Ocean thermal gradient hydraulic power plant.
Beck, E J
1975-07-25
Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump.
Ocean thermal gradient as a generator of electricity. OTEC power plant
NASA Astrophysics Data System (ADS)
Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel
2016-04-01
The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.
NASA Astrophysics Data System (ADS)
Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.
2018-02-01
The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1980-01-01
The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.
An operational global-scale ocean thermal analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, R. M.; Pollak, K.D.; Phoebus, P.A.
1990-04-01
The Optimum Thermal Interpolation System (OTIS) is an ocean thermal analysis system designed for operational use at FNOC. It is based on the optimum interpolation of the assimilation technique and functions in an analysis-prediction-analysis data assimilation cycle with the TOPS mixed-layer model. OTIS provides a rigorous framework for combining real-time data, climatology, and predictions from numerical ocean prediction models to produce a large-scale synoptic representation of ocean thermal structure. The techniques and assumptions used in OTIS are documented and results of operational tests of global scale OTIS at FNOC are presented. The tests involved comparisons of OTIS against an existingmore » operational ocean thermal structure model and were conducted during February, March, and April 1988. Qualitative comparison of the two products suggests that OTIS gives a more realistic representation of subsurface anomalies and horizontal gradients and that it also gives a more accurate analysis of the thermal structure, with improvements largest below the mixed layer. 37 refs.« less
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1982-01-01
Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.
Gibbs, S.J.; Bralower, T.J.; Bown, Paul R.; Zachos, J.C.; Bybell, L.M.
2006-01-01
Abrupt global warming and profound perturbation of the carbon cycle during the Paleocene-Eocene Thermal Maximum (PETM, ca. 55 Ma) have been linked to a massive release of carbon into the ocean-atmosphere system. Increased phytoplankton productivity has been invoked to cause subsequent CO2 drawdown, cooling, and environmental recovery. However, interpretations of geochemical and biotic data differ on when and where this increased productivity occurred. Here we present high-resolution nannofossil assemblage data from a shelf section (the U.S. Geological Survey [USGS] drill hole at Wilson Lake, New Jersey) and an open-ocean location (Ocean Drilling Program [ODP] Site 1209, paleoequatorial Pacific). These data combined with published biotic records indicate a transient steepening of shelf-offshelf trophic gradients across the PETM onset and peak, with a decrease in open-ocean productivity coeval with increased nutrient availability in shelf areas. Productivity levels recovered in the open ocean during the later stages of the event, which, coupled with intensified continental weathering rates, may have played an important role in carbon sequestration and CO2 drawdown. ?? 2006 Geological Society of America.
Miller, K.G.; Wright, J.D.; Katz, M.E.; Browning, J.V.; Cramer, B.S.; Wade, B.S.; Mizintseva, S.F.
2007-01-01
18O increase. This large ice sheet became a driver of climate change, not just a response to it, causing increased latitudinal thermal gradients and a spinning up of the oceans that, in turn, caused a dramatic reorganization of ocean circulation and chemistry.
Zinke, J.; Hoell, A.; Lough, J. M.; Feng, M.; Kuret, A. J.; Clarke, H.; Ricca, V.; Rankenburg, K.; McCulloch, M. T.
2015-01-01
Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795–2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia. PMID:26493738
Zinke, J; Hoell, A; Lough, J M; Feng, M; Kuret, A J; Clarke, H; Ricca, V; Rankenburg, K; McCulloch, M T
2015-10-23
Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia.
NASA Astrophysics Data System (ADS)
Uemura, Y.; Tadokoro, K.; Matsuhiro, K.; Ikuta, R.
2015-12-01
The most critical issue in reducing the accuracy of seafloor positioning system, GPS/Acoustic technique, is large-scale thermal gradient of sound-speed structure [Muto et al., 2008] due to the ocean current. For example, Kuroshio Current, near our observation station, forms this structure. To improve the accuracy of seafloor benchmark position (SBP), we need to directly measure the structure frequently, or estimate it from travel time residual. The former, we repeatedly measure the sound-speed at Kuroshio axis using Underway CTD and try to apply analysis method of seafloor positioning [Yasuda et al., 2015 AGU meeting]. The latter, however, we cannot estimate the structure using travel time residual until now. Accordingly, in this study, we focus on azimuthal dependence of Estimated Mean Sound-Speed (EMSS). EMSS is defined as distance between vessel position and estimated SBP divided by travel time. If thermal gradient exists and SBP is true, EMSS should have azimuthal dependence with the assumption of horizontal layered sound-speed structure in our previous analysis method. We use the data at KMC located on the central part of Nankai Trough, Japan on Jan. 28, 2015, because on that day KMC was on the north edge of Kuroshio, where we expect that thermal gradient exists. In our analysis method, the hyper parameter (μ value) weights travel time residual and rate of change of sound speed structure. However, EMSS derived from μ value determined by Ikuta et al. [2008] does not have azimuthal dependence, that is, we cannot estimate thermal gradient. Thus, we expect SBP has a large bias. Therefore, in this study, we use another μ value and examine whether EMSS has azimuthal dependence or not. With the μ value of this study, which is 1 order of magnitude smaller than the previous value, EMSS has azimuthal dependence that is consistent with observation day's thermal gradient. This result shows that we can estimate the thermal gradient adequately. This SBP displaces 25.6 cm to the north and 11.8 cm to the east compared to previous SBP. This displacement reduces the bias of SBP and RMS of horizontal component in time series to 1/3. Therefore, determination of SBP is suitable when the thermal gradient exists on observation day and EMSS has azimuthal dependence for redetermination of μ value.
NASA Astrophysics Data System (ADS)
McKain, K.; Sweeney, C.; Stephens, B. B.; Long, M. C.; Jacobson, A. R.; Basu, S.; Chatterjee, A.; Weir, B.; Wofsy, S. C.; Atlas, E. L.; Blake, D. R.; Montzka, S. A.; Stern, R.
2017-12-01
The Southern Ocean plays an important role in the global carbon cycle and climate system, but net CO2 flux into the Southern Ocean is difficult to measure and model because it results from large opposing and seasonally-varying fluxes due to thermal forcing, biological uptake, and deep-water mixing. We present an analysis to constrain the seasonal cycle of net CO2 exchange with the Southern Ocean, and the magnitude of summer uptake, using the vertical gradients in atmospheric CO2 observed during three aircraft campaigns in the southern polar region. The O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) was an airborne campaign that intensively sampled the atmosphere at 0-13 km altitude and 45-75 degrees south latitude in the austral summer (January-February) of 2016. The global airborne campaigns, the HIAPER Pole-to-Pole Observations (HIPPO) study and the Atmospheric Tomography Mission (ATom), provide additional measurements over the Southern Ocean from other seasons and multiple years (2009-2011, 2016-2017). Derivation of fluxes from measured vertical gradients requires robust estimates of the residence time of air in the polar tropospheric domain, and of the contribution of long-range transport from northern latitudes outside the domain to the CO2 gradient. We use diverse independent approaches to estimate both terms, including simulations using multiple transport and flux models, and observed gradients of shorter-lived tracers with specific sources regions and well-known loss processes. This study demonstrates the utility of aircraft profile measurements for constraining large-scale air-sea fluxes for the Southern Ocean, in contrast to those derived from the extrapolation of sparse ocean and atmospheric measurements and uncertain flux parameterizations.
Geothermal surveys in the oceanic volcanic island of Mauritius
NASA Astrophysics Data System (ADS)
Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio
2017-04-01
Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked to occur in the hotspot area thus seems to yield no particular thermal signature.
Utilizing Ocean Thermal Energy in a Submarine Robot
NASA Technical Reports Server (NTRS)
Jones, Jack; Chao, Yi
2009-01-01
A proposed system would exploit the ocean thermal gradient for recharging the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. The proposed system is related to, but not the same as, previously reported ocean thermal energy conversion (OTEC) systems that exploit the ocean thermal gradient but consist of stationary apparatuses that span large depth ranges. The system would include a turbine driven by working fluid subjected to a thermodynamic cycle. CO2 has been provisionally chosen as the working fluid because it has the requisite physical properties for use in the range of temperatures expected to be encountered in operation, is not flammable, and is much less toxic than are many other commercially available refrigerant fluids. The system would be housed in a pressurized central compartment in a UUV equipped with a double hull (see figure). The thermodynamic cycle would begin when the UUV was at maximum depth, where some of the CO2 would condense and be stored, at relatively low temperature and pressure, in the annular volume between the inner and outer hulls. The cycle would resume once the UUV had ascended to near the surface, where the ocean temperature is typically greater than or equals 20 C. At this temperature, the CO2 previously stored at depth in the annular volume between the inner and outer hulls would be pressurized to approx. equals 57 bar (5.7 MPa). The pressurized gaseous CO2 would flow through a check valve into a bladder inside the pressurized compartment, thereby storing energy of the relatively warm, pressurized CO2 for subsequent use after the next descent to maximum depth.
Solar Energy - An Option for Future Energy Production
ERIC Educational Resources Information Center
Glaser, Peter E.
1972-01-01
Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)
The origin of oceanic crust and metabasic rocks protolith, the Luk Ulo Mélange Complex, Indonesia
NASA Astrophysics Data System (ADS)
Permana, H.; Munasri; Mukti, Maruf M.; Nurhidayati, A. U.; Aribowo, S.
2018-02-01
The Luk Ulo Mélange Complex (LUMC) is composed of tectonic slices of rocks that surrounded by scaly clay matrix. These rocks consist of serpentinite, gabbro, diabase, and basalt, eclogite, blueschist, amphibolite, schist, gneiss, phylite and slate, granite, chert, red limestone, claystone and sandstone. The LUMC was formed since Paleocene to Eocene, gradually uplifted of HP-UHP metabasic-metapelite (P: 20-27kbar; T: 410-628°C) to near surface mixed with hemipelagic sedimentary rocks. The metamorphic rocks were formed during 101-125 Ma (Early Cretaceous) within 70 to 100 km depth and ∼6°C/km thermal gradient. It took about 50-57 Myr for these rocks to reach the near surface during Paleocene-Eocene, with an uplift rate at ∼1.4-1.8 km/year to form the mélange complex. The low thermal gradient was due to subduction of old and cold oceanic crust. The subducted oceanic crust (MORB) as protolith of Cretaceous metabasic rocks must be older than Cretaceous. The data show that the basalt of oceanic crust is Cretaceous (130-81 Ma) comparable to the age of the cherts (Early to Late Cretaceous). Therefore, we consider that neither oceanic crust exposed in LUMC nor all of part of the old oceanic crust is the protolith of LUMC metabasic subducted beneath the Eurasian Plate. These oceanic rocks possibly originated or part of the edge of micro-continental that merged as a part of the LUMC during the collision with the Eurasian margin.
The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes
NASA Astrophysics Data System (ADS)
Wong, Elizabeth Wing-See
There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more-or-less fixed. The surplus energy, from absorbing increasing levels of infrared radiation, is found to adjust the curvature of the thermal skin layer such that there is a smaller gradient at the interface between the thermal skin layer and the mixed layer beneath. The vertical conduction of heat from the mixed layer to the surface is therefore hindered while the additional energy within the thermal skin layer is supporting the gradient changes of the skin layer's temperature profile. This results in heat beneath the thermal skin layer, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content. The accuracy of four published skin layer models were evaluated by comparison with the field results. The results show a need to include radiative effects, which are currently absent, in such models as they do not replicate the findings from the field data and do not elucidate the effects of the absorption of infrared radiation.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures
Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.
2012-01-01
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.
Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L
2012-09-04
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.
Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.
2017-01-01
The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.
NASA Astrophysics Data System (ADS)
Talento, Stefanie; Barreiro, Marcelo
2018-03-01
This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño-Southern Oscillation, weakening its amplitude and low-frequency behaviour.
NASA Astrophysics Data System (ADS)
Fernanda Sanchez Goñi, Maria; Bard, Edouard; Landais, Amaelle; Rossignol, Linda
2014-05-01
Theoretical and numerical models predict that rapid ice sheet growth in the North Atlantic high latitudes was the consequence of a) a decrease in summer insolation, b) a strong thermal gradient between ocean and landmasses, and c) moisture generated by persisting warmth and salinity in the subpolar and northern subtropical Atlantic. So far, however, no data have demonstrated the strong land-sea thermal gradient, and how this process was affected by the sub-orbital climatic variability. To fine tune our understanding of this process we examined the MIS 5a/4 transition, between ~80 and 70 thousand years before present (ka), a period marked by decrease in summer insolation and a succession of cooling events, C20 to C19, affecting large parts of the subpolar and central North Atlantic, and Greenland (GS21 to 19). We combined high resolution pollen-based vegetation and foraminifera-based sea surface temperature (SST) data for the interval 85-50 ka, MIS5a-MIS3, from core MD04-2845 located in the Bay of Biscay (northern subtropical gyre, 45°21'N, 5°13'W, 4100 m water depth) with Ice Rafted Debris (IRD), N. pachyderma (s) and benthic foraminifera δ18O records from the same core. This approach allows the identification, without chronological ambiguity, of offsets between eastern North Atlantic Ocean surface hydrology (temperatures and iceberg melting) and atmospherically-driven changes in western European vegetation. The Bay of Biscay palaeoclimatic records were compared with foraminifera and Uk'37-based SST and pollen-based vegetation records from another core, MD99-2331, located in the northwestern Iberian margin. Data from these two cores located in the northern subtropical gyre reveal for the first time a decoupling between atmospheric and oceanic responses to orbital and sub-orbital climatic variability during the last interglacial-glacial transition. We have identified a long-term increase in the thermal gradient (cold land-warm sea) along the western European margin punctuated by three phases of highly pronounced land-sea thermal gradients. We argue that this composite trend was responsible for the production of moisture that continued to feed, via northward tracking storms, northern European, Greenland and Arctic ice sheets during the C20, onset C19 and C18' cold events.
Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean
NASA Astrophysics Data System (ADS)
Stukel, Michael R.; Ducklow, Hugh W.
2017-09-01
The biological carbon pump (BCP) transports organic carbon from the surface to the ocean's interior via sinking particles, vertically migrating organisms, and passive transport of organic matter by advection and diffusion. While many studies have quantified sinking particles, the magnitude of passive transport remains poorly constrained. In the Southern Ocean weak thermal stratification, strong vertical gradients in particulate organic matter, and weak vertical nitrate gradients suggest that passive transport from the euphotic zone may be particularly important. We compile data from seasonal time series at a coastal site near Palmer Station, annual regional cruises in the Western Antarctic Peninsula (WAP), cruises throughout the broader Southern Ocean, and SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) autonomous profiling floats to estimate spatial and temporal patterns in vertical gradients of nitrate, particulate nitrogen (PN), and dissolved organic carbon. Under a steady state approximation, the ratio of ∂PN/∂z to ∂NO3-/∂z suggests that passive transport of PN may be responsible for removing 46% (37%-58%) of the nitrate introduced into the surface ocean of the WAP (with dissolved organic matter contributing an additional 3-6%) and for 23% (19%-28%) of the BCP in the broader Southern Ocean. A simple model parameterized with in situ nitrate, PN, and primary production data suggested that passive transport was responsible for 54% of the magnitude of the BCP in the WAP. Our results highlight the potential importance of passive transport (by advection and diffusion) of organic matter in the Southern Ocean but should only be considered indicative of high passive transport (rather than conclusive evidence) due to our steady state assumptions.
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Furfaro, R.
2013-12-01
Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of these processes result in transient thermal states and hence rapid evolution of icy body interiors. Interesting heat-flow phenomena (approximated as steady-state thermal states) have been modeled in volatile-rich main belt asteroids, Io, Europa, Enceladus, Titan, Pluto, and Makemake (2005 FY9). Thermal conditions can activate geologic processes, but the occurrence of geologic activity can fundamentally alter the thermal conductivity and elasticity of icy objects, which then further affects the distribution and type of subsequent geologic activity. For example, cryoclastic volcanism on Enceladus can increase solid-state greenhouse heating of the upper crust, reduce thermal conductivity, and increase retention of heat and spur further cryovolcanism. Sulfur extrusion on Io can produce low-thermal-conductivity flows, high thermal gradients, basal melting of the flows, and lateral extrusion and spreading of the flows or formation of solid-crusted lava lakes. Impact formation of regoliths and fine-grained dust deposits on large asteroids may generate local variations in thermal gradients. Interior heating and geologic activity can either (1) emplace low-conductivity materials on the surface and cause further interior heating, or (2) drive metamorphism, sintering, and volatile loss, and increase thermal conductivity and cool the object. Thus, the type and distribution of present-day geologic activity on icy worlds is dependent on geologic history. Geology begets geology.
REVIEWS OF TOPICAL PROBLEMS: Free convection in geophysical processes
NASA Astrophysics Data System (ADS)
Alekseev, V. V.; Gusev, A. M.
1983-10-01
A highly significant geophysical process, free convection, is examined. Thermal convection often controls the dynamical behavior in several of the earth's envelopes: the atmosphere, ocean, and mantle. Section 2 sets forth the thermohydrodynamic equations that describe convection in a compressible or incompressible fluid, thermochemical convection, and convection in the presence of thermal diffusion. Section 3 reviews the mechanisms for the origin of the global atmospheric and oceanic circulation. Interlatitudinal convection and jet streams are discussed, as well as monsoon circulation and the mean meridional circulation of ocean waters due to the temperature and salinity gradients. Also described are the hypotheses for convective motion in the mantle and the thermal-wave (moving flame) mechanism for inducing global circulation (the atmospheres of Venus and Mars provide illustrations). Eddy formation by convection in a centrifugal force field is considered. Section 4 deals with medium- and small-scale convective processes, including hurricane systems with phase transitions, cellular cloud structure, and convection penetrating into the ocean, with its stepped vertical temperature and salinity microstructure. Self-oscillatory processes involving convection in fresh-water basins are discussed, including effects due to the anomalous (p,T) relation for water.
Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo
Burls, N. J.; Fedorov, A. V.
2014-09-13
We present that available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2°C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climatemore » still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. In conclusion, our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.« less
The impact of oceanic heat transport on the atmospheric circulation
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Lunkeit, Frank
2017-04-01
A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.
NASA Astrophysics Data System (ADS)
Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping
2017-11-01
The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.
Ocean currents modify the coupling between climate change and biogeographical shifts.
García Molinos, J; Burrows, M T; Poloczanska, E S
2017-05-02
Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.
Thermal Evolution of Earth's Mantle During the Accretion
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Roberts, J. H.
2017-12-01
Earth is likely formed by accreting Moon to Mars size embryos. The impact heating by an embryo melts the embryo and the upper mantle of the Earth beneath the impact site. The iron core of the embryo sinks and merges with the core of the Earth, while the mantle of the embryo mixes with the upper mantle of the Earth, producing a buoyant molten/partially molten magma pond. Strong but localized mantle dynamics results in fast lithostatic adjustment that pours out a huge amount of molten and partially molten magma which spread on the Earth, and together with impact ejecta creates a globe encircling magma ocean. The lithostatic adjustment diminishes as the magma ocean becomes globe encircling within 104 to 105 yr. The major part of the thermal evolution of Earth's mantle after an impact takes place in the presence of a thick and hot magma ocean, which hampers heat loss from the mantle and suppresses global mantle dynamics. Because the impact velocity of an embryo increases as the Earth grows, a given magma ocean is hotter than the previous ones. We investigated this scenario using 25 Moon to Mars size embryos. Due to random geographic impact sites we considered vertical impacts since no information is available about the impact angles. This may over estimate the impact heating by a factor of 1.4 with respect to the most probable impact angle of 45o. The thermal structure of the Earth at the end of accretion is layered, aside from the localized magma ponds that are distributed randomly due to the random geographic impact sites. We also take into account the impact heating of the solid lower mantle, the heating of the lower mantle by the gravitational energy released through sinking of an embryo's core. We then follow the thermal evolution of the mantle of a growing Earth using a 3D convection model. The Earth grows due to merging of the impactor iron core with the Earth's core, and the accumulating magma ocean on the surface. The growth enhances the lithostatic pressure in the Earth that in turn increase the temperature by compression. Each overlying magma ocean hampers global convection beneath, and the mean temperature gradient at the end of accretion is less steep than the adiabatic gradient, indicating that mantle convection during accretion is mainly localized [JHR1]Is this range because there are multiple models with different numbers of embryos?yes
Clathrate hydrate stability models for Titan: implications for a global subsurface ocean
NASA Astrophysics Data System (ADS)
Basu Sarkar, D.; Elwood Madden, M.
2013-12-01
Titan is the only planetary body in the solar system, apart from the Earth, with liquid at its surface. Titan's changing rotational period suggests that a global subsurface ocean decouples the icy crust from the interior. Several studies predict the existence of such an internal ocean below an Ice I layer, ranging in depth between a few tens of kilometers to a few hundreds of kilometers, depending on the composition of the icy crust and liquid-ocean. While the overall density of Titan is well constrained, the degree of differentiation within the interior is unclear. These uncertainties lead to poor understanding of the volatile content of the moon. However, unlike other similar large icy moons like Ganymede and Callisto, Titan has a thick nitrogen atmosphere, with methane as the second most abundant constituent - 5% near the surface. Titan's atmosphere, surface, and interior are likely home to various compounds such as C2H6, CO2, Ar, N2 and CH4, capable of forming clathrate hydrates. In addition, the moon has low temperature and low-to-high pressure conditions required for clathrate formation. Therefore the occurrence of extensive multicomponent hydrates may effect the composition of near-surface materials, the subsurface ocean, as well as the atmosphere. This work uses models of hydrate stability for a number of plausible hydrate formers including CH4, C2H6, CH4 + C2H6 and CH4 + NH3, and equilibrium geothermal gradients for probable near-surface materials to delineate the lateral and vertical extent of clathrate hydrate stability zones for Titan. By comparing geothermal gradients with clathrate stability fields for these systems we investigate possible compositions of Titan's global subsurface ocean. Preliminary model results indicate that ethane hydrates or compound hydrates of ethane and methane could be destabilized within the proposed depth range of the internal ocean, while methane/ammonia or pure methane hydrates may not be affected. Therefore, ethane or ethane-methane clathrates may be a major component of Titan's icy shell. Modeled geothermal gradients and stability fields of possible clathrate formers with three different scenarios for an internal ocean from the recent literature. Geothermal gradients obtained from thermal conductivity and density representing water ice and pure CH4-C2H6 hydrate. Clathrate stability field determined using HYDOFF and recent publications of NH3 clathrate stability.
Neutral surfaces and potential vorticity in the world's oceans
NASA Astrophysics Data System (ADS)
You, Yuzhu; McDougall, Trevor J.
