ERIC Educational Resources Information Center
Berkovsky, Boris
1987-01-01
Describes Ocean Thermal Energy Conservation (OTEC) as a method for exploiting the temperature difference between warm surface waters of the sea and its cold depths. Argues for full-scale demonstrations of the technique for producing energy for coastal regions. (TW)
Phase Change Material Thermal Power Generator
NASA Technical Reports Server (NTRS)
Jones, Jack A.
2013-01-01
An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.
Thermal Models of the Ocean Floor: from Wegener to Cerro Prieto
NASA Astrophysics Data System (ADS)
Sclater, J. G.; Negrete-Aranda, R.
2017-12-01
Wegener (1925) argued that hot rock could explain the shallower depths of ridges in the center of the Atlantic Ocean. Hess (1963) proposed that the intrusion of molten rock occurred at a world encircling mid-ocean ridge system. However, he accounted for the elevation of the ridges by the formation of serpentinite and thermal convection. Langseth et al. (1966) provided the major advance by using a 100 km thick plate to argue such a concept could not explain the depth, heat flow versus distance relations. They had the correct model but misinterpreted the data. Reformulating theoretically, McKenzie (1967) created the generally accepted thermal model for the ocean floor. Unfortunately, in attempting to match erroneously low heat flow data, he used a 50 km thick plate. Addition of the effect of water and the realization of the importance of advective flow, enabled various groups to create thermal plate models that accounted for the heat flow and depth age relations. From this came the understanding of hydrothermal circulation in the oceanic crust, the thermal boundary layer concept of the oceanic plate and the realization that all thermal models differed only in the way the different groups had chosen to analyze the data. During the past 40 years many have applied similar concepts to continental margins: (1) Measurement of subsidence of the Atlantic margin, continental stretching and a Time Temperature, Depth and Maturation analysis of continental basins have created the field of Basin Analysis; (2) Changes in heat flow at ocean continent boundaries have determined the position of the transition and (3) In attempting to examine the ocean continent transition process in the northernmost basin of the Gulf of California, Neumann et al (in press) observed conductive heat flow values greater than 0.75 Watts, at a depth of < 150 m, along a 10 km section of a profile across the southern extension of the Cerro Prieto fault. The magnitude of these values overwhelms local environmental effects and indicates a very large thermal output. Their full potential depends upon the amount of advective flow. Whatever the case, these measurements have opened up shallow continental margins as a new area for geothermic investigation.
The thermal infrared radiance properties of dust aerosol over ocean
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Tu, Qianguang; Gong, Fang; Chen, Jianyu
2015-10-01
Asian dust storms, which can long-range transport to ocean, often occur on spring. The present of Asian dust aerosols over ocean makes some difficult for other studies, such as cloud detection, and also take some advantage for ocean, such as take nutrition into the ocean by dry or wet deposition. Therefore, it is important to study the dust aerosol and retrieve the properties of dust from satellite observations that is mainly from the thermal infrared radiance. In this paper, the thermal infrared radiance properties of dust aerosol over ocean are analyzed from MODIS and MTSAT2 observations and Streamer model simulations. By analyzing some line samples and a series of dust aerosol region, it shows that the dust aerosol brightness temperature at 12μm (BT12) is always greater than BT11 and BT8.5, and BT8.5 is general greater than BT11. The brightness temperature different between 11μm and 12μm (BTD11-12) increases with the dust intensity. And the BTD11-12 will become positive when the atmospheric relative humidity is greater than 70%. The BTD11-12 increases gradually with the surface temperature while the effect on BTD11-12 of dust layer temperature is not evident. Those are caused by the transmission of the dust aerosol is different at the two thermal infrared channels. During daytime, dust infrared brightness temperature at mid-infrared bands should reduce the visual radiance, which takes about 25K or less. In general, BT3.7 is greater than BT11 for dust aerosol. Those results are helpful to monitor or retrieve dust aerosol physical properties over ocean from satellite.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
NASA Astrophysics Data System (ADS)
Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.
2018-02-01
The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.
NASA Astrophysics Data System (ADS)
Talento, Stefanie; Barreiro, Marcelo
2018-03-01
This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño-Southern Oscillation, weakening its amplitude and low-frequency behaviour.
NASA Astrophysics Data System (ADS)
Doblin, M.; van Sebille, E.
2016-02-01
The analytical framework for understanding fluctuations in ocean habitats has typically involved a Eulerian view. However, for marine microbes, this framework does not take into account their transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Using a modelling approach, we show that generations of upper ocean microbes experience along-trajectory temperature variability up to 10°C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents contributes to environmental fluctuation experienced by microbes and suggests that microbial populations may be adapted to upstream rather than local conditions. In an empirical test, we demonstrate that microbes in a warm, poleward flowing western boundary current (East Australian Current) have a different thermal response curve to microbes in coastal water at the same latitude (p < 0.05). Our findings suggest that advection has the capacity to influence microbial community assemblies such that water masses with relatively small thermal fluctuations select for thermal specialists, and communities with broad temperature performance curves are found in locations where ocean currents are strong or along-trajectory temperature variation is high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, R.M.; Harding, J.M.; Pollak, K.D.
1992-02-01
Global-scale analyses of ocean thermal structure produced operationally at the U.S. Navy`s Fleet Numerical Oceanography Center are verified, along with an ocean thermal climatology, against unassimilated bathythermograph (bathy), satellite multichannel sea surface temperature (MCSST), and ship sea surface temperature (SST) data. Verification statistics are calculated from the three types of data for February-April of 1988 and February-April of 1990 in nine verification areas covering most of the open ocean in the Northern Hemisphere. The analyzed thermal fields were produced by version 1.0 of the Optimum Thermal Interpolation System (OTIS 1.0) in 1988, but by an upgraded version of this model,more » referred to as OTIS 1.1, in 1990. OTIS 1.1 employs exactly the same analysis methodology as OTIS 1.0. The principal difference is that OTIS 1.1 has twice the spatial resolution of OTIS 1.0 and consequently uses smaller spatial decorrelation scales and noise-to-signal ratios. As a result, OTIS 1.1 is able to represent more horizontal detail in the ocean thermal fields than its predecessor. Verification statistics for the SST fields derived from bathy and MCSST data are consistent with each other, showing similar trends and error levels. These data indicate that the analyzed SST fields are more accurate in 1990 than in 1988, and generally more accurate than climatology for both years. Verification statistics for the SST fields derived from ship data are inconsistent with those derived from the bathy and MCSST data, and show much higher error levels indicative of observational noise.« less
Clark, Timothy D; Roche, Dominique G; Binning, Sandra A; Speers-Roesch, Ben; Sundin, Josefin
2017-10-01
Theoretical models predict that ocean acidification, caused by increased dissolved CO 2 , will reduce the maximum thermal limits of fishes, thereby increasing their vulnerability to rising ocean temperatures and transient heatwaves. Here, we tested this prediction in three species of damselfishes on the Great Barrier Reef, Australia. Maximum thermal limits were quantified using critical thermal maxima (CT max ) tests following acclimation to either present-day or end-of-century levels of CO 2 for coral reef environments (∼500 or ∼1000 µatm, respectively). While species differed significantly in their thermal limits, whereby Dischistodus perspicillatus exhibited greater CT max (37.88±0.03°C; N =47) than Dascyllus aruanus (37.68±0.02°C; N =85) and Acanthochromis polyacanthus (36.58±0.02°C; N =63), end-of-century CO 2 had no effect ( D. aruanus ) or a slightly positive effect (increase in CT max of 0.16°C in D. perspicillatus and 0.21°C in A. polyacanthus ) on CT max Contrary to expectations, early-stage juveniles were equally as resilient to CO 2 as larger conspecifics, and CT max was higher at smaller body sizes in two species. These findings suggest that ocean acidification will not impair the maximum thermal limits of reef fishes, and they highlight the critical role of experimental biology in testing predictions of theoretical models forecasting the consequences of environmental change. © 2017. Published by The Company of Biologists Ltd.
ERIC Educational Resources Information Center
McDaniels, David K.
The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…
Dausman, A.M.; Langevin, C.D.; Sukop, M.C.
2007-01-01
A hydrological analysis using a numerical simulation was done to identify the transient response of the salinity and temperature of submarine groundwater discharge (SGD) and utilize the results to guide data collection. Results indicate that the amount of SGD fluctuates depending on the ocean stage and geology, with the greatest amount of SGD delivered at low tide when the aquifer is in direct hydraulic contact with the ocean. The salinity of SGD remains lower than the ocean throughout the year; however, the salinity difference between the aquifer and ocean is inversely proportional to the ocean stage. The temperature difference between the ocean and SGD fluctuates seasonally, with the greatest temperature differences occurring in summer and winter. The outcome of this research reveals that numerical modelling could potentially be used to guide data collection including aerial surveys using electromagnetic (EM) resistivity and thermal imagery.
2008-09-01
Structure and the Western North Pacific Category 5 Typhoons. Part 1: Ocean Features and the Category 5 Typhoons’ Intensification 5a. CONTRACT NUMBER...intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ &climatological upper-ocean thermal structure data, best-track...Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 3288 MONTHLY WEATHER REVIEW VOLUME 136 Upper-Ocean Thermal Structure and the Western North
The Geoid: Effect of compensated topography and uncompensated oceanic trenches
Chase, C.G.; McNutt, Marcia K.
1982-01-01
The geoid is becoming increasingly important in interpretation of global tectonics. Most of the topography of the earth is isostatically compensated, so removal of its effect from the geoid is appropriate before tectonic modeling. The oceanic trenches, however, are dynamically depressed features and cannot be isostatically compensated in the classical way. Continental topography compensated at 35 km gives intracontinental geoidal undulations of up to 15 m over mountain ranges in a spherical harmonic expansion to order and degree 22. Oceanic topography compensated at 40 km, reasonable for the thermally supported long wavelengths, matches the +10 m difference between old continents and old oceans in a detailed NASA/GSFC geoid. Removing the assumed compensation for the oceanic trenches leaves negative anomalies of up to 9 m amplitude caused by their uncompensated mass deficit. This mass deficit acts as a partial "regional compensation" for the excess mass of the subducting slabs, and partly explains why geoidal (and gravity) anomalies over the cold slabs are less than thermal models predict.
Gibbs, S.J.; Bralower, T.J.; Bown, Paul R.; Zachos, J.C.; Bybell, L.M.
2006-01-01
Abrupt global warming and profound perturbation of the carbon cycle during the Paleocene-Eocene Thermal Maximum (PETM, ca. 55 Ma) have been linked to a massive release of carbon into the ocean-atmosphere system. Increased phytoplankton productivity has been invoked to cause subsequent CO2 drawdown, cooling, and environmental recovery. However, interpretations of geochemical and biotic data differ on when and where this increased productivity occurred. Here we present high-resolution nannofossil assemblage data from a shelf section (the U.S. Geological Survey [USGS] drill hole at Wilson Lake, New Jersey) and an open-ocean location (Ocean Drilling Program [ODP] Site 1209, paleoequatorial Pacific). These data combined with published biotic records indicate a transient steepening of shelf-offshelf trophic gradients across the PETM onset and peak, with a decrease in open-ocean productivity coeval with increased nutrient availability in shelf areas. Productivity levels recovered in the open ocean during the later stages of the event, which, coupled with intensified continental weathering rates, may have played an important role in carbon sequestration and CO2 drawdown. ?? 2006 Geological Society of America.
Thermal Transgressions and Phanerozoic Extinctions
NASA Astrophysics Data System (ADS)
Worsley, T. R.; Kidder, D. L.
2007-12-01
A number of significant Phanerozoic extinctions are associated with marine transgressions that were probably driven by rapid ocean warming. The conditions associated with what we call thermal transgressions are extremely stressful to life on Earth. The Earth system setting associated with end-Permian extinction exemplifies an end-member case of our model. The conditions favoring extreme warmth and sea-level increases driven by thermal expansion are also conducive to changes in ocean circulation that foster widespread anoxia and sulfidic subsurface ocean waters. Equable climates are characterized by reduced wind shear and weak surface ocean circulation. Late Permian and Early Triassic thermohaline circulation differs considerably from today's world, with minimal polar sinking and intensified mid-latitude sinking that delivers sulfate from shallow evaporative areas to deeper water where it is reduced to sulfide. Reduced nutrient input to oceans from land at many of the extinction intervals results from diminished silicate weathering and weakened delivery of iron via eolian dust. The falloff in iron-bearing dust leads to minimal nitrate production, weakening food webs and rendering faunas and floras more susceptible to extinction when stressed. Factors such as heat, anoxia, ocean acidification, hypercapnia, and hydrogen sulfide poisoning would significantly affect these biotas. Intervals of tectonic quiescence set up preconditions favoring extinctions. Reductions in chemical silicate weathering lead to carbon dioxide buildup, oxygen drawdown, nutrient depletion, wind and ocean current abatement, long-term global warming, and ocean acidification. The effects of extinction triggers such as large igneous provinces, bolide impacts, and episodes of sudden methane release are more potent against the backdrop of our proposed preconditions. Extinctions that have characteristics we call for in the thermal transgressions include the Early Cambrian Sinsk event, as well as extinction events at the Frasnian-Famennian, end-Devonian, end Permian, Early Toarcian, Cenomanian-Turonian, and end Cretaceous. The Late Paleocene and end Triassic extinctions are still under evaluation. The extinctions associated with the glacio-eustatic sea-level change in the Late Ordovician are not consistent with the conditions of our model.
Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean
2010-06-01
meridional transport of heat (Hoskins and Valdes, 1990). Formation of North Atlantic Subtropical Mode Water is thought to take place during the...North Atlantic Ocean MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...Oceanographic Institution MITIWHOI 2010-16 Near-inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean by
An operational global-scale ocean thermal analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, R. M.; Pollak, K.D.; Phoebus, P.A.
1990-04-01
The Optimum Thermal Interpolation System (OTIS) is an ocean thermal analysis system designed for operational use at FNOC. It is based on the optimum interpolation of the assimilation technique and functions in an analysis-prediction-analysis data assimilation cycle with the TOPS mixed-layer model. OTIS provides a rigorous framework for combining real-time data, climatology, and predictions from numerical ocean prediction models to produce a large-scale synoptic representation of ocean thermal structure. The techniques and assumptions used in OTIS are documented and results of operational tests of global scale OTIS at FNOC are presented. The tests involved comparisons of OTIS against an existingmore » operational ocean thermal structure model and were conducted during February, March, and April 1988. Qualitative comparison of the two products suggests that OTIS gives a more realistic representation of subsurface anomalies and horizontal gradients and that it also gives a more accurate analysis of the thermal structure, with improvements largest below the mixed layer. 37 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu
In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity andmore » seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer would measure peak-to-trough amplitudes of 13% and 47% for the temperate and snowball climates, respectively. Diurnal heating is important for equatorial observers ({approx}5% phase variations), because the obliquity effects cancel to first order from that vantage. Finally, we compare the prospects of optical versus thermal direct imaging missions for constraining the climate on exoplanets and conclude that while zero- and one-dimensional models are best served by thermal measurements, second-order models accounting for seasons and planetary thermal inertia would require both optical and thermal observations.« less
Thermal stresses due to cooling of a viscoelastic oceanic lithosphere
Denlinger, R.P.; Savage, W.Z.
1989-01-01
Instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason we use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Our results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y. when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way. -from Authors
Age-related thermal habitat use by Pacific salmon Oncorhynchus spp.
Morita, K; Fukuwaka, M; Tanimata, N
2010-09-01
Age-related thermal habitat use by sockeye Oncorhynchus nerka, chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon was examined using trawl data obtained in spring in the North Pacific Ocean. Thermal habitat use differed by species and age. Larger and older fishes inhabited cooler areas, whereas smaller and younger fishes inhabited warmer areas. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.
Resilience and climate change: lessons from coral reefs and bleaching in the Western Indian Ocean
NASA Astrophysics Data System (ADS)
Obura, David O.
2005-05-01
The impact of climate change through thermal stress-related coral bleaching on coral reefs of the Western Indian Ocean has been well documented and is caused by rising sea water temperatures associated with background warming trends and extreme climate events. Recent studies have identified a number of factors that may reduce the impact of coral bleaching and mortality at a reef or sub-reef level. However, there is little scientific consensus as yet, and it is unclear how well current science supports the immediate needs of management responses to climate change. This paper provides evidence from the Western Indian Ocean in support of recent hypotheses on coral and reef vulnerability to thermal stress that have been loosely termed 'resistance and resilience to bleaching'. The paper argues for a more explicit definition of terms, and identifies three concepts affecting coral-zooxanthellae holobiont and reef vulnerability to thermal stress previously termed 'resistance to bleaching': 'thermal protection', where some reefs are protected from the thermal conditions that induce bleaching and/or where local physical conditions reduce bleaching and mortality levels; 'thermal resistance', where individual corals bleach to differing degrees to the same thermal stress; and 'thermal tolerance', where individual corals suffer differing levels of mortality when exposed to the same thermal stress. 'Resilience to bleaching' is a special case of ecological resilience, where recovery following large-scale bleaching mortality varies according to ecological and other processes. These concepts apply across multiple levels of biological organization and temporal and spatial scales. Thermal resistance and tolerance are genetic properties and may interact with environmental protection properties resulting in phenotypic variation in bleaching and mortality of corals. The presence or absence of human threats and varying levels of reef management may alter the influence of the above factors, particularly through their impacts on resilience, offering the opportunity for management interventions to mitigate the impacts of thermal stress and recovery on coral reefs. These concepts are compiled within an overarching framework of spatial resilience theory. This provides a framework for developing linked scientific and management questions relating to the larger scale impacts of climate change on coral reefs, their management needs and prospects for their future.
Causes of strong ocean heating during glacial periods
NASA Astrophysics Data System (ADS)
Zimov, N.; Zimov, S. A.
2013-12-01
During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface are taken as constant. Energy income to the interior box from the geothermal heat flux is also taken as constant. Even though energy inputs are taken as constants, the model manages to recreate the glacial-interglacial cycles. In the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior box accumulates heat, while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal convection take place, and the ocean quickly (within 14,600 years) releases the heat. The magnitude and duration of such cycles correspond with magnitudes and durations reconstructed for actual glacial-interglacial cycles. From the proposed mechanism it follows that during the glaciations it is likely that the Arctic Ocean was a big reservoir of isotopically light fresh ice. If in a glacial period, the World Ocean were half filled with warm water from the Red Sea and bioproductivity of the ocean declined because of the slow circulation, then carbon storage within the ocean reservoir would decline by ~2000 Pg (10^15 g) of carbon.
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
Neutral surfaces and potential vorticity in the world's oceans
NASA Astrophysics Data System (ADS)
You, Yuzhu; McDougall, Trevor J.
1990-08-01
Several neutral surfaces are mapped in this paper and their properties are contrasted with those of potential density surfaces. It is shown that the Pacific is relatively forgiving to the use of potential density, while more care must be taken in the Atlantic and Indian oceans because of the larger compensating lateral gradients of potential temperature and salinity along neutral surfaces in these oceans. The dynamically important tracer, neutral-surface potential vorticity (NSPV), defined to be proportional to f/h (where f is the Coriolis frequency and h is the height between two neutral surfaces), is mapped on several neutral surfaces in each of the world's oceans. At a depth of 1000m in the Atlantic and Indian oceans, the epineutral gradient of NSPV is different to the isopycnal variations of fN2 by as much as a factor of two (here N is the buoyancy frequency). Maps of isopycnal potential vorticity (IPV) resemble those of fN2, but the values of IPV are less by the simple factor μ, defined by μ = c[Rρ-1]/[Rρ-c], where Rρ is the stability ratio of the water column and c is the ratio of the values of α/β at the in situ pressure to that at the reference pressure (α and β being the thermal expansion and saline contraction coefficients, respectively). Layered models of the ocean circulation often take the vertical shear between layers (the thermal wind) to be given by the product of the interface slope and the contrast of potential density across the interface. The true thermal wind equation involves the interfaeial difference of in situ density, which is larger than the corresponding difference of potential density by the factor μ that is mapped in this paper, taking values up to 1.25 at a depth of 1000 m. This implies that the thermal wind is currently underestimated by up to 25% in layered ocean models. The differences between the slopes of neutral surfaces and potential density surfaces can be quantified Using the factory μ. The magnitudes of these slopes are illustrated here with contour maps and with vertical profiles, One would think that by choosing the reference pressure of potential density to be at the central pressure of a data set, the conservation equation of potential vorticity could be expressed with respect to these potential density surfaces with sufficient accuracy. Here it is shown that even the best potential density variable is significantly in error at thermoclinic frontal regions. This is linked to the fact that diapycnal velocities are not simply due to vertical mixing processes, but are also partly caused by epineutral mixing.
NASA Astrophysics Data System (ADS)
Hurst, N. W.; Kusznir, N. J.
2005-05-01
A new method of inverting satellite gravity at rifted continental margins to give crustal thickness, incorporating a lithosphere thermal correction, has been developed which does not use a priori information about the location of the ocean-continent transition (OCT) and provides an independent prediction of OCT location. Satellite derived gravity anomaly data (Sandwell and Smith 1997) and bathymetry data (Gebco 2003) are used to derive the mantle residual gravity anomaly which is inverted in 3D in the spectral domain to give Moho depth. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to -380 mgal), which must be corrected for in order to determine Moho depth. This thermal gravity correction may be determined for oceanic lithosphere using oceanic isochron data, and for the thinned continental margin lithosphere using margin rift age and beta stretching estimates iteratively derived from crustal basement thickness determined from the gravity inversion. The gravity inversion using the thermal gravity correction predicts oceanic crustal thicknesses consistent with seismic observations, while that without the thermal correction predicts much too great oceanic crustal thicknesses. Predicted Moho depth and crustal thinning across the Hatton and Faroes rifted margins, using the gravity inversion with embedded thermal correction, compare well with those produced by wide-angle seismology. A new gravity inversion method has been developed in which no isochrons are used to define the thermal gravity correction. The new method assumes all lithosphere to be initially continental and a uniform lithosphere stretching age is used corresponding to the time of continental breakup. The thinning factor produced by the gravity inversion is used to predict the thickness of oceanic crust. This new modified form of gravity inversion with embedded thermal correction provides an improved estimate of rifted continental margin crustal thinning and an improved (and isochron independent) prediction of OCT location. The new method uses an empirical relationship to predict the thickness of oceanic crust as a function of lithosphere thinning factor controlled by two input parameters: a critical thinning factor for the start of ocean crust production and the maximum oceanic crustal thickness produced when the thinning factor = 1, corresponding to infinite lithosphere stretching. The disadvantage of using a uniform stretching age corresponding to the age of continental breakup is that the inversion fails to predict increasing thermal gravity correction towards the ocean ridge and incorrectly predicts thickening of oceanic crust with decreasing oceanic age. The new gravity inversion method has been applied to N. Atlantic rifted margins. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
NASA Astrophysics Data System (ADS)
Koul, Vimal; Parekh, Anant; Srinivas, G.; Kakatkar, Rashmi; Chowdary, Jasti S.; Gnanaseelan, C.
2018-03-01
Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System (CFSv2) for summer monsoons of 2012-2014 in which two different OICs are utilized. With respect to first experiment (CTRL), second experiment (AcSAL) differs by two aspects: usage of high-resolution atmospheric forcing and assimilation of only ARGO observed temperature and salinity profiles for OICs. Assessment of OICs indicates that the quality of OICs is enhanced due to assimilation of actual salinity profiles. Analysis reveals that AcSAL experiment showed 10% reduction in the dry bias over the Indian land region during the ISM compared to CTRL. This improvement is consistently apparent in each month and is highest for June. The better representation of upper ocean thermal structure of tropical oceans at initial stage supports realistic upper ocean stability and mixing. Which in fact reduced the dominant cold bias over the ocean, feedback to air-sea interactions and land sea thermal contrast resulting better representation of monsoon circulation and moisture transport. This reduced bias of tropospheric moisture and temperature over the Indian land mass and also produced better tropospheric temperature gradient over land as well as ocean. These feedback processes reduced the dry bias in the ISM rainfall. Study concludes that initializing the coupled models with realistic OICs can reduce the underestimation of ISM rainfall prediction.
Why the Australian Monsoon Strengthened During the Cold Last Glacial Maximum?
NASA Astrophysics Data System (ADS)
Yan, M.; Wang, B.; Liu, J.; Ning, L.
2017-12-01
The multi-model ensemble simulation suggests that the global monsoon and most sub-monsoons are weakened during the Last Glacial Maximum (LGM) due to the lower green-house gases concentration, the presence of the ice-sheets and the weakened seasonal distribution of insolation. In contrast, the Australian monsoon is strengthened during the LGM. The precipitation there increases in austral summer and decreases in austral winter, so that the annual range or monsoonality increases. The strengthened monsoonality is mainly due to the decreased precipitation in austral winter, which is primarily caused by circulation changes, although the reduced atmospheric water vapor also has a moderate contribution. On the other hand, the strengthened Australian summer monsoon rainfall is likely caused by the change of land-sea thermal contrast due to the alteration of land-sea configuration and by the asymmetric change in sea surface temperature (SST) over Indo-Pacific warm pool region. The strengthened land-sea thermal contrast and Western Pacific-Eastern Indian Ocean thermal gradients in the pre-summer monsoon season triggers a cyclonic wind anomaly that is maintained to the monsoon season, thereby increasing summer precipitation. The increased summer precipitation is associated with the increased cloud cover over the land and decreased cloud cover over the ocean. This may weaken the land-sea thermal contrast, which agrees with the paleoclimate reconstruction. The biases between different models are likely related to the different responses of SST over the North Atlantic Ocean in the pre-summer monsoon season.
NASA Astrophysics Data System (ADS)
Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.
2008-03-01
Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Kwiatkowski, L.; Caldeira, K.; Ricke, K.
2014-12-01
With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.
Reef-coral refugia in a rapidly changing ocean.
Cacciapaglia, Chris; van Woesik, Robert
2015-06-01
This study sought to identify climate-change thermal-stress refugia for reef corals in the Indian and Pacific Oceans. A species distribution modeling approach was used to identify refugia for 12 coral species that differed considerably in their local response to thermal stress. We hypothesized that the local response of coral species to thermal stress might be similarly reflected as a regional response to climate change. We assessed the contemporary geographic range of each species and determined their temperature and irradiance preferences using a k-fold algorithm to randomly select training and evaluation sites. That information was applied to downscaled outputs of global climate models to predict where each species is likely to exist by the year 2100. Our model was run with and without a 1°C capacity to adapt to the rising ocean temperature. The results show a positive exponential relationship between the current area of habitat that coral species occupy and the predicted area of habitat that they will occupy by 2100. There was considerable decoupling between scales of response, however, and with further ocean warming some 'winners' at local scales will likely become 'losers' at regional scales. We predicted that nine of the 12 species examined will lose 24-50% of their current habitat. Most reductions are predicted to occur between the latitudes 5-15°, in both hemispheres. Yet when we modeled a 1°C capacity to adapt, two ubiquitous species, Acropora hyacinthus and Acropora digitifera, were predicted to retain much of their current habitat. By contrast, the thermally tolerant Porites lobata is expected to increase its current distribution by 14%, particularly southward along the east and west coasts of Australia. Five areas were identified as Indian Ocean refugia, and seven areas were identified as Pacific Ocean refugia for reef corals under climate change. All 12 of these reef-coral refugia deserve high-conservation status. © 2015 John Wiley & Sons Ltd.
Thermal regime of the continental lithosphere
NASA Technical Reports Server (NTRS)
Morgan, P.; Sass, J. H.
1984-01-01
From studies of the global heat flow data set, it has been generalized, with respect to the continental lithosphere, that there is a negative correlation between heat flow and the lithosphere's tectonic edge, and that the lithosphere's thermal evolution is similar to that of the ocean basins, resulting in a 'stable geotherm' in both environments. It is presently noted that a regional study perspective for heat flow data leads to doubts concerning the general applicability of either statement. Rao et al. (1982) have demonstrated that the data are not normally distributed, and that it is not possible to establish a negative correlation between heat flow and age in a rigorous statistical fashion. While some sites of stable continental blocks may have a geotherm that is by chance similar to that for old ocean basins, this need not hold true generally, and many stable continental terranes will be characterized by geotherms very different from those for old ocean basins.
Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J
2017-07-01
Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CT max ). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO 2 (simulated ocean acidification) on the hypoxia sensitivity of CT max We found that CT max was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CT max declined sharply with water oxygen tension ( P w O 2 ). Furthermore, the hypoxia sensitivity of CT max was unaffected by elevated CO 2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Rabas, T.; Panchal, C. B.; Genens, L.
There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. Different OTEC plants are described that can supply various mixes of desalinated water and vapor; the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs where appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed; 40 inch high density polyethylene pipe at Keahole Point in Hawaii.
Oceanic lithosphere and asthenosphere: The thermal and mechanical structure
NASA Technical Reports Server (NTRS)
Schubert, G.; Froidevaux, C.; Yuen, D. A.
1976-01-01
A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.
NASA Technical Reports Server (NTRS)
Froidevaux, C.; Schubert, G.; Yuen, D. A.
1976-01-01
Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.
Drift in ocean currents impacts intergenerational microbial exposure to temperature.
Doblin, Martina A; van Sebille, Erik
2016-05-17
Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming.
Alternative OTEC Scheme for a Submarine Robot
NASA Technical Reports Server (NTRS)
Jones, Jack; Chao, Yi
2009-01-01
A proposed system for exploiting the ocean thermal gradient to generate power would be based on the thawing-expansion/ freezing-contraction behavior of a wax or perhaps another suitable phase-change material. The power generated by this system would be used to recharge the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and various depths, measuring temperature and salinity. This proposed system would be an alternative to another proposed ocean thermal energy conversion (OTEC) system that would serve the same purpose but would utilize a thermodynamic cycle in which CO2 would be the working fluid. That system is described in Utilizing Ocean Thermal Energy in a Submarine Robot (NPO-43304), immediately following this brief. The main advantage of this proposed system over the one using CO2 is that it could derive a useful amount of energy from a significantly smaller temperature difference. At one phase of its operational cycle, the system now proposed would utilize the surface ocean temperature (which lies between 15 and 20 C over most of the Earth) to melt a wax (e.g., pentadecane) that has a melting/freezing temperature of about 10 C. At the opposite phase of its operational cycle, the system would utilize the lower ocean temperature at depth (e.g., between 4 and 7 C at a depth of 300 m) to freeze the wax. The melting or freezing causes the wax to expand or contract, respectively, by about 8 volume percent.
NASA Astrophysics Data System (ADS)
Garrido, C. J.; Machetel, P.
2005-12-01
We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual flow lines. The distribution of ICR of gabbros along each flow line is then computed at their final off-axis emplacement as it is now observed in ophiolites. The main result of our model is that the variation of ICR with depth strongly constrains the accretion mode of the oceanic crust. The bimodal distribution of ICR with depth inferred from the crystal size distribution studies of gabbros from the Oman ophiolite (Garrido et al., 2001) can be only reproduced by accretion models with at least two melt lenses. The location of the jump in the bimodal distribution of ICR with depth observed at ca. 4 km above the MTZ in the Oman ophiolite implies that ca. 50% of the oceanic crust is accreted in an upper magma lens, while the 50% lower half is either accreted in one lens located at the MTZ or in several melt lenses with alike melt supply and evenly distributed along the lower half of the plutonic oceanic crust. Garrido, C. J., Kelemen, P. B. & Hirth, G.. G-cubed. 2, doi: 10.1029/2000GC000136 (2001).
Real-time generation of infrared ocean scene based on GPU
NASA Astrophysics Data System (ADS)
Jiang, Zhaoyi; Wang, Xun; Lin, Yun; Jin, Jianqiu
2007-12-01
Infrared (IR) image synthesis for ocean scene has become more and more important nowadays, especially for remote sensing and military application. Although a number of works present ready-to-use simulations, those techniques cover only a few possible ways of water interacting with the environment. And the detail calculation of ocean temperature is rarely considered by previous investigators. With the advance of programmable features of graphic card, many algorithms previously limited to offline processing have become feasible for real-time usage. In this paper, we propose an efficient algorithm for real-time rendering of infrared ocean scene using the newest features of programmable graphics processors (GPU). It differs from previous works in three aspects: adaptive GPU-based ocean surface tessellation, sophisticated balance equation of thermal balance for ocean surface, and GPU-based rendering for infrared ocean scene. Finally some results of infrared image are shown, which are in good accordance with real images.
NASA Astrophysics Data System (ADS)
Grose, C. J.; Afonso, J. C.
2013-12-01
We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.
Topography and tectonics of mid-oceanic ridge axes
NASA Technical Reports Server (NTRS)
Sleep, N. H.; Rosendahl, B. R.
1979-01-01
Numerical fluid dynamic models of mid-oceanic ridge axes were constructed using distributions of material properties constrained by seismic studies and thermal calculations. The calculations indicate that spreading is passive except for forces caused by density differences due to thermal expansion and partial melt. Except for geometric differences due to temperature distribution, one set of mechanical properties can adequately explain central rifts of slow ridges and central peaks of fast ridges. Viscous head loss in the upwelling material dominates at low spreading rates where material ascends through a narrow conduit. Thermal expansion and partial melting dominate at high spreading rates where a wide low viscosity crustal magma chamber is present. The preferred rheology is 10 to the 20th poise for the upwelling lithosphere; less than 5 x 10 to the 17th for the crustal magma chamber and axial intrusion zone at fast ridges, and a yield stress of 200 bars for the lithosphere. The calculation correctly predicts the existence of central peaks at 'hot-spot' ridges, where seismic evidence indicates a large magma chamber.
Simulation of the ocean's spectral radiant thermal source and boundary conditions
NASA Astrophysics Data System (ADS)
Merzlikin, Vladimir; Krass, Maxim; Cheranev, Svyatoslav; Aloric, Aleksandra
2013-05-01
This article considers the analysis of radiant heat transfer for semitransparent natural and polluted seawaters and its physical interpretations. Technogenic or natural pollutions are considered as ensembles of selective scattering, absorbing and emitting particles with complex refractive indices in difference spectral ranges of external radiation. Simulation of spectral radiant thermal sources within short wavelength of solar penetrating radiation for upper oceanic depth was carried out for deep seawater on regions from ˜ 300 to ˜ 600 nm and for subsurface layers (not more ˜ 1 m) - on one ˜ 600 - 1200 nm. Model boundary conditions on exposed oceanic surface are defined by (1) emittance of atmosphere and seawater within long wavelength radiation ˜ 9000 nm, (2) convection, and (3) thermal losses due to evaporation. Spatial and temporal variability of inherent optical properties, temperature distributions of the upper overheated layer of seawater, the appearance of a subsurface temperature maximum and a cool surface skin layer in response to penetrating solar radiation are explained first of all by the effects of volumetric scattering (absorption) and surface cooling of polluted seawater. The suggested analysis can become an important and useful subject of research for oceanographers and climatologists.
Magma oceanography. I - Thermal evolution. [of lunar surface
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Longhi, J.
1977-01-01
Fractional crystallization and flotation of cumulate plagioclase in a cooling 'magma ocean' provides the simplest explanation for early emplacement of a thick feldspar-rich lunar crust. The complementary mafic cumulates resulting from the differentiation of such a magma ocean have been identified as the ultimate source of mare basalt liquids on the basis or rare-earth abundance patterns and experimental petrology studies. A study is conducted concerning the thermal evolution of the early differentiation processes. A range of models of increasing sophistication are considered. The models developed contain the essence of the energetics and the time scale for magma ocean differentiation. Attention is given to constraints on a magma ocean, modeling procedures, single-component magma oceans, fractionating magma oceans, and evolving magma oceans.
NASA Technical Reports Server (NTRS)
Solomatov, V. S.; Stevenson, D. J.
1992-01-01
The evolution of an initially totally molten magma ocean is constrained on the basis of analysis of various physical problems in the magma ocean. First of all an equilibrium thermodynamics of the magma ocean is developed in the melting temperature range. The equilibrium thermodynamical parameters are found as functions only of temperature and pressure and are used in the subsequent models of kinetics and convection. Kinematic processes determine the crystal size and also determine a non-equilibrium thermodynamics of the system. Rheology controls all dynamical regimes of the magma ocean. The thermal convection models for different rheological laws are developed for both the laminar convection and for turbulent convection in the case of equilibrium thermodynamics of the multiphase system. The evolution is estimated on the basis of all the above analysis.
Chromium Isotope Anomaly Scaling with Past Warming Episodes
NASA Astrophysics Data System (ADS)
Remmelzwaal, S.; O'Connor, L.; Preston, W.; Parkinson, I. J.; Schmidt, D. N.
2017-12-01
The recent expansion of oxygen minimum zones caused by anthropogenic global warming raises questions about the scale of this expansion with different emission scenarios. Ocean deoxygenation will impact marine ecosystems and fisheries demanding an assessment of the possible extent and intensity of deoxygenation. Here, we used past climate warming events to quantify a potential link between warming and the spread of oxygen minimum zones: including Ocean Anoxic Event (OAE) 1a, OAE 2 in the Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Eocene Thermal Maximum 2 (ETM2), and Pleistocene glacial-interglacial cycles. We applied the emerging proxy of chromium isotopes in planktic foraminifera to assess redox changes during the PETM, ETM2, and Pleistocene and bulk carbonate for the OAEs. Both δ53Cr and chromium concentrations respond markedly during the PETM indicative of a reduction in dissolved oxygen concentrations caused by changes in ocean ventilation and associated warming [1]. A strong correlation between Δδ53Cr and benthic Δδ18O, a measure of the excursion size in both oxygen and chromium isotopes, suggest temperatures to be one of the main drivers of ocean deoxygenation in the past [1]. Chromium concentrations decrease during ETM2 and OAE1a, and, increase by 4.5 ppm over the Plenus Cold Event during OAE2, which suggests enhanced seafloor ventilation. [1] Remmelzwaal, S.R.C., Dixon, S., Parkinson, I.J., Schmidt, D.N., Monteiro, F.M., Sexton, P., Fehr, M., Peacock, C., Donnadieu, Y., James, R.H., in review. Ocean deoxygenation during the Palaeocene-Eocene Thermal Maximum. EPSL.
Drift in ocean currents impacts intergenerational microbial exposure to temperature
Doblin, Martina A.; van Sebille, Erik
2016-01-01
Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034–1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming. PMID:27140608
Deciphering the Boron Proxy Records of the Paleocene-Eocene Thermal Maximum
NASA Astrophysics Data System (ADS)
Hoenisch, B.; Haynes, L.; Harper, D. T.; Penman, D. E.; Holland, K.; Rosenthal, Y.; Zachos, J. C.
2016-12-01
Rapid surface ocean acidification at the PETM has been documented by pronounced decreases in the boron isotope and B/Ca proxies measured in surface dwelling planktic foraminifera (Babila et al., 2016; Penman et al., 2014). However, translating these geochemical signatures to past seawater carbonate chemistry is challenging due to the different-from-modern elemental and isotopic composition of seawater, in addition to the lack of constraints on vital effects in foraminifer species that are now extinct. While the pH decrease can be reasonably quantified from boron isotopes, the application of modern laboratory calibrations to translate the B/Ca signal yields unfeasible estimates, thus raising questions about how well we understand fundamental proxy systematics. Here we present a possible solution to this conundrum from laboratory culture experiments performed under simulated Paleocene seawater conditions, with lower [B] and [Mg], higher [Ca] and across a range of dissolved inorganic carbon and pH. These experiments suggest that raising DIC in addition to acidification amplifies the B/Ca decrease recorded in planktic foraminifera shells, thus providing an opportunity to deconvolve the B/Ca record into pH and DIC signals. Using the boron proxy records in ODP 1209 from Shatsky Rise in the Pacific Ocean as a case study, we will perform a series of sensitivity studies to better constrain the carbon perturbation at the PETM, and the long-term evolution of surface ocean chemistry from the Paleocene into the Eocene. Our results will be compared to LOSCAR model estimates of different carbon input scenarios at the PETM. Babila, T.L., Rosenthal, Y., Wright, J.D. and Miller, K.G. (2016) A continental shelf perspective of ocean acidification and temperature evolution during the Paleocene-Eocene Thermal Maximum. Geology 44, 275-278. Penman, D.E., Hönisch, B., Zeebe, R.E., Thomas, E. and Zachos, J.C. (2014) Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 2014PA002621.
Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes
NASA Astrophysics Data System (ADS)
Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin
2016-04-01
Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.
NASA Astrophysics Data System (ADS)
Su, H.; Yan, X. H.
2017-12-01
Subsurface thermal structure of the global ocean is a key factor that reflects the impact of the global climate variability and change. Accurately determining and describing the global subsurface and deeper ocean thermal structure from satellite measurements is becoming even more important for understanding the ocean interior anomaly and dynamic processes during recent global warming and hiatus. It is essential but challenging to determine the extent to which such surface remote sensing observations can be used to develop information about the global ocean interior. This study proposed a Support Vector Regression (SVR) method to estimate Subsurface Temperature Anomaly (STA) in the global ocean. The SVR model can well estimate the global STA upper 1000 m through a suite of satellite remote sensing observations of sea surface parameters (including Sea Surface Height Anomaly (SSHA), Sea Surface Temperature Anomaly (SSTA), Sea Surface Salinity Anomaly (SSSA) and Sea Surface Wind Anomaly (SSWA)) with in situ Argo data for training and testing at different depth levels. Here, we employed the MSE and R2 to assess SVR performance on the STA estimation. The results from the SVR model were validated for the accuracy and reliability using the worldwide Argo STA data. The average MSE and R2 of the 15 levels are 0.0090 / 0.0086 / 0.0087 and 0.443 / 0.457 / 0.485 for 2-attributes (SSHA, SSTA) / 3-attributes (SSHA, SSTA, SSSA) / 4-attributes (SSHA, SSTA, SSSA, SSWA) SVR, respectively. The estimation accuracy was improved by including SSSA and SSWA for SVR input (MSE decreased by 0.4% / 0.3% and R2 increased by 1.4% / 4.2% on average). While, the estimation accuracy gradually decreased with the increase of the depth from 500 m. The results showed that SSSA and SSWA, in addition to SSTA and SSHA, are useful parameters that can help estimate the subsurface thermal structure, as well as improve the STA estimation accuracy. In future, we can figure out more potential and useful sea surface parameters from satellite remote sensing as input attributes so as to further improve the STA sensing accuracy from machine learning. This study can provide a helpful technique for studying thermal variability in the ocean interior which has played an important role in recent global warming and hiatus from satellite observations over global scale.
NASA Astrophysics Data System (ADS)
Mueller, S.; Hasenclever, J.; Garbe-Schönberg, D.; Koepke, J.; Hoernle, K.
2017-12-01
The accretion mechanisms forming oceanic crust at fast spreading ridges are still under controversial discussion. Thermal, petrological, and geochemical observations predict different end-member models, i.e., the gabbro glacier and the sheeted sill model. They all bear implications for heat transport, temperature distribution, mode of crystallization and hydrothermal heat removal over crustal depth. In a typical MOR setting, temperature is the key factor driving partitioning of incompatible elements during crystallization. LA-ICP-MS data for co-genetic plagioclase and clinopyroxene in gabbros along a transect through the plutonic section of paleo-oceanic crust (Wadi Gideah Transect, Oman ophiolite) reveal that REE partitioning coefficients are relatively constant in the layered gabbro section but increase for the overlying foliated gabbros, with an enhanced offset towards HREEs. Along with a systematic enrichment of REE's with crustal height, these trends are consistent with a system dominated by in-situ crystallization for the lower gabbros and a change in crystallization mode for the upper gabbros. Sun and Liang (2017) used experimental REE partitioning data for calibrating a new REE-in-plagioclase-clinopyroxene thermometer that we used here for establishing the first crystallization-temperature depth profile through oceanic crust that facilitates a direct comparison with thermal models of crustal accretion. Our results indicate crystallization temperatures of about 1220±8°C for the layered gabbros and lower temperatures of 1175±8°C for the foliated gabbros and a thermal minimum above the layered-to-foliated gabbro transition. Our findings are consistent with a hybrid accretion model for the oceanic crust. The thermal minimum is assumed to represent a zone where the descending crystal mushes originating from the axial melt lens meet with mushes that have crystallized in situ. These results can be used to verify and test thermal models (e.g., Maclennan et al., 2004, Theissen-Krah et al., 2016) and their predictions for heat flow and temperature distribution in the crust. Maclennan, J., Hulme, T., & Singh, S. C. (2004), G3, 5(2). / Sun, C., & Liang, Y., (2017), CMP, 172(4). / Theissen-Krah, S., Rüpke, L. H., & Hasenclever, J. (2016), GRL, 43(3).
In-situ biofouling of ocean thermal energy conversion (OTEC) evaporator tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasscer, D.S.; Morgan, T.
1981-05-01
The Puerto Rico Center for Energy and Environmental Research equipped a LCU facility in 1100 m of water near Punta Tuna, Puerto Rico to measure in situ biofouling of simulated Ocean Thermal Energy Conversion evaporator tubes. The system consisted of two 5052 aluminum alloy and two titanium tubes, through which a continuous flow of ocean water was maintained. The tubes were cleaned three times and the fouling resistance was measured, showing only slight differences between the tubes with respect to heat transfer loss resulting from biofouling. In all units, the average fouling rate after cleaning was greater than before cleaning,more » and only after the first cleaning did the aluminum units show greater fouling rates than did the titanium. The titanium units showed a progressive increase in the fouling rates with each cleaning. The subsequent average fouling rates for all units after eight months were between 4 and 4.6 x 0.000010 sq m-k/W-day.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... determined by the Secretary charged with its administration. (m) The Ocean Thermal Energy Conversion Act of... of NOAA for the ownership, construction, location, and operation of ocean thermal energy conversion... Energy Regulatory Agency (FERC) to issue licenses for the construction and the operation and maintenance...
Jiménez-Muñoz, Juan C.; Mattar, Cristian; Sobrino, José A.; Malhi, Yadvinder
2015-01-01
Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download. PMID:26029379
Jiménez-Muñoz, Juan C; Mattar, Cristian; Sobrino, José A; Malhi, Yadvinder
2015-01-01
Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download.
Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges.
Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars H; Morgan, Jason P; Iyer, Karthik; Petersen, Sven; Devey, Colin W
2014-04-24
Hydrothermal flow at oceanic spreading centres accounts for about ten per cent of all heat flux in the oceans and controls the thermal structure of young oceanic plates. It also influences ocean and crustal chemistry, provides a basis for chemosynthetic ecosystems, and has formed massive sulphide ore deposits throughout Earth's history. Despite this, how and under what conditions heat is extracted, in particular from the lower crust, remains largely unclear. Here we present high-resolution, whole-crust, two- and three-dimensional simulations of hydrothermal flow beneath fast-spreading ridges that predict the existence of two interacting flow components, controlled by different physical mechanisms, that merge above the melt lens to feed ridge-centred vent sites. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About 60 per cent of the discharging fluid mass is replenished on-axis by warm (up to 300 degrees Celsius) recharge flow surrounding the hot thermal plumes, and the remaining 40 per cent or so occurs as colder and broader recharge up to several kilometres away from the axis that feeds hot (500-700 degrees Celsius) deep-rooted off-axis flow towards the ridge. Despite its lower contribution to the total mass flux, this deep off-axis flow carries about 70 per cent of the thermal energy released at the ridge axis. This combination of two flow components explains the seismically determined thermal structure of the crust and reconciles previously incompatible models favouring either shallower on-axis or deeper off-axis hydrothermal circulation.
Geographical variation in thermal tolerance within Southern Ocean marine ectotherms.
Morley, Simon A; Hirse, Timo; Pörtner, Hans-Otto; Peck, Lloyd S
2009-06-01
Latitudinal comparisons of the Southern Ocean limpet, Nacella concinna, and clam, Laternula elliptica, acclimated to 0.0 degrees C, were used to assess differences in thermal response to two regimes, 0.0, 5.1 to 10.0 degrees C and 2.5, 7.5 to 12.5 degrees C, raised at 5.0 degrees C per week. At each temperature, tissue energy status was measured through a combination of O(2) consumption, intracellular pH, cCO(2), citrate synthase (CS) activity, organic acids (succinate, acetate, propionate), adenylates (ATP, ADP, AMP, ITP, PLA (phospho-L-arginine)) and heart rate. L. elliptica from Signy (60 degrees S) and Rothera (67 degrees S), which experience a similar thermal regime (-2 to +1 degrees C) had the same lethal (7.5-10.0 degrees C), critical (5.1-7.5 degrees C) and pejus (<5.1 degrees C;=getting worse) limits with only small differences in biochemical response. N. concinna, which experiences a wider thermal regime (-2 to +15.8 degrees C), had higher lethal limits (10.0-12.5 degrees C). However, at their Northern geographic limit N. concinna, which live in a warmer environment (South Georgia, 54 degrees S), had a lower critical limit (5.1-10.0 degrees C; O(2), PLA and organic acids) than Rothera and Signy N. concinna (10.0-12.5 degrees C). This lower limit indicates that South Georgia N. concinna have different biochemical responses to temperatures close to their thermal limit, which may make them more vulnerable to future warming trends.
Ocean Thermal Energy Conversion (OTEC)
NASA Technical Reports Server (NTRS)
Lavi, A.
1977-01-01
Energy Research and Development Administration research progress in Ocean Thermal Energy Conversion (OTEC) is outlined. The development program is being focused on cost effective heat exchangers; ammonia is generally used as the heat exchange fluid. Projected costs for energy production by OTEC vary between $1000 to $1700 per kW.
NASA Astrophysics Data System (ADS)
Rau, G. H.; Baird, J.; Noland, G.
2016-12-01
The vertical thermal energy potential in the ocean is a massive renewable energy resource that is growing due to anthropogenic warming of the surface and near-surface ocean. The conversion of this thermal energy to useful forms via Ocean Thermal Energy Conversion (OTEC) has been demonstrated over the past century, albeit at small scales. Because OTEC removes heat from the surface ocean, this could help directly counter ongoing, deleterious ocean/atmosphere warming. The only other climate intervention that could do this is solar radiation "geoengineering". Conventional OTEC requires energy intensive, vertical movement of seawater resulting in ocean and atmospheric chemistry alteration, but this can be avoided via more energy efficient, vertical closed-cycle heating and cooling of working fluid like CO2 or NH3. An energy carrier such as H2 is required to transport energy optimally extracted far offshore, and methods of electrochemically generating H2 while also consuming CO2 and converting it to ocean alkalinity have been demonstrated. The addition of such alkalinity to the ocean would provide vast, stable, carbon storage, while also helping chemically counter the effects of ocean acidification. The process might currently be profitable given the >$100/tonne CO2 credit offered by California's Low Carbon Fuel Standard for transportation fuels like H2. Negative-Emissions OTEC, NEOTEC, thus can potentially provide constant, cost effective, high capacity, negative-emissions energy while: a) reducing surface ocean heat load, b) reducing thermal ocean expansion and sea-level rise, c) utilizing a very large, natural marine carbon storage reservoir, and d) helping mitigate ocean acidification. The technology also avoids the biophysical and land use limitations posed by negative emissions methods that rely on terrestrial biology, such as afforestation and BECCS. NEOTEC and other marine-based, renewable energy and CO2 removal approaches could therefore greatly increase the likelihood of satisfying growing global energy demand while helping to stabilize or reduce atmospheric CO2 and its impacts. Policies supporting the search and evaluation of renewable energy and negative emissions options beyond biotic- and land-based methods are needed.
Dahlke, Flemming T; Leo, Elettra; Mark, Felix C; Pörtner, Hans-Otto; Bickmeyer, Ulf; Frickenhaus, Stephan; Storch, Daniela
2017-04-01
Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO 2 -driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO 2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO 2 ) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid-base-relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3-6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO 2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO 2 and mitochondrial capacities. Elevated PCO 2 stimulated MO 2 at cold and intermediate temperatures, but exacerbated warming-induced constraints on MO 2 , indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO 2 . Increased MO 2 in response to elevated PCO 2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO 2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO 2 conditions and suggest that acclimation to elevated PCO 2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification constrains the thermal performance window of embryos, which has important implication for the susceptibility of cod to projected climate change. © 2016 John Wiley & Sons Ltd.
Mikhailov, V.O.; Parsons, T.; Simpson, R.W.; Timoshkina, E.P.; Williams, C.
2007-01-01
Data on present-day heat flow, subsidence history, and paleotemperature for the Sacramento Delta region, California, have been employed to constrain a numerical model of tectonic subsidence and thermal evolution of forearc basins. The model assumes an oceanic basement with an initial thermal profile dependent on its age subjected to refrigeration caused by a subducting slab. Subsidence in the Sacramento Delta region appears to be close to that expected for a forearc basin underlain by normal oceanic lithosphere of age 150 Ma, demonstrating that effects from both the initial thermal profile and the subduction process are necessary and sufficient. Subsidence at the eastern and northern borders of the Sacramento Valley is considerably less, approximating subsidence expected from the dynamics of the subduction zone alone. These results, together with other geophysical data, show that Sacramento Delta lithosphere, being thinner and having undergone deeper subsidence, must differ from lithosphere of the transitional type under other parts of the Sacramento Valley. Thermal modeling allows evaluation of the rheological properties of the lithosphere. Strength diagrams based on our thermal model show that, even under relatively slow deformation (10−17 s−1), the upper part of the delta crystalline crust (down to 20–22 km) can fail in brittle fashion, which is in agreement with deeper earthquake occurrence. Hypocentral depths of earthquakes under the Sacramento Delta region extend to nearly 20 km, whereas, in the Coast Ranges to the west, depths are typically less than 12–15 km. The greater width of the seismogenic zone in this area raises the possibility that, for fault segments of comparable length, earthquakes of somewhat greater magnitude might occur than in the Coast Ranges to the west.
NASA Astrophysics Data System (ADS)
Greenhalgh, E. E.; Kusznir, N. J.
2006-12-01
Satellite gravity inversion incorporating a lithosphere thermal gravity correction has been used to map crustal thickness and lithosphere thinning factor for the N.E. Atlantic. The inversion of gravity data to determine crustal thickness incorporates a lithosphere thermal gravity anomaly correction for both oceanic and continental margin lithosphere. Predicted crustal thicknesses in the Norwegian Basin are between 7 and 4 km on the extinct Aegir oceanic ridge which ceased sea-floor spreading in the Oligocene. Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thicknesses determined by gravity inversion for the Aegir Ridge are consistent with recent estimates derived using refraction seismology by Breivik et al. (2006). Failure to incorporate a lithosphere thermal gravity anomaly correction produces an over-estimate of crustal thickness. Oceanic crustal thicknesses within the Norwegian Basin are predicted by the gravity inversion to increase to 9-10 km eastwards towards the Norwegian (Moere) and westwards towards the Jan Mayen micro-continent, consistent with volcanic margin continental breakup at the end of the Palaeocene. The observation (from gravity inversion and seismic refraction studies) of thin oceanic crust produced by the Aegir ocean ridge in the Oligocene has implications for the temporal evolution of asthenosphere temperature under the N.E. Atlantic during the Tertiary. Thin Oligocene oceanic crust may imply cool (normal) asthenosphere temperatures during the Oligocene in contrast to elevated asthenosphere temperatures in the Palaeocene and Miocene-Recent as indicated by volcanic margin formation and the formation of Iceland respectively. Gravity inversion also predicts a region of thin oceanic crust to the west of the northern part of the Jan Mayen micro-continent and to the east of the thicker oceanic crust currently being formed at the Kolbeinsey Ridge. Thicker crust (c.f. ocean basins) is predicted for the Jan Mayen micro- continent south of Jan Mayen Island, with crust of the order of 20 km thickness extending southwards to connect with both the Faroes-Iceland Ridge and N.E. Iceland. Predicted crustal thicknesses under the Faroes- Iceland Ridge are approximately 25 km. The lithosphere thermal model used to predict the lithosphere thermal gravity anomaly correction may be conditioned using magnetic isochron data to provide the age of oceanic lithosphere. The resulting crustal thickness determination and the location of ocean-continent transition (OCT) are however sensitive to errors in the magnetic isochron data. An alternative method of inverting satellite gravity to give crustal thickness, incorporating a lithosphere thermal correction, has been used which does not use magnetic isochron data and provides an independent prediction of crustal thickness and OCT location. The crustal thickness estimates and OCT locations detailed above are robust to these sensitivity tests.
Applying Physics to Clean Energy Needs
ERIC Educational Resources Information Center
Environmental Science and Technology, 1975
1975-01-01
Solar and ocean thermal energy sources offer real potential for an environmentally clean fuel by the year 2000. A review of current research contracts relating to ocean-thermal energy, cost requirements of plant construction and uses of the electricity produced, such as synthesizing ammonia and synthetic fuels, are discussed. (BT)
Ocean thermal gradient hydraulic power plant.
Beck, E J
1975-07-25
Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump.
Karelitz, Sam E; Uthicke, Sven; Foo, Shawna A; Barker, Mike F; Byrne, Maria; Pecorino, Danilo; Lamare, Miles D
2017-02-01
As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting distributions of species under climate change scenarios. The effects of reduced seawater pH on the thermal windows of fertilization, embryology and larval morphology were examined using five echinoderm species: two polar (Sterechinus neumayeri and Odontaster validus), two temperate (Fellaster zelandiae and Patiriella regularis) and one tropical (Arachnoides placenta). Responses were examined across 12-13 temperatures ranging from -1.1 °C to 5.7 °C (S. neumayeri), -0.5 °C to 10.7 °C (O. validus), 5.8 °C to 27 °C (F. zelandiae), 6.0 °C to 27.1 °C (P. regularis) and 13.9 °C to 34.8 °C (A. placenta) under present-day and near-future (2100+) ocean acidification conditions (-0.3 pH units) and for three important early developmental stages 1) fertilization, 2) embryo (prehatching) and 3) larval development. Thermal windows for fertilization were broad and were not influenced by a pH decrease. Embryological development was less thermotolerant. For O. validus, P. regularis and A. placenta, low pH reduced normal development, albeit with no effect on thermal windows. Larval development in all five species was affected by both temperature and pH; however, thermal tolerance was not reduced by pH. Results of this study suggest that in terms of fertilization and development, temperature will remain as the most important factor influencing species' latitudinal distributions as the ocean continues to warm and decrease in pH, and that there is little evidence of a synergistic effect of temperature and ocean acidification on the thermal control of species ranges. © 2016 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Eaton, William W.
Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…
NASA Astrophysics Data System (ADS)
Seidov, D.; Haupt, B. J.
2003-12-01
The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.
