from the Gulf of Mexico) and sequenced a fragment of the rDNA large subunit to evaluate phylogenetic relationships of populations of Floridosentis spp. from Mexico. Species identification of museum specimens of F. mugilis from the Pacific Ocean was confirmed by examination of morphology traits. Phylogenetic trees inferred with maximum parsimony, maximum likelihood, and Bayesian inference indicate that Floridosentis is monophyletic comprising of 2 major well-supported clades, the first clade corresponding to F. mugilis from the Gulf of Mexico, and the second to F. pacifica from the Pacific Ocean. Genetic divergence between species ranged from 7.68 to 8.60%. Intraspecific divergence ranged from 0.14 to 0.86% for F. mugilis and from 1.72 to 4.49% for F. pacifica. Data obtained from diagnostic characters indicate that specimens from the Pacific Ocean in Mexico have differences in some traits among locations. These results are consistent with the phylogenetic hypothesis, indicating that F. pacifica is distributed in the Pacific Ocean in Mexico with 3 major lineages.
The Ocean Surface Topography Sentinel-6/Jason-CS Mission
NASA Astrophysics Data System (ADS)
Giulicchi, L.; Cullen, R.; Donlon, C.; Vuilleumier@esa int, P.
2016-12-01
The Sentinel-6/Jason-CS mission consists of two identical satellites flying in sequence and designed to provide operational measurements of sea surface height significant wave high and wind speed to support operational oceanography and climate monitoring. The mission will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (launched in January 2016). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of spacecraft, measurement instrumentation design thus securing optimal operational and science data return. As a secondary objective the mission will also include Radio Occultation user services. Each satellite will be launched sequentially into the Jason orbit (up to 66 latitude) respectively in 2020 and 2025. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data require supporting measurements: a DORIS receiver for Precise Orbit Determination; The Climate Quality Advanced Microwave Radiometer (AMR-C) for high stability path delay correction. Orbit tracking data are also provided by GPS & LRA. An additional GPS receiver will be dedicated to radio-occultation measurements. The programme is a part of the European Community Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The Sentinel-6/Jason-CS in particular is a cooperative mission with contributions from NASA, NOAA, EUMETSAT, ESA, CNES and the European Union.
Science Objectives and Design of the European Seas Observatory NETwork (ESONET)
NASA Astrophysics Data System (ADS)
Ruhl, H.; Géli, L.; Karstensen, J.; Colaço, A.; Lampitt, R.; Greinert, J.; Phannkuche, O.; Auffret, Y.
2009-04-01
The needs for a network of ocean observing systems cross many applied and research areas of earth and marine science. Many of the science areas that can be examined using such systems have direct impacts on societal health and well being and our understanding of ocean function in a shifting climate. The European Seas Observatory NETwork (ESONET) Network of Excellence has been evaluating ocean observatory design requirements, data management needs, standardization and interoperability concerns, social implications, outreach and education, as well as financial and legal aspects of developing such a system. ESONET has great potential to address a growing set of Earth science questions that require a broad and integrated network of ocean and seafloor observations. ESONET activities are also importantly integrating researchers in the European Community, as well as internationally. There is now wide recognition that research addressing science questions of international priority, such as understanding the potential impacts of climate change or geohazards like earthquakes and tsunamis should be conducted in a framework that can address questions across adequate temporal and spatial scales. We will present the relevant science priorities in the four interconnected fields of geoscience, physical oceanography, biogeochemistry, and marine ecology, and some of the practical ways in which these questions can be addressed using ESONET. Several key questions persist that will require comprehensive interdisciplinary approaches including: How can monitoring of factors such as seismic activity, fluid pore chemistry and pressure, improve seismic, slope failure, and tsunami warning? To what extent do seabed processes influence ocean physics, biogeochemistry, and marine ecosystems? How are physical and biogeochemical processes that occur