1990-08-01
Several neutral surfaces are mapped in this paper and their properties are contrasted with those of potential density surfaces. It is shown that the Pacific is relatively forgiving to the use of potential density, while more care must be taken in the Atlantic and Indian oceans because of the larger compensating lateral gradients of potential temperature and salinity along neutral surfaces in these oceans. The dynamically important tracer, neutral-surface potential vorticity (NSPV), defined to be proportional to f/h (where f is the Coriolis frequency and h is the height between two neutral surfaces), is mapped on several neutral surfaces in each of the world's oceans. At a depth of 1000m in the Atlantic and Indian oceans, the epineutral gradient of NSPV is different to the isopycnal variations of fN2 by as much as a factor of two (here N is the buoyancy frequency). Maps of isopycnal potential vorticity (IPV) resemble those of fN2, but the values of IPV are less by the simple factor μ, defined by μ = c[Rρ-1]/[Rρ-c], where Rρ is the stability ratio of the water column and c is the ratio of the values of α/β at the in situ pressure to that at the reference pressure (α and β being the thermal expansion and saline contraction coefficients, respectively). Layered models of the ocean circulation often take the vertical shear between layers (the thermal wind) to be given by the product of the interface slope and the contrast of potential density across the interface. The true thermal wind equation involves the interfaeial difference of in situ density, which is larger than the corresponding difference of potential density by the factor μ that is mapped in this paper, taking values up to 1.25 at a depth of 1000 m. This implies that the thermal wind is currently underestimated by up to 25% in layered ocean models. The differences between the slopes of neutral surfaces and potential density surfaces can be quantified Using the factory μ. The magnitudes of these slopes are illustrated here with contour maps and with vertical profiles, One would think that by choosing the reference pressure of potential density to be at the central pressure of a data set, the conservation equation of potential vorticity could be expressed with respect to these potential density surfaces with sufficient accuracy. Here it is shown that even the best potential density variable is significantly in error at thermoclinic frontal regions. This is linked to the fact that diapycnal velocities are not simply due to vertical mixing processes, but are also partly caused by epineutral mixing.
NASA Astrophysics Data System (ADS)
Fontaine, Fabrice J.; Cannat, Mathilde; Escartin, Javier; Crawford, Wayne C.
2014-07-01
processes and efficiency of hydrothermal heat extraction along the axis of mid-ocean ridges are controlled by lithospheric thermal and permeability structures. Hydrothermal circulation models based on the structure of fast and intermediate spreading ridges predict that hydrothermal cell organization and vent site distribution are primarily controlled by the thermodynamics of high-temperature mid-ocean ridge hydrothermal fluids. Using recent constraints on shallow structure at the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge, we present a physical model of hydrothermal cooling that incorporates the specificities of a magma-rich slow spreading environment. Using three-dimensional numerical models, we show that, in contrast to the aforementioned models, the subsurface flow at Lucky Strike is primarily controlled by across-axis permeability variations. Models with across-axis permeability gradients produce along-axis oriented hydrothermal cells and an alternating pattern of heat extraction highs and lows that match the distribution of microseismic clusters recorded at the Lucky Strike axial volcano. The flow is also influenced by temperature gradients at the base of the permeable hydrothermal domain. Although our models are based on the structure and seismicity of the Lucky Strike segment, across-axis permeability gradients are also likely to occur at faster spreading ridges and these results may also have important implications for the cooling of young crust at fast and intermediate spreading centers.
Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes
NASA Astrophysics Data System (ADS)
Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin
2016-04-01
Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.
The thermal environment of Cascadia Basin
NASA Astrophysics Data System (ADS)
Johnson, H. Paul; Hautala, Susan L.; Bjorklund, Tor A.
2012-07-01
Located adjacent to the NE Pacific convergent boundary, Cascadia Basin has a global impact well beyond its small geographic size. Composed of young oceanic crust formed at the Juan de Fuca Ridge, igneous rocks underlying the basin are partially insulated from cooling of their initial heat of formation by a thick layer of pelagic and turbidite sediments derived from the adjacent North American margin. The igneous seafloor is eventually consumed at the Cascadia subduction zone, where interactions between the approaching oceanic crust and the North American continental margin are partially controlled by the thermal environment. Within Cascadia Basin, basement topographic relief varies dramatically, and sediments have a wide range of thickness and physical properties. This variation produces regional differences in heat flow and basement temperatures for seafloor even of similar age. Previous studies proposed a north-south thermal gradient within Cascadia Basin, with high geothermal flux and crustal temperatures measured in the heavily sedimented northern portion near Vancouver Island and lower than average heat flux and basement temperatures predicted for the central and southern portions of the basin. If confirmed, this prediction has implications for processes associated with the Cascadia subduction zone, including the location of the "locked zone" of the megathrust fault. Although existing archival geophysical data in the central and southern basin are sparse, nonuniformly distributed, and derived from a wide range of historical sources, a substantial N-S geothermal gradient appears to be confirmed by our present compilation of combined water column and heat flow measurements.
NASA Astrophysics Data System (ADS)
Kwon, B. H.; BéNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.
1998-10-01
The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1° to 2°C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1° to 2°C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems linked with the secondary circulation due to the SST front.
Small-scale uses and costs of hydrogen derived from OTEC ammonia
NASA Astrophysics Data System (ADS)
Strickland, G.
Ocean Thermal Energy Conversion (OTEC) plantships could produce NH3 from air and water, using energy derived from thermal gradients in tropical oceans. NH3 can serve both as a commodity, for the fertilizer and chemical industries, and as a liquid energy carrier for fuel use. Attention is given to the economic prospects for using OTEC NH3 as a hydrogen transport and storage medium for small users who want to assess the purchase of hydrogen vs. the cost of producing hydrogen at their sites. Hydrogen is readily obtained from NH3 at the point of end use, by dissociation and purification as required, for use as a chemical commodity or fuel. It is shown that high-purity H2 derived from OTEC NH3 might be competitive with H2 made at the point of end use via water electrolysis, or via steam reforming of natural gas.
Thermoelectric energy converter for generation of electricity from low-grade heat
Jayadev, T.S.; Benson, D.K.
1980-05-27
A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)
Alternative OTEC Scheme for a Submarine Robot
NASA Technical Reports Server (NTRS)
Jones, Jack; Chao, Yi
2009-01-01
A proposed system for exploiting the ocean thermal gradient to generate power would be based on the thawing-expansion/ freezing-contraction behavior of a wax or perhaps another suitable phase-change material. The power generated by this system would be used to recharge the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and various depths, measuring temperature and salinity. This proposed system would be an alternative to another proposed ocean thermal energy conversion (OTEC) system that would serve the same purpose but would utilize a thermodynamic cycle in which CO2 would be the working fluid. That system is described in Utilizing Ocean Thermal Energy in a Submarine Robot (NPO-43304), immediately following this brief. The main advantage of this proposed system over the one using CO2 is that it could derive a useful amount of energy from a significantly smaller temperature difference. At one phase of its operational cycle, the system now proposed would utilize the surface ocean temperature (which lies between 15 and 20 C over most of the Earth) to melt a wax (e.g., pentadecane) that has a melting/freezing temperature of about 10 C. At the opposite phase of its operational cycle, the system would utilize the lower ocean temperature at depth (e.g., between 4 and 7 C at a depth of 300 m) to freeze the wax. The melting or freezing causes the wax to expand or contract, respectively, by about 8 volume percent.
Stability of hydrous phases in subducting oceanic crust
Liu, J.; Bohlen, S.R.; Ernst, W.G.
1996-01-01
Experiments in the basalt-H2O system at 600-950??C and 0.8-3.0 GPa, demonstrate that breakdown of amphibole represents the final dehydration of subducting oceanic tholeiite at T ??? 650??C; the dehydration H2O occurs as a free fluid or in silicate melt co-existing with an anhydrous eclogite assemblage. In contrast, about 0.5 wt% of H2O is stored in lawsonite at 600??C, 3.0 GPa. Our results suggest that slab melting occurs at depths shallower than 60 km for subducting young oceanic crust; along a subduction zone with an average thermal gradient higher than 7??C/km, H2O stored in hydrated low-potassium, metabasaltic layers cannot be subducted to depths greater than 100 km, then released to generate arc magma.
Remote Sensing of Niches for Thermotropic Life.
NASA Astrophysics Data System (ADS)
Muller, A. W.
2002-12-01
The recognized biological energy sources are light and food. Mechanical systems can gain free energy from heat using a temperature difference or thermal cycling. Imagine that biological systems could also live on heat. Call the process `thermosynthesis' and let it occur in a thermal gradient or convection cell. Many candidate niches for thermosynthesizers then exist. Temperature differences are present across many interfaces: soil/air, rock/air, natural water (ocean, lake, river)/air, ice (also snow)/air, soil/snow, water (ocean,lake)/surface-ice. Within natural waters large temperature gradients are found; thermoclines separate the warm surface from the cold deep. Convection occurs in hot springs, in many other natural waters, and in the Earth's atmosphere. On Earth, organism presence is conspicuous in all these candidate niches. The Solar System contains many candidate niches as well. They should be detectable by IR methods. They can be categorized in five types: (1) Convection. Convecting oceans (Mars and Venus in the past) or atmospheres (Venus, Big Outer Planets). (2) Convecting Aquifer (Mars). (3) Surface-Ice Cover. Some of the Moons of the Outer Planets. (4) Shaded Crater Iterior. The poles of Mercury and The Moon. (5) Spinners. Small objects rotating in the sunlight: ice-covered meteorites, asteroids, comets. They could transport thermosynthesizers within the Solar System. How plausible is thermosynthesis? It can be shown that thermosynthesis (1) could be effected using parts of the contemporary photosynthetic machinery, and (2) may have supported early evolution. The standard biological energy carrier, ATP, would be synthesized during thermal cycling of a progenitor of the F1 moiety of the contemporary ATPsynthase enzyme; this progenitor is thermally folded/unfolded during the cycle. Contemporary ATPsynthase works according to the `binding change mechanism': substrates are bound in a local, dehydrated enzymatic cleft, where they condense to form a bound product with a high-energy phosphate bond, released upon an external work input. The first ATPsynthases are proposed to have similarly synthesized a bound peptide bond product during thermal cycling, released upon the thermal unfolding. In a simple model for the origin of life the first ATPsynthases, the first replicators, synthesize randomly constituted daughter polypeptides of which a small fraction has the same synthetic capabilities as their mothers. Hence thermosynthesis is not implausible, the Solar System may be teeming with thermosynthesizers, and IR remote sensing methods should permit to locate their niches.
NASA Astrophysics Data System (ADS)
Diehl, Alexander; Bieseler, Bastian; Bach, Wolfgang
2017-04-01
Determining the depth, extent, and timing of high-temperature hydrothermal alteration in the ocean crust is key to understanding how the lower oceanic crust is cooled. We report data from 18 epidote veins from the Wadi Gideah section in the Wadi Tayin block, which is a reference section for alteration of the lower crust formed at a fast oceanic spreading center. 87Sr/86Sr ratios feature a narrow range from 0.70429 to 0.70512, while O isotope compositions vary between - 0.7 and +4.9‰ in δ18OSMOW. These compositions indicate uniform water-rock ratios between 1 and 2 and formation temperatures in the range of 300 to 450˚ C. There is no systematic trend in Sr and O isotope compositions down section. Fluid inclusion entrapment temperatures for a subset of four samples linearly increase from 338˚ C to 465˚ C in lowermost 3 km of crust of the Wadi Gideah section. Salinities are uniform throughout and scatter closely around seawater values. We developed a numerical cooling model to assign possible crustal ages to the thermal gradients observed. For pure conductive cooling, these ages range between 4 and 20 Ma. Our thermal model runs with a high Nusselt number (Nu) of 20 down to the base of the crust indicate that the epidote veins may record this near-axial deep circulation in crust of only 0.1 Ma (5-7 km off axis). When off-axis circulation is shut off in the more distal flanks, however, massive conductive reheating of the lower crust by as much as 200˚ C is predicted to take place. But there is no evidence for prograde metamorphic reactions in the samples we studied (or other hydrothermally altered oceanic gabbros). An intermediate model, in which Nu is 20 down to 2 km for the first 0.1 Ma and Nu is then 4 down to 6.5 km depth off axis to 1 Ma, is consistent with the permeability distribution within the ocean crust and predicts a thermal gradient for the lower crust that matches the observed one for ages between 1 and 3 Ma. The most plausible explanation for the origin of the epidote veins is that they formed in off-axial hydrothermal systems that reach the base of the crust within 50-150 km off the axis. This deep circulation provides an efficient mechanism for mining heat that escapes the crust in the young flanks of mid-ocean ridges where a sizeable fraction of the global oceanic hydrothermal heat flux is expected to take place.
Why the Australian Monsoon Strengthened During the Cold Last Glacial Maximum?
NASA Astrophysics Data System (ADS)
Yan, M.; Wang, B.; Liu, J.; Ning, L.
2017-12-01
The multi-model ensemble simulation suggests that the global monsoon and most sub-monsoons are weakened during the Last Glacial Maximum (LGM) due to the lower green-house gases concentration, the presence of the ice-sheets and the weakened seasonal distribution of insolation. In contrast, the Australian monsoon is strengthened during the LGM. The precipitation there increases in austral summer and decreases in austral winter, so that the annual range or monsoonality increases. The strengthened monsoonality is mainly due to the decreased precipitation in austral winter, which is primarily caused by circulation changes, although the reduced atmospheric water vapor also has a moderate contribution. On the other hand, the strengthened Australian summer monsoon rainfall is likely caused by the change of land-sea thermal contrast due to the alteration of land-sea configuration and by the asymmetric change in sea surface temperature (SST) over Indo-Pacific warm pool region. The strengthened land-sea thermal contrast and Western Pacific-Eastern Indian Ocean thermal gradients in the pre-summer monsoon season triggers a cyclonic wind anomaly that is maintained to the monsoon season, thereby increasing summer precipitation. The increased summer precipitation is associated with the increased cloud cover over the land and decreased cloud cover over the ocean. This may weaken the land-sea thermal contrast, which agrees with the paleoclimate reconstruction. The biases between different models are likely related to the different responses of SST over the North Atlantic Ocean in the pre-summer monsoon season.
NASA Astrophysics Data System (ADS)
Koul, Vimal; Parekh, Anant; Srinivas, G.; Kakatkar, Rashmi; Chowdary, Jasti S.; Gnanaseelan, C.
2018-03-01
Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System (CFSv2) for summer monsoons of 2012-2014 in which two different OICs are utilized. With respect to first experiment (CTRL), second experiment (AcSAL) differs by two aspects: usage of high-resolution atmospheric forcing and assimilation of only ARGO observed temperature and salinity profiles for OICs. Assessment of OICs indicates that the quality of OICs is enhanced due to assimilation of actual salinity profiles. Analysis reveals that AcSAL experiment showed 10% reduction in the dry bias over the Indian land region during the ISM compared to CTRL. This improvement is consistently apparent in each month and is highest for June. The better representation of upper ocean thermal structure of tropical oceans at initial stage supports realistic upper ocean stability and mixing. Which in fact reduced the dominant cold bias over the ocean, feedback to air-sea interactions and land sea thermal contrast resulting better representation of monsoon circulation and moisture transport. This reduced bias of tropospheric moisture and temperature over the Indian land mass and also produced better tropospheric temperature gradient over land as well as ocean. These feedback processes reduced the dry bias in the ISM rainfall. Study concludes that initializing the coupled models with realistic OICs can reduce the underestimation of ISM rainfall prediction.
Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures
Gardiner, Naomi M.; Munday, Philip L.; Nilsson, Göran E.
2010-01-01
The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations. PMID:20949020
Atmospheric radiocarbon as a Southern Ocean wind proxy over the last 1000 years
NASA Astrophysics Data System (ADS)
Rodgers, K. B.; Mikaloff Fletcher, S.; Galbraith, E.; Sarmiento, J. L.; Gnanadesikan, A.; Slater, R. D.; Naegler, T.
2009-04-01
Measurements of radiocarbon in tree rings over the last 1000 years indicate that there was a pre-industrial latitudinal gradient of atmospheric radiocarbon of 3.9-4.5 per mail and that this gradient had temporal variability of order 6 per mil. Here we test the idea that the mean gradient as well as variability in he gradient is dominated by the strength of the winds over the Southern Ocean. This is done using an ocean model and an atmospheric transport model. The ocean model is used to derive fluxes of 12CO2 and 14CO2 at the sea surface, and these fluxes are used as a lower boundary condition for the transport model. For the mean state, strong winds in the Southern Ocean drive significant upwelling of radiocarbon-depleted Circumpolar Deep Water (CDW), leading to a net flux of 14CO2 relative to 12CO2 into the ocean. This serves to maintain a hemispheric gradient in pre-anthropogenic atmospheric delta-c14. For perturbations, increased/decreased Southern Ocean winds drive increased/decreased uptake of 14CO2 relative to 12CO2, thus increasing/decreasing the hemispheric gradient in atmospheric delta-c14. The tree ring data is interpreted to reveal a decrease in the strength of the Southern Ocean winds at the transition between the Little Ice Age and the Medieval Warm Period.
Thermal evolution of the high-pressure ice layers beneath a buried ocean within Titan and Ganymede
NASA Astrophysics Data System (ADS)
Choblet, G.; Tobie, G.
2015-12-01
Deep interiors of massive icy satellites such as Titan and Ganymede probably harbor a buried ocean above high-pressure (HP) ice layers. The nature and location of the lower interface of the ocean is ultimately controlled by the amount of heat transferred through the surface ice Ih layer but it also involves equilibration of heat and melt transfer in the HP ices. While the Rayleigh number associated to such HP ice layers is most probably supercritical, classical subsolidus convection might not be a viable mechanism as the radial temperature gradient in the cold boundary layer is likely to exceed the slope of the melting curve. A significant part of the heat transfer could be achieved via the mass flux of warm liquid through this cold boundary layer up to the global phase boundary, a phenomenon sometimes referred to as heat-pipe mechanism. We present 3D spherical simulations of thermal convection in these HP ice layers that address for the first time this complex interplay. First, scaling relationships are proposed to describe this configuration for a large range of Rayleigh numbers and solidus curves. We then focus on a more realistic set-up where a prescribed basal heat flux is considered in a plausible range for the thermal history of Ganymede or Titan together with the expected viscosity law for HP ices.
NASA Technical Reports Server (NTRS)
Longhi, J.
1977-01-01
A description is presented of an empirical model of fractional crystallization which predicts that slightly modified versions of certain of the proposed whole moon compositions can reproduce the major-element chemistry and mineralogy of most of the primitive highland rocks through equilibrium and fractional crystallization processes combined with accumulation of crystals and trapping of residual liquids. These compositions contain sufficient Al to form a plagioclase-rich crust 60 km thick on top of a magma ocean that was initially no deeper than about 300 km. Implicit in the model are the assumptions that all cooling and crystallization take place at low pressure and that there are no compositional or thermal gradients in the liquid. Discussions of the cooling and crystallization of the proposed magma ocean show these assumptions to be disturbingly naive when applied to the ocean as a whole. However, the model need not be applied to the whole ocean, but only to layers of cooling liquid near the surface.
Convection Enhances Mixing in the Southern Ocean
NASA Astrophysics Data System (ADS)
Sohail, Taimoor; Gayen, Bishakhdatta; Hogg, Andrew McC.
2018-05-01
Mixing efficiency is a measure of the energy lost to mixing compared to that lost to viscous dissipation. In a turbulent stratified fluid the mixing efficiency is often assumed constant at η = 0.2, whereas with convection it takes values closer to 1. The value of mixing efficiency when both stratified shear flow and buoyancy-driven convection are active remains uncertain. We use a series of numerical simulations to determine the mixing efficiency in an idealized Southern Ocean model. The model is energetically closed and fully resolves convection and turbulence such that mixing efficiency can be diagnosed. Mixing efficiency decreases with increasing wind stress but is enhanced by turbulent convection and by large thermal gradients in regions with a strongly stratified thermocline. Using scaling theory and the model results, we predict an overall mixing efficiency for the Southern Ocean that is significantly greater than 0.2 while emphasizing that mixing efficiency is not constant.
Widespread gas hydrate instability on the upper U.S. Beaufort margin
NASA Astrophysics Data System (ADS)
Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.
2014-12-01
The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5-7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.
The Space-Time Scales of Variability in Oceanic Thermal Structure Off the Central California Coast.
1983-12-01
SST and sea- surface salinity (SSS) boundaries extracted from the shipboard (2m) thermalsalinograph (T/S) records (Figs. 23, 24, and 25). For these... extracted for comparison. At 175m the density gradient is sufficient to support vigorous internal wave activity in this region. As a result, the predominant... VB2 (VB squared) profiles were calculated from density profiles taken from each phase at a common location (Fig. 149). The location is approximately
Jehle, Sofie; Bornemann, André; Deprez, Arne; Speijer, Robert P
2015-01-01
The marine ecosystem has been severely disturbed by several transient paleoenvironmental events (<200 kyr duration) during the early Paleogene, of which the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most prominent. Over the last decade a number of similar events of Paleocene and Eocene age have been discovered. However, relatively little attention has been paid to pre-PETM events, such as the "Latest Danian Event" ("LDE", ~62.18 Ma), specifically from an open ocean perspective. Here we present new foraminiferal isotope (δ13C, δ18O) and faunal data from Ocean Drilling Program (ODP) Site 1210 at Shatsky Rise (Pacific Ocean) in order to reconstruct the prevailing paleoceanographic conditions. The studied five-meter-thick succession covers ~900 kyr and includes the 200-kyr-lasting LDE. All groups surface dwelling, subsurface dwelling and benthic foraminifera show a negative δ13C excursion of >0.6‰, similar in magnitude to the one previously reported from neighboring Site 1209 for benthic foraminifera. δ18O-inferred warming by 1.6 to 2.8°C (0.4-0.7‰ δ18O measured on benthic and planktic foraminiferal tests) of the entire water column accompanies the negative δ13C excursion. A well stratified upper ocean directly before and during the LDE is proposed based on the stable isotope gradients between surface and subsurface dwellers. The gradient is less well developed, but still enhanced after the event. Isotope data are supplemented by comprehensive planktic foraminiferal faunal analyses revealing a dominance of Morozovella species together with Parasubbotina species. Subsurface-dwelling Parasubbotina shows high abundances during the LDE tracing changes in the strength of the isotope gradients and, thus, may indicate optimal living conditions within a well stratified surface ocean for this taxon. In addition, distinct faunal changes are reported like the disappearance of Praemurica species right at the base of the LDE and the continuous replacement of M. praeangulata with M. angulata across the LDE.
Jehle, Sofie; Bornemann, André; Deprez, Arne; Speijer, Robert P.
2015-01-01
The marine ecosystem has been severely disturbed by several transient paleoenvironmental events (<200 kyr duration) during the early Paleogene, of which the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most prominent. Over the last decade a number of similar events of Paleocene and Eocene age have been discovered. However, relatively little attention has been paid to pre-PETM events, such as the “Latest Danian Event” ("LDE", ~62.18 Ma), specifically from an open ocean perspective. Here we present new foraminiferal isotope (δ13C, δ18O) and faunal data from Ocean Drilling Program (ODP) Site 1210 at Shatsky Rise (Pacific Ocean) in order to reconstruct the prevailing paleoceanographic conditions. The studied five-meter-thick succession covers ~900 kyr and includes the 200-kyr-lasting LDE. All groups surface dwelling, subsurface dwelling and benthic foraminifera show a negative δ13C excursion of >0.6‰, similar in magnitude to the one previously reported from neighboring Site 1209 for benthic foraminifera. δ18O-inferred warming by 1.6 to 2.8°C (0.4–0.7‰ δ18O measured on benthic and planktic foraminiferal tests) of the entire water column accompanies the negative δ13C excursion. A well stratified upper ocean directly before and during the LDE is proposed based on the stable isotope gradients between surface and subsurface dwellers. The gradient is less well developed, but still enhanced after the event. Isotope data are supplemented by comprehensive planktic foraminiferal faunal analyses revealing a dominance of Morozovella species together with Parasubbotina species. Subsurface-dwelling Parasubbotina shows high abundances during the LDE tracing changes in the strength of the isotope gradients and, thus, may indicate optimal living conditions within a well stratified surface ocean for this taxon. In addition, distinct faunal changes are reported like the disappearance of Praemurica species right at the base of the LDE and the continuous replacement of M. praeangulata with M. angulata across the LDE. PMID:26606656
Skylab investigation of the upwelling off the Northwest coast of Africa
NASA Technical Reports Server (NTRS)
Szekielda, K. H.; Suszkowski, D. J.; Tabor, P. S.