Increased ocean-induced melting triggers glacier retreat in northwest and southeast Greenland
NASA Astrophysics Data System (ADS)
Wood, M.; Rignot, E. J.; Fenty, I. G.; Menemenlis, D.; Millan, R.; Morlighem, M.; Mouginot, J.
2017-12-01
Over the past 30 years, the tidewater glaciers of northwest, central west, and southeast Greenland have exhibited widespread retreat, yet we observe different behaviors from one glacier to the next, sometimes within the same fjord. This retreat has been synchronous with oceanic warming in Baffin Bay and the Irminger Sea. Here, we estimate the ocean-induced melt rate of marine-terminating glaciers in these sectors of the Greenland Ice Sheet using simulations from the MITgcm ocean model for various water depths, ocean thermal forcing (TF) and subglacial water fluxes (SG). We use water depth from Ocean Melting Greenland (OMG) bathymetry and inverted airborne gravity, ocean thermal forcing from the Estimating the Circulation and Climate of the Ocean (Phase II, ECCO2) combined with CTD data from 2012 and 2015, and time series of subglacial water flux combining runoff production from the 1-km Regional Atmospheric Climate Model (RACMO2.3) with basal melt beneath land ice from the JPL/UCI ISSM model. Time series of melt rates are formed as a function of grounding line depth, SG flux and TF. We compare the results with the history of ice velocity and ice front retreat to quantify the impact of ice melt by the ocean over past three decades. We find that the timing of ice front retreat coincides with enhanced ocean-induced melt and that abrupt retreat is induced when additional ablation exceeds the magnitude of natural seasonal variations of the glacier front. Sverdrup Gletscher, Umiamako Isbrae, and the northern branch Puisortoq Gletscher in northwest, central west, and southwest Greenland, respectively, began multi-kilometer retreats coincident with ocean warming and enhanced melt. Limited retreat is observed where the bathymetry is shallow, on a prograde slope or glacier is stuck on a sill, e.g. Ussing Braeer in the northwest, Sermeq Avannarleq in central west, and Skinfaxe Gletscher in the southeast. These results illustrate the sensitivity of glaciers to changes in oceanic forcing and the modulating effect of bathymetry on their rate and magnitude of retreat. This work was carried out under a grant with NASA Cryosphere Program and for the EVS-2 Ocean Melting Greenland (OMG) mission.
Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea
NASA Astrophysics Data System (ADS)
Bruneau, Nicolas; Zika, Jan; Toumi, Ralf
2017-10-01
We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.
Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…
How potentially predictable are midlatitude ocean currents?
Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi
2016-01-01
Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954
Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition
NASA Astrophysics Data System (ADS)
Goldner, A.; Herold, N.; Huber, M.
2014-07-01
Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.
Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.
Goldner, A; Herold, N; Huber, M
2014-07-31
Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.
Seasonal variability of thermal fronts in the northern South China Sea from satellite data
NASA Astrophysics Data System (ADS)
Wang, Dongxiao; Liu, Yun; Qi, Yiquan; Shi, Ping
The 8-year (1991-1998) Pathfinder sea surface temperature data have been applied here to produce the objectively derived seasonality of the oceanic thermal fronts in the northern South China Sea from 17°N to 25°N. Several fronts have been clearly distinguished, namely, Fujian and Guangdong Coastal Water, Pear River Estuary Coastal, Taiwan Bank, Kuroshio Intrusion, Hainan Island East Coast and Tonkin Gulf Coastal fronts. The frontal patterns in winter, spring and summer are quite similar, whereas individual fronts display different modes of seasonal variability due to different mechanisms favoring those fronts.
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.
2016-12-01
Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.
2016-02-01
Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.
Oceanic lithosphere and asthenosphere - Thermal and mechanical structure
NASA Technical Reports Server (NTRS)
Schubert, G.; Yuen, D. A.; Froidevaux, C.
1976-01-01
A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.
Thermal anomalies and magmatism due to lithospheric doubling and shifting
NASA Astrophysics Data System (ADS)
Vlaar, N. J.
1983-11-01
We present some thermal and magmatic consequences of the processes of lithospheric doubling and lithospheric shifting. Lithospheric doubling concerns the obduction of a cold continental or old oceanic lithospheric plate over a young and hot oceanic lithosphere/upper mantle system, including an oceanic ridge. Lithospheric shifting concerns the translation and rotation of a lithospheric plate relative to the upper mantle. In both cases the resulting thermal state of the upper mantle below the obducting or shifting lithosphere may be perturbed relative to a "normal" continental or oceanic geothermal situation. The perturbed geothermal state gives rise to a density inversion at depth and thus induces a vertical gravitational instability which favours magmatism. We speculate about the magmatic consequences of this situation and infer that in the case of lithospheric doubling our model may account for the petrology and geochemistry of the resulting magma. The original layering and composition of the overridden young oceanic lithosphere may strongly influence magmatic processes. We dwell shortly on the genesis of kimberlites within the framework of our lithospheric doubling model and on magmatism in general. Lithospheric recycling is inherent to the mechanism of lithospheric doubling.
1980-12-01
exchangers . The performance of heat exchangers will therefore decide the ultimate success or failure of OTEC . BACKGROUND Hardware development in support...8217AD-AG9 216 NAVAL COASTAL SYSTEMS CENTER PANAMA CITY FL F/S 13/10 HEAT EXCHANGER CLEANING IN SUPPORT OF OCEAN THERMAL ENERGY CONV"-ETC(U) DEC 80 D F...block minI ber) Heat Exchangers Chlorination Cleaning Electronics Thermal Energy Conversion 2%AISTRACT (Centhmes en; rewwe ide it neseer end iftefb Op
A model of ocean basin crustal magnetization appropriate for satellite elevation anomalies
NASA Technical Reports Server (NTRS)
Thomas, Herman H.
1987-01-01
A model of ocean basin crustal magnetization measured at satellite altitudes is developed which will serve both as background to which anomalous magnetizations can be contrasted and as a beginning point for studies of tectonic modification of normal ocean crust. The model is based on published data concerned with the petrology and magnetization of the ocean crust and consists of viscous magnetization and induced magnetization estimated for individual crustal layers. Thermal remanent magnetization and chemical remanent magnetization are excluded from the model because seafloor spreading anomalies are too short in wavelength to be resolved at satellite altitudes. The exception to this generalization is found at the oceanic magnetic quiet zones where thermal remanent magnetization and chemical remanent magnetization must be considered along with viscous magnetization and induced magnetization.
Global analysis of thermal tolerance and latitude in ectotherms
Sunday, Jennifer M.; Bates, Amanda E.; Dulvy, Nicholas K.
2011-01-01
A tenet of macroecology is that physiological processes of organisms are linked to large-scale geographical patterns in environmental conditions. Species at higher latitudes experience greater seasonal temperature variation and are consequently predicted to withstand greater temperature extremes. We tested for relationships between breadths of thermal tolerance in ectothermic animals and the latitude of specimen location using all available data, while accounting for habitat, hemisphere, methodological differences and taxonomic affinity. We found that thermal tolerance breadths generally increase with latitude, and do so at a greater rate in the Northern Hemisphere. In terrestrial ectotherms, upper thermal limits vary little while lower thermal limits decrease with latitude. By contrast, marine species display a coherent poleward decrease in both upper and lower thermal limits. Our findings provide comprehensive global support for hypotheses generated from studies at smaller taxonomic subsets and geographical scales. Our results further indicate differences between terrestrial and marine ectotherms in how thermal physiology varies with latitude that may relate to the degree of temperature variability experienced on land and in the ocean. PMID:21106582
Decadal trends in Red Sea maximum surface temperature.
Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I
2017-08-15
Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.
Ocean haline skin layer and turbulent surface convections
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhang, X.
2012-04-01
The ocean haline skin layer is of great interest to oceanographic applications, while its attribute is still subject to considerable uncertainty due to observational difficulties. By introducing Batchelor micro-scale, a turbulent surface convection model is developed to determine the depths of various ocean skin layers with same model parameters. These parameters are derived from matching cool skin layer observations. Global distributions of salinity difference across ocean haline layers are then simulated, using surface forcing data mainly from OAFlux project and ISCCP. It is found that, even though both thickness of the haline layer and salinity increment across are greater than the early global simulations, the microwave remote sensing error caused by the haline microlayer effect is still smaller than that from other geophysical error sources. It is shown that forced convections due to sea surface wind stress are dominant over free convections driven by surface cooling in most regions of oceans. The free convection instability is largely controlled by cool skin effect for the thermal microlayer is much thicker and becomes unstable much earlier than the haline microlayer. The similarity of the global distributions of temperature difference and salinity difference across cool and haline skin layers is investigated by comparing their forcing fields of heat fluxes. The turbulent convection model is also found applicable to formulating gas transfer velocity at low wind.
Remote sensing of SST in the coastal ocean and inland seas
NASA Astrophysics Data System (ADS)
Kostianoy, Andrey
Sea Surface Temperature (SST) is the main oceanographic parameter widely used in oceanogra-phy that can be easily obtained from satellite measurements. Oceanic infrared remote sensing, based on the measurement of the thermal radiance emitted by the ocean, allows retrieving the SST corresponding to the temperature of the uppermost thin layer of the ocean. Theoretically the infrared signal only comes from the upper few microns "skin layer", therefore the thermal signatures cannot represent the dynamics of the mixed layer. But wind mixing during the daytime and nighttime convection mix the upper layer, so that SST usually is representative of that of the mixed layer. This is why nighttime passes of satellites are preferred for SST analysis. Since 1978 the Advanced Very High Resolution Radiometer (AVHRR), onboard the meteorolog-ical satellites of the NOAA series are widely used to derive SST maps. The temporal coverage is ensured by two-three NOAA satellites which provide 4-6 images/day over the globe with a swath of about 2800 km, the spatial resolution by a pixel of about 1.1 km, and thermal resolu-tion of about 0.1 deg. C. The typical data processing includes the retrieval of the SST from the combination of NN 3, 4, and 5 infrared channels of AVHRR, the geographical correction and localisation, with a generation of cloud and land masks. SST data can be then composed into daily to monthly (as well as season to yearly) maps/products. Moderate Resolution Imaging Spectroradiometer (MODIS)-Terra (since 2000) and -Aqua (since 2002), among the others, are the most known satellite instruments which increase the flow of the remote sensing SST data. In the regions with almost permanent cloudy conditions passive microwave radiometers are of vital importance for SST measurements, but they have significantly low spatial (25 km) and thermal (0.8 deg. C) resolution. Today, SST images/data are routinely acquired by satellite receiving stations worldwide including research vessels, as well as generated and made available via Internet by numerous world data centers for free. Examples of SST application for analy-sis/study/research/monitoring of SST fields, SST fronts, large-and meso-scale water dynamics and structure (currents, eddies, dipoles, jets, etc.), upwellings, SST seasonal and interannual variability, etc. will be shown. Combined analysis of SST data with optical (ocean color), SAR, altimetry, in-situ oceanographic, drifter and meteorological data was shown to be very successful for many purposes in physical oceanography, environment research and operational monitoring, regional and global climate change study, marine chemistry, marine biology and fishery. The presentation will include examples for different case studies in the Arctic Ocean (the Barents and Kara seas), the Atlantic Ocean (the Canary and Benguela upwellings), the Southern Indian Ocean, the Mediterranean, Black, Caspian, Aral, and Baltic seas.
Oceanic Lithosphere/Asthenosphere Boundary from surface wave dispersion data
NASA Astrophysics Data System (ADS)
Burgos, G.; Montagner, J.; Beucler, E.; Capdeville, Y.; Mocquet, A.
2013-12-01
The nature of Lithosphere-Asthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15-300s), we have developed a 3-D tomographic model (1st order perturbation theory) of the upper-mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, the top of the radial anisotropy positive anomaly and from the changes in orientation of the fast axis of azimuthal anisotropy. The LAB depth determinations of the different proxies are basically consistent for each oceanic region. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120--130 km) old ocean lithosphere. The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub-horizontal profile (70--80 km). LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130--135 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub-horizontal interface with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the formation of oceanic plates.
The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes
NASA Astrophysics Data System (ADS)
Wong, Elizabeth Wing-See
There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more-or-less fixed. The surplus energy, from absorbing increasing levels of infrared radiation, is found to adjust the curvature of the thermal skin layer such that there is a smaller gradient at the interface between the thermal skin layer and the mixed layer beneath. The vertical conduction of heat from the mixed layer to the surface is therefore hindered while the additional energy within the thermal skin layer is supporting the gradient changes of the skin layer's temperature profile. This results in heat beneath the thermal skin layer, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content. The accuracy of four published skin layer models were evaluated by comparison with the field results. The results show a need to include radiative effects, which are currently absent, in such models as they do not replicate the findings from the field data and do not elucidate the effects of the absorption of infrared radiation.
NASA Astrophysics Data System (ADS)
Asay-Davis, X.; Galton-Fenzi, B.; Gwyther, D.; Jourdain, N.; Martin, D. F.; Nakayama, Y.; Seroussi, H. L.
2016-12-01
MISMIP+ (the third Marine Ice Sheet MIP), ISOMIP+ (the second Ice Shelf-Ocean MIP) and MISOMIP1 (the first Marine Ice Sheet-Ocean MIP) prescribe a set of idealized experiments for marine ice-sheet models, ocean models with ice-shelf cavities, and coupled ice sheet-ocean models, respectively. Here, we present results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among the ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (the heat- and salt-transfer coefficients across the sub-ice-shelf boundary layer) for each model. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to tuning the models to match observed melt rates. We compare the evolution of ocean temperature transects, melt rate, friction velocity and thermal driving between ocean models for the five ISOMIP+ experiments (Ocean0-4), which have prescribed ice-shelf topography. We find that melt patterns differ between models based on the relative importance of overturning strength and vertical mixing of temperature even when the models have been tuned to achieve similar melt rates near the grounding line. For the two MISOMIP1 experiments (IceOcean1 without dynamic calving and IceOcean2 with a simple calving parameterization), we compare temperature transects, melt rate, ice-shelf topography and grounded area across models and for several model configurations. Consistent with preliminary results from MISMIP+, we find that for a given coupled model, the use of a Coulomb-limited basal friction parameterization below grounded ice and the application of dynamic calving both significantly increase the rate of grounding-line retreat, whereas the rate of retreat appears to be less sensitive to the ice stress approximation (shallow-shelf approximation, higher-order, etc.). We show that models with similar mean melt rates, stress approximations and basal friction parameterizations produce markedly different rates of grounding-line retreat, and we investigate possible sources of these disparities (e.g. differences in coupling strategy or melt distribution).
ASTER Images the Island of Hawaii
2000-04-26
These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum. Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing. Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences. http://photojournal.jpl.nasa.gov/catalog/PIA02604
Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon
NASA Technical Reports Server (NTRS)
Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.
1989-01-01
The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.
Remote Sensing of Niches for Thermotropic Life.
NASA Astrophysics Data System (ADS)
Muller, A. W.
2002-12-01
The recognized biological energy sources are light and food. Mechanical systems can gain free energy from heat using a temperature difference or thermal cycling. Imagine that biological systems could also live on heat. Call the process `thermosynthesis' and let it occur in a thermal gradient or convection cell. Many candidate niches for thermosynthesizers then exist. Temperature differences are present across many interfaces: soil/air, rock/air, natural water (ocean, lake, river)/air, ice (also snow)/air, soil/snow, water (ocean,lake)/surface-ice. Within natural waters large temperature gradients are found; thermoclines separate the warm surface from the cold deep. Convection occurs in hot springs, in many other natural waters, and in the Earth's atmosphere. On Earth, organism presence is conspicuous in all these candidate niches. The Solar System contains many candidate niches as well. They should be detectable by IR methods. They can be categorized in five types: (1) Convection. Convecting oceans (Mars and Venus in the past) or atmospheres (Venus, Big Outer Planets). (2) Convecting Aquifer (Mars). (3) Surface-Ice Cover. Some of the Moons of the Outer Planets. (4) Shaded Crater Iterior. The poles of Mercury and The Moon. (5) Spinners. Small objects rotating in the sunlight: ice-covered meteorites, asteroids, comets. They could transport thermosynthesizers within the Solar System. How plausible is thermosynthesis? It can be shown that thermosynthesis (1) could be effected using parts of the contemporary photosynthetic machinery, and (2) may have supported early evolution. The standard biological energy carrier, ATP, would be synthesized during thermal cycling of a progenitor of the F1 moiety of the contemporary ATPsynthase enzyme; this progenitor is thermally folded/unfolded during the cycle. Contemporary ATPsynthase works according to the `binding change mechanism': substrates are bound in a local, dehydrated enzymatic cleft, where they condense to form a bound product with a high-energy phosphate bond, released upon an external work input. The first ATPsynthases are proposed to have similarly synthesized a bound peptide bond product during thermal cycling, released upon the thermal unfolding. In a simple model for the origin of life the first ATPsynthases, the first replicators, synthesize randomly constituted daughter polypeptides of which a small fraction has the same synthetic capabilities as their mothers. Hence thermosynthesis is not implausible, the Solar System may be teeming with thermosynthesizers, and IR remote sensing methods should permit to locate their niches.
NASA Astrophysics Data System (ADS)
Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie
2000-09-01
The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.
Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.
Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua
2017-04-18
Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg 0.9 Fe 0.1 ) 2 SiO 4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.
2003-01-08
The Anti-Atlas Mountains of Morocco formed as a result of the collision of the African and Eurasian tectonic plates about 80 million years ago. This collision destroyed the Tethys Ocean; the limestone, sandstone, claystone, and gypsum layers that formed the ocean bed were folded and crumpled to create the Atlas and Anti-Atlas Mountains. In this ASTER image, short wavelength infrared bands are combined to dramatically highlight the different rock types, and illustrate the complex folding. The yellowish, orange and green areas are limestones, sandstones and gypsum; the dark blue and green areas are underlying granitic rocks. The ability to map geology using ASTER data is enhanced by the multiple short wavelength infrared bands, that are sensitive to differences in rock mineralogy. This image was acquired on June 13, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03893
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.; Nakayama, Y.
2016-12-01
Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a steady state. The ice shelf melt rate depends on the thermal forcing from warm, saline, subsurface ocean water of Atlantic origin (AW), and on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due to enhanced advection of AW. Here, we employ the Massachusetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry inverted from gravity data by NASA Operation IceBridge and NASA Ocean Melting Greenland missions, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and reconstructed seasonal subglacial discharge from the Regional Atmospheric Climate Model (RACMO2). We compare the results in winter (small runoff but not negligible) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
Three-dimensional Gravity Modeling of Ocean Core Complexes at the Central Indian Ridge
NASA Astrophysics Data System (ADS)
Kim, S. S.; Chandler, M. T.; Pak, S. J.; Son, S. K.
2017-12-01
The spatial distribution of ocean core complexes (OCCs) on mid-ocean ridge flanks can indicate the variation of magmatism and tectonic extension at a given spreading center. A recent study revealed 11 prominent OCCs developed along the middle portion of the Central Indian Ridge (CIR) based on the high-resolution shipboard bathymetry. The CIR is located between the Carlsberg Ridge and the Indian Ocean triple junction. The detailed morphotectonic interpretations from the recent study suggested that the middle ridge segments of the CIR were mainly developed through tectonic extension with little magmatism. Furthermore, the OCCs exposed by detachment faults appear to the main host for active off-axis hydrothermal circulations. Here we form a three-dimensional gravity model to investigate the crustal structures of OCCs developed between 12oS and 14oS at the CIR. These OCCs exhibit domal topographic highs with corrugated surface. The rock samples from these areas include deep-seated rocks such as serpentinized harzburgite and gabbro. A typical gravity study on mid-ocean ridges assumes a constant density contrast along the water-crust interface and constant crustal thickness and removes its gravitational contributions and thermal effects of lithospheric cooling from the free-air gravity anomaly. This approach is effective to distinguish anomalous regions that deviate from the applied crustal and thermal models. The oceanic crust around the OCCs, however, tends to be thinned due to detachment faulting and tectonic extension. In this study, we include multi-layers with different density contrast and variable thickness to approximate gravity anomalies resulting from the OCCs. In addition, we aim to differentiate the geophysical characteristics of the OCCs from the nearby ridge segments and infer tectonic relationship between the OCCs and ridges.
REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.
SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.
NASA Technical Reports Server (NTRS)
Korb, C. L.; Potter, J. F. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Results of testing the CP program indicate that the best results can be obtained in the near infrared water bands. The absorption due to water vapor and carbon dioxide in the thermal infrared band appeared to be less reliable in comparison to spacecraft-acquired data and band models. Comparisons of laboratory carbon dioxide transmission in the thermal infrared band show good agreement except in regions where lines are known to be missing. The comparison of ozone transmission at a wavelength of 9.6 micrometers to laboratory data showed unexceptedly large differences.
Unlocking Electric Power in the Oceans.
ERIC Educational Resources Information Center
Hurwood, David L.
1985-01-01
Cruising or stationary ocean thermal plants could convert the vast heat energy of the ocean into electricity for islands and underdeveloped countries. This approach to energy conservation is described with suggestions for design and outputs of plants. A model project operating in Hawaii is noted. (DH)
Environmental programs for ocean thermal energy conversion (OTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, P.
1981-07-01
The environmental research effort in support of the US Department of Energy's Ocean Thermal Energy Conversion (OTEC) program has the goal of providing documented information on the effect of proposed operations on the ocean and the effect of oceanic conditions on the plant. The associated environment program consists of archival studies in potential areas serial oceanographic cruises to sites or regions of interest, studies from various fixed platforms at sites, and compilation of such information for appropriate legal compliance and permit requirements and for use in progressive design of OTEC plants. Site/regions investigated are south of Mobile and west ofmore » Tampa, Gulf of Mexico; Punta Tuna, Puerto Rico; St. Croix, Virgin Islands; Kahe Point, Oahu and Keahole Point, Hawaii, Hawaiian Islands; and off the Brazilian south Equatorial Coast. Four classes of environmental concerns identified are: redistribution of oceanic properties (ocean water mixing, impingement/entrainment etc.); chemical pollution (biocides, working fluid leaks, etc.); structural effects (artificial reef, aggregation, nesting/migration, etc.); socio-legal-economic (worker safety, enviromaritime law, etc.).« less
The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation
NASA Technical Reports Server (NTRS)
Mills, Ryan D.
2013-01-01
Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.
NASA Astrophysics Data System (ADS)
Giorgioni, Martino; Weissert, Helmut; Bernasconi, Stefano M.; Hochuli, Peter A.; Keller, Christina E.; Coccioni, Rodolfo; Petrizzo, Maria Rose; Lukeneder, Alexander; Garcia, Therese I.
2015-03-01
During the mid-Cretaceous the Earth was characterized by peculiar climatic and oceanographic features, such as very high temperatures, smooth thermal meridional gradient, long-term rising sea level, and formation of oceanic gateways and seaways. At that time widespread deposition of micritic pelagic limestones, generally called chalk, occurred in deep pelagic settings as well as in epeiric seas, both at tropical and at high latitudes. The origin of such extensive chalk deposition in the mid-Cretaceous is a complex and still controversial issue, which involves the interaction of several different factors. In this work we address this topic from the paleoceanographic perspective, by investigating the contribution of major oceanic circulation changes. We characterize several stratigraphic sections from the Tethys and North Atlantic with litho-, bio-, and carbon isotope stratigraphy. Our data show a change between two different oceanic circulation modes happening in the Late Albian. The first is an unstable mode, with oceanographic conditions fluctuating frequently in response to rapid environmental and climatic changes, such as those driven by orbital forcing. The second mode is more stable, with better connection between the different oceanic basins, a more stable thermocline, more persistent current flow, better defined upwelling and downwelling areas, and a more balanced oceanic carbon reservoir. We propose that under the mid-Cretaceous paleogeographic and paleoclimatic conditions this change in oceanic circulation mode favored the beginning of chalk sedimentation in deep-water settings.
Recent tectonic activity on Pluto driven by phase changes in the ice shell
NASA Astrophysics Data System (ADS)
Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.
2016-07-01
The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.
Cascella, Kévin; Jollivet, Didier; Papot, Claire; Léger, Nelly; Corre, Erwan; Ravaux, Juliette; Clark, Melody S; Toullec, Jean-Yves
2015-01-01
A comparative thermal tolerance study was undertaken on two sister species of Euphausiids (Antarctic krills) Euphausia superba and Euphausia crystallorophias. Both are essential components of the Southern Ocean ecosystem, but occupy distinct environmental geographical locations with slightly different temperature regimes. They therefore provide a useful model system for the investigation of adaptations to thermal tolerance. Initial CTmax studies showed that E. superba was slightly more thermotolerant than E. crystallorophias. Five Hsp70 mRNAs were characterized from the RNAseq data of both species and subsequent expression kinetics studies revealed notable differences in induction of each of the 5 orthologues between the two species, with E. crystallorophias reacting more rapidly than E. superba. Furthermore, analyses conducted to estimate the evolutionary rates and selection strengths acting on each gene tended to support the hypothesis that diversifying selection has contributed to the diversification of this gene family, and led to the selective relaxation on the inducible C form with its possible loss of function in the two krill species. The sensitivity of the epipelagic species E. crystallorophias to temperature variations and/or its adaptation to cold is enhanced when compared with its sister species, E. superba. These results indicate that ice krill could be the first of the two species to be impacted by the warming of coastal waters of the Austral ocean in the coming years due to climate change.
Are There Oceans Under the Ice of Small Saturnian and Uranian Moons?
NASA Astrophysics Data System (ADS)
England, C.
2003-05-01
Thermal analysis of the large outer-planetary moons (Titan, Callisto, Ganymede) argue strongly for substantial subsurface oceans if they are made up mostly of rock and ice, and if the rock exhibits radioactivity not too different from that of meteoric and lunar material [1]. For Titania, Rhea, Oberon and Iapetus (the TROI moons) with radii just over 700 km, the existence of oceans is less clear. In these bodies, a subsurface ocean may be likely if the rock has sunk to the center of the moon (i.e., the moon is differentiated) and (1) the radiogenic heating rate is on the higher end of that of lunar samples, (2) the bodies experience tidal heating, or (3) the oceans contain compounds such as ammonia that reduce the freezing point of the aqueous environment. A combination of these occurrences would weigh for a subsurface ocean, perhaps of substantial size. That outer-planetary moons with radii larger than about 200 km (e.g.; Enceladus at 250 km) are spherical argues for separation of light and heavy materials, especially in the larger bodies. Otherwise, the moon exhibits an irregular shape (e.g.; Hyperion at 133 km). Primordial radioactivity and collision events may have aided separation. If present-day radiogenicity is that of lunar samples, natural heating is available to maintain global aqueous environments on all of the TROI moons. The ammonia-water eutectics suggested for Titan [2] provide additional margin. The maintenance of oceans in smaller bodies depends on a balance of internal heat generation and thermal isolation by ice or other insulating material. The more important parameter may be the insulating ice, without which an outer-planetary ocean is not possible. The reduced thermal conductivity for impure ice [3] provides even more likelihood for oceans. Calculations for tidal heating within Europa due to orbital resonances [4] suggest that tidal heating amounts to over 40 times its internal radiogenic heating. A value equal only to natural radiogenic heating would be sufficient to maintain aqueous systems within TROI moons. Subsurface aqueous oceans are likely on Titania, Rhea, Oberon and Iapetus, but will be buried more than 300 km under insulating icy layers. Their existence, and that of an environment favorable for life, may be detectable from surface features or from remote surveys of their internal electromagnetic properties. [1] England C, DPS MEETING #34 Abstract #41.08, 9/2002 [2] Lorenz RD, Lunine JI, McKay CP, ENANTIOMER 6 (2-3): 83-96 2001 [3] Lorenz RD and Shandera SE, GEOPHYSICAL RESEARCH LETTERS 28 (2) 215-218 2001 [4] Ross MN, Schubert G, LUNAR AND PLANETARY SCIENCE XVII, PP. 724-725, 1986
The effects of post-accretion sedimentation on the magnetization of oceanic crust
NASA Astrophysics Data System (ADS)
Dyment, J.; Granot, R.
2016-12-01
The presence of marine magnetic anomalies related to seafloor spreading is often considered a key evidence to locate the continent-ocean boundary (COB) at passive margins. Conversely, thermal demagnetization is also advocated to explain the poor shape of such oceanic anomalies under thick sedimentary cover. To investigate the effects of post-accretion sedimentation on marine magnetic anomalies, we focus our study on two conjugate regions of the southern South Atlantic Ocean (Anomalies M4 to M0) that, although formed at the same time and along the same spreading segments, reveal contrasting characters. The anomalies exhibit strong amplitudes (>400 nT) and a well-marked shape off South Africa, where the sediments are less than 3 km-thick, but become weaker ( 200 nT) and much smoother off northern Argentina, where the sedimentary cover is thicker than 5 km. We interpret this observation as reflecting thermal demagnetization of the extrusive layer and its low Curie temperature titanomagnetite. We perform a series of thermo-magnetic models (Dyment and Arkani-Hamed, Geophys. J. Int., 1995, modified to include the sedimentary cover) to simulate the acquisition and loss of remanent magnetization in the oceanic lithosphere. We assume that most of the sediments accumulated shortly after crustal accretion. We investigate a range of possible thermal demagnetization temperatures for the extrusive layer and find that 200°C to 280ºC best explains the observations, in reasonable agreement with Curie temperatures of titanomagnetite, suggesting that most of the extrusive layer may be demagnetized under sediments thicker than 5 km. Thermal demagnetization should therefore be considered while interpreting marine magnetic anomalies for the age and nature of the crust (i.e., continental versus oceanic) in regions with thick sedimentary cover.
Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-01-01
An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)
Thermal Evolution of Earth's Mantle During the Accretion
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Roberts, J. H.
2017-12-01
Earth is likely formed by accreting Moon to Mars size embryos. The impact heating by an embryo melts the embryo and the upper mantle of the Earth beneath the impact site. The iron core of the embryo sinks and merges with the core of the Earth, while the mantle of the embryo mixes with the upper mantle of the Earth, producing a buoyant molten/partially molten magma pond. Strong but localized mantle dynamics results in fast lithostatic adjustment that pours out a huge amount of molten and partially molten magma which spread on the Earth, and together with impact ejecta creates a globe encircling magma ocean. The lithostatic adjustment diminishes as the magma ocean becomes globe encircling within 104 to 105 yr. The major part of the thermal evolution of Earth's mantle after an impact takes place in the presence of a thick and hot magma ocean, which hampers heat loss from the mantle and suppresses global mantle dynamics. Because the impact velocity of an embryo increases as the Earth grows, a given magma ocean is hotter than the previous ones. We investigated this scenario using 25 Moon to Mars size embryos. Due to random geographic impact sites we considered vertical impacts since no information is available about the impact angles. This may over estimate the impact heating by a factor of 1.4 with respect to the most probable impact angle of 45o. The thermal structure of the Earth at the end of accretion is layered, aside from the localized magma ponds that are distributed randomly due to the random geographic impact sites. We also take into account the impact heating of the solid lower mantle, the heating of the lower mantle by the gravitational energy released through sinking of an embryo's core. We then follow the thermal evolution of the mantle of a growing Earth using a 3D convection model. The Earth grows due to merging of the impactor iron core with the Earth's core, and the accumulating magma ocean on the surface. The growth enhances the lithostatic pressure in the Earth that in turn increase the temperature by compression. Each overlying magma ocean hampers global convection beneath, and the mean temperature gradient at the end of accretion is less steep than the adiabatic gradient, indicating that mantle convection during accretion is mainly localized [JHR1]Is this range because there are multiple models with different numbers of embryos?yes
Annual Cycle of Surface Longwave Radiation
NASA Technical Reports Server (NTRS)
Mlynczak, Pamela E.; Smith, G. Louis; Wilber, Anne C.; Stackhouse, Paul W.
2011-01-01
The annual cycles of upward and downward longwave fluxes at the Earth s surface are investigated by use of the NASA/GEWEX Surface Radiation Budget Data Set. Because of the immense difference between the heat capacity of land and ocean, the surface of Earth is partitioned into these two categories. Principal component analysis is used to quantify the annual cycles. Over land, the first principal component describes over 95% of the variance of the annual cycle of the upward and downward longwave fluxes. Over ocean the first term describes more than 87% of these annual cycles. Empirical orthogonal functions show the corresponding geographical distributions of these cycles. Phase plane diagrams of the annual cycles of upward longwave fluxes as a function of net shortwave flux show the thermal inertia of land and ocean.
Tarling, Geraint A; Ward, Peter; Thorpe, Sally E
2018-01-01
The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926-1938) and contemporary campaigns (1996-2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s-1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It further demonstrates that this community is thermally resilient to present levels of sea surface warming. © 2017 John Wiley & Sons Ltd.
Horizontal Contraction of Oceanic Lithosphere Tested Using Azimuths of Transform Faults
NASA Astrophysics Data System (ADS)
Gordon, R. G.; Mishra, J. K.
2012-12-01
A central hypothesis or approximation of plate tectonics is that the plates are rigid, which implies that oceanic lithosphere does not contract horizontally as it cools (hereinafter "no contraction"). An alternative hypothesis is that vertically averaged tensional thermal stress in the competent lithosphere is fully relieved by horizontal thermal contraction (hereinafter "full contraction"). These two hypotheses predict different azimuths for transform faults. We build on prior predictions of horizontal thermal contraction of oceanic lithosphere as a function of age to predict the bias induced in transform-fault azimuths by full contraction for 140 azimuths of transform faults that are globally distributed between 15 plate pairs. Predicted bias increases with the length of adjacent segments of mid-ocean ridges and depends on whether the adjacent ridges are stepped, crenellated, or a combination of the two. All else being equal, the bias decreases with the length of a transform fault and modestly decreases with increasing spreading rate. The value of the bias varies along a transform fault. To correct the observed transform-fault azimuths for the biases, we average the predicted values over the insonified portions of each transform fault. We find the bias to be as large as 2.5°, but more typically is ≤ 1.0°. We test whether correcting for the predicted biases improves the fit to plate motion data. To do so, we determine the sum-squared normalized misfit for various values of γ, which we define to be the fractional multiple of bias predicted for full contraction. γ = 1 corresponds to the full contraction, while γ = 0 corresponds to no contraction. We find that the minimum in sum-squared normalized misfit is obtained for γ = 0.9 ±0.4 (95% confidence limits), which excludes the hypothesis of no contraction, but is consistent with the hypothesis of full contraction. Application of the correction reduces but does not eliminate the longstanding misfit between the azimuth of the Kane transform fault with respect to those of the other North America-Nubia transform faults. We conclude that significant ridge-parallel horizontal thermal contraction occurs in young oceanic lithosphere and that it is accommodated by widening of transform-fault valleys, which causes biases in transform-fault azimuths up to 2.5°.
Ocean thermal plantships for production of ammonia as the hydrogen carrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.
2009-12-02
Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solarmore » energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by completing project tasks that consist of updating the John Hopkins University/Applied Physics Laboratory (JHU/APL) pilot plantship design and extrapolating it to commercial plantships, evaluating a new energy-efficient ammonia synthesis process, evaluating the co-production of desalinated water on plantships, and developing a conceptual design of a satellite plantships system for commercial-scale ammonia production. In addition, an industrial workshop was organized to present the results and develop future goals for commercialization of ocean thermal plantships by 2015. The following goals, arranged in chronological order, were examined at the workshop: (1) Global displacement of petroleum-fuel-based (diesel, fuel oil, naphtha) power generation for freeing up these fuels for transportation, chemical feedstock, and other high-valued uses; (2) At-sea production of desalinated water for regions of critical water shortages; (3) Displacement of carbon-based feed stocks and energy for production of ammonia fertilizers; (4) Development of hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands; (5) Development of ammonia-fueled distributed energy to displace natural-gas fueled power generation to free up natural gas for higher-value uses and the mitigation of issues associated with imported liquefied natural gas (LNG); and (6) Use of ammonia as a hydrogen carrier for transportation.« less
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.
2015-12-01
Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle
Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua
2017-01-01
Earth’s water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg0.9Fe0.1)2SiO4 (Fo90) up to 15 gigapascals using an ultrafast optical pump−probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine−wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone. PMID:28377520
Modelling and parameterizing the influence of tides on ice-shelf melt rates
NASA Astrophysics Data System (ADS)
Jourdain, N.; Molines, J. M.; Le Sommer, J.; Mathiot, P.; de Lavergne, C.; Gurvan, M.; Durand, G.
2017-12-01
Significant Antarctic ice sheet thinning is observed in several sectors of Antarctica, in particular in the Amundsen Sea sector, where warm circumpolar deep waters affect basal melting. The later has the potential to trigger marine ice sheet instabilities, with an associated potential for rapid sea level rise. It is therefore crucial to simulate and understand the processes associated with ice-shelf melt rates. In particular, the absence of tides representation in ocean models remains a caveat of numerous ocean hindcasts and climate projections. In the Amundsen Sea, tides are relatively weak and the melt-induced circulation is stronger than the tidal circulation. Using a regional 1/12° ocean model of the Amundsen Sea, we nonetheless find that tides can increase melt rates by up to 36% in some ice-shelf cavities. Among the processes that can possibly affect melt rates, the most important is an increased exchange at the ice/ocean interface resulting from the presence of strong tidal currents along the ice drafts. Approximately a third of this effect is compensated by a decrease in thermal forcing along the ice draft, which is related to an enhanced vertical mixing in the ocean interior in presence of tides. Parameterizing the effect of tides is an alternative to the representation of explicit tides in an ocean model, and has the advantage not to require any filtering of ocean model outputs. We therefore explore different ways to parameterize the effects of tides on ice shelf melt. First, we compare several methods to impose tidal velocities along the ice draft. We show that getting a realistic spatial distribution of tidal velocities in important, and can be deduced from the barotropic velocities of a tide model. Then, we explore several aspects of parameterized tidal mixing to reproduce the tide-induced decrease in thermal forcing along the ice drafts.
Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations
NASA Astrophysics Data System (ADS)
Su, Hua; Li, Wene; Yan, Xiao-Hai
2018-01-01
Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.
Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II
2017-08-11
inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick
2014-05-01
Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.
NASA Astrophysics Data System (ADS)
Tao, Wei; Zhang, Jing; Fu, Yunfei; Zhang, Xiangdong
2017-10-01
Intense synoptic-scale storms have been more frequently observed over the Arctic during recent years. Specifically, a superstorm hit the Arctic Ocean in August 2012 and preceded a new record low Arctic sea ice extent. In this study, the major physical processes responsible for the storm's intensification and persistence are explored through a series of numerical modeling experiments with the Weather Research and Forecasting model. It is found that thermal anomalies in troposphere as well as lower stratosphere jointly lead to the development of this superstorm. Thermal contrast between the unusually warm Siberia and the relatively cold Arctic Ocean results in strong troposphere baroclinicity and upper level jet, which contribute to the storm intensification initially. On the other hand, Tropopause Polar Vortex (TPV) associated with the thermal anomaly in lower stratosphere further intensifies the upper level jet and accordingly contributes to a drastic intensification of the storm. Stacking with the enhanced surface low, TPV intensifies further, which sustains the storm to linger over the Arctic Ocean for an extended period.
NASA Astrophysics Data System (ADS)
Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca
2015-04-01
The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit record the progressive thermal maturation of the juvenile Neotethyan subduction zone. This period of ~23 myr between subduction initiation and thermal "steady state" is significantly shorter than that obtained for the Rio San Juan Complex (~60 myr; Krebs et al. 2008, Lithos, 103, 106-137), but compares well with that for the Franciscan Complex (~22 myr; Anczkiewicz et al. 2004, EPSL, 225, 147-161) and falls in the range predicted in numerical simulations (e.g., Gerya et al. 2002, Tectonics, 21/6, 1056).
A global reference model of Curie-point depths based on EMAG2
NASA Astrophysics Data System (ADS)
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-03-01
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.
A global reference model of Curie-point depths based on EMAG2.
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-03-21
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C) -1 for the ocean and K = ~2.5 W(m°C) -1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m 2 , leading to a global heat loss ranging from ~34.6 to 36.6 TW.
The implications of tides on the Mimas ocean hypothesis
NASA Astrophysics Data System (ADS)
Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan
2017-02-01
We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.
The Implications of Tides on the Mimas Ocean Hypothesis
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan
2017-01-01
We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.
Alternative energy technologies for the Caribbean islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pytlinski, J.T.
1992-01-01
All islands in the Caribbean except Puerto Rico can be classified as developing islands. Of these islands, all except Trinidad and Tobago are oil importers. Uncertainties concerning uninterrupted oil supply and increasing oil prices causes economic, social and political instability and jeopardizes further development of these islands. The paper discusses the energy situation of the Caribbean islands and presents alternative energy options. Several alternative energy projects financed by local, federal and international organizations are presented. Present and future uses of alternative energy technologies are described in different islands. Barrier which handicap developing and implementing alternative energy sources in the Caribbeanmore » are discussed. The potential and possible applications of alternative energy technologies such as: solar-thermal energy, photovoltaics, wind energy, ocean thermal energy conversion (OTEC), ocean currents and tides energy, biomass, peat energy, municipal solid wastes, bioconversion, hydropower, geothermal energy, nuclear energy and energy conservation are discussed in detail as means to alleviate the energy situation in the Caribbean islands.« less
Baumann, J H; Davies, S W; Aichelman, H E; Castillo, K D
2018-05-01
Reef-building corals maintain a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium, and this symbiosis is vital for the survival of the coral holobiont. Symbiodinium community composition within the coral host has been shown to influence a coral's ability to resist and recover from stress. A multitude of stressors including ocean warming, ocean acidification, and eutrophication have been linked to global scale decline in coral health and cover in recent decades. Three distinct thermal regimes (high TP , mod TP , and low TP ) following an inshore-offshore gradient of declining average temperatures and thermal variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten Symbiodinium lineages were identified across the three coral host species. S. siderea was associated with distinct Symbiodinium communities; however, Symbiodinium communities of its congener, S. radians and P. strigosa, were more similar to one another. Thermal regime played a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that coral thermal tolerance in more thermally variable inshore habitats is achieved through alternative mechanisms. Overall, thermal parameters alone were likely not the only primary drivers of Symbiodinium community composition, suggesting that environmental variables unrelated to temperature (i.e., light availability or nutrients) may play key roles in structuring coral-algal communities in Belize and that the relative importance of these environmental variables may vary by coral host species.
NASA Astrophysics Data System (ADS)
Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.
2017-02-01
A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.
Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.
2017-01-01
A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance. PMID:28157233
Atcheson, Margaret E.; Myers, Katherine W.; Beauchamp, David A.; Mantua, Nathan J.
2012-01-01
Energetic responses of steelhead Oncorhynchus mykiss to climate-driven changes in marine conditions are expected to affect the species’ ocean distribution, feeding, growth, and survival. With a unique 18-year data series (1991–2008) for steelhead sampled in the open ocean, we simulated interannual variation in prey consumption and growth efficiency of steelhead using a bioenergetics model to evaluate the temperature-dependent growth response of steelhead to past climate events and to estimate growth potential of steelhead under future climate scenarios. Our results showed that annual ocean growth of steelhead is highly variable depending on prey quality, consumption rates, total consumption, and thermal experience. At optimal growing temperatures, steelhead can compensate for a low-energy diet by increasing consumption rates and consuming more prey, if available. Our findings suggest that steelhead have a narrow temperature window in which to achieve optimal growth, which is strongly influenced by climate-driven changes in ocean temperature.
The Stirring of Oceanic Crust in the Mantle: How it Changes with Time?
NASA Astrophysics Data System (ADS)
McNamara, A. K.; Li, M.
2017-12-01
The Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific are considerably-sized seismic anomalies in the lower mantle that likely play a key role in global mantle convection. Unfortunately, we do not know what they are, and hypotheses include thermal megaplumes, plume clusters, primordial piles, thermochemical superplumes, and large accumulations of ancient, subducted oceanic crust. Discovering which of these are the cause of LLSVPs will provide fundamental understanding toward the nature of global-scale mantle convection. Here, we focus on two of the possibilities: primordial piles and accumulations of subducted oceanic crust. In previous work, it seemed clear that each provide a distinguishably-different morphology: primordial piles are clearly defined entities with sharp edges and tops, whereas accumulations of oceanic crust appear quite messy and have fuzzy, advective boundaries, particularly at their tops. Therefore, it was thought that by performing seismic studies that define the tops of LLSVPs, we could distinguish between these possibilities. Here, we ask the following question: Can piles formed by ancient oceanic crust eventually "clean themselves up" and evolve into structures that more-resemble what we think primordial piles should look like at the present day? Here, we present geodynamics work that demonstrates that this is indeed the case. The driving mechanism is a thinning of oceanic crust through time (as the mantle cools, there is less melt at ridges, and therefore, crust is thinner). We find that in the early, hotter Earth, if crust is on the order of 20-30 km thick, it will accumulate into messy piles at the base of the mantle. As crust thins beyond a critical thinness, it will stop accumulating and be stirred into the background mantle instead. Once crust stops accumulating in the lower mantle, the pre-existing messy piles begin to sharpen into well-defined piles with sharp edges and tops. Furthermore, we find that this process leads to a characteristically-different thermal evolution, in which the upper mantle cools more rapidly during the accumulation phase, and then heats up again afterwards. In conclusion, we find that the seismic detection of sharp edges on LLSVPs cannot be used to exclude accumulation of oceanic crust as a possible cause of LLSVPs.
Regional Sea Level Changes Projected by the NASA/GISS Atmosphere-Ocean Model
NASA Technical Reports Server (NTRS)
Russell, Gary L.; Gornitz, Vivien; Miller, James R.
1999-01-01
Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.
NASA Astrophysics Data System (ADS)
Bondzio, J. H.; Morlighem, M.; Seroussi, H. L.
2017-12-01
Oceanic forcing is likely to have triggered the breakup of Jakobshavn Isbræ's floating ice tongue in the late 1990s, which led to ongoing dynamic changes such as widespread flow acceleration and mass loss. Our understanding of the link between ice dynamics, oceanic forcing, and calving is limited, yet crucial for prognostic simulations of Jakobshavn Isbræ. Here, we first reconstruct Jakobshavn's calving dynamics from 1985 to 2017, by relying on the model from Bondzio et al. 2017, but with a freely evolving ice front. We test different calving rate parameterizations implemented in the Ice Sheet System Model (ISSM) and determine the best law by comparing the modeled retreat to observations. We then identify the controls on calving rate and ice front retreat by varying the submarine melting rate and frontal melt rates as a function of subglacial water discharge and ocean thermal forcing. This sensitivity analysis is an important step toward performing prognostic simulations of JI and provides pathways for future data acquisition.
NASA Technical Reports Server (NTRS)
Ramp, Steven R.; Garwood, Roland W.; Snow, Richard L.; Davis, Curtiss O.
1991-01-01
The difference between the temperature of the ocean at 4-cm and 2-m depth was continuously monitored during a cruise to the coastal transition zone off Point Arena, California, during June 1987. The two temperatures were coincident most of the time but diverged during one nearshore leg of the cruise where large temperature differences of up to 4.7 C were observed between the 4-cm and 2-m sensors, in areas which were separated by regions where the two temperatures were coincident as usual. The spatial scale of this 'patchy' thermal structure was about 5-10 km. A mixed layer model (Garwood, 1977) was used to simulate the near surface stratification when forced by the observed wind stress, surface heating, and optical clarity of the water. The model produced a thin strongly stratified surface layer at stations where exceptionally high turbidity was observed but did not produce such features otherwise. This simple model could not explain the horizontal patchiness in the thermal structure, which was likely due to patchiness in the near-surface chlorophyll distributions or to submesoscale variability of the surface wind stress.
Mantle dynamics following supercontinent formation
NASA Astrophysics Data System (ADS)
Heron, Philip J.
This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are explored in over 600 2D and over 20 3D numerical simulations to better understand how modelling method affects conclusions on mantle convection studies. The results from this thesis show that the failure to model tectonic plates, a high vigour of convection, and a (pseudo) temperature-dependent viscosity would distort the role of mantle plumes, continent insulation, and subduction in the thermal evolution of mantle dynamics.
The history and fate of three families of lithosphere on Earth
NASA Astrophysics Data System (ADS)
Lee, C. T.
2016-12-01
Based on compilations of surface heat flux to constrain the thermal boundary layer thickness, lithosphere thickness can be shown to have a trimodal distribution. In ocean basins, lithosphere thickness ranges from thin (<10 km) beneath young ocean basins, which dominate, to thick (<100 km) beneath old ocean basins, which are rare due to subduction. Continents have thicker lithospheres and define two additional peaks: 30%, reflecting most of the Archean cratons, are 180-220 km thick and 60% are 90-140 km thick. While ocean basins subduct after their lithospheres grow thick, continents do not, despite their thicker lithospheres. The insubductibility of continents is because the buoyancy of thick crust compensates for the thick cold lithosphere and because continental thermal boundary layers do not grow indefinitely. Lithospheric growth is understood to be limited by the onset of small-scale convective instabilities, but why then do continental lithospheres have two different critical thicknesses? Initial thickness, at the time of formation, is critical. Continental lithospheres less than 120 km thick are subject to magmatic modification (refertilization) in the form of thermo-chemical erosion, which gradually thins the lithosphere. Lithospheres greater than 120 km appear to be relatively immune to significant lithospheric thinning. This may in part be because refertilization-driven destabilization does not occur since deep melting is suppressed beneath thick lithosphere. To resist thermal thinning, it seems necessary that anomalously thick lithospheres were born with intrinsic strength, widely hypothesized to have been imparted by the unusual petrogenesis of cratonic mantle, wherein high degrees of melting early in Earth's history resulted in the formation of a dehydrated and strong chemical boundary layer. Another possibility is that cratonic mantle is characterized by the strengthening effects of larger grain size, owing to the high degrees of melting that decrease the number of clinopyroxene pinning points. In summary, a lithosphere's fate depends on the nature of its origin. Continental lithospheres born thick will have long, boring lives, continental lithospheres born thin will be forever tormented, and oceanic lithospheres are fated to have calm but brief lives at the Earth's surface.
NASA Astrophysics Data System (ADS)
Jennions, S. M.; Thomas, E.; Schmidt, D. N.; Lunt, D.; Ridgwell, A.
2015-08-01
Eocene Thermal Maximum 2 (ETM2) occurred 1.8 Myr after the Paleocene-Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion and warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. As the sites are in close proximity, differences in surface productivity cannot have caused this differential effect. Instead, we infer that changes in ocean circulation across ETM2 may have produced more pronounced warming at intermediate depths (Site 1263). The effects of warming include increased metabolic rates, a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response, bioturbation may have decreased more at Site 1263 than at Site 1262, differentially affecting bulk carbonate records. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk δ13C and sharper transition in wt % CaCO3 at Site 1263. We find that both enhanced acidification and reduced bioturbation during the ETM2 peak are needed to account for the observed features. Our combined ecological and modeling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance.
Wetzel, L.R.; Raffensperger, Jeff P.; Shock, E.L.
2001-01-01
Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.
REVIEWS OF TOPICAL PROBLEMS: Free convection in geophysical processes
NASA Astrophysics Data System (ADS)
Alekseev, V. V.; Gusev, A. M.
1983-10-01
A highly significant geophysical process, free convection, is examined. Thermal convection often controls the dynamical behavior in several of the earth's envelopes: the atmosphere, ocean, and mantle. Section 2 sets forth the thermohydrodynamic equations that describe convection in a compressible or incompressible fluid, thermochemical convection, and convection in the presence of thermal diffusion. Section 3 reviews the mechanisms for the origin of the global atmospheric and oceanic circulation. Interlatitudinal convection and jet streams are discussed, as well as monsoon circulation and the mean meridional circulation of ocean waters due to the temperature and salinity gradients. Also described are the hypotheses for convective motion in the mantle and the thermal-wave (moving flame) mechanism for inducing global circulation (the atmospheres of Venus and Mars provide illustrations). Eddy formation by convection in a centrifugal force field is considered. Section 4 deals with medium- and small-scale convective processes, including hurricane systems with phase transitions, cellular cloud structure, and convection penetrating into the ocean, with its stepped vertical temperature and salinity microstructure. Self-oscillatory processes involving convection in fresh-water basins are discussed, including effects due to the anomalous (p,T) relation for water.
Validation of Ocean Color Sensors Using a Profiling Hyperspectral Radiometer
2014-01-01
shadows. The HyperOCRs are all thermally characterized for temperature corrections and spectrally characterized to account for stray light corrections...August 24,2010 is shown in Figure 4A along with the mean percent difference between the NOAA Hyperpro ( Black /Dash) and the other two identical Hyperpro...difference (n=24) between the NOAA Hyperpro ( Black /Dash, Fig. 4A) and the other two Hyperpro systems. The dotted line for the red (bottom) and dash line for
1/f model for long-time memory of the ocean surface temperature
NASA Astrophysics Data System (ADS)
Fraedrich, Klaus; Luksch, Ute; Blender, Richard
2004-09-01
The 1/f spectrum of the ocean surface temperature in the Atlantic and Pacific midlatitudes is explained by a simple vertical diffusion model with a shallow mixed layer on top of a deep ocean. The model is forced at the air-sea interface with the total surface heat flux from a 1000 year climate simulation. The analysis reveals the role of ocean advection and substantiates estimates of internal thermal diffusivities.
1983-06-01
DE ERMIuIATIC1N OF SUBSUEFACZE THERMAL STRUCTURE * The study of the oceans by satellites has become a sajc: *arena for sc-intific scrutiny and...between *satellite- de ~ived sea surface temperatu-res and vsrt.-cal *temperature profiles, then the areas of acoust-ical oceanicg- raphy and naval...based on dynamical principles and will ulti-mately provide the basis for pred-icting ocear,-c processes. Emp rical mq4thods have been de -termined i n the
Utilizing Ocean Thermal Energy in a Submarine Robot
NASA Technical Reports Server (NTRS)
Jones, Jack; Chao, Yi
2009-01-01
A proposed system would exploit the ocean thermal gradient for recharging the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. The proposed system is related to, but not the same as, previously reported ocean thermal energy conversion (OTEC) systems that exploit the ocean thermal gradient but consist of stationary apparatuses that span large depth ranges. The system would include a turbine driven by working fluid subjected to a thermodynamic cycle. CO2 has been provisionally chosen as the working fluid because it has the requisite physical properties for use in the range of temperatures expected to be encountered in operation, is not flammable, and is much less toxic than are many other commercially available refrigerant fluids. The system would be housed in a pressurized central compartment in a UUV equipped with a double hull (see figure). The thermodynamic cycle would begin when the UUV was at maximum depth, where some of the CO2 would condense and be stored, at relatively low temperature and pressure, in the annular volume between the inner and outer hulls. The cycle would resume once the UUV had ascended to near the surface, where the ocean temperature is typically greater than or equals 20 C. At this temperature, the CO2 previously stored at depth in the annular volume between the inner and outer hulls would be pressurized to approx. equals 57 bar (5.7 MPa). The pressurized gaseous CO2 would flow through a check valve into a bladder inside the pressurized compartment, thereby storing energy of the relatively warm, pressurized CO2 for subsequent use after the next descent to maximum depth.
NASA Astrophysics Data System (ADS)
Morlighem, M.; Wood, M.; Seroussi, H. L.; Bondzio, J. H.; Rignot, E. J.
2017-12-01
Glacier-front dynamics is an important control on Greenland's ice mass balance. Warm and salty Atlantic water, which is typically found at a depth below 200-300 m, has the potential to trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. It remains unclear, however, which glaciers are currently stable but may retreat in the future, and how far inland and how fast they will retreat. Here, we quantify the sensitivity and vulnerability of marine-terminating glaciers along the Northwest coast of Greenland (from 72.5° to 76°N) to ocean forcing using the Ice Sheet System Model (ISSM), and its new ice front migration capability. We rely on the ice melt parameterization from Rignot et al. 2016, and use ocean temperature and salinity from high-resolution ECCO2 simulations on the continental shelf to constrain the thermal forcing. The ice flow model includes a calving law based on a Von Mises criterion. We investigate the sensitivity of Northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. We find that some glaciers, such as Dietrichson Gletscher or Alison Gletscher, are sensitive to small increases in ocean thermal forcing, while others, such as Illullip Sermia or Qeqertarsuup Sermia, are very difficult to destabilize, even with a quadrupling of the melt. Under the most intense melt experiment, we find that Hayes Gletscher retreats by more than 50 km inland into a deep trough and its velocity increases by a factor of 10 over only 15 years. The model confirms that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude. This work was performed at the University of California Irvine under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program (#NNX15AD55G), and the National Science Foundation's ARCSS program (#1504230).
Consistent estimate of ocean warming, land ice melt and sea level rise from Observations
NASA Astrophysics Data System (ADS)
Blazquez, Alejandro; Meyssignac, Benoît; Lemoine, Jean Michel
2016-04-01
Based on the sea level budget closure approach, this study investigates the consistency of observed Global Mean Sea Level (GMSL) estimates from satellite altimetry, observed Ocean Thermal Expansion (OTE) estimates from in-situ hydrographic data (based on Argo for depth above 2000m and oceanic cruises below) and GRACE observations of land water storage and land ice melt for the period January 2004 to December 2014. The consistency between these datasets is a key issue if we want to constrain missing contributions to sea level rise such as the deep ocean contribution. Numerous previous studies have addressed this question by summing up the different contributions to sea level rise and comparing it to satellite altimetry observations (see for example Llovel et al. 2015, Dieng et al. 2015). Here we propose a novel approach which consists in correcting GRACE solutions over the ocean (essentially corrections of stripes and leakage from ice caps) with mass observations deduced from the difference between satellite altimetry GMSL and in-situ hydrographic data OTE estimates. We check that the resulting GRACE corrected solutions are consistent with original GRACE estimates of the geoid spherical harmonic coefficients within error bars and we compare the resulting GRACE estimates of land water storage and land ice melt with independent results from the literature. This method provides a new mass redistribution from GRACE consistent with observations from Altimetry and OTE. We test the sensibility of this method to the deep ocean contribution and the GIA models and propose best estimates.
A Computational Approach to Modeling Magma Ocean Evolution in 2-D and 3-D
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Louro Lourenço, D. J.; Fomin, I.