at differing scales related? What aspects of physical oceanography and biogeochemical cycling will be most sensitive to climate change? What will the important feedbacks of potential ecological change be on biogeochemical cycles? What are the factors that control the distribution and abundance of marine life and what will the influence of anthropogenic change be? We will outline a set of science objectives and observation parameters to be collected at all ESONET sites, as well as a set of rather specific objectives and thus parameters that might only be measured at some sites. We will also present the preliminary module specifications now being considered by ESONET. In a practical sense the observatory design has been divided into those that will be included in a so called ‘generic' module and those that will be part of science-specific modules. Outlining preliminary module specifications is required to move forward with studies of observatory design and operation. These specifications are importantly provisional and can be updated as science needs and feasibility change. A functional cleavage not only comes between aspects that are considered generic or specific, but also the settings in which those systems will be used. For example, some modules will be on the seabed and some will be moored in the water column. In order to address many of the questions posed above ESONET users will require other supporting data from other programs from local to international levels. Examples of these other data sources include satellite oceanographic data, climatic data, air-sea interface data, and the known distribution and abundances of marine fauna. Thus the connection of ESONET to other programs is integral to its success. The development of ESONET provides a substantial opportunity for ocean science to evolve in Europe. Furthermore, ESONET and several other developing ocean observatory programs are integrating into larger science frameworks including the Global Earth Observation System of Systems (GEOSS) and Global Monitoring of Environment and Security (GMES) programs. It is only in a greater integrated framework that the full potential of the component systems will be realized.
Planetary science. Europa's ocean--the case strengthens.
Stevenson, D
2000-08-25
The possibility of a subsurface ocean on Jupiter's moon Europa has been suggested on the basis of theoretical, geological, and spectroscopic arguments. But, as Stevenson explains in his Perspective, none of these arguments were compelling. In contrast, the magnetic field data obtained by the Galileo spacecraft and presented in the report by Kivelson et al., provide persuasive evidence for a conducting layer--most likely a global water ocean--near Europa's surface.
The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, Anja; Bange, Hermann W.; Cunliffe, Michael
Despite the huge extent of the ocean’s surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean’s surface, in particular involvingmore » the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.« less
The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer
Engel, Anja; Bange, Hermann W.; Cunliffe, Michael; ...
2017-05-30
Despite the huge extent of the ocean’s surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean’s surface, in particular involvingmore » the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.« less
78 FR 56944 - Advisory Committee for Geosciences; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-16
... atmospheric, geo-space, earth, ocean and polar sciences. Agenda October 9, 2013 Meeting with the Acting... NATIONAL SCIENCE FOUNDATION Advisory Committee for Geosciences; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as amended), the National Science Foundation...
Marine Biological Field Techniques.
ERIC Educational Resources Information Center
Awkerman, Gary L.
This publication is designed for use in a standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations designed to impart ocean science understanding to high school students. It could be a useful instructional tool for any high school student field…
Recognizing Excellence: Pinging--Sound at Work
ERIC Educational Resources Information Center
Lindquist, William; Forsberg, Britt
2014-01-01
One author shares the unique opportunity to be immersed in the science of "sound at work" through participation in NOAA's (National Oceanic and Atmospheric Administration) Teacher at Sea Program. A third- through fifth-grade learning outcome within the Nature of Science section of the "Next Generation Science Standards"…
NASA Astrophysics Data System (ADS)
Skulski, T.; Percival, J. A.