1975-01-01
The upwelling off the NW coast of Africa in the vicinity of Cape Blanc was studied in February - March 1974 from aircraft and in September 1973 from Skylab. The aircraft study was designed to determine the effectiveness of a differential radiometer in quantifying surface chlorophyll concentrations. Photographic images of the S190A Multispectral Camera and the S190B Earth Terrain Camera from Skylab were used to study distributional patterns of suspended material and to locate ocean color boundaries. The thermal channel of the S192 Multispectral Scanner was used to map sea-surface temperature distributions offshore of Cape Blanc. Correlating ocean color changes with temperature gradients is an effective method of qualitatively estimating biological productivity in the upwelling region off Africa.
Sub-diurnal Variation of SST Gradients in Infrared Satellite Data
NASA Astrophysics Data System (ADS)
Salter, J. P.; Cornillon, P. C.; Clayson, C. A.
2016-02-01
Ocean fronts are known to influence many physical, biological, and chemical processes including ocean mixing, air-sea interaction, cloud and wind patterns, and marine productivity. Satellite-derived Sea Surface Temperature (SST) measurements are an invaluable tool in studying ocean fronts because of the large spatial and temporal coverage of satellite data, extending back as far as the early 1980s. One of the limitations to satellite-derived ocean fronts is that they provide no information about the underlying vertical structure; furthermore, the dynamics on sub-diurnal time scales for ocean fronts are poorly understood. In this poster we examine the daily signal of SST gradient magnitudes for the eastern Mediterranean sea as the first step in quantifying a subset of ocean fronts globally and how they vary on sub-diurnal time scales. We find that mean gradient magnitude in summer months increases and peaks around 2-4 PM Local Sun Time (LST). We find that the peak in summer months results from an increase in the magnitude of weaker gradients while the magnitude of the strongest gradients decrease; however, the weaker gradients contribute more strongly to the mean signal, resulting in the increase. The mid-afternoon peak in SST gradient magnitude disappears in winter with only a suggestion of a peak earlier in the day although the paucity of cloud free data in winter precludes making a statistically significant statement in this regard.
Ocean energy program summary. Volume 2: Research summaries
NASA Astrophysics Data System (ADS)
1990-01-01
The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the Federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the U.S. Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW(sub e). Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the U.S. Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.
Turbulent Heat Transfer from a Thermally Forced Boundary in a Stratified Fluid
NASA Astrophysics Data System (ADS)
Burns, K. J.; Wells, A.; Flierl, G.
2017-12-01
When a marine-terminating glacier melts into a stratified ocean, a buoyancy-driven flow develops along the ice surface. The resulting turbulent heat and salt fluxes provide a key feedback on the ice melting rate. To build insight into such flows, we consider direct numerical simulations of an analogue problem with convection driven by a thermally forced sidewall in a stably stratified Boussinesq fluid. Our model considers vertical and inclined periodic channels in 2D with a constant background buoyancy gradient. When the lateral or upper boundary is given a sufficient thermal perturbation relative to the ambient, a confined and homogeneous turbulent plume emerges along the heated wall. We present a scaling analysis for the resulting heat transport across the plume, and compare it to simulations over a range of Rayleigh numbers, Prandtl numbers, and wall-inclination angles.
Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?
NASA Astrophysics Data System (ADS)
Plesa, A.-C.; Tosi, N.; Breuer, D.
2014-10-01
The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. The subsequent cooling of the interior causes the magma ocean to freeze from the core-mantle boundary (CMB) to the surface due to the steeper slope of the mantle adiabat compared to the slope of the solidus. Assuming fractional crystallization of the magma ocean, dense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid. A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set to present-day values. In this case, a stagnant lid quickly forms on top of the convective interior preventing the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars' surface and partial melting ceases in less than 900 Ma. Assuming that the stagnant lid can break because of additional mechanisms and allowing the uppermost dense layer to overturn, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the CMB. This stratification leads to a strong overheating of the lowermost mantle, whose temperature increases to values that exceed the liquidus. The iron-rich melt would most likely remain trapped in the lower part of the mantle. The upper mantle in that scenario cools rapidly and only shows partial melting during the first billion year of evolution. Therefore a fractionated global and deep magma ocean is difficult to reconcile with observations. Different scenarios assuming, for instance, a hemispherical or shallow magma ocean, or a crystallization sequence resulting in a lower density gradient than that implied by pure fractional crystallization will have to be considered.
Sampaio, E; Rodil, I F; Vaz-Pinto, F; Fernández, A; Arenas, F
2017-04-01
Since the past century, rising CO 2 levels have led to global changes (ocean warming and acidification) with subsequent effects on marine ecosystems and organisms. Macroalgae-herbivore interactions have a main role in the regulation of marine community structure (top-down control). Gradients of warming prompt complex non-linear effects on organism metabolism, cascading into altered trophic interactions and community dynamics. However, not much is known on how will acidification and grazer assemblage composition shape these effects. Within this context, we aimed to assess the combined effects of warming gradients and acidification on macroalgae-herbivore interactions, using three cosmopolitan species, abundant in the Iberian Peninsula and closely associated in nature: the amphipod Melita palmata, the gastropod Gibbula umbilicalis, and the green macroalga Ulva rigida. Under two CO 2 treatments (ΔCO 2 ≃ 450 μatm) across a temperature gradient (13.5, 16.6, 19.9 and 22.1 °C), two mesocosm experiments were performed to assess grazer consumption rates and macroalgae-herbivore interaction, respectively. Warming (Experiment I and II) and acidification (Experiment II) prompted negative effects in grazer's survival and species-specific differences in consumption rates. M. palmata was shown to be the stronger grazer per biomass (but not per capita), and also the most affected by climate stressors. Macroalgae-herbivore interaction strength was markedly shaped by the temperature gradient, while simultaneous acidification lowered thermal optimal threshold. In the near future, warming and acidification are likely to strengthen top-down control, but further increases in disturbances may lead to bottom-up regulated communities. Finally, our results suggest that grazer assemblage composition may modulate future macroalgae-herbivore interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine K; Kim, Hyoungsoo; Stone, Howard A
2017-12-12
Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.
Ocean thermal plantships for production of ammonia as the hydrogen carrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.
2009-12-02
Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solarmore » energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by completing project tasks that consist of updating the John Hopkins University/Applied Physics Laboratory (JHU/APL) pilot plantship design and extrapolating it to commercial plantships, evaluating a new energy-efficient ammonia synthesis process, evaluating the co-production of desalinated water on plantships, and developing a conceptual design of a satellite plantships system for commercial-scale ammonia production. In addition, an industrial workshop was organized to present the results and develop future goals for commercialization of ocean thermal plantships by 2015. The following goals, arranged in chronological order, were examined at the workshop: (1) Global displacement of petroleum-fuel-based (diesel, fuel oil, naphtha) power generation for freeing up these fuels for transportation, chemical feedstock, and other high-valued uses; (2) At-sea production of desalinated water for regions of critical water shortages; (3) Displacement of carbon-based feed stocks and energy for production of ammonia fertilizers; (4) Development of hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands; (5) Development of ammonia-fueled distributed energy to displace natural-gas fueled power generation to free up natural gas for higher-value uses and the mitigation of issues associated with imported liquefied natural gas (LNG); and (6) Use of ammonia as a hydrogen carrier for transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.
2015-02-01
Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsicmore » mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.« less
Thermal diffusion of the lunar magma ocean and the formation of the lunar crust
NASA Astrophysics Data System (ADS)
Zhu, D.; Wang, S.
2010-12-01
The magma ocean hypothesis is consistent with several lines of evidence including planet formation, core-mantle differentiation and geochemical observations, and it is proved as an inevitable stage in the early evolution of planets. The magma ocean is assumed to be homogeneous in previous models during solidification or crystallization[1]. Based on the recent advance and our new data in experimental igneous petrology[2], we question this assumption and propose that an gabbrotic melt, from which the anorthositic lunar crust crystallized, can be produced by thermal diffusion, rather than by magma fractionation. This novel model can provide explanations for the absence of the advection in lunar magma ocean[3] and the old age of the anorthositic lunar crust[4-5]. 1. Solomatov, V., Magma Oceans and Primordial Mantle Differentiation, in Treatise on Geophysics, S. Gerald, Editor. 2007, Elsevier: Amsterdam. p. 91-119. 2. Huang, F., et al., Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica Et Cosmochimica Acta, 2009. 73(3): p. 729-749. 3. Turcotte, D.L. and L.H. Kellogg, Implications of isotope data for the origin of the Moon, in Origin of the Moon, W.K. Hartmann, R.J. Phillips, and G.J. Taylor, Editors. 1986, Lunar and Planet. Inst.: Houston, TX. p. 311-329. 4. Alibert, C., M.D. Norman, and M.T. McCulloch, An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochimica Et Cosmochimica Acta, 1994. 58(13): p. 2921-2926. 5. Touboul, M., et al., Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean. Icarus, 2009. 199(2): p. 245-249.
Widespread gas hydrate instability on the upper U.S. Beaufort margin
Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.
2014-01-01
The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5–7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.
NASA Astrophysics Data System (ADS)
Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé
2000-11-01
High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies that an important tectonic coupling may exist between the upper and the lower plates leading to the partitioning of the continental lithosphere and to the tectonic underplating of very young oceanic lithosphere below the continental wedge. We assume that in the case of the CTJ, the uncommon situation of three successive ridge segments entering the trench at 2-3 Ma intervals only resulted in a strong and finally long-lived thermal anomaly. This anomaly caused remelting of underplated portions of very young, still hot oceanic lithosphere. Only particular geometrical RTT configurations are able to produce such features. These include linear continental margin, short ridge segments slightly oblique to the trench and short transform faults. Finally, the CTJ example shows that a possible scenario for the origin of calc-alkaline acidic rocks in the near-trench region involves coeval tectonic coupling and repeated passage of thermal anomalies due to successive subduction of short ridge segments. Therefore, the local abundance of calc-alkaline acidic rocks, associated with MORB-type lavas in ancient series, could be the tracer of plate tectonic configurations involving the subduction of short ridge segments in a relatively short duration.
Thermal niche evolution of functional traits in a tropical marine phototroph.
Baker, Kirralee G; Radford, Dale T; Evenhuis, Christian; Kuzhiumparam, Unnikrishnan; Ralph, Peter J; Doblin, Martina A
2018-06-14
Land-based plants and ocean-dwelling microbial phototrophs known as phytoplankton, are together responsible for almost all global primary production. Habitat warming associated with anthropogenic climate change has detrimentally impacted marine primary production, with the effects observed on regional and global scales. In contrast to slower-growing higher plants, there is considerable potential for phytoplankton to evolve rapidly with changing environmental conditions. The energetic constraints associated with adaptation in phytoplankton are not yet understood, but are central to forecasting how global biogeochemical cycles respond to contemporary ocean change. Here, we demonstrate a number of potential trade-offs associated with high-temperature adaptation in a tropical microbial eukaryote, Amphidinium massartii (dinoflagellate). Most notably, the population became high-temperature specialized (higher fitness within a narrower thermal envelope and higher thermal optimum), and had a greater nutrient requirement for carbon, nitrogen and phosphorus. Evidently, the energetic constraints associated with living at elevated temperature alter competiveness along other environmental gradients. While high-temperature adaptation led to an irreversible change in biochemical composition (i.e., an increase in fatty acid saturation), the mechanisms underpinning thermal evolution in phytoplankton remain unclear, and will be crucial to understanding whether the trade-offs observed here are species-specific or are representative of the evolutionary constraints in all phytoplankton. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients
NASA Astrophysics Data System (ADS)
Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.
2016-02-01
The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.
Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions
Safak, Ilgar; Warner, John C.; List, Jeffrey
2016-01-01
Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.
Barron, John A.; Stickley, Catherine E.; Bukry, David
2015-01-01
Tabulation of the first and last occurrences of 132 biostratigraphically-important diatoms suggests increased species turnover during the latest Paleocene to earliest Eocene that may be in part due to a monographic effect. An increasing rate of evolution of new diatom species between ~ 46 and 43 Ma and after ~ 40 Ma coincides respectively with the widespread expansion of diatom deposition in the Atlantic and with an increased pole-to-equator thermal gradient that witnessed the expansion of diatoms in high latitude oceans and coastal upwelling settings.
Crystallization of a compositionally stratified basal magma ocean
NASA Astrophysics Data System (ADS)
Laneuville, Matthieu; Hernlund, John; Labrosse, Stéphane; Guttenberg, Nicholas
2018-03-01
Earth's ∼3.45 billion year old magnetic field is regenerated by dynamo action in its convecting liquid metal outer core. However, convection induces an isentropic thermal gradient which, coupled with a high core thermal conductivity, results in rapid conducted heat loss. In the absence of implausibly high radioactivity or alternate sources of motion to drive the geodynamo, the Earth's early core had to be significantly hotter than the melting point of the lower mantle. While the existence of a dense convecting basal magma ocean (BMO) has been proposed to account for high early core temperatures, the requisite physical and chemical properties for a BMO remain controversial. Here we relax the assumption of a well-mixed convecting BMO and instead consider a BMO that is initially gravitationally stratified owing to processes such as mixing between metals and silicates at high temperatures in the core-mantle boundary region during Earth's accretion. Using coupled models of crystallization and heat transfer through a stratified BMO, we show that very high temperatures could have been trapped inside the early core, sequestering enough heat energy to run an ancient geodynamo on cooling power alone.
From convection rolls to finger convection in double-diffusive turbulence
Verzicco, Roberto; Lohse, Detlef
2016-01-01
Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars' transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large-scale convection rolls to well-organized vertically oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh–Bénard convection can be directly applied to DDC flow for a wide range of control parameters (Lewis number and density ratio), including those which cover the common values relevant for ocean flows. PMID:26699474
Geophysical investigations of a geothermal anomaly at Wadi Ghadir, eastern Egypt
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Hennin, S. F.; El-Sherif, A. A.; El-Sayed, A. A.; Basta, N. Z.; Melek, Y. S.
1984-01-01
During regional heat flow studies a geothermal anomaly was discovered approximately 2 km from the Red Sea coast at Wadi Ghadir, in the Red Sea Hills of Eastern Egypt. A temperature gradient of 55 C/km was measured in a 150 m drillhole at this location, indicating a heat flow of approximately 175 mw/sqm, approximately four times the regional background heat flow for Egypt. Gravity and magnetic data were collected along Wadi Ghadir, and combined with offshore gravity data, to investigate the source of the thermal anomaly. Magnetic anomalies in the profile do not coincide with the thermal anomaly, but were observed to correlate with outcrops of basic rocks. Other regional heat flow and gravity data indicate that the transition from continental to oceanic type lithosphere occurs close to the Red Sea margin, and that the regional thermal anomaly is possibly related to the formation of the Red Sea.
Sea thermal power; A survey study for the Arab coastal waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdell-AAL, H.K.; Khan, M.M.
1990-01-01
One of the promising types of renewable energy resource that has potential applications in the Arab world is proposed and described in this article. Known as ocean thermal energy conversion (OTEC), its feasibility is investigated for the Red Sea and the Arabian Gulf/Gulf of Oman. Data on thermal gradients are surveyed, collected, and reported. Promising parameters have been identified for some specific locations along these coastal waters. The proposed system can serve the dual purpose of providing electric power and desalinated water, which is needed by the Arab world. Construction strategies for the OTEC systems are introduced. Building plant-ship formore » utilizing the generated power in the production of hydrogen is recommended. Thus energy could be transported as LH{sub 2} (liquid hydrogen), MeOH (methanol), or NH{sub 3} (ammonia) for end-use consumption or export.« less
Comparison of global sst analyses for atmospheric data assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phoebus, P.A.; Cummings, J.A.
1995-03-17
Traditionally, atmospheric models were executed using a climatological estimate of the sea surface temperature (SST) to define the marine boundary layer. More recently, particularly since the deployment of remote sensing instruments and the advent of multichannel SST observations atmospheric models have been improved by using more timely estimates of the actual state of the ocean. Typically, some type of objective analysis is performed using the data from satellites along with ship, buoy, and bathythermograph observations, and perhaps even climatology, to produce a weekly or daily analysis of global SST. Some of the earlier efforts to produce real-time global temperature analysesmore » have been described by Clancy and Pollak (1983) and Reynolds (1988). However, just as new techniques have been developed for atmospheric data assimilation, improvements have been made to ocean data assimilation systems as well. In 1988, the U.S. Navy`s Fleet Numerical Meteorology and Oceanography Center (FNMOC) implemented a global three-dimensional ocean temperature analysis that was based on the optimum interpolation methodology (Clancy et al., 1990). This system, the Optimum Thermal Interpolation System (OTIS 1.0), was initially distributed on a 2.50 resolution grid, and was later modified to generate fields on a 1.250 grid (OTIS 1.1; Clancy et al., 1992). Other optimum interpolation-based analyses (OTIS 3.0) were developed by FNMOC to perform high-resolution three-dimensional ocean thermal analyses in areas with strong frontal gradients and clearly defined water mass characteristics.« less
Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus
Pittera, Justine; Humily, Florian; Thorel, Maxine; Grulois, Daphné; Garczarek, Laurence; Six, Christophe
2014-01-01
Marine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long- and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant β-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 °C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation. PMID:24401861
NASA Technical Reports Server (NTRS)
Weller, Robert A.
1991-01-01
From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.
Decadal Changes in the World's Coastal Latitudinal Temperature Gradients
Baumann, Hannes; Doherty, Owen
2013-01-01
Most of the world's living marine resources inhabit coastal environments, where average thermal conditions change predictably with latitude. These coastal latitudinal temperature gradients (CLTG) coincide with important ecological clines,e.g., in marine species diversity or adaptive genetic variations, but how tightly thermal and ecological gradients are linked remains unclear. A first step is to consistently characterize the world's CLTGs. We extracted coastal cells from a global 1°×1° dataset of weekly sea surface temperatures (SST, 1982–2012) to quantify spatial and temporal variability of the world's 11 major CLTGs. Gradient strength, i.e., the slope of the linear mean-SST/latitude relationship, varied 3-fold between the steepest (North-American Atlantic and Asian Pacific gradients: −0.91°C and −0.68°C lat−1, respectively) and weakest CLTGs (African Indian Ocean and the South- and North-American Pacific gradients: −0.28, −0.29, −0.32°C lat−1, respectively). Analyzing CLTG strength by year revealed that seven gradients have weakened by 3–10% over the past three decades due to increased warming at high compared to low latitudes. Almost the entire South-American Pacific gradient (6–47°S), however, has considerably cooled over the study period (−0.3 to −1.7°C, 31 years), and the substantial weakening of the North-American Atlantic gradient (−10%) was due to warming at high latitudes (42–60°N, +0.8 to +1.6°C,31 years) and significant mid-latitude cooling (Florida to Cape Hatteras 26–35°N, −0.5 to −2.2°C, 31 years). Average SST trends rarely resulted from uniform shifts throughout the year; instead individual seasonal warming or cooling patterns elicited the observed changes in annual means. This is consistent with our finding of increased seasonality (i.e., summer-winter SST amplitude) in three quarters of all coastal cells (331 of 433). Our study highlights the regionally variable footprint of global climate change, while emphasizing ecological implications of changing CLTGs, which are likely driving observed spatial and temporal clines in coastal marine life. PMID:23825672
Anomalous heat flow belt along the continental margin of Brazil
NASA Astrophysics Data System (ADS)
Hamza, Valiya M.; Vieira, Fabio P.; Silva, Raquel T. A.
2018-01-01
A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB). The results point to the existence of a narrow belt within CMB, where temperature gradients are higher than 30 °C/km and the heat flow is in excess of 70 mW/m2. This anomalous geothermal belt is confined between zones of relatively low to normal heat flow in the adjacent continental and oceanic regions. The width of the belt is somewhat variable, but most of it falls within the range of 100-300 km. The spatial extent is relatively large in the southern (in the basins of Pelotas, Santos and Campos) and northern (in the basins of Potiguar and Ceará) parts, when compared with those in the central parts (in the basins of South Bahia, Sergipe and Alagoas). The characteristics of heat flow anomalies appear to be compatible with those produced by thermal sources at depths in the lower crust. Hence, magma emplacement at the transition zone between lower crust and upper mantle is considered the likely mechanism producing such anomalies. Seismicity within the belt is relatively weak, with focal depths less than 10 km for most of the events. Such observations imply that "tectonic bonding" between continental and oceanic segments, at the transition zone of CMB, is relatively weak. Hence, it is proposed that passive margins like CMB be considered as constituting a type of plate boundary that is aseismic at sub-crustal levels, but allows for escape of significant amounts of earth's internal heat at shallow depths.
NASA Astrophysics Data System (ADS)
Park, J.; Makarova, M.; Miller, K. G.; Browning, J. V.; Wright, J. D.
2016-12-01
The goal of my study is to reconstruct bottom water conditions on the New Jersey paleoshelf during the Paleocene-Eocene Thermal Maximum (PETM) using stable isotopes on the Millville, NJ core. We analyzed tests (shells) of three benthic foraminiferal genera (Cibicidoides, Anomalinoides, and Gavelinella) for carbon (δ13C) and oxygen (δ18O) isotopes using mass spectrometry. Benthic foraminifera are unicellular organisms that live on the ocean floor and use calcium (Ca2+) and carbonate (CO32- ) ions to construct their tests. By doing this, they record the isotopic composition of carbon and oxygen in the seawater. The δ13C records show a sharp decrease of 3.5‰ across the PETM onset, marking the globally recognized carbon isotope excursion (CIE). Coupled benthic and planktonic (surface dwellers) carbon isotopic records indicate a 3‰ vertical gradient in the water column on the shelf. This is much higher than δ13C vertical gradients in the modern ocean (<2‰) and can be explained as evidence for more efficient cycling of organic carbon during the PETM. δ18O records of benthic foraminifera show a 2‰ decrease across the CIE onset, suggesting seafloor warming of 7-10°C (assuming all due to temperature). The change in δ18O of benthic foraminifera is much greater than in the sea surface recorded by surface dwellers (1‰ or 4°C assuming all due to temperature), implying reorganization of the water column on the shelf during the PETM.