2017-12-01
Models of magma ocean evolution have typically been performed in 1-D (e.g. Abe, PEPI 1997; Solomatov and Stevenson, JGR 1993; Elkins-Tanton EPSL 2008). However, 1-D models may miss important aspects of the process, in particular the possible development of solid-state convection before the magma ocean has completely crystallised, and possible large-scale overturn driven by thermal and/or compositional gradients. On the other hand, fully resolving magma ocean evolution in 2-D or 3-D would be extremely challenging due to the small time-scales and length-scales associated with turbulent convection in the magma and the extreme viscosity contrast between regions of high melt fraction and regions of low melt fraction, which are separated by a rheological threshold associated with the solid forming an interconnected matrix. Here, an intermediate approach to treat these has been implemented within the framework of the mantle convection code StagYY (Tackley, PEPI 2008). The basic approach is to resolve processes that occur in the mostly solid state (i.e. below the rheological threshold) while parameterising processes that occur in the mostly liquid state, based largely on the works of Y. Abe. Thus, turbulent convection in magma-rich regions is treated using an effective thermal conductivity based on mixing-length theory, and segregation of solid and liquid is treated using Darcy's law for low melt fractions or crystal settling (offset by vigorous convection) for high melt fractions. At the outer surface a combined radiative-conductive heat balance is implemented, including the temperature drop over a very thin ( cm) thermal boundary layer and reduction of radiative heat loss by an atmosphere. Key to the whole process is petrology: the coexisting compositions of magma and solid under various conditions including possible fractionation, and for this different approaches have been parameterised ranging from a simple basalt-harzburgite parameterisation to a bi-eutectic lower mantle melting model based on ab initio and laboratory experiments.
A computational approach to modelling magma ocean evolution in 2-D and 3-D
NASA Astrophysics Data System (ADS)
Tackley, Paul; Lourenco, Diogo; Fomin, Ilya
2017-04-01
Models of magma ocean evolution have typically been performed in 1-D (e.g. Abe, PEPI 1997; Solomatov and Stevenson, JGR 1993; Elkins-Tanton EPSL 2008). However, 1-D models may miss important aspects of the process, in particular the possible development of solid-state convection before the magma ocean has completely crystallised, and possible large-scale overturn driven by thermal and/or compositional gradients. On the other hand, fully resolving magma ocean evolution in 2-D or 3-D would be extremely challenging due to the small time-scales and length-scales associated with turbulent convection in the magma and the extreme viscosity contrast between regions of high melt fraction and regions of low melt fraction, which are separated by a rheological threshold associated with the solid forming an interconnected matrix. Here, an intermediate approach to treat these has been implemented within the framework of the mantle convection code StagYY (Tackley, PEPI 2008). The basic approach is to resolve processes that occur in the mostly solid state (i.e. below the rheological threshold) while parameterising processes that occur in the mostly liquid state, based largely on the works of Y. Abe. Thus, turbulent convection in magma-rich regions is treated using an effective thermal conductivity based on mixing-length theory, and segregation of solid and liquid is treated using Darcy's law for low melt fractions or crystal settling (offset by vigorous convection) for high melt fractions. At the outer surface a combined radiative-conductive heat balance is implemented, including the temperature drop over a very thin ( cm) thermal boundary layer and reduction of radiative heat loss by an atmosphere. Key to the whole process is petrology: the coexisting compositions of magma and solid under various conditions including possible fractionation, and for this different approaches have been parameterised ranging from a simple basalt-harzburgite parameterisation to a bi-eutectic lower mantle melting model based on ab initio and laboratory experiments.
Onset and Cessation of Thermal Convection within Titan's Ice Shell
NASA Astrophysics Data System (ADS)
Mitri, G.; Tobie, G.; Choblet, G.
2015-12-01
The onset of thermal convection within the outer ice shell of Titan is believed to be at the origin of methane outgassing on Titan (Tobie et al., 2006), a possible factor in Titan's resurfacing processes (Mitri et al., 2008), and to have a major role in the evolution and tectonic activity of this Saturnian icy satellite (Tobie et al., 2005; Mitri and Showman, 2008; Mitri et al., 2010). Recent measurements of the gravity field (Iess et al., 2010, 2012) and the modeling of the shape and topography (Zebker et al., 2009; Mitri et al., 2014) have recently improved our knowledge of the thermal state and structure of Titan's outer ice shell. Mitri et al. (2014) found that Titan's surface topography is consistent with an isostatically compensated ice shell of variable thickness, likely at the present in a thermally conductive state (see also Nimmo and Bills, 2010; Hemingway et al., 2013), overlying a relatively dense (~1200-1350 kg m-3) subsurface ocean. As Titan's ice shell is not currently experiencing thermal convection it is likely that the ice shell could have experienced during its history both the onset and the cessation of thermal convection; thermal convection could be present within the ice shell for limited times or in fact be episodic. We investigate the evolution of Titan's outer ice shell from the crystallization of the underlying ocean with a focus on the onset and cessation of thermal convection. To simulate convection in a growing ice shell, we numerically solve the thermal convection equations for a Newtonian rheology in a two dimensional Cartesian domain using finite element method, with a moving bottom boundary to ocean crystallization. We discuss how the crystallization process affects the onset of convection and in which conditions the cessation of thermal convection may occur. The geological consequences of the changes of the thermal state and structure of the outer ice shell will also be discussed.
NASA Technical Reports Server (NTRS)
Meyers, Gary
1992-01-01
The background and goals of Indian Ocean thermal sampling are discussed from the perspective of a national project which has research goals relevant to variation of climate in Australia. The critical areas of SST variation are identified. The first goal of thermal sampling at this stage is to develop a climatology of thermal structure in the areas and a description of the annual variation of major currents. The sampling strategy is reviewed. Dense XBT sampling is required to achieve accurate, monthly maps of isotherm-depth because of the high level of noise in the measurements caused by aliasing of small scale variation. In the Indian Ocean ship routes dictate where adequate sampling can be achieved. An efficient sampling rate on available routes is determined based on objective analysis. The statistical structure required for objective analysis is described and compared at 95 locations in the tropical Pacific and 107 in the tropical Indian Oceans. XBT data management and quality control methods at CSIRO are reviewed. Results on the mean and annual variation of temperature and baroclinic structure in the South Equatorial Current and Pacific/Indian Ocean Throughflow are presented for the region between northwest Australia and Java-Timor. The mean relative geostrophic transport (0/400 db) of Throughflow is approximately 5 x 106 m3/sec. A nearly equal volume transport is associated with the reference velocity at 400 db. The Throughflow feeds the South Equatorial Current, which has maximum westward flow in August/September, at the end of the southeasterly Monsoon season. A strong semiannual oscillation in the South Java Current is documented. The results are in good agreement with the Semtner and Chervin (1988) ocean general circulation model. The talk concludes with comments on data inadequacies (insufficient coverage, timeliness) particular to the Indian Ocean and suggestions on the future role that can be played by Data Centers, particularly with regard to quality control of data as research bodies are replaced by operational bodies in the Global Ocean Observing System.
The Response of the Ocean Thermal Skin Layer to Variations in Incident Infrared Radiation
NASA Astrophysics Data System (ADS)
Wong, Elizabeth W.; Minnett, Peter J.
2018-04-01
Ocean warming trends are observed and coincide with the increase in concentrations of greenhouse gases in the atmosphere resulting from human activities. At the ocean surface, most of the incoming infrared (IR) radiation is absorbed within the top micrometers of the ocean's surface where the thermal skin layer (TSL) exists. Thus, the incident IR radiation does not directly heat the upper few meters of the ocean. This paper investigates the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that given the heat lost through the air-sea interface is controlled by the TSL, the TSL adjusts in response to variations in incident IR radiation to maintain the surface heat loss. This modulates the flow of heat from below and hence controls upper ocean heat content. This hypothesis is tested using the increase in incoming longwave radiation from clouds and analyzing vertical temperature profiles in the TSL retrieved from sea-surface emission spectra. The additional energy from the absorption of increasing IR radiation adjusts the curvature of the TSL such that the upward conduction of heat from the bulk of the ocean into the TSL is reduced. The additional energy absorbed within the TSL supports more of the surface heat loss. Thus, more heat beneath the TSL is retained leading to the observed increase in upper ocean heat content.
A global reference model of Curie-point depths based on EMAG2
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-01-01
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)−1 for the ocean and K = ~2.5 W(m°C)−1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW. PMID:28322332
NASA Astrophysics Data System (ADS)
Kamata, Shunichi
2018-01-01
Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state.
Deep thermal structure of Southeast Asia constrained by S-velocity data
NASA Astrophysics Data System (ADS)
Yu, Chuanhai; Shi, Xiaobin; Yang, Xiaoqiu; Zhao, Junfeng; Chen, Mei; Tang, Qunshu
2017-12-01
Southeast Asia, located in the southeastern part of the Eurasian Plate, is surrounded by tectonically active margins, exhibiting intense seismicity and volcanism, contains complex geological units with a perplexing evolution history. Because tectonic evolution is closely related to the deep thermal structure, an accurate estimation of the lithosphere thermal structure and thickness is important in extracting information on tectonics and geodynamics. However, there are significant uncertainties in the calculated deep thermal state constrained only by the observed surface heat flow. In this study, in order to obtain a better-constrained deep thermal state, we first calculate the deep thermal structure of Southeast Asia by employing an empirical relation between S-velocity and temperature, and then we estimate the base of the thermal lithosphere from the calculated temperature-depth profiles. The results show that, in general, the temperature is higher than the dry mantle solidus below the top of the seismic low-velocity zone, possibly indicating the presence of partial melt in the asthenosphere, particularly beneath oceanic basins such as the South China Sea. The temperature at a depth of 80 km in rifted and oceanic basins such as the Thailand Rift Basin, Thailand Bay, Andaman Sea, and South China Sea is about 200 °C higher than in plateaus and subduction zones such as the Khorat Plateau, Sumatra Island, and Philippine Trench regions. We suggest that the relatively cold and thick lithosphere block of the Khorat Plateau has not experienced significant internal deformation and might be extruded and rotated as a rigid block in response to the Indo-Eurasia collision. Our results show that the surface heat flow in the South China Sea is mainly dominated by the deep thermal state. There is a thermal anomaly in the Leiqiong area and in the areas adjacent to the northern margin of the South China Sea, indicating the presence of a high-temperature and thin lithosphere in the area of the well-known and controversial Hainan plume. The thermal lithosphere-asthenosphere boundary uplift area along the Xisha and southeastern Vietnam margin, in the western margin of South China Sea, which corresponds to the volcanic belt around this area, might indicate upwelling of hot mantle materials. The temperature values at 100 and 120 km depths through most regions of Southeast Asia are about 1400-1500 and 1550-1600 °C, respectively, which are nearly uniform with a small temperature difference. Our results also show that the lithosphere becomes thinner from the continent blocks toward the oceanic basins, with the smaller thickness values of 65-70 km in the South China Sea. The estimated base of the lithosphere corresponds approximately to the 1400 °C isotherm and shows good correlation with the tectonic setting.
NASA Astrophysics Data System (ADS)
Verzhbitsky, E. V.; Kononov, M. V.; Byakov, A. F.; Dulub, V. P.
2006-12-01
The analysis of geological and geophysical data on the Hawaiian-Emperor seamount chain indicates that the commonly assumed origin of its lithosphere is inconsistent with the geothermal model of the oceanic-bottom formation. To reveal the nature of the Hawaiian-Emperor Ridge, the main tectonic units of the North Pacific were thoroughly analyzed and a map of geothermal data, magnetic anomalies, and bottom age in this region has been compiled. The subsidence rate of the lithosphere that was thermally rejuvenated by plume material after the passing of the Pacific plate over the Hawaiian hot spot was calculated with the aid of the bathymetric database for the World Ocean. The calculated parameters show that the lithosphere, which underwent thermal rejuvenation, subsides at a much lower rate than it spreads. The obtained empirical equation describes the abrupt uplifting and further subsidence of the oceanic floor during the passing of the Pacific Plate over the Hawaiian plume. The heat flow calculated in line with the thermophysical model of the thermally rejuvenated lithosphere is close to the heat flow measured at the surface of the Hawaiian-Emperor Seamounts. Thus, the proposed model is realistic. Paleogeodynamic reconstructions of the thermal regime during the formation of the Hawaiian-Emperor seamount chain were made in absolute coordinate system for the period 90-20 Ma on the basis of geological and geophysical data and the calculated distribution of bottom ages in the North Pacific.
Thermal Convection in Two-Dimensional Soap Films
NASA Astrophysics Data System (ADS)
Zhang, Jie; Wu, X. L.
2002-11-01
Thermal convection in a fluid is a common phenomenon. Due to thermal expansion, the light warm fluid at the bottom tends to rise and the cold, heavier fluid at the top tends to fall. This so-called thermal convection exists in earth atmosphere and in oceans. It is also an important mechanism by which energy is transported in stars. In this study we investigate thermal convection in a vertical soap film.
Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy
Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.
2010-01-01
Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.
An orbiting multispectral scanner for overland and oceanographic applications.
NASA Technical Reports Server (NTRS)
Peacock, K.; Withrington, R. J.
1971-01-01
Description of the major features of a multispectral scanner designed to perform overland and oceanographic surveys from space. The instrument uses an image plane conical scanner and contains independent spectrometers for land and ocean applications. The overland spectrometer has a spatial resolution of 200 ft and has six spectral bands in the atmospheric windows between 0.5 and 2.4 microns. The oceanographic spectrometer has a spatial resolution of 1200 ft and possesses 24 spectral bands equally spaced and in registration over the wavelength range from 0.4 to 0.8 micron. A thermal band of 600-ft resolution is used with a spectral range from 10.5 to 12.6 microns. The swath width of the scan is 100 nautical miles from an altitude of 500 nautical miles. The system has two modes of operation which are selectable by ground command. The six bands of overland data plus the thermal band data can be transmitted, or the 24 bands of oceanographic data plus data from two of the overland bands and the thermal band can be transmitted. The performance is described by the minimum detectable reflectance difference and the effects of sun angle and target reflectivity variations are discussed. The sensitivity is related to the variation of the ocean reflectivity in the presence of chlorophyll and to typical agricultural targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, S.P.
1978-03-01
Biofouling and corrosion of heat exchanger surfaces in Ocean Thermal Energy Conversion (OTEC) systems may be controlling factors in the potential success of the OTEC concept. Very little is known about the nature and behavior of marine fouling films at sites potentially suitable for OTEC power plants. To facilitate the acquisition of needed data, a biofouling measurement device developed by Professor J. G. Fetkovich and his associates at Carnegie-Mellon University (CMU) has been mass produced for use by several organizations in experiments at a variety of ocean sites. The CMU device is designed to detect small changes in thermal resistancemore » associated with the formation of marine microfouling films. An account of the work performed at the Pacific Northwest Laboratory (PNL) to develop a computerized uncertainty analysis for estimating experimental uncertainties of results obtained with the CMU biofouling measurement device and data reduction scheme is presented. The analysis program was written as a subroutine to the CMU data reduction code and provides an alternative to the CMU procedure for estimating experimental errors. The PNL code was used to analyze sample data sets taken at Keahole Point, Hawaii; St. Croix, the Virgin Islands; and at a site in the Gulf of Mexico. The uncertainties of the experimental results were found to vary considerably with the conditions under which the data were taken. For example, uncertainties of fouling factors (where fouling factor is defined as the thermal resistance of the biofouling layer) estimated from data taken on a submerged buoy at Keahole Point, Hawaii were found to be consistently within 0.00006 hr-ft/sup 2/-/sup 0/F/Btu, while corresponding values for data taken on a tugboat in the Gulf of Mexico ranged up to 0.0010 hr-ft/sup 2/-/sup 0/F/Btu. Reasons for these differences are discussed.« less
NASA Astrophysics Data System (ADS)
Wang, Zhili; Wang, Qiuyan; Zhang, Hua
2017-12-01
We used an online aerosol-climate model to study the equilibrium climate response of the East Asian summer monsoon (EASM) to increases in anthropogenic emissions of sulfate, organic carbon, and black carbon aerosols from 1850 to 2000. Our results show that each of these aerosol species has a different effect on the EASM as a result of changes in the local sea-land thermal contrast and atmospheric circulation. The increased emission of sulfate aerosol leads to a decrease in the thermal contrast between the land and ocean, a southward shift of the East Asian subtropical jet, and significant northerly wind anomalies at 850 hPa over eastern China and the ambient oceans, markedly dampening the EASM. An increase in organic carbon aerosol results in pronounced surface cooling and the formation of an anomalous anticyclone over the oceans north of 30°N. These effects cause a slight increase in the sea-land thermal contrast and southerly flow anomalies to the west of the anticyclonic center, strengthening the northern EASM. An increase in organic carbon emission decreases the sea-land thermal contrast over southern China, which weakens the southern EASM. The response of the summer 850-hPa winds and rainfall over the East Asian monsoon region to an increase in black carbon emission is generally consistent with the response to an increase in organic carbon. The increase in black carbon emission leads to a strengthening of the northern EASM north of 35°N and a slight weakening of the southern EASM south of 35°N. The simulated response of the EASM to the increase in black carbon emission is unchanged when the emission of black carbon is scaled up by five times its year 2000 levels, although the intensities of the response is enhanced. The increase in sulfate emission primarily weakens the EASM, whereas the increases in black carbon and organic carbon emissions mitigate weakening of the northern EASM.
CFD analysis of onshore oil pipelines in permafrost
NASA Astrophysics Data System (ADS)
Nardecchia, Fabio; Gugliermetti, Luca; Gugliermetti, Franco
2017-07-01
Underground pipelines are built all over the world and the knowledge of their thermal interaction with the soil is crucial for their design. This paper studies the "thermal influenced zone" produced by a buried pipeline and the parameters that can influence its extension by 2D-steady state CFD simulations with the aim to improve the design of new pipelines in permafrost. In order to represent a real case, the study is referred to the Eastern Siberia-Pacific Ocean Oil Pipeline at the three stations of Mo'he, Jiagedaqi and Qiqi'har. Different burial depth sand diameters of the pipe are analyzed; the simulation results show that the effect of the oil pipeline diameter on the thermal field increases with the increase of the distance from the starting station.
NASA Astrophysics Data System (ADS)
Vilella, Kenny; Deschamps, Frédéric
2018-07-01
Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, for example, generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and the bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2-D and 3-D Cartesiangeometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean that reconciles geochemical observations and magma ocean dynamics.
NASA Astrophysics Data System (ADS)
Vilella, Kenny; Deschamps, Frederic
2018-04-01
Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean that reconciles geochemical observations and magma ocean dynamics.
Seasonal and Regional Variability in North Pacific Upper-Ocean Turbulence
NASA Astrophysics Data System (ADS)
Najjar, R.; Creedon, R.; Cronin, M. F.
2016-02-01
Turbulent diffusion at marine mixed layer base (MLB) plays a fundamental role in the transport of energy between the upper and abyssal ocean. Recent investigations of North Pacific mooring data at Ocean Climate Stations (OCS) Papa (50.1N,144.9W) and KEO (32.3N,144.6E) suggest seasonal and regional variability in thermal diffusivity (κT). In this investigation, it is hypothesized that these observed differences in κT are directly associated with synoptic variability in net surface heat flux (Q0), surface wind stress (τ), mixed layer depth (h), and density stratification at MLB (∂zσ|-h). To test this hypothesis, daily-averaged time series of κT are regressed against those of Q0, τ, h, and ∂zσ|-h at both Papa and KEO over a six year time period (2007-2013). Seasonality of each time series is removed before regression to capture synoptic variability of each variable. Preliminary results of the regression analysis suggest statistically significant correlations between κT and all forcing parameters at both mooring sites. These correlations have well-determined orders of magnitude and signs consistent with the hypothesis. As a result, differences in κT between Papa and KEO may be recast in terms of differences in their correlation coefficients. In order to continue investigation of these parameters and their effects on mean seasonal differences between the two regions, these results will be compared with turbulence predicted by the K-Profile Parameterization ocean turbulence model.
Capturing the global signature of surface ocean acidification during the PETM
NASA Astrophysics Data System (ADS)
Babila, T. L.; Penman, D. E.; Hoenisch, B.; Kelly, D. C.; Bralower, T. J.; Rosenthal, Y.; Zachos, J. C.
2016-12-01
Anthropogenic greenhouse gas emissions over the last century have elevated atmospheric carbon dioxide concentrations while concomitantly acidifying the oceans. Instrumental records are sparse and limited in duration, making it difficult to separate regional from global trends of ocean acidification. Geologically rapid carbon perturbations such as the Paleocene-Eocene Thermal Maximum (PETM, 56 Ma) are arguably the closest paleo analogue to present climate change. Marine ecosystems experienced dynamic changes during the event, and parallel environmental changes, including acidification and warming. Here we present a synthesis of new and published geochemical reconstructions from various oceanographic settings to determine the magnitude and spatial extent of surface ocean acidification. In the deep ocean, acidification is inferred from widespread dissolution of seafloor carbonates, whereas evidence for surface ocean acidification has emerged from planktonic foraminifera boron proxy records (B/Ca and δ11B) (Penman et al. 2014; Babila et al. 2016). B/Ca and δ11B in surface and thermocline planktonic foraminifera suggest a simultaneous decrease at the PETM onset in all pelagic and shelf sites. Salinity, diagenesis and foraminiferal symbiont loss can complicate the interpretation of boron proxy records. Local salinity changes (based on paired Mg/Ca and δ18O) account for a relatively small component of total B/Ca change. The large range in environmental conditions between sites could explain the subtle differences in absolute values exhibited by the records. Shelf sites (ODP 174AX Bass River and Ancora, NJ) reveal similar absolute values and trends compared to pelagic sites (ODP 1209, N. Pacific), precluding a significant preservation bias on the geochemical records. Southern Ocean sites (ODP 689 and 690) are located in colder surface waters and exhibit a similar decrease in B/Ca, suggesting that temperature and symbiont loss are likely not major factors. We conclude that while the mass of released carbon is comparable to anthropogenic emissions, the rate is much slower, resulting in a less severe degree of undersaturation. Furthermore, the consistent latitudinal pattern of acidification suggests that thermal stress rather than acidification contributed to the observed biotic responses.
Supercontinental Cycles and the Tectonic Modulation of Earth's Climate
NASA Astrophysics Data System (ADS)
Jellinek, M.; Pierrehumbert, R.; Turchyn, A. V.; Lenardic, A.
2012-12-01
Plate tectonics involves the production of oceanic plates at spreading ridges, their destruction at subduction zones, where they sink into the underlying mantle as cold plumes, and a slow drift of buoyant continents at the surface. The resulting laterally and vertically extensive internal mantle motions cool the Earth efficiently and with remarkable consequences including long-lived hotspot volcanoes such as Hawaii, a persistent and strong magnetic field and a habitable climate. Over the last billion years, however, this regular mantle overturning and thorough thermal mixing has been punctuated by 2 transient periods during which the continents were drawn together to form the supercontinents Rodinia and Pangea. These supercontinents were encircled to differing extents by subduction zones where partial or complete "curtains" of cold downgoing oceanic slabs inhibited lateral mantle stirring, leading, in turn, to large temperature variations between the more rapidly cooled oceanic mantle and the more slowly cooled continental mantle. A key prediction from theory, numerical simulations and laboratory experiments is that, depending on the mantle thermal mixing efficiency, the relative cooling of the oceanic mantle during the formation of supercontinents will cause crustal production at spreading ridges to decline or cease entirely. We investigate two further provocative implications for Earth's climate during the Pangea and Rodinia supercontinental epochs. First, the total volcanic influx of CO2 to the ocean-atmosphere system may decline by 30-40%, probably causing a modest global cooling. Second, a near absence of basaltic crust at ridges exposes mantle rocks to seawater, which leads to extensive serpentinization and to a potentially large flux of abiogenic methane (CH4) into the deep ocean. Whereas we expect all of this CH4 to be oxidized in the oxygen-rich and biologically complex Pangean ocean, some fraction of this CH4 flux may contribute to the composition of low-oxygen Rodinian atmosphere and influence climate in remarkable ways. A particular situation we explore is whether the transient mantle dynamics of the formation and breakup of Rodinia ultimately caused Earth to enter into, and exit from, periods of global glaciation consistent with the snowball Earth hypothesis.
Testing Predictions of Continental Insulation using Oceanic Crustal Thicknesses
NASA Astrophysics Data System (ADS)
Hoggard, Mark; Shorttle, Oliver; White, Nicky
2016-04-01
The thermal blanketing effect of continental crust has been predicted to lead to elevated temperatures within the upper mantle beneath supercontinents. Initial break-up is associated with increased magmatism and the generation of flood basalts. Continued rifting and sea-floor spreading lead to a steady reduction of this thermal anomaly. Recently, evidence in support of this behaviour has come from the major element geochemistry of mid-ocean ridge basalts, which suggest excess rifting temperatures of ˜ 150 °C that decay over ˜ 100 Ma. We have collated a global inventory of ˜ 1000 seismic reflection profiles and ˜ 500 wide-angle refraction experiments from the oceanic realm. Data are predominantly located along passive margins, but there are also multiple surveys in the centres of the major oceanic basins. Oceanic crustal thickness has been mapped, taking care to avoid areas of secondary magmatic thickening near seamounts or later thinning such as across transform faults. These crustal thicknesses are a proxy for mantle potential temperature at the time of melt formation beneath a mid-ocean ridge system, allowing us to quantify the amplitude and duration of thermal anomalies generated beneath supercontinents. The Jurassic break-up of the Central Atlantic and the Cretaceous rifting that formed the South Atlantic Ocean are both associated with excess temperatures of ˜ 50 °C that have e-folding times of ˜ 50 Ma. In addition to this background trend, excess temperatures reach > 150 °C around the region of the Rio Grande Rise, associated with the present-day Tristan hotspot. The e-folding time of this more local event is ˜ 10 Ma, which mirrors results obtained for the North Atlantic Ocean south of Iceland. In contrast, crustal thicknesses from the Pacific Ocean reveal approximately constant potential temperature through time. This observation is in agreement with predictions, as the western Pacific was formed by rifting of an oceanic plate. In summary, variations in oceanic crustal thickness support the existence of continental insulation effects. Characteristic e-folding times are ˜ 50 Ma, but excess break-up temperatures are significantly lower than previously expected at around ˜ 50 °C. We tentatively suggest that higher excess temperatures of > 150 °C occur in the vicinity of upwelling mantle plumes, which are associated with shorter e-folding times of ˜ 10 Ma.
Thermal Convection in High-Pressure Ice Layers Beneath a Buried Ocean within Titan and Ganymede
NASA Astrophysics Data System (ADS)
Tobie, G.; Choblet, G.; Dumont, M.
2014-12-01
Deep interiors of large icy satellites such as Titan and Ganymede probably harbor a buried ocean sandwiched between low pressure ice and high-pressure ice layers. The nature and location of the lower interface of the ocean involves equilibration of heat and melt transfer in the HP ices and is ultimately controlled by the amount heat transferred through the surface ice Ih layer. Here, we perform 3D simulations of thermal convection, using the OEDIPUS numerical tool (Choblet et al. GJI 2007), to determine the efficiency of heat and mass transfer through these HP ice mantles. In a first series of simulations with no melting, we show that a significant fraction of the HP layer reaches the melting point. Using a simple description of water production and transport, our simulations demonstrate that the melt generation in the outermost part of the HP ice layer and its extraction to the overlying ocean increase the efficiency of heat transfer and reduce strongly the internal temperature. structure and the efficiency of the heat transfer. Scaling relationships are proposed to describe the cooling effect of melt production/extraction and used to investigate the consequences of internal melting on the thermal history of Titan and Ganymede's interior.
Advances in Understanding Decadal Climate Variability
NASA Technical Reports Server (NTRS)
Busalaacchi, Antonio J.
1998-01-01
Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.
Advances in Understanding Decadal Climate Variability
NASA Technical Reports Server (NTRS)
Busalacchi, Antonio J.
1999-01-01
Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.
On the Yield Strength of Oceanic Lithosphere
NASA Astrophysics Data System (ADS)
Jain, C.; Korenaga, J.; Karato, S. I.
2017-12-01
The origin of plate tectonic convection on Earth is intrinsically linked to the reduction in the strength of oceanic lithosphere at plate boundaries. A few mechanisms, such as deep thermal cracking [Korenaga, 2007] and strain localization due to grain-size reduction [e.g., Ricard and Bercovici, 2009], have been proposed to explain this reduction in lithospheric strength, but the significance of these mechanisms can be assessed only if we have accurate estimates on the strength of the undamaged oceanic lithosphere. The Peierls mechanism is likely to govern the rheology of old oceanic lithosphere [Kohlstedt et al., 1995], but the flow-law parameters for the Peierls mechanism suggested by previous studies do not agree with each other. We thus reanalyze the relevant experimental deformation data of olivine aggregates using Markov chain Monte Carlo inversion, which can handle the highly nonlinear constitutive equation of the Peierls mechanism [Korenaga and Karato, 2008; Mullet et al., 2015]. Our inversion results indicate nontrivial nonuniqueness in every flow-law parameter for the Peierls mechanism. Moreover, the resultant flow laws, all of which are consistent with the same experimental data, predict substantially different yield stresses under lithospheric conditions and could therefore have different implications for the origin of plate tectonics. We discuss some future directions to improve our constraints on lithospheric yield strength.
Ocean thermal gradient as a generator of electricity. OTEC power plant
NASA Astrophysics Data System (ADS)
Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel
2016-04-01
The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.
Volcanoes and climate: Krakatoa's signature persists in the ocean.
Gleckler, P J; Wigley, T M L; Santer, B D; Gregory, J M; Achutarao, K; Taylor, K E
2006-02-09
We have analysed a suite of 12 state-of-the-art climate models and show that ocean warming and sea-level rise in the twentieth century were substantially reduced by the colossal eruption in 1883 of the volcano Krakatoa in the Sunda strait, Indonesia. Volcanically induced cooling of the ocean surface penetrated into deeper layers, where it persisted for decades after the event. This remarkable effect on oceanic thermal structure is longer lasting than has previously been suspected and is sufficient to offset a large fraction of ocean warming and sea-level rise caused by anthropogenic influences.
Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean
NASA Astrophysics Data System (ADS)
Johnson, Brandon C.; Bowling, Timothy J.; Trowbridge, Alexander J.; Freed, Andrew M.
2016-10-01
We simulate the formation of the large elliptical impact basin associated with Pluto's Sputnik Planum (SP; informal name). The location of SP suggests that it represents a large positive mass anomaly. To find the conditions necessary for SP to have a positive mass anomaly, we consider impacts into targets with a range of thermal states and ocean thicknesses. Assuming the basin evolves to its current-day configuration, we calculate the mass and gravity anomalies associated with SP. We find that SP can only achieve a large positive mass anomaly if Pluto has a more than 100 km thick salty ocean. This conclusion may help us better understand the composition and thermal evolution of Pluto. Furthermore, our work supports the hypothesis that SP basin has an impact origin.
Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica
NASA Astrophysics Data System (ADS)
Buffo, J. J.; Schmidt, B. E.; Huber, C.
2018-01-01
Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.
NASA Astrophysics Data System (ADS)
Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascle, J.; Blarez, E.
The authors present a marine study of the eastern Ivory Coast-Ghana continental margins which they consider one of the most spectacular extinct transform margins. This margin has been created during Early-Lower Cretaceous time and has not been submitted to any major geodynamic reactivation since its fabric. Based on this example, they propose to consider during the evolution of the transform margin four main and successive stages. Shearing contact is first active between two probably thick continental crusts and then between progressively thinning continental crusts. This leads to the creation of specific geological structures such as pull-apart graben, elongated fault lineaments,more » major fault scarps, shear folds, and marginal ridges. After the final continental breakup, a hot center (the mid-oceanic ridge axis) is progressively drifting along the newly created margin. The contact between two lithospheres of different nature should necessarily induce, by thermal exchanges, vertical crustal readjustments. Finally, the transform margin remains directly adjacent to a hot but cooling oceanic lithosphere; its subsidence behavior should then progressively be comparable to the thermal subsidence of classic rifted margins.« less
Evidence for developmental thermal acclimation in the damselfish, Pomacentrus moluccensis
NASA Astrophysics Data System (ADS)
Grenchik, M. K.; Donelson, J. M.; Munday, P. L.
2013-03-01
Tropical species are predicted to have limited capacity for acclimation to global warming. This study investigated the potential for developmental thermal acclimation by the tropical damselfish Pomacentrus moluccensis to ocean temperatures predicted to occur over the next 50-100 years. Newly settled juveniles were reared for 4 months in four temperature treatments, consisting of the current-day summer average (28.5 °C) and up to 3 °C above the average (29.5, 30.5 and 31.5 °C). Resting metabolic rate (RMR) of fish reared at 29.5 and 31.5 °C was significantly higher than the control group reared at 28.5 °C. In contrast, RMR of fish reared at 30.5 °C was not significantly different from the control group, indicating these fish had acclimated to their rearing temperature. Furthermore, fish that developed in 30.5 and 31.5 °C exhibited an enhanced ability to deal with acute temperature increases. These findings illustrate that developmental acclimation may help coral reef fish cope with warming ocean temperatures.
NASA Astrophysics Data System (ADS)
Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Hare, Jonathan A.; Moret, Skye; Perretti, Charles T.; Saba, Vincent S.
2017-04-01
The U.S. Northeast Continental Shelf marine ecosystem has warmed much faster than the global ocean and it is expected that this enhanced warming will continue through this century. Complex bathymetry and ocean circulation in this region have contributed to biases in global climate model simulations of the Shelf waters. Increasing the resolution of these models results in reductions in the bias of future climate change projections and indicates greater warming than suggested by coarse resolution climate projections. Here, we used a high-resolution global climate model and historical observations of species distributions from a trawl survey to examine changes in the future distribution of suitable thermal habitat for various demersal and pelagic species on the Shelf. Along the southern portion of the shelf (Mid-Atlantic Bight and Georges Bank), a projected 4.1 °C (surface) to 5.0 °C (bottom) warming of ocean temperature from current conditions results in a northward shift of the thermal habitat for the majority of species. While some southern species like butterfish and black sea bass are projected to have moderate losses in suitable thermal habitat, there are potentially significant increases for many species including summer flounder, striped bass, and Atlantic croaker. In the north, in the Gulf of Maine, a projected 3.7 °C (surface) to 3.9 °C (bottom) warming from current conditions results in substantial reductions in suitable thermal habitat such that species currently inhabiting this region may not remain in these waters under continued warming. We project a loss in suitable thermal habitat for key northern species including Acadian redfish, American plaice, Atlantic cod, haddock, and thorney skate, but potential gains for some species including spiny dogfish and American lobster. We illustrate how changes in suitable thermal habitat of important commercially fished species may impact local fishing communities and potentially impact major fishing ports along the U.S. Northeast Shelf. Given the complications of multiple drivers including species interactions and fishing pressure, it is difficult to predict exactly how species will shift. However, observations of species distribution shifts in the historical record under ocean warming suggest that temperature will play a primary role in influencing how species fare. Our results provide critical information on the potential for suitable thermal habitat on the U.S. Northeast Shelf for demersal species in the region, and may contribute to the development of ecosystem-based fisheries management strategies in response to climate change.
Mantzouni, Irene; MacKenzie, Brian R
2010-06-22
Climate change will have major consequences for population dynamics and life histories of marine biota as it progresses in the twenty-first century. These impacts will differ in magnitude and direction for populations within individual marine species whose geographical ranges span large gradients in latitude and temperature. Here we use meta-analytical methods to investigate how recruitment (i.e. the number of new fish produced by spawners in a given year which subsequently grow and survive to become vulnerable to fishing gear) has reacted to temperature fluctuations, and in particular to extremes of temperature, in cod populations throughout the north Atlantic. Temperature has geographically explicit effects on cod recruitment. Impacts differ depending on whether populations are located in the upper (negative effects) or in the lower (positive effects) thermal range. The probabilities of successful year-classes in populations living in warm areas is on average 34 per cent higher in cold compared with warm seasons, whereas opposite patterns exist for populations living in cold areas. These results have implications for cod dynamics, distributions and phenologies under the influence of ocean warming, particularly related to not only changes in the mean temperature, but also its variability (e.g. frequency of exceptionally cold or warm seasons).
NASA Astrophysics Data System (ADS)
Meyers, P. A.
2013-12-01
Organic del13C values of organic-carbon-rich Albian-Cenomanian-Turonian black shales from a north-south transect of the Atlantic Ocean have been compiled to explore for possible existence of latitudinal patterns. Black shales at equatorial sites have mean del13C values of -28 per mil, whereas black shales at mid-latitude sites have mean del13C values around -25 per mil. The mid-Cretaceous del13C values are routinely lower than those of modern marine sediments. The more negative Cretaceous del13C values generally reflect concentrations of atmospheric CO2 that were four to six times higher than today, but the geographic differences imply a regional overprint on this global feature. Latitudinal differences in oceanic temperature might be a factor, but a low thermal gradient from the poles to the equator during the mid-Cretaceous makes this factor not likely to be significant. Instead, a correspondence between the geographic differences in the organic del13C values of black shales with the modern latitudinal precipitation pattern suggests that differences in precipitation are a more likely factor. Establishment of a strongly salinity-stratified near-surface ocean and magnified delivery of land-derived phosphorus by continental runoff during this time of a magnified hydrologic cycle were evidently significant to deposition of marine black shales. A likely scenario is that the stratification resulted in blooms of nitrogen-fixing bacteria that become the dominant photoautotrophs and thereby stimulated primary production of organic matter. Regional differences in precipitation resulted in different amounts of runoff, consequent stratification, enhancement of primary production, and therefore the different carbon isotopic compositions of the black shales.
Sundby, Svein; Kristiansen, Trond
2015-01-01
Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds' oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for recruitment to the population. An example of adaptation to such conditions is Cape hake spawning above the critical layer in the Northern Benguela upwelling ecosystem. The eggs rise slowly in the onshore subsurface current below the Ekman layer, hence being advected inshore where the hatched larvae concentrate with optimal feeding conditions.
Multifaceted intra-seasonal modes over the East Asia-western North Pacific summer monsoon region
NASA Astrophysics Data System (ADS)
Ha, K. J.; Oh, H.
2017-12-01
Intra-seasonal monsoon prediction is the most imperative task due to high impact on 2/3 of world populations' daily life, but there remains an enduring challenge in climate science. The present study aims to provide a physical understanding of the sources for prediction of dominant intra-seasonal modes in the East Asian-western North Pacific summer monsoon (EA-WNPSM): preMeiyu&Baiu, Changma&Meiyu, WNPSM, and monsoon gyre modes classified by the self-organizing map analysis. The preMeiyu-Baiu mode is strongly linked to both the anomalous low-level convergence and vertical wind shear through baroclinic instability, and the Changma&Meiyu mode has a strengthened tropic-subtropics connection along the western north Pacific subtropical high, which induces vertical destabilization and strong convective instability. The WNPSM and monsoon gyre modes are characterized by anomalous southeasterly flow of warm and moist air from western north Pacific monsoon, and low-level easterly flow, respectively. Prominent difference in response to the ENSO leads to different effects of the Indian Ocean and western Pacific thermal state, and consequently, the distinct moisture supply and instability variations for the EASM intra-seasonal modes. We attempt to determine the predictability sources for the four modes in the EA-WNPSM using physical-empirical model. The selected predictors are based on the persistent and tendency signals of the SST/2m air temperature and sea level pressure fields, which reflect the asymmetric response to the ENSO and the ocean and land surface anomalous conditions. For the preMeiyu&Baiu mode, the SST cooling tendency over the WNP, which persists into summer, is the distinguishing contributor which is causative of north-south thermal contrast. Since the Changma&Meiyu mode is strongly related to the WNP subtropical high, a major precursor is the persistent SST difference between the Indian Ocean and the western Pacific. The WNPSM mode is mostly affected by the Pacific-Japan pattern, and monsoon gyre mode is primarily associated with a persistent SST cooling over the tropical Indian Ocean by the preceding ENSO signal. This study carries important implications for prediction by establishing valuable precursors of the four modes including nonlinear characteristics.
Operational seasonal and interannual predictions of ocean conditions
NASA Technical Reports Server (NTRS)
Leetmaa, Ants
1992-01-01
Dr. Leetmaa described current work at the U.S. National Meteorological Center (NMC) on coupled systems leading to a seasonal prediction system. He described the way in which ocean thermal data is quality controlled and used in a four dimensional data assimilation system. This consists of a statistical interpolation scheme, a primitive equation ocean general circulation model, and the atmospheric fluxes that are required to force this. This whole process generated dynamically consist thermohaline and velocity fields for the ocean. Currently routine weekly analyses are performed for the Atlantic and Pacific oceans. These analyses are used for ocean climate diagnostics and as initial conditions for coupled forecast models. Specific examples of output products were shown both in the Pacific and the Atlantic Ocean.
Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System?
NASA Astrophysics Data System (ADS)
Westerhold, T.; Röhl, U.; Donner, B.; Frederichs, T.; Kordesch, W. E. C.; Bohaty, S. M.; Hodell, D. A.; Laskar, J.; Zeebe, R. E.
2018-01-01
Recognizing and deciphering transient global warming events triggered by massive release of carbon into Earth's ocean-atmosphere climate system in the past are important for understanding climate under elevated pCO2 conditions. Here we present new high-resolution geochemical records including benthic foraminiferal stable isotope data with clear evidence of a short-lived (30 kyr) warming event at 41.52 Ma. The event occurs in the late Lutetian within magnetochron C19r and is characterized by a ˜2°C warming of the deep ocean in the southern South Atlantic. The magnitudes of the carbon and oxygen isotope excursions of the Late Lutetian Thermal Maximum are comparable to the H2 event (53.6 Ma) suggesting a similar response of the climate system to carbon cycle perturbations even in an already relatively cooler climate several million years after the Early Eocene Climate Optimum. Coincidence of the event with exceptionally high insolation values in the Northern Hemisphere at 41.52 Ma might indicate that Earth's climate system has a thermal threshold. When this tipping point is crossed, rapid positive feedback mechanisms potentially trigger transient global warming. The orbital configuration in this case could have caused prolonged warm and dry season leading to a massive release of terrestrial carbon into the ocean-atmosphere system initiating environmental change.
Solar thermal power generation. A bibliography with abstracts
NASA Technical Reports Server (NTRS)
1979-01-01
Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.
Climate Change and Future World
2013-03-01
the distribution of fish 8 species.37 Increasing ocean acidification is threatening coral reefs that play an important role in mitigating the...into space the power that has not been used. This enormous thermal machine, that is the climate system, is constituted by the atmosphere, oceans ...and extension of the Arctic ice and mountain glaciers in the northern hemisphere are reducing. According to the IPCC, the 5 Arctic Ocean could be
Jiang, Shijun; Wise, Sherwood W.
2007-01-01
Ocean Drilling Program (ODP) Core Section 183-1135A-25R-4 from the Kerguelen Plateau in the Indian Ocean sector of the Southern Ocean represents only the second complete, expanded sequence through the Paleocene/Eocene Thermal Maximum (PETM; ~55 Ma) recovered from Antarctic waters. Calcareous nannoplankton at this site underwent an abrupt, fundamental turnover across the PETM as defined by a carbon isotope excursion. Although Chiasmolithus, Discoaster, and Fasciculithus exponentially increase in abundance at the onset, the former abruptly drops but then rapidly recovers, whereas the latter two taxa show opposite trends due to surface-water oligotrophy. These observations confirm previous results from ODP Site 690 on Maud Rise. The elevated pCO2 that accompanied the PETM caused a shoaling of the lysocline and carbonate compensation depth, leading to intensive dissolution of susceptible holococcoliths and poor preservation of the assemblages. Similarities and contrasts between the results of this study and previous work from open-ocean sites and shelf margins further demonstrate that the response to the PETM was consistent in open-ocean environments, but could be localized on continental shelves where nutrient regimes depend on the local geologic setting and oceanographic conditions.
Oceanic Residual Depth Anomalies Maintained by a Shallow Asthenospheric Channel
NASA Astrophysics Data System (ADS)
Richards, F. D.; Hoggard, M.; White, N.
2016-12-01
Oceanic residual depth anomalies vary on wavelengths of 800-2,000 km and have amplitudesof ±1 km. There is also evidence from glacio-isostatic adjustment, plate motions and seismicanisotropy studies for the existence of a low-viscosity asthenospheric channel immediately beneaththe lithospheric plates. Here, we investigate whether global residual depth anomalies are consistentwith temperature variations within a sub-plate channel. For a given channel thickness, we convertresidual depth anomalies into temperature anomalies, assuming thermal isostasy alone (i.e. no mantle flow). Using aparameterisation that is calibrated against stacked oceanic shear wave velocity profiles, we convertthese temperature anomalies into velocity variations. We then compare the inferred velocity vari-ations with published seismic tomographic models. We find that thermal anomalies of ±100 °Cwithin a 150 ± 50 km thick channel yield a good match to > 95% of global residual depth anoma-lies. These temperature variations are consistent with geochemical evidence from mid-oceanic ridgebasalts and oceanic crustal thicknesses. The apparent success of this simple isostatic approach sup-ports the existence of a low-viscosity asthenospheric channel that plays a key role in controllingresidual depth anomalies. Far from subduction zones and from plume conduits, dynamic topog-raphy in the oceanic realm appears to be primarily controlled by temperature-induced buoyancyvariations within this channel.
Thermal Imagery of Groundwater Seeps: Possibilities and Limitations.
Mundy, Erin; Gleeson, Tom; Roberts, Mark; Baraer, Michel; McKenzie, Jeffrey M
2017-03-01
Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air-water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non-freezing conditions, and no solar radiation. © 2016, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Bladé, Ileana
1997-08-01
This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under perpetual northern winter conditions, is coupled to a motionless constant-depth mixed layer in midlatitudes, while elsewhere the sea surface temperature (SST) is kept fixed; interannual tropical SST forcing is not included. It is found that coupling does not modify the spatial organization of the variability. The influence of coupling is manifested as a slight reddening of the spectrum of 500-mb geopotential height and a significant enhancement of the lower-tropospheric thermal variance over the oceans at very low frequencies by virtue of the mixed-layer adjustment to surface air temperature variations that occurs on those timescales. This adjustment effectively reduces the thermal damping of the atmosphere associated with surface heat fluxes (or negative oceanic feedback), thus increasing the thermal variance and the persistence of circulation anomalies.In studying the covariability between ocean and atmosphere it is found that the dominant mode of natural atmospheric variability is coupled to the leading mode of SST in each ocean, with the atmosphere leading the ocean by about one month. The cross-correlation function between oceanic and atmospheric anomalies is strongly asymmetric about zero lag. The SST structures are consistent with direct forcing by the anomalous heat fluxes implied by the concurrent surface air temperature and wind fluctuations. Additionally, composites based on large amplitude SST anomaly events contain no evidence of direct driving of atmospheric perturbations by these SST anomalies. Thus, in terms of the spatial organization of the covariability and the evolution of the coupled system from one regime to another, large-scale air-sea interaction in the model is characterized by one-way atmospheric forcing of the mixed layer.These results are qualitatively consistent with those from an earlier idealized study. They imply a subtle but fundamental role for the midlatitude oceans as stabilizing rather than directly generating atmospheric anomalies. It is argued that this scenario is relevant to the dynamics of extratropical atmosphere-ocean coupling on intraseasonal timescales at least: the model is able to qualitatively reproduce the temporal and spatial characteristics of the observed dominant patterns of interaction on these timescales, particularly over the Atlantic.
A global reference model of Moho depths based on WGM2012
NASA Astrophysics Data System (ADS)
Zhou, D.; Li, C.
2017-12-01
The crust-mantle boundary (Moho discontinuity) represents the largest density contrast in the lithosphere, which can be detected by Bouguer gravity anomaly. We present our recent inversion of global Moho depths from World Gravity Map 2012. Because oceanic lithospheres increase in density as they cool, we perform thermal correction based on the plate cooling model. We adopt a temperature Tm=1300°C at the bottom of lithosphere. The plate thickness is tested by varying by 5 km from 90 to 140 km, and taken as 130 km that gives a best-fit crustal thickness constrained by seismic crustal thickness profiles. We obtain the residual Bouguer gravity anomalies by subtracting the thermal correction from WGM2012, and then estimate Moho depths based on the Parker-Oldenburg algorithm. Taking the global model Crust1.0 as a priori constraint, we adopt Moho density contrasts of 0.43 and 0.4 g/cm3 , and initial mean Moho depths of 37 and 20 km in the continental and oceanic domains, respectively. The number of iterations in the inversion is set to be 150, which is large enough to obtain an error lower than a pre-assigned convergence criterion. The estimated Moho depths range between 0 76 km, and are averaged at 36 and 15 km in continental and oceanic domain, respectively. Our results correlate very well with Crust1.0 with differences mostly within ±5.0 km. Compared to the low resolution of Crust1.0 in oceanic domain, our results have a much larger depth range reflecting diverse structures such as ridges, seamounts, volcanic chains and subduction zones. Base on this model, we find that young(<5 Ma) oceanic crust thicknesses show dependence on spreading rates: (1) From ultraslow (<4mm/yr) to slow (4 45mm/yr) spreading ridges, the thicknesses increase dramatically; (2)From slow to fast (45 95mm/yr) spreading ridges , the thickness decreases slightly; (3) For the super-fast ridges (>95mm/yr) we observe relatively thicker crust. Conductive cooling of lithosphere may constrain the melting of the mantle at ultraslow spreading centers. Lower mantle temperatures indicated by deeper Curie depths at slow and fast spreading ridges may decrease the volume of magmatism and crustal thickness. This new global model of gravity-derived Moho depth, combined with geochemical and Curie point depth, can be used to investigate thermal evolution of lithosphere.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.
2012-12-01
It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.
Thermal Aging of Oceanic Asthenosphere
NASA Astrophysics Data System (ADS)
Paulson, E.; Jordan, T. H.
2013-12-01
To investigate the depth extent of mantle thermal aging beneath ocean basins, we project 3D Voigt-averaged S-velocity variations from an ensemble of global tomographic models onto a 1x1 degree age-based regionalization and average over bins delineated by equal increments in the square-root of crustal age. From comparisons among the bin-averaged S-wave profiles, we estimate age-dependent convergence depths (minimum depths where the age variations become statistically insignificant) as well as S travel times from these depths to a shallow reference surface. Using recently published techniques (Jordan & Paulson, JGR, doi:10.1002/jgrb.50263, 2013), we account for the aleatory variability in the bin-averaged S-wave profiles using the angular correlation functions of the individual tomographic models, we correct the convergence depths for vertical-smearing bias using their radial correlation functions, and we account for epistemic uncertainties through Bayesian averaging over the tomographic model ensemble. From this probabilistic analysis, we can assert with 90% confidence that the age-correlated variations in Voigt-averaged S velocities persist to depths greater than 170 km; i.e., more than 100 km below the mean depth of the G discontinuity (~70 km). Moreover, the S travel time above the convergence depth decays almost linearly with the square-root of crustal age out to 200 Ma, consistent with a half-space cooling model. Given the strong evidence that the G discontinuity approximates the lithosphere-asthenosphere boundary (LAB) beneath ocean basins, we conclude that the upper (and probably weakest) part of the oceanic asthenosphere, like the oceanic lithosphere, participates in the cooling that forms the kinematic plates, or tectosphere. In other words, the thermal boundary layer of a mature oceanic plate appears to be more than twice the thickness of its mechanical boundary layer. We do not discount the possibility that small-scale convection creates heterogeneities in the oceanic upper mantle; however, the large-scale flow evidently advects these small-scale heterogeneities along with the plates, allowing the upper part of the asthenosphere to continue cooling with lithospheric age. The dominance of this large-scale horizontal flow may be related to the high stresses associated with its channelization in a thin (~100 km) asthenosphere, as well as the possible focusing of the subtectospheric strain in a low-viscosity channel immediately above the 410-km discontinuity. These speculations aside, the observed thermal aging of oceanic asthenosphere is inconsistent with a tenet of plate tectonics, the LAB hypothesis, which states that lithospheric plates are decoupled from deeper mantle flow by a shear zone in the upper part of the asthenosphere.
Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats.
Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee
2016-08-01
Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming.
Enceladus: Starting Hydrothermal Activity
NASA Technical Reports Server (NTRS)
Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.
2011-01-01
We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Alexey
2013-11-23
The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.
Solar Energy: Its Technologies and Applications
DOE R&D Accomplishments Database
Auh, P. C.
1978-06-01
Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.
Dynamics of Cross-Shore Thermal Exchange Over Nonuniform Bathymetry
NASA Astrophysics Data System (ADS)
Safaie, A.; Davis, K. A.; Pawlak, G. R.
2016-02-01
The hydrodynamics of cross-shelf circulation on the inner shelf influence coastal ecosystems through the transport of heat, salt, nutrients, and planktonic organisms. While cross-shelf exchange on wide continental shelves has received a fair amount of attention in literature, the mechanisms for cross-shelf exchange on narrow shelves with steep, rough, and highly irregular bathymetry, characteristic of coral reef shorelines, is not well understood. Previous observational studies from reefs at Eilat, Israel and Oahu, Hawaii, have demonstrated the importance of surface heat flux in driving cross-shore transport. While both sites experienced offshore surface flow during daytime warming periods and offshore flow near the bed during nighttime cooling, the phase differences between the surface heat fluxes and thermal responses at the two sites indicate different dynamic flow regimes based on momentum and thermal balances. This study examines the dynamical structure of thermally driven flows using numerical modeling to investigate the hypothesis that thermally driven baroclinic exchange is important to cross-shore circulation for tropical coastlines. We use the open-source Regional Ocean Modeling System (ROMS), a free-surface, three-dimensional circulation model, considering a simple wedge case with uniform bathymetry in the alongshore direction, and heat flux applied uniformly to the surface. We examine different flow regimes using scaling of the momentum and thermal balance equations. We also explore the parameter space for the momentum balance describing cross-shore thermal exchange, and thoroughly characterize the exchange structure by investigating the dominant forcing regimes, the mechanisms responsible for modulating thermal circulation, and the effects of temporal variations in vertical mixing and heating/cooling buoyancy flux. Results are compared against existing data sets to evaluate the ability of the model to represent these flows.
Long-period seismology on Europa: 1. Physically consistent interior models
NASA Astrophysics Data System (ADS)
Cammarano, F.; Lekic, V.; Manga, M.; Panning, M.; Romanowicz, B.
2006-12-01
In order to examine the potential of seismology to determine the interior structure and properties of Europa, it is essential to calculate seismic velocities and attenuation for the range of plausible interiors. We calculate a range of models for the physical structure of Europa, as constrained by the satellite's composition, mass, and moment of inertia. We assume a water-ice shell, a pyrolitic or a chondritic mantle, and a core composed of pure iron or iron plus 20 weight percent of sulfur. We consider two extreme mantle thermal states: hot and cold. Given a temperature and composition, we determine density, seismic velocities, and attenuation using thermodynamical models. While anelastic effects will be negligible in a cold mantle and the brittle part of the ice shell, strong dispersion and dissipation are expected in a hot convective mantle and the bulk of the ice shell. There is a strong relationship between different thermal structures and compositions. The ``hot'' mantle may maintain temperatures consistent with a liquid core made of iron plus light elements. For the ``cold scenarios,'' the possibility of a solid iron core cannot be excluded, and it may even be favored. The depths of the ocean and core-mantle boundary are determined with high precision, 10 km and 40 km, respectively, once we assume a composition and thermal structure. Furthermore, the depth of the ocean is relatively insensitive (4 km) to the core composition used.
Thermal Modeling and Analysis of the Hurricane Imaging Radiometer (HIRad)
NASA Technical Reports Server (NTRS)
Mauro, Stephanie
2013-01-01
The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.
Early-life exposure to climate change impairs tropical shark survival.
Rosa, Rui; Baptista, Miguel; Lopes, Vanessa M; Pegado, Maria Rita; Paula, José Ricardo; Trübenbach, Katja; Leal, Miguel Costa; Calado, Ricardo; Repolho, Tiago
2014-10-22
Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (ΔpH = 0.5) and warming (+4°C; 30°C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Early-life exposure to climate change impairs tropical shark survival
Rosa, Rui; Baptista, Miguel; Lopes, Vanessa M.; Pegado, Maria Rita; Ricardo Paula, José; Trübenbach, Katja; Leal, Miguel Costa; Calado, Ricardo; Repolho, Tiago
2014-01-01
Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (ΔpH = 0.5) and warming (+4°C; 30°C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species. PMID:25209942
Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.
2017-01-01
The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.
NASA Astrophysics Data System (ADS)
Tello Saenz, C. A.; Hackspacher, P. C.; Hadler Neto, J. C.; Iunes, P. J.; Guedes, S.; Ribeiro, L. F. B.; Paulo, S. R.
2003-01-01
Apatite fission-track analysis was used for the determination of thermal histories and ages in Precambrian areas of southeast Brazil. Together with geological and geomorphologic information, these ages enable us to quantify the thermal histories and timing of Mesozoic and Cenozoic epirogenic and tectonic processes. The collected samples are from different geomorphologic blocks: the high Mantiqueira mountain range (HMMR) with altitude above 1000 m, the low Mantiqueira mountain range (LMMR) under 1000 m, the Serra do Mar mountain range (SMMR), the Jundiaí and Atlantic Plateaus, and the coastline, all of which have distinct thermal histories. During the Aptian (˜120 Ma), there was an uplift of the HMMR, coincident with opening of the south Atlantic Ocean. Its thermal history indicates heating (from ˜60 to ˜80 °C) until the Paleocene, when rocks currently exposed in the LMMR reached temperatures of ˜100 °C. In this period, the Serra do Mar rift system and the Japi erosion surface were formed. The relief records the latter. During the Late Cretaceous, the SMMR was uplifted and probably linked to its origin; in the Tertiary, it experienced heating from ˜60 to ˜90 °C, then cooling that extends to the present. The SMMR, LMMR, and HMMR were reactivated mainly in the Paleocene, and the coastline during the Paleogene. These processes are reflected in the sedimentary sequences and discordances of the interior and continental margin basins.
Geodynamical simulation of the RRF triple junction
NASA Astrophysics Data System (ADS)
Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.
2017-12-01
Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.
Thermoelastic stress in oceanic lithosphere due to hotspot reheating
NASA Technical Reports Server (NTRS)
Zhu, Anning; Wiens, Douglas A.
1991-01-01
The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.
Climate sensitivity to Arctic seaway restriction during the early Paleogene
NASA Astrophysics Data System (ADS)
Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.
2009-09-01
The opening and closing of ocean gateways affects the global distribution of heat, salt, and moisture, potentially driving climatic change on regional to global scales. Between 65 and 45 million years ago (Ma), during the early Paleogene, exchange between the Arctic and global oceans occurred through two narrow and shallow seaways, the Greenland-Norway seaway and the Turgai Strait. Sediments from the Arctic Ocean suggest that, during this interval, the surface ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions in the Paleogene Arctic remain uncertain. Here we show results from an isotope-enabled, atmosphere-ocean general circulation model, which indicate that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the Arctic seaways. We also present modelled estimates of seawater and calcite δ18O for the Paleogene. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~ 6 psu and warming of sea-surface temperatures by 2 °C in the North Atlantic and 5-10 °C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We propose that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates and supports a tectonic trigger hypothesis for the Paleocene Eocene Thermal Maximum (PETM).