1996-04-01
Embedded within the vast granitoid terrane of the Minto block of northeastern Superior Province are Late Archean greenstone belts of the Goudalie domain that preserve a long-lived record of continent-ocean interaction. The Vizien greenstone belt is one such belt and it contains four fault-bounded structural panels. The 2786 Ma mafic-ultramafic sequence is an allochthonous package of pillowed basaltic andesite, komatiite and volcaniclastic rocks cut by peridotite and gabbro sills. The mafic rocks are LREE-depleted tholeiites which have primitive mantle (PRIM)-normalized abundances of Th < Nb < La, and ɛNd values of +1.5 to + 3.2 reflecting extraction from a depleted mantle source. The 2724 Ma lac Lintelle continental calc-alkaline volcanic sequence consists of massive basalt, plagioclase-porphyritic andesite, dacite, rhyolite, capped by quartz-rich sandstones/conglomerates with 2.97 Ga Nd model ages. Lac Lintelle volcanic rocks are LREE enriched, with low TiO 2 (< 1%) and Zr (< 200 ppm), PRIM-normalized enrichment in Th > La > Nb, and a range of ɛNd values from -0.1 to +1.7. The ~ 2722 Ma lac Serindac bimodal, subaerial tholeiitic volcanic sequence contains andesite (locally with tonalite xenoliths), basalt, gabbro sills, lenses of quartz-rich sedimentary rocks and a thick, upper rhyolite sequence. The lac Serindac tholeiites are LREE-enriched, have PRIM-normalized Th > La > Nb, high Zr (to 300 ppm) and Ti contents, and low ɛNd values from +0.8 in basalt to -1.4 in rhyolite. The < 2718 Ma basement-cover sequence comprises 2.94 Ga tonalitic gneiss unconformably overlain by clastic sediments and a thin upper sequence of 2700 Ma gabbro, siliceous high-Mg basalt (SHMB) and andesite. The SHMB are characterised by LREE depletion and ɛNd values of +2.6, whereas the andesite is LREE-enriched and has ɛNd values of -0.3. The 2786 Ma mafic-ultramafic sequence is interpreted as a sliver of plume-related oceanic plateau crust. The 2724 lac Lintelle sequence represents a continental arc formed on the eastern protocraton. The ~ 2722 Ma lac Serindac volcanic sequence represents late continental rift deposits. The various 2.8-2.7 Ga supracrustal sequences were accreted, deformed and metamorphosed to mid-amphibolite facies during late-stage assembly of the Minto block between 2.718 and 2.693 Ga.
The reinvigoration of the Southern Ocean carbon sink.
Landschützer, Peter; Gruber, Nicolas; Haumann, F Alexander; Rödenbeck, Christian; Bakker, Dorothee C E; van Heuven, Steven; Hoppema, Mario; Metzl, Nicolas; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wanninkhof, Rik
2015-09-11
Several studies have suggested that the carbon sink in the Southern Ocean-the ocean's strongest region for the uptake of anthropogenic CO2 -has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized. Copyright © 2015, American Association for the Advancement of Science.
Township of Ocean School District Contemporary Science. Student Enrichment Materials.
ERIC Educational Resources Information Center
Truex, Ronald T.
Contemporary Science is a program designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course, involves…
NASA Astrophysics Data System (ADS)
Ensign, Todd I.; Rye, James A.; Luna, Melissa J.
2017-12-01
Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an elementary science methods course participated in a mixed-methods study through which they utilized probeware in a thematic experience on ocean acidification. One-way repeated measures ANOVA of pre and post survey data measuring subscales of utility, ability, and intent to use probeware demonstrated a statistically significant increase with medium to large effect sizes for all subscales across all sections (p<0.01,{η}_p^2=0.384;p<0.001,{η}_p^2=0.517;p<0.001,{η}_p^2=0.214) . Analysis of reflective journals revealed over 60% felt the multiple capabilities (notably graphing) of probeware make it a useful classroom tool, and almost one-half believed that its use makes science more enjoyable and engaging. Mapping of the unitized data from the journals on the Next Generation Science Standards suggested that probeware use especially engages learners in planning and carrying out investigations and in analyzing and interpreting data. Journals also revealed that despite PT having prior experience with probeware in science courses, its use in their future elementary classroom is conditional on having a positive experience with probeware in a science methods course. Further, embedding a probeware experience in a unit on ocean acidification provides PT with strategies for addressing climate change and engaging in argument from evidence.
Houseknecht, D.W.; Bird, K.J.