NASA Astrophysics Data System (ADS)
Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Ikeda, Kohei; Iwata, Toru; Kameyama, Sohiko; Uematsu, Mitsuo; Gamo, Toshitaka; Ogawa, Hiroshi; Furuya, Ken
2017-07-01
Exchange of dimethyl sulfide (DMS) between the surface ocean and the lower atmosphere was examined by using proton transfer reaction-mass spectrometry coupled with the gradient flux (PTR-MS/GF) system. We deployed the PTR-MS/GF system and observed vertical gradients of atmospheric DMS just above the sea surface in the subtropical and transitional South Pacific Ocean and the subarctic North Pacific Ocean. In total, we obtained 370 in situ profiles, and of these we used 46 data sets to calculate the sea-to-air flux of DMS. The DMS flux determined was in the range from 1.9 to 31 μmol m-2 d-1 and increased with wind speed and biological activity, in reasonable accordance with previous observations in the open ocean. The gas transfer velocity of DMS derived from the PTR-MS/GF measurements was similar to either that of DMS determined by the eddy covariance technique or that of insoluble gases derived from the dual tracer experiments, depending on the observation sites located in different geographic regions. When atmospheric conditions were strongly stable during the daytime in the subtropical ocean, the PTR-MS/GF observations captured a daytime versus nighttime difference in DMS mixing ratios in the surface air overlying the ocean surface. The difference was mainly due to the sea-to-air DMS emissions and stable atmospheric conditions, thus affecting the gradient of DMS. This indicates that the DMS gradient is strongly controlled by diurnal variations in the vertical structure of the lower atmosphere above the ocean surface.
NASA Astrophysics Data System (ADS)
Wong, E.; Minnett, P. J.
2016-12-01
There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.
NASA Astrophysics Data System (ADS)
Yang, X.; Rial, J. A.
2014-12-01
According to the hypothesis of polar synchronization, climate variations of Earth's poles are connected with a persistent phase lock of π/2 throughout the last glacial period. However, it is not clear yet how the Earth's two poles communicate with each other, the Thermohaline circulation (THC) being a possible candidate for signal carrier. Here we present a possible way of climate variation propagation through the Atlantic Ocean - likely in the form of heat or thermal wave (Cattaneo's solution) - based on lagged correlation between an organic carbon climate proxy record from the tropical Atlantic and the south-north polar temperature gradient. We further demonstrate that the speed of such propagation is frequency dependent, of which the wave of the longest period travels the fastest at the speed of ~32 km/year consistent with the estimated speed of the THC. The observed speed - frequency relationship can be successfully modeled as resulting from a propagating dispersive thermal wave initiated by the polar temperature gradient maximum. We show that such heat wave propagation is a potential mechanism to couple and synchronize the polar climates during the last glacial period and to force the occurrence of Heinrich events. To summarize, the polar temperature gradient anomalies are consequence of the π/2 phase lock between the polar climates, which is caused by polar synchronization maintained by the coupling, which is, as the data suggest, in the form of thermal waves. The spikes in organic carbon and the Fe/Ca ratio records in the core GeoB3912-1 can be thought of as snapshots of the passage of strong meteorological wavefronts through the equatorial region. The results strongly suggest that each peak in the organic carbon recorded a half-hemisphere-delayed passage of a wave-like disturbance through the equator carrying the south-north temperature gradient maxima. And each of these occurs within timing error of the Heinrich events H0-H6.
Baumann, J H; Davies, S W; Aichelman, H E; Castillo, K D
2018-05-01
Reef-building corals maintain a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium, and this symbiosis is vital for the survival of the coral holobiont. Symbiodinium community composition within the coral host has been shown to influence a coral's ability to resist and recover from stress. A multitude of stressors including ocean warming, ocean acidification, and eutrophication have been linked to global scale decline in coral health and cover in recent decades. Three distinct thermal regimes (high TP , mod TP , and low TP ) following an inshore-offshore gradient of declining average temperatures and thermal variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten Symbiodinium lineages were identified across the three coral host species. S. siderea was associated with distinct Symbiodinium communities; however, Symbiodinium communities of its congener, S. radians and P. strigosa, were more similar to one another. Thermal regime played a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that coral thermal tolerance in more thermally variable inshore habitats is achieved through alternative mechanisms. Overall, thermal parameters alone were likely not the only primary drivers of Symbiodinium community composition, suggesting that environmental variables unrelated to temperature (i.e., light availability or nutrients) may play key roles in structuring coral-algal communities in Belize and that the relative importance of these environmental variables may vary by coral host species.
Thermal rectification in thin films driven by gradient grain microstructure
NASA Astrophysics Data System (ADS)
Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel
2018-03-01
As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.
Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region
NASA Astrophysics Data System (ADS)
Fontaine, B.; Janicot, Serge; Roucou, P.
This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120°W-60°W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968-1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30°N-20°S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20-30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the north-south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations: anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level pressure over West Africa.
NASA Astrophysics Data System (ADS)
Meyers, P. A.
2013-12-01
Organic del13C values of organic-carbon-rich Albian-Cenomanian-Turonian black shales from a north-south transect of the Atlantic Ocean have been compiled to explore for possible existence of latitudinal patterns. Black shales at equatorial sites have mean del13C values of -28 per mil, whereas black shales at mid-latitude sites have mean del13C values around -25 per mil. The mid-Cretaceous del13C values are routinely lower than those of modern marine sediments. The more negative Cretaceous del13C values generally reflect concentrations of atmospheric CO2 that were four to six times higher than today, but the geographic differences imply a regional overprint on this global feature. Latitudinal differences in oceanic temperature might be a factor, but a low thermal gradient from the poles to the equator during the mid-Cretaceous makes this factor not likely to be significant. Instead, a correspondence between the geographic differences in the organic del13C values of black shales with the modern latitudinal precipitation pattern suggests that differences in precipitation are a more likely factor. Establishment of a strongly salinity-stratified near-surface ocean and magnified delivery of land-derived phosphorus by continental runoff during this time of a magnified hydrologic cycle were evidently significant to deposition of marine black shales. A likely scenario is that the stratification resulted in blooms of nitrogen-fixing bacteria that become the dominant photoautotrophs and thereby stimulated primary production of organic matter. Regional differences in precipitation resulted in different amounts of runoff, consequent stratification, enhancement of primary production, and therefore the different carbon isotopic compositions of the black shales.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds.
Barge, Laura M; White, Lauren M
2017-09-01
We review various laboratory strategies and methods that can be utilized to simulate prebiotic processes and origin of life in hydrothermal vent systems on icy/ocean worlds. Crucial steps that could be simulated in the laboratory include simulations of water-rock chemistry (e.g., serpentinization) to produce hydrothermal fluids, the types of mineral catalysts and energy gradients produced in vent interfaces where hydrothermal fluids interface with the surrounding seawater, and simulations of biologically relevant chemistry in flow-through gradient systems (i.e., far-from-equilibrium experiments). We describe some examples of experimental designs in detail, which are adaptable and could be used to test particular hypotheses about ocean world energetics or mineral/organic chemistry. Enceladus among the ocean worlds provides an ideal test case, since the pressure at the ocean floor is more easily simulated in the lab. Results for Enceladus could be extrapolated with further experiments and modeling to understand other ocean worlds. Key Words: Enceladus-Ocean worlds-Icy worlds-Hydrothermal vent-Iron sulfide-Gradient. Astrobiology 17, 820-833.
Design of a High Thermal Gradient Bridgman Furnace
NASA Technical Reports Server (NTRS)
LeCroy, J. E.; Popok, D. P.
1994-01-01
The Advanced Automated Directional Solidification Furnace (AADSF) is a Bridgman-Stockbarger microgravity processing facility, designed and manifested to first fly aboard the second United States Microgravity Payload (USMP-2) Space Shuttle mission. The AADSF was principally designed to produce high axial thermal gradients, and is particularly suitable for metals solidification experiments, including non-dilute alloys. To accommodate a wider range of experimental conditions, the AADSF is equipped with a reconfigurable gradient zone. The overall design of the AADSF and the relationship between gradient zone design and furnace performance are described. Parametric thermal analysis was performed and used to select gradient zone design features that fulfill the high thermal gradient requirements of the USMP-2 experiment. The thermal model and analytical procedure, and parametric results leading to the first flight gradient zone configuration, are presented. Performance for the USMP-2 flight experiment is also predicted, and analysis results are compared to test data.
Albarède, Francis; Van Der Hilst, Rob D
2002-11-15
We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced negative buoyancy and can more easily founder to the very base of the mantle. Plateau segregation remains statistical and no sharp compositional interface is expected from the multiple fate of the plates. We show that the variable depth subduction of heavily laden plates can prevent full vertical mixing and preserve a vertical concentration gradient in the mantle. In addition, it can account for the preservation of scattered remnants of primitive material in the deep mantle and therefore for the Ar and (3)He observations in ocean-island basalts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, J. F.; Richards, D.; Perini, L. L.
1979-05-01
The Applied Physics Laboratory (APL) of the Johns Hopkins University has engineered a baseline design of an Ocean Thermal Energy Conversion (OTEC) pilot plantship. The work was sponsored jointly by the Department of Energy and the US Maritime Administration of the Department of Commerce. The design, drawings, specifications, supporting calculations, and narrative documentation are available through APL for use by the Government and industry for the acquisition of a pilot OTEC system. The baseline design features a platform that is configured to produce up to 20 MW(e) (net) power, using low-cost folded-tube aluminum heat exchangers, while it grazes slowly inmore » tropical waters where the thermal gradient is greatest and the ocean environment is least severe. The design was developed by a team of contractors whose capabilities provided a systems approach to the design process. The work is documented in three volumes. Volume A is the Detailed report, which develops the design rationale, summarizes important calculations, outlines areas for future work, and presents a study of system costs. Volumes B and C, respectively, contain the engineering drawings and specifications.« less
Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.
Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua
2013-09-28
We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.
A Computational Approach to Modeling Magma Ocean Evolution in 2-D and 3-D
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Louro Lourenço, D. J.; Fomin, I.
2017-12-01
Models of magma ocean evolution have typically been performed in 1-D (e.g. Abe, PEPI 1997; Solomatov and Stevenson, JGR 1993; Elkins-Tanton EPSL 2008). However, 1-D models may miss important aspects of the process, in particular the possible development of solid-state convection before the magma ocean has completely crystallised, and possible large-scale overturn driven by thermal and/or compositional gradients. On the other hand, fully resolving magma ocean evolution in 2-D or 3-D would be extremely challenging due to the small time-scales and length-scales associated with turbulent convection in the magma and the extreme viscosity contrast between regions of high melt fraction and regions of low melt fraction, which are separated by a rheological threshold associated with the solid forming an interconnected matrix. Here, an intermediate approach to treat these has been implemented within the framework of the mantle convection code StagYY (Tackley, PEPI 2008). The basic approach is to resolve processes that occur in the mostly solid state (i.e. below the rheological threshold) while parameterising processes that occur in the mostly liquid state, based largely on the works of Y. Abe. Thus, turbulent convection in magma-rich regions is treated using an effective thermal conductivity based on mixing-length theory, and segregation of solid and liquid is treated using Darcy's law for low melt fractions or crystal settling (offset by vigorous convection) for high melt fractions. At the outer surface a combined radiative-conductive heat balance is implemented, including the temperature drop over a very thin ( cm) thermal boundary layer and reduction of radiative heat loss by an atmosphere. Key to the whole process is petrology: the coexisting compositions of magma and solid under various conditions including possible fractionation, and for this different approaches have been parameterised ranging from a simple basalt-harzburgite parameterisation to a bi-eutectic lower mantle melting model based on ab initio and laboratory experiments.
A computational approach to modelling magma ocean evolution in 2-D and 3-D
NASA Astrophysics Data System (ADS)
Tackley, Paul; Lourenco, Diogo; Fomin, Ilya
2017-04-01
Models of magma ocean evolution have typically been performed in 1-D (e.g. Abe, PEPI 1997; Solomatov and Stevenson, JGR 1993; Elkins-Tanton EPSL 2008). However, 1-D models may miss important aspects of the process, in particular the possible development of solid-state convection before the magma ocean has completely crystallised, and possible large-scale overturn driven by thermal and/or compositional gradients. On the other hand, fully resolving magma ocean evolution in 2-D or 3-D would be extremely challenging due to the small time-scales and length-scales associated with turbulent convection in the magma and the extreme viscosity contrast between regions of high melt fraction and regions of low melt fraction, which are separated by a rheological threshold associated with the solid forming an interconnected matrix. Here, an intermediate approach to treat these has been implemented within the framework of the mantle convection code StagYY (Tackley, PEPI 2008). The basic approach is to resolve processes that occur in the mostly solid state (i.e. below the rheological threshold) while parameterising processes that occur in the mostly liquid state, based largely on the works of Y. Abe. Thus, turbulent convection in magma-rich regions is treated using an effective thermal conductivity based on mixing-length theory, and segregation of solid and liquid is treated using Darcy's law for low melt fractions or crystal settling (offset by vigorous convection) for high melt fractions. At the outer surface a combined radiative-conductive heat balance is implemented, including the temperature drop over a very thin ( cm) thermal boundary layer and reduction of radiative heat loss by an atmosphere. Key to the whole process is petrology: the coexisting compositions of magma and solid under various conditions including possible fractionation, and for this different approaches have been parameterised ranging from a simple basalt-harzburgite parameterisation to a bi-eutectic lower mantle melting model based on ab initio and laboratory experiments.
NASA Technical Reports Server (NTRS)
Hess, Paul C.; Parmentier, E. M.
1995-01-01
Crystallization of the lunar magma ocean creates a chemically stratified Moon consisting of an anorthositic crust and magma ocean cumulates overlying the primitive lunar interior. Within the magma ocean cumulates the last liquids to crystallize form dense, ilmenite-rich cumulates that contain high concentrations of incompatible radioactive elements. The underlying olivine-orthopyroxene cumulates are also stratified with later crystallized, denser, more Fe-rich compositions at the top. This paper explores the chemical and thermal consequences of an internal evolution model accounting for the possible role of these sources of chemical buoyancy. Rayleigh-Taylor instability causes the dense ilmenite-rich cumulate layer and underlying Fe-rich cumulates to sink toward the center of the Moon, forming a dense lunar core. After this overturn, radioactive heating within the ilmenite-rich cumulate core heats the overlying mantle, causing it to melt. In this model, the source region for high-TiO2 mare basalts is a convectively mixed layer above the core-mantle boundary which would contain small and variable amounts of admixed ilmenite and KREEP. This deep high-pressure melting, as required for mare basalts, occurs after a reasonable time interval to explain the onset of mare basalt volcanism if the content of radioactive elements in the core and the chemical density gradients above the core are sufficiently high but within a range of values that might have been present in the Moon. Regardless of details implied by particular model parameters, gravitational overturn driven by the high density of magma ocean Fe-rich cumulates should concentrate high-TiO2 mare basalt sources, and probably a significant fraction of radioactive heating, toward the center of the Moon. This will have important implications for both the thermal evolution of the Moon and for mare basalt genesis.
NASA Astrophysics Data System (ADS)
Brown, M.
2008-12-01
UHPM provides petrologic evidence of transport of continental lithosphere to asthenospheric depth and return of some of these materials to crustal depth. The rock record registers UHPM since the Ediacaran Period, and studies of inclusion assemblages in zircon have increased the evidence of UHPM in Phanerozoic orogens and enabled an assessment of the real estate involved. Plots of apparent thermal gradient vs. age of metamorphism and P vs. age of metamorphism reveal two dramatic changes in inferred thermal environment and inferred depth of metamorphism from which continental lithosphere has been recovered during Earth evolution. First, from the Mesoarchean Era to the Neoproterozoic Era, sutures in subduction-to- collision orogens are marked by eclogite and high-pressure granulite metamorphism (characterized by apparent thermal gradients of 750-350 C/GPa). The P of metamorphism in sutures jumped from <1 GPa during the Eoarchean-Paleoarchean up to 2 GPa during the Paleoproterozoic. Second, from the Cryogenian- Ediacaran to the present, many sutures in subduction-to-collision orogens, and sometimes intracratonic sutures in the overriding plate, are marked by UHPM (characterized by apparent thermal gradients of <350 C/GPa) with P of metamorphism >2.7GPa. Given this pattern of secular change to colder apparent thermal gradients in sutures, the recent discovery of diamonds in zircons of crustal paragenesis in Neoarchean sedimentary rocks is surprising. Maybe UHPM has been possible since the Neoarchean but the evidence was rarely exhumed or if exhumed maybe the evidence was rarely preserved? The Appalachian/Caledonian-Variscide-Altaid and the Cimmerian-Himalayan-Alpine orogenic systems were formed by successive closure of short-lived oceans by transfer and suturing of ribbon-continent terranes derived from the Gondwanan side. Subduction of young ocean lithosphere followed by choking of the subduction channel by arc or terrane collision limited transport of water to the mantle wedge, and suppressed development of small-scale convection, arc magmatism and backarc formation. This allowed the retro- continental margin to remain strong, which favored efficient exhumation of UHPM rocks (Warren et al., 2008, EPSL). How should we interpret the presence of diamonds in detrital zircons (age range 3,050-4,260 Ma) from the Narryer terrane? Menneken et al. (2007, Nature) argue that the age range indicates repeated conditions for diamond formation (or recycling of ancient diamond) and that diamonds imply thick continental lithosphere and crust-mantle interactions since 4,260 Ma! This implies thermal environments and tectonics in the Hadean and Archean Eons similar to the Phanerozoic Eon. However, these ancient zircons originally crystallized from low-T melts (Watson and Harrison, 2006, Science) and the 'age' of the diamonds is only constrained to be > the age of deposition and <3,050 Ma. Williams (2007, Science) suggests that C was introduced as graphite precipitated from COH fluid in fractures/imperfections in zircon prior to deep burial to form diamond during a single event. COH fluid was involved in the formation of diamonds from Phanerozoic UHPM localities, so the hypothesis is viable if an appropriate tectonic model can be developed. I will present a model for the formation and exhumation of an overriding plate source terrane for the diamond-bearing detrital zircons that is consistent with periodic changes in the tectonic regime of Earth (Brown, 2006, Geology), and the geology and likely tectonic setting of the Narryer Terrane-Yilgarn Craton during the Neoarchean. Finally, I will speculate about UMPM during the Proterozoic and exhumation vs. relamination (Hacker et al., Eos, 2007).
Growth of large aluminum nitride single crystals with thermal-gradient control
Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J
2015-05-12
In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.
Growth of large aluminum nitride single crystals with thermal-gradient control
Bondokov, Robert T.; Rao, Shailaja P.; Schowalter, Leo J.
2017-02-28
In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.
Broecker, Wallace S; Putnam, Aaron E
2013-10-15
Major changes in global rainfall patterns accompanied a northward shift of Earth's thermal equator at the onset of an abrupt climate change 14.6 kya. This northward pull of Earth's wind and rain belts stemmed from disintegration of North Atlantic winter sea ice cover, which steepened the interhemispheric meridional temperature gradient. A southward migration of Earth's thermal equator may have accompanied the more recent Medieval Warm to Little Ice Age climate transition in the Northern Hemisphere. As fossil fuel CO2 warms the planet, the continents of the Northern Hemisphere are expected to warm faster than the Southern Hemisphere oceans. Therefore, we predict that a northward shift of Earth's thermal equator, initiated by an increased interhemispheric temperature contrast, may well produce hydrologic changes similar to those that occurred during past Northern Hemisphere warm periods. If so, the American West, the Middle East, and southern Amazonia will become drier, and monsoonal Asia, Venezuela, and equatorial Africa will become wetter. Additional paleoclimate data should be acquired and model simulations should be conducted to evaluate the reliability of this analog.
DOT National Transportation Integrated Search
2017-05-01
Thermal gradients became a component of bridge design after soffit cracking in prestressed concrete bridges was attributed to nonlinear temperature distribution through the depth of the bridge. While the effect of thermal gradient on stress distribut...
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Ghosn, Louis J.; Miller, rober A.
2005-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. A fundamental understanding of the sintering and thermal cycling induced delamination of thermal barrier coating systems under engine-like heat flux conditions will potentially help to improve the coating temperature capability. In this study, a test approach is established to emphasize the real-time monitoring and assessment of the coating thermal conductivity, which can initially increase under the steady-state high temperature thermal gradient test due to coating sintering, and later decrease under the thermal gradient cyclic test due to coating cracking and delamination. Thermal conductivity prediction models have been established for a ZrO2-(7- 8wt%)Y2O3 model coating system in terms of heat flux, time, and testing temperatures. The coating delamination accumulation is then assessed based on the observed thermal conductivity response under the combined steady-state and cyclic thermal gradient tests. The coating thermal gradient cycling associated delaminations and failure mechanisms under simulated engine heat-flux conditions will be discussed in conjunction with the coating sintering and fracture testing results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, J.M.; Tilly, L.J.
1983-01-01
This hydrographic study characterizes the Punta Tuna area as a potential site for an OTEC power plant. Seven cruises were conducted at approximately two month intervals. Each cruise included at least 22 hydrocast stations, six done as serial stations in a small area to reveal temporal and small scale variability. The results of the analysis of these data so far indicate a bi-seasonality in the dynamics. Mesoscale eddies and meanders are a common feature of the circulation pattern on Puerto Rico's southern coast. The time series studies have shown their existence of a very energetic internal wave field with relativelymore » large amplitude waves at the diurnal and semi-diurnal tidal frequencies. The results in terms of an OTEC power plant indicate the thermal resource to be at least a 20C thermal gradient in the upper 100 m year round.« less
NASA Astrophysics Data System (ADS)
Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin
2018-03-01
Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t<{{t}B} , the unsynchronized aggregation is dominant and the particles slightly migrate along the thermal gradient. When t>{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.
Thermal state and complex geology of a heterogeneous salty crust of Jupiter's satellite, Europa
Prieto-Ballesteros, O.; Kargel, J.S.
2005-01-01
The complex geology of Europa is evidenced by many tectonic and cryomagmatic resurfacing structures, some of which are "painted" into a more visible expression by exogenic alteration processes acting on the principal endogenic cryopetrology. The surface materials emplaced and affected by this activity are mainly composed of water ice in some areas, but in other places there are other minerals involved. Non-ice minerals are visually recognized by their low albedo and reddish color either when first emplaced or, more likely, after alteration by Europan weathering processes, especially sublimation and alteration by ionizing radiation. While red chromophoric material could be due to endogenic production of solid sulfur allotropes or other compounds, most likely the red substance is an impurity produced by radiation alteration of hydrated sulfate salts or sulphuric acid of mainly internal origin. If the non-ice red materials or their precursors have a source in the satellite interior, and if they are not merely trace contaminants, then they can play an important role in the evolution of the icy crust, including structural differentiation and the internal dynamics. Here we assume that these substances are major components of Europa's cryo/hydrosphere, as some models have predicted they should be. If this is an accurate assumption, then these substances should not be neglected in physical, chemical, and biological models of Europa, even if major uncertainties remain as to the exact identity, abundance, and distribution of the non-ice materials. The physical chemical properties of the ice-associated materials will contribute to the physical state of the crust today and in the geological past. In order to model the influence of them on the thermal state and the geology, we have determined the thermal properties of the hydrated salts. Our new lab data reveal very low thermal conductivities for hydrated salts compared to water ice. Lower conductivities of salty ice would produce steeper thermal gradients than in pure ice. If there are salt-rich layers inside the crust, forming salt beds over the seafloor or a briny eutectic crust, for instance, the high thermal gradients may promote endogenic geological activity. On the seafloor, bedded salt accumulations may exhibit high thermochemical gradients. Metamorphic and magmatic processes and possible niches for thermophilic life at shallow suboceanic depths result from the calculated thermal profiles, even if the ocean is very cold. ?? 2004 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2001-01-01
Plasma-sprayed mullite and BSAS coatings have been developed to protect SiC/SiC ceramic matrix composites from high temperature environmental attack. In this study, thermal conductivity and thermal barrier functions of these coating systems are evaluated using a laser high-heat-flux test rig. The effects of water vapor on coating thermal conductivity and durability are studied by using alternating furnace and laser thermal gradient cyclic tests. The influence of laser high thermal-gradient cycling on coating failure modes is also investigated.