Influence of the North Atlantic dipole on climate changes over Eurasia
NASA Astrophysics Data System (ADS)
Serykh, I. V.
2016-11-01
In this paper, some hydrophysical and meteorological characteristics of negative (1948-1976 and 1999-2015) and positive (1977-1998) phases of the Pacific Decadal Oscillation (PDO) and Interdecadal Pacific Oscillation (IPO) in the North Atlantic and Eurasia are constructed and investigated. Specifically, the near-surface temperature, sea-level atmospheric pressure, wind speed, heat content of the upper 700 m ocean layer, water temperature and salinity at various depths, the latent and sensible heat fluxes from the ocean to the atmosphere are analyzed. The fields obtained are in good agreement and complement each other. This gives important information about the hydrometeorological conditions in the region under study. Analysis of these data has shown that in the upper 1000 m North Atlantic layer there is a thermal dipole which can be interpreted as an oceanic analog of the atmospheric North Atlantic Oscillation (NAO). An index of the North Atlantic Dipole (NAD) as the difference between the mean heat contents in the upper 700 m oceanic layer between the regions (50°-70° N; 60°-10° W) and (20°-40° N; 80°-30° W) is proposed. A possible physical mechanism of the internal oscillations with a quasi-60-year period in the North Atlantics- Eurasia system of ocean-atmosphere interactions is discussed.
NASA Astrophysics Data System (ADS)
Frouin, Robert; Ueyoshi, Kyozo; Kampel, Milton
2007-09-01
Numerical experiments conducted with an ocean general ocean circulation model reveal the potential influence of solar radiation absorbed by phytoplankton on the thermal structure and currents of the Tropical Atlantic Ocean. In the model, solar radiation penetration is parameterized explicitly as a function of chlorophyll-a concentration, the major variable affecting water turbidity in the open ocean. Two types of runs are performed, a clear water (control) run with a constant minimum chlorophyll-a concentration of 0.02 mgm -3, and a turbid water (chlorophyll) run with space- and time-varying chlorophyll-a concentration from satellite data. The difference between results from the two runs yields the biological effects. In the chlorophyll run, nutrients and biology production are implicitly taken into account, even though biogeochemical processes are not explicitly included, since phytoplankton distribution, prescribed from observations, is the result of those processes. Due to phytoplankton-radiation forcing, the surface temperature is higher by 1-2 K on average annually in the region of the North Equatorial current, the Northern part of the South Equatorial current, and the Caribbean system, and by 3-4 K in the region of the Guinea current. In this region, upwelling is reduced, and heat trapped in the surface layers by phytoplankton is not easily removed. The surface temperature is lower by 1 K in the Northern region of the Benguela current, due to increased upwelling. At depth, the equatorial Atlantic is generally cooler, as well as the eastern part of the tropical basin (excluding the region of the sub-tropical gyres). The North and South equatorial currents, as well as the Equatorial undercurrent, are enhanced by as much as 3-4 cms -1, and the circulation of the subtropical gyres is increased. Pole-ward heat transport is slightly reduced North of 35°N, suggesting that phytoplankton, by increasing the horizontal return flow in the subtropical region, may exert a cooling influence on higher latitude regions. The findings indicate that biology-induced buoyancy plays a significant role, in an indirect if not direct way, in the variability of the Tropical Atlantic Ocean, with consequences on atmospheric circulation and climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M E
The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithosphericmore » keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.« less
Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models
NASA Astrophysics Data System (ADS)
Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.
2017-03-01
We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.
Real-Time Vertical Temperature, and Velocity Profiles from a Wave Glider
2012-09-30
Ocean in September 2010 during the ITOP experiment. ADOS platforms are also deployed by the NOAA funded Global Drifter Program in the north Atlantic...class of instrument is termed ADOS (Autonomous Drifting Ocean Station) and several variants exist. The ADOS-A, which measures temperature and...during the hurricane season to measure the thermal structure of the ocean ahead of storms and in their wakes. Both the ADOS-A and the M- ADOS-A are
Boyd, Philip W.; Rynearson, Tatiana A.; Armstrong, Evelyn A.; Fu, Feixue; Hayashi, Kendra; Hu, Zhangxi; Hutchins, David A.; Kudela, Raphael M.; Litchman, Elena; Mulholland, Margaret R.; Passow, Uta; Strzepek, Robert F.; Whittaker, Kerry A.; Yu, Elizabeth; Thomas, Mridul K.
2013-01-01
“It takes a village to finish (marine) science these days” Paraphrased from Curtis Huttenhower (the Human Microbiome project) The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide scientific studies. This study provides physiological datasets fundamental to understanding functional responses of phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean. This community-wide approach provides both comprehensive and internally consistent datasets produced over considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be used to parameterise global ocean model projections of environmental change and to provide initial insights into the magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular trait measurements from the prior literature might introduce unknown errors and bias into modelling projections. Using our community-wide approach we can reduce such protocol-driven variability in culture studies, and can begin to address more complex issues such as the effect of multiple environmental drivers on ocean biota. PMID:23704890
NASA Astrophysics Data System (ADS)
Wang, Jie; Russell, Bayden D.; Ding, Meng-Wen; Dong, Yun-Wei
2018-05-01
Understanding physiological responses of organisms to warming and ocean acidification is the first step towards predicting the potential population- and community-level ecological impacts of these stressors. Increasingly, physiological plasticity is being recognized as important for organisms to adapt to the changing microclimates. Here, we evaluate the importance of physiological plasticity for coping with ocean acidification and elevated temperature, and its variability among individuals, of the intertidal limpet Cellana toreuma from the same population in Xiamen. Limpets were collected from shaded mid-intertidal rock surfaces. They were acclimated under combinations of different pCO2 concentrations (400 and 1000 ppm, corresponding to a pH of 8.1 and 7.8) and temperatures (20 and 24 °C) in a short-term period (7 days), with the control conditions (20 °C and 400 ppm) representing the average annual temperature and present-day pCO2 level at the collection site. Heart rates (as a proxy for metabolic performance) and expression of genes encoding inducible and constitutive heat-shock proteins (hsp70 and hsc70) at different heat-shock temperatures (26, 30, 34, and 38 °C) were measured. Hsp70 and Hsc70 play important roles in protecting cells from heat stresses, but have different expression patterns, with Hsp70 significantly increased in expression during stress and Hsc70 constitutively expressed and only mildly induced during stress. Analysis of heart rate showed significantly higher temperature coefficients (Q10 rates) for limpets at 20 °C than at 24 °C and post-acclimation thermal sensitivity of limpets at 400 ppm was lower than at 1000 ppm. Expression of hsp70 linearly increased with the increasing heat-shock temperatures, with the largest slope occurring in limpets acclimated under a future scenario (24 °C and 1000 ppm pCO2). These results suggested that limpets showed increased sensitivity and stress response under future conditions. Furthermore, the increased variation in physiological response under the future scenario indicated that some individuals have higher physiological plasticity to cope with these conditions. While short-term acclimation to reduced pH seawater decreases the ability of partial individuals against thermal stress, physiological plasticity and variability seem to be crucial in allowing some intertidal animals to survive in a rapidly changing environment.
Bacterial community dynamics are linked to patterns of coral heat tolerance
NASA Astrophysics Data System (ADS)
Ziegler, Maren; Seneca, Francois O.; Yum, Lauren K.; Palumbi, Stephen R.; Voolstra, Christian R.
2017-02-01
Ocean warming threatens corals and the coral reef ecosystem. Nevertheless, corals can be adapted to their thermal environment and inherit heat tolerance across generations. In addition, the diverse microbes that associate with corals have the capacity for more rapid change, potentially aiding the adaptation of long-lived corals. Here, we show that the microbiome of reef corals is different across thermally variable habitats and changes over time when corals are reciprocally transplanted. Exposing these corals to thermal bleaching conditions changes the microbiome for heat-sensitive corals, but not for heat-tolerant corals growing in habitats with natural high heat extremes. Importantly, particular bacterial taxa predict the coral host response in a short-term heat stress experiment. Such associations could result from parallel responses of the coral and the microbial community to living at high natural temperatures. A competing hypothesis is that the microbial community and coral heat tolerance are causally linked.
Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill
NASA Astrophysics Data System (ADS)
Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.
2010-12-01
Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR) information. Spatial variations and day-to-day changes in the visible oil concentration on the surface of the water were observed in performing these measurements. An assessment of the thermal imagery variation will be made based on the absolute calibration of the sensor to determine if the visible variation was due to properties of the reflected light or of the actual oil composition. Comparisons with satellite data (both SAR and thermal infrared images) and buoy data will also be included.
Miller, K.G.; Wright, J.D.; Katz, M.E.; Browning, J.V.; Cramer, B.S.; Wade, B.S.; Mizintseva, S.F.
2007-01-01
18O increase. This large ice sheet became a driver of climate change, not just a response to it, causing increased latitudinal thermal gradients and a spinning up of the oceans that, in turn, caused a dramatic reorganization of ocean circulation and chemistry.
Large-amplitude internal waves sustain coral health during thermal stress
NASA Astrophysics Data System (ADS)
Schmidt, Gertraud M.; Wall, Marlene; Taylor, Marc; Jantzen, Carin; Richter, Claudio
2016-09-01
Ocean warming is a major threat for coral reefs causing widespread coral bleaching and mortality. Potential refugia are thus crucial for coral survival. Exposure to large-amplitude internal waves (LAIW) mitigated heat stress and ensured coral survival and recovery during and after an extreme heat anomaly. The physiological status of two common corals, Porites lutea and Pocillopora meandrina, was monitored in host and symbiont traits, in response to LAIW-exposure throughout the unprecedented 2010 heat anomaly in the Andaman Sea. LAIW-exposed corals of both species survived and recovered, while LAIW-sheltered corals suffered partial and total mortality in P. lutea and P. meandrina, respectively. LAIW are ubiquitous in the tropics and potentially generate coral refuge areas. As thermal stress to corals is expected to increase in a warming ocean, the mechanisms linking coral bleaching to ocean dynamics will be crucial to predict coral survival on a warming planet.
Test results of heat exchanger cleaning in support of ocean thermal energy conversion
NASA Astrophysics Data System (ADS)
Lott, D. F.
1980-12-01
This report documents tests conducted at the Naval Coastal Systems Center (NCSC) in support of the Department of Energy's Ocean Thermal Energy Conversion (OTEC) Program. These tests covered the period September 1978 to May 1980 and evaluated flow-driven brushes, recirculating sponge rubber balls, chlorination, and mechanical system/chlorination combinations for in-situ cleaning of two potential heat exchanger materials: titanium and aluminum alloy 5052. Tests were successful when fouling resistance was 0.0003 sq. ft. hr-F/Btu. Results indicated systems and cleaning techniques using brushes, soft sponge balls, and various concentrations of chlorine had some potential for maintaining heat transfer efficiency.
Cazenave, Anny; Llovel, William
2010-01-01
Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.
Hydrothermal systems in small ocean planets.
Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael
2007-12-01
We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).
Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?
Habary, Adam; Johansen, Jacob L; Nay, Tiffany J; Steffensen, John F; Rummer, Jodie L
2017-02-01
Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species. © 2016 John Wiley & Sons Ltd.
The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming.
Ramsby, Blake D; Hoogenboom, Mia O; Smith, Hillary A; Whalan, Steve; Webster, Nicole S
2018-05-29
Coral reefs face many stressors associated with global climate change, including increasing sea surface temperature and ocean acidification. Excavating sponges, such as Cliona spp., are expected to break down reef substrata more quickly as seawater becomes more acidic. However, increased bioerosion requires that Cliona spp. maintain physiological performance and health under continuing ocean warming. In this study, we exposed C. orientalis to temperature increments increasing from 23 to 32 °C. At 32 °C, or 3 °C above the maximum monthly mean (MMM) temperature, sponges bleached and the photosynthetic capacity of Symbiodinium was compromised, consistent with sympatric corals. Cliona orientalis demonstrated little capacity to recover from thermal stress, remaining bleached with reduced Symbiodinium density and energy reserves after one month at reduced temperature. In comparison, C. orientalis was not observed to bleach during the 2017 coral bleaching event on the Great Barrier Reef, when temperatures did not reach the 32 °C threshold. While C. orientalis can withstand current temperature extremes (<3 °C above MMM) under laboratory and natural conditions, this species would not survive ocean temperatures projected for 2100 without acclimatisation or adaptation (≥3 °C above MMM). Hence, as ocean temperatures increase above local thermal thresholds, C. orientalis will have a negligible impact on reef erosion.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1980-01-01
The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goreau, T.J.; Hayes, R.L.; Strong, A.
Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indianmore » Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.« less
Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiyong; Lu, Jian; Liu, Fukai
The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although themore » weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.« less
The origin of oceanic crust and metabasic rocks protolith, the Luk Ulo Mélange Complex, Indonesia
NASA Astrophysics Data System (ADS)
Permana, H.; Munasri; Mukti, Maruf M.; Nurhidayati, A. U.; Aribowo, S.
2018-02-01
The Luk Ulo Mélange Complex (LUMC) is composed of tectonic slices of rocks that surrounded by scaly clay matrix. These rocks consist of serpentinite, gabbro, diabase, and basalt, eclogite, blueschist, amphibolite, schist, gneiss, phylite and slate, granite, chert, red limestone, claystone and sandstone. The LUMC was formed since Paleocene to Eocene, gradually uplifted of HP-UHP metabasic-metapelite (P: 20-27kbar; T: 410-628°C) to near surface mixed with hemipelagic sedimentary rocks. The metamorphic rocks were formed during 101-125 Ma (Early Cretaceous) within 70 to 100 km depth and ∼6°C/km thermal gradient. It took about 50-57 Myr for these rocks to reach the near surface during Paleocene-Eocene, with an uplift rate at ∼1.4-1.8 km/year to form the mélange complex. The low thermal gradient was due to subduction of old and cold oceanic crust. The subducted oceanic crust (MORB) as protolith of Cretaceous metabasic rocks must be older than Cretaceous. The data show that the basalt of oceanic crust is Cretaceous (130-81 Ma) comparable to the age of the cherts (Early to Late Cretaceous). Therefore, we consider that neither oceanic crust exposed in LUMC nor all of part of the old oceanic crust is the protolith of LUMC metabasic subducted beneath the Eurasian Plate. These oceanic rocks possibly originated or part of the edge of micro-continental that merged as a part of the LUMC during the collision with the Eurasian margin.
Decadal trends in deep ocean salinity and regional effects on steric sea level
NASA Astrophysics Data System (ADS)
Purkey, S. G.; Llovel, W.
2017-12-01
We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.
NASA Astrophysics Data System (ADS)
Grad, Marek; Mjelde, Rolf; Krysiński, Lech; Czuba, Wojciech; Libak, Audun; Guterch, Aleksander
2015-03-01
As a part of the large international panel "IPY Plate Tectonics and Polar Gateways" within the "4th International Polar Year" framework, extensive geophysical studies were performed in the area of southern Svalbard, between the Mid-Atlantic Ridge and the Barents Sea. Seismic investigations were performed along three refraction and wide-angle reflection seismic lines. Integrated with gravity data the seismic data were used to determine the structure of the oceanic crust, the transition between continent and ocean (COT), and the continental structures down to the lithosphere-asthenosphere system (LAB). We demonstrate how modeling of multiple water waves can be used to determine the sound velocity in oceanic water along a seismic refraction profile. Our 2D seismic and density models documents 4-9 km thick oceanic crust formed at the Knipovich Ridge, a distinct and narrow continent-ocean transition (COT), the Caledonian suture zone between Laurentia and Barentsia, and 30-35 km thick continental crust beneath the Barents Sea. The COT west of southern Spitsbergen expresses significant excess density (more than 0.1 g/cm3 in average), which is characteristic for mafic/ultramafic and high-grade metamorphic rocks. The results of the gravity modeling show relatively weak correlation of the density with seismic velocity in the upper mantle, which suggests that the horizontal differences between oceanic and continental mantle are dominated by mineralogical changes, although a thermal effect is also present. The seismic velocity change with depth suggests lherzolite composition of the uppermost oceanic mantle, and dunite composition beneath the continental crust.
2010-09-29
emission of sulfur and nitrogen compounds that are produced from the combustion of petroleum derived fossil fuel. 2.0 INTRODUCTION A costlbenefit and...Thermal Energy from Oceans. Enviro . Sci. & Eng. 2007,4,35. 13. Avery, W. H.; Wu, C. Renewable Energy From The Ocean; Oxford University Press: New York
Coupled Regional Ocean-Atmosphere Modeling of the Mount Pinatubo Impact on the Red Sea
NASA Astrophysics Data System (ADS)
Stenchikov, G. L.; Osipov, S.
2017-12-01
The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.
NASA Astrophysics Data System (ADS)
Kwon, B. H.; BéNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.
1998-10-01
The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1° to 2°C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1° to 2°C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems linked with the secondary circulation due to the SST front.
Mantle thermal history during supercontinent assembly and breakup
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Zhong, S.
2013-12-01
We use mantle convection simulations driven by plate motion boundary conditions to investigate changes in mantle temperature through time. It has been suggested that circum-Pangean subduction prevented convective thermal mixing between sub-continental and sub-oceanic regions. We performed thermo-chemical simulations of mantle convection with velocity boundary conditions based on plate motions for the past 450 Myr using Earth-like Rayleigh number and ~60% internal heating using three different plate motion models for the last 200 Myr [Lithgow-Bertelloni and Richards 1998; Gurnis et al. 2012; Seton et al. 2012; Zhang et al. 2010]. We quantified changes in upper-mantle temperature between 200-1000 km depth beneath continents (defined as the oldest 30% of Earth's surface) and beneath oceans. Sub-continental upper mantle temperature was relatively stable and high between 330 and 220 Ma, coincident with the existence of the supercontinent Pangea. The average sub-continental temperature during this period was, however, only ~10 K greater than during the preceding 100 Myr. In the ~200 Myr since the breakup of Pangea, sub-continental temperatures have decreased only ~15 K in excess of the 0.02 K/Myr secular cooling present in our models. Sub-oceanic upper mantle temperatures did not vary more than 5 K between 400 and 200 Ma and the cooling trend following Pangea breakup is less pronounced. Recent geochemical observations imply rapid upper mantle cooling of O(10^2) K during continental breakup; our models do not produce warming of this magnitude beneath Pangea or cooling of similar magnitude associated with the breakup of Pangea. Our models differ from those that produce strong sub-continental heating in that the circum-Pangean subduction curtain does not completely inhibit mixing between the sub-continental and sub-oceanic regions and we include significant internal heating, which limits the rate of temperature increase. Heat transport in our simulations is controlled to first order by plate motions. Most of the temporal variability in surface heat flow is driven by variations in seafloor spreading rate and the accompanying changes in slab velocities dominate variations in buoyancy flux at all mantle depths. Variations in plume buoyancy flux are small but are correlated with the slab buoyancy flux variations.
The thermal environment of Cascadia Basin
NASA Astrophysics Data System (ADS)
Johnson, H. Paul; Hautala, Susan L.; Bjorklund, Tor A.
2012-07-01
Located adjacent to the NE Pacific convergent boundary, Cascadia Basin has a global impact well beyond its small geographic size. Composed of young oceanic crust formed at the Juan de Fuca Ridge, igneous rocks underlying the basin are partially insulated from cooling of their initial heat of formation by a thick layer of pelagic and turbidite sediments derived from the adjacent North American margin. The igneous seafloor is eventually consumed at the Cascadia subduction zone, where interactions between the approaching oceanic crust and the North American continental margin are partially controlled by the thermal environment. Within Cascadia Basin, basement topographic relief varies dramatically, and sediments have a wide range of thickness and physical properties. This variation produces regional differences in heat flow and basement temperatures for seafloor even of similar age. Previous studies proposed a north-south thermal gradient within Cascadia Basin, with high geothermal flux and crustal temperatures measured in the heavily sedimented northern portion near Vancouver Island and lower than average heat flux and basement temperatures predicted for the central and southern portions of the basin. If confirmed, this prediction has implications for processes associated with the Cascadia subduction zone, including the location of the "locked zone" of the megathrust fault. Although existing archival geophysical data in the central and southern basin are sparse, nonuniformly distributed, and derived from a wide range of historical sources, a substantial N-S geothermal gradient appears to be confirmed by our present compilation of combined water column and heat flow measurements.
Peptide synthesis under Enceladus hydrothermal condition
NASA Astrophysics Data System (ADS)
Fujishima, Kosuke; Takano, Yoshinori; Takai, Ken; Takahagi, Wataru; Adachi, Keito; Shibuya, Takazo; Tomita, Masaru
2016-07-01
Enceladus is one of the moons of Saturn, and it has been known to harbor interior ocean beneath the icy crust. The mass spectrometry data obtained by Cassini spacecraft indicates the presence of salty, and most likely alkaline ocean containing various organic compounds. While geochemical and other radiation related processes for in situ production of organics remain elusive, thermally unaltered carbonaceous chondrites, consisting the main body of Enceladus are known to be enriched with organic matters potentially including the building blocks of life (e.g., amino acids and amino acid precursors). Assuming that abiotic amino acids exist in the Enceladus alkaline seawater, we hypothesized that water-rock interaction may contribute to condensation of localized amino acids leading to peptide formation. In order to test this hypothesis, we have developed the Enceladus hydrothermal reactor based on the chemical constraints obtained through previous experimental and theoretical studies. We have added six different amino acids and introduced a thermal fluctuation system simulating the periodic tidal heating of the interior chondritic core. Total, eight sea water samples were obtained over the course of 147 days of experiment. While detection of peptide using Capillary Electrophoresis Time-of-Flight Mass Spectrometry (CE-TOF/MS) is still at the preliminary stage, so far pH monitoring and H2 and CO2 Gas Chromatography Mass Spectrometry (GC-MS) data clearly indicated the occurrence of serpentinization/carbonation reaction. Here, we discuss the interaction between aqueous alteration reactions and thermal cycling processes for the role of abiotic peptide formation under the Enceladus hydrothermal condition.
Sundby, Svein; Kristiansen, Trond
2015-01-01
Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds’ oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for recruitment to the population. An example of adaptation to such conditions is Cape hake spawning above the critical layer in the Northern Benguela upwelling ecosystem. The eggs rise slowly in the onshore subsurface current below the Ekman layer, hence being advected inshore where the hatched larvae concentrate with optimal feeding conditions. PMID:26465149
Observed ocean thermal response to Hurricanes Gustav and Ike
NASA Astrophysics Data System (ADS)
Meyers, Patrick C.; Shay, Lynn K.; Brewster, Jodi K.; Jaimes, Benjamin
2016-01-01
The 2008 Atlantic hurricane season featured two hurricanes, Gustav and Ike, crossing the Gulf of Mexico (GOM) within a 2 week period. Over 400 airborne expendable bathythermographs (AXBTs) were deployed in a GOM field campaign before, during, and after the passage of Gustav and Ike to measure the evolving upper ocean thermal structure. AXBT and drifter deployments specifically targeted the Loop Current (LC) complex, which was undergoing an eddy-shedding event during the field campaign. Hurricane Gustav forced a 50 m deepening of the ocean mixed layer (OML), dramatically altering the prestorm ocean conditions for Hurricane Ike. Wind-forced entrainment of colder thermocline water into the OML caused sea surface temperatures to cool by over 5°C in GOM common water, but only 1-2°C in the LC complex. Ekman pumping and a near-inertial wake were identified by fluctuations in the 20°C isotherm field observed by AXBTs and drifters following Hurricane Ike. Satellite estimates of the 20° and 26°C isotherm depths and ocean heat content were derived using a two-layer model driven by sea surface height anomalies. Generally, the satellite estimates correctly characterized prestorm conditions, but the two-layer model inherently could not resolve wind-forced mixing of the OML. This study highlights the importance of a coordinated satellite and in situ measurement strategy to accurately characterize the ocean state before, during, and after hurricane passage, particularly in the case of two consecutive storms traveling through the same domain.
Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling
NASA Astrophysics Data System (ADS)
Pedro, Joel B.; Jochum, Markus; Buizert, Christo; He, Feng; Barker, Stephen; Rasmussen, Sune O.
2018-07-01
The thermal bipolar ocean seesaw hypothesis was advanced by Stocker and Johnsen (2003) as the 'simplest possible thermodynamic model' to explain the time relationship between Dansgaard-Oeschger (DO) and Antarctic Isotope Maxima (AIM) events. In this review we combine palaeoclimate observations, theory and general circulation model experiments to advance from the conceptual model toward a process understanding of interhemispheric coupling and the forcing of AIM events. We present four main results: (1) Changes in Atlantic heat transport invoked by the thermal seesaw are partially compensated by opposing changes in heat transport by the global atmosphere and Pacific Ocean. This compensation is an integral part of interhemispheric coupling, with a major influence on the global pattern of climate anomalies. (2) We support the role of a heat reservoir in interhemispheric coupling but argue that its location is the global interior ocean to the north of the Antarctic Circumpolar Current (ACC), not the commonly assumed Southern Ocean. (3) Energy budget analysis indicates that the process driving Antarctic warming during AIM events is an increase in poleward atmospheric heat and moisture transport following sea ice retreat and surface warming over the Southern Ocean. (4) The Antarctic sea ice retreat is itself driven by eddy-heat fluxes across the ACC, amplified by sea-ice-albedo feedbacks. The lag of Antarctic warming after AMOC collapse reflects the time required for heat to accumulate in the ocean interior north of the ACC (predominantly the upper 1500 m), before it can be mixed across this dynamic barrier by eddies.
The effect of a realistic thermal diffusivity on numerical model of a subducting slab
NASA Astrophysics Data System (ADS)
Maierova, P.; Steinle-Neumann, G.; Cadek, O.
2010-12-01
A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the realistic description of thermal properties in models of subducted slabs is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, F. T.; Iglesias, G.; Santos, P. R.
Marine renewable energy (MRE) is generates from waves, currents, tides, and thermal resources in the ocean. MRE has been identified as a potential commercial-scale source of renewable energy. This special topic presents a compilation of works selected from the 3rd IAHR Europe Congress, held in Porto, Portugal, in 2014. It covers different subjects relevant to MRE, including resource assessment, marine energy sector policies, energy source comparisons based on levelized cost, proof-of-concept and new-technology development for wave and tidal energy exploitation, and assessment of possible inference between wave energy converters (WEC).
The growth of finfish in global open-ocean aquaculture under climate change.
Klinger, Dane H; Levin, Simon A; Watson, James R
2017-10-11
Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds-Atlantic salmon ( Salmo salar ), gilthead seabream ( Sparus aurata ) and cobia ( Rachycentron canadum )-is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses. © 2017 The Author(s).
Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats
Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee
2016-01-01
Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming. PMID:27540589
Early Mars may have had a methanol ocean
NASA Astrophysics Data System (ADS)
Tang, Yan; Chen, Qianwang; Huang, Yujie
2006-01-01
The detection of gray crystalline hematite deposits on Mars by Thermal Emission Spectrometer (TES) has been used to argue for the presence of liquid water on Mars in the distant past. By methanol-thermal treatment of anhydrous FeCl 3 at low temperatures (70-160 °C), crystalline gray hematite with layered structure was synthesized, based on this result an alternative explanation for the origin of martian hematite deposits is suggested. Methane could be abundant in the early martian atmosphere; process such as photochemical oxidation of methane could result in the formation of ocean or pool of organic compounds such as methanol, which provides an environment for the formation of large-scale hematite deposits on Mars.
OTEC to hydrogen fuel cells - A solar energy breakthrough
NASA Astrophysics Data System (ADS)
Roney, J. R.
Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.
Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie
2013-04-01
It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness, incorporates a lithosphere thermal gravity anomaly correction and uses sediment thicknesses from 2D seismic data. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The difference between the sediment corrected RDA and the "synthetic" gravity derived RDA gives the component of the RDA which is not due to variations in oceanic crustal thickness. This RDA corrected for sediment loading and crustal thickness variation has a magnitude between +600m and +1000m (corresponding to anomalous uplift) and is comparable to that reported (+1km) by Lucazeau et al. (2008). We are unable to distinguish whether this anomalous uplift is due to mantle dynamic topography or anomalous subsidence with respect to classical rift model predictions.
The Effects of Tidal Dissipation on the Thermal Evolution of Triton
NASA Astrophysics Data System (ADS)
Gaeman, J.; Hier-Majumder, S.; Roberts, J. H.
2009-12-01
This work explores the coupled structural, thermal, and orbital evolution of Neptune's icy satellite, Triton. Recent geyser activity, ridge formation, and volatile transport, observed on Triton's surface, indicate possible activity within Triton's interior [1,2]. Triton is hypothesized to have been captured from an initially heliocentric orbit. During the circularization of Triton's orbit following its capture by Neptune, intense tidal heating likely contributed to the formation of a subsurface ocean [3]. Although the time of Triton's capture is not exactly known, it is likely that the event took place earlier in the history of our solar system, when the probability of binary capture was higher [4, 5]. This work examines the thermal evolution of Triton by employing a coupled tidal and two-phase thermal evolution model, for both an early and late capture scenario. Thermal evolution of a solid crust underlain by an H2O-NH3 mushy layer is driven by the evolution of tidal heating, as Triton's orbital eccentricity evolves following its capture. The governing equations for tidal heating are solved using the propagator matrix method [6, 7], while the governing equation for the coupled crust-multiphase layer thermal evolution were numerically solved using a finite volume discretization. The results indicate that the existence of a subsurface ocean is strongly dependent on ammonia content as larger concentrations of ammonia influence liquidus temperature and density contrast between solid and liquid phases [8]. Preliminary results indicate that an ocean likely exists for compositions containing a relatively high percentage of ammonia for both early and late capture of the satellite. In contrast, the subsurface ocean freezes completely for lower ammonia content. [1] Brown, R. H., Kirk, R. L. (1994). Journal of Geophysical Research 99, 1965-981. [2] Prockter, L. M., Nimmo, F., Pappalardo, R. T. (2005). Geophysical Research Letters 32, L14202. [3] Ross, M. N., Schubert, G. (1990). Geophysical Research Letters 17, 1749-752. [4] Agnor, C. B., Hamilton, D. P. (2006). Nature 441, 192-94. [5] Schenk, P. M., Zahnle, K. (2007). Icarus 192, 135-49. [6] Roberts, J. H., Nimmo, F. (2008). Icarus 194, 675-689. [7] Sabadini, R., Vermeersen, B., (2004). Global Dynamics of the Earth. Kluwer Academic Publishers. [8] Hogenboom, D. L., Kargel, J. S., Concolmagno, G. J., Holden, T. C., Lee, L., Buyyounouski, M. (1997). Icarus 128, 171-80.
Ocean acoustic reverberation tomography.
Dunn, Robert A
2015-12-01
Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.
Surface Energy Budget Disruption in the Northeast Pacific in Response to a Marine Heat Wave
NASA Astrophysics Data System (ADS)
Schmeisser, L.; Siedlecki, S. A.; Ackerman, T. P.; Bond, N. A.
2016-12-01
The surface energy budget of the ocean varies greatly over space and time as a result of ocean-atmosphere interactions. Changes in the budget due to variability in incident shortwave radiation can alter the thermal structure of the upper ocean, influence photosynthetic processes, and ultimately affect marine biogeochemistry. Thus, accurate representation of the surface energy budget over the oceans is essential for successfully modeling ocean processes and ocean-atmosphere interactions. Siedlecki et al. [Scientific Reports 6 (2016): 27203] show that NOAA's Climate Forecast System (CFS) shortwave radiation fields are biased high relative to CFS reanalysis data by about 50 W/m2 in the study area off the coast of Washington and Oregon. This bias varies in space and time and is known to exist in large scale climate models. The bias results in reduced skill in ocean forecasts at the surface, with specific impacts on sea surface temperature and biogeochemistry. In order to better understand the surface radiation balance over the ocean and the biases present in large scale climate models, we use several data sets to analyze an anomalous sea surface temperature event (marine heat wave, MHW) in the Northeast Pacific during 2014-2015. This `blob' of warm water disrupted ocean-atmosphere feedbacks in the region and altered the surface energy balance; thus, it provides a case study to better understand physical mechanisms at play in the surface radiation balance. CERES SYN1deg satellite data are compared to model output from CFS (1°x1° resolution) and WRF (12km resolution). We use all three fields to assess the impact of model resolution on the surface energy budget, as well as identify feedbacks in ocean-atmosphere processes that may differ between the observations and the models. Observational time series from 2009-15 of shortwave radiation, longwave radiation, and cloud parameters across 3 latitudinal lines (44.5N, 47N, 50N) in the Northeast Pacific (150W to 125W) clearly show disruption in cloud fraction, water content, and radiative fluxes during the MHW. The timing and spatial extent of the disruption differ in the models. The surface radiation budget for the Northeast Pacific over this time period from the observations and models is compared and discussed.
Impact-induced atmospheres and oceans on earth and Venus
NASA Technical Reports Server (NTRS)
Matsui, T.; Abe, Y.
1986-01-01
The effects of planetesimal-impact induced atmosphere formation on the earth and Venus are modeled to gain an indication why the two planets, at relatively equal distances from the sun, evolved so differently. Both planets gained approximately 10 to the 21 kg of water from the impacts. The water mass of the accreting planetesimals would have remained, initially, as a hot atmosphere. A two-stream approximation is defined for the temperature profile of a plane parallel atmosphere in radiative equilibrium. It is shown that the Venus atmosphere did not, as happened on earth, condense into a hot ocean after the impact epoch. Instead, the greenhouse effect caused the Venus equilibrium thermal structure to remain higher than the vapor pressure, keepinig the atmosphere in a vapor phase until the vapor dissociated and H2 atoms eventually escaped into space.
Sensitive study of the climatological SST by using ATSR global SST data sets
NASA Astrophysics Data System (ADS)
Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.
1995-12-01
Climatological sea surface temperature (SST) is an initial step for global climate processing monitoring. A comparison has been made by using Oberhuber's SST data set and two years monthly averaged SST from ATSR thermal band data to force the OGCM. In the eastern Pacific Ocean, these make only a small difference to model SST. In the western Pacific Ocean, the use of Oberhuber's data set gives higher climatological SST than that using ATSR data. The SSTs were also simulated for 1992 using climatological SSTs from two years monthly averaged ATSR data and Oberhuber data. The forcing with SST from ATSR data was found to give better SST simulation than that from Oberhuber's data. Our study has confirmed that ATSR can provide accurate monthly averaged global SST for global climate processing monitoring.
Effects of Drake Passage on the Ocean's Thermal and Mechanical Energy Budget in a Coupled AOGCM
NASA Astrophysics Data System (ADS)
von der Heydt, A. S.; Viebahn, J. P.
2016-12-01
During the Cenozoic Earth's climate has undergone a major long-term transition from `greenhouse' to `icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The gradual cooling may be seen as response to the overall slowly decreasing atmospheric CO2-concentration due to weathering processes in the Earth System, however, continental geometry has changed considerably over this period and the long-term gradual trend was interrupted, by several rapid transitions and periods where temperature and greenhouse gas concentrations seem to be decoupled. The Eocene-Oligocene boundary ( 34 Ma, E/O) and mid-Miocene climatic transition ( 13 Ma, MCT) reflect major phases of Antarctic ice sheet build-up and global climate cooling, while Northern Hemisphere ice sheets developed much later ( 2.7Ma). Thresholds in atmospheric CO2-concentration together with feedback mechanisms related to land ice formation are among the favoured mechanisms of these climatic transitions, while the long-proposed ocean circulation changes caused by opening of tectonic gateways seem to play a less direct role. The opening of the Southern Ocean gateways, however, has eventually led to the development of today's strongest ocean current, the Antarctic Circumpolar Current, playing a major role in the transport properties of the global ocean circulation. The overall state of the global ocean circulation, therefore, must precondition the climate system to dramatic events such as major ice sheet formation. Closing Drake Passage in ocean-only and coupled climate models under otherwise present-day boundary conditions has become a classic experiment, indicating that there exists a considerable uncertainty in the climate response of those models to a closed Drake Passage. Here we quantify the climate response to a closed Drake Passage in a state-of-the-art coupled climate model (CESM). We show that the ocean gateway mechanism is robust in the sense that the equatorward expansion of the Southern Ocean sub-polar gyres inevitably leads to widespread warming around Antarctica. Moreover, we provide a framework to characterise the ocean temperature response to a closed Drake Passage in terms of both the mechanical and thermal energy budget of the ocean.
Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum
Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.
2006-01-01
The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.
Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum.
Sluijs, Appy; Schouten, Stefan; Pagani, Mark; Woltering, Martijn; Brinkhuis, Henk; Sinninghe Damsté, Jaap S; Dickens, Gerald R; Huber, Matthew; Reichart, Gert-Jan; Stein, Ruediger; Matthiessen, Jens; Lourens, Lucas J; Pedentchouk, Nikolai; Backman, Jan; Moran, Kathryn
2006-06-01
The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.
Geothermal surveys in the oceanic volcanic island of Mauritius
NASA Astrophysics Data System (ADS)
Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio
2017-04-01
Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked to occur in the hotspot area thus seems to yield no particular thermal signature.
Modeling coral calcification accounting for the impacts of coral bleaching and ocean acidification
NASA Astrophysics Data System (ADS)
Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.
2014-01-01
Coral reefs are diverse ecosystems threatened by rising CO2 levels that are driving the observed increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are able to explicitly modelled by linking the rates of growth, recovery and calcification to the rates of bleaching and temperature stress induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The different characteristics of this model are also assessed against independent data to show that the model captures the observed response of corals. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles for understanding the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can reproduce much of the observed response of corals to changes in temperature and ocean acidification.
NASA Astrophysics Data System (ADS)
Rozanov, V. V.; Dinter, T.; Rozanov, A. V.; Wolanin, A.; Bracher, A.; Burrows, J. P.
2017-06-01
SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18-40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean-atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de.
A Smoking Gun for Methane Hydrate Release During the Paleocene-Eocene Thermal Maximum
NASA Astrophysics Data System (ADS)
Frieling, J.; Peterse, F.; Lunt, D. J.; Bohaty, S. M.; S Sinninghe Damsté, J.; Reichart, G. J.; Sluijs, A.
2016-12-01
The Paleocene-Eocene Thermal Maximum (PETM; 56 Ma) was a period of rapid 4-5ºC global warming and a global negative carbon isotope excursion (CIE) of 3-4.5‰, signaling the input of at least 1500 Gt of δ13C-depleted carbon into the ocean-atmosphere system. Methane from submarine hydrates has long been proposed as a carbon source, but direct and indirect evidence is lacking. We generated a new high-resolution TEX86 and δ13C record from Ocean Drilling Program Site 959 in the eastern tropical Atlantic and find that initial warming preceded the PETM CIE by 10 kyr. Moreover, time-shifted cross-correlations on these new and published temperature-δ13C data imply that substantial (2-3 °C) warming lead 13C-depleted carbon injection by an average of 2-3 kyr globally. Finally, a data compilation shows that global burial fluxes of biogenic Ba approximately doubled across all depths of the ocean studied, which on PETM time scales can only be explained by significant Ba addition to the oceans. Submarine hydrates are Ba-rich and require warming to dissociate. The simplest explanation for the temperature lead and Ba addition to the ocean is that methane hydrate dissociated as a response to initial warming and acted as a positive carbon cycle feedback during the PETM.
Limiting global warming to 2°C is unlikely to save most coral reefs
NASA Astrophysics Data System (ADS)
Frieler, K.; Meinshausen, M.; Golly, A.; Mengel, M.; Lebek, K.; Donner, S. D.; Hoegh-Guldberg, O.
2013-02-01
Mass coral bleaching events have become a widespread phenomenon causing serious concerns with regard to the survival of corals. Triggered by high ocean temperatures, bleaching events are projected to increase in frequency and intensity. Here, we provide a comprehensive global study of coral bleaching in terms of global mean temperature change, based on an extended set of emissions scenarios and models. We show that preserving >10% of coral reefs worldwide would require limiting warming to below 1.5°C (atmosphere-ocean general circulation models (AOGCMs) range: 1.3-1.8°C) relative to pre-industrial levels. Even under optimistic assumptions regarding corals' thermal adaptation, one-third (9-60%, 68% uncertainty range) of the world's coral reefs are projected to be subject to long-term degradation under the most optimistic new IPCC emissions scenario, RCP3-PD. Under RCP4.5 this fraction increases to two-thirds (30-88%, 68% uncertainty range). Possible effects of ocean acidification reducing thermal tolerance are assessed within a sensitivity experiment.
Contribution of Surface Thermal Forcing to Mixing in the Ocean
NASA Astrophysics Data System (ADS)
Wang, Fei; Huang, Shi-Di; Xia, Ke-Qing
2018-02-01
A critical ingredient of the meridional overturning circulation (MOC) is vertical mixing, which causes dense waters in the deep sea to rise throughout the stratified interior to the upper ocean. Here, we report a laboratory study aimed at understanding the contributions from surface thermal forcing (STF) to this mixing process. Our study reveals that the ratio of the thermocline thickness to the fluid depth largely determines the mixing rate and the mixing efficiency in an overturning flow driven by STF. By applying this finding to a hypothetical MOC driven purely by STF, we obtain a mixing rate of O(10-6 m2/s) and a corresponding meridional heat flux of O(10-2 petawatt, PW), which are far smaller than the values found for real oceans. These results provide quantitative support for the notion that STF alone is not sufficient to drive the MOC, which essentially acts as a heat conveyor belt powered by other energy sources.
Thermal structure of oceanic transform faults
Behn, M.D.; Boettcher, M.S.; Hirth, G.
2007-01-01
We use three-dimensional finite element simulations to investigate the temperature structure beneath oceanic transform faults. We show that using a rheology that incorporates brittle weakening of the lithosphere generates a region of enhanced mantle upwelling and elevated temperatures along the transform; the warmest temperatures and thinnest lithosphere are predicted to be near the center of the transform. Previous studies predicted that the mantle beneath oceanic transform faults is anomalously cold relative to adjacent intraplate regions, with the thickest lithosphere located at the center of the transform. These earlier studies used simplified rheologic laws to simulate the behavior of the lithosphere and underlying asthenosphere. We show that the warmer thermal structure predicted by our calculations is directly attributed to the inclusion of a more realistic brittle rheology. This temperature structure is consistent with a wide range of observations from ridge-transform environments, including the depth of seismicity, geochemical anomalies along adjacent ridge segments, and the tendency for long transforms to break into small intratransform spreading centers during changes in plate motion. ?? 2007 Geological Society of America.
Heat flow in eastern Egypt - The thermal signature of a continental breakup
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Hennin, S. F.; El-Sherif, A. A.; El-Sayed, A. A.
1985-01-01
It is noted that the Red Sea is a modern example of continental fragmentation and incipient ocean formation. A consistent pattern of high heat flow in the Red Sea margins and coastal zone, including Precambrian terrane up to at least 30 km from the Red Sea, has emerged from the existing data. It is noted that this pattern has important implications for the mode and mechanism of Red Sea opening. High heat flow in the Red Sea shelf requires either a high extension of the crust in this zone (probably with major basic magmatic activity) or young oceanic crust beneath this zone. High heat flow in the coastal thermal anomaly zone may be caused by lateral conduction from the offshore lithosphere and/or from high mantle heat flow. It is suggested that new oceanic crust and highly extended continental crust would be essentially indistinguishable with the available data in the Red Sea margins, and are for many purposes essentially identical.
Exploring Ocean-World Habitability within the Planned Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.
2017-12-01
A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of Europa, thereby addressing the potential habitability of this intriguing ocean world.
Dickens, G R; Castillo, M M; Walker, J C
1997-03-01
Carbonate and organic matter deposited during the latest Paleocene thermal maximum is characterized by a remarkable -2.5% excursion in delta 13C that occurred over approximately 10(4) yr and returned to near initial values in an exponential pattern over approximately 2 x 10(5) yr. It has been hypothesized that this excursion signifies transfer of 1.4 to 2.8 x 10(18) g of CH4 from oceanic hydrates to the combined ocean-atmosphere inorganic carbon reservoir. A scenario with 1.12 x 10(18) g of CH4 is numerically simulated here within the framework of the present-day global carbon cycle to test the plausibility of the hypothesis. We find that (1) the delta 13C of the deep ocean, shallow ocean, and atmosphere decreases by -2.3% over 10(4) yr and returns to initial values in an exponential pattern over approximately 2 x 10(5) yr; (2) the depth of the lysocline shoals by up to 400 m over 10(4) yr, and this rise is most pronounced in one ocean region; and (3) global surface temperature increases by approximately 2 degrees C over 10(4) yr and returns to initial values over approximately 2 x 10(6) yr. The first effect is quantitatively consistent with the geologic record; the latter two effects are qualitatively consistent with observations. Thus, significant CH4 release from oceanic hydrates is a plausible explanation for observed carbon cycle perturbations during the thermal maximum. This conclusion is of broad interest because the flux of CH4 invoked during the maximum is of similar magnitude to that released to the atmosphere from present-day anthropogenic CH4 sources.
Ocean energy program summary. Volume 2: Research summaries
NASA Astrophysics Data System (ADS)
1990-01-01
The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the Federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the U.S. Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW(sub e). Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the U.S. Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.
García, Eliseba; Clemente, Sabrina; Hernández, José Carlos
2015-09-01
Ocean warming and acidification both impact marine ecosystems. All organisms have a limited body temperature range, outside of which they become functionally constrained. Beyond the absolute extremes of this range, they cannot survive. It is hypothesized that some stressors can present effects that interact with other environmental variables, such as ocean acidification (OA) that have the potential to narrow the thermal range where marine species are functional. An organism's response to ocean acidification can therefore be highly dependent on thermal conditions. This study evaluated the combined effects of predicted ocean warming conditions and acidification, on survival, development, and settlement, of the sea urchin Paracentrotus lividus. Nine combined treatments of temperature (19.0, 20.5 and 22.5 °C) and pH (8.1, 7.7 and 7.4 units) were carried out. All of the conditions tested were either within the current natural ranges of seawater pH and temperature or are within the ranges that have been predicted for the end of the century, in the sampling region (Canary Islands). Our results indicated that the negative effects of low pH on P. lividus larval development and settlement will be mitigated by a rise in seawater temperature, up to a thermotolerance threshold. Larval development and settlement performance of the sea urchin P. lividus was enhanced by a slight increase in temperature, even under lowered pH conditions. However, the species did show negative responses to the levels of ocean warming and acidification that have been predicted for the turn of the century. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dickens, G. R.; Castillo, M. M.; Walker, J. C.
1997-01-01
Carbonate and organic matter deposited during the latest Paleocene thermal maximum is characterized by a remarkable -2.5% excursion in delta 13C that occurred over approximately 10(4) yr and returned to near initial values in an exponential pattern over approximately 2 x 10(5) yr. It has been hypothesized that this excursion signifies transfer of 1.4 to 2.8 x 10(18) g of CH4 from oceanic hydrates to the combined ocean-atmosphere inorganic carbon reservoir. A scenario with 1.12 x 10(18) g of CH4 is numerically simulated here within the framework of the present-day global carbon cycle to test the plausibility of the hypothesis. We find that (1) the delta 13C of the deep ocean, shallow ocean, and atmosphere decreases by -2.3% over 10(4) yr and returns to initial values in an exponential pattern over approximately 2 x 10(5) yr; (2) the depth of the lysocline shoals by up to 400 m over 10(4) yr, and this rise is most pronounced in one ocean region; and (3) global surface temperature increases by approximately 2 degrees C over 10(4) yr and returns to initial values over approximately 2 x 10(6) yr. The first effect is quantitatively consistent with the geologic record; the latter two effects are qualitatively consistent with observations. Thus, significant CH4 release from oceanic hydrates is a plausible explanation for observed carbon cycle perturbations during the thermal maximum. This conclusion is of broad interest because the flux of CH4 invoked during the maximum is of similar magnitude to that released to the atmosphere from present-day anthropogenic CH4 sources.
Irreversible ocean thermal expansion under carbon dioxide removal
NASA Astrophysics Data System (ADS)
Ehlert, Dana; Zickfeld, Kirsten
2018-03-01
In the Paris Agreement in 2015 countries agreed on holding global mean surface air warming to well below 2 °C above pre-industrial
levels, but the emission reduction pledges under that agreement are not ambitious enough to meet this target. Therefore, the question arises of whether restoring global warming to this target after exceeding it by artificially removing CO2 from the atmosphere is possible. One important aspect is the reversibility of ocean heat uptake and associated sea level rise, which have very long (centennial to millennial) response timescales. In this study the response of sea level rise due to thermal expansion to a 1 % yearly increase of atmospheric CO2 up to a quadrupling of the pre-industrial concentration followed by a 1 % yearly decline back to the pre-industrial CO2 concentration is examined using the University of Victoria Earth System Climate Model (UVic ESCM). We find that global mean thermosteric sea level (GMTSL) continues to rise for several decades after atmospheric CO2 starts to decline and does not return to pre-industrial levels for over 1000 years after atmospheric CO2 is restored to the pre-industrial concentration. This finding is independent of the strength of vertical sub-grid-scale ocean mixing implemented in the model. Furthermore, GMTSL rises faster than it declines in response to a symmetric rise and decline in atmospheric CO2 concentration partly because the deep ocean continues to warm for centuries after atmospheric CO2 returns to the pre-industrial concentration. Both GMTSL rise and decline rates increase with increasing vertical ocean mixing. Exceptions from this behaviour arise if the overturning circulations in the North Atlantic and Southern Ocean intensify beyond pre-industrial levels in model versions with lower vertical mixing, which leads to rapid cooling of the deep ocean.
Supercontinent break-up: Causes and consequences
NASA Astrophysics Data System (ADS)
Li, Z. X.
2014-12-01
Supercontinent break-up has most commonly been linked to plume or superplume events, and/or supercontinent thermal insulation, but precise mechanisms are yet to be worked out. Even less know is if and what roles other factors may play. Key factors likely include gravitational force due to the continental superswell driven by both the lower-mantle superplume and continental thermal insulation, mental convention driven by the superplume and individual plumes atop the superplume, assisted by thermal/magmatic weakening of the supercontinent interior (both plume heat and thermal insulation heat). In addition, circum-supercontinent slab downwelling may not only drive the formation of the antipodal superplumes (thus the break-up of the supercontinent), the likely roll-back of the subduction system would also create extension within the supercontinent, facilitating supercontinent break-up. Consequences of supercontinent break-up include long-term sea-level rise, climatic changes due to changes in ocean circulation pattern and carbon cycle, and biodiversification. It has long been demonstrated that the existence of the supercontinent Pangea corresponds to a long-term sea-level drop, whereas the break-up of the supercontinent corresponds to a long-term sea-level rise (170 m higher than it is today). A recent analysis of Neoproterozoic sedimentary facies illustrates that the time of Neoproterozoic supercontinent Rodinia corresponds to a low in the percentage of deep marine facies occurrence, whereas the time of Rodinia break-up corresponds to a significantly higher percentage of deep marine facies occurrence. The long-tern sea-level drop during supercontinent times were likely caused by both plume/superplume dynamic topography and an older mean age of the oceanic crust, whereas long-tern sea-level rise during supercontinent break-up (720-580 Ma for Rodinia and Late Jurassic-Cretaceous for Pangea) likely corresponds to an younger mean age of the oceanic crust, massive plume-induced magmatism in the oceans, and perhaps the effect of continents drifting away from a weakening sub-supercontinent superplume.
NASA Astrophysics Data System (ADS)
Karrouk, Mohammed-Said
2016-04-01
Global warming has now reached the energetic phase of H2O's return to the ground after the saturation of the atmosphere in evaporation since the 80s and 90s of the last century, which were characterized by severe droughts, mainly in Africa. This phase is the result of the accumulation of thermal energy exchanges in the Earth-Ocean-Atmosphere system that resulted in the thrust reversal of the energy balance toward the poles. This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus compared to the mainland, or even opposite when the balance is negative on the land, and in the atmosphere, warm thermal advection easily reach the North Pole (planetary crests), as well as cold advection push deep into North Africa and the Gulf of Mexico (planetary valleys). This "New Ground Energy Balance" establishes a "New Meridian Atmospheric Circulation (MAC)" with an undulating character throughout the year, including the winter characterized by intense latitudinal very active energy exchanges between the surplus areas (tropical) and the deficit (polar) on the one hand, and the atmosphere, the ocean and the continent on the other. The excess radiation balance increases the potential evaporation of the atmosphere and provides a new geographical distribution of H2O worldwide: the excess water vapor is easily converted by cold advection (polar vortex) to heavy rains that cause floods or snow storms that paralyze the normal functioning of human activities, which creates many difficulties for users and leaves damage and casualties, but ensures water availability missing since a long time in many parts of the world, in Africa, Europe and America. The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the Atlantic ridge at Greenland, which imposes on the jet stream a positive ripple, very strongly marked poleward, bringing cosmic cold advection of polar air masses winter over from Europe to North Africa. Hence the enormous meridian heat exchanges north-south, and south-north. This new spatial thermal provision therefore imposes on the jet-stream a positive ripple on the North Atlantic (Greenland) and eastern Pacific (Alaska); this is the cause of the heat and drought of California, followed by negative waves in eastern US, and Europe. This is the "New Atmospheric Circulation" predominantly "Meridian", due to the "New Climate" caused by global warming.
NASA Astrophysics Data System (ADS)
Van Wynsberge, Simon; Menkes, Christophe; Le Gendre, Romain; Passfield, Teuru; Andréfouët, Serge
2017-12-01
In remote coral reef environments, lagoon and reef in situ measurements of temperature are scarce. Sea Surface Temperature (SST) measured by satellite has been frequently used as a proxy of the lagoon temperature experienced by coral reef organisms (TL) especially during coral bleaching events. However, the link between SST and TL is poorly characterized. First, we compared the correlation between various SST series and TL from 2012 to 2016 in three atolls and one island in the Central South Pacific Ocean. Simple linear correlation between SST and TL ranged between 0.44 and 0.97 depending on lagoons, localities of sensors, and type of SST data. High-resolution-satellite-measurements of SST inside the lagoons did not outperform oceanic SST series, suggesting that SST products are not adapted for small lagoons. Second, we modelled the difference between oceanic SST and TL as a function of the drivers of lagoon water renewal and mixing, namely waves, tide, wind, and season. The multivariate models reduced significantly the bias between oceanic SST and TL. In atoll lagoons, and probably in other hydrodynamically semi-open systems, a correction taking into account these factors is necessary when SST are used to characterize organisms' thermal stress thresholds.
NASA Astrophysics Data System (ADS)
Bolrão, D. P.; Rozel, A.; Morison, A.; Labrosse, S.; Tackley, P. J.
2017-12-01
The idea that the Earth had a global magma ocean, mostly created by impacts, core formation, radiogenic and tidal heating, is well accepted nowadays. When this ocean starts to crystallise, if the melt is denser than the solid, a basal magma ocean is created below the solid part. These two magma oceans influence the dynamics and evolution of solid mantle. Near the boundaries, the vertical flow in the solid part creates a topography. If this topography is destroyed by melting/crystallisation processes in a time scale much shorter than the time needed to adjust the topography by viscous relaxation, then matter can cross the boundary. In this case, the boundary is said to be permeable. On the other hand, if this time is longer, matter cannot cross and the boundary is said impermeable. This permeability is defined by a non-dimensional phase change number, φ, introduced by Deguen, 2013. This φ is the ratio of the two timescales mentioned, and defines a permeable boundary when φ « 1, and an impermeable one when φ » 1. To understand the impact of magma oceans on the dynamics of the solid mantle, we use the convection code StagYY, with a 2D spherical annulus geometry, to compute the convection of the solid part. Our results show different convection behaviours depending on the type of boundary chosen. For the permeable case, we investigate the thermo-compositional evolution of the solid domain, explicitly taking into account the compositional evolution of the magma oceans. Reference: Deguen, R. Thermal convection in a spherical shell with melting/freezing at either or both of its boundaries. Journal of Earth Science, Vol. 24, No. 5, p. 669-682, 2013. doi: 10.1007/s12583-013-0364-8
The impact of oceanic heat transport on the atmospheric circulation
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Lunkeit, Frank
2017-04-01
A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.
Maintenance of Summer Monsoon Circulations: A Planetary-Scale Perspective.
NASA Astrophysics Data System (ADS)
Chen, Tsing-Chang
2003-06-01
The monsoon circulation, which is generally considered to be driven by the landmass-ocean thermal contrast, like a gigantic land-sea breeze circulation, exhibits a phase reversal in its vertical structure; a monsoon high aloft over a continental thermal low is juxtaposed with a midoceanic trough underlaid by an oceanic anticyclone. This classic monsoon circulation model is well matched by the monsoon circulation depicted with the observational data prior to the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE). However, synthesizing findings of the global circulation portrayed with the post-FGGE data, it was found that some basic features of major monsoon circulations in Asia, North America, South America, and Australia differ from those of the classic monsoon circulation model. Therefore, a revision of the classic monsoon theory is suggested. With four different wave regimes selected to fit the horizontal dimensions of these monsoon circulations, basic features common to all four major monsoons are illustrated in terms of diagnostic analyses of the velocity potential maintenance equation (which relates diabatic heating and velocity potential) and the streamfunction budget (which links velocity potential and streamfunction) in these wave regimes. It is shown that a monsoon circulation is actually driven by the east-west differential heating and maintained dynamically by a balance between a vorticity source and advection. This dynamic balance is reflected by a spatial quadrature relationship between the monsoon divergent circulation and the monsoon high (low) at upper (lower) levels.
Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?