2004-01-01
Beaufortian strata (Jurassic-Lower Cretaceous) in the National Petroleum Reserve in Alaska (NPRA) are a focus of exploration since the 1994 discovery of the nearby Alpine oil field (>400 MMBO). These strata include the Kingak Shale, a succession of depositional sequences influenced by rift opening of the Arctic Ocean Basin. Interpretation of sequence stratigraphy and depositional facies from a regional two-dimensional seismic grid and well data allows the definition of four sequence sets that each displays unique stratal geometries and thickness trends across NPRA. A Lower to Middle Jurassic sequence set includes numerous transgressive-regressive sequences that collectively built a clastic shelf in north-central NPRA. Along the south-facing, lobate shelf margin, condensed shales in transgressive systems tracts downlap and coalesce into a basinal condensed section that is likely an important hydrocarbon source rock. An Oxfordian-Kimmeridgian sequence set, deposited during pulses of uplift on the Barrow arch, includes multiple transgressive-regressive sequences that locally contain well-winnowed, shoreface sandstones at the base of transgressive systems tracts. These shoreface sandstones and overlying shales, deposited during maximum flooding, form stratigraphic traps that are the main objective of exploration in the Alpine play in NPRA. A Valanginian sequence set includes at least two transgressive-regressive sequences that display relatively distal characteristics, suggesting high relative sea level. An important exception is the presence of a basal transgressive systems tract that locally contains shoreface sandstones of reservoir quality. A Hauterivian sequence set includes two transgressive-regressive sequences that constitute a shelf-margin wedge developed as the result of tectonic uplift along the Barrow arch during rift opening of the Arctic Ocean Basin. This sequence set displays stratal geometries suggesting incision and synsedimentary collapse of the shelf margin. ?? 2004. The American Association of Petroleum Geologists. All rights reserved.
76 FR 71939 - New England Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA837 New England... Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New... Scientific and Statistical Committee (SSC) will discuss the 2012 SSC calendar and tasks, social science...
Scripps Ocean Modeling and Remote Sensing (SOMARS)
1990-04-10
1990: Satellite derived estimates of the normal and tangential components of near-surface flow. Internat. J. Rem. Sens., submitted. Mr. Timothy ... Gallaudet - M.S,. in Oceanography/Applied Ocean Sciences (Naval student; not a terminal M.S. degree) Thesis Advisor: Topic will relate to AVIIRR analyses of
Ocean Drilling Program: Related Sites
) 306-0390 Web site: www.nsf.gov Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) US Members: Columbia University, Lamont-Doherty Earth Observatory Florida State University Oregon State University, College of Oceanic and Atmospheric Sciences Pennsylvania State University, College of Earth and
78 FR 37796 - Marine Mammals; File No. 17952
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... permit has been issued to Daniel P. Costa, Ph.D., Department of Biology and Institute of Marine Sciences... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC554 Marine Mammals; File No. 17952 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...
Seafloor Fluid Flow and the Search for Extant Life: Escaping Earthly Prejudices
NASA Astrophysics Data System (ADS)
German, C. R.
2018-05-01
Despite decades of experience, ocean scientists on Earth continue to discover novel forms of seafloor fluid flow with the potential to host novel forms of life. Ocean Science can inform the search for life beyond Earth but should not dictate it.
Genomic perspectives in microbial oceanography.
DeLong, Edward F; Karl, David M
2005-09-15
The global ocean is an integrated living system where energy and matter transformations are governed by interdependent physical, chemical and biotic processes. Although the fundamentals of ocean physics and chemistry are well established, comprehensive approaches to describing and interpreting oceanic microbial diversity and processes are only now emerging. In particular, the application of genomics to problems in microbial oceanography is significantly expanding our understanding of marine microbial evolution, metabolism and ecology. Integration of these new genome-enabled insights into the broader framework of ocean science represents one of the great contemporary challenges for microbial oceanographers.
The Marine Resources Experiment Program (MAREX)
NASA Technical Reports Server (NTRS)
1982-01-01
The Satellite Ocean Color Science Working Group was established to consider the scientific utility of repeated satellite measurements of ocean color, especially for measuring global ocean chlorophyll and for studying the fate of global primary productivity in the sea. Results of the group's deliberations are presented. The scientific requirements are given for ocean color data from a CZCS follow on sensor in order to address global primary productivity, fishery, and carbon storage problems. Some specific experiments, called the marine resource experiment and designed to determine critical nutrient fluxes, photosynthetic rates, and primary productivity and biomass, are outlined.