Seismic anisotropy of 70 Ma Pacific-plate upper mantle
NASA Astrophysics Data System (ADS)
Mark, H. F.; Lizarralde, D.; Collins, J. A.; Miller, N. C.; Hirth, G.; Gaherty, J. B.; Evans, R. L.
2017-12-01
We present a new measurement of seismic anisotropy and velocity gradients in the Pacific-plate upper mantle based on data from the NoMelt experiment. The seismic velocity structure of oceanic lithosphere reflects the processes involved in its formation at mid-ocean ridges and subsequent evolution off-axis. Increasing mantle depletion with depth due to melt extraction predicts negative velocity gradients, as does cooling with age. Alignment of olivine by corner flow predicts azimuthal anisotropy. Some models predict the strength of anisotropy should decrease with depth. Measurements of uppermost mantle velocities have not fully verified these predictions. Observations of direct Pn phases demonstrate that positive velocity gradients exist; and anisotropy measurements, while consistent with strain-induced olivine alignment, vary widely and generally suggest weaker fabric development than is observed in ophiolite samples. These discrepancies raise questions about the extent to which mantle structure evolves through time due to processes such as cracking and alteration, and hinder the use of seismic measurements to make more detailed inferences on aspects of lithospheric formation processes. We have measured anisotropy and vertical velocity gradients to 10 km below the Moho on 70 Ma lithosphere between the Clarion and Clipperton fracture zones. The lithosphere at the study site has not been obviously affected by tectonic or magmatic events since its formation. We find 6.2% anisotropy at the Moho with a mean velocity of 8.14 km/s and the fast direction parallel to paleospreading. Velocity gradients are estimated at 0.02 km/s/km in the fast direction and near 0 km/s/km in the slow direction. The gradient estimates can be explained by aligned microcracks oriented perpendicular to spreading that close with depth. Cracks are expected to close by 10 km below the Moho. At that depth the strength of anisotropy increases to 9%, close to the strength estimated from ophiolite fabrics. These results are consistent with observed olivine fabrics and the predicted effects of lithospheric formation processes, and suggest that lithospheric evolution is modest even at 70 Ma, involving microcracks oriented by a stress field consistent with thermal contraction.
Atmospheric transport of trace elements and nutrients to the oceans
Chance, R.
2016-01-01
This paper reviews atmospheric inputs of trace elements and nutrients to the oceans in the context of the GEOTRACES programme and provides new data from two Atlantic GEOTRACES cruises. We consider the deposition of nitrogen to the oceans, which is now dominated by anthropogenic emissions, the deposition of mineral dust and related trace elements, and the deposition of other trace elements which have a mixture of anthropogenic and dust sources. We then consider the solubility (as a surrogate for bioavailability) of the various elements. We consider briefly the sources, atmospheric transport and transformations of these elements and how this results in strong spatial deposition gradients. Solubility of the trace elements also varies systematically between elements, reflecting their sources and cycling, and for some trace elements there are also systematic gradients in solubility related to dust loading. Together, these effects create strong spatial gradients in the inputs of bioavailable trace elements to the oceans, and we are only just beginning to understand how these affect ocean biogeochemistry. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035252
Ice ages and the thermal equilibrium of the earth, II
Adam, D.P.
1975-01-01
The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of glacial meltwater entering the oceans as a surface layer that acts to reduce the amount of energy available for glacial nourishment. This causes the ice sheet to melt back, which continues the supply of meltwater until the ice sheet diminishes to a size consistent with the reduced rate of nourishment. The meltwater supply then decreases, the rate of nourishment increases, and a new stadial begins. ?? 1975.
Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence.
Schorghofer, Norbert; Gille, Sarah T
2002-02-01
Probability density functions and conditional averages of velocity gradients derived from upper ocean observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equations. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives from the ocean observations agree with the forced simulations, although they differ from unforced simulations reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that large coherent eddies play only a minor role in generating the observed statistics.
Intensified Indian Ocean climate variability during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Thirumalai, K.; DiNezro, P.; Tierney, J. E.; Puy, M.; Mohtadi, M.
2017-12-01
Climate models project increased year-to-year climate variability in the equatorial Indian Ocean in response to greenhouse gas warming. This response has been attributed to changes in the mean climate of the Indian Ocean associated with the zonal sea-surface temperature (SST) gradient. According to these studies, air-sea coupling is enhanced due to a stronger SST gradient driving anomalous easterlies that shoal the thermocline in the eastern Indian Ocean. We propose that this relationship between the variability and the zonal SST gradient is consistent across different mean climate states. We test this hypothesis using simulations of past and future climate performed with the Community Earth System Model Version 1 (CESM1). We constrain the realism of the model for the Last Glacial Maximum (LGM) where CESM1 simulates a mean climate consistent with a stronger SST gradient, agreeing with proxy reconstructions. CESM1 also simulates a pronounced increase in seasonal and interannual variability. We develop new estimates of climate variability on these timescales during the LGM using δ18O analysis of individual foraminifera (IFA). IFA data generated from four different cores located in the eastern Indian Ocean indicate a marked increase in δ18O-variance during the LGM as compared to the late Holocene. Such a significant increase in the IFA-δ18O variance strongly supports the modeling simulations. This agreement further supports the dynamics linking year-to-year variability and an altered SST gradient, increasing our confidence in model projections.
The effects of thermal gradients on the Mars Observer Camera primary mirror
NASA Technical Reports Server (NTRS)
Applewhite, Roger W.; Telkamp, Arthur R.
1992-01-01
The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.
Farrell, Daniel J.; Sodabanlu, Hassanet; Wang, Yunpeng; Sugiyama, Masakazu; Okada, Yoshitaka
2015-01-01
The direct conversion of solar energy to electricity can be broadly separated into two main categories: photovoltaics and thermal photovoltaics, where the former utilizes gradients in electrical potential and the latter thermal gradients. Conventional thermal photovoltaics has a high theoretical efficiency limit (84%) but in practice cannot be easily miniaturized and is limited by the engineering challenges of sustaining large (>1,000 K) temperature gradients. Here we show a hot-carrier-based thermophotonic solar cell, which combines the compact nature of photovoltaic devices with the potential to reach the high-efficiency regime of thermal photovoltaics. In the device, a thermal gradient of 500 K is established by hot electrons, under Stokes illumination, rather than by raising the temperature of the material itself. Under anti-Stokes (sub-bandgap) illumination we observe a thermal gradient of ∼20 K, which is maintained by steady-state Auger heating of carriers and corresponds to a internal thermal up-conversion efficiency of 30% between the collector and solar cell. PMID:26541415
Modeling Issues and Results for Hydrogen Isotopes in NIF Materials
NASA Astrophysics Data System (ADS)
Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.
1998-11-01
The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.
Mesoscale Atmosphere-Ocean Coupling Enhances the Transfer of Wind Energy into the Ocean.
NASA Astrophysics Data System (ADS)
Byrne, D.; Munnich, M.; Frenger, I.; Gruber, N.
2016-02-01
Ocean eddies receive their energy mainly from the atmospheric energy input at large scales, while it is thought that direct atmosphere-ocean interactions at this scale contribute little to the eddies' energy balance. If anything, the prevailing view is that mesoscale atmosphere-ocean interactions lead to a reduction of the energy transfer from the atmosphere to the ocean. From satellite observations, modelling studies and theory, we present results in contrast to this. Specifically, we describe a novel mechanism that provides a new energy pathway from the atmosphere into the ocean that directly injects energy at the mesoscale, shortcutting the classical main pathway from the larger scales. Our hypothesis is based upon recent evidence that the `coupling strength' i.e., the magnitude of the atmospheric response to underlying sea surface temperature anomalies associated with eddies, is dependent upon the background wind speed. We argue that ocean eddies rarely live in an area of constant background wind, particularly not in the Southern Ocean, and that the horizontal gradients in the wind across ocean eddies lead to an increased/decreased work on one side of the eddy that is not compensated for on the other. Essentially, this asymmetry provides a `spin up' or a `spin down' forcing such that the net result is an increase in kinetic energy for both warm and cold core eddies that reside in a negative wind gradient and a decrease in kinetic energy when they are located in a positive wind gradient. This result has strong implications for the Southern Ocean, where large regions of positive and negative wind gradients exist on both sides of the wind maximum. We show from diagnosing the local eddy scale and domain wide energy balance in a high-resolution coupled atmosphere-ocean regional model in the South Atlantic, there are different energy transfers in the two regions and due to the different eddy abundances that this mechanism increases the net kinetic energy contained in the ocean mesoscale eddy field by up to 10-15%.
Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling.
Rustic, Gerald T; Koutavas, Athanasios; Marchitto, Thomas M; Linsley, Braddock K
2015-12-18
Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are poorly characterized due to a lack of evidence from the eastern equatorial Pacific. We reconstructed sea surface temperature, El Niño-Southern Oscillation (ENSO) activity, and the tropical Pacific zonal gradient for the past millennium from Galápagos ocean sediments. We document a mid-millennium shift (MMS) in ocean-atmosphere circulation around 1500-1650 CE, from a state with dampened ENSO and strong zonal gradient to one with amplified ENSO and weak gradient. The MMS coincided with the deepest LIA cooling and was probably caused by a southward shift of the intertropical convergence zone. The peak of the MCA (900-1150 CE) was a warm period in the eastern Pacific, contradicting the paradigm of a persistent La Niña pattern. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo
2017-01-01
A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.
NASA Astrophysics Data System (ADS)
Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing
2017-11-01
The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.
Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.
Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D
2018-08-24
By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.
Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream
NASA Astrophysics Data System (ADS)
Savelyev, I.; Thomas, L. N.; Smith, G. B.; Wang, Q.; Shearman, R. K.; Haack, T.; Christman, A. J.; Blomquist, B.; Sletten, M.; Miller, W. D.; Fernando, H. J. S.
2018-01-01
An unusual spatial pattern on the ocean surface was captured by thermal airborne swaths taken across a strong sea surface temperature front at the North Wall of the Gulf Stream. The thermal pattern on the cold side of the front resembles a staircase consisting of tens of steps, each up to ˜200 m wide and up to ˜0.3°C warm. The steps are well organized, clearly separated by sharp temperature gradients, mostly parallel and aligned with the primary front. The interpretation of the airborne imagery is aided by oceanographic measurements from two research vessels. Analysis of the in situ observations indicates that the front was unstable to symmetric instability, a type of overturning instability that can generate coherent structures with similar dimensions to the temperature steps seen in the airborne imagery. It is concluded that the images capture, for the first time, the surface temperature field of symmetric instability turbulence.
NASA Astrophysics Data System (ADS)
Dong, L.; McPhaden, M. J.
2016-12-01
Sea surface temperatures (SSTs) have been rising for decades in the Indian Ocean in response to greenhouse gas forcing. However, in this study we show that during the recent hiatus in global warming, a striking interhemispheric gradient in Indian Ocean SST trends developed around 2000, with relatively weak or little warming to the north of 10°S and accelerated warming to the south of 10oS. We present evidence from a wide variety of data sources that this interhemispheric gradient in SST trends is forced primarily by an increase of Indonesian Throughflow (ITF) transport from the Pacific into the Indian Ocean induced by stronger Pacific trade winds. This increased transport led to a depression of the thermocline that facilitated SST warming presumably through a reduction in the vertical turbulent transport of heat in the southern Indian Ocean. Surface wind changes in the Indian Ocean linked to the enhanced Walker circulation also may have contributed to thermocline depth variations and associated SST changes, with downwelling favorable wind stress curls between 10oS and 20oS and upwelling favorable wind stress curls between the equator and 10oS. In addition, the anomalous southwesterly wind stresses off the coast of Somalia favored intensified coastal upwelling and off-shore advection of upwelled water, which would have led to reduced warming of the northern Indian Ocean. Though highly uncertain, lateral heat advection associated with the ITF and surface heat fluxes may also have played a role in forming the interhemispheric SST gradient change.
NASA Astrophysics Data System (ADS)
Giorgioni, Martino; Weissert, Helmut; Bernasconi, Stefano M.; Hochuli, Peter A.; Keller, Christina E.; Coccioni, Rodolfo; Petrizzo, Maria Rose; Lukeneder, Alexander; Garcia, Therese I.
2015-03-01
During the mid-Cretaceous the Earth was characterized by peculiar climatic and oceanographic features, such as very high temperatures, smooth thermal meridional gradient, long-term rising sea level, and formation of oceanic gateways and seaways. At that time widespread deposition of micritic pelagic limestones, generally called chalk, occurred in deep pelagic settings as well as in epeiric seas, both at tropical and at high latitudes. The origin of such extensive chalk deposition in the mid-Cretaceous is a complex and still controversial issue, which involves the interaction of several different factors. In this work we address this topic from the paleoceanographic perspective, by investigating the contribution of major oceanic circulation changes. We characterize several stratigraphic sections from the Tethys and North Atlantic with litho-, bio-, and carbon isotope stratigraphy. Our data show a change between two different oceanic circulation modes happening in the Late Albian. The first is an unstable mode, with oceanographic conditions fluctuating frequently in response to rapid environmental and climatic changes, such as those driven by orbital forcing. The second mode is more stable, with better connection between the different oceanic basins, a more stable thermocline, more persistent current flow, better defined upwelling and downwelling areas, and a more balanced oceanic carbon reservoir. We propose that under the mid-Cretaceous paleogeographic and paleoclimatic conditions this change in oceanic circulation mode favored the beginning of chalk sedimentation in deep-water settings.
Reilly, John; Glisic, Branko
2018-01-01
Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University. PMID:29494496
Reilly, John; Glisic, Branko
2018-03-01
Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.
Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient
Fortunato, Caroline S.; Crump, Byron C.
2015-01-01
Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity. PMID:26536246
Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.
Fortunato, Caroline S; Crump, Byron C
2015-01-01
Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity.
Parametric instability of a non-uniform beam with thermal gradient and elastic end support
NASA Astrophysics Data System (ADS)
Kar, R. C.; Sujata, T.
1988-04-01
The influence of an elastic end support and a thermal gradient on the dynamic instability of a non-uniform cantilever beam subjected to a pulsating axial load has been studied. The results reveal that stiffening of the end support has a stabilizing effect, whereas increasing the thermal gradient has a destabilizing one.
Metamorphism, Plate Tectonics, and the Supercontinent Cycle
NASA Astrophysics Data System (ADS)
Brown, Michael
Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian; G-UHTM facies series rocks may be inferred at depth in younger, particularly Cenozoic orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the cyclic formation of supercontinents and their breakup, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those associated with the modern Pacific rim. Medium-temperature eclogite, high-pressure granulite metamorphism (E-HPGM), is also first recognized in the Neoarchean rock record and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E-HPGM belts are complementary to G-UHTM belts and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; they record the low thermal gradients associated with modern subduction. Lawsonite blueschists and eclogites (high-pressure metamorphism, HPM) and ultrahigh pressure metamorphism (UHPM) characterized by coesite (±lawsonite) or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers the low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although perhaps counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G-UHTM and E-HPGM belts since the Neoarchean manifests the onset of a 'Proterozoic plate tectonics regime', although the style of tectonics likely involved differences. The 'Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the 'modern plate tectonics regime' characterized by colder subduction and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of HPM-UHPM in the rock record. The age distribution of metamorphic belts that record extreme conditions of metamorphism is not uniform, and metamorphism occurs in periods that correspond to amalgamation of continental lithosphere into supercratons (e.g. Superia/Sclavia) or supercontinents (e.g. Nuna (Columbia), Rodinia, Gondwana, and Pangea).
NASA Astrophysics Data System (ADS)
Rodgers, K. B.; Fletcher, S. E. M.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.
2011-01-01
Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the pre-industrial period AD 950-1830. Although the Northern and Southern Hemispheric Δ14C records display similar variability, it is difficult from these data alone to distinguish between variations driven by 14CO2 production in the upper atmosphere (Stuiver, 1980) and exchanges between carbon reservoirs (Siegenthaler, 1980). Here we consider rather the Interhemispheric Gradient in atmospheric Δ14C as revealing of the background pre-bomb air-sea Disequilbrium Flux between 14CO2 and CO2. As the global maximum of the Disequilibrium Flux is squarely centered in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the Interhemispheric Gradient. The analysis presented here implies that changes to Southern Ocean windspeeds are likely a main driver of the observed variability in the Interhemispheric Gradient over 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds remain unkown.
TIGER: Development of Thermal Gradient Compensation Algorithms and Techniques
NASA Technical Reports Server (NTRS)
Hereford, James; Parker, Peter A.; Rhew, Ray D.
2004-01-01
In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external instruments. To address the problem of thermal gradients on the force measurement balance NASA-LaRC has initiated a research program called TIGER - Thermally-Induced Gradients Effects Research. The ultimate goals of the TIGER program are to: (a) understand the physics of the thermally-induced strain and its subsequent impact on load measurements and (b) develop a robust thermal gradient compensation technique. This paper will discuss the impact of thermal gradients on force measurement balances, specific aspects of the TIGER program (the design of a special-purpose balance, data acquisition and data analysis challenges), and give an overall summary.
Barron, J.A.
2003-01-01
Recently published diatom biochronologies provide accurate (to 0.1 m.y.) determination of the ages of appearances and disappearances of planktonic diatoms during the past 18 m.y. in the equatorial Pacific, North Pacific, and Southern Ocean. Comparisons of these records reveal the age of evolutionary appearance and extinction of species and their region of origin. Extinct planktonic diatom species have a mean longevity of 3.4 ?? 2.8 m.y. (SD, n = 53) in the equatorial Pacific, 2.5 ?? 2.1 m.y. (n = 52) in the North Pacific, and 2.9 ?? 2.3 m.y. (n = 38) in the Southern Ocean. The relatively large standard deviations are likely due to the inclusion of taxa that probably could be subdivided into two or more species. In the equatorial Pacific, evolutionary turnover of diatom species was relatively high between 18.0 and 6.0 Ma compared with the period after 6.0 Ma, presumably reflecting changing oceanic circulation and evolving water masses. In the North Pacific, evolutionary turnover peaked between 10.0 and 4.5 Ma, with increasing high-latitude cooling and enhanced provincialism. In the Southern Ocean, evolutionary turnover of endemic diatoms was greatest between 5.0 and 1.6 Ma, which provides evidence for the strong provincial character of Pliocene diatom assemblages. Taken as a whole, oceanic diatom assemblages became increasingly provincial in character during the late Miocene and Pliocene, as pole-to-equator thermal gradients increased and oceanic frontal systems were strengthened.
Decadal trends in deep ocean salinity and regional effects on steric sea level
NASA Astrophysics Data System (ADS)
Purkey, S. G.; Llovel, W.
2017-12-01
We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.
A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era
NASA Astrophysics Data System (ADS)
Rosenthal, Yair; Kalansky, Julie; Morley, Audrey; Linsley, Braddock
2017-01-01
The ocean constitutes the largest heat reservoir in the Earth's energy budget and thus exerts a major influence on its climate. Instrumental observations show an increase in ocean heat content (OHC) associated with the increase in greenhouse emissions. Here we review proxy records of intermediate water temperatures from sediment cores and corals in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record. These records suggests that intermediate waters were 1.5-2 °C warmer during the Holocene Thermal Maximum than in the last century. Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age. These changes are significantly larger than the temperature anomalies documented in the instrumental record. The implied large perturbations in OHC and Earth's energy budget are at odds with very small radiative forcing anomalies throughout the Holocene and Common Era. We suggest that even very small radiative perturbations can change the latitudinal temperature gradient and strongly affect prevailing atmospheric wind systems and hence air-sea heat exchange. These dynamic processes provide an efficient mechanism to amplify small changes in insolation into relatively large changes in OHC. Over long time periods the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that can mitigate or amplify small radiative perturbations as seen in the Holocene trend and Common Era anomalies, respectively. Evidently the ocean's interior is more sensitive to small external forcings than the global surface ocean because of the high sensitivity of heat exchange in the high-latitudes to climate variations.
Mantzouni, Irene; MacKenzie, Brian R
2010-06-22
Climate change will have major consequences for population dynamics and life histories of marine biota as it progresses in the twenty-first century. These impacts will differ in magnitude and direction for populations within individual marine species whose geographical ranges span large gradients in latitude and temperature. Here we use meta-analytical methods to investigate how recruitment (i.e. the number of new fish produced by spawners in a given year which subsequently grow and survive to become vulnerable to fishing gear) has reacted to temperature fluctuations, and in particular to extremes of temperature, in cod populations throughout the north Atlantic. Temperature has geographically explicit effects on cod recruitment. Impacts differ depending on whether populations are located in the upper (negative effects) or in the lower (positive effects) thermal range. The probabilities of successful year-classes in populations living in warm areas is on average 34 per cent higher in cold compared with warm seasons, whereas opposite patterns exist for populations living in cold areas. These results have implications for cod dynamics, distributions and phenologies under the influence of ocean warming, particularly related to not only changes in the mean temperature, but also its variability (e.g. frequency of exceptionally cold or warm seasons).
Method and apparatus for determining vertical heat flux of geothermal field
Poppendiek, Heinz F.
1982-01-01
A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.
NASA Astrophysics Data System (ADS)
Wang, Jian; Li, Chun-Feng
2015-01-01
The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.
Controlling Thermal Gradients During Silicon Web Growth
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Mchugh, J. P.; Skutch, M. E.; Piotrowski, P. A.
1983-01-01
Strategically placed slot helps to control critical thermal gradients in crucible for silicon web growth. Slot thermally isolates feed region of crucible from growth region; region where pellets are added stays hot. Heat absorbed by pellets during melting causes thermal unbalance than upsets growth conditions.
Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin
2015-01-01
Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21–27°C) and southern (16.5°N, 28–33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28–29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals. PMID:25754672
Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R; Wahl, Martin
2015-03-10
Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.
High-silica Rocks from Oceans, Arcs and Ophiolites: What Can They Tell Us About Ophiolite Origins?
NASA Astrophysics Data System (ADS)
Perfit, M. R.; Lundstrom, C.; Wanless, V. D.