Munday, Philip L; McCormick, Mark I; Nilsson, Göran E
2012-11-15
Average sea-surface temperature and the amount of CO(2) dissolved in the ocean are rising as a result of increasing concentrations of atmospheric CO(2). Many coral reef fishes appear to be living close to their thermal optimum, and for some of them, even relatively moderate increases in temperature (2-4°C) lead to significant reductions in aerobic scope. Reduced aerobic capacity could affect population sustainability because less energy can be devoted to feeding and reproduction. Coral reef fishes seem to have limited capacity to acclimate to elevated temperature as adults, but recent research shows that developmental and transgenerational plasticity occur, which might enable some species to adjust to rising ocean temperatures. Predicted increases in P(CO(2)), and associated ocean acidification, can also influence the aerobic scope of coral reef fishes, although there is considerable interspecific variation, with some species exhibiting a decline and others an increase in aerobic scope at near-future CO(2) levels. As with thermal effects, there are transgenerational changes in response to elevated CO(2) that could mitigate impacts of high CO(2) on the growth and survival of reef fishes. An unexpected discovery is that elevated CO(2) has a dramatic effect on a wide range of behaviours and sensory responses of reef fishes, with consequences for the timing of settlement, habitat selection, predator avoidance and individual fitness. The underlying physiological mechanism appears to be the interference of acid-base regulatory processes with brain neurotransmitter function. Differences in the sensitivity of species and populations to global warming and rising CO(2) have been identified that will lead to changes in fish community structure as the oceans warm and becomes more acidic; however, the prospect for acclimation and adaptation of populations to these threats also needs to be considered. Ultimately, it will be the capacity for species to adjust to environmental change over coming decades that will determine the impact of climate change on marine ecosystems.
Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow
NASA Astrophysics Data System (ADS)
Wajsowicz, R. C.
The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ×106 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts, and in the depth of convective overturning between 40°S to 50°S, and its sensing of the mean throughflow's thermal anomaly. The seasonal anomalies plus annual mean yield maximum values for the throughflow-induced net surface heat output in boreal summer. Values may exceed 40 Wm-2 in the southern Indian Ocean interior in both models, exceed 60 Wm-2 over the Agulhas retroflection and immediate vicinity of the exit channels in the SSM/I-forced model, and reach 30 Wm-2 over the Somali jet in the ECMWF-forced model.
Heat transport in the high-pressure ice mantle of large icy moons
NASA Astrophysics Data System (ADS)
Choblet, Gael; Tobie, Gabriel; Sotin, Christophe; Kalousova, Klara; Grasset, Olivier
2017-04-01
While the existence of a buried ocean sandwiched between surface ice and high-pressure (HP) polymorphs of ice emerges as the most plausible structure for the hundreds-of-kilometers thick hydrospheres within large icy moons of the Solar System (Ganymede, Callisto, Titan), little is known about the thermal structure of the deep HP ice mantle and its dynamics, possibly involving melt production and extraction. This has major implications for the thermal history of these objects as well as on the habitability of their ocean as the HP ice mantle is presumed to limit chemical transport from the rock component to the ocean. Here, we describe 3D spherical simulations of subsolidus thermal convection tailored to the specific structure of the HP ice mantle of large icy moons. Melt production is monitored and melt transport is simplified by assuming instantaneous extraction to the ocean above. The two controlling parameters for these models are the rheology of ice VI and the heat flux from the rock core. Reasonable end-members are considered for both parameters as disagreement remains on the former (especially the pressure effect on viscosity) and as the latter is expected to vary significantly during the moon's history. We show that the heat power produced by radioactive decay within the rock core is mainly transported through the HP ice mantle by melt extraction to the ocean, with most of the melt produced directly above the rock/water interface. While the average temperature in the bulk of the HP ice mantle is always relatively cool when compared to the value at the interface with the rock core (˜ 5 K above the value at the surface of the HP ice mantle), maximum temperatures at all depths are close to the melting point, often leading to the interconnection of a melt path via hot convective plume conduits throughout the HP ice mantle. Overall, we predict long periods of time during these moons' history where water generated in contact with the rock core is transported to the above ocean.
Heat transport in the high-pressure ice mantle of large icy moons
NASA Astrophysics Data System (ADS)
Choblet, G.; Tobie, G.; Sotin, C.; Kalousová, K.; Grasset, O.
2017-03-01
While the existence of a buried ocean sandwiched between surface ice and high-pressure (HP) polymorphs of ice emerges as the most plausible structure for the hundreds-of-kilometers thick hydrospheres within large icy moons of the Solar System (Ganymede, Callisto, Titan), little is known about the thermal structure of the deep HP ice mantle and its dynamics, possibly involving melt production and extraction. This has major implications for the thermal history of these objects as well as on the habitability of their ocean as the HP ice mantle is presumed to limit chemical transport from the rock component to the ocean. Here, we describe 3D spherical simulations of subsolidus thermal convection tailored to the specific structure of the HP ice mantle of large icy moons. Melt production is monitored and melt transport is simplified by assuming instantaneous extraction to the ocean above. The two controlling parameters for these models are the rheology of ice VI and the heat flux from the rock core. Reasonable end-members are considered for both parameters as disagreement remains on the former (especially the pressure effect on viscosity) and as the latter is expected to vary significantly during the moon's history. We show that the heat power produced by radioactive decay within the rock core is mainly transported through the HP ice mantle by melt extraction to the ocean, with most of the melt produced directly above the rock/water interface. While the average temperature in the bulk of the HP ice mantle is always relatively cool when compared to the value at the interface with the rock core (∼ 5 K above the value at the surface of the HP ice mantle), maximum temperatures at all depths are close to the melting point, often leading to the interconnection of a melt path via hot convective plume conduits throughout the HP ice mantle. Overall, we predict long periods of time during these moons' history where water generated in contact with the rock core is transported to the above ocean.
Bester-van der Merwe, Aletta E; Bitalo, Daphne; Cuevas, Juan M; Ovenden, Jennifer; Hernández, Sebastián; da Silva, Charlene; McCord, Meaghen; Roodt-Wilding, Rouvay
2017-01-01
The tope shark (Galeorhinus galeus Linnaeus, 1758) is a temperate, coastal hound shark found in the Atlantic and Indo-Pacific oceans. In this study, the population structure of Galeorhinus galeus was determined across the entire Southern Hemisphere, where the species is heavily targeted by commercial fisheries, as well as locally, along the South African coastline. Analysis was conducted on a total of 185 samples using 19 microsatellite markers and a 671 bp fragment of the NADH dehydrogenase subunit 2 (ND2) gene. Across the Southern Hemisphere, three geographically distinct clades were recovered, including one from South America (Argentina, Chile), one from Africa (all the South African collections) and an Australia-New Zealand clade. Nuclear data revealed significant population subdivisions (FST = 0.192 to 0.376, p<0.05) indicating limited gene flow for tope sharks across ocean basins. Marked population connectivity was however evident across the Indian Ocean based on Bayesian clustering analysis. More locally in South Africa, F-statistics and multivariate analysis supported moderate to high gene flow across the Atlantic/Indian Ocean boundary (FST = 0.035 to 0.044, p<0.05), with exception of samples from Struisbaai and Port Elizabeth which differed significantly from the rest. Discriminant and Bayesian clustering analysis indicated admixture in all sampling populations, decreasing from west to east, corroborating possible restriction to gene flow across regional oceanographic barriers. Mitochondrial sequence data recovered seven haplotypes (h = 0.216, π = 0.001) for South Africa, with one major haplotype shared by 87% of the individuals and at least one private haplotype for each sampling location except Port Elizabeth. As with many other coastal shark species with cosmopolitan distribution, this study confirms the lack of both historical dispersal and inter-oceanic gene flow while also implicating contemporary factors such as oceanic currents and thermal fronts to drive local genetic structure of G. galeus on a smaller spatial scale.
Cuevas, Juan M.; Ovenden, Jennifer; Hernández, Sebastián; da Silva, Charlene; McCord, Meaghen; Roodt-Wilding, Rouvay
2017-01-01
The tope shark (Galeorhinus galeus Linnaeus, 1758) is a temperate, coastal hound shark found in the Atlantic and Indo-Pacific oceans. In this study, the population structure of Galeorhinus galeus was determined across the entire Southern Hemisphere, where the species is heavily targeted by commercial fisheries, as well as locally, along the South African coastline. Analysis was conducted on a total of 185 samples using 19 microsatellite markers and a 671 bp fragment of the NADH dehydrogenase subunit 2 (ND2) gene. Across the Southern Hemisphere, three geographically distinct clades were recovered, including one from South America (Argentina, Chile), one from Africa (all the South African collections) and an Australia-New Zealand clade. Nuclear data revealed significant population subdivisions (FST = 0.192 to 0.376, p<0.05) indicating limited gene flow for tope sharks across ocean basins. Marked population connectivity was however evident across the Indian Ocean based on Bayesian clustering analysis. More locally in South Africa, F-statistics and multivariate analysis supported moderate to high gene flow across the Atlantic/Indian Ocean boundary (FST = 0.035 to 0.044, p<0.05), with exception of samples from Struisbaai and Port Elizabeth which differed significantly from the rest. Discriminant and Bayesian clustering analysis indicated admixture in all sampling populations, decreasing from west to east, corroborating possible restriction to gene flow across regional oceanographic barriers. Mitochondrial sequence data recovered seven haplotypes (h = 0.216, π = 0.001) for South Africa, with one major haplotype shared by 87% of the individuals and at least one private haplotype for each sampling location except Port Elizabeth. As with many other coastal shark species with cosmopolitan distribution, this study confirms the lack of both historical dispersal and inter-oceanic gene flow while also implicating contemporary factors such as oceanic currents and thermal fronts to drive local genetic structure of G. galeus on a smaller spatial scale. PMID:28880905
Widespread gas hydrate instability on the upper U.S. Beaufort margin
NASA Astrophysics Data System (ADS)
Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.
2014-12-01
The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5-7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.
NASA Astrophysics Data System (ADS)
Kelly, D. Clay; Zachos, James C.; Bralower, Timothy J.; Schellenberg, Stephen A.
2005-12-01
The carbonate saturation profile of the oceans shoaled markedly during a transient global warming event known as the Paleocene-Eocene thermal maximum (PETM) (circa 55 Ma). The rapid release of large quantities of carbon into the ocean-atmosphere system is believed to have triggered this intense episode of dissolution along with a negative carbon isotope excursion (CIE). The brevity (120-220 kyr) of the PETM reflects the rapid enhancement of negative feedback mechanisms within Earth's exogenic carbon cycle that served the dual function of buffering ocean pH and reducing atmospheric greenhouse gas levels. Detailed study of the PETM stratigraphy from Ocean Drilling Program Site 690 (Weddell Sea) reveals that the CIE recovery period, which postdates the CIE onset by ˜80 kyr, is represented by an expanded (˜2.5 m thick) interval containing a unique planktic foraminiferal assemblage strongly diluted by coccolithophore carbonate. Collectively, the micropaleontological and sedimentological changes preserved within the CIE recovery interval reflect a transient state when ocean-atmosphere chemistry fostered prolific coccolithophore blooms that suppressed the local lysocline to relatively deeper depths. A prominent peak in the abundance of the clay mineral kaolinite is associated with the CIE recovery interval, indicating that continental weathering/runoff intensified at this time as well (Robert and Kennett, 1994). Such parallel stratigraphic changes are generally consonant with the hypothesis that enhanced continental weathering/runoff and carbonate precipitation helped sequester carbon during the PETM recovery period (e.g., Dickens et al., 1997; Zachos et al., 2005).
Methods for monitoring hydroacoustic events using direct and reflected T waves in the Indian Ocean
NASA Astrophysics Data System (ADS)
Hanson, Jeffrey A.; Bowman, J. Roger
2006-02-01
The recent installation of permanent, three-element hydrophone arrays in the Indian Ocean offshore Diego Garcia and Cape Leeuwin, Australia, provides an opportunity to study hydroacoustic sources in more detail than previously possible. We developed and applied methods for coherent processing of the array data, for automated association of signals detected at more than one array, and for source location using only direct arrivals and using signals reflected from coastlines and other bathymetric features. During the 286-day study, 4725 hydroacoustic events were defined and located in the Indian and Southern oceans. Events fall into two classes: tectonic earthquakes and ice-related noise. The tectonic earthquakes consist of mid-ocean ridge, trench, and intraplate earthquakes. Mid-ocean ridge earthquakes are the most common tectonic events and often occur in clusters along transform offsets. Hydroacoustic signal levels for earthquakes in a standard catalog suggest that the hydroacoustic processing threshold for ridge events is one magnitude below the seismic network. Fewer earthquakes are observed along the Java Trench than expected because the large bathymetric relief of the source region complicates coupling between seismic and hydroacoustic signals, leading to divergent signal characteristics at different stations. We located 1843 events along the Antarctic coast resulting from various ice noises, most likely thermal fracturing and ice ridge forming events. Reflectors of signals from earthquakes are observed along coastlines, the mid-Indian Ocean and Ninety East ridges, and other bathymetric features. Reflected signals are used as synthetic stations to reduce location uncertainty and to enable event location with a single station.
Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere
NASA Technical Reports Server (NTRS)
Hager, B. H.
1981-01-01
Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.
2013-01-01
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive magnetic dipole and low oceanic shell conductivity).
Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean
NASA Astrophysics Data System (ADS)
Johnson, B. C.; Bowling, T.; Trowbridge, A.; Freed, A. M.
2016-12-01
Since the New Horizons flyby, evidence has been mounting that Pluto's Sputnik Planum (SP; informal name) (1,2) is associated with a 800-1000 km diameter elliptical impact basin (3,4). Global tectonics and the location of SP suggests that Pluto reoriented to align the basin with its tidal axis (4,5). This indicates there is a large positive mass anomaly associated with SP (4,5). However, even with loading of 3-10 km of dense convecting N2 ice (6,7), a positive mass anomaly associated with the deep basin requires that Pluto has a liquid ocean and the ice shell under the basin is substantially thinned (4). Although the possibility of a slowly freezing current day subsurface ocean is supported by thermal modeling (8,9) and the ubiquity of young extensional tectonic features (1), the thickness of the putative ocean is unconstrained. Here, we simulate the SP basin-forming impact into targets with a range of thermal states and ocean thicknesses. We find that SP can only achieve a large positive mass anomaly if Pluto has a more than 100 km thick salty ocean (i.e. ocean density exceeding 1100 kg/m3). This conclusion may help us better understand the composition and thermal evolution of Pluto. 1. Moore, J. M. et al. Science 351,1284-1293 (2016). 2. Stern, S. A. et al. Science 350,aad1815-aad1815 (2015). 3. Schenk, P. M. et al. A Large Impact Origin for Sputnik Planum and Surrounding Terrains, Pluto? AAS/Division for Planetary Sciences Meeting Abstracts 47,(2015). 4. Nimmo, F. et al. Loading, Relaxation, and Tidal Wander at Sputnik Planum, Pluto. 47th Lunar and Planetary Science Conference 47,2207 (2016). 5. Keane, J. T. & Matsuyama, I. Pluto Followed Its Heart: True Polar Wander of Pluto Due to the Formation and Evolution of Sputnik Planum. 47th Lunar and Planetary Science Conference 47,2348 (2016). 6. Trowbridge, A. J., Melosh, H. J., Steckloff, J. K. & Freed, A. M. Nature 534,79-81 (2016). 7. McKinnon, W. B. et al. Nature 534,82-85 (2016). 8. Robuchon, G. & Nimmo, F. Icarus 216,426-439 (2011). 9. Hammond, N. P., Barr, A. C. & Parmentier, E. M. Geophys. Res. Lett. (2016). doi:10.1002/2016GL069220
NASA Astrophysics Data System (ADS)
Maher, S. M.; Gee, J. S.; Doran, A. K.; Gess, M.; Cheadle, M. J.; Coogan, L. A.; Gillis, K. M.; John, B. E.
2017-12-01
There is no consensus on how the lower oceanic crust cools at fast-spreading centers and, correspondingly, how the isotherms change with depth. Sufficient heat extraction above the axial magma lens might result in shallowly dipping fossil isotherms off axis, while significant removal of heat laterally in the lower crust would be accompanied by steeper isotherms. These end-member models and additional intermediate models may be accompanied by distinctive geochemical, mineralogical, and textural changes, but the record of geomagnetic reversals can provide key complementary information on the thermal history of the lower oceanic crust. In particular, the location of a reversal boundary with depth over exposed sections of gabbroic rock should reveal the fossil pattern of cooling below 600°C. Tectonic exposures at Pito Deep reveal cross sections of two magnetic reversals recorded in gabbroic rock formed at the fast-spreading East Pacific Rise during chron C2A (3.58-2.581 Ma). High quality magnetic anomaly data, using a new miniature total field sensor, were acquired on 11 Sentry dives centered over 2An.2n (3.22-3.11 Ma) and another over the young end of 2An.3n (3.58-3.33 Ma). The local bathymetry is complex, so we have constructed several forward models based on isotherms predicted by different end-member models to determine which best fits the magnetic anomaly data. Initial results are difficult to reconcile with models of deep crustal cooling and steep isotherms within a few km of the axis. Instead they favor a model in which gabbroic rocks cool over long time periods, resulting in a polarity offset between the gabbros and the overlying dikes and lavas extending for several km. This difference in polarity is supported by magnetization inversions, calculated for a series of horizontal laminae using the Occam inversion (Constable et al., 1987). Additional confirmation comes from the magnetic remanence of nearly 400 gabbroic samples (most partially or fully oriented) retrieved by Jason II. Preliminary thermal demagnetization results provide evidence of multiple magnetization components in many samples, generally consistent with the presence of isochron boundaries between normal and reverse polarities inferred from the anomaly data.
NASA Astrophysics Data System (ADS)
Riethdorf, Jan-Rainer; Max, Lars; Nürnberg, Dirk; Lembke-Jene, Lester; Tiedemann, Ralf
2013-01-01
Based on models and proxy data, it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (δ18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases, our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.
Berger, Leslie Ralph; Berger, Joyce A.
1986-01-01
Countermeasures to biofouling in simulated ocean thermal energy conversion heat exchangers have been studied in single-pass flow systems, using cold deep and warm surface ocean waters off the island of Hawaii. Manual brushing of the loops after free fouling periods removed most of the biofouling material. However, over a 2-year period a tenacious film formed. Daily free passage of sponge rubber balls through the tubing only removed the loose surface biofouling layer and was inadequate as a countermeasure in both titanium and aluminum alloy tubes. Chlorination at 0.05, 0.07, and 0.10 mg liter-1 for 1 h day-1 lowered biofouling rates. Only at 0.10 mg liter-1 was chlorine adequate over a 1-year period to keep film formation and heat transfer resistance from rising above the maximum tolerated values. Lower chlorination regimens led to the buildup of uneven or patchy films which produced increased flow turbulence. The result was lower heat transfer resistance values which did not correlate with the amount of biofouling. Surfaces which were let foul and then treated with intermittent or continuous chlorination at 0.10 mg of chlorine or less per liter were only partially or unevenly cleaned, although heat transfer measurements did not indicate that fact. It took continuous chlorination at 0.25 mg liter-1 to bring the heat transfer resistance to zero and eliminate the fouling layer. Biofouling in deep cold seawater was much slower than in the warm surface waters. Tubing in one stainless-steel loop had a barely detectable fouling layer after 1 year in flow. With aluminum alloys sufficient corrosion and biofouling material accumulated to require that some fouling coutermeasure be used in long-term operation of an ocean thermal energy conversion plant. Images PMID:16347076
Seismic constraints on the lithosphere-asthenosphere boundary
NASA Astrophysics Data System (ADS)
Rychert, Catherine A.
2014-05-01
The basic tenet of plate tectonics is that a rigid plate, or lithosphere, moves over a weaker asthenospheric layer. However, the exact location and defining mechanism of the boundary at the base of the plate, the lithosphere-asthenosphere boundary (LAB) is debated. The oceans should represent a simple scenario since the lithosphere is predicted to thicken with seafloor age if it thermally defined, whereas a constant plate thickness might indicate a compositional definition. However, the oceans are remote and difficult to constrain, and studies with different sensitivities and resolutions have come to different conclusions. Hotspot regions lend additional insight, since they are relatively well instrumented with seismic stations, and also since the effect of a thermal plume on the LAB should depend on the defining mechanism of the plate. Here I present new results using S-to-P receiver functions to image upper mantle discontinuity structure beneath volcanically active regions including Hawaii, Iceland, Galapagos, and Afar. In particular I focus on the lithosphere-asthenosphere boundary and discontinuities related to the base of melting, which can be used to highlight plume locations. I image a lithosphere-asthenosphere boundary in the 50 - 95 km depth range beneath Hawaii, Galapagos, and Iceland. Although LAB depth variations exist within these regions, significant thinning is not observed in the locations of hypothesized plume impingement from receiver functions (see below). Since a purely thermally defined lithosphere is expected to thin significantly in the presence of a thermal plume anomaly, a compositional component in the definition of the LAB is implied. Beneath Afar, an LAB is imaged at 75 km depth on the flank of the rift, but no LAB is imaged beneath the rift itself. The transition from flank of rift is relatively abrupt, again suggesting something other than a purely thermally defined lithosphere. Melt may also exist in the asthenosphere in these regions of hotpot volcanism. Indeed, S-to-P also images strong velocity increases that are likely related to the base of a melt-rich layer beneath the oceanic LAB. This discontinuity may highlight plume locations since melt is predicted deeper at thermal anomalies. For instance, beneath Hawaii the base of melting increases from 110 km to 155 km depth 100 km west of Hawaii, i.e., the likely location of plume impingement on the lithosphere. Beneath Galapagos the discontinuity is deeper in 3 sectors, all off the island axis, suggesting multiple plume diversions and complex plume-ridge interactions. Beneath Iceland deepening is imaged to the northeast of the island. Beneath the Afar rift a shallow melt discontinuity is imaged at ~75 km, suggesting that the plume is located outside the study region. Overall, the deepest realizations of the discontinuities agree with the slowest velocities from surface waves, but are not located directly beneath surface volcanoes. This suggests that either plumes approach the surface at an angle or that restite roots beneath hotspots divert plumes at shallow depths. In either case, mantle melts are likely guided from the location of impingement on the lithosphere to current day surface volcanoes by pre-existing structures of the lithosphere.
Ocean feedback to pulses of the Madden–Julian Oscillation in the equatorial Indian Ocean
Moum, James N.; Pujiana, Kandaga; Lien, Ren-Chieh; Smyth, William D.
2016-01-01
Dynamical understanding of the Madden–Julian Oscillation (MJO) has been elusive, and predictive capabilities therefore limited. New measurements of the ocean's response to the intense surface winds and cooling by two successive MJO pulses, separated by several weeks, show persistent ocean currents and subsurface mixing after pulse passage, thereby reducing ocean heat energy available for later pulses by an amount significantly greater than via atmospheric surface cooling alone. This suggests that thermal mixing in the upper ocean from a particular pulse might affect the amplitude of the following pulse. Here we test this hypothesis by comparing 18 pulse pairs, each separated by <55 days, measured over a 33-year period. We find a significant tendency for weak (strong) pulses, associated with low (high) cooling rates, to be followed by stronger (weaker) pulses. We therefore propose that the ocean introduces a memory effect into the MJO, whereby each event is governed in part by the previous event. PMID:27759016
Global warming-induced upper-ocean freshening and the intensification of super typhoons
Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby; Emanuel, Kerry A.
2016-01-01
Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes. PMID:27886199
Global warming-induced upper-ocean freshening and the intensification of super typhoons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby
Here, super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall inmore » places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ~53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.« less
Global warming-induced upper-ocean freshening and the intensification of super typhoons.
Balaguru, Karthik; Foltz, Gregory R; Leung, L Ruby; Emanuel, Kerry A
2016-11-25
Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.
Global warming-induced upper-ocean freshening and the intensification of super typhoons
Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby; ...
2016-11-25
Here, super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall inmore » places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ~53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.« less
Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores.
Nakamura, Itsumi; Goto, Yusuke; Sato, Katsufumi
2015-05-01
Ocean sunfish (Mola mola) were believed to be inactive jellyfish feeders because they are often observed lying motionless at the sea surface. Recent tracking studies revealed that they are actually deep divers, but there has been no evidence of foraging in deep water. Furthermore, the surfacing behaviour of ocean sunfish was thought to be related to behavioural thermoregulation, but there was no record of sunfish body temperature. Evidence of ocean sunfish feeding in deep water was obtained using a combination of an animal-borne accelerometer and camera with a light source. Siphonophores were the most abundant prey items captured by ocean sunfish and were typically located at a depth of 50-200 m where the water temperature was <12 °C. Ocean sunfish were diurnally active, made frequently deep excursions and foraged mainly at 100-200 m depths during the day. Ocean sunfish body temperatures were measured under natural conditions. The body temperatures decreased during deep excursions and recovered during subsequent surfacing periods. Heat-budget models indicated that the whole-body heat-transfer coefficient between sunfish and the surrounding water during warming was 3-7 times greater than that during cooling. These results suggest that the main function of surfacing is the recovery of body temperature, and the fish might be able to increase heat gain from the warm surface water by physiological regulation. The thermal environment of ocean sunfish foraging depths was lower than their thermal preference (c. 16-17 °C). The behavioural and physiological thermoregulation enables the fish to increase foraging time in deep, cold water. Feeding rate during deep excursions was not related to duration or depth of the deep excursions. Cycles of deep foraging and surface warming were explained by a foraging strategy, to maximize foraging time with maintaining body temperature by vertical temperature environment. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
NASA Astrophysics Data System (ADS)
Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping
2017-11-01
The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.
Ocean Thermal Energy Conversion power system development. Phase I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-12-04
This report covers the conceptual and preliminary design of closed-cycle, ammonia, ocean thermal energy conversion power plants by Westinghouse Electric Corporation. Preliminary designs for evaporator and condenser test articles (0.13 MWe size) and a 10 MWe modular experiment power system are described. Conceptual designs for 50 MWe power systems, and 100 MWe power plants are also descirbed. Design and cost algorithms were developed, and an optimized power system design at the 50 MWe size was completed. This design was modeled very closely in the test articles and in the 10 MWe Modular Application. Major component and auxiliary system design, materials,more » biofouling, control response, availability, safety and cost aspects are developed with the greatest emphasis on the 10 MWe Modular Application Power System. It is concluded that all power plant subsystems are state-of-practice and require design verification only, rather than continued research. A complete test program, which verifies the mechanical reliability as well as thermal performance, is recommended and described.« less
NASA Technical Reports Server (NTRS)
Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.
Eastern Indian Ocean microcontinent formation driven by plate motion changes
NASA Astrophysics Data System (ADS)
Whittaker, J. M.; Williams, S. E.; Halpin, J. A.; Wild, T. J.; Stilwell, J. D.; Jourdan, F.; Daczko, N. R.
2016-11-01
The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margins, with plume-driven thermal weakening commonly inferred to facilitate calving. However, a role for plate tectonic reorganisations has also been suggested. Here, we show that a combination of plate tectonic reorganisation and plume-driven thermal weakening were required to calve the Batavia and Gulden Draak microcontinents in the Cretaceous Indian Ocean. We reconstruct the evolution of these two microcontinents using constraints from new paleontological samples, 40Ar/39Ar ages, and geophysical data. Calving from India occurred at 101-104 Ma, coinciding with the onset of a dramatic change in Indian plate motion. Critically, Kerguelen plume volcanism does not appear to have directly triggered calving. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1982-01-01
Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.
Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea
NASA Astrophysics Data System (ADS)
Osipov, Sergey; Stenchikov, Georgiy
2017-11-01
The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.
On the role of mantle depletion and small-scale convection in post rift basin evolution (Invited)
NASA Astrophysics Data System (ADS)
Petersen, K.; Nielsen, S. B.
2013-12-01
Subsidence and heat flow evolution of the oceanic lithosphere appears to be consistent with the conductive cooling of a ~100 km plate overlying asthenospheric mantle of constant entropy. The physical mechanism behind plate-like subsidence has been suggested to be the result of small-scale convective instabilities which transport heat energy to the base of the lithosphere and cause an eventual departure from half space-like cooling by inhibiting subsidence of old ocean floor and causing an asymptotic surface heat flow of ~50 mW/m^2. Here, we conduct a number of numerical thermo-mechanical experiments of oceanic lithosphere cooling for different models of temperature- and pressure-dependent viscosity. We show that uniform (P, T-dependent) mantle viscosity cannot both explain half space-like subsidence for young (<70 Mr) lithosphere as well as a relatively high (>50 mW/m^2) surface heat flow which is observed above old (>100 Myr) lithosphere. The latter requires vigorous sub lithospheric convection which would lead to early (~1Myr) onset of convective instability at shallow depth (<60 km) and therefore insufficient initial subsidence. To resolve this paradox, we employ models which account for the density decrease and viscosity increase due to depletion during mid-ocean ridge melting. We demonstrate that the presence of a mantle restite layer within the lithosphere hinders convection at shallow depth and therefore promotes plate-like cooling. A systematic parameter search among 280 different numerical experiments indicates that models with 60-80 km depletion thickness minimize misfit with subsidence and heat flow data. This is consistent with existing petrological models of mid-ocean ridge melting. Our models further indicate that the post-rift subsidence pattern where little or no melting occurred during extension (e.g. non-volcanic margins and continental rifts) may differ from typical oceanic plate-like subsidence by occurring at a nearly constant rate rather than at an exponentially decaying rate. Model comparison with subsidence histories inferred from backstripping analysis implies that this is indeed often the case. Accordingly, existing thermal models of continental rifting which assume plate-like cooling (and is often calibrated from oceanic data) are likely to yield inaccurate predictions in terms of subsidence and heat flow evolution.
Isolation of potential fungal pathogens in gorgonian corals at the Tropical Eastern Pacific
NASA Astrophysics Data System (ADS)
Barrero-Canosa, J.; Dueñas, L. F.; Sánchez, J. A.
2013-03-01
A major environmental problem in the ocean is the alarming increase in diseases affecting diverse marine organisms including corals. Environmental factors such as the rising seawater temperatures and terrestrial microbial input to the ocean have contributed to the increase in diseased organisms. We isolated and identified the fungal agents that may be leading to a disease in the Pacific sea fan Pacifigorgia eximia (Gorgoniidae, Octocorallia) in the Tropical Eastern Pacific. We isolated thirteen fungal genera in healthy and diseased colonies including Aspergillus sydowii. Aspergillus has been previously identified as responsible for the mortality of gorgonian corals in the Caribbean. This disease was observed in the Eastern Pacific affecting a completely different set of species nearly 30 years after the Caribbean outbreak, which concur with rising seawater temperatures and thermal anomalies that have been observed in the last 4 years.
Albarède, Francis; Van Der Hilst, Rob D
2002-11-15
We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced negative buoyancy and can more easily founder to the very base of the mantle. Plateau segregation remains statistical and no sharp compositional interface is expected from the multiple fate of the plates. We show that the variable depth subduction of heavily laden plates can prevent full vertical mixing and preserve a vertical concentration gradient in the mantle. In addition, it can account for the preservation of scattered remnants of primitive material in the deep mantle and therefore for the Ar and (3)He observations in ocean-island basalts.
Process Study of Oceanic Responses to Typhoons Using Arrays of EM-APEX Floats and Moorings
2012-09-30
maximum potential intensity, structure , energy, trajectory, and dynamic evolution. The most energetic oceanic responses to tropical cyclone forcing are...during tropical cyclone passage will aid understanding of storm dynamics and structure . The ocean’s recovery after tropical cyclone passage depends...days). The wake was advected hundreds of kilometers from the storm track by a pre- existing mesoscale eddy. Its thermal structure could not be
South China Sea summer monsoon onset in relation to the off-equatorial ITCZ
NASA Astrophysics Data System (ADS)
Zhou, Wen; Chan, Johnny Chung-Leung; Li, Chongyin
2005-09-01
Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.
NASA Astrophysics Data System (ADS)
Das, Shrestha; Halder, Kalyan
2018-06-01
Palaeobiogeographical distribution of gastropod genera from the Paleocene and the Eocene has been analysed. Based on this distribution, formal palaeobiogeographical provinces have been established and their relationships are sought. It has been found that the provinces were largely restricted to the palaeo-tropics and subtropics mainly of the northern hemisphere and they share a large proportion of their generic composition. The Northern Tropical Realm has been established to include these provinces. The distribution evinces presence of ocean surface currents in the tropics across longitudes. The possible currents moved through the relict Tethys Ocean, across the Atlantic Ocean and perhaps also across the Pacific. However, planktotrophic larvae of these benthic molluscs could not cross the deep ocean barrier that lay between the Northern Tropical Realm and the Austro-New Zealand Province of the southern hemisphere. The gastropod fauna in the latter province evolved independently. Distribution of all the provinces within palaeo-tropics and subtropics indicates strong control of temperature over it. Paleocene-Eocene Thermal Maximum appears to be responsible for extinction and range contraction of high latitude faunas. Low latitude faunas also suffered significant extinction. However, large diversification in the Eocene was a response to widespread transgression that coincided with the thermal event.
NASA Astrophysics Data System (ADS)
Schäfer, J.; Wölbern, I.; Rümpker, G.
2009-06-01
We investigate depth variations of the 410 and 520 km-discontinuities beneath Asia and the Pacific which serve as examples for a continental and an oceanic region, respectively. The depths are derived from travel-time differences between the PP-phase and its precursors that are reflected at the discontinuities. After accounting for differences in average crustal thickness, we find that the depth of the ‘410’ is rather uniform but larger than expected beneath both regions with a value of approximately 418 km. Signals from the ‘520’ are slightly less pronounced. However, while the average depth of the ‘520’ beneath Asia is about 519 km, we obtain a value of about 531.5 km for the Pacific. Here, the depression of the discontinuities can be explained in view of thermal anomalies in relation to mantle plumes. For Asia, however, the observations seem to require a more complex pattern of thermal anomalies possibly complemented by variations in chemical composition.
NASA Astrophysics Data System (ADS)
Kamada, A.; Kuroda, T.; Kasaba, Y.; Terada, N.; Akiba, T.
2017-09-01
Our Mars General Circulation Model was used to reproduce the early Martian climate which was thought to be warm and wet. Our simulation with high thermal inertia assuming wet soils and ancient ocean/lakes succeeded in producing the surface temperature above 273K throughout a year in low-mid latitudes of northern hemisphere.
Worum, F.P.; Carricart-Ganivet, J. P.; Benson, L.; Golicher, D.
2007-01-01
We present a model of annual density banding in skeletons of Montastraea coral species growing under thermal stress associated with an ocean-warming scenario. The model predicts that at sea-surface temperatures (SSTs) <29??C, high-density bands (HDBs) are formed during the warmest months of the year. As temperature rises and oscillates around the optimal calcification temperature, an annual doublet in the HDB (dHDB) occurs that consists of two narrow HDBs. The presence of such dHDBs in skeletons of Montastraea species is a clear indication of thermal stress. When all monthly SSTs exceed the optimal calcification temperature, HDBs form during the coldest, not the warmest, months of the year. In addition, a decline in mean-annual calcification rate also occurs during this period of elevated SST. A comparison of our model results with annual density patterns observed in skeletons of M. faveolata and M. franksi, collected from several localities in the Mexican Caribbean, indicates that elevated SSTs are already resulting in the presence of dHDBs as a first sign of thermal stress, which occurs even without coral bleaching. ?? 2007, by the American Society of Limnology and Oceanography, Inc.
Combined ocean acidification and low temperature stressors cause coral mortality
NASA Astrophysics Data System (ADS)
Kavousi, Javid; Parkinson, John Everett; Nakamura, Takashi
2016-09-01
Oceans are predicted to become more acidic and experience more temperature variability—both hot and cold—as climate changes. Ocean acidification negatively impacts reef-building corals, especially when interacting with other stressors such as elevated temperature. However, the effects of combined acidification and low temperature stress have yet to be assessed. Here, we exposed nubbins of the scleractinian coral Montipora digitata to ecologically relevant acidic, cold, or combined stress for 2 weeks. Coral nubbins exhibited 100% survival in isolated acidic and cold treatments, but ~30% mortality under combined conditions. These results provide further evidence that coupled stressors have an interactive effect on coral physiology, and reveal that corals in colder environments are also susceptible to the deleterious impacts of coupled ocean acidification and thermal stress.
Upwarp of anomalous asthenosphere beneath the Rio Grande rift
Parker, E.C.; Davis, P.M.; Evans, J.R.; Iyer, H.M.; Olsen, K.H.
1984-01-01
Continental rifts are possible analogues of mid-ocean ridges, although major plate tectonic features are less clearly observed1. Current thermal models of mid-ocean ridges2-4 consist of solid lithospheric plates overlying the hotter, less viscous asthenosphere, with plate thickness increasing away from the ridge axis. The lithospheric lower boundary lies at or near the melting point isotherm, so that at greater depths higher temperatures account for lower viscosity, lower seismic velocities and possibly partial melting. Upwarp of this boundary at the ridge axis concentrates heat there, thus lowering densities by expansion and raising the sea floor to the level of thermal isostatic equilibrium. At slow spreading ridges, a major central graben forms owing to the mechanics of magma injection into the crust5. Topography, heat flow, gravity and seismic studies support these models. On the continents, a low-velocity channel has been observed, although it is poorly developed beneath ancient cratons6-9. Plate tectonic models have been applied to continental basins and margins10-12, but further similarities to the oceanic models remain elusive. Topographic uplift is often ascribed to Airy type isostatic compensation caused by crustal thickening, rather than thermal compensation in the asthenosphere. Here we discuss the Rio Grande rift, in southwestern United States. Teleseismic P-wave residuals show that regional uplift is explained by asthenosphere uplift rather than crustal thickening. ?? 1984 Nature Publishing Group.
Thermal evolution of the high-pressure ice layers beneath a buried ocean within Titan and Ganymede
NASA Astrophysics Data System (ADS)
Choblet, G.; Tobie, G.
2015-12-01
Deep interiors of massive icy satellites such as Titan and Ganymede probably harbor a buried ocean above high-pressure (HP) ice layers. The nature and location of the lower interface of the ocean is ultimately controlled by the amount of heat transferred through the surface ice Ih layer but it also involves equilibration of heat and melt transfer in the HP ices. While the Rayleigh number associated to such HP ice layers is most probably supercritical, classical subsolidus convection might not be a viable mechanism as the radial temperature gradient in the cold boundary layer is likely to exceed the slope of the melting curve. A significant part of the heat transfer could be achieved via the mass flux of warm liquid through this cold boundary layer up to the global phase boundary, a phenomenon sometimes referred to as heat-pipe mechanism. We present 3D spherical simulations of thermal convection in these HP ice layers that address for the first time this complex interplay. First, scaling relationships are proposed to describe this configuration for a large range of Rayleigh numbers and solidus curves. We then focus on a more realistic set-up where a prescribed basal heat flux is considered in a plausible range for the thermal history of Ganymede or Titan together with the expected viscosity law for HP ices.
., Howard P. Hanson, Lynn Rauchenstein, James Van Zwieten, Desikan Bharathan, Donna Heimiller, Nicholas Langle, George N. Scott, James Potemra, N. John Nagurny, and Eugene Jansen. 2012. Ocean Thermal
Mantle mixing and thermal evolution during Pangaea assembly and breakup
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Li, M.; Zhong, S.; Manga, M.
2016-12-01
Continents insulate the underlying mantle, and it has been suggested that the arrangement of the continents can have a significant effect on sub-continental mantle temperatures. Additionally, the dispersal or agglomeration of continents may affect the efficacy of continental insulation, with some studies suggesting warming of 100K beneath supercontinents. During the most recent supercontinent cycle, Pangaea was encircled by subduction, potentially creating a `curtain' of subducted material that may have prevented mixing of the sub-Pangaea mantle with the sub-Panthalassa mantle. Using 3D spherical shell geometry mantle convection simulations, we quantify the effect of insulation by continents and supercontinents. We explore the differences in model predictions for purely thermal vs. thermochemical convection, and we use tracers to quantify the exchange of material between the sub-oceanic to the sub-continental mantle.
Interannual coherent variability of SSTA and SSHA in the Tropical Indian Ocean
NASA Astrophysics Data System (ADS)
Feng, J. Q.
2012-01-01
Sea surface height derived from the multiple ocean satellite altimeter missions (TOPEX/Poseidon, Jason-1, ERS, Envisat et al.) and sea surface temperature from National Centers for Environmental Prediction (NCEP) over 1993-2008 are analyzed to investigate the coherent patterns between the interannual variability of the sea surface and subsurface in the Tropical Indian Ocean, by jointly adopting Singular Value Decomposition (SVD) and Extended Associate Pattern Analysis (EAPA) methods. Results show that there are two dominant coherent modes with the nearly same main period of about 3-5 yr, accounting for 86 % of the total covariance in all, but 90° phase difference between them. The primary pattern is characterized by a east-west dipole mode associated with the mature phase of ENSO, and the second presents a sandwich mode having one sign anomalies along Sumatra-Java coast and northeast of Madagascar, whilst an opposite sign between the two regions. The robust correlations of the sea surface height anomaly (SSHA) with sea surface temperature anomaly (SSTA) in the leading modes indicate a strong interaction between them, though the highest correlation coefficient appears with a time lag. And there may be some physical significance with respect to ocean dynamics implied in SSHA variability. Analyzing results show that the features of oceanic waves with basin scale, of which the Rossby wave is prominent, are apparent in the dominant modes. It is further demonstrated from the EAPA that the equatorial eastward Kelvin wave and off-equatorial westward Rossby wave as well as their reflection in the east and west boundary, respectively, are important dynamic mechanisms in the evolution of the two leading coherent patterns. Results of the present study suggest that the upper ocean thermal variations on the timescale of interannual coherent with the ocean dynamics in spatial structure and temporal evolution are mainly attributed to the ocean waves.
Madeira, Diana; Araújo, José E.; Vitorino, Rui; Costa, Pedro M.; Capelo, José L.; Vinagre, Catarina; Diniz, Mário S.
2017-01-01
Ocean warming is known to alter the performance and fitness of marine organisms albeit the proteome underpinnings of species thermal tolerance are still largely unknown. In this 1-month experiment we assessed the vulnerability of the gilt-head sea bream Sparus aurata, taken here as a biological model for some key fisheries species, to ocean warming (control 18°C, nursery ground temperature 24°C and heat wave 30°C). Survival was impaired after 28 days, mainly at 30°C although fishes' condition was unaltered. Muscle proteome modulation was assessed at 14 and 21 days, showing that protein expression profiles were similar between fish exposed to 18 and 24°C, differing from fish exposed to 30°C. Fish subjected to 24°C showed an enhanced glycolytic potential and decreased glycogenolysis mainly at 14 days of exposure. Fish subjected to 30°C also showed enhanced glycolytic potential and up-regulated proteins related to gene expression, cellular stress response (CSR), and homeostasis (mostly cytoskeletal dynamics, acid-base balance, chaperoning). However, inflammatory processes were elicited at 21 days along with a down-regulation of the tricarboxylic acid cycle. Thus, juvenile fish seem able to acclimate to 24°C but possibly not to 30°C, which is the predicted temperature for estuaries during heat waves by the year 2100. This may be related with increasing constraints on organism physiology associated with metabolic scope available for performance and fitness at higher temperatures. Consequently, recruitment of commercial sea breams may be in jeopardy, highlighting the need for improved management plans for fish stocks. PMID:29109689
Madeira, Diana; Araújo, José E; Vitorino, Rui; Costa, Pedro M; Capelo, José L; Vinagre, Catarina; Diniz, Mário S
2017-01-01
Ocean warming is known to alter the performance and fitness of marine organisms albeit the proteome underpinnings of species thermal tolerance are still largely unknown. In this 1-month experiment we assessed the vulnerability of the gilt-head sea bream Sparus aurata , taken here as a biological model for some key fisheries species, to ocean warming (control 18°C, nursery ground temperature 24°C and heat wave 30°C). Survival was impaired after 28 days, mainly at 30°C although fishes' condition was unaltered. Muscle proteome modulation was assessed at 14 and 21 days, showing that protein expression profiles were similar between fish exposed to 18 and 24°C, differing from fish exposed to 30°C. Fish subjected to 24°C showed an enhanced glycolytic potential and decreased glycogenolysis mainly at 14 days of exposure. Fish subjected to 30°C also showed enhanced glycolytic potential and up-regulated proteins related to gene expression, cellular stress response (CSR), and homeostasis (mostly cytoskeletal dynamics, acid-base balance, chaperoning). However, inflammatory processes were elicited at 21 days along with a down-regulation of the tricarboxylic acid cycle. Thus, juvenile fish seem able to acclimate to 24°C but possibly not to 30°C, which is the predicted temperature for estuaries during heat waves by the year 2100. This may be related with increasing constraints on organism physiology associated with metabolic scope available for performance and fitness at higher temperatures. Consequently, recruitment of commercial sea breams may be in jeopardy, highlighting the need for improved management plans for fish stocks.
NASA Astrophysics Data System (ADS)
Kastner, M.; Elderfield, H.; Martin, J. B.
1991-05-01
The nature and origin of fluids in convergent margins can be inferred from geochemical and isotopic studies of the venting and pore fluids, and is attempted here for the Barbados Ridge, Nankai Trough and the convergent margin off Peru. Venting and pore fluids with lower than seawater Cl- concentrations characterize all these margins. Fluids have two types of source: internal and external. The three most important internal sources are: (1) porosity reduction; (2) diagenetic and metamorphic dehydration; and (3) the breakdown of hydrous minerals. Gas hydrate formation and dissociation, authigenesis of hydrous minerals and the alteration of volcanic ash and/or the upper oceanic crust lead to a redistribution of the internal fluids and gases in vertical and lateral directions. The maximum amount of expelled water calculated can be ca. 7 m3 a-1 m-1, which is much less than the tens to more than 100 m3 a-1 m-1 of fluid expulsion which has been observed. The difference between these figures must be attributed to external fluid sources, mainly by transport of meteoric water enhanced by mixing with seawater. The most important diagenetic reactions which modify the fluid compositions, and concurrently the physical and even the thermal properties of the solids through which they flow are: (1) carbonate recrystallization, and more importantly precipitation; (2) bacterial and thermal degradation of organic matter; (3) formation and dissociation of gas hydrates; (4) dehydration and transformation of hydrous minerals, especially of clay minerals and opal-A; and (5) alteration, principally zeolitization and clay mineral formation, of volcanic ash and the upper oceanic crust.
NASA Astrophysics Data System (ADS)
Wong, E.; Minnett, P. J.
2016-12-01
There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.
Convective Available Potential Energy of World Ocean
NASA Astrophysics Data System (ADS)
Su, Z.; Ingersoll, A. P.; Thompson, A. F.
2012-12-01
Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open-ocean convection may arise through strong surface buoyancy fluxes (Schott et al. 1996), or by thermobaric instability (Akitomo 1999a, b). Ingersoll (2005) demonstrated that thermobaric-induced deep convection is due to the abrupt release of ocean potential energy into kinetic energy. In atmospheric dynamics, Convective Available Potential Energy (CAPE) has long been an important thermodynamic variable (Arakawa and Schubert 1974) that has been used to forecast moist convection (Doswell and Rasmussen 1994) and to test the performance of GCMs (Ye et al. 1998). However, the development of a similar diagnostic in the ocean has received little attention.; World Ocean Convective Available Potential Energy distribution in North-Hemisphere Autumn (J/kg)
Thermal diffusion of the lunar magma ocean and the formation of the lunar crust
NASA Astrophysics Data System (ADS)
Zhu, D.; Wang, S.
2010-12-01
The magma ocean hypothesis is consistent with several lines of evidence including planet formation, core-mantle differentiation and geochemical observations, and it is proved as an inevitable stage in the early evolution of planets. The magma ocean is assumed to be homogeneous in previous models during solidification or crystallization[1]. Based on the recent advance and our new data in experimental igneous petrology[2], we question this assumption and propose that an gabbrotic melt, from which the anorthositic lunar crust crystallized, can be produced by thermal diffusion, rather than by magma fractionation. This novel model can provide explanations for the absence of the advection in lunar magma ocean[3] and the old age of the anorthositic lunar crust[4-5]. 1. Solomatov, V., Magma Oceans and Primordial Mantle Differentiation, in Treatise on Geophysics, S. Gerald, Editor. 2007, Elsevier: Amsterdam. p. 91-119. 2. Huang, F., et al., Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica Et Cosmochimica Acta, 2009. 73(3): p. 729-749. 3. Turcotte, D.L. and L.H. Kellogg, Implications of isotope data for the origin of the Moon, in Origin of the Moon, W.K. Hartmann, R.J. Phillips, and G.J. Taylor, Editors. 1986, Lunar and Planet. Inst.: Houston, TX. p. 311-329. 4. Alibert, C., M.D. Norman, and M.T. McCulloch, An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochimica Et Cosmochimica Acta, 1994. 58(13): p. 2921-2926. 5. Touboul, M., et al., Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean. Icarus, 2009. 199(2): p. 245-249.
Widespread gas hydrate instability on the upper U.S. Beaufort margin
Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.
2014-01-01
The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5–7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.
Evaluation of the possible presence of clathrate hydrates in Europa's icy shell or seafloor
NASA Astrophysics Data System (ADS)
Prieto-Ballesteros, Olga; Kargel, Jeffrey S.; Fernández-Sampedro, Maite; Selsis, Franck; Martínez, Eduardo Sebastián; Hogenboom, David L.
2005-10-01
Several substances besides water ice have been detected on the surface of Europa by spectroscopic sensors, including CO 2, SO 2, and H 2S. These substances might occur as pure crystalline ices, as vitreous mixtures, or as clathrate hydrate phases, depending on the system conditions and the history of the material. Clathrate hydrates are crystalline compounds in which an expanded water ice lattice forms cages that contain gas molecules. The molecular gases that may constitute Europan clathrate hydrates may have two possible ultimate origins: they might be primordial condensates from the interstellar medium, solar nebula, or jovian subnebula, or they might be secondary products generated as a consequence of the geological evolution and complex chemical processing of the satellite. Primordial ices and volatile-bearing compounds would be difficult to preserve in pristine form in Europa without further processing because of its active geological history. But dissociated volatiles derived from differentiation of a chondritic rock or cometary precursor may have produced secondary clathrates that may be present now. We have evaluated the current stability of several types of clathrate hydrates in the crust and the ocean of Europa. The depth at which the clathrates of SO 2, CO 2, H 2S, and CH 4 are stable have been obtained using both the temperatures observed in the surface [Spencer, J.R., Tamppari, L.K., Martin, T.Z., Travis, L.D., 1999. Temperatures on Europa from Galileo photopolarimeter-radiometer: Nighttime thermal anomalies. Science 284, 1514-1516] and thermal models for the crust. In addition, their densities have been calculated in order to determine their buoyancy in the ocean, obtaining different results depending upon the salinity of the ocean and type of clathrate. For instance, assuming a eutectic composition of the system MgSO 4sbnd H 2O for the ocean, CO 2, H 2S, and CH 4 clathrates would float but SO 2 clathrate would sink to the seafloor; an ocean of much lower salinity would allow all these clathrates to sink, except that CH 4 clathrate would still float. Many geological processes may be driven or affected by the formation, presence, and destruction of clathrates in Europa such as explosive cryomagmatic activity [Stevenson, D.J., 1982. Volcanism and igneous processes in small icy satellites. Nature 298, 142-144], partial differentiation of the crust driven by its clathration, or the local retention of heat within or beneath clathrate-rich layers because of the low thermal conductivity of clathrate hydrates [Ross, R.G., Kargel, J.S., 1998. Thermal conductivity of Solar System ices, with special reference to martian polar caps. In: Schmitt, B., De Berg, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Dordrecht, pp. 33-62]. On the surface, destabilization of these minerals and compounds, triggered by fracture decompression or heating could result in formation of chaotic terrain morphologies, a mechanism that also has been proposed for some martian chaotic terrains [Tanaka, K.L., Kargel, J.S., MacKinnon, D.J., Hare, T.M., Hoffman, N., 2002. Catastrophic erosion of Hellas basin rim on Mars induced by magmatic intrusion into volatile-rich rocks. Geophys. Res. Lett. 29 (8); Kargel, J.S., Prieto-Ballesteros, O., Tanaka K.L., 2003. Is clathrate hydrate dissociation responsible for chaotic terrains on Earth, Mars, Europa, and Triton? Geophys. Res. 5. Abstract 14252]. Models of the evolution of the ice shell of Europa might take into account the presence of clathrate hydrates because if gases are vented from the silicate interior to the water ocean, they first would dissolve in the ocean and then, if the gas concentrations are sufficient, may crystallize. If any methane releases occur in Europa by hydrothermal or biological activity, they also might form clathrates. Then, from both geological and astrobiological perspectives, future missions to Europa should carry instrumentation capable of clathrate hydrate detection.
Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica
NASA Astrophysics Data System (ADS)
Kimura, Satoshi; Jenkins, Adrian; Dutrieux, Pierre; Forryan, Alexander; Naveira Garabato, Alberto C.; Firing, Yvonne
2016-12-01
Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ˜0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Gozzard, Simon; Alvey, Andy
2016-04-01
The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.
Evolution of midplate hotspot swells: Numerical solutions
NASA Technical Reports Server (NTRS)
Liu, Mian; Chase, Clement G.
1990-01-01
The evolution of midplate hotspot swells on an oceanic plate moving over a hot, upwelling mantle plume is numerically simulated. The plume supplies a Gaussian-shaped thermal perturbation and thermally-induced dynamic support. The lithosphere is treated as a thermal boundary layer with a strongly temperature-dependent viscosity. The two fundamental mechanisms of transferring heat, conduction and convection, during the interaction of the lithosphere with the mantle plume are considered. The transient heat transfer equations, with boundary conditions varying in both time and space, are solved in cylindrical coordinates using the finite difference ADI (alternating direction implicit) method on a 100 x 100 grid. The topography, geoid anomaly, and heat flow anomaly of the Hawaiian swell and the Bermuda rise are used to constrain the models. Results confirm the conclusion of previous works that the Hawaiian swell can not be explained by conductive heating alone, even if extremely high thermal perturbation is allowed. On the other hand, the model of convective thinning predicts successfully the topography, geoid anomaly, and the heat flow anomaly around the Hawaiian islands, as well as the changes in the topography and anomalous heat flow along the Hawaiian volcanic chain.
Implications of the observed Pluto-Charon density contrast
NASA Astrophysics Data System (ADS)
Bierson, C. J.; Nimmo, F.; McKinnon, W. B.
2018-07-01
Observations by the New Horizons spacecraft have determined that Pluto has a larger bulk density than Charon by 153 ± 44 kg m-3 (2σ uncertainty). We use a thermal model of Pluto and Charon to determine if this density contrast could be due to porosity variations alone, with Pluto and Charon having the same bulk composition. We find that Charon can preserve a larger porous ice layer than Pluto due to its lower gravity and lower heat flux but that the density contrast can only be explained if the initial ice porosity is ≳ 30%, extends to ≳100 km depth and Pluto retains a subsurface ocean today. We also find that other processes such as a modern ocean on Pluto, self-compression, water-rock interactions, and volatile (e.g., CO) loss cannot, even in combination, explain this difference in density. Although an initially high porosity cannot be completely ruled out, we conclude that it is more probable that Pluto and Charon have different bulk compositions. This difference could arise either from forming Charon via a giant impact, or via preferential loss of H2O on Pluto due to heating during rapid accretion.
NASA Astrophysics Data System (ADS)
Baba, Kiyoshi; Tada, Noriko; Matsuno, Tetsuo; Liang, Pengfei; Li, Ruibai; Zhang, Luolei; Shimizu, Hisayoshi; Abe, Natsue; Hirano, Naoto; Ichiki, Masahiro; Utada, Hisashi
2017-08-01
Seafloor magnetotelluric (MT) experiments were recently conducted in two areas of the northwestern Pacific to investigate the nature of the old oceanic upper mantle. The areas are far from any tectonic activity, and "normal" mantle structure is therefore expected. The data were carefully analyzed to reduce the effects of coastlines and seafloor topographic changes, which are significant boundaries in electrical conductivity and thus distort seafloor MT data. An isotropic, one-dimensional electrical conductivity profile was estimated for each area. The profiles were compared with those obtained from two previous study areas in the northwestern Pacific. Between the four profiles, significant differences were observed in the thickness of the resistive layer beyond expectations based on cooling of homogeneous oceanic lithosphere over time. This surprising feature is now further clarified from what was suggested in a previous study. To explain the observed spatial variation, dynamic processes must be introduced, such as influence of the plume associated with the formation of the Shatsky Rise, or spatially non-uniform, small-scale convection in the asthenosphere. There is significant room of further investigation to determine a reasonable and comprehensive interpretation of the lithosphere-asthenosphere system beneath the northwestern Pacific. The present results demonstrate that electrical conductivity provides key information for such investigation.[Figure not available: see fulltext.
Mapping Antarctic Crustal Thickness using Gravity Inversion and Comparison with Seismic Estimates
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Ferraccioli, Fausto; Jordan, Tom
2017-04-01
Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Crustal thicknesses derived from gravity inversion are consistent with seismic estimates. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Ocean isochrons are used to define the cooling age of oceanic lithosphere. Crustal thicknesses from gravity inversion are compared with independent seismic estimates, which are still relatively sparse over Antarctica. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. Offshore an extensive region of either thick oceanic crust or highly thinned continental crust lies adjacent to Oates Land and north Victoria Land, and also off West Antarctica around the Amundsen Ridges. Thin crust is predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new maps produced by this study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts and Peter I Island in the Bellingshausen Sea region, while another branch may link to the George V Sound Rift in the Antarctic Peninsula region. Crustal thickness and lithosphere thinning derived from gravity inversion also allows the determination of circum-Antarctic ocean-continent transition structure and the mapping of continent-ocean boundary location. Superposition of illuminated satellite gravity data onto crustal thickness maps from gravity inversion provides improved determination of Southern Ocean rift orientation, pre-breakup rifted margin conjugacy and continental breakup trajectory. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation, is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information.
Patterns of Indian Ocean Sea-Level Change in a Warming Climate
2010-08-01
distribution is unlimited. 13. SUPPLEMENTARY NOTES 20110415461 14 ABSTRACT Global sea level has risen during the past decades as a result of thermal...expansion of the warming ocean and freshwater addition from melting continental icel However, sea-level rise is not globally uniforml, 2, 3, 4, 5...7320 Division Head Ruth H. Preller, 7300 Security. Code 1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public
Surface Energies and Chemical Analysis of the Initial Stages of Marine Microbiological Fouling.
1983-06-20
Surfaces in Model Heat Exchange Cells. pp. 67-87. In: Determination of Microfouling Indicies From Materials Exposed to Sub-Tropical Warm Ocean Water...The Nature of Primary Organic Films in the Marine Environment and Their Significance for Ocean Thermal nery Conservation ( OTEC ) Heat Exchanger ...areas were individually performed during a nine month period between August, 1982 and April, 1983. All tests were done with equipment and materials of
Ancient hydrothermal ecosystems on earth: a new palaeobiological frontier.