1987-01-01
the tropical Pacific Ocean . Contribution in Atmospheric Science No. 20, University of California, Davis. Wyrtki, K., 1981: An estimate of... distribution of net E-P and heating in the tropical Pacific determines the vertical T-S relationship of the upper ocean in the western equatorial Pacific... contributing factor. The effect of such impulsive forcing on the western equatorial Pacific upper ocean can be seen in Fig. 11 from the
Rivers to the Ocean: Making Connections Between Scientists and High School Students
NASA Astrophysics Data System (ADS)
Lodes, K. M.; Biehle, J.; Garr, R. R.; Gibson, B. R.; Nobs, A. R.; Triller, M. L.
2016-02-01
Students at St. Joseph's Academy, an all-girls, Catholic school in suburban St. Louis, can take a one semester elective course in Marine Sciences their junior or senior year. The course begins with an overview of why the ocean is important and how humans impact it. As students investigate bathymetry, bioluminescence, currents, microbes, seaweeds and a survey of marine animals, they develop an appreciation for our dependence on a healthy ocean. Halfway through the semester, students either individually or with a partner choose a marine scientist and then spend time corresponding with that researcher, reading background information on his/her research and Skyping with the scientist. Finally, they make a movie about their researcher and discuss what they have learned with their class. Selected students will discuss the impact their correspondence has had on their understanding of both the ocean and what it takes to pursue a career in science as well as share their movie and binder portfolio.
Rivers to the Ocean: Making Connections between Scientists and High School Students
NASA Astrophysics Data System (ADS)
Biehle, J.
2016-12-01
Students at St. Joseph's Academy, an all-girls, Catholic school in suburban St. Louis, can take a one semester elective course in Marine Sciences their junior or senior year. The course begins with an overview of why the ocean is important and how humans impact it. As students investigate bathymetry, bioluminescence, currents, microbes, seaweeds and a survey of marine animals, they develop an appreciation for our dependence on a healthy ocean. Halfway through the semester, students either individually or with a partner choose a marine scientist and then spend time corresponding with that researcher, reading background information on his/her research and Skyping with the scientist. Finally, they make a movie about their researcher and discuss what they have learned with their class. My poster will illustrate the impact their correspondence has had on my understanding of both the ocean and what it takes to pursue a career in science as well as my classmates and the scientists. I will also have copies of the the movies to share.
Not Just About the Science: Cold War Politics and the International Indian Ocean Expedition
NASA Astrophysics Data System (ADS)
Harper, K.
2016-12-01
The International Indian Ocean Expedition broke ground for a series of multi-national oceanographic expeditions starting in the late 1950s. In and of itself, it would have been historically significant—like the International Geophysical Year (1957-58)—for pulling together the international scientific community during the Cold War. However, US support for this and follow-on Indian Ocean expeditions were not just about the science; they were also about diplomacy, specifically efforts to bring non-aligned India into the US political orbit and out of the clutches of its Cold War enemy, the Soviet Union. This paper examines the behind-the-scenes efforts at the highest reaches of the US government to extract international political gain out of a large-scale scientific effort.
ERIC Educational Resources Information Center
Hoffman, Martos; Barstow, Daniel
2007-01-01
The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…
A Field Course in Ocean Sciences that Emphasizes Sustainabilty
NASA Astrophysics Data System (ADS)
Macko, S. A.; O'Connell, M. T.
2016-12-01
Sustainability awareness is increasingly a subject in educational settings. Marine science classes are perfect settings of establishing sustainability awareness owing to declining populations of organisms and perceived collapse in fisheries worldwide. Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. During regular session (18 week) or shorter term (4 week) summer classes such long trips are logistically difficult owing to large numbers of students involved or timing. This approach, to use a field basis for a course supplement addresses the requests by utilizing local resources and trips for a limited number of students (20) to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time, readings, along with paper and laboratories. In addition, short day-long trips to locations where the ocean was "captured" were also used to supplement the experience as well as speakers involved with aquaculture. Central Virginia is a fortunate location for such a class, with close access for travel to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and NOAA) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore and Virginia Beach. Furthermore, visits to local seafood markets at local stores, or larger city markets in Washington, Baltimore and Virginia Beach and International distribution centers, enhanced the understanding of productivity in the ocean, and viability of the fisheries sustainability. The course could then address not only the particulars of the marine science, but also aspects of sustainability with discussions on ethics, including keeping animals in captivity or overfishing of particular species and the special difficulties that arise from captive or culturing ocean populations. In addition, the class was encouraged to post web-based journals of experiences in order to share opinions of observations in each of the settings, including the evaluation of the foods they were consuming during the class.