2015-12-01
Although the volumes of high-silica rocks in submarine oceanic and supra-subduction zone environments are not well constrained, their common occurrence, field relations and compositions have led to various hypotheses suggesting that silicic intrusions (plagiogranites) in ophiolites formed by similar processes to high-silica volcanic rocks at mid-ocean ridge (MOR) or island arc environments. Geochemical attributes of andesite-rhyolite suites from MOR (East Pacific Rise, Juan de Fuca Ridge, Galapagos Spreading Center, Pacific-Antarctic Rise) and back-arc basins (Manus Basin, Lau Basin, East Scotia Ridge) show both similarities and differences to plagiogranitic suites (qtz. diorite-tonalite-trondhjemite) from ophiolites (Troodos and Semail). Both suites are commonly attributed to: extreme (>90%) fractional crystallization of basaltic melts; fractional crystallization coupled with assimilation of hydrated oceanic crust (AFC); or partial melting of preexisting crust. Normalized incompatible trace element patterns show either highly elevated, relatively flat patterns with negative Eu and Sr anomalies similar to high silica volcanics or have complimentary patterns with low abundance, more depleted patterns with positive Eu and Sr anomalies. None of the mechanisms, however, provide a consistent explanation for the compositional and isotopic variations that are observed among plagiogranites. In fact, ophiolitic plagiogranites can have at least two petrogenetic signatures - one indicative of a MORB parent and another that has been related to later, off-axis formation associated with supra-subduction zone magmatism. Based on thermal gradient experiments, the systematic changes in Fe and Si stable isotope ratios with differentiation observed in ophiolite and MOR high-silica suites may result from melt-mineral reactions within a temperature gradient near the boundaries of MOR magma lenses. Comparative major element, trace element and isotopic data will be presented from MOR, BAB and ophiolites to address questions of their origins. Although the mechanism(s) by which plagiogranite bodies form and their relationship to andesitic to rhyolitic lavas still remains enigmatic geochemical comparisons between them provide important clues toward understanding their petrotectonic origins.
NASA Astrophysics Data System (ADS)
Williams, T.; Hillenbrand, C. D.; Piotrowski, A. M.; Smith, J.; Hodell, D. A.; Frederichs, T.; Allen, C. S.
2014-12-01
Changes in stable carbon isotopes (δ13C) recorded in benthic foraminiferal calcite reflect that of the dissolved inorganic carbon (DIC) of ambient seawater, and thus are used to reconstruct past changes in water mass mixing. Records of benthic foraminiferal δ13C from the Atlantic Ocean have revealed the development of a sharp vertical δ13C gradient between 2300-2500m water depth during successive glacial periods throughout the Late Quaternary, with extremely negative δ13C values recorded below this depth. It had been hypothesised that this gradient resulted from an increased stratification of water masses within the glacial Atlantic Ocean, and that these extreme δ13C values originated in the Southern Ocean. However the mechanisms behind the formation of this gradient and extreme δ13C depletion have remained unclear. This is in part due to the poor preservation of calcareous microfossils in the corrosive waters below 2500-3000m found in the Southern Ocean, which hampers our understanding of this key region. Here we present a unique new δ13C deep water record measured on benthic foraminifera (Cibicidoides spp.) from a sediment core recovered from 2100m water depth in the Amundsen Sea, south-eastern Pacific sector of the Southern Ocean. The site is bathed in Lower Circumpolar Deep Water (LCDW) today, and combined palaeomagnetic and oxygen isotope stratigraphy show that the sediments continuously span at least the last 890 ka. A comparison of this new δ13C data with other LCDW records from ODP Sites 1089/1090 in the South Atlantic and ODP Site 1123 in the Southwest Pacific demonstrate a clear spatial gradient in circum-Antarctic LCDW during glacial periods. The pool of extremely depleted glacial deep marine δ13C is restricted to the Atlantic Sector of the Southern Ocean, with increasingly positive δ13C values found in the Southwest Pacific and the south-eastern Pacific sector of the Southern Ocean. This implies that the δ13C depletion in the deep glacial Atlantic was sourced in the Atlantic sector of the Southern Ocean, and remained limited to this sector. This finding indicates either increased supply of relatively more positive δ13C deep waters or increased vertical mixing in the Indian and Pacific sectors of the glacial Southern Ocean.
Method and apparatus for flash evaporation of liquids
Bharathan, Desikan
1984-01-01
A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.
Method and apparatus for flash evaporation of liquids
Bharathan, D.
1984-01-01
A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.
NASA Astrophysics Data System (ADS)
Russell, Michael J.; Murray, Alison E.; Hand, Kevin P.
2017-12-01
Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs - relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts - could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as "electron disposal units" for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes.
Exact Solutions for Wind-Driven Coastal Upwelling and Downwelling over Sloping Topography
NASA Astrophysics Data System (ADS)
Choboter, P.; Duke, D.; Horton, J.; Sinz, P.
2009-12-01
The dynamics of wind-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the variables; however, dependence in the cross-shore and vertical directions is retained. Additionally, density and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal wind. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of density and velocity during downwelling are displayed by the analytical model.
A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic
Finkel, Z. V.; Sebbo, J.; Feist-Burkhardt, S.; Irwin, A. J.; Katz, M. E.; Schofield, O. M. E.; Young, J. R.; Falkowski, P. G.
2007-01-01
The size structure of phytoplankton assemblages strongly influences energy transfer through the food web and carbon cycling in the ocean. We determined the macroevolutionary trajectory in the median size of dinoflagellate cysts to compare with the macroevolutionary size change in other plankton groups. We found the median size of the dinoflagellate cysts generally decreases through the Cenozoic. Diatoms exhibit an extremely similar pattern in their median size over time, even though species diversity of the two groups has opposing trends, indicating that the macroevolutionary size change is an active response to selection pressure rather than a passive response to changes in diversity. The changes in the median size of dinoflagellate cysts are highly correlated with both deep ocean temperatures and the thermal gradient between the surface and deep waters, indicating the magnitude and frequency of nutrient availability may have acted as a selective factor in the macroevolution of cell size in the plankton. Our results suggest that climate, because it affects stratification in the ocean, is a universal abiotic driver that has been responsible for macroevolutionary changes in the size structure of marine planktonic communities over the past 65 million years of Earth's history. PMID:18077334
2008-09-01
Structure and the Western North Pacific Category 5 Typhoons. Part 1: Ocean Features and the Category 5 Typhoons’ Intensification 5a. CONTRACT NUMBER...intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ &climatological upper-ocean thermal structure data, best-track...Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 3288 MONTHLY WEATHER REVIEW VOLUME 136 Upper-Ocean Thermal Structure and the Western North
Ryan, John P; Green, Jonathan R; Espinoza, Eduardo; Hearn, Alex R
2017-01-01
Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100-350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources.
Green, Jonathan R.; Espinoza, Eduardo; Hearn, Alex R.
2017-01-01
Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100–350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources. PMID:28854201
CNT based thermal Brownian motor to pump water in nanodevices
NASA Astrophysics Data System (ADS)
Oyarzua, Elton; Zambrano, Harvey; Walther, J. H.
2016-11-01
Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by fixing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial asymmetry drive the water flow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed water flow in CNTs of 0.94, 1.4 and 2.0 nm in diameter, reaching a maximum velocity of 5 m/s for a thermal gradient of 3.3 K/nm. The proposed thermal motor is capable of delivering a continuous flow throughout a CNT, providing a useful tool for driving liquids in nanofluidic devices by exploiting thermal gradients. We aknowledge partial support from Fondecyt project 11130559.
Emerging role of Indian ocean on Indian northeast monsoon
NASA Astrophysics Data System (ADS)
Yadav, Ramesh Kumar
2013-07-01
This study examines the emerging role of Indian Ocean sea surface temperature (SST) on the inter-annual variability (IAV) of Indian north-east monsoon rainfall (NEMR). The IAV of NEMR is associated with the warm SST anomaly over east Bay-of-Bengal (BoB) (88.5oE-98.5oE; 8.5oN-15.5oN) and cool SST anomaly over east equatorial Indian Ocean (80.5oE-103.5oE; 6.5oS-3.5oN). The gradient of SST between these boxes (i.e. northern box minus southern box) shows strong and robust association with the Indian NEMR variability in the recent decades. For establishing the teleconnections, SST, mean sea level pressure, North Indian Ocean tropical storm track, and circulation data have been used. The study reveals that during the positive SST gradient years, the inter-tropical convergence zone (ITCZ) shifts northwards over the East Indian Ocean. The tropical depressions, storms and cyclones formed in the North Indian Ocean moves more zonally and strike the southern peninsular India and hence excess NEMR. While, during the negative SST gradient years, the ITCZ shifts southwards over the Indian Ocean. The tropical depressions, storms and cyclones formed in the North Indian Ocean moves more northwestward direction and after crossing 15oN latitude re-curve to north-east direction towards head BoB and misses southern peninsular India and hence, deficient NEMR.
Osland, Michael J.; Day, Richard H.; Hall, Courtney T.; Brumfield, Marisa D; Dugas, Jason; Jones, William R.
2017-01-01
Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6 °C). We expect that in the past 121 years, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates.
Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean
2010-06-01
meridional transport of heat (Hoskins and Valdes, 1990). Formation of North Atlantic Subtropical Mode Water is thought to take place during the...North Atlantic Ocean MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...Oceanographic Institution MITIWHOI 2010-16 Near-inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean by
Ocean thermal energy conversion: Perspective and status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, A.; Hillis, D.L.
1990-01-01
The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smallermore » (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.« less
Ocean thermal energy conversion: Perspective and status
NASA Astrophysics Data System (ADS)
Thomas, Anthony; Hillis, David L.
The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.
Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow
NASA Astrophysics Data System (ADS)
Nunn, J. A.
2008-12-01
Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in surface or water bottom temperature. Model results from both the North Slope of Alaska and the Gulf of Mexico are compared.
Lah, Roslizawati Ab; Benkendorff, Kirsten; Bucher, Daniel
2017-02-01
Predicted global climate change has prompted numerous studies of thermal tolerances of marine species. The upper thermal tolerance is unknown for most marine species, but will determine their vulnerability to ocean warming. Gastropods in the family Turbinidae are widely harvested for human consumption. To investigate the responses of turbinid snails to future conditions we determined critical thermal maxima (CTMax) and preferred temperatures of Turbo militaris and Lunella undulata from the tropical-temperate overlap region of northern New South Wales, on the Australian east coast. CTMax were determined at two warming rates: 1°C/30min and 1°C/12h. The number of snails that lost attachment to the tank wall was recorded at each temperature increment. At the faster rate, T. militaris had a significantly higher CTMax (34.0°C) than L. undulata (32.2°C). At the slower rate the mean of both species was lower and there was no significant difference between them (29.4°C for T. militaris and 29.6°C for L. undulata). This is consistent with differences in thermal inertia possibly allowing animals to tolerate short periods at higher temperatures than is possible during longer exposure times, but other mechanisms are not discounted. The thermoregulatory behaviour of the turban snails was determined in a horizontal thermal gradient. Both species actively sought out particular temperatures along the gradient, suggesting that behavioural responses may be important in ameliorating short-term temperature changes. The preferred temperatures of both species were higher at night (24.0°C and 26.0°C) than during the day (22.0°C and 23.9°C). As the snails approached their preferred temperature, net hourly displacement decreased. Preferred temperatures were within the average seasonal seawater temperature range in this region. However, with future predicted water temperature trends, the species could experience increased periods of thermal stress, possibly exceeding CTMax and potentially leading to range contractions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.
Righter, K; Ghiorso, M S
2012-07-24
Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO(2)), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO(2) that is based on the ratio of Fe and FeO [called "ΔIW (ratio)" hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO(2) + O(2) = Fe(2)SiO(4) to calculate absolute fO(2) and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO(2) in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO(2) may evolve from high to low fO(2) during Earth (and other differentiated bodies) accretion. Any modeling of core formation and metal-silicate equilibrium should take these effects into account.
GOCE, Satellite Gravimetry and Antarctic Mass Transports
NASA Astrophysics Data System (ADS)
Rummel, Reiner; Horwath, Martin; Yi, Weiyong; Albertella, Alberta; Bosch, Wolfgang; Haagmans, Roger
2011-09-01
In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth's gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2003-01-01
The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.
Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models
NASA Astrophysics Data System (ADS)
Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.
2017-03-01
We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.
Reptile Embryos Lack the Opportunity to Thermoregulate by Moving within the Egg.
Telemeco, Rory S; Gangloff, Eric J; Cordero, Gerardo A; Mitchell, Timothy S; Bodensteiner, Brooke L; Holden, Kaitlyn G; Mitchell, Sarah M; Polich, Rebecca L; Janzen, Fredric J
2016-07-01
Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos to control their fate far more than historically assumed. We assessed the opportunity for embryos to behaviorally thermoregulate in nature by examining thermal gradients within natural nests and eggs of the common snapping turtle (Chelydra serpentina; which displays embryonic thermal taxis) and by simulating thermal gradients within nests across a range of nest depths, egg sizes, and soil types. We observed little spatial thermal variation within nests, and thermal gradients were poorly transferred to eggs. Furthermore, thermal gradients sufficiently large and constant for behavioral thermoregulation were not predicted to occur in our simulations. Gradients of biologically relevant magnitude have limited global occurrence and reverse direction twice daily when they do exist, which is substantially faster than embryos can shift position within the egg. Our results imply that reptile embryos will rarely, if ever, have the opportunity to behaviorally thermoregulate by moving within the egg. We suggest that embryonic thermal taxis instead represents a play behavior, which may be adaptive or selectively neutral, and results from the mechanisms for behavioral thermoregulation in free-living stages coming online prior to hatching.
NASA Astrophysics Data System (ADS)
Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele
2018-03-01
In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.
An ocean dynamical thermostat—dominant in observations, absent in climate models
NASA Astrophysics Data System (ADS)
Coats, S.; Karnauskas, K. B.
2016-12-01
The pattern of sea surface temperature (SST) in the tropical Pacific Ocean is coupled to the Walker circulation, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease in the zonal SST gradient is a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While the observed increase in the zonal SST gradient is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a seasonal weakening of the Walker circulation and thus can reconcile disparate observations of changes to the atmosphere and ocean in the equatorial Pacific. CMIP5 models do not capture the magnitude of this response of the EUC to anthropogenic radiative forcing potentially because of biases in the sensitivity of the EUC to changes in zonal wind stress, like the weakening Walker circulation. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific.
Minimum mass design of large-scale space trusses subjected to thermal gradients
NASA Technical Reports Server (NTRS)
Williams, R. Brett; Agnes, Gregory S.
2006-01-01
Lightweight, deployable trusses are commonly used to support space-borne instruments including RF reflectors, radar panels, and telescope optics. While in orbit, these support structures are subjected to thermal gradients that vary with altitude, location in orbit, and self-shadowing. Since these instruments have tight dimensional-stability requirements, their truss members are often covered with multi-layer insulation (MLI) blankets to minimize thermal distortions. This paper develops a radiation heat transfer model to predict the thermal gradient experienced by a triangular truss supporting a long, linear radar panel in Medium Earth Orbit (MEO). The influence of self-shadowing effects of the radar panel are included in the analysis, and the influence of both MLI thickness and outer covers/coatings on the magnitude of the thermal gradient are formed into a simple, two-dimensional analysis. This thermal model is then used to size and estimate the structural mass of a triangular truss that meets a given set of structural requirements.
Qu, Zhechao; Werhahn, Olav; Ebert, Volker
2018-06-01
The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.
NASA Astrophysics Data System (ADS)
Seidov, D.; Haupt, B. J.
2003-12-01
The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.
NASA Astrophysics Data System (ADS)
Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian
2014-05-01
The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.
Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board
NASA Technical Reports Server (NTRS)
Breeding, Shawn; Khodabandeh, Julia
2002-01-01
Contents include the following: Quench Module Insert (QMI) science requirements. QMI interfaces. QMI design layout. QMI thermal analysis and design methodology. QMI bread board testing and instrumentation approach. QMI thermal probe design parameters. Design features for gradient measurement. Design features for heated zone measurements. Thermal gradient analysis results. Heated zone analysis results. Bread board thermal probe layout. QMI bread board correlation and performance. Summary and conclusions.
Directional solidification at ultra-high thermal gradient
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Lee, D. S.; Neff, M. A.
1980-01-01
A high gradient controlled solidification (HGC) furnace was designed and operated at gradients up to 1800 C/cm to continuously produce aluminum alloys. Rubber '0' rings for the water cooling chamber were eliminated, while still maintaining water cooling directly onto the solidified metal. An HGC unit for high temperature ferrous alloys was also designed. Successful runs were made with cast iron, at thermal gradients up to 500 C/cm.
Thermal lens elimination by gradient-reduced zone coupling of optical beams
Page, Ralph H.; Beach, Raymond J.
2000-01-01
A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.
The US Navy Coupled Ocean-Wave Prediction System
2014-09-01
Stokes drift to be the dominant wave effect and that it increased surface drift speeds by 35% and veered the current in the direction of the wind...ocean model has been modified to incorporate the effect of the Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum...for fourth-order differences for horizontal baroclinic pressure gradients and for interpolation of Coriolis terms. There is an option to use the
Mantle discontinuities mapped by inversion of global surface wave data
NASA Astrophysics Data System (ADS)
Khan, A.; Boschi, L.; Connolly, J.
2009-12-01
We invert global observations of fundamental and higher order Love and Rayleigh surface-wave dispersion data jointly at selected locations for 1D radial profiles of Earth's mantle composition, thermal state and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties, provide us with a range of profiles of composition, temperature and anisotropy. This methodology presents an important complement to conventional seismic tomograpy methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges and subduction of chemically stratified lithosphere. Compared with PREM and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ), and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle stronger lateral variations are observed. The TZ structure, and thus location of the phase transitions in the Olivine system as well as their physical properties, are found to be controlled to a large degree by thermal rather than compositional variations. The retrieved anistropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.
NASA Astrophysics Data System (ADS)
Khan, A.; Boschi, L.; Connolly, J. A. D.
2009-09-01
We invert global observations of fundamental and higher-order Love and Rayleigh surface wave dispersion data jointly at selected locations for 1-D radial profiles of Earth's mantle composition, thermal state, and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties provide us with a range of profiles of composition, temperature, and anisotropy. This methodology presents an important complement to conventional seismic tomography methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges, and subduction of chemically stratified lithosphere. Compared with preliminary reference Earth model (PREM) and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ) and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle, stronger lateral variations are observed. The retrieved anisotropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.
De Monte, Silvia; Cotté, Cedric; d'Ovidio, Francesco; Lévy, Marina; Le Corre, Matthieu; Weimerskirch, Henri
2012-12-07
Marine top predators such as seabirds are useful indicators of the integrated response of the marine ecosystem to environmental variability at different scales. Large-scale physical gradients constrain seabird habitat. Birds however respond behaviourally to physical heterogeneity at much smaller scales. Here, we use, for the first time, three-dimensional GPS tracking of a seabird, the great frigatebird (Fregata minor), in the Mozambique Channel. These data, which provide at the same time high-resolution vertical and horizontal positions, allow us to relate the behaviour of frigatebirds to the physical environment at the (sub-)mesoscale (10-100 km, days-weeks). Behavioural patterns are classified based on the birds' vertical displacement (e.g. fast/slow ascents and descents), and are overlaid on maps of physical properties of the ocean-atmosphere interface, obtained by a nonlinear analysis of multi-satellite data. We find that frigatebirds modify their behaviours concurrently to transport and thermal fronts. Our results suggest that the birds' co-occurrence with these structures is a consequence of their search not only for food (preferentially searched over thermal fronts) but also for upward vertical wind. This is also supported by their relationship with mesoscale patterns of wind divergence. Our multi-disciplinary method can be applied to forthcoming high-resolution animal tracking data, and aims to provide a mechanistic understanding of animals' habitat choice and of marine ecosystem responses to environmental change.
The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment
NASA Astrophysics Data System (ADS)
Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman
2017-10-01
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.
Suppression of Electron Thermal Conduction by Whistler Turbulence in a Sustained Thermal Gradient
NASA Astrophysics Data System (ADS)
Roberg-Clark, G. T.; Drake, J. F.; Reynolds, C. S.; Swisdak, M.
2018-01-01
The dynamics of weakly magnetized collisionless plasmas in the presence of an imposed temperature gradient along an ambient magnetic field is explored with particle-in-cell simulations and modeling. Two thermal reservoirs at different temperatures drive an electron heat flux that destabilizes off-angle whistler-type modes. The whistlers grow to large amplitude, δ B /B0≃1 , and resonantly scatter the electrons, significantly reducing the heat flux. Surprisingly, the resulting steady-state heat flux is largely independent of the thermal gradient. The rate of thermal conduction is instead controlled by the finite propagation speed of the whistlers, which act as mobile scattering centers that convect the thermal energy of the hot reservoir. The results are relevant to thermal transport in high-β astrophysical plasmas such as hot accretion flows and the intracluster medium of galaxy clusters.
40 CFR 230.25 - Salinity gradients.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... those organisms that are adapted to freshwater environments. It may also affect municipal water supplies... fresh or salt water may change existing salinity gradients. For example, partial blocking of the...
NASA Astrophysics Data System (ADS)
Vance, S.; Brown, J. M.; Bollengier, O.; Journaux, B.; Sotin, C.; Choukroun, M.; Barnes, R.
2014-12-01
Supporting life in icy world or exoplanet oceans may require global seafloor chemical reactions between water and rock. Such interactions have been regarded as limited in larger icy worlds such as Ganymede and Titan, where ocean depths approach 800 km and GPa pressures (>10katm). If the oceans are composed of pure water, such conditions are consistent with the presence of dense ice phases V and VI that cover the rocky seafloor. Exoplanets with oceans can obtain pressures sufficient to generate ices VII and VIII. We have previously demonstrated temperature gradients in such oceans on the order of 20 K or more, resulting from fluid compressibility in a deep adiabatic ocean based on our experimental work. Accounting for increases in density for highly saline oceans leads to the possibility of oceans perched under and between high pressure ices. Ammonia has the opposite effect, instead decreasing ocean density, as reported by others and confirmed by our laboratory measurements in the ammonia water system. Here we report on the completed equation of state for aqueous ammonia derived from our prior measurements and optimized global b-spline fitting methods We use recent diamond anvil cell measurements for water and ammonia to extend the equation of state to 400°C and beyond 2 GPa, temperatures and pressures applicable to icy worlds and exoplanets. Densities show much less temperature dependence but comparabe high-pressure derivatives to previously published ammonia-water properties derived for application to Titan (Croft et al. 1988). Thermal expansion is in better agreement with the more self-consistent equation of state of Tillner-Roth and Friend (1998). We also describe development of a planetary NaCl equation of state using recent measurements of phase boundaries and sound speeds. We examine implications of realistic ocean-ice thermodynamics for Titan and exoplanet interiors using the methodology recently applied to Ganymede for oceans dominated by MgSO4. High pressure ices should not be present on Titan if its ocean composition is Dead-Sea like, as recently inferred from tidal dissipation and topography, and if Titan's moment of inertia has the published value of C/MR2 = 0.3414.
Correction of Thermal Gradient Errors in Stem Thermocouple Hygrometers
Michel, Burlyn E.
1979-01-01
Stem thermocouple hygrometers were subjected to transient and stable thermal gradients while in contact with reference solutions of NaCl. Both dew point and psychrometric voltages were directly related to zero offset voltages, the latter reflecting the size of the thermal gradient. Although slopes were affected by absolute temperature, they were not affected by water potential. One hygrometer required a correction of 1.75 bars water potential per microvolt of zero offset, a value that was constant from 20 to 30 C. PMID:16660685
Ocean biogeochemistry modeled with emergent trait-based genomics
NASA Astrophysics Data System (ADS)
Coles, V. J.; Stukel, M. R.; Brooks, M. T.; Burd, A.; Crump, B. C.; Moran, M. A.; Paul, J. H.; Satinsky, B. M.; Yager, P. L.; Zielinski, B. L.; Hood, R. R.