Walter, M R
1996-01-01
Thermal springs are common in the oceans and on land. Early in the history of the Earth they would have been even more abundant, because of a higher heat flow. A thermophilic lifestyle has been proposed for the common ancestor of extant life, and hydrothermal ecosystems can be expected to have existed on Earth since life arose. Though there has been a great deal of recent research on this topic by biologists, palaeobiologists have done little to explore ancient high temperature environments. Exploration geologists and miners have long known the importance of hydrothermal systems, as they are sources for much of our gold, silver, copper, lead and zinc. Such systems are particularly abundant in Archaean and Proterozoic successions. Despite the rarity of systematic searches of these by palaeobiologists, already 12 fossiliferous Phanerozoic deposits are known. Five are 'black smoker' type submarine deposits that formed in the deep ocean and preserve a vent fauna like that in the modern oceans; the oldest is Devonian. Three are from shallow marine deposits of Carboniferous age. As well as 'worm tubes', several of these contain morphological or isotopic evidence of microbial life. The oldest well established fossiliferous submarine thermal spring deposit is Cambro-Ordovician; microorganisms of at least three or four types are preserved in this. One example each of Carboniferous and Jurassic sub-lacustrine fossiliferous thermal springs are known. There are two convincing examples of fossiliferous subaerial hydrothermal deposits. Both are Devonian. Several known Proterozoic and Archaean deposits are likely to preserve a substantial palaeobiological record, and all the indications are that there must be numerous deposits suitable for study. Already it is demonstrable that in ancient thermal spring deposits there is a record of microbial communities preserved as stromatolites, microfossils, isotope distribution patterns and hydrocarbon biomarkers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamano, Keiko; Kawahara, Hajime; Abe, Yutaka
2015-06-20
We present the thermal evolution and emergent spectra of solidifying terrestrial planets along with the formation of steam atmospheres. The lifetime of a magma ocean and its spectra through a steam atmosphere depends on the orbital distance of the planet from the host star. For a Type I planet, which is formed beyond a certain critical distance from the host star, the thermal emission declines on a timescale shorter than approximately 10{sup 6} years. Therefore, young stars should be targets when searching for molten planets in this orbital region. In contrast, a Type II planet, which is formed inside themore » critical distance, will emit significant thermal radiation from near-infrared atmospheric windows during the entire lifetime of the magma ocean. The K{sub s} and L bands will be favorable for future direct imaging because the planet-to-star contrasts of these bands are higher than approximately 10{sup −7}–10{sup −8}. Our model predicts that, in the Type II orbital region, molten planets would be present over the main sequence of the G-type host star if the initial bulk content of water exceeds approximately 1 wt%. In visible atmospheric windows, the contrasts of the thermal emission drop below 10{sup −10} in less than 10{sup 5} years, whereas those of the reflected light remain 10{sup −10} for both types of planets. Since the contrast level is comparable to those of reflected light from Earth-sized planets in the habitable zone, the visible reflected light from molten planets also provides a promising target for direct imaging with future ground- and space-based telescopes.« less
The Atlantic Multidecadal Oscillation without a role for ocean circulation.
Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn
2015-10-16
The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO. Copyright © 2015, American Association for the Advancement of Science.
Response of an eddy-permitting ocean model to the assimilation of sparse in situ data
NASA Astrophysics Data System (ADS)
Li, Jian-Guo; Killworth, Peter D.; Smeed, David A.
2003-04-01
The response of an eddy-permitting ocean model to changes introduced by data assimilation is studied when the available in situ data are sparse in both space and time (typical for the majority of the ocean). Temperature and salinity (T&S) profiles from the WOCE upper ocean thermal data set were assimilated into a primitive equation ocean model over the North Atlantic, using a simple nudging scheme with a time window of about 2 days and a horizontal spatial radius of about 1°. When data are sparse the model returns to its unassimilated behavior, locally "forgetting" or rejecting the assimilation, on timescales determined by the local advection and diffusion. Increasing the spatial weighting radius effectively reduces both processes and hence lengthens the model restoring time (and with it, the impact of assimilation). Increasing the nudging factor enhances the assimilation effect but has little effect on the model restoring time.
Griffith, Andrew W; Gobler, Christopher J
2017-09-12
While early life-stage marine bivalves are vulnerable to ocean acidification, effects over successive generations are poorly characterized. The objective of this work was to assess the transgenerational effects of ocean acidification on two species of North Atlantic bivalve shellfish, Mercenaria mercenaria and Argopecten irradians. Adults of both species were subjected to high and low pCO 2 conditions during gametogenesis. Resultant larvae were exposed to low and ambient pH conditions in addition to multiple, additional stressors including thermal stress, food-limitation, and exposure to a harmful alga. There were no indications of transgenerational acclimation to ocean acidification during experiments. Offspring of elevated pCO 2 -treatment adults were significantly more vulnerable to acidification as well as the additional stressors. Our results suggest that clams and scallops are unlikely to acclimate to ocean acidification over short time scales and that as coastal oceans continue to acidify, negative effects on these populations may become compounded and more severe.
2012-04-01
certain energy related military construction projects. The Navy used this authority for its geothermal plant at Naval Air Weapons Station China Lake...electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal , municipal solid...thermal; geothermal , including electricity and heat pumps; municipal solid waste; new hydroelectric generation capacity achieved from increased
NASA Astrophysics Data System (ADS)
Guo, Z.; Zhou, Y.
2017-12-01
We report global structure of the 410-km and 660-km discontinuities from finite-frequency tomography using frequency-dependent traveltime measurements of SS precursors recorded at the Global Seismological Network (GSN). Finite-frequency sensitivity kernels for discontinuity depth perturbations are calculated in the framework of traveling-wave mode coupling. We parametrize the global discontinuities using a set of spherical triangular grid points and solve the tomographic inverse problem based on singular value decomposition. Our global 410-km and 660-km discontinuity models reveal distinctly different characteristics beneath the oceans and subduction zones. In general, oceanic regions are associated with a thinner mantle transition zone and depth perturbations of the 410-km and 660-km discontinuities are anti-correlated, in agreement with a thermal origin and an overall warm and dry mantle beneath the oceans. The perturbations are not uniform throughout the oceans but show strong small-scale variations, indicating complex processes in the mantle transition zone. In major subduction zones (except for South America where data coverage is sparse), depth perturbations of the 410-km and 660-km discontinuities are correlated, with both the 410-km and the 660-km discontinuities occurring at greater depths. The distributions of the anomalies are consistent with cold stagnant slabs just above the 660-km discontinuity and ascending return flows in a superadiabatic upper mantle.
Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems
NASA Astrophysics Data System (ADS)
Mostofa, Khan M. G.; Liu, Cong-Qiang; Zhai, WeiDong; Minella, Marco; Vione, Davide; Gao, Kunshan; Minakata, Daisuke; Arakaki, Takemitsu; Yoshioka, Takahito; Hayakawa, Kazuhide; Konohira, Eiichi; Tanoue, Eiichiro; Akhand, Anirban; Chanda, Abhra; Wang, Baoli; Sakugawa, Hiroshi
2016-03-01
Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.
Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems
NASA Astrophysics Data System (ADS)
Mostofa, K. M. G.; Liu, C.-Q.; Zhai, W. D.; Minella, M.; Vione, D.; Gao, K.; Minakata, D.; Arakaki, T.; Yoshioka, T.; Hayakawa, K.; Konohira, E.; Tanoue, E.; Akhand, A.; Chanda, A.; Wang, B.; Sakugawa, H.
2015-07-01
Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different time scales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.
What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans.
Falkowski, Paul G; Lin, Hanzhi; Gorbunov, Maxim Y
2017-09-26
Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).
NASA Technical Reports Server (NTRS)
Sheehan, Anne Francis
1991-01-01
Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.
Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.
Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia
2013-09-17
Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.
Recent changes to the Gulf Stream causing widespread gas hydrate destabilization.
Phrampus, Benjamin J; Hornbach, Matthew J
2012-10-25
The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its impact on climate--remains uncertain.
NASA Astrophysics Data System (ADS)
Hässig, Marc; Duretz, Thibault; Rolland, Yann; Sosson, Marc
2016-05-01
The ophiolites of NE Anatolia and of the Lesser Caucasus (NALC) evidence an obduction over ∼200 km of oceanic lithosphere of Middle Jurassic age (c. 175-165 Ma) along an entire tectonic boundary (>1000 km) at around 90 Ma. The obduction process is characterized by four first order geological constraints: Ophiolites represent remnants of a single ophiolite nappe currently of only a few kilometres thick and 200 km long. The oceanic crust was old (∼80 Ma) at the time of its obduction. The presence of OIB-type magmatism emplaced up to 10 Ma prior to obduction preserved on top of the ophiolites is indicative of mantle upwelling processes (hotspot). The leading edge of the Taurides-Anatolides, represented by the South Armenian Block, did not experience pressures exceeding 0.8 GPa nor temperatures greater than ∼300 °C during underthrusting below the obducting oceanic lithosphere. An oceanic domain of a maximum 1000 km (from north to south) remained between Taurides-Anatolides and Pontides-Southern Eurasian Margin after the obduction. We employ two-dimensional thermo-mechanical numerical modelling in order to investigate obduction dynamics of a re-heated oceanic lithosphere. Our results suggest that thermal rejuvenation (i.e. reheating) of the oceanic domain, tectonic compression, and the structure of the passive margin are essential ingredients for enabling obduction. Afterwards, extension induced by far-field plate kinematics (subduction below Southern Eurasian Margin), facilitates the thinning of the ophiolite, the transport of the ophiolite on the continental domain, and the exhumation of continental basement through the ophiolite. The combined action of thermal rejuvenation and compression are ascribed to a major change in tectonic motions occurring at 110-90 Ma, which led to simultaneous obductions in the Oman (Arabia) and NALC regions.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.
2017-12-01
Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
An Answer to Fermi’s Paradox In the Prevalence of Ocean Worlds?
NASA Astrophysics Data System (ADS)
Stern, S. Alan
2017-10-01
The Fermi Paradox (e.g., [1]) asks the question about extraterrestrial civilizations, “Where are they?” Given speculations based on numerical evaluations of the Drake Equation that would seem to indicate that the likelihood of precisely N=1 communicating extraterrestrial civilizations in the Universe is small, i.e., that we are unique, the Fermi Paradox remains a puzzle. Many possible explanations have been proffered. We suggest another—namely that the great majority of worlds with biology and civilizations are interior water ocean worlds (WOWs). Interior WOWs appear to be particularly conducive to the development of life owing to several key advantages, including these two: (1) Environmental Independence to Stellar Type, Multiplicity, and Distance. Owing to the several to hundreds of kilometers depth of typical Type II liquid water oceans, and the overlying thermal insulation provided by the planetary lid atop these oceans, the energy balance, temperature, pressure, and toxicity in Type II ocean worlds is only weakly coupled to their host star’s stellar type, stellar multiplicity, stellar distance, and stellar evolutionary stage (i.e., from protostars with winds and high activity through the main sequence to stellar remnants). (2) Environmental Stability. Again owing to the depth of typical Type II oceans and the overlaying thermal insulation provided by the planetary lid atop these oceans, these environments are protected from numerous kinds of external risks to life, such as impacts, radiation, surface climate and obliquity cycles, poisonous atmospheres, and nearby deleterious astrophysical events such as novae and supernovae, hazards stellar flares, and even phenomena like the Faint Early Sun. Interior WOWs are naturally cut off from communication by their interior nature below a thick roof of ice or rock and ice, therefore do not easily reveal themselves. In this talk I will examine this new idea in more detail. [1] Hart, M.H., 1975. Explanation for the Absence of Extraterrestrials on Earth. Quarterly Journal of the Royal Astronomical Society, Vol. 16, p.128-135.
Global Warming, New Climate, New Atmospheric Circulation and New Water Cycle in North Africa
NASA Astrophysics Data System (ADS)
Karrouk, M. S.
2017-12-01
Global warming has now reached the energetic phase of H2O's return to the ground after the saturation of the atmosphere in evaporation since the 80s and 90s of the last century, which were characterized by severe droughts, mainly in Africa.This phase is the result of the accumulation of thermal energy exchanges in the Earth-Ocean-Atmosphere system that resulted in the thrust reversal of the energy balance toward the poles. This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus compared to the mainland, or even opposite when the balance is negative on the land, and in the atmosphere, warm thermal advection easily reach the North Pole (planetary crests), as well as cold advection push deep into North Africa and the Gulf of Mexico (planetary valleys: Polar Vortex).This "New Ground Energy Balance" establishes a "New Meridian Atmospheric Circulation (MAC)" with an undulating character throughout the year, including the winter characterized by intense latitudinal very active energy exchanges between the surplus areas (tropical) and the deficit (polar) on the one hand, and the atmosphere, the ocean and the continent on the other.The excess radiation balance increases the potential evaporation of the atmosphere and provides a new geographical distribution of Moisture and Water worldwide: the excess water vapor is easily converted by cold advection (Polar Vortex) to heavy rains that cause floods or snow storms that paralyze the normal functioning of human activities, which creates many difficulties for users and leaves damage and casualties, but ensures water availability missing since a long time in many parts of the world, in Africa, Europe and America.The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the Atlantic ridge at Greenland, which imposes on the jet stream a positive ripple, very strongly marked poleward, bringing cosmic cold advection of polar air masses winter over from Europe to North Africa. Hence the enormous meridian heat exchanges north-south, and south-north.
Coral physiology and microbiome dynamics under combined warming and ocean acidification
Dalcin Martins, Paula; Wilkins, Michael J.; Johnston, Michael D.; Warner, Mark E.; Cai, Wei-Jun; Melman, Todd F.; Hoadley, Kenneth D.; Pettay, D. Tye; Levas, Stephen; Schoepf, Verena
2018-01-01
Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with the thermally tolerant endosymbiont. Our results confirm recent findings that temperature-stress tolerant corals have a more stable microbiome, and demonstrate for the first time that this is also the case under the dual stresses of ocean warming and acidification. We propose that coral with a stable microbiome are also more physiologically resilient and thus more likely to persist in the future, and shape the coral species diversity of future reef ecosystems. PMID:29338021
Coral physiology and microbiome dynamics under combined warming and ocean acidification.
Grottoli, Andréa G; Dalcin Martins, Paula; Wilkins, Michael J; Johnston, Michael D; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Levas, Stephen; Schoepf, Verena
2018-01-01
Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with the thermally tolerant endosymbiont. Our results confirm recent findings that temperature-stress tolerant corals have a more stable microbiome, and demonstrate for the first time that this is also the case under the dual stresses of ocean warming and acidification. We propose that coral with a stable microbiome are also more physiologically resilient and thus more likely to persist in the future, and shape the coral species diversity of future reef ecosystems.
Rosa, Rui; Trübenbach, Katja; Pimentel, Marta S; Boavida-Portugal, Joana; Faleiro, Filipa; Baptista, Miguel; Dionísio, Gisela; Calado, Ricardo; Pörtner, Hans O; Repolho, Tiago
2014-02-15
Little is known about the capacity of early life stages to undergo hypercapnic and thermal acclimation under the future scenarios of ocean acidification and warming. Here, we investigated a comprehensive set of biological responses to these climate change-related variables (2°C above winter and summer average spawning temperatures and ΔpH=0.5 units) during the early ontogeny of the squid Loligo vulgaris. Embryo survival rates ranged from 92% to 96% under present-day temperature (13-17°C) and pH (8.0) scenarios. Yet, ocean acidification (pH 7.5) and summer warming (19°C) led to a significant drop in the survival rates of summer embryos (47%, P<0.05). The embryonic period was shortened by increasing temperature in both pH treatments (P<0.05). Embryo growth rates increased significantly with temperature under present-day scenarios, but there was a significant trend reversal under future summer warming conditions (P<0.05). Besides pronounced premature hatching, a higher percentage of abnormalities was found in summer embryos exposed to future warming and lower pH (P<0.05). Under the hypercapnic scenario, oxygen consumption rates decreased significantly in late embryos and newly hatched paralarvae, especially in the summer period (P<0.05). Concomitantly, there was a significant enhancement of the heat shock response (HSP70/HSC70) with warming in both pH treatments and developmental stages. Upper thermal tolerance limits were positively influenced by acclimation temperature, and such thresholds were significantly higher in late embryos than in hatchlings under present-day conditions (P<0.05). In contrast, the upper thermal tolerance limits under hypercapnia were higher in hatchlings than in embryos. Thus, we show that the stressful abiotic conditions inside the embryo's capsules will be exacerbated under near-future ocean acidification and summer warming scenarios. The occurrence of prolonged embryogenesis along with lowered thermal tolerance limits under such conditions is expected to negatively affect the survival success of squid early life stages during the summer spawning period, but not winter spawning.
The salinity effect in a mixed layer ocean model
NASA Technical Reports Server (NTRS)
Miller, J. R.
1976-01-01
A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.
The Hidden Dangers of Beaches: Cardiorespiratory Arrest Induced by Thermal Shock
Café, HM; Santos, S; Pereira, V; Chaves, S; Faria, P; Câmara, M; Nóbrega, J
2015-01-01
ABSTRACT Thermal shock is widely recognized by modern medicine. Its pathophysiological mechanisms are known, as are its possible consequences, but scientific reports in the literature about clinical cases with severe consequences are sparse. The authors present a case of cardiorespiratory arrest after prolonged sun exposure followed by a dive in the ocean. Other aetiological causes were ruled out, by exclusion, leading to the diagnosis of cardiorespiratory arrest caused by thermal shock. It is important to inform the public in general of the risks of negligent behaviour on the beach. PMID:26360691
NASA Astrophysics Data System (ADS)
Mueller-Stoffels, M.; Wackerbauer, R.
2010-12-01
The Arctic ocean and sea ice form a feedback system which plays an important role in the global climate. Variations of the global ice and snow distribution have a significant effect on the planetary albedo which governs the absorption of shortwave radiation. The complexity of highly parametrized GCMs makes it very difficult to assess single feedback processes in the climate system without the concurrent use of simple models where the physics are understood [1][2][3]. We introduce a complex systems model to investigate thermodynamic feedback processes in an Arctic ice-ocean layer. The ice-ocean layer is represented as a regular network of coupled cells. The state of each cell is determined by its energy content, which also defines the phase of the cell. The energy transport between cells is described with nonlinear and heterogeneous diffusion constants. And the time-evolution of the ice-ocean is driven by shortwave, longwave and lateral oceanic and atmospheric thermal forcing. This model is designed to study the stability of an ice cover under various heat intake scenarios. The network structure of the model allows to easily introduce albedo heterogeneities due to aging ice, wind blown snow cover, and ice movement to explore the time-evolution and pattern formation (melt ponds) processes in the Arctic sea ice. The solely thermodynamic model exhibits two stable states; one in the perennially ice covered domain and one in the perennially open water domain. Their existence is due to the temperature dependence of the longwave radiative budget. Transition between these states can be forced via lateral heat fluxes. During the transition from the ice covered to the open water stable state the ice albedo feedback effects are manifested as an increased warming rate of the ice cover together with enhanced seasonal energy oscillations. In the current model realization seasonal ice cover is present as a transient state only. Furthermore, the model exhibits hysteresis between the ice covered and the open water state when varying the lateral atmospheric (or oceanic) heat intake. Once the ice-ocean layer has transitioned from the ice covered to the open water stable state significant cooling (reduction of lateral fluxes) is necessary to return to the ice covered stable state. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice; only small portions of heat entering from the bottom of the ice-ocean layer induce already a transition to the stable asymptotic state with perennial open water. This indicates that ocean currents, understood as heat conveyors, can play a significant role in melting continuous ice covers. This is consistent with the findings of Shimada et al. for the Canada basin [4]. References: [1] S. Bony et al., How well do we understand and evaluate climate change feedback processes?, J of Climate 19, 3445 (2006). [2]I. Eisenman and J.S. Wettlaufer, Nonlinear threshold behavior during the loss of Arctic sea ice, PNAS 106, 28 (2009). [3]A.S. Thorndike, A Toy Model Linking Atmospheric and Thermal Radiation and Sea Ice Growth, JGR 97, 9401 (1992). [4] K. Shimada et al., Paci[|#12#|]c Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean, GRL 33, L08605 (2006).
NASA Astrophysics Data System (ADS)
Diehl, Alexander; Bieseler, Bastian; Bach, Wolfgang
2017-04-01
Determining the depth, extent, and timing of high-temperature hydrothermal alteration in the ocean crust is key to understanding how the lower oceanic crust is cooled. We report data from 18 epidote veins from the Wadi Gideah section in the Wadi Tayin block, which is a reference section for alteration of the lower crust formed at a fast oceanic spreading center. 87Sr/86Sr ratios feature a narrow range from 0.70429 to 0.70512, while O isotope compositions vary between - 0.7 and +4.9‰ in δ18OSMOW. These compositions indicate uniform water-rock ratios between 1 and 2 and formation temperatures in the range of 300 to 450˚ C. There is no systematic trend in Sr and O isotope compositions down section. Fluid inclusion entrapment temperatures for a subset of four samples linearly increase from 338˚ C to 465˚ C in lowermost 3 km of crust of the Wadi Gideah section. Salinities are uniform throughout and scatter closely around seawater values. We developed a numerical cooling model to assign possible crustal ages to the thermal gradients observed. For pure conductive cooling, these ages range between 4 and 20 Ma. Our thermal model runs with a high Nusselt number (Nu) of 20 down to the base of the crust indicate that the epidote veins may record this near-axial deep circulation in crust of only 0.1 Ma (5-7 km off axis). When off-axis circulation is shut off in the more distal flanks, however, massive conductive reheating of the lower crust by as much as 200˚ C is predicted to take place. But there is no evidence for prograde metamorphic reactions in the samples we studied (or other hydrothermally altered oceanic gabbros). An intermediate model, in which Nu is 20 down to 2 km for the first 0.1 Ma and Nu is then 4 down to 6.5 km depth off axis to 1 Ma, is consistent with the permeability distribution within the ocean crust and predicts a thermal gradient for the lower crust that matches the observed one for ages between 1 and 3 Ma. The most plausible explanation for the origin of the epidote veins is that they formed in off-axial hydrothermal systems that reach the base of the crust within 50-150 km off the axis. This deep circulation provides an efficient mechanism for mining heat that escapes the crust in the young flanks of mid-ocean ridges where a sizeable fraction of the global oceanic hydrothermal heat flux is expected to take place.
Modeling ocean wave propagation under sea ice covers
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley H.; Cheng, Sukun
2015-02-01
Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology. Laboratory experiments, field measurements and numerical simulations supporting the fundamental research in wave-ice interaction models are discussed. We conclude with some outlook of future research needs in this field.
Failed oceanic transform models: experience of shaking the tree
NASA Astrophysics Data System (ADS)
Gerya, Taras
2017-04-01
In geodynamics, numerical modeling is often used as a trial-and-error tool, which does not necessarily requires full understanding or even a correct concept for a modeled phenomenon. Paradoxically, in order to understand an enigmatic process one should simply try to model it based on some initial assumptions, which must not even be correct… The reason is that our intuition is not always well "calibrated" for understanding of geodynamic phenomena, which develop on space- and timescales that are very different from our everyday experience. We often have much better ideas about physical laws governing geodynamic processes than on how these laws should interact on geological space- and timescales. From this prospective, numerical models, in which these physical laws are self-consistently implemented, can gradually calibrate our intuition by exploring what scenarios are physically sensible and what are not. I personally went through this painful learning path many times and one noteworthy example was my 3D numerical modeling of oceanic transform faults. As I understand in retrospective, my initial literature-inspired concept of how and why transform faults form and evolve was thermomechanically inconsistent and based on two main assumptions (btw. both were incorrect!): (1) oceanic transforms are directly inherited from the continental rifting and breakup stages and (2) they represent plate fragmentation structures having peculiar extension-parallel orientation due to the stress rotation caused by thermal contraction of the oceanic lithosphere. During one year (!) of high-resolution thermomechanical numerical experiments exploring various physics (including very computationally demanding thermal contraction) I systematically observed how my initially prescribed extension-parallel weak transform faults connecting ridge segments rotated away from their original orientation and get converted into oblique ridge sections… This was really an epic failure! However, at the very same time, some pseudo-2D "side-models" with initial strait ridge and ad-hock strain weakened rheology, which were run for curiosity, suddenly showed spontaneous development of ridge curvature… Fraction of these models showed spontaneous development of orthogonal ridge-transform patterns by rotation of oblique ridge sections toward extension-parallel direction to accommodate asymmetric plate accretion. The later was controlled by detachment faults stabilized by strain weakening. Further exploration of these "side-models" resulted in complete changing of my concept for oceanic transforms: they are not plate fragmentation but rather plate growth structures stabilized by continuous plate accretion and rheological weakening of deforming rocks (Gerya, 2010, 2013). The conclusion is - keep shaking the tree and banana will fall… Gerya, T. (2010) Dynamical instability produces transform faults at mid-ocean ridges. Science, 329, 1047-1050. Gerya, T.V. (2013) Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution. Phys. Earth Planet. Interiors, 214, 35-52.
Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN
NASA Astrophysics Data System (ADS)
Rozanov, V. V.; Rozanov, A. V.; Kokhanovsky, A. A.; Burrows, J. P.
2014-01-01
SCIATRAN is a comprehensive software package for the modeling of radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18 - 40 μm) including multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The software is capable of modeling spectral and angular distributions of the intensity or the Stokes vector of the transmitted, scattered, reflected, and emitted radiation assuming either a plane-parallel or a spherical atmosphere. Simulations are done either in the scalar or in the vector mode (i.e. accounting for the polarization) for observations by space-, air-, ship- and balloon-borne, ground-based, and underwater instruments in various viewing geometries (nadir, off-nadir, limb, occultation, zenith-sky, off-axis). All significant radiative transfer processes are accounted for. These are, e.g. the Rayleigh scattering, scattering by aerosol and cloud particles, absorption by gaseous components, and bidirectional reflection by an underlying surface including Fresnel reflection from a flat or roughened ocean surface. The software package contains several radiative transfer solvers including finite difference and discrete-ordinate techniques, an extensive database, and a specific module for solving inverse problems. In contrast to many other radiative transfer codes, SCIATRAN incorporates an efficient approach to calculate the so-called Jacobians, i.e. derivatives of the intensity with respect to various atmospheric and surface parameters. In this paper we discuss numerical methods used in SCIATRAN to solve the scalar and vector radiative transfer equation, describe databases of atmospheric, oceanic, and surface parameters incorporated in SCIATRAN, and demonstrate how to solve some selected radiative transfer problems using the SCIATRAN package. During the last decades, a lot of studies have been published demonstrating that SCIATRAN is a valuable tool for a wide range of remote sensing applications. Here, we present some selected comparisons of SCIATRAN simulations to published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship instruments. Methods for solving inverse problems related to remote sensing of the Earth's atmosphere using the SCIATRAN software are outside the scope of this study and will be discussed in a follow-up paper. The SCIATRAN software package along with a detailed User's Guide is freely available for non-commercial use via the webpage of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de/sciatran.
NASA Astrophysics Data System (ADS)
Tandy, H.; Shevliakova, E.; Keller, G.
2017-12-01
The Paleocene-Eocene Thermal Maximum (PETM, 55.5 Myr) was a period of rapid warming resulting from major changes in the carbon cycle and has been cited as the closest historical analogue to anthropogenic carbon release. Up to now, modeling studies of the PETM used either a low-resolution coupled model of the ocean and atmosphere with prescribed CO2 or CH4, or coupled climate-carbon models of intermediate complexity (i.e. simplified ocean or atmosphere). In this study we carried a suit of numerical experiments with the NOAA/GFDL comprehensive atmosphere-ocean coupled model with integrated terrestrial and marine carbon cycle components, known as an Earth System Model (ESM2Mb). We analyzed the output from millennia-scale ESM2Mb simulations with different combinations of forcings from the pre-PETM and PETM, including greenhouse gas concentrations and solar intensity. In addition we explore sensitivities of climate and carbon cycling to changes in geology such as topography, continental positions, and the presence and absence of large land glaciers. Furthermore, we examine ESM2Mb climate and carbon sensitivities to PETM conditions with a focus on how alternate conditions and forcings relate to the uncertainty in the climate and carbon cycling estimates from paleo observations. We explore changes in atmosphere, land, and ocean temperatures and circulation patterns as well as vegetation distribution, permafrost, and carbon storage in terrestrial and marine ecosystems from pre-PETM to PETM conditions. We found that with the present day land/sea mask and land glaciers in ESM2Mb, changes in only greenhouse gas concentrations (CO2 and CH4) from pre-PETM to PETM conditions induce global warming of 3-5 °C, consistent with the lower range of estimates from paleo proxies. Changes in the carbon permafrost storage from warming cannot explain the rapid increase in the atmospheric CO2 concentration. Changes in the ocean circulation and carbon storage critically depend on geological conditions such as continental positions. The study illustrates how models designed for studying future climate change can capture past paleo events, such as the PETM, and how modern day geological conditions may affect climate and carbon cycle sensitivities.
Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures
Gardiner, Naomi M.; Munday, Philip L.; Nilsson, Göran E.
2010-01-01
The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations. PMID:20949020
Global equivalent magnetization of the oceanic lithosphere
NASA Astrophysics Data System (ADS)
Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.
2015-11-01
As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.
NASA Astrophysics Data System (ADS)
Bhatia, Gurpreet Kaur; Sahijpal, Sandeep
2017-12-01
Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100-2500 km. These icy bodies include trans-Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy-rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact-induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.
De Monte, Silvia; Cotté, Cedric; d'Ovidio, Francesco; Lévy, Marina; Le Corre, Matthieu; Weimerskirch, Henri
2012-12-07
Marine top predators such as seabirds are useful indicators of the integrated response of the marine ecosystem to environmental variability at different scales. Large-scale physical gradients constrain seabird habitat. Birds however respond behaviourally to physical heterogeneity at much smaller scales. Here, we use, for the first time, three-dimensional GPS tracking of a seabird, the great frigatebird (Fregata minor), in the Mozambique Channel. These data, which provide at the same time high-resolution vertical and horizontal positions, allow us to relate the behaviour of frigatebirds to the physical environment at the (sub-)mesoscale (10-100 km, days-weeks). Behavioural patterns are classified based on the birds' vertical displacement (e.g. fast/slow ascents and descents), and are overlaid on maps of physical properties of the ocean-atmosphere interface, obtained by a nonlinear analysis of multi-satellite data. We find that frigatebirds modify their behaviours concurrently to transport and thermal fronts. Our results suggest that the birds' co-occurrence with these structures is a consequence of their search not only for food (preferentially searched over thermal fronts) but also for upward vertical wind. This is also supported by their relationship with mesoscale patterns of wind divergence. Our multi-disciplinary method can be applied to forthcoming high-resolution animal tracking data, and aims to provide a mechanistic understanding of animals' habitat choice and of marine ecosystem responses to environmental change.
Modeling and Analysis of the Hurricane Imaging Radiometer (HIRAD)
NASA Technical Reports Server (NTRS)
Mauro, Stephanie
2013-01-01
The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.
Episodic swell growth inferred from variable uplift of the Cape Verde hotspot islands
Ramalho, R.; Helffrich, G.; Cosca, M.; Vance, D.; Hoffmann, D.; Schmidt, D.N.
2010-01-01
On the Beagle voyage, Charles Darwin first noted the creation and subsidence of ocean islands, establishing in geology's infancy that island freeboard changes with time. Hotspot ocean islands have an obvious mechanism for freeboard change through the growth of the bathymetric anomaly, or swell, on which the islands rest. Models for swell development indicate that flexural, thermal or dynamic pressure contributions, as well as spreading of melt residue from the hotspot, can all contribute to island uplift. Here we test various models for swell development using the uplift histories for the islands of the Cape Verde hotspot, derived from isotopic dating of marine terraces and subaerial to submarine lava-flow morphologies. The island uplift histories, in conjunction with inter-island spacing, uplift rate and timing differences, rule out flexural, thermal or dynamic pressure contributions. We also find that uplift cannot be reconciled with models that advocate the spreading of melt residue in swell development unless swell growth is episodic. Instead, we infer from the uplift histories that two processes have acted to raise the islands during the past 6 Myr. During an initial phase, mantle processes acted to build the swell. Subsequently, magmatic intrusions at the island edifice caused 350 m of local uplift at the scale of individual islands. Finally, swell-wide uplift contributed a further 100 m of surface rise.
Episodic swell growth inferred from variable uplift of the Cape Verde hotspot islands
NASA Astrophysics Data System (ADS)
Ramalho, R.; Helffrich, G.; Cosca, M.; Vance, D.; Hoffmann, D.; Schmidt, D. N.
2010-11-01
On the Beagle voyage, Charles Darwin first noted the creation and subsidence of ocean islands, establishing in geology's infancy that island freeboard changes with time. Hotspot ocean islands have an obvious mechanism for freeboard change through the growth of the bathymetric anomaly, or swell, on which the islands rest. Models for swell development indicate that flexural, thermal or dynamic pressure contributions, as well as spreading of melt residue from the hotspot, can all contribute to island uplift. Here we test various models for swell development using the uplift histories for the islands of the Cape Verde hotspot, derived from isotopic dating of marine terraces and subaerial to submarine lava-flow morphologies. The island uplift histories, in conjunction with inter-island spacing, uplift rate and timing differences, rule out flexural, thermal or dynamic pressure contributions. We also find that uplift cannot be reconciled with models that advocate the spreading of melt residue in swell development unless swell growth is episodic. Instead, we infer from the uplift histories that two processes have acted to raise the islands during the past 6Myr. During an initial phase, mantle processes acted to build the swell. Subsequently, magmatic intrusions at the island edifice caused 350m of local uplift at the scale of individual islands. Finally, swell-wide uplift contributed a further 100m of surface rise.
Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
1980-01-01
The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distancesmore » necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.« less
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures
Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.
2012-01-01
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.
Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L
2012-09-04
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.
Parker, Laura M; Scanes, Elliot; O'Connor, Wayne A; Coleman, Ross A; Byrne, Maria; Pörtner, Hans-O; Ross, Pauline M
2017-09-15
Coastal and estuarine environments are characterised by acute changes in temperature and salinity. Organisms living within these environments are adapted to withstand such changes, yet near-future ocean acidification (OA) may challenge their physiological capacity to respond. We tested the impact of CO 2 -induced OA on the acute thermal and salinity tolerance, energy metabolism and acid-base regulation capacity of the oyster Saccostrea glomerata. Adult S. glomerata were acclimated to three CO 2 levels (ambient 380μatm, moderate 856μatm, high 1500μatm) for 5weeks (24°C, salinity 34.6) before being exposed to a series of acute temperature (15-33°C) and salinity (34.2-20) treatments. Oysters acclimated to elevated CO 2 showed a significant metabolic depression and extracellular acidosis with acute exposure to elevated temperature and reduced salinity, especially at the highest CO 2 of 1500μatm. Our results suggest that the acute thermal and salinity tolerance of S. glomerata and thus its distribution will reduce as OA continues to worsen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?
NASA Astrophysics Data System (ADS)
Plesa, A.-C.; Tosi, N.; Breuer, D.
2014-10-01
The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. The subsequent cooling of the interior causes the magma ocean to freeze from the core-mantle boundary (CMB) to the surface due to the steeper slope of the mantle adiabat compared to the slope of the solidus. Assuming fractional crystallization of the magma ocean, dense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid. A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set to present-day values. In this case, a stagnant lid quickly forms on top of the convective interior preventing the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars' surface and partial melting ceases in less than 900 Ma. Assuming that the stagnant lid can break because of additional mechanisms and allowing the uppermost dense layer to overturn, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the CMB. This stratification leads to a strong overheating of the lowermost mantle, whose temperature increases to values that exceed the liquidus. The iron-rich melt would most likely remain trapped in the lower part of the mantle. The upper mantle in that scenario cools rapidly and only shows partial melting during the first billion year of evolution. Therefore a fractionated global and deep magma ocean is difficult to reconcile with observations. Different scenarios assuming, for instance, a hemispherical or shallow magma ocean, or a crystallization sequence resulting in a lower density gradient than that implied by pure fractional crystallization will have to be considered.
If Fossil and Fissile Fuels Falter, We've Got. . .
ERIC Educational Resources Information Center
Klaus, Robert L.
1977-01-01
Alternative energy sources and the new systems and techniques required for their development are described: fuel cells, magnetohydrodynamics, thermionics, geothermal, wind, tides, waste consersion, biomass, and ocean thermal energy conversion. (MF)
Density Of The Continental Roots: Compositional And Thermal Effects
NASA Astrophysics Data System (ADS)
Kaban, M. K.; Schwintzer, P.; Artemieva, I.; Mooney, W. D.
We use gravity, thermal, and seismic data to examine how the density and composi- tion of lithospheric roots vary beneath the cratons. Our interpretation is based on the gravity anomalies calculated by subtracting the gravitational effects of bathymetry, to- pography, and the crust from the observed gravity field, and the residual topography that characterizes the isostatic state of the lithosphere. We distinguish the effects of temperature and compositional variations in producing lithospheric density anomalies using two independent temperature constrains: based on interpretation of the surface heat flow data and estimated from global seismic tomography data. We find that in situ lithospheric density differs significantly between individual cratons, with the most dense values found beneath Eurasia and the least dense values beneath South Africa. This demonstrates that there is not a simple compensation of thermal and composition effects. We present a new gravity anomaly map that was corrected for crustal density structure and lithospheric temperatures. This map reveals differences in lithospheric composition, that are the result of the petrologic processes that have formed and mod- ified the lithosphere. All significant negative gravity anomalies are found in cratonic regions. In contrast, positive gravity anomalies are found in two distinct regions: near ocean-continent and continent-continent subduction zones, and within some continen- tal interiors. The origin of the latter positive anomalies is uncertain.
Oceanic response to Typhoon Nari (2007) in the East China Sea
NASA Astrophysics Data System (ADS)
Oh, Kyung-Hee; Lee, Seok; Kang, Sok-Kuh; Song, Kyu-Min
2017-06-01
The oceanic response to a typhoon in the East China Sea (ECS) was examined using thermal and current structures obtained from ocean surface drifters and a bottom-moored current profiler installed on the right side of the typhoon's track. Typhoon Nari (2007) had strong winds as it passed the central region of the ECS. The thermal structure in the ECS responded to Typhoon Nari (2007) very quickly: the seasonal thermocline abruptly collapsed and the sea surface temperature dropped immediately by about 4°C after the typhoon passed. The strong vertical mixing and surface cooling caused by the typhoon resulted in a change in the thermal structure. Strong near-inertial oscillation occurred immediately after the typhoon passed and lasted for at least 4-5 days, during which a strong vertical current existed in the lower layer. Characteristics of the near-inertial internal oscillation were observed in the middle layer. The clockwise component of the inertial frequency was enhanced in the surface layer and at 63 m depth after the typhoon passed, with these layers almost perfectly out of phase. The vertical shear current was intensified by the interaction of the wind-driven current in the upper layer and the background semi-diurnal tidal current during the arrival of the typhoon, and also by the near-inertial internal oscillation after the typhoon passage. The strong near-inertial internal oscillation persisted without significant interfacial structure after the mixing of the thermocline, which could enhance the vertical mixing over several days.
Collier, Catherine J; Langlois, Lucas; Ow, Yan; Johansson, Charlotte; Giammusso, Manuela; Adams, Matthew P; O'Brien, Katherine R; Uthicke, Sven
2018-06-01
Seagrasses are globally important coastal habitat-forming species, yet it is unknown how seagrasses respond to the combined pressures of ocean acidification and warming of sea surface temperature. We exposed three tropical species of seagrass (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri) to increasing temperature (21, 25, 30, and 35°C) and pCO 2 (401, 1014, and 1949 μatm) for 7 wk in mesocosms using a controlled factorial design. Shoot density and leaf extension rates were recorded, and plant productivity and respiration were measured at increasing light levels (photosynthesis-irradiance curves) using oxygen optodes. Shoot density, growth, photosynthetic rates, and plant-scale net productivity occurred at 25°C or 30°C under saturating light levels. High pCO 2 enhanced maximum net productivity for Z. muelleri, but not in other species. Z. muelleri was the most thermally tolerant as it maintained positive net production to 35°C, yet for the other species there was a sharp decline in productivity, growth, and shoot density at 35°C, which was exacerbated by pCO 2 . These results suggest that thermal stress will not be offset by ocean acidification during future extreme heat events and challenges the current hypothesis that tropical seagrass will be a 'winner' under future climate change conditions. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Sea level variability at the coast: is it dominated by waves even at interdecadal time scales?
NASA Astrophysics Data System (ADS)
Melet, Angelique; Almar, Rafael; Meyssignac, Benoit
2017-04-01
Tide gauge records and satellite altimetry indicate that global mean sea level has risen by 16±3 cm during the 20th century. This rise is essentially due to thermal expansion of the ocean and land ice loss from glaciers and ice sheets in response to anthropogenic emissions of greenhouse gases. It is projected to continue over the 21st century and raise concerns for coastal regions. But coastal sea level variations are influenced by other processes such as tides, atmospheric surges and wave induced run-up and set-up. Here we examine the relative importance of the processes causing sea level variations at the coast over the last 23 years from observational datasets and model reanalyses focusing on coastal sites distributed along the world's coastlines for which tide gauges records are available. We show that the long term wave signal can dampen or enhance the effect of the ocean thermal expansion and land ice loss at the coast, over all time scales from subannnual to multidecadal. We estimate that the effect of waves generally explains 60%±20% of the coastal sea level variations at interannual to multidecadal time scales. In the Eastern Pacific, the wave effect dominates the total budget and counterbalances the thermal expansion of the ocean and land ice loss signals. These results highlight that the wave effect has to be taken into account in sea level predictions and projections.
The Dynamics of Natural Climatic Change
1975-07-17
moraines which fix the position of ancient ice bodies to studies of fossil pol- len and plankton which provide panoramas of past continents and oceans... thermal and salinity estimates show a high positive correlation at mid- and high-latitude sites in the North Atlantic during the past 130,000 years...the thermal effect, these authors outline an alternate procedure for obtaining temperature estimates. When this alternat.i -e procedure was
Rummer, Jodie L.; Couturier, Christine S.; Stecyk, Jonathan A. W.; Gardiner, Naomi M.; Kinch, Jeff P.; Nilsson, Göran E.; Munday, Philip L.
2015-01-01
Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in northern Papua New Guinea. Four species of damsel fishes and two species of cardinal fishes were held for 14d at 29, 31, 33, and 34°C, which incorporated their existing thermal range (29–31°C) as well as projected increases in ocean surface temperatures of up to 3°C by the end of this century. Resting and maximum oxygen consumption rates were measured for each species at each temperature and used to calculate the thermal reaction norm of aerobic scope. Our results indicate that one of the six species, Chromisatripectoralis, is already living above its thermal optimum of 29°C. The other five species appeared to be living close to their thermal optima (approximately 31°C). Aerobic scope was significantly reduced in all species, and approached zero for two species at 3°C above current-day temperatures. One species was unable to survive even short-term exposure to 34°C. Our results indicate that low-latitude reef fish populations are living close to their thermal optima and may be more sensitive to ocean warming than higher-latitude populations. Even relatively small temperature increases (2–3°C) could result in population declines and potentially redistribution of equatorial species to higher latitudes if adaptation cannot keep pace. PMID:24281840
Rummer, Jodie L; Couturier, Christine S; Stecyk, Jonathan A W; Gardiner, Naomi M; Kinch, Jeff P; Nilsson, Göran E; Munday, Philip L
2014-04-01
Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in northern Papua New Guinea. Four species of damselfishes and two species of cardinal fishes were held for 14 days at 29, 31, 33, and 34 °C, which incorporated their existing thermal range (29-31 °C) as well as projected increases in ocean surface temperatures of up to 3 °C by the end of this century. Resting and maximum oxygen consumption rates were measured for each species at each temperature and used to calculate the thermal reaction norm of aerobic scope. Our results indicate that one of the six species, Chromis atripectoralis, is already living above its thermal optimum of 29 °C. The other five species appeared to be living close to their thermal optima (ca. 31 °C). Aerobic scope was significantly reduced in all species, and approached zero for two species at 3 °C above current-day temperatures. One species was unable to survive even short-term exposure to 34 °C. Our results indicate that low-latitude reef fish populations are living close to their thermal optima and may be more sensitive to ocean warming than higher-latitude populations. Even relatively small temperature increases (2-3 °C) could result in population declines and potentially redistribution of equatorial species to higher latitudes if adaptation cannot keep pace. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gibbons, J. A.; Sharp, Z. D.; Atudorei, V.
2017-12-01
The calcite-water triple oxygen isotope fractionation is used to determine isotopic equilibrium and ancient ocean oxygen isotopic values and temperatures. Unlike conventional δ18O analysis where the formation water's isotopic value is assumed, paired δ17O-δ18O measurements allow for the water's isotopic composition to be calculated because there is only one unique solution for equilibrium fractionation using Δ17O-δ18O values (where Δ17O=δ17O-0.528δ18O). To a first approximation, the calcite-water equilibrium fractionation factor, θ (where θ=ln17α/ln18α), varies with temperature by 0.00001/°. The calcite-water equilibrium fractionation line was determined at two temperatures, 30° and 0°, by using modern carbonate samples that formed in ocean water with a δ18O value of 0‰. The θ values for the 30° and 0° samples are 0.52515 and 0.52486, respectively. Oxygen values were measured using complete fluorination in nickel tubes with BrF5 as the reaction reagent. We calibrated all oxygen values to the SMOW-SLAP scale by measuring SMOW, SLAP, San Carlos olivine, NBS-18, NBS-19, and PDB. The triple oxygen isotope calcite-water equilibrium fractionation line was applied to well preserved Early Triassic ammonite shells from the Western United States. Based on paired δ17O-δ18O measurements, the samples did not form in equilibrium with an ice-free ocean with an oxygen isotopic value of -1‰ or the modern ocean value of 0‰. Assuming the calcite is still primary and formed in equilibrium with the ocean water, our data indicate that the δ18O value of the ocean in the early Triassic was 3-5‰ lower than modern. Samples from the Smithian thermal maximum formed in water 10° warmer than samples from after the thermal maximum. Paired δ17O-δ18O measurements of pristine ancient carbonates may provide a better understanding of past ocean conditions during climate change events.
Characterization of double diffusive convection step and heat budget in the deep Arctic Ocean
NASA Astrophysics Data System (ADS)
Zhou, S.; Lu, Y.
2013-12-01
In this paper, we explore the hydrographic structure and heat budget in deep Canada Basin using data measured with McLane-Moored-Profilers (MMPs), bottom-pressure-recorders (BPRs), and conductivity-temperature-depth (CTD) profilers. From the bottom upward, a homogenous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75oN, 150oW). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ~1.8×10-5 m 2s-1 while that of the other steps is ~10-6 m 2s-1. The vertical heat flux through DDC steps is evaluated with different methods. We find that the heat flux (0.1-11 mWm-2) is much smaller than geothermal heating (~50 mWm-2), which suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, while those of heat flux and effective diffusivity are found to be approximately log-normal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuation close to the sea floor distributed asymmetrically and skewed towards positive values, which provides direct indication that geothermal heating is transferred into ocean. Both BPR and CTD data suggest that geothermal heating, not the warming of upper ocean, is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent the vertical heat transfer, geothermal heating will be unlikely to have significant effect on the middle and upper oceans.
Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean
NASA Astrophysics Data System (ADS)
Zhou, Sheng-Qi; Lu, Yuan-Zheng
2013-12-01
In this paper, we explore the hydrographic structure and heat budget in the deep Canada Basin by using data measured with McLane-Moored-Profilers (MMP), bottom pressure recorders (BPR), and conductivity-temperature-depth (CTD) profilers. Upward from the bottom, a homogeneous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75°N,150°W). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ˜1.8 × 10-5 m2s-1, while that of the other steps is ˜10-6 m2s-1. The vertical heat flux through the DDC steps is evaluated by using different methods. We find that the heat flux (0.1-11 mWm -2) is much smaller than geothermal heating (˜50 mWm -2). This suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, whereas those of heat flux and effective diffusivity are found to be approximately lognormal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuations close to the sea floor were distributed asymmetrically and skewed toward positive values, which provide a direct observation that geothermal heating was transferred into the ocean. Both BPR and CTD data suggest that geothermal heating and not the warming of the upper ocean is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent vertical heat transfer, geothermal heating is unlikely to have a significant effect on the middle and upper Arctic Ocean.
NASA Technical Reports Server (NTRS)
Yuen, D. A.; Schubert, G.
1976-01-01
Stress is placed on the temperature dependence of both a linear Newtonian rheology and a nonlinear olivine rheology in accounting for narrow mantle flow structures. The boundary-layer theory developed incorporates an arbitrary temperature-dependent power-law rheology for the medium, in order to facilitate the study of mantle plume dynamics under real conditions. Thermal, kinematic, and dynamic structures of mantle plumes are modelled by a two-dimensional natural-convection boundary layer rising in a fluid with a temperature-dependent power-law relationship between shear stress and strain rate. An analytic similarity solution is arrived at for upwelling adjacent to a vertical isothermal stress-free plane. Newtonian creep as a deformation mechanism, thermal anomalies resulting from chemical heterogeneity, the behavior of plumes in non-Newtonian (olivine) mantles, and differences in the dynamics of wet and dry olivine are discussed.
Lattice thermal conductivity of silicate glasses at high pressures
NASA Astrophysics Data System (ADS)
Chang, Y. Y.; Hsieh, W. P.
2016-12-01
Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.
Introduction to the structures and processes of subduction zones
NASA Astrophysics Data System (ADS)
Zheng, Yong-Fei; Zhao, Zi-Fu
2017-09-01
Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction processes and products from post-subduction processes and products. Nevertheless, available results indicate that our definition and understanding of subduction zone processes and products can be advanced by the convergence of observations and interpretations from geochemical, geological, geophysical and geodynamic studies of both oceanic and continental subduction zones. Therefore, insights into subduction zones can be provided by intergration of different approaches from different targets in the near future.
Introduction to the structures and processes of subduction zones
NASA Astrophysics Data System (ADS)
Zheng, Yong-Fei; Zhao, Zi-Fu
2017-09-01
Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction processes and products from post-subduction processes and products. Nevertheless, available results indicate that our definition and understanding of subduction zone processes and products can be advanced by the convergence of observations and interpretations from geochemical, geological, geophysical and geodynamic studies of both oceanic and continental subduction zones. Therefore, insights into subduction zones can be provided by integration of different approaches from different targets in the near future.
NASA Astrophysics Data System (ADS)
Nagihara, S.; Sclater, J. G.; Phillips, J. D.; Behrens, E. W.; Lewis, T.; Lawver, L. A.; Nakamura, Y.; Garcia-Abdeslem, J.; Maxwell, A. E.
1996-02-01
The seafloor depth of an oceanic basin reflects the average temperature of the lithosphere. Thus the western abyssal plain of the Gulf of Mexico, which has tectonically subsided much (>1 km) deeper than other basins of comparable ages (late Jurassic), should be underlain by an anomalously cold lithosphere. In order to examine this hypothesis, we made suites of high-accuracy heat flow measurements at 10 sites along a line connecting Deep Sea Drilling Project (DSDP) sites 90 and 91 in the Sigsbee abyssal plain. The new heat flow sites were initially surveyed by 3.5-kHz echo sounding, 4-channel seismic reflection, seismic refraction with eight ocean bottom seismometers, and nine piston cores. We occupied a total of 48 heat flow stations along the seismic survey line (3 to 6 at each site), including 28 where we measured in situ thermal conductivities over the practical depth interval (4 m) of the new multioutrigger bow heat flow probe. We determined the heat flow associated with the lithosphere by correcting the values measured at the seafloor (41 to 45 mW/m2) for (1) the thermal effect of the sedimentation and (2) the additional heat from the radioactive elements within the sediments. The sedimentation history, required for the first, was reconstructed at each heat flow site based on ages and thicknesses of the major seismic stratigraphical sequences, age data from the DSDP cores, 3.5-kHz subbottom reflectors, and correlation of turbidite units found in the piston cores. Radiogenic heat production was measured for 55 sediment samples from four DSDP holes in the gulf, whose age ranged from present to Early Cretaceous (0.83 μW/m3 on the average). This provided the correction for the second. The effects of these two secondary factors approximately cancel one another. The lithospheric heat flow under the abyssal plain thus estimated ranges from 40 to 47 mW/m2. These heat flow values are among the lowest in the Mesozoic ocean basins where highly reliable data (45 to 55 mW/m2) have been reported. Therefore the lithosphere under the gulf seems indeed colder than that under other old ocean basins. However, it is not as cold as expected from the large tectonic subsidence. The inconsistency between the depth and heat flow may imply an anomaly in the regional thermal isostasy.
NASA Astrophysics Data System (ADS)
Morris, A.; Pressling, N.; Gee, J. S.
2012-04-01
Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. One of the most extensively studied oceanic core complexes is Atlantis Massif, located at 30°N at the intersection of the Atlantis Transform Fault and the Mid Atlantic Ridge (MAR). The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305 (Hole U1309D). This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. Correlation of structures observed on oriented borehole (FMS) images and those recorded on unoriented core pieces allows reorientation of R1 remanences. The mean remanence direction in true geographic coordinates constrains the tectonic rotation experienced by the Atlantis Massif footwall, indicating a 46°±6° counterclockwise around a MAR-parallel horizontal axis trending 011°±6°. The detachment fault therefore initiated at a steep dip of >50° and then rotated flexurally to its present day low angle geometry (consistent with a 'rolling-hinge' model for detachment evolution). In a number of intervals, the gabbros exhibit a complex remanence structure with the presence of additional intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. The crystallization age of the section (1.2 Ma; derived from Pb/U zircon dating) suggests that the R1 component was acquired during geomagnetic polarity chron C1r.2r, N1 during chron C1r.1n (Jaramillo) and R2 during chron C1r.1r. By considering the maximum time intervals available for acquisition of the N1 and R2 components and correcting laboratory unblocking temperatures accordingly, the data provide additional constraints on the thermal evolution of the Atlantis Massif footwall.
NASA Astrophysics Data System (ADS)
Morris, A.; Pressling, N.; Gee, J. S.
2011-12-01
Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. One of the most extensively studied oceanic core complexes is Atlantis Massif, located at 30°N at the intersection of the Atlantis Transform Fault and the Mid Atlantic Ridge (MAR). The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305 (Hole U1309D). This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. Correlation of structures observed on oriented borehole (FMS) images and those recorded on unoriented core pieces allows reorientation of R1 remanences. The mean remanence direction in true geographic coordinates constrains the tectonic rotation experienced by the Atlantis Massif footwall, indicating a 46°±6° counterclockwise around a MAR-parallel horizontal axis trending 011°±6°. The detachment fault therefore initiated at a steep dip of >50° and then rotated flexurally to its present day low angle geometry (consistent with a 'rolling-hinge' model for detachment evolution). In a number of intervals, the gabbros exhibit a complex remanence structure with the presence of additional intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. The crystallization age of the section (1.2 Ma; derived from Pb/U zircon dating) suggests that the R1 component was acquired during geomagnetic polarity chron C1r.2r, N1 during chron C1r.1n (Jaramillo) and R2 during chron C1r.1r. By considering the maximum time intervals available for acquisition of the N1 and R2 components and correcting laboratory unblocking temperatures accordingly, the data provide additional constraints on the thermal evolution of the Atlantis Massif footwall.
Slush Fund: The Multiphase Nature of Oceanic Ices and Its Role in Shaping Europa's Icy Shell
NASA Astrophysics Data System (ADS)
Buffo, J.; Schmidt, B. E.; Huber, C.
2017-12-01
The role of Europa's ice shell in mediating ocean-surface interaction, constraining potential habitability of the underlying hydrosphere, and dictating the surface morphology of the moon is discussed extensively in the literature, yet the dynamics and characteristics of the shell itself remain largely unconstrained. Some of the largest unknowns arise from underrepresented physics and varying a priori assumptions built into the current ice shell models. Here we modify and apply a validated one-dimensional reactive transport model designed to simulate the formation and evolution of terrestrial sea ice to the Europa environment. The top-down freezing of sea ice due to conductive heat loss to the atmosphere is akin to the formation of the Jovian moon's outer ice shell, albeit on a different temporal and spatial scale. Nevertheless, the microscale physics that govern the formation of sea ice on Earth (heterogenous solidification leading to brine pockets and channels, multiphase reactive transport phenomena, gravity drainage) likely operate in a similar manner at the ice-ocean interface of Europa, dictating the thermal, chemical, and mechanical properties of the ice shell. Simulations of the European ice-ocean interface at different stages during the ice shell's evolution are interpolated to produce vertical profiles of temperature, salinity, solid fraction, and eutectic points throughout the entire shell. Additionally, the model is coupled to the equilibrium chemistry package FREZCHEM to investigate the impact a diverse range of putative European ocean chemistries has on ice shell properties. This method removes the need for a priori assumptions of impurity entrainment rates and ice shell properties, thus providing a first principles constraint on the stratigraphic characteristics of a simulated European ice shell. These insights have the potential to improve existing estimates for the onset of solid state convection, melt lens formation due to eutectic melting, ice shell thickness, and ocean-surface interaction rates. Moreover, this work aims to shed light on the important role microscale physics plays in determining the macroscale properties of icy worlds by highlighting and adapting successful multiphase reactive transport sea ice models utilized in large scale Earth systems science simulations.
Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven
2017-01-01
Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm -3 ) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to -2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm -3 related to a +2.5 to -1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)
2001-01-01
The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is compensated by larger increases in sensible and latent heat fluxes out of the ocean. Although the net energy loss from the ocean surface increases by 0.8 W (per square meters), this is less than the interannual variability, and the increase may not indicate a long-term trend. The seasonal cycle of heat fluxes is significantly enhanced. The downward surface heat flux increases in summer (maximum 2 of 19 W per square meters or 23% in June) while the upward heat flux increases in winter (maximum of 16 W per square meters or 28% in November). The increased downward flux in summer is due to a combination of increases in absorbed solar and thermal radiation and smaller losses of sensible and latent heat. The increased heat loss in winter is due to increased sensible and latent heat fluxes, which in turn are due to reduced sea-ice cover. On the other hand, the seasonal cycle of surface air temperature is damped, as there is a large increase in winter temperature but little change in summer.
An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate
NASA Astrophysics Data System (ADS)
Hughes, T.