Understanding and Improving Ocean Mixing Parameterizations for modeling Climate Change
NASA Astrophysics Data System (ADS)
Howard, A. M.; Fells, J.; Clarke, J.; Cheng, Y.; Canuto, V.; Dubovikov, M. S.
2017-12-01
Climate is vital. Earth is only habitable due to the atmosphere&oceans' distribution of energy. Our Greenhouse Gas emissions shift overall the balance between absorbed and emitted radiation causing Global Warming. How much of these emissions are stored in the ocean vs. entering the atmosphere to cause warming and how the extra heat is distributed depends on atmosphere&ocean dynamics, which we must understand to know risks of both progressive Climate Change and Climate Variability which affect us all in many ways including extreme weather, floods, droughts, sea-level rise and ecosystem disruption. Citizens must be informed to make decisions such as "business as usual" vs. mitigating emissions to avert catastrophe. Simulations of Climate Change provide needed knowledge but in turn need reliable parameterizations of key physical processes, including ocean mixing, which greatly impacts transport&storage of heat and dissolved CO2. The turbulence group at NASA-GISS seeks to use physical theory to improve parameterizations of ocean mixing, including smallscale convective, shear driven, double diffusive, internal wave and tidal driven vertical mixing, as well as mixing by submesoscale eddies, and lateral mixing along isopycnals by mesoscale eddies. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. We write our own programs in MATLAB and FORTRAN to visualize and process output of ocean simulations including producing statistics to help judge impacts of different parameterizations on fidelity in reproducing realistic temperatures&salinities, diffusivities and turbulent power. The results can help upgrade the parameterizations. Students are introduced to complex system modeling and gain deeper appreciation of climate science and programming skills, while furthering climate science. We are incorporating climate projects into the Medgar Evers college curriculum. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, an urban minority serving institution in central Brooklyn. Supported by NSF Award AGS-1359293 And NASA Award NNX17AC81G.
CHART: An Online Workshop About the Future of Scientific Ocean Drilling
NASA Astrophysics Data System (ADS)
Meth, C. E.; Ravelo, A. C.
2009-12-01
The CHART (Charting the Future Course of Scientific Ocean Drilling) workshop was a six-week on-line meeting that gathered input from the U.S. science community regarding future research directions for scientific ocean drilling. The CHART workshop was hosted and implemented by the Consortium for Ocean Leadership, under the U.S. Science Support Program associated with IODP. The online format allowed researchers who would normally not have the time or resources to travel to a physical meeting to participate in this discussion and allowed Ocean Leadership to archive, in written form, input from every participant, instead of just preserving popular or consensus views. The meeting had six discussion boards, each with initial questions intended to stimulate discussion on current emerging fields, unanswered research questions, implementation strategies, and potential future directions for scientific ocean drilling. The moderators read the posts on a daily basis, interjected comments or questions to stimulate more discussion, and wrote short weekly summaries. Interest in the CHART discussions increased over the course of the workshop and prompted the steering committee to extend the meeting to the final sixth week, allowing time for the participants to complete reading and responding to the new activity. In all, the CHART discussion boards were visited 2,242 times by 695 visitors and resulted in 535 posts. The visitors came to the site from 37 states, the District of Columbia, and 17 countries. The CHART workshop represented the first step in garnering input from U.S. scientists to plan for scientific ocean drilling beyond 2013. The resulting white paper became part of the planning process for the international meeting, INVEST, and will be used to write the science plan for the next scientific drilling program. The white paper also allowed U.S. participants at INVEST to better represent and express the collective vision of the their community.