2017-12-01
Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and “omics” data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean.
The OTEC connection - Power from the sea
NASA Astrophysics Data System (ADS)
Petty, D.
1980-02-01
OTEC is discussed as a means of contributing to United States energy self-sufficiency. The technology involved in the conversion of ocean thermal gradients found in tropical regions to electricity transmittable by submarine cable is examined, with attention given to the operating principles of open- and closed-cycle Rankine engines and design considerations for the evaporators, condensers and heat exchangers. The environmental impact and economics of OTEC are considered, and Department of Energy research projects in areas of OTEC technology including heat transfer, biofouling, environmental assessment, underwater electrical transmission and mooring and test plants are indicated. It is pointed out that US islands presently offer excellent markets for early commercial OTEC plants, with Gulf Coast markets requiring further technology developments to be economically attractive.
NASA Astrophysics Data System (ADS)
Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge
2017-04-01
Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has been identified as a reflector in the wide-angle seismic data. These delamination planes outcrop at the interplate contact creating weak zones that focus the tectonic deformation in the upper plate. An incoming oceanic crust made of serpentinized mantle rocks is consistent with a depressed geothermal gradient in the trench due to water alteration and heat generation at depth due to serpentinite dehydration. This fluid-rich altered and weak oceanic crust likely reduces the seismic activity along this margin segment.
Performance benefits from pulsed laser heating in heat assisted magnetic recording
NASA Astrophysics Data System (ADS)
Xu, B. X.; Cen, Z. H.; Goh, J. H.; Li, J. M.; Toh, Y. T.; Zhang, J.; Ye, K. D.; Quan, C. G.
2014-05-01
Smaller cross track thermal spot size and larger down track thermal gradient are desired for increasing the density of heat assisted magnetic recording. Both parameters are affected significantly by the thermal energy accumulation and diffusion in the recording media. Pulsed laser heating is one of the ways to reduce the thermal diffusion. In this paper, we describe the benefits from the pulsed laser heating such as the dependences of the cross track thermal width, down track thermal gradient, the required laser pulse/average powers, and the transducer temperature rise on the laser pulse width at different media thermal properties. The results indicate that as the pulse width decreases, the thermal width decreases, the thermal gradient increases, the required pulse power increases and the average power decreases. For shorter pulse heating, the effects of the medium thermal properties on the thermal performances become weaker. This can greatly relax the required thermal properties of the media. The results also show that the pulsed laser heating can effectively reduce the transducer temperature rise and allow the transducer to reach its "dynamically" stable temperature more quickly.
Sea surface salinity fronts in the Tropical Atlantic Ocean
NASA Astrophysics Data System (ADS)
Ruiz-Etcheverry, L.; Maximenko, N. A.; Melnichenko, O.
2016-12-01
Marine fronts are narrow boundaries that separate water masses of different properties. These fronts are caused by various forcing and believed to be an important component of the coupled ocean-atmosphere system, particularly in the tropical oceans. In this study, we use sea surface salinity (SSS) observations from Aquarius satellite to investigate the spatial structure and temporal variability of SSS fronts in the tropical Atlantic. A number of frontal features have been identified. The mean magnitude of the SSS gradient is maximum near the mouth of the Congo River (0.3-0.4 psu/100km). Relative maxima are also observed in the Inter Tropical Convergence Zone (ITCZ), the Gulf of Guinea, and the mouth of the Amazon River. The pattern of the magnitude of the SSS anomaly gradient revealed that the interaction between river plumes and saltier interior water is complex and highly variable during the three-year observation period. The variability of the magnitude of the density anomaly gradient computed from Aquarius SSS and Reynolds SST is also discussed. Images of the ocean color are utilized to trace the movement of the Congo and Amazon River plumes and compare them with the magnitude of the SSS gradient. Additionally, we analyze de circulation associated with the Amazon plume with altimetry data, and the vertical structure and its changes in time through Argo profiles.
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.
2003-01-01
In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.
2003-01-01
In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.
Millisecond ordering of block-copolymer films via photo-thermal gradients
Majewski, Pawel W.; Yager, Kevin G.
2015-03-12
For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in lessmore » than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.« less
NASA Astrophysics Data System (ADS)
Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.
2018-06-01
Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6 × 9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.
NASA Astrophysics Data System (ADS)
Riel, N.; Guillot, S.; Jaillard, E.; Martelat, J.-E.; Paquette, J.-L.; Schwartz, S.; Goncalves, P.; Duclaux, G.; Thebaud, N.; Lanari, P.; Janots, E.; Yuquilema, J.
2013-01-01
In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure-temperature (P-T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750-820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40-45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U-Th-Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas-Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the South American margin during the late Triassic. We propose that crustal anatexis is related to an anomaly that arose during subduction of the Panthalassa ocean under the South American margin. Slab verticalization or slab break-off can be invoked as the origin of the upwelling of the asthenosphere.
Osland, Michael J; Day, Richard H; Hall, Courtney T; Brumfield, Marisa D; Dugas, Jason L; Jones, William R
2017-01-01
Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6°C). We expect that in the past 121 yr, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates. © 2016 by the Ecological Society of America.
Russell, Michael J; Murray, Alison E; Hand, Kevin P
2017-12-01
Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs-relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts-could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as "electron disposal units" for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes. Key Words: Biofilms-Europa-Extraterrestrial life-Hydrothermal systems. Astrobiology 17, 1265-1273.
Murray, Alison E.; Hand, Kevin P.
2017-01-01
Abstract Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs—relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts—could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as “electron disposal units” for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes. Key Words: Biofilms—Europa—Extraterrestrial life—Hydrothermal systems. Astrobiology 17, 1265–1273. PMID:29016193
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1999-01-01
Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.
NASA Astrophysics Data System (ADS)
Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.
2018-04-01
Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.
NASA Astrophysics Data System (ADS)
Hurst, N. W.; Kusznir, N. J.
2005-05-01
A new method of inverting satellite gravity at rifted continental margins to give crustal thickness, incorporating a lithosphere thermal correction, has been developed which does not use a priori information about the location of the ocean-continent transition (OCT) and provides an independent prediction of OCT location. Satellite derived gravity anomaly data (Sandwell and Smith 1997) and bathymetry data (Gebco 2003) are used to derive the mantle residual gravity anomaly which is inverted in 3D in the spectral domain to give Moho depth. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to -380 mgal), which must be corrected for in order to determine Moho depth. This thermal gravity correction may be determined for oceanic lithosphere using oceanic isochron data, and for the thinned continental margin lithosphere using margin rift age and beta stretching estimates iteratively derived from crustal basement thickness determined from the gravity inversion. The gravity inversion using the thermal gravity correction predicts oceanic crustal thicknesses consistent with seismic observations, while that without the thermal correction predicts much too great oceanic crustal thicknesses. Predicted Moho depth and crustal thinning across the Hatton and Faroes rifted margins, using the gravity inversion with embedded thermal correction, compare well with those produced by wide-angle seismology. A new gravity inversion method has been developed in which no isochrons are used to define the thermal gravity correction. The new method assumes all lithosphere to be initially continental and a uniform lithosphere stretching age is used corresponding to the time of continental breakup. The thinning factor produced by the gravity inversion is used to predict the thickness of oceanic crust. This new modified form of gravity inversion with embedded thermal correction provides an improved estimate of rifted continental margin crustal thinning and an improved (and isochron independent) prediction of OCT location. The new method uses an empirical relationship to predict the thickness of oceanic crust as a function of lithosphere thinning factor controlled by two input parameters: a critical thinning factor for the start of ocean crust production and the maximum oceanic crustal thickness produced when the thinning factor = 1, corresponding to infinite lithosphere stretching. The disadvantage of using a uniform stretching age corresponding to the age of continental breakup is that the inversion fails to predict increasing thermal gravity correction towards the ocean ridge and incorrectly predicts thickening of oceanic crust with decreasing oceanic age. The new gravity inversion method has been applied to N. Atlantic rifted margins. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
A warm thermal enclave in the late Pleistocene of the south-eastern United States.
Russell, Dale A; Rich, Fredrick J; Schneider, Vincent; Lynch-Stieglitz, Jean
2009-05-01
Physical and biological evidence supports the probable existence of an enclave of relatively warm climate located between the Southern Appalachian Mountains and the Atlantic Ocean in the United States during the Last Glacial Maximum. The region supported a mosaic of forest and prairie habitats inhabited by a "Floridian" ice-age biota. Plant and vertebrate remains suggest an ecological gradient towards Cape Hatteras (35 degreesN) wherein forests tended to replace prairies, and browsing proboscideans tended to replace grazing proboscideans. Beyond 35 degreesN, warm waters of the Gulf Stream were deflected towards the central Atlantic, and a cold-facies biota replaced "Floridian" biota on the Atlantic coastal plain. Because of niche diversity and relatively benign climate, biodiversity may have been greater in the south-eastern thermal enclave than in other unglaciated areas of North America. However, the impact of terminal Pleistocene megafaunal extinctions may also have been shorter and more severe in the enclave than further north. A comparison with biotic changes that occurred in North America approximately 55 million years (ma) ago at the Paleocene-Eocene Thermal Maximum suggests that similar processes of change took place under both ice-house and greenhouse climates.
Using Stable Isotopes to Assess Connectivity: the Importance ...
Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) data for dissolved inorganic nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast of North America to assess the relative importance of terrestrial and oceanic nutrient sources in these systems. We found a latitudinal gradient in nearshore δ15N of nitrate of -0.2 ‰ per degree latitude from Mexico to British Columbia with more depleted isotope ratio to the north. Primary producers (green macroalgae and Zostera marina) located in the nearshore and the marine dominated portion of Pacific Coast estuaries exhibited a similar latitudinal gradient in δ15N of -0.3 ‰ per degree latitude. This latitudinal gradient is similar to δ15N observed for intertidal mussels (Mytilus californianus), which are known to reflect the isotope ratio of the phytoplankton they feed on. The consistent latitudinal gradient for multiple primary producers and a consumer, and the agreement with the gradient in nearshore δ15N of nitrate, suggests that it is a result of oceanic source waters. On the watershed side, there is a gradient in the δ15N of nitrate with southern California systems receiving nitrate with a δ15N-NO3 of about +12 ‰,
NASA Astrophysics Data System (ADS)
Chen, Dandan; Guo, Jianping; Wang, Hongqing; Li, Jian; Min, Min; Zhao, Wenhui; Yao, Dan
2018-04-01
Clouds, as one of the most uncertain factors in climate system, have been intensively studied as satellites with advanced instruments emerged in recent years. However, few studies examine the vertical distributions of cloud top and their temporal variations over East Asia based on geostationary satellite data. In this study, the vertical structures of cloud top and its diurnal variations in summer of 2016 are analyzed using the Advanced Himawari Imager/Himawari-8 cloud products. Results show that clouds occur most frequently over the southern Tibetan Plateau and the Bay of Bengal. We find a steep gradient of cloud occurrence frequency extending from southwest to northeast China and low-value centers over the eastern Pacific and the Inner Mongolia Plateau. The vertical structures of cloud top are highly dependent on latitude, in addition to the nonnegligible roles of both terrain and land-sea thermal contrast. In terms of the diurnal cycle, clouds tend to occur more often in the afternoon, peaking around 1700 local time over land and ocean. The amplitude of cloud diurnal variation over ocean is much smaller than that over land, and complex terrain tends to be linked to larger amplitude. In vertical, the diurnal cycle of cloud frequency exhibits bimodal pattern over both land and ocean. The high-level peaks occur at almost the same altitude over land and ocean. In contrast, the low-level peaks over ocean mainly reside in the boundary layer, much lower than those over land, which could be indicative of the frequent occurrence of marine boundary layer clouds.
NASA Astrophysics Data System (ADS)
Suenaga, Nobuaki; Ji, Yingfeng; Yoshioka, Shoichi; Feng, Deshan
2018-04-01
The downdip limit of seismogenic interfaces inferred from the subduction thermal regime by thermal models has been suggested to relate to the faulting instability caused by the brittle failure regime in various plate convergent systems. However, the featured three-dimensional thermal state, especially along the horizontal (trench-parallel) direction of a subducted oceanic plate, remains poorly constrained. To robustly investigate and further map the horizontal (trench-parallel) distribution of the subduction regime and subsequently induced slab dewatering in a descending plate beneath a convergent margin, we construct a regional thermal model that incorporates an up-to-date three-dimensional slab geometry and the MORVEL plate velocity to simulate the plate subduction history in Hikurangi. Our calculations suggest an identified thrust zone featuring remarkable slab dehydration near the Taupo volcanic arc in the North Island distributed in the Kapiti, Manawatu, and Raukumara region. The calculated average subduction-associated slab dehydration of 0.09 to 0.12 wt%/km is greater than the dehydration in other portions of the descending slab and possibly contributes to an along-arc variation in the interplate pore fluid pressure. A large-scale slab dehydration (>0.05 wt%/km) and a high thermal gradient (>4 °C/km) are also identified in the Kapiti, Manawatu, and Raukumara region and are associated with frequent deep slow slip events. An intraslab dehydration that exceeds 0.2 wt%/km beneath Manawatu near the source region of tectonic tremors suggests an unknown relationship in the genesis of slow earthquakes.
Quantification of the effect of temperature gradients in soils on subsurface radon signal
NASA Astrophysics Data System (ADS)
Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam
2017-04-01
Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.
Microgravity Particle Dynamics
NASA Technical Reports Server (NTRS)
Clark, Ivan O.; Johnson, Edward J.
1996-01-01
This research seeks to identify the experiment design parameters for future flight experiments to better resolve the effects of thermal and velocity gradients on gas-solid flows. By exploiting the reduced body forces and minimized thermal convection current of reduced gravity experiments, features of gas-solid flow normally masked by gravitationally induced effects can be studied using flow regimes unattainable under unigravity. This paper assesses the physical scales of velocity, length, time, thermal gradient magnitude, and velocity gradient magnitude likely to be involved in laminar gas-solid multiphase flight experiments for 1-100 micro-m particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory; Palczewski, Ari
2013-09-01
At SRF 2011 we presented the study of quenches in high gradient SRF cavities with dual mode excitation technique. The data differed from measurements done in 80's that indicated thermal breakdown nature of quenches in SRF cavities. In this contribution we present analysis of the data that indicates that our recent data for high gradient quenches is consistent with the magnetic breakdown on the defects with thermally suppressed critical field. From the parametric fits derived within the model we estimate the critical breakdown fields.
Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients
NASA Technical Reports Server (NTRS)
Cady, S. L.; Farmer, J. D.
1996-01-01
To enhance our ability to extract palaeobiological and palaeoenvironmental information from ancient thermal spring deposits, we have studied the processes responsible for the development and preservation of stromatolites in modern subaerial thermal spring systems in Yellowstone National Park (USA). We investigated specimens collected from silica-depositing thermal springs along the thermal gradient using petrographic techniques and scanning electron microscopy. Although it is known that thermophilic cyanobacteria control the morphogenesis of thermal spring stromatolites below 73 degrees C, we have found that biofilms which contain filamentous thermophiles contribute to the microstructural development of subaerial geyserites that occur along the inner rims of thermal spring pools and geyser effluents. Biofilms intermittently colonize the surfaces of subaerial geyserites and provide a favoured substrate for opaline silica precipitation. We have also found that the preservation of biotically produced microfabrics of thermal spring sinters reflects dynamic balances between rates of population growth, decomposition of organic matter, silica deposition and early diagenesis. Major trends in preservation of thermophilic organisms along the thermal gradient are defined by differences in the mode of fossilization, including replacement, encrustation and permineralization.
NASA Astrophysics Data System (ADS)
Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.
2008-03-01
Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.
How strange was the Strangelove Ocean? New insights from Boron Isotopes.
NASA Astrophysics Data System (ADS)
Henehan, M. J.; Ridgwell, A.; Thomas, E.; Zhang, S.; Planavsky, N.; Alegret, L.; Schmidt, D. N.; Rae, J. W. B.; Foster, G. L.; Huber, B. T.; Hull, P. M.
2016-12-01
The idea of the `Strangelove Ocean'1 has captured the imagination of palaeoceanographers (and the public) since it was posited to explain the collapse or reverse in surface-deep ocean δ13C gradients after the Cretaceous-Palaeogene (K-Pg) boundary1. It describes a post-extinction ocean where primary productivity was drastically reduced, eliminating the surface-to-deep carbon isotope gradient produced by the biological pump. Survival of benthic foraminifera across the K-Pg (suggesting a persistent supply of organic matter to the deep) is difficult to reconcile with this ideae.g. 2. Geochemical proxies also suggest that severe export productivity reductions were at most regional3. This mismatch between patterns in δ13C and other indicators has thus been interpreted as a signal of changing vital effects in post-extinction pelagic calcifiers, toward lighter δ13C e.g. 2. However, it may be that vital effects in earliest Palaeocene foraminiferal survivors can account for only part of the convergence in δ13C between surface and deep ocean.4 In addition, analysis of carbonate preservation after the K-Pg boundary indicates large-scale carbonate system/ocean pH shifts at this time5, which could have produced secular changes in carbon isotope signals. Here we present new paired benthic and planktic boron isotope measurements that allow us to examine surface to deep ocean pH gradients (which in today's ocean are driven largely by biological activity) across the K-Pg boundary interval and into the early Palaeocene. We then couple these to model simulations to untangle the carbon cycle drivers, both physical and biological, that could have caused these changes in ocean pH gradients. We discuss implications for our understanding of this important interval in Earth history, with reference to the mechanisms of Earth system recovery following mass extinction. References:1. Hsü, K. J. & McKenzie, J. A., 1985. AGU Geophysical Monograph Series 32. doi:10.1029/GM032p0487 2. Alegret, L., et al., 2012. PNAS 109, 728-732. doi:10.1073/pnas.1110601109 3. Hull, P.M. & Norris, R.D., 2011. Paleoceanography 26, PA3205. doi:10.1029/2010PA002082 4. Birch, H.S., et al., 2016. Geology 44, 287-290. doi:10.1130/G37581.1 5. Henehan et al., 2016. Phil. Trans. Roy. Soc. B. 371, 20150510. doi:10.1098/rstb.2015.0510
Health and safety implications of alternative energy technologies. II. Solar
NASA Astrophysics Data System (ADS)
Etnier, E. L.; Watson, A. P.
1981-09-01
No energy technology is risk free when all aspects of its utilization are taken into account. Every energy technology has some attendant direct and indirect health and safety concerns. Solar technologies examined in this paper are wind, ocean thermal energy gradients, passive, photovoltaic, satellite power systems, low- and high-temperature collectors, and central power stations, as well as tidal power. For many of these technologies, insufficient historical data are available from which to assess the health risks and environmental impacts. However, their similarities to other projects make certain predictions possible. For example, anticipated problems in worker safety in constructing ocean thermal energy conversion systems will be similar to those associated with other large-scale construction projects, like deep-sea oil drilling platforms. Occupational hazards associated with photovoltaic plant operation would be those associated with normal electricity generation, although for workers involved in the actual production of photovoltaic materials, there is some concern for the toxic effects of the materials used, including silicon, cadmium, and gallium arsenide. Satellite power systems have several unique risks. These include the effects of long-term space travel for construction workers, effects on the ozone layer and the attendant risk of skin cancer in the general public, and the as-yet-undetermined effects of long-term, low-level microwave exposure. Hazards may arise from three sources in solar heating and cooling systems: water contamination from corrosion inhibitors, heat transfer fluids, and bactericides; collector over-heating, fires, and “out-gassing” and handling and disposal of system fluids and wastes. Similar concerns exist for solar thermal power systems. Even passive solar systems may increase indoor exposure levels to various air pollutants and toxic substances, eitherdirectly from the solar system itself or indirectly by trapping released pollutants from furnishings, building materials, and indoor combustion.
NASA Astrophysics Data System (ADS)
Kwiatkowski, L.; Caldeira, K.; Ricke, K.
2014-12-01
With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.
NASA Astrophysics Data System (ADS)
Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis
2017-06-01
Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.
NASA Technical Reports Server (NTRS)
Poff, K. L.
1991-01-01
Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.
Regional geothermal exploration in Egypt
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Swanberg, C. A.
1983-01-01
A study is presented of the evaluation of the potential geothermal resources of Egypt using a thermal gradient/heat flow technique and a groundwater temperature/chemistry technique. Existing oil well bottom-hole temperature data, as well as subsurface temperature measurements in existing boreholes, were employed for the thermal gradient/heat flow investigation before special thermal gradient holes were drilled. The geographic range of the direct subsurface thermal measurements was extended by employing groundwater temperature and chemistry data. Results show the presence of a regional thermal high along the eastern margin of Egypt with a local thermal anomaly in this zone. It is suggested that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. These findings indicate that temperatures of 150 C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zones where it lies at a depth of 4 km and deeper.
Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.
2014-01-01
For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth. Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data. Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes. Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes. In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient. Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.
Influence of Applied Thermal Gradients and a Static Magnetic Field on Bridgman-Grown GeSi Alloys
NASA Technical Reports Server (NTRS)
Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Ritter, T. M.
1999-01-01
The effect of applied axial and radial thermal gradients and an axial static magnetic field on the macrosegregation profiles of Bridgman-grown GeSi alloy crystals has been assessed. The axial thermal gradients were adjusted by changing the control setpoints of a seven-zone vertical Bridgman furnace. The radial thermal gradients were affected by growing samples in ampoules with different thermal conductivities, namely graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN). Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. All of the samples were grown on Ge seeds. This resulted in a period of free growth until the Si concentration in the solid was in equilibrium with the Si concentration in the liquid. The length of crystal grown during this period was inversely proportional to the applied axial thermal gradient. Several samples were grown in an axial 5 Tesla magnetic field. Measured macroscopic segregation profiles on these samples indicate that the magnetic field did not, in general, reduce the melt flow velocities to below the growth velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Primeau, Francois William
2016-02-11
This report lists the accomplishments of the project, which includes: (1) analysis of inorganic nutrient concentration data as well as suspended particulate organic matter data in the ocean to demonstrate that the carbon to nitrogen to phosphorus ratios (C:N:P) of biological uptake and export vary on large spatial scales, (2) the development of a new computationally efficient method for simulating biogeochemical tracers in earth system models, (3) the application of the method to help calibrate an improved representation of dissolved organic matter in the ocean that includes variable C:N:P stoichiometry. This research is important because biological uptake of carbon andmore » nutrients in the upper ocean and export by sinking particles and downward mixing of dissolved organic matter helps maintain a vertical gradient in the carbon dioxide concentration in the ocean. This gradient is key to understanding the partitioning of CO2 between the ocean and the atmosphere. The final report lists seven peer reviewed scientific publications, one Ph.D. thesis, one technical report and two papers in preparation.« less
The mechanism of thermal-gradient mass transfer in the sodium hydroxide-nickel system
NASA Technical Reports Server (NTRS)
May, Charles E
1958-01-01
"Thermal-gradient mass transfer" was investigated in the molten sodium hydroxide-nickel system. Possible mechanisms (physical, electrochemical, and chemical) are discussed in terms of experimental and theoretical evidence. Experimental details are included in appendixes.