2008-12-01
Modeling continental ice sheets was inaugurated by meteorologists William Budd and Uwe Radok, with mathematician Richard Jenssen, in 1971. Their model calculated the thermal and mechanical regime using measured surface accumulation rates, temperatures, and elevations, and bed topography. This top-down approach delivered a basal thermal regime of temperatures or melting rates for an assumed basal geothermal heat flux. When Philippe Huybrechts and others incorporated time, largely unknownpast surface conditions had a major effect on present basal thermal conditions. This approach produced ice-sheet models with only a slow response to external forcing, whereas the glacial geological record and climate records from ice and ocean cores show that ice sheets can have rapid changes in size and shape independent of external forcing. These top-down models were wholly inadequate for reconstructing former ice sheets at the LGM for CLIMAP in 1981. Ice-sheet areas,elevations, and volumes provided the albedo, surface topography, and sea-surface area as input to climate models. A bottom-up model based on dated glacial geology was developed to provide the areal extent and basal thermal regime of ice sheets at the LGM. Basal thermal conditions determined ice-bed coupling and therefore the elevation of ice sheets. High convex ice surfaces for slow sheet flow lower about 20 percent when a frozen bed becomes thawed. As further basal melting drowns bedrock bumps that "pin" basal ice, the ice surface becomes concave in fast stream flow that ends as low floating ice shelves at marine ice margins. A revolution in modeling interactions between glaciation, climate, and sea level is driven by new Greenland and Antarctic data from Earth-orbiting satellites, airborne and surface traverses, and deep drilling. We anticipate continuous data acquisition of surface albedo, accumulation/ablation rates, elevations, velocities, and temperatures over a whole ice sheet, mapping basal thermal conditions by radar, seismic, and magnetic profiling, and direct measurement of basal conditions by deep drilling and coring into the ice and the bed. These data allow calculating the geothermal heat flux and mapping flow of basal meltwater from geothermal sources to sinks at the termini of ice streams, which discharge up to 90 percent of the ice. James Fastook has a preliminary solution of the full momentum equation needed to model ice streams. Douglas MacAyeal has pioneered modeling catastrophic ice-shelf disintegration that releases "armadas" of icebergs into the world ocean, to extract heat from ocean surface water and thereby reduce the critical ocean-to-atmosphere heat exchange that drives global climate. Ice sheets are the only component of Earth's climate machine that can destroy itself-- swiftly--and thereby radically and rapidly alter global climate and sea level.
The Cooling Oceanic Lithosphere as Constrained by Surface Wave Dispersion Data
NASA Astrophysics Data System (ADS)
Hogg, C.; Laske, G.
2003-12-01
The tremendous improvement in resolution capabilities of global surface wave phase velocity maps now encourage us to search for anomalies that are caused by mantle plumes. On the other hand, the implications of even large--scale anomalies in such maps are still not well understood. One such anomaly is caused by the cooling oceanic lithosphere. Some studies investigate the cooling effects by fitting thermal models to the 3--dimensional mantle models resulting from tomographic inversions. The inversion of surface wave data for structure at depth is nonunique and the model often depends on the techniques applied. We prefer to compare the dispersion data directly with predictions from thermal models. Simple cooling models produce a signal that is roughly proportional to the square root of age. This signal is typically much smaller than the one caused by other lateral heterogeneity within the Earth's crust and upper mantle. In a careful analysis we are able to extract clear, roughly linear trends, in all major oceans. We explore the parameter space by fitting cooling half space as well as cooling plate models to the data. In the Pacific ocean, our data are inconsistent with standard parameters that are used to fit the observed bathymetry, and perhaps surface heat flux data. Instead of an initial temperature of 1350~deg C in the cooling half space model our data require a lower temperature (around 1200~deg C) to be well fit, especially the Love wave data. Regarding the cooling plate model, our data seem to require a thicker lithosphere to be well fit (135~km instead of the 'standard' 100 ~m). We observe similar trends for the other oceans investigated: the Indian ocean, the South and the North Atlantic oceans. For the Indian ocean in particular, a crust correction (removing the predictions caused by crustal structure including water depth and sediment thickness) is crucial to obtain an internally consistent dataset. For the Atlantic ocean, a large signal remains unexplained. An age--dependent signal is also apparent in the SS-S and PP-P body wave datasets. However, a comprehensive analysis is somewhat hampered for two reasons: 1) the uneven sampling of the data does not allow us to analyze trends in some oceans (e.g. South Atlantic Ocean); 2) the signal in the oldest parts of the oceans appear ''too fast''. We suspect that we observe effects that are deeper--rooted than the lithosphere--asthenosphere system (e.g. subducting slabs). The surface wave dispersion maps contain an intriguing oscillating signal that is particularly strong for Rayleigh waves in the Pacific ocean. This signal is symmetric to the EPR and we speculate that this is caused by current convective processes or by processes at the time when the plates were formed.
NASA Astrophysics Data System (ADS)
Haynes, L.; Hoenisch, B.; Eggins, S.; Holland, K.; Rosenthal, Y.
2015-12-01
During the Paleocene-Eocene Thermal Maximum (PETM), rapid surface ocean acidification is indicated by a large decrease in the B/Ca ratios of planktic foraminiferal calcite, which is a proxy for the surface ocean carbonate system [1]. However, due to uncertainty in the effects of past seawater chemistry (e.g, different [Mg], [Ca], and [B]) on B/Ca, modern calibrations cannot be used to estimate the magnitude of acidification during this critical period. In addition, recent inorganic and sediment trap studies have respectively documented the controls of growth rate and light levels on B/Ca [2,3]. To extend the application of the B/Ca proxy to the PETM, we have conducted culturing experiments in O. universa, G. ruber, and G. sacculifer in which we simulated changes in pH and total DIC under Paleogene seawater conditions- high [Ca], low [Mg], and low [B]. We have further investigated the effects of variable light intensity (a control on symbiont activity), [Ca]seawater, and [B]seawater on the proxy. Results from O. universa confirm that B/Ca decreases with increasing DIC, decreasing pH, and decreasing [B]seawater, supporting a [B(OH)4-]/DIC control on the proxy [4]. In contrast, neither low light nor [Ca]seawater have a measurable effect on B/Ca, implying that influences of these parameters over the PETM were likely negligible. Critically, B/Ca appears to be more sensitive to pH at very low [B(OH)4-]/DIC in comparison to modern calibrations. Using estimates of surface ocean pH from boron isotopes, new calibrations can explain a larger proportion of the observed B/Ca excursion over the PETM. However, simulation of a large DIC pulse is necessary to explain the full excursion. New data will be presented from species that are more sensitive to pH, such as G. ruber and G. sacculifer, which will illuminate the range of responses of B/Ca to ocean acidification during the Paleogene. [1] Penman et al. 2014. Paleoceanography 29. [2] Uchikawa et al. 2015. GCA 150. [3] Babila et al. 2014. EPSL 404. [4] Allen et al. 2012. EPSL 351-352.
NASA Astrophysics Data System (ADS)
Mallast, U.; Schubert, M.; Schmidt, A.; Knoeller, K.; Stollberg, R.; Siebert, C.; Merz, R.
2012-12-01
Submarine groundwater discharge (SGD) is an important factor in the understanding and sustainable management of coastal freshwater aquifers in many highly populated coastal areas worldwide. This is not only due to the fact that SGD represents (i) a significant pathway for transfer of matter between land and sea as it supplies nutrients and trace metals to coastal oceans and (ii) a contamination threat to the near-shore marine environment resulting from land-based activities. It means also that potentially significant freshwater quantities are lost to the sea in e.g. arid areas, where groundwater is the main water resource (IAEA, 2007). The quantitative estimation of SGD is complicated due to its large temporal and spatial variability. Several studies attempted to quantify SGD rates using seepage meters, piezometers or geochemical tracers (Taniguchi et al., 2002). In most of these studies the actual SGD locations were known. In cases of unknown discharge locations airborne- and recently spaceborne-thermal remote sensing were used for detection (Roxburgh, 1985; Wilson and Rocha, 2012). Presented approaches applied only single images that represent only a temporal snapshot and hence possibly a non-representative picture of the discharge behavior (e.g. stormdriven or dry periods). Due to the continuous satellite image recording (Landsat TM/ETM+), numerous images exist that can be exploited against the background of temperature contrasts between discharging groundwater and ocean water. Hence, integrating multiple images recorded at different times does not only account for the intermittent character of groundwater discharge but enables to derive representative SGD information. We will present a satellite-based multi-thermal image method which exploits the fact that continuously discharging groundwater stabilizes the temperature at the discharge location and hence displays small temperature variability. In contrast, ambient unaffected areas clearly follow the seasonal air temperature course resulting in high temperature variability. The temperature variability analysis in combination with a pre-processing step in which images with surface-runoff influence are excluded outlines thermal anomalies that are directly attributable to SGD areas. We applied this method at three different locations along the Dead Sea (Israel/ Palestine), the Black Sea (Romania) and the Mediterranean Sea (France). The sites represent similar hydrogeological conditions (limestone) but different topographical (steep and flat) settings, groundwater temperatures and climatic conditions. We will show that despite these differences, which result in diverse SGD amounts and flux character, the method is capable of indicating areas where continuous SGD occurs over large spatial scales. Based on the thermal indications that were used as a prescreening tool in situ radon measurements and in case of the Dead Sea field observations were pursued to validate the thermal indications. We will show that both results match. Hence we state that our approach represents a promising tool (i) to detect SGD on large spatial scales particularly in areas where a priori no or limited information is available and (ii) to reduce time and financial efforts in pursuing subsequent SGD measurements as the outlined areas can be set as focus areas.
NASA Astrophysics Data System (ADS)
Rosas, J. C.; Currie, C. A.; He, J.
2014-12-01
Over the last years several 2D thermo-mechanical models of the Costa Rica - Nicaragua Subduction Zone (CNSZ) have studied the thermal distribution of sections of the fault. Such investigations allow us to understand temperature-related aspects of subduction zones, like volcanism and megathrust earthquake locations. However, certain features of the CNSZ limit the range of applicability of 2D models. In the CNSZ, geochemical trends and seismic anisotropy studies reveal a 3D mantle wedge flow that departs from the 2D corner flow. The origin of this flow are dip variations (20o to 25o between Nicaragua and Costa Rica) and the presence of a slab window in Panama that allows material to flow into the mantle wedge. Also, the Central America trench has abrupt variations in surface heat flux that contrasts with steady changes in plate age and convergence rate. These variations have been attributed to hydrothermal circulation (HC), which effectively removes heat from the oceanic crust.In this project we analyze the thermal structure of the CNSZ. The objective is to study dehydration and metamorphic reactions, as well as the length of the megathrust seismogenic zone. We created 3D finite-element models that employ a dislocation creep rheology for the mantle wedge. Two aspects make our models different from previous studies: an up-to-date 3D slab geometry, and an implementation of HC by introducing a conductive proxy in the subducting aquifer, allowing us to model convective heat transport without the complex, high-Rayleigh number calculations. A 3D oceanic boundary condition that resembles the along-strike changes in surface heat flux is also employed. Results show a maximum mantle wedge flow rate of 4.69 cm/yr in the along-strike direction, representing more than 50% of the slab convergence rate. With respect to 2D models, analysis shows this flow changes temperatures by ~100 C in the mantle wedge near areas of strong slab curvature. Along the subducting interface, there is also a change of 10-40 C, which can have a significant impact on dehydration and metamorphic reactions. Also, 2D models have proven that HC controls temperatures along the subduction thrust, which controls the length of the seismogenic zone. In general, the combined effect of 3D mantle wedge flow and HC is expected to have a significant impact on the thermal structure.
NASA Astrophysics Data System (ADS)
Pörtner, H. O.; Bock, C.; Lannig, G.; Lucassen, M.; Mark, F. C.; Stark, A.; Walther, K.; Wittmann, A.
2011-12-01
The effects of ocean warming and acidification on individual species of marine ectothermic animals may be based on some common denominators, i.e. physiological responses that can be assumed to reflect unifying principles, common to all marine animal phyla. Identification of these principles requires studies, which reach beyond the species-specific response, and consider multiple stressors, for example temperature, CO2 or extreme hypoxia. Analyses of response and acclimation include functional traits of physiological performance on various levels of biological organisation, from changes in the transcriptome to patterns of acid-base regulation and whole animal thermal tolerance. Conclusions are substantiated by comparisons of species and phyla from temperate, Arctic and Antarctic ecosystems and also benefit from the interpretation of paleo-patterns based on the use of a unifying physiological concept, suitable to integrate relevant environmental factors into a more comprehensive picture. Studying the differential specialization of animals on climate regimes and their sensitivity to climate leads to improved understanding of ongoing and past ecosystem change and should then support more reliable projections of future scenarios. For example, accumulating CO2 causes disturbances in acid-base status. Resilience to ocean acidification may be reflected in the capacity to compensate for these disturbances or their secondary effects. Ion and pH regulation comprise thermally sensitive active and passive transfer processes across membranes. Specific responses of ion transporter genes and their products to temperature and CO2 were found in fish, crustaceans and bivalves. However, compensation may cause unfavourable shifts in energy budget and beyond that hamper cellular and mitochondrial metabolism, which are directly linked to the animal's aerobic performance window. In crabs, oysters and, possibly, fishes, a narrowing of the thermal window is caused by moderate increases in CO2 levels. Furthermore, a decrease in the efficiency of energy production may occur and affect growth and fitness as well as larval development. Different sensitivities of life history stages indicate physiologically sensitive bottlenecks during the life cycle of marine organisms. Available evidence suggests that the concept of oxygen and capacity limited thermal tolerance (OCLTT) provides access to the physiological mechanisms closely defining the sensitivities and responses of species to various stressors. It provides causality and quantifies the levels and changes of performance and resistance, and supports more realistic estimates of species and ecosystem sensitivities to environmental change. The emerging picture of differential sensitivities across animal phyla is in line with existing categorizations of sensitivities from palaeo-observations during the Permian-Triassic mass extinctions (A.H. Knoll et al., Earth and Planetary Science Letters 256, 295-313, 2007).
Active Cryovolcanism on Europa?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, W. B.; Cracraft, M.; Deustua, S. E
Evidence for plumes of water on Europa has previously been found using the Hubble Space Telescope using two different observing techniques. Roth et al. found line emission from the dissociation products of water. Sparks et al. found evidence for off-limb continuum absorption as Europa transited Jupiter. Here, we present a new transit observation of Europa that shows a second event at the same location as a previous plume candidate from Sparks et al., raising the possibility of a consistently active source of erupting material on Europa. This conclusion is bolstered by comparison with a nighttime thermal image from the Galileomore » Photopolarimeter-Radiometer that shows a thermal anomaly at the same location, within the uncertainties. The anomaly has the highest observed brightness temperature on the Europa nightside. If heat flow from a subsurface liquid water reservoir causes the thermal anomaly, its depth is ≈1.8–2 km, under simple modeling assumptions, consistent with scenarios in which a liquid water reservoir has formed within a thick ice shell. Models that favor thin regions within the ice shell that connect directly to the ocean, however, cannot be excluded, nor modifications to surface thermal inertia by subsurface activity. Alternatively, vapor deposition surrounding an active vent could increase the thermal inertia of the surface and cause the thermal anomaly. This candidate plume region may offer a promising location for an initial characterization of Europa’s internal water and ice and for seeking evidence of Europa’s habitability.« less
Active Cryovolcanism on Europa?
NASA Astrophysics Data System (ADS)
Sparks, W. B.; Schmidt, B. E.; McGrath, M. A.; Hand, K. P.; Spencer, J. R.; Cracraft, M.; E Deustua, S.
2017-04-01
Evidence for plumes of water on Europa has previously been found using the Hubble Space Telescope using two different observing techniques. Roth et al. found line emission from the dissociation products of water. Sparks et al. found evidence for off-limb continuum absorption as Europa transited Jupiter. Here, we present a new transit observation of Europa that shows a second event at the same location as a previous plume candidate from Sparks et al., raising the possibility of a consistently active source of erupting material on Europa. This conclusion is bolstered by comparison with a nighttime thermal image from the Galileo Photopolarimeter-Radiometer that shows a thermal anomaly at the same location, within the uncertainties. The anomaly has the highest observed brightness temperature on the Europa nightside. If heat flow from a subsurface liquid water reservoir causes the thermal anomaly, its depth is ≈1.8-2 km, under simple modeling assumptions, consistent with scenarios in which a liquid water reservoir has formed within a thick ice shell. Models that favor thin regions within the ice shell that connect directly to the ocean, however, cannot be excluded, nor modifications to surface thermal inertia by subsurface activity. Alternatively, vapor deposition surrounding an active vent could increase the thermal inertia of the surface and cause the thermal anomaly. This candidate plume region may offer a promising location for an initial characterization of Europa’s internal water and ice and for seeking evidence of Europa’s habitability.
Thermal Performance Testing of EMU and OSS Liquid Cooling Garments
NASA Technical Reports Server (NTRS)
Rhodes, Richard; Bue, Grant; Hakam, Mary
2012-01-01
A test was conducted to evaluate three factors influencing the thermal performance of liquid cooling garments (LCG): (1) the comparable thermal performance of an Oceaneering developed engineering evaluation unit (EEU) prototype LDG, (2) the effect of the thermal comfort undergarment (TCU), and (3) the performance of a torso or upper body only LCG configuration. To evaluate the thermal performance of each configuration a metabolic test was conducted, utilizing suited subjects to generate the metabolic heat. For this study three (3) test subjects of similar health and weight produced a metabolic load on the LDG configuration by either resting (300-600 BTU/hr), walking at a slow pace (1200 BRU/hr), and walking at a brisk pace (2200 BTU/hr), as outlined in Figure 1, the metabolic profile. During the test, oxygen consumption, heart rate, relative humidity, air flow, inlet and outlet air pressure, inlet and outlet air temperature, delta air temperature, water flow (100 lb/hr), inlet water temperature (64 F), delta water temperature, water pressure, core body temperature, skin temperature, and sweat loss data was recorded. Four different test configurations were tested, with one configuration tested twice, as outlined in Table 1. The test was conducted with the suit subjects wearing the Demonstrator Suit, pressurized to vent pressure (approximately 0.5 psig). The demonstrator suit has an integrated ventilation duct system and was used to create a relevant environment with a captured ventilation return, an integrated vent tree, and thermal insulation from the environment.
Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica.
Stanton, T P; Shaw, W J; Truffer, M; Corr, H F J; Peters, L E; Riverman, K L; Bindschadler, R; Holland, D M; Anandakrishnan, S
2013-09-13
Ice shelves play a key role in the mass balance of the Antarctic ice sheets by buttressing their seaward-flowing outlet glaciers; however, they are exposed to the underlying ocean and may weaken if ocean thermal forcing increases. An expedition to the ice shelf of the remote Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet that has rapidly thinned and accelerated in recent decades, has been completed. Observations from geophysical surveys and long-term oceanographic instruments deployed down bore holes into the ocean cavity reveal a buoyancy-driven boundary layer within a basal channel that melts the channel apex by 0.06 meter per day, with near-zero melt rates along the flanks of the channel. A complex pattern of such channels is visible throughout the Pine Island Glacier shelf.
ASTER Images the Island of Hawaii
NASA Technical Reports Server (NTRS)
2000-01-01
These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum.
Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing.Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks
NASA Technical Reports Server (NTRS)
Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan
2004-01-01
The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.
Ocean Stirring by Swimming Bodies
2010-03-01
or about 100 times the molecular value for heat. Kunze et al. [3] have measured elevated levels of ocean turbulence due to swimming krill, though...7×10−3 cm2/ sec, about five times the thermal molecular value 1.5×10−3 cm2/ sec, and five hundred times the molecular value 1.6 × 10−5 cm2/ sec for...salt. This implies a considerable enhancement to the molecular diffusion, but we emphasize that these values apply within a school of krill: the
Interannual Variability of the Atlantic Water in the Arctic Basin
1996-01-01
3778-3784, 1987. 4. Anderson L.G., Bjork G., Holby 0., Jones E.P., Kattner G., Kolterman K.P., Liljebad B ., Lindegren R., Rudels B ., Swift J. Water...Res., part A, 36, pp. 475 - 482 , 1989. 6. Antonov J. Recent climatic changes of the vertical thermal structure of the North Atlantic Ocean and the...North Pacific Ocean. - J. of Climate, v.6, pp.1928-1942, 1993. 7. Blinov N.I. and Popkov S.N. About the heat exchange of Atlantic Waters in the Arctic
Radioisotope Thermoelectric Generators Emplaced in the Deep Ocean, Recover or Dispose in Situ
1986-03-01
00 0 M! Technical Report 1106 Cll ) March 1986 Radioisotope Thermoelectric 00 Generators Emplaced in the Deep Ocean Recover or Dispose In Situ? 00...PROGRAM ELEMENT NO PROJECT NO8 TASK NO WORK UN IT NO NAV’COMPT 141 N A8 WR00026 I I TITLE i,cmvd. Secunty CIaxssIoe,o’,) Radioisotope Thermoelectric ...disposal alternatives. . RTG DESCRIPTIONS Each RTG consists of a strontium-90 titanate heat source, thermoelectric generator, thermal insulation
Pulsations, interpulsations, and sea-floor spreading.
NASA Technical Reports Server (NTRS)
Pessagno, E. A., Jr.
1973-01-01
It is postulated that worldwide transgressions (pulsations) and regressions (interpulsations) through the course of geologic time are related to the elevation and subsidence of oceanic ridge systems and to sea-floor spreading. Two multiple working hypotheses are advanced to explain major transgressions and regressions and the elevation and subsidence of oceanic ridge systems. One hypothesis interrelates the sea-floor spreading hypothesis to the hypothesis of sub-Mohorovicic serpentinization. The second hypothesis relates the sea-floor spreading hypothesis to a hypothesis involving thermal expansion and contraction.
Suomi NPP VIIRS Striping Analysis using Radiative Transfer Model Calculations
NASA Astrophysics Data System (ADS)
Wang, Z.; Cao, C.
2015-12-01
Modern satellite radiometers such as VIIRS have many detectors with slightly different relative spectral response (RSR). These differences can introduce artifacts such as striping in the imagery. In recent studies we have analyzed the striping pattern related to the detector level RSR difference in VIIRS Thermal Emissive Bands (TEB) M15 and M16, which includes line-by-line radiative transfer model (LBLRTM) detector level response study and onboard detector stability evaluation using the solar diffuser. Now we extend these analysis to the Reflective Solar Bands (RSB) using MODTRAN atmospheric radiative transfer model (RTM) for detector level radiance simulation. Previous studies analyzed the striping pattern in the images of VIIRS ocean color and reflectance in RSB, further studies about the root cause for striping are still needed. In this study, we will use the MODTRAN model at spectral resolution of 1 cm^-1 under different atmospheric conditions for VIIRS RSB, for example band M1 centered at 410nm which is used for Ocean Color product retrieval. The impact of detector level RSR difference, atmospheric dependency, and solar geometry on the striping in VIIRS SDR imagery will be investigated. The cumulative histogram method used successfully for the TEB striping analysis will be used to quantify the striping. These analysis help S-NPP and J1 to better understand the root cause for VIIRS image artifacts and reduce the uncertainties in geophysical retrievals to meet the user needs.
Commercial applications of satellite oceanography
NASA Technical Reports Server (NTRS)
Montgomery, D. R.
1981-01-01
It is shown that in the next decade the oceans' commercial users will require an operational oceanographic satellite system or systems capable of maximizing real-time coverage over all ocean areas. Seasat studies suggest that three spacecraft are required to achieve this. Here, the sensor suite would measure surface winds, wave heights (and spectral energy distribution), ice characteristics, sea-surface temperature, ocean colorimetry, height of the geoid, salinity, and subsurface thermal structure. The importance of oceanographic data being distributed to commercial users within two hours of observation time is stressed. Also emphasized is the importance of creating a responsive oceanographic satellite data archive. An estimate of the potential dollar benefits of such an operational oceanographic satellite system is given.
Multi-scale ocean and climate drivers of widespread bleaching in the Coral Triangle
NASA Astrophysics Data System (ADS)
Drenkard, E.; Curchitser, E. N.; Kleypas, J. A.; Castruccio, F. S.
2016-12-01
The Maritime Continent is home to the Coral Triangle (CT): the global pinnacle of tropical coral biodiversity. Historically, extensive bleaching-induced mortality (caused by thermal stress) among corals in the CT has been associated with extremes in the El Niño Southern Oscillation (ENSO), particularly years when a strong El Niños transitions to a La Niña state (i.e., 1998 and 2010). Similarities in the spatial distribution of satellite-derived indices, and the multi-scale environmental drivers of elevated sea surface temperatures (SSTs) during the 1998 and 2010 bleaching events suggests a potential predictability that has important implications for reef conservation. Using numerical models and ocean and atmosphere reanalysis products, we discuss the roles of ENSO-associated anomalies in both large-scale atmospheric circulation patterns (e.g., South Asian Monsoon) and regional ocean-cooling mechanisms such as coastal upwelling, tropical storm activity, and divergent (i.e., upwelling) circulation patterns (e.g., the Mindanao Eddy) in determining SSTs and, consequently projected patterns of reef ecosystem vulnerability to thermal stress. Conditions associated with the recent and ongoing 2015/2016 coral bleaching and mortality will be compared/contrasted.
North Atlantic Deep Water and the World Ocean
NASA Technical Reports Server (NTRS)
Gordon, A. L.
1984-01-01
North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.
Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean
Mei, Wei; Primeau, François; McWilliams, James C.; Pasquero, Claudia
2013-01-01
Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean–atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback. PMID:23922393
Are oceanic plateaus sites of komatiite formation?
NASA Astrophysics Data System (ADS)
Storey, M.; Mahoney, J. J.; Kroenke, L. W.; Saunders, A. D.
1991-04-01
During Cretaceous and Tertiary time a series of oceanic terranes were accreted onto the Pacific continental margin of Colombia. The island of Gorgona is thought to represent part of the most recent, early Eocene, terrane-forming event. Gorgona is remarkable for the occurrence of komatiites of middle Cretaceous age, having MgO contents up to 24%. The geochemistry of spatially and temporally associated tholeiites suggests that Gorgona is an obducted fragment of the oceanic Caribbean Plateau, postulated by Duncan and Hargraves (1984) to have formed at 100 to 75 Ma over the Galapagos hotspot. Further examples of high-MgO oceanic lavas that may represent fragments of the Caribbean Plateau occur in allochthonous terranes on the island of Curaçao in the Netherlands Antilles and in the Romeral zone ophiolites in the southwestern Colombian Andes. These and other examples suggest that the formation of high-MgO liquids may be a feature of oceanic-plateau settings. The association of Phanerozoic komatiites with oceanic plateaus, coupled with thermal considerations, provides a plausible analogue for the origin of some komatiite-tholeiite sequences in Archean greenstone belts.
NASA Astrophysics Data System (ADS)
Sévellec, Florian; Fedorov, Alexey V.
2016-09-01
Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reverse on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevellec, Florian; Fedorov, Alexey V.
Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less
Sevellec, Florian; Fedorov, Alexey V.
2016-01-04
Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less
NASA Astrophysics Data System (ADS)
Bousquet, Romain; Nalpas, Thierry
2017-04-01
Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie, 1978), as a kind of dogma, is used to understanding and modeling the formation and evolution of sedimentary basins. The study of the thermal evolution, coupled with other tectonic models, and its consequences have never been studied in detail, although the differences may be significant. And it is clear that the petrological changes associated with changes in temperature conditions, influence changes reliefs. Constrained by the new field data of north Pyrenean basins on thermal evolution of pre-rift and syn-rift sediments, we explore the petrological changes associated to different thermal evolution and the consequences on the subsidence of the basins. We will also present numerical models quantifying mineralogical and physical changes inside the whole lithosphere during rifting processes. In the light of these models, we discuss the consequences of different thermal evolution on the subsidence processes as well as on gravimetry and seismic velocities signature of passive margins. We are able to distinguish two types of margins according to their thermal evolution: - An Alpine-type basin in which the temperature rise is 50 to 100 Ma older than the tectonic extension, leading to the "cold" opening of the ocean. - A Pyrenean type basin in which temperature changes are synchronous with basin formation, leading to a crustal boudignage and to the formation of a "anomalous" geophysical layer at the OCT
NSF presentation. [summary on energy conversion research program
NASA Technical Reports Server (NTRS)
Morse, F. H.
1973-01-01
Wind energy conversion research is considered in the framework of the national energy problem. Research and development efforts for the practical application of solar energy -- including wind energy -- as alternative energy supplies are assessed in: (1) Heating and cooling of buildings; (2) photovoltaic energy conversion; (3) solar thermal energy conversion; (4) wind energy conversion; (5) ocean thermal energy conversion; (6) photosynthetic production of organic matter; and (7) conversion of organic matter into fuels.
Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge
NASA Astrophysics Data System (ADS)
Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald
2014-09-01
Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed ``gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
Mid-ocean ridges produced thicker crust in the Jurassic than in Recent times
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.; Harding, J.; Davis, J. K.; Lawver, L. A.
2016-12-01
We present a compilation of published marine seismic refraction data to show that oceanic crust was 1.7 km thicker on average in the mid-Jurassic (170 Ma) than along the present-day mid-ocean ridge system. Plate reconstructions in a fixed hotspot framework show that the thickness of oceanic crust does not correlate with proximity to mantle hotspots, so it is likely that mid-plate volcanism is not the cause of this global trend. We propose that more melt was extracted from the upper mantle beneath mid-ocean ridges in the Jurassic than in recent times. Numerical studies show that temperature increase of 1 degree C in the mantle can lead to approximately 50-70 m thicker crust, so the upper mantle may have cooled 15-20 degrees C/100 Myr since 170 Ma. This average temperature decrease is larger than the secular cooling rate of the Earth's mantle, which is roughly 10 degrees C/100 Myr since the Archean. Apparently, the present-day configuration and dynamics of continental and oceanic plates removes heat more efficiently from the Earth's mantle than in its earlier history. The increase of ocean crustal thickness with plate age is also stronger in the Indian and Atlantic oceans than in the Pacific Ocean basin. This confirms that thermal insulation by the supercontinent Pangaea raised the temperature of the underlying asthenospheric mantle, which in turn led to more magmatic output at the Jurassic mid-ocean ridges of the Indian and Atlantic oceans.
Stronger Ocean Meridinal Heat Transport with a Weaker Atlantic Meridional Overturning Circulation?
NASA Astrophysics Data System (ADS)
Sevellec, F.; Fedorov, A. V.
2014-12-01
It is typically assumed that oceanic heat transport is well and positively correlated with the Atlantic Meridional Ocean Circulation (AMOC). In numerical "water-hosing" experiments, for example, imposing an anomalous freshwater flux in the northern hemisphere leads to a slow-down of the AMOC and a corresponding reduction of the northward heat transport. Here, we study the sensitivity of the heat transport to surface freshwater fluxes using a generalized stability analysis and find that, while the direct relationship between the AMOC and heat transport holds on shorter time scales, it completely reverses on timescales longer than ~500 yr. That is, a reduction in the AMOC volume transport can actually lead to a stronger heat transport on those long timescales, which results from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistically equilibrium) in ocean and climate GCM as well as various paleoclimate problems such as millennial climate variability and the maintenance of equable climate states.
Antarctic warming driven by internal Southern Ocean deep convection oscillations
NASA Astrophysics Data System (ADS)
Martin, Torge; Pedro, Joel B.; Steig, Eric J.; Jochum, Markus; Park, Wonsun; Rasmussen, Sune O.
2016-04-01
Simulations with the free-running, complex coupled Kiel Climate Model (KCM) show that heat release associated with recurring Southern Ocean deep convection can drive centennial-scale Antarctic temperature variations of 0.5-2.0 °C. We propose a mechanism connecting the intrinsic ocean variability with Antarctic warming that involves the following three steps: Preconditioning: heat supplied by the lower branch of the Atlantic Meridional Overturning Circulation (AMOC) accumulates at depth in the Southern Ocean, trapped by the Weddell Gyre circulation; Convection onset: wind and/or sea-ice changes tip the preconditioned, thermally unstable system into the convective state; Antarctic warming: fast sea-ice-albedo feedbacks (on annual to decadal timescales) and slower Southern Ocean frontal and sea-surface temperature adjustments to the convective heat release (on multi-decadal to centennial timescales), drive an increase in atmospheric heat and moisture transport towards Antarctica resulting in warming over the continent. Further, we discuss the potential role of this mechanism to explain climate variability observed in Antarctic ice-core records.
Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning.
Golledge, N R; Menviel, L; Carter, L; Fogwill, C J; England, M H; Cortese, G; Levy, R H
2014-09-29
During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise--meltwater pulses--took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.
NASA Technical Reports Server (NTRS)
2001-01-01
With the help of Small Business Innovation Research (SBIR) funding from NASA's Goddard Space Flight Center, of Greenbelt, Maryland, Clearwater Instrumentation, of Watertown, Massachusetts, created the ClearSat-Autonomous Drifting Ocean Station (ADOS). The multi-sensor array ocean drifting station was developed to support observations of Earth by NASA satellites. It is a low-cost device for gathering an assortment of data necessary to the integration of present and future satellite measurements of biological and physical processes. Clearwater Instrumentation developed its ADOS technology based on Goddard's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) project, but on a scale that is practical for commercial use. ADOS is used for the in situ measuring of ocean surface layer properties such as ocean color, surface thermal structure, and surface winds. Thus far, multiple ADOS units have been sold to The Scripps Institution of Oceanography, where they are being applied in the field of academic science research. Fisheries can also benefit, because ADOS can locate prime cultivation conditions for this fast-growing industry.
Deployment, release and recovery of ocean riser pipes
Person, Abraham; Wetmore, Sherman B.; McNary, James F.
1980-11-18
An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.
Amino Acid Stability in the Early Oceans
NASA Technical Reports Server (NTRS)
Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.
2015-01-01
It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.
First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche
Mansfield, Katherine L.; Wyneken, Jeanette; Porter, Warren P.; Luo, Jiangang
2014-01-01
Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms. PMID:24598420
NASA Technical Reports Server (NTRS)
Hess, Paul C.; Parmentier, E. M.
1995-01-01
Crystallization of the lunar magma ocean creates a chemically stratified Moon consisting of an anorthositic crust and magma ocean cumulates overlying the primitive lunar interior. Within the magma ocean cumulates the last liquids to crystallize form dense, ilmenite-rich cumulates that contain high concentrations of incompatible radioactive elements. The underlying olivine-orthopyroxene cumulates are also stratified with later crystallized, denser, more Fe-rich compositions at the top. This paper explores the chemical and thermal consequences of an internal evolution model accounting for the possible role of these sources of chemical buoyancy. Rayleigh-Taylor instability causes the dense ilmenite-rich cumulate layer and underlying Fe-rich cumulates to sink toward the center of the Moon, forming a dense lunar core. After this overturn, radioactive heating within the ilmenite-rich cumulate core heats the overlying mantle, causing it to melt. In this model, the source region for high-TiO2 mare basalts is a convectively mixed layer above the core-mantle boundary which would contain small and variable amounts of admixed ilmenite and KREEP. This deep high-pressure melting, as required for mare basalts, occurs after a reasonable time interval to explain the onset of mare basalt volcanism if the content of radioactive elements in the core and the chemical density gradients above the core are sufficiently high but within a range of values that might have been present in the Moon. Regardless of details implied by particular model parameters, gravitational overturn driven by the high density of magma ocean Fe-rich cumulates should concentrate high-TiO2 mare basalt sources, and probably a significant fraction of radioactive heating, toward the center of the Moon. This will have important implications for both the thermal evolution of the Moon and for mare basalt genesis.
2012-04-09
CAPE CANAVERAL, Fla. – A technician aboard NASA’s Freedom Star boat in the Atlantic Ocean off the coast of Port Canaveral in Florida, checks NASA’s Mobile Aerospace Reconnaissance System, or MARS, during a day of testing in the Atlantic Ocean. MARS, run by NASA’s Langley Research Center in Hampton, Va., with its spatial, hyperspectral, thermal, and directed energy capabilities will be used for thermal imaging testing for the upcoming SpaceX Falcon 9 and Dragon capsule test flight to the International Space Station. During today’s test, the MARS X-band radar and kineto tracking mount KTM were tested to ensure that they were synchronized to receive a rocket launch feed. The radar was used to identify an object to see if the KTM could lock on to and track it. The MARS team performed maintenance on the system, confirmed communications links, and tested the design of the mounting system and environmental enclosure. Photo credit: NASA/Cory Huston
Inferring the thermal structure of the Panama Basin by seismic attenuation
NASA Astrophysics Data System (ADS)
Vargas-Jimenez, C. A.; Pulido, J. E.; Hobbs, R. W.
2017-12-01
Using recordings of earthquakes on Oceanic Bottom Seismographs and onshore stations on the coastal margins of Colombia, Panama, and Ecuador, we discriminate intrinsic and scattering attenuation processes in the upper lithosphere of the Panama Basin. The tomographic images of the derived coda-Q values are correlated with estimates of Curie Point Depth and measured and theoretical heat flow. Our study reveals three tectonic domains where magmatic/hydrothermal activity or lateral variations of the lithologic composition in the upper lithosphere can account for the modelled thermal structure and the anelasticity. We find that the Costa Rica Ridge and the Panama Fracture Zone are significant tectonic features in the study area. We interpret a large and deep intrinsic attenuation anomaly as related to the heat source at this ocean spreading center and show how interactions with regional fault systems cause contrasting attenuation anomalies.
NASA Technical Reports Server (NTRS)
Owens, L. J. (Inventor)
1978-01-01
A floating energy converter is described which uses large volumes of sea water to produce electrical power. In this plant, a fluid working medium is pumped to an evaporator where is is heated by a flow of warm surface sea water. The fluid in liquid form boils to a pressurized gas vapor which is routed to drive a turbine that, in turn, drives a generator for producing electricity. The gas vapor then enters a condenser immersed in cold sea water pumped from lower depths, condenses to its original liquid form, and then pumped to the evaporator to repeat the cycle. Modular components can be readily interchanged on the ocean thermal unit and inlet pipes for the sea water are provided with means for maintaining the pipes in alignment with the oncoming current. The modular construction allows for the testing of various components to provide a more rapid optimization of a standardized plant.
Small-scale uses and costs of hydrogen derived from OTEC ammonia
NASA Astrophysics Data System (ADS)
Strickland, G.
Ocean Thermal Energy Conversion (OTEC) plantships could produce NH3 from air and water, using energy derived from thermal gradients in tropical oceans. NH3 can serve both as a commodity, for the fertilizer and chemical industries, and as a liquid energy carrier for fuel use. Attention is given to the economic prospects for using OTEC NH3 as a hydrogen transport and storage medium for small users who want to assess the purchase of hydrogen vs. the cost of producing hydrogen at their sites. Hydrogen is readily obtained from NH3 at the point of end use, by dissociation and purification as required, for use as a chemical commodity or fuel. It is shown that high-purity H2 derived from OTEC NH3 might be competitive with H2 made at the point of end use via water electrolysis, or via steam reforming of natural gas.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1993-01-01
Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
Sources of the transuranic elements plutonium and neptunium in arctic marine sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, L. W.; Kelley, J. M.; Bond, L. A.
2000-01-01
We report here thermal ionization mass spectrometry measurements of {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, and {sup 237}Np isolated from oceanic, estuarine, and riverine sediments from the Arctic Ocean Basin. {sup 238}Pu/{sup 239+240}Pu activity ratios are also reported for alpha spectrometric analyses undertaken on a subset of these samples. Our results indicate that the Pu in sediments on the Alaskan shelf and slope, as well as that in the deep basins (Amerasian and Eurasian) of the Arctic Ocean, has its origin in stratospheric and tropospheric fallout. Sediments from the Ob and Yenisei Rivers show isotopic Pu signatures thatmore » are distinctly different from those of northern-hemisphere stratospheric fallout and indicate the presence of weapons-grade Pu originating from nuclear fuel reprocessing wastes generated at Russian facilities within these river catchments. Consequently, sediments of the Eurasian Arctic Ocean, particularly those in the Barents and Kara Seas, probably contain a mixture of Pu from stratospheric fallout, tropospheric fallout, and fuel-reprocessing wastes of riverine origin. In particular, the {sup 241}Pu/{sup 239}Pu ratios observed in these sediments are inconsistent with significant contributions of Pu to the arctic sediments studied from western European reprocessing facilities, principally Sellafield in the UK. Several other potential sources of Pu to arctic sediments can also be excluded as significant based upon the transuranic isotope ratios presented.« less
NASA Astrophysics Data System (ADS)
Duncan, Bella; Carter, Lionel; Dunbar, Gavin; Bostock, Helen; Neil, Helen; Scott, George; Hayward, Bruce W.; Sabaa, Ashwaq
2016-09-01
Satellite observations of middle to high latitudes show that modern ocean warming is accompanied by increased frequency and poleward expansion of coccolithophore blooms. However, the outcomes of such events and their causal processes are unclear. In this study, marine sediment cores are used to investigate past coccolithophore production north and south of the Subtropical Front. Calcareous pelagites from subtropical waters off northernmost New Zealand (site P71) and from subantarctic waters on Campbell Plateau (Ocean Drilling Program [ODP] site 1120C) record marked changes in pelagite deposition. At both locations, foraminiferal-rich sediments dominate glacial periods whereas coccolith-rich sediments characterise specific interglacial periods. Sediment grain size has been used to determine relative abundances of coccoliths and foraminifers. Results show coccoliths prevailed around certain Marine Isotope Stage (MIS) transitions, at MIS 7b/a and MIS 2/1 at P71, and at MIS 6/5e at ODP 1120C. Palaeo-environmental proxies suggest that coccolithophore production and deposition at P71 reflect enhanced nutrient availability associated with intense winter mixing in the subtropical Tasman Sea. An increased inflow of that warm, micronutrient-bearing subtropical water in concert with upper ocean thermal stratification in late spring/summer, led to peak phytoplankton production. At ODP 1120C during MIS 6/5e, an increased inflow of subtropical water, warm sea surface temperatures and a thermally stratified upper ocean also favoured coccolithophore production. These palaeo-environmental reconstructions together with model simulations suggest that (i) future subtropical coccolithophore production at P71 is unlikely to reach abundances recorded during MIS 7b/a but (ii) future subantarctic production is likely to dominate sedimentation over Campbell Plateau as modern conditions trend towards those prevalent during MIS 5e.
Open cycle ocean thermal energy conversion system
Wittig, J. Michael
1980-01-01
An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.
Study of the lower stratospheric thermal structure and total ozone from Nimbus-4 IRIS
NASA Technical Reports Server (NTRS)
Prabhakara, C.
1976-01-01
The global distribution of temperature in the stratosphere from 100 to 10 mbar and the total ozone in the atmosphere are remotely sensed from the Nimbus-4 IRIS measurements for a period of about one year. The temperature and ozone data are presented in the form of monthly mean global maps. The standard deviations of temperature and ozone with respect to zonal averages are calculated. The mean and the variable state of the stratosphere are discussed with the help of these observations. The lower stratosphere in the tropical regions reveals a significant wave number one pattern in the circulation. The Arctic and Antarctic stratospheric winter circulation regimes display a different behavior apparently due to the ocean and orographic differences.
Remote sensing applied to numerical modelling. [water resources pollution
NASA Technical Reports Server (NTRS)
Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.
1975-01-01
Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.
The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.
Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M
2009-04-01
We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.
NASA Astrophysics Data System (ADS)
Brand, Uwe
1989-12-01
A progressive trend towards heavier δ 13C values of Devonian-Mississippian brachiopods from North America, Europe, Afghanistan and Algeria probably reflects expansion of the terrestrestrial and/or marine biomass and/or burial of carbon in soils/sediments. Oceanic Productivity crises, based on perturbations in the overall δ 13C trend, are recognized for the Mid Givetian, Early Famennian, Late Kinderhookian, Late Osagean and Early and Late Meramecian. The Givetian productivity crisis was probably accompanied by massive overturn of biologically toxic deep-ocean water. Temperature data, adjusted for the possible secular variation of seawater, support the hypothesis of global greenhouse conditions for the Devonian (mean of 30°C, mean of 26°C if extrinsic data are deleted) and icehouse conditions for the Mississippian (mean of 17°C). During the Mid Givetian, Frasnian and Early Famennian calculated water temperatures for tropical epeiric seas were generally above the thermal threshold limit (˜ 38°C) of most marine invertebrates or epeiric seawater was characterized by unusually low salinities (˜ pp ppt) or a combination of the two. These elevated water temperatures and/or low salinities, in conjunction with the postulated productivity crises and overturning of toxic deep waters are considered prime causes for the biotic crisis of the Late Devonian. In addition, a presumed expanding oxygen-minimum zone and general anoxia in the oceans prevented shallow-water organisms from escaping these inhospitable conditions. Re-population of the tropical seas occurred, after either water temperatures had dropped below the thermal threshold limit and/or salinities were back to normal, and oceanic productivity had increased due to more vigorous oceanic circulation, sometime during the Mid-Late Famennian. Migration of eurythermal, shallow- and deeper-water organisms into the vacant niches of the shallow seas was possible because of, generally, slightly lower sea levels, but, more importantly of more restricted oxygen-minimum zone and generally reduced oceanic anoxia.
Turbulent Control Of The Ocean Surface Boundary Layer During The Onset Of Seasonal Stratification
NASA Astrophysics Data System (ADS)
Palmer, M.; Hopkins, J.; Wihsgott, J. U.
2016-02-01
To provide accurate predictions of global carbon cycles we must first understand the mechanistic control of ocean surface boundary layer (OSBL) temperature and the timing and depth of ocean thermal stratification, which are critical controls on oceanic carbon sequestration via the solubility and biological pumps. Here we present an exciting new series of measurements of the fine-scale physical structure and dynamics of the OSBL that provide fresh insight into the turbulent control of upper ocean structure. This study was made in the centre of the Celtic Sea, a broad section of the NW European continental shelf, and represents one of only a handful of measurements of near-surface turbulence in our shelf seas. Data are provided by an ocean microstructure glider (OMG) that delivers estimates of turbulent dissipation rates and mixing from 100m depth to within 2-3m of the sea surface, approximately every 10 minutes and continually for 21 days during April 2015. The OMG successfully captures the onset of spring stratification as solar radiation finally overcomes the destabilising effects of turbulent surface processes. Using coincident meteorological and wave observations from a nearby mooring, and full water column current velocity data we are able to close the near surface energy budget and provide a valuable test for proposed parameterisations of OSBL turbulence based on wind, wave and buoyancy inputs. We verify recent hypotheses that even very subtle thermal stratification, below often assumed limits of 0.1°C, are sufficient to establish sustained stratification even during active surface forcing. We also find that while buoyant production (convection) is not an efficient mechanism for mixing beyond the base of the mixed layer it does play an important role in modification of surface structure, acting to precondition the OSBL for enhanced (deeper) impacts from wind and wave driven turbulence.
Chemical consequences of compaction within the freezing front of a crystallizing magma ocean
NASA Astrophysics Data System (ADS)
Hier-Majumder, S.; Hirschmann, M. M.
2013-12-01
The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we develop a simple 1-D model of melt retention in the freezing front of a crystallizing magma ocean, and apply it to the thermal and chemical evolution of the early Earth.
NASA Astrophysics Data System (ADS)
Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé
2000-11-01
High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies that an important tectonic coupling may exist between the upper and the lower plates leading to the partitioning of the continental lithosphere and to the tectonic underplating of very young oceanic lithosphere below the continental wedge. We assume that in the case of the CTJ, the uncommon situation of three successive ridge segments entering the trench at 2-3 Ma intervals only resulted in a strong and finally long-lived thermal anomaly. This anomaly caused remelting of underplated portions of very young, still hot oceanic lithosphere. Only particular geometrical RTT configurations are able to produce such features. These include linear continental margin, short ridge segments slightly oblique to the trench and short transform faults. Finally, the CTJ example shows that a possible scenario for the origin of calc-alkaline acidic rocks in the near-trench region involves coeval tectonic coupling and repeated passage of thermal anomalies due to successive subduction of short ridge segments. Therefore, the local abundance of calc-alkaline acidic rocks, associated with MORB-type lavas in ancient series, could be the tracer of plate tectonic configurations involving the subduction of short ridge segments in a relatively short duration.
Habitability constraints on water-rich exoplanets
NASA Astrophysics Data System (ADS)
Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan
2016-04-01
This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still appear episodically at the water-mantle boundary (WMB). We also investigated the main paramters influencing the existence of volcanic activity and silicate crust formation. Under deep water layers, the high pressure from the overlying water layer can inhibit melting in the mantle. The main parameters influencing the maximal water layer depth, for which melting is still possible, are indeed the parameters influencing the mantle energy budget, which are the amount of radioactive heat sources and the initial upper mantle temperature. Plate tectonics also has a strong influence on the existence of volcanism. Crustal parameters (initial thickness or heat sources enrichment factor) as well as the ice rheology (i.e. the isolating effect of the ice shell on the mantle) have only a small influence on melting processes in the interior and the formation of crust. [1] L. Noack, A. Rivoldini and T. Van Hoolst 2015: CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons. INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. [2] L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux, H. Lammer, T. Van Hoolst and J.H. Bredehöft: Water-rich planets: how habitable is a water layer deeper than on Earth? Submitted to Icarus.
Global Ocean Circulation During Cretaceous Time
NASA Astrophysics Data System (ADS)
Haupt, B. J.; Seidov, D.
2001-12-01
Present--day global thermohaline ocean circulation (TOC) is usually associated with high--latitude deep-water formation due to surface cooling. In this understanding of the TOC driven by the deep--water production, the warm deep ocean during Mesozoic--Cenozoic time is a challenge. It may be questioned whether warm deep--ocean water, which is direct geologic evidence, does reflect warm polar surface--ocean regions. For the warm Cretaceous, it is difficult to maintain strong poleward heat transport in the case of reduced oceanic thermal contrasts. Usually, atmospheric feedbacks, in conjunction with the increase of atmospheric concentrations of greenhouse gases, are employed in order to explain the warm equable Cretaceous--Eocene climate. However, there is no feasible physical mechanism that could maintain warm subpolar surface oceans in both hemispheres, an assumption often used in atmospheric modeling. Our numerical experiments indicate that having a relatively cool but saltier high--latitude sea surface in at least one hemisphere is sufficient for driving a strong meridional overturning. Thus freshwater impacts in the high latitudes may be responsible for a vigorous conveyor capable of maintaining sufficient poleward oceanic heat transport needed to keep the polar oceans ice--free. These results imply that evaporation-precipitation patterns during warm climates are especially important climatic factors that can redistribute freshwater to create hemispheric asymmetry of sea surface conditions capable of generating a sufficiently strong TOC, otherwise impossible in warm climates.
Physical state of the very early Earth
NASA Astrophysics Data System (ADS)
Abe, Yutaka
1993-09-01
The earliest surface environment of the Earth is reconstructed in accordance with the planetary formation theory. Formation of an atmosphere is an inevitable consequence of Earth's formation. The atmosphere near the close of accretion is composed of 200 ˜ 300 bars of H 2 and H 2O, and several tens of bars of CO and CO 2. Either by the blanketing effect of the proto-atmosphere or heating by large planetesimal impacts a magma ocean is formed during accretion. We can distinguish three stages for the thermal evolution of the magma ocean and proto-crust. Stage 0 is characterized by a super-liquidus (or completely molten) regime near the surface. At this stage the surface of the Earth is covered by a super-liquidus magma ocean. No chemical differentiation is expected during this stage. Once the energy flux released by planet formation decreases to the 200 W/m 2 level the super-liquidus magma ocean then disappears within a time interval of 1 m.y. This is the transition from stage 0 to 1. Stage 1 is characterized by a partially molten magma ocean. In the magma ocean consisting of 20 ˜ 30% partial melt, heat transport is controlled by melt-solid separation (a type of compositional convection) rather than thermal convection. Chemical differentiation of the mantle mainly occurs in this stage. Once the energy flux drops to the 160 W/m 2 level, more than 90% of water vapor in the proto-atmosphere condense to form the proto-oceans. Several tens of bars of CO and CO 2 remain in the atmosphere just after formation of the oceans. Water oceans are occasionally evaporated by large impacts. After each such event, recondensation of the ocean takes several hundred years. Although the surface is covered by a chilled proto-crust, it is short-lived because of extensive volcanic resurfacing activity as well as meteorite impacts resurfacing. This stage ends when the energy flux drops to 0.1 ˜ 1 W/m 2 level. The duration time of stage 1 is estimated to be several hundred million years (the best estimate is about 400 m.y.). Stage 2 is characterized by solid state convection. This stage continues to the present day. One of the most important change on the proto-Earth is the transition from stage 1 to 2, which occurs several hundred million years after the Earth formation. Long-lived crust is formed only after this transition.
Comparison of global sst analyses for atmospheric data assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phoebus, P.A.; Cummings, J.A.
1995-03-17
Traditionally, atmospheric models were executed using a climatological estimate of the sea surface temperature (SST) to define the marine boundary layer. More recently, particularly since the deployment of remote sensing instruments and the advent of multichannel SST observations atmospheric models have been improved by using more timely estimates of the actual state of the ocean. Typically, some type of objective analysis is performed using the data from satellites along with ship, buoy, and bathythermograph observations, and perhaps even climatology, to produce a weekly or daily analysis of global SST. Some of the earlier efforts to produce real-time global temperature analysesmore » have been described by Clancy and Pollak (1983) and Reynolds (1988). However, just as new techniques have been developed for atmospheric data assimilation, improvements have been made to ocean data assimilation systems as well. In 1988, the U.S. Navy`s Fleet Numerical Meteorology and Oceanography Center (FNMOC) implemented a global three-dimensional ocean temperature analysis that was based on the optimum interpolation methodology (Clancy et al., 1990). This system, the Optimum Thermal Interpolation System (OTIS 1.0), was initially distributed on a 2.50 resolution grid, and was later modified to generate fields on a 1.250 grid (OTIS 1.1; Clancy et al., 1992). Other optimum interpolation-based analyses (OTIS 3.0) were developed by FNMOC to perform high-resolution three-dimensional ocean thermal analyses in areas with strong frontal gradients and clearly defined water mass characteristics.« less
Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean
NASA Astrophysics Data System (ADS)
Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen
2017-05-01
Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods < 100 s, the phase velocity variations are strongly controlled by seafloor age and shown to be consistent with temperature variations predicted by the half-space-cooling model for a mantle potential temperature of 1400°C. The inferred thermal structure beneath the Indian Ocean is most similar to the structure of the Pacific upper mantle, where phase velocities can also be explained by a half-space-cooling model. The thermal structure is not consistent with that of the Atlantic upper mantle, which is best fit by a plate-cooling model and requires a thin plate. Removing age-dependent phase velocity from the 2-D maps of the Indian Ocean highlights anomalously high velocities at the Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.
Ice-shelf melting around Antarctica
NASA Astrophysics Data System (ADS)
Rignot, E.; Jacobs, S.
2008-12-01
The traditional view on the mass balance of Antarctic ice shelves is that they loose mass principally from iceberg calving with bottom melting a much lower contributing factor. Because ice shelves are now known to play a fundamental role in ice sheet evolution, it is important to re-evaluate their wastage processes from a circumpolar perspective using a combination of remote sensing techniques. We present area average rates deduced from grounding line discharge, snow accumulation, firn depth correction and ice shelf topography. We find that ice shelf melting accounts for roughly half of ice-shelf ablation, with a total melt water production of 1027 Gt/yr. The attrition fraction due to in-situ melting varies from 9 to 90 percent around Antarctica. High melt producers include the Ronne, Ross, Getz, Totten, Amery, George VI, Pine Island, Abbot, Dotson/Crosson, Shackleton, Thwaites and Moscow University Ice Shelves. Low producers include the Larsen C, Princess Astrid and Ragnhild coast, Fimbul, Brunt and Filchner. Correlation between melt water production and grounding line discharge is low (R2 = 0.65). Correlation with thermal ocean forcing from the ocean are highest in the northern parts of West Antarctica where regressions yield R2 of 0.93-0.97. Melt rates in the Amundsen Sea exhibit a quadratic sensitivity to thermal ocean forcing. We conclude that ice shelf melting plays a dominant role in ice shelf mass balance, with a potential to change rapidly in response to altered ocean heat transport onto the Antarctic continental shelf.
Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat.
Jin, F-F; Boucharel, J; Lin, I-I
2014-12-04
The El Niño Southern Oscillation (ENSO) creates strong variations in sea surface temperature in the eastern equatorial Pacific, leading to major climatic and societal impacts. In particular, ENSO influences the yearly variations of tropical cyclone (TC) activities in both the Pacific and Atlantic basins through atmospheric dynamical factors such as vertical wind shear and stability. Until recently, however, the direct ocean thermal control of ENSO on TCs has not been taken into consideration because of an apparent mismatch in both timing and location: ENSO peaks in winter and its surface warming occurs mostly along the Equator, a region without TC activity. Here we show that El Niño--the warm phase of an ENSO cycle--effectively discharges heat into the eastern North Pacific basin two to three seasons after its wintertime peak, leading to intensified TCs. This basin is characterized by abundant TC activity and is the second most active TC region in the world. As a result of the time involved in ocean transport, El Niño's equatorial subsurface 'heat reservoir', built up in boreal winter, appears in the eastern North Pacific several months later during peak TC season (boreal summer and autumn). By means of this delayed ocean transport mechanism, ENSO provides an additional heat supply favourable for the formation of strong hurricanes. This thermal control on intense TC variability has significant implications for seasonal predictions and long-term projections of TC activity over the eastern North Pacific.
NASA Astrophysics Data System (ADS)
Naif, Samer
2018-01-01
Electrical conductivity soundings provide important constraints on the thermal and hydration state of the mantle. Recent seafloor magnetotelluric surveys have imaged the electrical conductivity structure of the oceanic upper mantle over a variety of plate ages. All regions show high conductivity (0.02 to 0.2 S/m) at 50 to 150 km depths that cannot be explained with a sub-solidus dry mantle regime without unrealistic temperature gradients. Instead, the conductivity observations require either a small amount of water stored in nominally anhydrous minerals or the presence of interconnected partial melts. This ambiguity leads to dramatically different interpretations on the origin of the asthenosphere. Here, I apply the damp peridotite solidus together with plate cooling models to determine the amount of H2O needed to induce dehydration melting as a function of depth and plate age. Then, I use the temperature and water content estimates to calculate the electrical conductivity of the oceanic mantle with a two-phase mixture of olivine and pyroxene from several competing empirical conductivity models. This represents the maximum potential conductivity of sub-solidus oceanic mantle at the limit of hydration. The results show that partial melt is required to explain the subset of the high conductivity observations beneath young seafloor, irrespective of which empirical model is applied. In contrast, the end-member empirical models predict either nearly dry (<20 wt ppm H2O) or slightly damp (<200 wt ppm H2O) asthenosphere for observations of mature seafloor. Since the former estimate is too dry compared with geochemical constraints from mid-ocean ridge basalts, this suggests the effect of water on mantle conductivity is less pronounced than currently predicted by the conductive end-member empirical model.
Modelling Cryovolcanism Due to Subsurface Ocean Freezing on Pluto and Charon
NASA Astrophysics Data System (ADS)
Conrad, J. W.; Nimmo, F.; Singer, K. N.
2016-12-01
The New Horizons spacecraft identified various possible cryovolcanic features on the surfaces of both Pluto and Charon [1]. However, there are major differences between the cryovolcanism on Pluto and Charon. Pluto has two mound-flanked depressions which are possibly cryovolcanic [2], while Charon's putative cryovolcanism is more widespread within its smooth southern plains. If Pluto or Charon have (or had) subsurface oceans, slow refreezing of these oceans would lead to extensional surface tectonics [3,4] and pressurization of the ocean [5]. Sufficiently large pressurization can overcome the overburden pressure and cause an eruption. We applied thermal evolution models based on [3] to determine likely freezing scenarios. Eruptions on Charon are possible under most conditions, and occur after tens of kilometers of freezing of an ice shell initially 100 km thick. This would produce an areal extensional strain of 1%. The implied globally-averaged thickness of erupted material is a few hundred meters and the critical crack width for propagation through the entire ice shell [6] is about half a meter for all eruption scenarios. Eruptions on Pluto require probably unrealistic freezing scenarios, because of the larger body size and higher overburden pressure. We conclude that ocean freezing is a possible source of cryovolcanism on Charon and may explain the smooth plains in its southern hemisphere [1]. Pluto, on the other hand, requires more complex models to explain the putative cryovolcanic features on its surface. [1] Moore et al., Science 351 (2016): 1284-1293. [2] Singer et al., LPSC 47 (2016): 2276 [3] Robuchon and Nimmo, Icarus 216 (2011): 426-439. [4] Hammond et al., GRL 43 (2016). [5] Manga and Wang, GRL 34 (2007). [6] Porco et al., The Astronomical Journal 148 (2014): 45.
NASA Astrophysics Data System (ADS)
Vishnevskaya, V. S.; Filatova, N. I.
2017-09-01
Jurassic-Cretaceous siliceous-volcanogenic rocks from nappes of tectonostratigraphic sequences of the East Asia Middle Cretaceous Okhotsk-Koryak orogenic belt are represented by a wide range of geodynamic sedimentation settings: oceanic (near-spreading zones, seamounts, and deep-water basins), marginal seas, and island arcs. The taxonomic compositions of radiolarian communities are used as paleolatitude indicators in the Northern Pacific. In addition, a tendency toward climate change in the Mesozoic is revealed based on these communities: from the warm Triassic to the cold Jurassic with intense warming from the Late Jurassic to the Early Cretaceous. Cretaceous warming led to heating of ocean waters even at moderately high latitudes and to the development of Tethyan radiolarians there. These data are confirmed by a global Cretaceous temperature peak coinciding with a high-activity pulse of the planetary mantle superplume system, which created thermal anomalies and the greenhouse effect. In addition, the Pacific superplume attributed to this system caused accelerated movement of oceanic plates, which resulted in a compression setting on the periphery of the Pacific and the formation of the Okhotsk-Koryak orogenic belt on its northwestern framing in the Middle Cretaceous, where Mesozoic rocks of different geodynamic and latitudinal-climate settings were juxtaposed into allochthonous units.
Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification
NASA Astrophysics Data System (ADS)
Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.
2015-05-01
Coral reefs are diverse ecosystems that are threatened by rising CO2 levels through increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are explicitly modelled by linking rates of growth, recovery and calcification to rates of bleaching and temperature-stress-induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, correlated up- and down-regulation of traits that are consistent with resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The performance of the model is assessed against independent data to demonstrate how it can capture the observed response of corals to stress. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles to help understand the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can give insights into how corals respond to changes in temperature and ocean acidification.
Selden, Rebecca L; Batt, Ryan D; Saba, Vincent S; Pinsky, Malin L
2018-01-01
Asymmetries in responses to climate change have the potential to alter important predator-prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968-2014) and with a doubling in CO 2 . Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator-prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species' range it occupied and caused a potential reduction in its ability to exert top-down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience. © 2017 John Wiley & Sons Ltd.
Solar Energy - An Option for Future Energy Production
ERIC Educational Resources Information Center
Glaser, Peter E.
1972-01-01
Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)
The atmospheric temperature structure of Titan
NASA Technical Reports Server (NTRS)
Mckay, Christopher P.; Pollack, J. B.; Courtin, Regis; Lunine, Jonathan I.
1992-01-01
The contribution of various factors to the thermal structure of Titan's past and present atmosphere are discussed. A one dimensional model of Titan's thermal structure is summarized. The greenhouse effect of Titan's atmosphere, caused primarily by pressure induced opacity of N2, CH4, and H2, is discussed together with the antigreenhouse effect dominated by the haze which absorbs incident sunlight. The implications for the atmosphere of the presence of an ocean on Titan are also discussed.
Thermal niche evolution of functional traits in a tropical marine phototroph.
Baker, Kirralee G; Radford, Dale T; Evenhuis, Christian; Kuzhiumparam, Unnikrishnan; Ralph, Peter J; Doblin, Martina A
2018-06-14
Land-based plants and ocean-dwelling microbial phototrophs known as phytoplankton, are together responsible for almost all global primary production. Habitat warming associated with anthropogenic climate change has detrimentally impacted marine primary production, with the effects observed on regional and global scales. In contrast to slower-growing higher plants, there is considerable potential for phytoplankton to evolve rapidly with changing environmental conditions. The energetic constraints associated with adaptation in phytoplankton are not yet understood, but are central to forecasting how global biogeochemical cycles respond to contemporary ocean change. Here, we demonstrate a number of potential trade-offs associated with high-temperature adaptation in a tropical microbial eukaryote, Amphidinium massartii (dinoflagellate). Most notably, the population became high-temperature specialized (higher fitness within a narrower thermal envelope and higher thermal optimum), and had a greater nutrient requirement for carbon, nitrogen and phosphorus. Evidently, the energetic constraints associated with living at elevated temperature alter competiveness along other environmental gradients. While high-temperature adaptation led to an irreversible change in biochemical composition (i.e., an increase in fatty acid saturation), the mechanisms underpinning thermal evolution in phytoplankton remain unclear, and will be crucial to understanding whether the trade-offs observed here are species-specific or are representative of the evolutionary constraints in all phytoplankton. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Onboard Science and Applications Algorithm for Hyperspectral Data Reduction
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Davies, Ashley G.; Silverman, Dorothy; Mandl, Daniel
2012-01-01
An onboard processing mission concept is under development for a possible Direct Broadcast capability for the HyspIRI mission, a Hyperspectral remote sensing mission under consideration for launch in the next decade. The concept would intelligently spectrally and spatially subsample the data as well as generate science products onboard to enable return of key rapid response science and applications information despite limited downlink bandwidth. This rapid data delivery concept focuses on wildfires and volcanoes as primary applications, but also has applications to vegetation, coastal flooding, dust, and snow/ice applications. Operationally, the HyspIRI team would define a set of spatial regions of interest where specific algorithms would be executed. For example, known coastal areas would have certain products or bands downlinked, ocean areas might have other bands downlinked, and during fire seasons other areas would be processed for active fire detections. Ground operations would automatically generate the mission plans specifying the highest priority tasks executable within onboard computation, setup, and data downlink constraints. The spectral bands of the TIR (thermal infrared) instrument can accurately detect the thermal signature of fires and send down alerts, as well as the thermal and VSWIR (visible to short-wave infrared) data corresponding to the active fires. Active volcanism also produces a distinctive thermal signature that can be detected onboard to enable spatial subsampling. Onboard algorithms and ground-based algorithms suitable for onboard deployment are mature. On HyspIRI, the algorithm would perform a table-driven temperature inversion from several spectral TIR bands, and then trigger downlink of the entire spectrum for each of the hot pixels identified. Ocean and coastal applications include sea surface temperature (using a small spectral subset of TIR data, but requiring considerable ancillary data), and ocean color applications to track biological activity such as harmful algal blooms. Measuring surface water extent to track flooding is another rapid response product leveraging VSWIR spectral information.
Sensitivity of Calcification to Thermal Stress Varies among Genera of Massive Reef-Building Corals
Carricart-Ganivet, Juan P.; Cabanillas-Terán, Nancy; Cruz-Ortega, Israel; Blanchon, Paul
2012-01-01
Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR), and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR), and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm−2 year−1 in Porites spp. and 0.12 g cm−2 year−1 in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ωar) at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ωar changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological breakdown, seriously affecting ecosystem function in Atlantic reefs. PMID:22396797
NASA Astrophysics Data System (ADS)
Riel, Nicolas; Jaillard, Etienne; Guillot, Stéphane; Martelat, Jean-Emmanuel; Braun, Jean
2013-04-01
From Permian to Triassic times, tectonic plate reorganization provoked Pangaea breakup, counterclockwise rotation of Gondwana, closing of the Paleo-Tethys Ocean and opening of the Neo-Tethys oceanic realm. Meanwhile, the switch from arc volcanism to widespread S-type magmatism along the western South American active margin around 275-265 Ma is symptomatic of the onset of a large-scale Permian-Triassic thermal anomaly (PTTA)affecting the whole margin. Here we report metamorphic and U-Pb geochronological results from the El Oro metamorphic complex in the forearc zone of southwestern Ecuador, which recorded the last step, at 230-225 Ma, of the PTTA. The change in the drift direction of Gondwana from north to east at ca. 270 Ma was related to plate reorganization and provoked the verticalization of the subducted Panthalassa slab. As the slab verticalized, strong heat advection produced a high heat flow beneath the active margin inducing the development of a huge thermal anomaly responsible for the PTTA, which lasted 30 Ma. This voluminous magmatic activity culminated at the Permian-Triassic boundary, and may have contributed to the degradation of life conditions on the Earth surface.
Global patterns of predator diversity in the open oceans.
Worm, Boris; Sandow, Marcel; Oschlies, Andreas; Lotze, Heike K; Myers, Ransom A
2005-08-26
The open oceans comprise most of the biosphere, yet patterns and trends of species diversity there are enigmatic. Here, we derive worldwide patterns of tuna and billfish diversity over the past 50 years, revealing distinct subtropical "hotspots" that appeared to hold generally for other predators and zooplankton. Diversity was positively correlated with thermal fronts and dissolved oxygen and a nonlinear function of temperature (approximately 25 degrees C optimum). Diversity declined between 10 and 50% in all oceans, a trend that coincided with increased fishing pressure, superimposed on strong El Niño-Southern Oscillation-driven variability across the Pacific. We conclude that predator diversity shows a predictable yet eroding pattern signaling ecosystem-wide changes linked to climate and fishing.
Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A
2007-09-04
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.
Intra-LLSVP Heterogeneity from Spherical Slepian Analysis
NASA Astrophysics Data System (ADS)
Olugboji, T. M.; Moulik, P.; Plattner, A.; Lekic, V.
2017-12-01
The lower mantle structure is dominated by a pair of large, antipodal, low shear velocity provinces (LLSVPs) located beneath Africa and the Pacific Ocean. Though LLSVPs are a dominantly long-wavelength (degree 2) feature detected since the earliest tomographic models, their nature and origin remain enigmatic. A number of hypotheses have been proposed to address their origin, summarized by two end member scenarios: (1) they represent thermochemical piles that are either primordial or have grown over time, such as by the accumulation of subducted oceanic lithosphere, (2) they are purely thermal features, seen through the lens of tomographic imaging. In order to distinguish between these two interpretations of the seismically detected LLSVPs we compare the amplitude and length-scales of velocity heterogeneities within and outside the LLSVPs, and analyze their variation with height above the core-mantle boundary. This requires estimating the wavenumber spectrum of heterogeneity by localizing it from a global tomographic model. Previous researchers have done this by filtering using spatially abrupt windowing functions; however, this procedure leads to unreliable spectral estimates due to their non-compact spatiospectral concentration. Here, we overcome this shortcoming by adopting spherical Slepian analysis that allows us to optimize the trade-off between spatial localization and spectral leakage. We conduct a quantitative analysis of the similarities and differences in the spectrum of heterogeneity across a collection of global tomographic models allowing us to identify robust features that need to be explained by purely thermal or thermochemical geodynamic models, potentially discriminating between these two scenarios.
Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.
2007-01-01
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806
Simulation of different types of ENSO impacts on South Asian Monsoon in CCSM4
NASA Astrophysics Data System (ADS)
Islam, Siraj ul; Tang, Youmin
2017-02-01
It has been found in observation that there are different types of influences of El Nino Southern Oscillation (ENSO) on the South Asian Monsoon (SAM). A correct description and representation of these teleconnections is critical for climate models to simulate and predict SAM. In this study, we examine these teleconnections in NCAR CAM4 and CCSM4 models, including the strength and weakness of these models in preserving different types of ENSO-SAM relationships. By using observational and simulation dataset, the composite analysis, based on specific selection criteria, is performed for both SAM rainfall and the eastern equatorial Pacific sea surface temperature (SST) anomalies. Anomalous SAM rainfall is characterized in three different types i.e. the indirect influence of the SST anomalies of preceding winter (DJF-only), direct influence of the SST anomalies of concurrent summer (JJAS-only) and the combined influence of both preceding winter and concurrent summer (DJF&JJAS). The analysis reveals that CAM4 uncoupled simulation can reasonably well reproduce the anomalous SAM rainfall in DJF-only and DJF&JJAS types whereas the model fails to simulate the anomalous rainfall in the JJAS-only type. The better performance of CAM4, particularly in DJF&JJAS type, comes from its realistic simulation of moisture content and thermal contrast. Its failure to preserve the ENSO-SAM relationship of JJAS-only type is due to the absence of ENSO induced warming in Northern Indian Ocean via atmospheric circulation which is indirectly linked to the lack of air-sea coupling. The role of Indian Ocean in controlling the ENSO-SAM teleconnections of the DJF&JJAS type is further investigated using CAM4 sensitivity experiments. It is found that in absence of Indian Ocean SST, the anomalous SAM summer rainfall suppresses in the DJF&JJAS type, suggesting the important modulation by Indian Ocean SST probably through the preceding winter equatorial Pacific SST forcing and the atmospheric circulations. On the other hand, CCSM4 shows large systematical errors in DJF-only and DJF&JJAS types and reproduce weak anomalous SAM rainfall. The failure of CCSM4 in simulating DJF-only and DJF&JJAS types is found mainly due to the errors in its SST simulation. The JJAS-only type is better reproduced in the CCSM4 simulation as compared to CAM4 and observation composites. Strong convergence over the SAM region which intensifies the anomalous SAM is seen to be responsible for its better simulation in this type. It is found that the atmospheric circulations in CCSM4 contribute more than the thermal contrast in modulating the intensity of anomalous rainfall in JJAS-only type. This study suggests that, although air-sea coupling is important for better SAM simulation and its relationship with ENSO, the SST bias in coupled model can significantly degrade ENSO-SAM relationship.
History and evolution of Subduction in the Precambrium
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2013-12-01
Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g. Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic subduction is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further subduction history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction changes to shallow underplating and buckling. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere starts to delaminate and drip-off. But the subduction style is not only a function of upper-mantle temperature but also strongly depends on the thickness of the subducting plate. If thinner present day oceanic plates are used in the Precambrian models, no shallow underplating is observed but steep subduction can be found up to an upper-mantle temperature of 200 K above present day values. Increasing oceanic plate thickness introduces a transition from steep to flat subduction at lower temperatures of around 150 K. Thicker oceanic plates in the Precambrium also agree with results from earlier studies, e.g. Abbott (1994). References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370. Subduction depends strongly on upper-mantle temperature. (a) Modern subduction with present day temperature gradients in upper-mantle and lithosphere. (b) Increase of temperature by 100 K at the lithosphere-asthenosphere boundary (LAB) leads to melting and drip-off of the of the slab-tip. (c) A temperature increase of 200 K leads to buckling of the subducting slab and Rayleigh-Taylor instabilities not only at the slab-tip but the whole LAB. At this stage subduction is no longer possible as the slab melts or breaks before it can be subducted into the mantle.
NASA Astrophysics Data System (ADS)
Jokat, Wilfried; Reents, Stefanie
2017-10-01
The southern Atlantic hosts a variety of magmatic structures, namely the Walvis Ridge, the Discovery Seamounts and the Shona Ridge, which are believed to be related to the evolution/movement of hotspots. Although the basement of the Walvis Ridge has been sampled at different locations, geophysical data are too sparse to provide sufficient information about its deeper structure to compare it with other hotspot tracks. The Discovery Seamounts represent a completely different type feature in a way that it cannot be connected to any onshore volcanic feature. However, geological sampling of the volcanic basement indicates that the petrology of the Discovery track is very similar to Gough Island and the southern branch of Walvis Ridge. Both structures erupted into already existing seafloor and so have been seismically investigated to document how/if an associated thermal anomaly might have modified the underlying and surrounding oceanic crust. Seismic lines for both structures indicate rather normal seismic velocity distributions for oceanic crust. Both, the Walvis Ridge and the largest volcano of the Discovery Seamounts have a maximum thickness in our research area of 13 km. An interesting difference between these structures is a high velocity cone (> 6 km/s) at 2.4 km depth in the central part of Discovery Seamount. This might indicate a primarily intrusional type of seamount such as has been reported for several similar structures. In contrast the Walvis Ridge velocity structure does not show evidences for a shallow intrusional cone, but seismic velocities typical for oceanic layer 3 at a more or less constant depth level along the entire profile. This might indicate that the ridge's present-day topography is built mainly by extrusive material.
Lithospheric strength and its relationship to the elastic and seismogenic layer thickness
NASA Astrophysics Data System (ADS)
Watts, A. B.; Burov, E. B.
2003-08-01
Plate flexure is a phenomenon that describes how the lithosphere responds to long-term (>105 yr) geological loads. By comparing the flexure in the vicinity of ice, volcano, and sediment loads to predictions based on simple plate models it has been possible to estimate the effective elastic thickness of the lithosphere, Te. In the oceans, Te is the range 2-50 km and is determined mainly by plate and load age. The continents, in contrast, are characterised by Te values of up to 80 km and greater. Rheological considerations based on data from experimental rock mechanics suggest that Te reflects the integrated brittle, elastic and ductile strength of the lithosphere. Te differs, therefore, from the seismogenic layer thickness, Ts, which is indicative of the depth to which anelastic deformation occurs as unstable frictional sliding. Despite differences in their time scales, Te and Ts are similar in the oceans where loading reduces the initial mechanical thickness to values that generally coincide with the thickness of the brittle layer. They differ, however, in continents, which, unlike oceans, are characterised by a multi-layer rheology. As a result, Te≫Ts in cratons, many convergent zones, and some rifts. Most rifts, however, are characterised by a low Te that has been variously attributed to a young thermal age of the rifted lithosphere, thinning and heating at the time of rifting, and yielding due to post-rift sediment loading. Irrespective of their origin, the Wilson cycle makes it possible for low values to be inherited by foreland basins which, in turn, helps explain why similarities between Te and Ts extend beyond rifts into other tectonic regions such as orogenic belts and, occasionally, the cratons themselves.
History and Evolution of Precambrian plate tectonics
NASA Astrophysics Data System (ADS)
Fischer, Ria; Gerya, Taras
2014-05-01
Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by pulling at and breaking the plate. References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370.
Grimes, Craig B.; Cheadle, Michael J.; John, Barbara E.; Reiners, P.W.; Wooden, J.L.
2011-01-01
Oceanic detachment faulting represents a distinct mode of seafloor spreading at slow spreading mid-ocean ridges, but many questions persist about the thermal evolution and depth of faulting. We present new Pb/U and (U-Th)/He zircon ages and combine them with magnetic anomaly ages to define the cooling histories of gabbroic crust exposed by oceanic detachment faults at three sites along the Mid-Atlantic Ridge (Ocean Drilling Program (ODP) holes 1270D and 1275D near the 15??20???N Transform, and Atlantis Massif at 30??N). Closure temperatures for the Pb/U (???800??C-850??C) and (U-Th)/He (???210??C) isotopic systems in zircon bracket acquisition of magnetic remanence, collectively providing a temperature-time history during faulting. Results indicate cooling to ???200??C in 0.3-0.5 Myr after zircon crystallization, recording time-averaged cooling rates of ???1000??C- 2000??C/Myr. Assuming the footwalls were denuded along single continuous faults, differences in Pb/U and (U-Th)/He zircon ages together with independently determined slip rates allow the distance between the ???850??C and ???200??C isotherms along the fault plane to be estimated. Calculated distances are 8.4 ?? 4.2 km and 5.0 2.1 km from holes 1275D and 1270D and 8.4 ?? 1.4 km at Atlantis Massif. Estimating an initial subsurface fault dip of 50 and a depth of 1.5 km to the 200??C isotherm leads to the prediction that the ???850??C isotherm lies ???5-7 km below seafloor at the time of faulting. These depth estimates for active fault systems are consistent with depths of microseismicity observed beneath the hypothesized detachment fault at the TAG hydrothermal field and high-temperature fault rocks recovered from many oceanic detachment faults. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Lee, C.; Chin, E. J.; Erdman, M.; Gaschnig, R. M.; Lederer, G. W.; Savage, P. S.; Zhong, S.; Zincone, S.
2013-12-01
Most Archean cratons are underlain by long-lived 200-300 km thick thermal boundary layers, significantly thicker than oceanic boundary layers, which eventually subduct. The longevity of cratons is perplexing because cold thermal boundary layers should be gravitationally unstable or should thermally erode with time. However, it is agreed that thermal contraction of the cratonic root is compensated by intrinsic compositional buoyancy due to extreme melt depletion. This melt depletion is also thought to have dehydrated the peridotitic residue, strengthening the cratonic mantle, making it resistant to thermo-mechanical erosion. Exactly how cratonic mantle arrives at this chemically buoyant and dehydrated state is unknown. Possible scenarios include formation by melting within a large plume head, accretion of oceanic lithosphere, and accretion of sub-arc mantle. The high degrees of melting would seem to imply formation in hot plume heads, but low Al and heavy rare earth element contents suggest formation in the spinel stability field, implying formation at shallower depths than their current equilibration pressures. We present a new thermobarometer designed to estimate the average melting pressures and temperatures of residual peridotites using whole rock major element compositions. We find that the average melting pressures and temperatures of cratonic peridotites range between 3-4 GPa and 1600 °C. If cratonic peridotites melted via adiabatic decompression, these average pressures represent maximum bounds on the final pressures of melt extraction. Currently, cratonic peridotites derive from 4-7 GPa, implying that the building blocks of peridotites experienced an increase of 1-3 GPa, equivalent to 30-90 km of overburden. Our results thus imply that cratonic mantle most likely formed by tectonic thickening of oceanic or arc lithospheres. But because both arc and oceanic lithospheres might be expected to be wet due to hydrous flux melting and serpentinization, respectively, cratons should be weak. This dilemma can be reconciled by considering the thermal and magmatic evolution of juvenile crust formed in the Archean. Thickening of juvenile crust increases total heat production within the upper part of the nascent lithosphere. With higher heat production in the past, such thickening causes the crust to heat up on timescales of 100 Myr, resulting in a post-orogenic thermal pulse that generates a wave of crustal anatexis and downward heating of the lithospheric mantle, driving off residual water and increasing the kinetics of grain growth, both of which strengthen the lithosphere. Crustal melting will also advectively concentrate radiogenics towards the surface with no observable change in surface heat flow. This upward migration of radiogenics will be followed by cooling of the lower crust and lithospheric mantle, causing further strengthening. With secular cooling of the ambient convecting mantle over much longer timescales, cratons emerge in elevation, leading to erosion of the radiogenically enriched upper crust and leaving behind a continental block with the low surface heat flow characteristic of cratons today. In summary, cratons form by tectonic thickening of cold building blocks, followed by a thermal pulse that further dehydrates and anneals the cratonic mantle. The last step requires sufficient radiogenics to operate, which may explain why cratons formed early in Earth's history.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto
2013-04-01
Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for volcanic addition due to decompression melting based on White & McKenzie (1989). Gravity inversion and the "synthetic" gravity derived RDA both show generally normal thickness oceanic crust, with some localised thin oceanic crust. Continental lithosphere thinning factors determined from gravity inversion and subsidence analysis are in good agreement and have been used to constrain COB location along the profile lines. These techniques show that the OCT in the eastern Gulf of Aden, is relatively narrow, with the distance between the COB and the margin hinge measuring less than 100km.
A Stratification Boomerang: Nonlinear Dependence of Deep Southern Ocean Ventilation on PCO2
NASA Astrophysics Data System (ADS)
Galbraith, E. D.; Merlis, T. M.
2014-12-01
Strong correlations between atmospheric CO2, Antarctic temperatures, and marine proxy records have hinted that ventilation of the deep Southern Ocean may have played a central role in the variations of CO2 over glacial-interglacial cycles. One proposition is that, in general, the Southern Ocean ventilates the deep more strongly under higher CO2, due to a change in winds and/or the dominance of thermal stratification in a warm ocean, which weakens ocean biological carbon storage. Here, we explore this idea with a suite of multi-millennial simulations using the GFDL CM2Mc global coupled model. The results are, indeed, consistent with increasing ventilation of the Southern Ocean as pCO2 increases above modern. However, they reveal a surprising twist under low pCO2: increased salinity of the Southern Ocean, due in part to weakening atmospheric moisture transport, actually increases ventilation rate of the deep ocean under low pCO2 as well. This implies that a nadir of Southern Ocean ventilation occurs at intermediate pCO2, which the model estimates as being close to that of the present-day. This is at odds with the interpretation that weak ventilation of the deep Southern Ocean was the unifying coupled mechanism for the glacial pCO2 cycles. Rather, it suggests that factors other than the ventilation rate of the deep Southern Ocean, such as iron fertilization, ecosystem changes, water mass distributions, and sea ice cover, were key players in the glacial-interglacial CO2 changes.
NASA Astrophysics Data System (ADS)
Tomczik, D. W.; Norris, R. D.; Gaskell, D. E.
2014-12-01
A partial analog for future global change is the Paleocene-Eocene Thermal Maximum—a transient episode of warming, acidification, and biogeographic change at ~55.5 Ma. The PETM is known to have triggered extinction in some deep sea biotas, extensive biogeographic range shifts, and the common occurrence of 'excursion biotas'—non-analog occurrences of species that are typically rare in the open ocean before or after the PETM. Here we report on the impact of the PETM on fish production and biodiversity. Our data include the mass accumulation rate of fish teeth and denticles as well as an analysis of tooth morphotypes for three PETM sites: ODP 1220 and 1209 in the Pacific, and ODP 1260 in the equatorial Atlantic. Tooth morphotypes hardly change through the PETM and consist of abundant midwater species (angler fish and flashlight fish) in addition to sharks and epipelagic fish. There is no evidence for a non-analog 'excursion biota' during the PETM, suggesting that fish experienced fewer geographic range shifts than the calcareous and organic-walled plankton where excursion biotas are commonplace. Fish mass accumulation rates are also relatively stable before and after the PETM although all sites show a transient rise in fish production at the onset of the PETM or within the later part of the "PETM Core". These results broadly match published estimates of PETM export production from biogenic barium fluxes. Our findings run counter to "Future Earth" models that use climate forecasts for the next century to predict the impact of global change on fish stocks. These models suggest that future warming and ocean stratification will decrease most tropical and subtropical ocean fish production, accentuate fish production in the boundary currents and generally shift production toward higher latitudes. A resolution of "Future Earth" models and PETM data may reflect the different timescales of observation and stages of ecological response to severe global change.
Review of NASA programs in applying aerospace technology to energy
NASA Technical Reports Server (NTRS)
Schwenk, F. C.
1981-01-01
NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.
Report of the panel on lithospheric structure and evolution, section 3
NASA Technical Reports Server (NTRS)
Chase, Clement G.; Lang, Harold; Mcnutt, Marcia K.; Paylor, Earnest D.; Sandwell, David T.; Stern, Robert J.
1991-01-01
The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents.
A flexible climate model for use in integrated assessments
NASA Astrophysics Data System (ADS)
Sokolov, A. P.; Stone, P. H.
Because of significant uncertainty in the behavior of the climate system, evaluations of the possible impact of an increase in greenhouse gas concentrations in the atmosphere require a large number of long-term climate simulations. Studies of this kind are impossible to carry out with coupled atmosphere ocean general circulation models (AOGCMs) because of their tremendous computer resource requirements. Here we describe a two dimensional (zonally averaged) atmospheric model coupled with a diffusive ocean model developed for use in the integrated framework of the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change. The 2-D model has been developed from the Goddard Institute for Space Studies (GISS) GCM and includes parametrizations of all the main physical processes. This allows it to reproduce many of the nonlinear interactions occurring in simulations with GCMs. Comparisons of the results of present-day climate simulations with observations show that the model reasonably reproduces the main features of the zonally averaged atmospheric structure and circulation. The model's sensitivity can be varied by changing the magnitude of an inserted additional cloud feedback. Equilibrium responses of different versions of the 2-D model to an instantaneous doubling of atmospheric CO2 are compared with results of similar simulations with different AGCMs. It is shown that the additional cloud feedback does not lead to any physically inconsistent results. On the contrary, changes in climate variables such as precipitation and evaporation, and their dependencies on surface warming produced by different versions of the MIT 2-D model are similar to those shown by GCMs. By choosing appropriate values of the deep ocean diffusion coefficients, the transient behavior of different AOGCMs can be matched in simulations with the 2-D model, with a unique choice of diffusion coefficients allowing one to match the performance of a given AOGCM for a variety of transient forcing scenarios. Both surface warming and sea level rise due to thermal expansion of the deep ocean in response to a gradually increasing forcing are reasonably reproduced on time scales of 100-150 y. However a wide range of diffusion coefficients is needed to match the behavior of different AOGCMs. We use results of simulations with the 2-D model to show that the impact on climate change of the implied uncertainty in the rate of heat penetration into the deep ocean is comparable with that of other significant uncertainties.
Lithospheric strength across the ocean-continent transition in the NW of the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Martín-Velázquez, Silvia; Martín-González, Fidel
2014-05-01
The main objective of this work is to investigate the relation between the strength of the lithosphere and the observed pattern of seismicity across the ocean-continent transition in the NW margin of the Iberian Peninsula. The seismicity is diffuse in this intraplate area, far from the seismically active margin of the plate: the Eurasia-African plate boundary, where convergence occurs at a rate of 4-5mm/year. The earthquake epicentres are mainly limited to an E-W trending zone (onshore seismicity is more abundant than offshore), and most earthquakes occur at depths less than 30 km, however, offshore depths are up to 150 km). Moreover, one of the problems to unravel in this area is that the seismotectonic interpretations of the anomalous seismicity in the NW peninsular are contradictory. The temperature and strength profiles have been modelled in three domains along the non-volcanic rifted West Iberian Margin: 1) the oceanic lithosphere of the Iberian Abyssal Plain, 2) the oceanic lithosphere near the ocean-continent transition of the Galicia Bank, and 3) the continental lithosphere of the NW Iberian Massif. The average bathymetry and topography have been used to fit the thermal structures of the three types of lithospheres, given that the heat flow and heat production values show a varied range. The geotherms, together with the brittle and ductile rheological laws, have been used to calculate the strength envelopes in different stress regimes (compression, shear and tensile). The continental lithosphere-asthenosphere boundary is located at 123 km and several brittle-ductile transitions appear in the crust and the mantle. However, the oceanic lithospheres are thinner (110 km near the Galicia Bank and 87 km in the Iberian Abbysal Plain) and more simple (brittle behaviour in the crust and upper mantle). The earthquake distribution is best explained by lithospheres with dry compositions and shear or tensile stress regimes. These results are similar can be compared to those of the Gulf of Cadiz oceanic-continental transition near the Eurasia-African plate boundary (Neves and Neves, 2009), and they contribute to complete the knowledge about seismicity and lithospheric strength in the ocean-continent transition of the Iberian Peninsula. References Neves M.C., Neves, R.G.M., 2009. Flexure and seismicity across the ocean-continent transition in the Gulf of Cadiz. Journal of Geodynamics, 47, 119-129.
ERIC Educational Resources Information Center
Zener, Clarence
1976-01-01
In their preoccupation with highly complex new energy systems, scientists and statesmen may be overlooking the possibilities of Ocean Thermal Energy Conversion (OTEC). That is the view of a Carnegie-Mellon University physicist who is in the forefront of solar sea power investigation. (Author/BT)
Source Regions for the Earth's Magnetic Field During the First Billion Years
NASA Astrophysics Data System (ADS)
Stegman, D. R.; Badro, J.
2018-05-01
Earth's early magnetic field places a severe constraint on the thermal evolution of the mantle and core. We will present how a dynamo in a basal magma ocean can reconcile major outstanding issues with present models.
Subsurface Structure and Thermal History of Icy Satellites from Stereo Topography
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Hammond, N. P.; Roberts, J. H.; Nimmo, F.; Beyer, R. A.; robuchon, G.
2012-12-01
Stereo topography, in combination with numerical modeling, can be used to study the subsurface structure and thermal history of icy satellites. We are using stereo images of Saturn's icy satellites from the Cassini ISS instrument to construct digital elevation models (DEMs). We first extracted topographic profiles of impact craters on Dione and Rhea. Using the current crater depths, we then estimated the initial crater depth and calculated the viscous crater relaxation for each crater. Our results show that 100 km diameter craters on Rhea range from ~10-50% relaxed, while craters with D> 200 km have relaxations of 40-50%. In comparison, craters with D < 100 km on Dione are 30-50% relaxed, while craters with D >100 km were 60-75% relaxed. We then compared these observations with the results of a combined thermal and visco-elastic relaxation model based on the work of Robuchon et al. 2011 and Robuchon and Nimmo 2011. The model for Rhea predicts a maximum crater relaxation between 10% for smaller craters and 40% for larger craters. For Dione, which is modeled as differentiated, the maximum relaxation is even less: ~5% for smaller craters and ~10% for larger craters. Our model thus underpredicts the observed relaxation. We therefore require more heating early in the history of the satellites to produce the observed relaxation, requiring a subsurface ocean layer. Topographic profiles of tectonic features let us use flexure to estimate elastic thickness and therefore heat flux. We fit observations of the height and distance to observed flexural bulges at two sites on Dione to models of a flexing unbroken elastic plate, and found that the elastic thickness was ~2-5 km. This is consistent with work by Nimmo et al. (2011) that suggested an elastic thickness of 1.5-5 km based on long-wavelength topography. With a measurement of average strain of 0.03, we estimate a heat flux between 20-80 mW/m2. This is far higher than the heat flux of ~ 4 mW/m2 expected from radiogenic heating. A tidal heating model with a 50 km thick ocean for Dione (at the time these features were formed) can produce the observed heat flux with e~0.0022, the current value. Without an ocean, our observed heat flux would require a much higher eccentricity. Therefore, we present two lines of evidence that suggest that a subsurface ocean was present on Dione, and perhaps also Rhea, early in their histories. We are currently working on new thermal models that incorporate subsurface oceans. Preliminary results suggest that if the shells are conductive, the ice will be too stiff to permit the observed degree of relaxation, even if the ice shells are relatively thin (100 km). These results further suggest that the ice shells on Dione and Rhea were convecting at the time of crater formation. Subsurface oceans beneath convective ice shells may not have been long-lived, however, as convection cools the interior far more rapidly than it is heated by radioactive decay. Additional heat sources such as tidal dissipation or shock heating by the impacts themselves may be required to prevent oceans from freezing before relaxation is complete. This work was funded by a grant from the NASA Outer Planets Research Program. References: Robuchon, G., et al. Icarus 214, 82-90, 2011. Robuchon, G., and F. Nimmo. Icarus 216, 426-439, 2011. Nimmo, F. et al., GRL 116, E11001, 2011.
Sea level change since 2005: importance of salinity
NASA Astrophysics Data System (ADS)
Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.
2017-12-01
Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.
OTEC Potential of East Nusa Tenggara Province in Indonesia
NASA Astrophysics Data System (ADS)
Widyartono, M.; Rahmadian, R.
2018-04-01
Indonesia is the largest archipelago country in the world, located between Indian Ocean and Pacific Ocean. Indonesia has more than 17000 islands with 70 per cent of the region is ocean. The Growth of the economic and population in Indonesia increasing the demand of the electricity annually, in 2015 alone electricity consumption in Indonesia reaching 200 TWh and will continue increasing every year. However, East Nusa Tenggara Province electrification ratio only around 58.64%, this is the second lowest ratio in Indonesia. This electrification ratio describes the level of availability of electrical energy for the community. Power Plant with renewable source placement in East Nusa Tenggara Province or smaller district need to be prioritise to cope with the low electrification ratio. Renewable sources for power plant have a good potential to work with, in example wind power, solar power, geothermal, or biomass. In addition, another renewable source that not yet known is from the ocean itself. Ocean Thermal Energy Conversion (OTEC) is one of the renewable source method from ocean. This paper will uncover the potential of OTEC in East Nusa Tenggara province so it will bring possibility to build an OTEC power plant in the future.
Pliocene three-dimensional global ocean temperature reconstruction
Dowsett, H.J.; Robinson, M.M.; Foley, K.M.
2009-01-01
A snapshot of the thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3) multiproxy sea-surface temperature (SST) reconstruction with bottom water tempera-5 ture estimates produced using Mg/Ca paleothermometry. This reconstruction assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW) was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic BottomWater (AABW) production (relative to present day) as well as possible changes in the depth of intermediate wa15 ters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period. ?? Author(s) 2009.
NASA Astrophysics Data System (ADS)
Perez Delgado, Z.; Ummenhofer, C.; Swales, D. J.
2016-02-01
Corals are thought to be one of the smallest yet most productive ecosystems in the world. They have great economic and ecological value, but are increasingly affected by anthropogenic, biological and physical threats, such as a rise in sea surface temperature (SST) and ocean acidification due to an increase in CO2 in the atmosphere, among other factors. Here, specific events are investigated that likely exerted significant stress on corals, focusing particularly on unusual climatic conditions in the Western Indian Ocean during the 2001 to 2007 period as reflected by anomalies in degree heating weeks, hotspots and SST. Anomalous conditions in subsurface temperatures and mixed layer depth across the Indian Ocean region are also examined. We do this by using monthly, year-to-date, and annual composites of twice-weekly 50-km satellite coral bleaching monitoring products from the NOAA Coral Reef Watch and complementing it with output from a high-resolution global ocean model hindcast (1948-2007) forced with observed atmospheric forcing. Two years stand out in our analysis for the satellite data and model output: 2003 and 2005 exhibit strong warming in the Western Indian Ocean and cooling in the East. To establish the physical mechanisms giving rise to the unusual conditions and hotspot origins in 2003 and 2005 we also evaluate regional circulation changes in the Western Indian Ocean.
NASA Technical Reports Server (NTRS)
Thekaekara, M. P.
1974-01-01
Papers on the state of the art and future prospects of solar energy utilization in the United States are included. Research and technologies for heating and cooling of buildings, solar thermal energy conversion, photovoltaic conversion, biomass production and conversion, wind energy conversion and ocean thermal energy conversion are covered. The increasing funding of the National Solar Energy Program is noted. Individual items are announced in this issue.
Are the World's Oceans Optically Different?
NASA Technical Reports Server (NTRS)
Szeto, M.; Werdell, P. J.; Moore, T. S.; Campbell, J. W.
2011-01-01
Regional differences in the Sea-viewing Wide Field-of-view Sensor chlorophyll algorithm uncertainty were observed in a large global data set containing coincident in situ measurements of chlorophyll a concentration (Chla) and spectral radiometry. The uncertainty was found to be systematic when the data were sorted by ocean: Atlantic, Pacific, Southern, and Indian Oceans. Artifacts associated with different instrumentation and analytical methods had been previously ruled out. Given these oceanic biases in the chlorophyll algorithm, we hypothesized that the oceans may be optically different, and their optical differences may be intrinsically related to regional differences in phytoplankton community structure or biogeochemical processes. The oceanic biases, originally observed using radiometric measurements, were independently verified using total absorption measurements in a subset of the data. Moreover, they were explained through oceanic differences in the absorption of colored detrital matter (CDM) and phytoplankton. Both effects were considered together in explaining the ocean biases through a stepwise linear regression analysis. Significant oceanic differences in the amount of CDM and in phytoplankton cell sizes and pigmentation would give rise to optical differences, but we raise a concern for the spatial coverage of the data. We do not suggest the application of ocean-based algorithms but rather emphasize the importance of consolidating regional data sets before reaching this conclusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasscer, D.S.; Morgan, T.O.; Tosteson, T.R.
1980-12-01
Since 29 January 1980, continuous flow of ocean surface water has been maintained through simulated Ocean Thermal Energy Conversion (OTEC) evaporator tubes in order to determine in situ, long-term effects of microbiofouling on heat exchanger efficiency. The experimental apparatus consists of two aluminum and two titanium modules mounted on a research platform moored at the potential OTEC site off Punta Tuna, Puerto Rico. The fouling resistance (R /SUB f/ ), a relative measure of heat transfer efficiency, is being monitored regularly, and the units have been cleaned four times. Postcleaning fouling rates (dR /SUB f/ /dt) for the aluminum unitsmore » have not changed significantly but are considerably higher than the initial fouling rates. At first, post-cleaning fouling rates for the titanium units were less than for the aluminum units, but this value has been progressively increasing and now all units are fouling at approximately the same rate. Cleaning with manually operated M.A.N. brushes did not reduce R /SUB f/ to zero. On four occasions, flow velocity through the units has been increased. Results from these experiments suggest that initially the fouling layer is easily dislodged from the tube surface but that, with time, it becomes more firmly attached.« less
The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea
NASA Astrophysics Data System (ADS)
Semedo, Alvaro
2015-04-01
Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and reverses direction to blow also steady but stronger from the southwest during the boreal summer months. During the summer monsoon the wind pattern in the north Arabian Sea is rather intricate, with a large scale synoptic forcing with a high pressure cell over the ocean and a thermal low pressure system in-land, but also with at least two low-level wind jets, the Finlater (or Somali) jet, and the Oman coastal jet. This wind pattern leads to a particular wave pattern and seasonal variability. The monsoon wind pattern has a direct influence in the wave climate in that area, The particular wind-sea and swell climates of the Arabian Sea are presented. The study is based on the ERA-Interim wave reanalysis from the European Centre for Medium-Range Weather Forecasts.
New insights into ocean tide loading corrections on tidal gravity data in Canary Islands
NASA Astrophysics Data System (ADS)
Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.
2009-04-01
The Canary Islands are an interesting area to investigate ocean tides loading effects due to the complex coastline of the islands and the varying bathymetry. We present here the quality of five recent global oceanic tidal models, GOT00.2, GOT4.7, FES2004, TPXO.7.1 and AG2006, by comparing their predicted ocean tide loading values with results from tidal gravity observations made on three islands, Lanzarote, Tenerife and El Hierro, for the four harmonic constituents O1, K1, M2 and S2. In order to improve the accuracy of the loading corrections on the gravity tide measurements, we have used the high resolution regional oceanic model CIAM2 to supplement the global models considered here. This regional model has been obtained by assimilating TOPEX/Poseidon altimetry at crossovers and along-track points and tide gauge observations into a hydrodynamic model. The model has a 5'Ã-5' resolution and covers the area between the coordinates 26°.5N to 30°.0N and 19°.0W to 12°.5W. The gravity tide observing sites have been occupied by three different LaCoste&Romberg (LCR) spring gravimeters during different periods of observation. We considered here the most recent gravity tide observations made with LCR Graviton-EG1194 in El Hierro Island, for a period of 6 months during 2008. In the case of Tenerife and Lanzarote sites we have used observation periods of 6 months and 8 years with LCR-G665 and LCR-G434 gravimeters, respectively. The last two sites have been revisited in order to improve the previous tidal analysis results. Thus, the gravity ocean tide loading corrections, based on the five global ocean tide models supplemented with the regional model CIAM2 allowed us to review the normalization factors (scale factor and phase lag) of both two gravimeters. Also, we investigated the discrepancies of the corrected gravimetric factors with the DDW elastic and inelastic non hydrostatic body tide model (Dehant et al., 1999). The lowest values are found for inelastic model in the case of M2 and O1 waves at three sites. However, the scatter between oceanic models seen at final residual vectors does not indicate clearly if tidal observations are close to elastic or inelastic body tide model. Finally, after computing misfits of gravity tide observations and ocean tide loading calculations the level of agreement between the five global oceanic models is below 0.2 Gal (1 Gal=10-8ms-2), except for the solar harmonic K1, which reaches a large value that reflects the thermal instability at three sites because the period of K1 is very close to that of S1. None of the five global models seems to give results that are clearly better than the other models.
On the impact of ice-ocean interaction on Greenland glaciers versus calving speed.
NASA Astrophysics Data System (ADS)
Rignot, E. J.; Menemenlis, D.; Morlighem, M.; Wood, M.; Millan, R.; Mouginot, J.; An, L.
2016-12-01
Glacier retreat from frontal ablation is a delicate balance between subaqueous melt, calving processes and bed geometry. Here, we model subaqueous melt from a large number of Greenland tidewater glaciers using generalized 3D, high resolution simulations of ice melt from the MITgcm ocean model constrained by subglacial melt from RACMO2.3 and ISSM, ocean temperature from ECCO2-4km Arctic, and bed topography from OMG and MC for 1992-2015. The results are analyzed in combination with ice-front retreat and glacier speed from Landsat and imaging radar data since the 1990s. We find that subaqueous melt is 2-3 times greater in summer than in winter and doubled in magnitude since the 1990s because of enhanced ice sheet runoff and warmer ocean temperature. Glaciers that retreated rapidly are characterized by subaqueous melt rates comparable to their calving speed and favorable bed geometry. Glaciers dominated by calving processes are in contrast more resilient to thermal forcing from the ocean, especially in the presence of stabilizing geometry. The study highlights the fundamental importance of calving processes in controlling glacier retreat in Greenland.
Dissipation in the deep interiors of Ganymede and Europa
NASA Astrophysics Data System (ADS)
Hussmann, Hauke; Shoji, Daigo; Steinbruegge, Gregor; Stark, Alexander; Sohl, Frank
2017-04-01
Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Tidal flexing in the deep interiors can be a significant heat source for the satellites' thermal-orbital evolution. Whereas typical structure models of Europa consist of a core, a silicate mantle, an ocean and an outer ice-I shell [1], pressures inside Ganymede are sufficient for high-pressure ice phases to occur between the silicate mantle and the ocean [2]. With current data it is unknown whether the deep interiors (i.e., Europa's silicate shell and Ganymede's silicate mantle and/or high-pressure ice layer) are dissipative. Other possibilities would be that the dissipation rates are in general very low (unlikely at least for Europa due to recent observations) or that dissipative processes are mainly occurring in the ice-I shell and/or ocean. Thus, for evaluations of the heating state of these satellites, it is important to measure the magnitude of the interior dissipation. However, observation of the interior layers such as high-pressure ice layers is more challenging than that of the surface ice-I layer. Here we suggest a method to constrain the dissipation states of the deep interiors of Ganymede and Europa by altimetry and gravity measurements from an orbiting or multi-flyby spacecraft. Tidal variations are generally described by the Love numbers k2 and h2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags of these complex numbers contain information about the rheological and dissipative states of the satellites. For the satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference between the lags of k2 and h2 can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small (the phase-lag difference is almost independent of the dissipation in the surface layer). In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities of 1e13-1e14 Pa s (around the lower boundary at its melting temperature) and would indicate a highly dissipative state of the deep interior. In this case, in contrast to the phase lags itself, the phase-lag difference is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite [3]. For Europa the phase-lag difference could reach values exceeding 20 deg if the silicate mantle contains melt and phase-lag measurements could help distinguish between (1) a hot dissipative (melt-containing) silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA's Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system. References: [1] Schubert, G., F. Sohl and H. Hussmann 2009. Interior of Europa. In: Europa, (R.T. Pappalardo, W.B. McKinnon, K. Khurana, Eds.), University of Arizona Press, pp. 353 - 368. [2] Schubert G., J. D. Anderson, T. Spohn, and W. B. McKinnon 2004. Interior composition, structure, and dynamics of the Galilean satellites. In: F. Bagenal, T. E. Dowling, and W. B. McKinnon (eds.) Jupiter. The Planet, Satellites, and Magnetosphere, pp. 281-306. Cambridge University Press. [3] Hussmann, H., D. Shoji, G. Steinbrügge, A. Stark, F. Sohl 2016. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags. Cel. Mech. Dyn. Astr. 126, 131 - 144.
The Himalayan Seismogenic Zone: A New Frontier for Earthquake Research
NASA Astrophysics Data System (ADS)
Brown, Larry; Hubbard, Judith; Karplus, Marianne; Klemperer, Simon; Sato, Hiroshi
2016-04-01
The Mw 7.8 Gorkha, Nepal, earthquake that occurred on April 25 of this year was a dramatic reminder that great earthquakes are not restricted to the large seismogenic zones associated with subduction of oceanic lithosphere. Not only does Himalayan seismogenesis represents important scientific and societal issues in its own right, it constitutes a reference for evaluating general models of the earthquake cycle derived from the studies of the oceanic subduction systems. This presentation reports results of a Mini-Workshop sponsored by the GeoPrisms project that was held in conjunction with the American Geophysical Union on December 15, 2015, designed to organize a new initiative to study the great Himalaya earthquake machine. The Himalayan seismogenic zone shares with its oceanic counterparts a number of fundamental questions, including: a) What controls the updip and downdip limits of rupture? b) What controls the lateral segmentation of rupture zones (and hence magnitude)? c) What is the role of fluids in facilitating slip and or rupture? d) What nucleates rupture (e..g. asperities?)? e) What physical properties can be monitored as precursors to future events? f) How effectively can the radiation pattern of future events be modeled? g) How can a better understanding of Himalayan rupture be translated into more cost effective preparations for the next major event in this region? However the underthrusting of continental, as opposed to oceanic, lithosphere in the Himalayas frames these questions in a very different context: h) How does the greater thickness and weaker rheology of continental crust/lithosphere affect locking of the seismogenic zone? i) How does the different thermal structure of continental vs oceanic crust affect earthquake geodynamics? j) Are fluids a significant factor in intercontinental thrusting? k) How does the basement morphology of underthrust continental crust affect locking/creep, and how does it differ from the oceanic case? l) What is the significance of blind splay faulting in accommodating slip? m) Do lithologic contrasts juxtaposed across the continental seismogenic zone play a role in the rheological behavior of the SZ in the same manner as proposed for the ocean SZ? Major differences in the study of the continental vs oceanic seismogenic zone include the fact that Himalaya structures are open to: a) direct geological observation via field mapping b) dense and wide aperture monitoring of surface strain via GPS and INSAR c) extensive sampling of geofluids via surface flows and shallow drill holes d) cost effective deployment of long term geophysical arrays (e.g. seismic and MT) designed to detect subtle variations if physical properties within the seismogenic zone, and ultimately, e) a fixed platform for deep drilling of past and future rupture zones It remains to be established whether the Himalayan seismogenic zone has the potential for earthquakes of the greatest magnitudes (e.g. 9.0+). However, there is no question that future ruptures in this system represent a serious threat to major population centers (megacities) in the Indian subcontinent. For this reason alone the HSZ is deserving of a major new international, multidisciplinary effort.
Performance of Regional Climate Model in Simulating Monsoon Onset Over Indian Subcontinent
NASA Astrophysics Data System (ADS)
Bhatla, R.; Mandal, B.; Verma, Shruti; Ghosh, Soumik; Mall, R. K.
2018-06-01
The performance of various Convective Parameterization Schemes (CPSs) of Regional Climate Model version 4.3 (RegCM-4.3) for simulation of onset phase of Indian summer monsoon (ISM) over Kerala was studied for the period of 2001-2010. The onset date and its associated spatial variation were simulated using RegCM-4.3 four core CPS, namely Kuo, Tiedtke, Emanuel and Grell; and with two mixed convection schemes Mix98 (Emanuel over land and Grell over ocean) and Mix99 (Grell over land and Emanuel over ocean) on the basis of criteria given by the India Meteorological Department (IMD) (Pai and Rajeevan in Indian summer monsoon onset: variability and prediction. National Climate Centre, India Meteorological Department, 2007). It has been found that out of six CPS, two schemes, namely Tiedtke and Mix99 simulated the onset date properly. The onset phase is characterized with several transition phases of atmosphere. Therefore, to study the thermal response or the effect of different sea surface temperature (SST), namely ERA interim (ERSST) and weekly optimal interpolation (OI_WK SST) on Indian summer monsoon, the role of two different types of SST has been used to investigate the simulated onset date. In addition, spatial atmospheric circulation pattern during onset phase were analyzed using reanalyze dataset of ERA Interim (EIN15) and National Oceanic and Atmospheric Administration (NOAA), respectively, for wind and outgoing long-wave radiation (OLR) pattern. Among the six convective schemes of RegCM-4.3 model, Tiedtke is in good agreement with actual onset dates and OI_WK SST forcing is better for simulating onset of ISM over Kerala.
Influence of Continental Geometry on the Onset and Spatial Distribution of Monsoonal Precipitation
NASA Astrophysics Data System (ADS)
Hui, K. L.; Bordoni, S.
2017-12-01
Recent studies have shown that the rapid onset of the monsoon is due to a switch between a dynamical regime where the tropical circulation strength is controlled by eddy momentum fluxes, to a monsoon regime where the strength is more directly controlled by energetic constraints, which causes the monsoonal cross-equatorial cell to grow rapidly in strength and extent. While it is now widely accepted that land-sea contrast is not necessary to generate monsoons, the spatial distribution of land can still affect important features of monsoons. This study focuses on the influence of continental geometry on the monsoonal precipitation. We use an idealized aquaplanet model with a slab ocean, where land and ocean differ only by the mixed-layer depth of the slab ocean, which is two orders of magnitude smaller over land than over ocean. The model is run with different zonally symmetric configurations of Northern Hemispheric land that extends poleward from southern boundaries at various latitudes. Simulations with a continent extending to tropical latitudes are able to reproduce the monsoonal precipitation distribution and rapid onset well. For continents with more poleward southern boundaries and weaker hemispheric asymmetry, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. A local maximum in precipitation forms over the continent even when the continent does not extend into the deeper tropics, but this is primarily associated with local recycling from the saturated surface rather than moisture flux convergence by a deep and broad monsoonal circulation. Further analysis shows that a decrease in hemispheric asymmetry prevents the establishment of a reversed meridional gradient in lower-level moist static energy and, with it, a poleward displaced convergence zone. This suggests that in order to have the rapid onset of monsoonal precipitation, tropical regions of low thermal inertia may be necessary to facilitate the transition of the tropical circulation to a dynamical regime that restricts the degree to which eddy momentum fluxes influence the circulation strength and allows the cell the grow rapidly in strength and poleward extent. These results provide some useful insights for developing theories to better understand the mechanisms of rapid onset of monsoon systems worldwide.
Assessing niche width of endothermic fish from genes to ecosystem
Madigan, Daniel J.; Carlisle, Aaron B.; Gardner, Luke D.; Jayasundara, Nishad; Micheli, Fiorenza; Schaefer, Kurt M.; Fuller, Daniel W.; Block, Barbara A.
2015-01-01
Endothermy in vertebrates has been postulated to confer physiological and ecological advantages. In endothermic fish, niche expansion into cooler waters is correlated with specific physiological traits and is hypothesized to lead to greater foraging success and increased fitness. Using the seasonal co-occurrence of three tuna species in the eastern Pacific Ocean as a model system, we used cardiac gene expression data (as a proxy for thermal tolerance to low temperatures), archival tag data, and diet analyses to examine the vertical niche expansion hypothesis for endothermy in situ. Yellowfin, albacore, and Pacific bluefin tuna (PBFT) in the California Current system used more surface, mesopelagic, and deep waters, respectively. Expression of cardiac genes for calcium cycling increased in PBFT and coincided with broader vertical and thermal niche utilization. However, the PBFT diet was less diverse and focused on energy-rich forage fishes but did not show the greatest energy gains. Ecosystem-based management strategies for tunas should thus consider species-specific differences in physiology and foraging specialization. PMID:26100889
Impact of the North Atlantic dipole on climate changes over Eurasia
NASA Astrophysics Data System (ADS)
Serykh, Ilya
2017-04-01
Hydrophysical and meteorological characteristics of negative (1948-1976, 1999-2015) and positive (1977-1998) phases of the Pacific Decadal Oscillation (PDO) / Interdecadal Pacific Oscillation (IPO) in the North Atlantic and Eurasia are constructed and investigated. Specifically, the near-surface temperature, sea-level atmospheric pressure, wind speed, heat content of the upper 700 m ocean layer, water temperature and salinity at various depths, the latent and sensible heat fluxes from the ocean to the atmosphere are analyzed. The fields obtained from different sources (20thC_ReanV2c, ERA-20C, JRA-55, NCEP/NCAR, HadCRUT4, HadSLP2, NODC, Ishii, SODA, OAFlux, HadSST3, COBE2, ERSSTv4) are in good agreement and complement each other. This gives important information about the hydrometeorological conditions in the region under study. Analysis of these data has shown that in the upper 1000 m North Atlantic layer there is a thermal dipole which can be interpreted as an oceanic analog of the atmospheric North Atlantic Oscillation (NAO). An index of the North Atlantic Dipole (NAD) as the difference between the mean heat contents in the upper 700 m oceanic layer between the regions (50°-70° N; 60°-10° W) and (20°-40° N; 80°-30° W) is proposed. A possible physical mechanism of the internal oscillations with a quasi-60-year period in the North Atlantics-Eurasia system of ocean-atmosphere interactions is discussed. Dipole spatial structure from observations datasets and re-analyses were compared with the results of the Historical Experiment from the climate models of the CMIP5 project. It is found that several climate models reproduce dipole spatial structure of the near-surface temperature and sea level pressure anomalies similarly to these fields in the re-analyses considered. However, the phase diagrams of the gradient of near-surface temperature and sea level pressure between the Azores High and Island Low from climate models do not separate on subsets as the observation diagrams. Keeping in mind the prognostic goals we supposed that this result could be essential for revealing the relationships between the climatic parameters of the Eurasian continent and the thermodynamic processes in the specific areas of the North Atlantic Ocean.
Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes
NASA Astrophysics Data System (ADS)
Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.
2017-11-01
The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.