The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals
NASA Astrophysics Data System (ADS)
Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.
2014-09-01
This paper considers the possibility of growth of dislocation-free germanium single crystals. This is achieved by reducing the temperature gradients at the level of 1 K/cm and lower. Single germanium crystals 45-48 mm in diameter with a dislocation density of 102 cm-2 were grown by a Low Thermal Gradient Czochralski technique (LTG CZ).
Interfacial free energy and stiffness of aluminum during rapid solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin
Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less
Interfacial free energy and stiffness of aluminum during rapid solidification
Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin
2017-05-01
Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less
Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O
2016-09-12
A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.
Effect of mesoscale oceanic eddies on mid-latitude storm-tracks.
NASA Astrophysics Data System (ADS)
Foussard, Alexis; Lapeyre, Guillaume; Plougonven, Riwal
2017-04-01
Sharp sea surface temperature (SST) gradients associated with oceanic western boundary currents (WBC) exert an influence on the position and intensity of mid-latitude storm-tracks. This occurs through strong surface baroclinicity maintained by cross frontal SST gradient and deep vertical atmospheric motion due to convection on the warm flank of the WBC. However the additional role of mesoscale oceanic structures (30-300km) has not yet been explored although they have a non-negligible influence on surface heat fluxes. Using the Weather Research and Forecasting model, we investigate the potential role of these oceanic eddies in the case of an idealized atmospheric mid-latitude storm track forced by a mesoscale oceanic eddy field superposed with a large-scale SST gradient. Surface latent and sensible fluxes are shown to react with a non-linear response to the SST variations, providing additional heat and moisture supply at large scales. The atmospheric response is not restricted to the boundary layer but reaches the free troposphere, especially through increased water vapor vertical transport and latent heat release. This additional heating in presence of eddies is balanced by a shift of the storm-track and its poleward heat flux toward high latitudes, with amplitude depending on atmospheric configuration and eddies amplitude. We also explore how this displacement of perturbations changes the position and structure of the mid-latitude jet through eddy momentum fluxes.
Habitability constraints on water-rich exoplanets
NASA Astrophysics Data System (ADS)
Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan
2016-04-01
This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still appear episodically at the water-mantle boundary (WMB). We also investigated the main paramters influencing the existence of volcanic activity and silicate crust formation. Under deep water layers, the high pressure from the overlying water layer can inhibit melting in the mantle. The main parameters influencing the maximal water layer depth, for which melting is still possible, are indeed the parameters influencing the mantle energy budget, which are the amount of radioactive heat sources and the initial upper mantle temperature. Plate tectonics also has a strong influence on the existence of volcanism. Crustal parameters (initial thickness or heat sources enrichment factor) as well as the ice rheology (i.e. the isolating effect of the ice shell on the mantle) have only a small influence on melting processes in the interior and the formation of crust. [1] L. Noack, A. Rivoldini and T. Van Hoolst 2015: CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons. INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. [2] L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux, H. Lammer, T. Van Hoolst and J.H. Bredehöft: Water-rich planets: how habitable is a water layer deeper than on Earth? Submitted to Icarus.
Wellbore heat flow from the Toa Baja scientific drillhole, Puerto Rico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.N.; Larue, D.K.
1991-03-01
Heat flow values, determined from temperature logs and estimates of thermal conductivity from geophysical logs range from 23 to 37 mW/m{sup 2} from 800 to 2,500 m depth in the Toa Baja scientific drillhole on the north, central coast of Puerto Rico. Near the target seismic reflector at the base of the well, an active hydrothermal system was encountered in which heat flow of up to 90 mW/m{sup 2} was found in a mineralized zone beneath a volcanic sill or flow. The heat flow then dropped to 50 mW/m{sub 2} beneath this subhorizontal flow zone. The mining of heat frommore » downdip is proposed to account for this thermal anomaly, as well as the scatter in the heat flow determined from the few other wells drilled into Puerto Rico. The time-temperature history of the well indicates that Eocene volcaniclastics of the lower 2 km were deposited into a geothermal gradient of 60C/km north of an active arc (heat flow estimated to have been 120-180 mW/m{sup 2}). Uplift, erosion and cooling occurred between 40 and 30 Ma. Reburial and deposition of Oligocene-Miocene Limestones produced the present-day geothermal gradient of 15C/km (heat flow of 30-50 mW/m{sup 2}). Based upon comparisons with slab cooling models, the crustal thickness beneath Puerto Rico is estimated to be closer to continental then oceanic.« less
NASA Astrophysics Data System (ADS)
Wei, S. S.; Shearer, P. M.
2017-12-01
The mantle transition-zone discontinuities are usually attributed to isochemical phase transformations of olivine and its high-pressure polymorphs. However, recent seismic observations have shown complexities in these discontinuities that cannot be explained by conventional models of thermal variations. Here we analyse SS precursor stacking results to investigate global mantle transition-zone properties. The precursor waveforms provide information on the seismic velocity and density profiles across and near the major mantle discontinuities. A sporadic low-velocity layer immediately above the 410-km discontinuity is observed worldwide, including East Asia, western North America, eastern South America, and 33-50% of the resolved Pacific Ocean. The 520-km discontinuity exhibits significant variations in its sharpness and depth, and occasionally appears to be split. Structures underlying the 660-km discontinuity show even larger complexities: a sub-discontinuity at 700-800 km depth is detected in some regions, of which some require a positive velocity gradient whereas others have a negative gradient. All of these lateral variations show no geographical correlation with discontinuity topography or tomographic models of seismic velocity, suggesting that they are not caused by regional thermal anomalies. Alternatively, our observations can be explained by compositional heterogeneities in the mid-mantle, including major minerals and volatile content, which may result in additional phase transformations and partial melting. These compositional heterogeneities should be taken into account in future geodynamic models of mantle convection and the deep water cycle.
NASA Astrophysics Data System (ADS)
Grandjean, Thomas; Barai, Anup; Hosseinzadeh, Elham; Guo, Yue; McGordon, Andrew; Marco, James
2017-08-01
It is crucial to maintain temperature homogeneity in lithium ion batteries in order to prevent adverse voltage distributions and differential ageing within the cell. As such, the thermal behaviour of a large-format 20 Ah lithium iron phosphate pouch cell is investigated over a wide range of ambient temperatures and C rates during both charging and discharging. Whilst previous studies have only considered one surface, this article presents experimental results, which characterise both surfaces of the cell exposed to similar thermal media and boundary conditions, allowing for thermal gradients in-plane and perpendicular to the stack to be quantified. Temperature gradients, caused by self-heating, are found to increase with increasing C rate and decreasing temperature to such an extent that 13.4 ± 0.7% capacity can be extracted using a 10C discharge compared to a 0.5C discharge, both at -10 °C ambient temperature. The former condition causes an 18.8 ± 1.1 °C in plane gradient and a 19.7 ± 0.8 °C thermal gradient perpendicular to the stack, which results in large current density distributions and local state of charge differences within the cell. The implications of these thermal and electrical inhomogeneities on ageing and battery pack design for the automotive industry are discussed.
NASA Astrophysics Data System (ADS)
Rodgers, K. B.; Mikaloff-Fletcher, S. E.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B. R.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.
2011-10-01
Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.
Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J
2017-07-01
Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CT max ). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO 2 (simulated ocean acidification) on the hypoxia sensitivity of CT max We found that CT max was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CT max declined sharply with water oxygen tension ( P w O 2 ). Furthermore, the hypoxia sensitivity of CT max was unaffected by elevated CO 2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. © 2017 The Author(s).
Ocean biogeochemistry modeled with emergent trait-based genomics.
Coles, V J; Stukel, M R; Brooks, M T; Burd, A; Crump, B C; Moran, M A; Paul, J H; Satinsky, B M; Yager, P L; Zielinski, B L; Hood, R R
2017-12-01
Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and "omics" data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment
NASA Astrophysics Data System (ADS)
Giordani, Hervé; Planton, Serge; Benech, Bruno; Kwon, Byung-Hyuk
1998-10-01
The sensitivity of the marine atmospheric boundary layer (MABL) subjected to sea surface temperatures (SST) during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in 1993 has been studied. Atmospheric analyses produced by the Action de Recherche, Petite Echelle, Grande Echelle (ARPEGE) operational model at the French meteorological weather service assimilated data sets collected between October 7 and November 17, 1993, merged with the Global Telecommunication System (GTS) data. Analyses were validated against independent data from aircraft instruments collected along a section crossing the Azores oceanic front, not assimilated into the model. The responses of the mean MABL in the aircraft cross section to changes in SST gradients of about 1°C/100 km were the presence of an atmospheric front with horizontal gradients of 1°C/100 km and an increase of the wind intensity from the cold to the warm side during an anticyclonic synoptic situation. The study of the spatiotemporal characteristics of the MABL shows that during 3 days of an anticyclonic synoptic situation the SST is remarkably stationary because it is principally controlled by the Azores ocean current, which has a timescale of about 10 days. However, the temperature and the wind in the MABL are influenced by the prevailing atmospheric conditions. The ocean does not appear to react to the surface atmospheric forcing on the timescale of 3 days, whereas the atmospheric structures are modified by local and synoptic-scale advection. The MABL response appears to be much quicker than that of the SSTs. The correlation between the wind and the thermal structure in the MABL is dominated by the ageostrophic and not by the geostrophic component. In particular, the enhancement of the wind on either side of the SST front is mainly due to the ageostrophic component. Although the surface heat fluxes are not the only cause of ageostrophy, the surface buoyancy flux Qb appears to be an important local source.
NASA Technical Reports Server (NTRS)
Varshney, Usha; Eichelberger, B. Davis, III
1995-01-01
This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.
Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin
2009-01-01
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients. PMID:19277213
Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin
2009-01-01
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.
Oceanic lithosphere and asthenosphere: The thermal and mechanical structure
NASA Technical Reports Server (NTRS)
Schubert, G.; Froidevaux, C.; Yuen, D. A.
1976-01-01
A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.
Thermal Management Techniques for Oil-Free Turbomachinery Systems
NASA Technical Reports Server (NTRS)
Radil, Kevin; DellaCorte, Chris; Zeszotek, Michelle
2006-01-01
Tests were performed to evaluate three different methods of utilizing air to provide thermal management control for compliant journal foil air bearings. The effectiveness of the methods was based on bearing bulk temperature and axial thermal gradient reductions during air delivery. The first method utilized direct impingement of air on the inner surface of a hollow test journal during operation. The second, less indirect method achieved heat removal by blowing air inside the test journal to simulate air flowing axially through a hollow, rotating shaft. The third method emulated the most common approach to removing heat by forcing air axially through the bearing s support structure. Internal bearing temperatures were measured with three, type K thermocouples embedded in the bearing that measured general internal temperatures and axial thermal gradients. Testing was performed in a 1 atm, 260 C ambient environment with the bearing operating at 60 krpm and supporting a load of 222 N. Air volumetric flows of 0.06, 0.11, and 0.17 cubic meters per minute at approximately 150 to 200 C were used. The tests indicate that all three methods provide thermal management but at different levels of effectiveness. Axial cooling of the bearing support structure had a greater effect on bulk temperature for each air flow and demonstrated that the thermal gradients could be influenced by the directionality of the air flow. Direct air impingement on the journal's inside surface provided uniform reductions in both bulk temperature and thermal gradients. Similar to the direct method, indirect journal cooling had a uniform cooling effect on both bulk temperatures and thermal gradients but was the least effective of the three methods.
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
1993-01-01
A new micromechanical theory is presented for the response of heterogeneous metal matrix composites subjected to thermal gradients. In contrast to existing micromechanical theories that utilize classical homogenization schemes in the course of calculating microscopic and macroscopic field quantities, in the present approach the actual microstructural details are explicitly coupled with the macrostructure of the composite. Examples are offered that illustrate limitations of the classical homogenization approach in predicting the response of thin-walled metal matrix composites with large-diameter fibers when subjected to thermal gradients. These examples include composites with a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced, thus admitting so-called functionally gradient composites. The results illustrate that the classical approach of decoupling micromechanical and macromechanical analyses in the presence of a finite number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may produce excessively conservative estimates for macroscopic field quantities, while both underestimating and overestimating the local fluctuations of the microscopic quantities in different regions of the composite. Also demonstrated is the usefulness of the present approach in generating favorable stress distributions in the presence of thermal gradients by appropriately tailoring the internal microstructure details of the composite.
Influence of precipitating light elements on stable stratification below the core/mantle boundary
NASA Astrophysics Data System (ADS)
O'Rourke, J. G.; Stevenson, D. J.
2017-12-01
Stable stratification below the core/mantle boundary is often invoked to explain anomalously low seismic velocities in this region. Diffusion of light elements like oxygen or, more slowly, silicon could create a stabilizing chemical gradient in the outermost core. Heat flow less than that conducted along the adiabatic gradient may also produce thermal stratification. However, reconciling either origin with the apparent longevity (>3.45 billion years) of Earth's magnetic field remains difficult. Sub-isentropic heat flow would not drive a dynamo by thermal convection before the nucleation of the inner core, which likely occurred less than one billion years ago and did not instantly change the heat flow. Moreover, an oxygen-enriched layer below the core/mantle boundary—the source of thermal buoyancy—could establish double-diffusive convection where motion in the bulk fluid is suppressed below a slowly advancing interface. Here we present new models that explain both stable stratification and a long-lived dynamo by considering ongoing precipitation of magnesium oxide and/or silicon dioxide from the core. Lithophile elements may partition into iron alloys under extreme pressure and temperature during Earth's formation, especially after giant impacts. Modest core/mantle heat flow then drives compositional convection—regardless of thermal conductivity—since their solubility is strongly temperature-dependent. Our models begin with bulk abundances for the mantle and core determined by the redox conditions during accretion. We then track equilibration between the core and a primordial basal magma ocean followed by downward diffusion of light elements. Precipitation begins at a depth that is most sensitive to temperature and oxygen abundance and then creates feedbacks with the radial thermal and chemical profiles. Successful models feature a stable layer with low seismic velocity (which mandates multi-component evolution since a single light element typically increases seismic velocity) growing to its present-day size while allowing enough precipitation to drive compositional convection below. Crucially, this modeling offers unique constrains on Earth's accretion and the light element composition of the core compared to degenerate estimates derived from bulk density and seismic measurements.
Redox systematics of a magma ocean with variable pressure-temperature gradients and composition
Righter, K.; Ghiorso, M. S.
2012-01-01
Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO2), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO2 that is based on the ratio of Fe and FeO [called “ΔIW (ratio)” hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO2 + O2 = Fe2SiO4 to calculate absolute fO2 and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO2 in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO2 may evolve from high to low fO2 during Earth (and other differentiated bodies) accretion. Any modeling of core formation and metal-silicate equilibrium should take these effects into account. PMID:22778438
NASA Technical Reports Server (NTRS)
Froidevaux, C.; Schubert, G.; Yuen, D. A.
1976-01-01
Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.
Drift in ocean currents impacts intergenerational microbial exposure to temperature.
Doblin, Martina A; van Sebille, Erik
2016-05-17
Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming.
NASA Astrophysics Data System (ADS)
Choe, Kwang Su.
An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger than what were predicted by existing theoretical models. This discrepancy seems to indicate that optical effects, which are neglected in theoretical modeling, play a major role in the internal heat transfer of the crystal.
ERIC Educational Resources Information Center
Berkovsky, Boris
1987-01-01
Describes Ocean Thermal Energy Conservation (OTEC) as a method for exploiting the temperature difference between warm surface waters of the sea and its cold depths. Argues for full-scale demonstrations of the technique for producing energy for coastal regions. (TW)
NASA Astrophysics Data System (ADS)
Naif, Samer
2018-01-01
Electrical conductivity soundings provide important constraints on the thermal and hydration state of the mantle. Recent seafloor magnetotelluric surveys have imaged the electrical conductivity structure of the oceanic upper mantle over a variety of plate ages. All regions show high conductivity (0.02 to 0.2 S/m) at 50 to 150 km depths that cannot be explained with a sub-solidus dry mantle regime without unrealistic temperature gradients. Instead, the conductivity observations require either a small amount of water stored in nominally anhydrous minerals or the presence of interconnected partial melts. This ambiguity leads to dramatically different interpretations on the origin of the asthenosphere. Here, I apply the damp peridotite solidus together with plate cooling models to determine the amount of H2O needed to induce dehydration melting as a function of depth and plate age. Then, I use the temperature and water content estimates to calculate the electrical conductivity of the oceanic mantle with a two-phase mixture of olivine and pyroxene from several competing empirical conductivity models. This represents the maximum potential conductivity of sub-solidus oceanic mantle at the limit of hydration. The results show that partial melt is required to explain the subset of the high conductivity observations beneath young seafloor, irrespective of which empirical model is applied. In contrast, the end-member empirical models predict either nearly dry (<20 wt ppm H2O) or slightly damp (<200 wt ppm H2O) asthenosphere for observations of mature seafloor. Since the former estimate is too dry compared with geochemical constraints from mid-ocean ridge basalts, this suggests the effect of water on mantle conductivity is less pronounced than currently predicted by the conductive end-member empirical model.
Turbulence from a microorganism's perspective: Does the open ocean feel different than a coral reef?
NASA Astrophysics Data System (ADS)
Pepper, Rachel; Variano, Evan; Koehl, M. A. R.
2012-11-01
Microorganisms in the ocean live in turbulent flows. Swimming microorganisms navigate through the water (e.g. larvae land on suitable substrata, predators find patches of prey), but the mechanisms by which they do so in turbulent flow are poorly understood as are the roles of passive transport versus active behaviors. Because microorganisms are smaller than the Kolmagorov length (the smallest scale of eddies in turbulent flow), they experience turbulence as a series of linear gradients in the velocity that vary in time. While the average strength of these gradients and a timescale can be computed from some typical characteristics of the flow, such as the turbulent kinetic energy or the dissipation rate, there are indications that organisms are disproportionally affected by rare, extreme events. Understanding the frequency of such events in different environments will be critical to understanding how microorganisms respond to and navigate in turbulence. To understand the hydrodynamic cues that microorganisms experience in the ocean we must measure velocity gradients in realistic turbulent flow on the spatial and temporal scales encountered by microorganisms. We have been exploring the effect of the spatial resolution of PIV and DNS of turbulent flow on the presence of velocity gradients of different magnitudes at the scale of microorganisms. Here we present some results of PIV taken at different resolutions in turbulent flow over rough biological substrata to illustrate the challenges of quantifying the fluctuations in velocity gradients encountered by aquatic microorganisms.
Effects of temperature distribution and elastic properties of materials on gas-turbine-disk stresses
NASA Technical Reports Server (NTRS)
Holms, Arthur G; Faldetta, Richard D
1947-01-01
Calculations were made to determine the influence of changes in temperature distribution and in elastic material properties on calculated elastic stresses for a typical gas-turbine disk. Severe temperature gradients caused thermal stresses of sufficient magnitude to reduce the operating safety of the disk. Small temperature gradients were found to be desirable because they produced thermal stresses that subtracted from the centrifugal stresses in the region of the rim. The thermal gradients produced a tendency for a severe stress condition to exist near the rim but this stress condition could be shifted away from the region of blade attachment by altering the temperature distribution. The investigation of elastic material properties showed that centrifugal stresses are slightly affected by changes in modulus of elasticity, but that thermal stresses are approximately proportional to modulus of elasticity and to coefficient of thermal expansion.
NASA Astrophysics Data System (ADS)
Grose, C. J.; Afonso, J. C.
2013-12-01
We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.
Characterization of the thermal conductivity for Advanced Toughened Uni-piece Fibrous Insulations
NASA Technical Reports Server (NTRS)
Stewart, David A.; Leiser, Daniel B.
1993-01-01
Advanced Toughened Uni-piece Fibrous Insulations (TUFI) is discussed in terms of their thermal response to an arc-jet air stream. A modification of the existing Ames thermal conductivity program to predict the thermal response of these functionally gradient materials is described in the paper. The modified program was used to evaluate the effect of density, surface porosity, and density gradient through the TUFI materials on the thermal response of these insulations. Predictions using a finite-difference code and calculated thermal conductivity values from the modified program were compared with in-depth temperature measurements taken from TUFI insulations during short exposures to arc-jet hypersonic air streams.
Re-Emergence of Excess Bomb Radiocarbon in Upwelling Waters with High-Latitude Origins
NASA Astrophysics Data System (ADS)
Lindsay, C. M.; Lehman, S.
2016-02-01
The quantity of radiocarbon (14C) in the atmosphere was nearly doubled by nuclear weapons testing in the 1960s. Since then, the terrestrial biosphere and the ocean have absorbed most of the excess 14C from the atmosphere, although atmospheric radiocarbon activity (∆14C) continues to decline due to ongoing emissions of 14C-free CO2 from combustion of fossil fuels. The large transient decline in atmospheric ∆14C combined with gas exchange at the surface and spatially variable time scales of ocean mixing have led to large ∆14C gradients in the surface ocean between upwelling- and downwelling-dominated regions. These gradients continue to evolve over time. We examine the rate of change of surface ocean ∆14C between CLIVAR (2000-2011) and WOCE era (1990s) or other slightly earlier (1980s) datasets and find spatial patterns that reveal mixing between 14C-enriched mode waters, 14C-depleted deep waters and surface waters that are well-equilibrated with the atmosphere. The ∆14C of mode water reaching equatorial upwelling regions has increased between the WOCE and CLIVAR time periods, and the greater contribution of 14C to the low-latitude surface ocean appears to have significantly offset the ∆14C decline otherwise imparted by air-sea gas exchange with the atmosphere. Consequently, ∆14C gradients between low-latitude upwelling regions and gyre centers have weakened proportionally more than between gyre centers and regions where pre-industrial water still upwells, such as the Southern Ocean. Properly accounting for the re-emergence of water with post-industrial characteristics is important to constrain earth system models that seek to explain DIC, pH and other anthropogenically perturbed tracers in the surface ocean. Because of the history of ∆14C in the atmosphere, ocean ∆14C is a useful tracer for this purpose.
Murugesan, Nithya; Panda, Tapobrata; Das, Sarit K
2016-08-01
Bacteria responds to changing chemical and thermal environment by moving towards or away from a particular location. In this report, we looked into thermal gradient generation and response of E. coli DH5α cells to thermal gradient in the presence and in the absence of spherical gold nanoparticles (size: 15 to 22 nm) in a static microfluidic environment using a polydimethylsiloxane (PDMS) made microfluidic device. A PDMS-agarose based microfluidic device for generating thermal gradient has been developed and the thermal gradient generation in the device has been validated with the numerical simulation. Our studies revealed that the presence of gold nanoparticles, AuNPs (0.649 μg/mL) has no effect on the thermal gradient generation. The E. coli DH5α cells have been treated with AuNPs of two different concentrations (0.649 μg/mL and 0.008 μg/mL). The thermotaxis behavior of cells in the presence of AuNPs has been studied and compared to the thermotaxis of E.coli DH5α cells in the absence of AuNPs. In case of thermotaxis, in the absence of the AuNPs, the E. coli DH5α cells showed better thermotaxis towards lower temperature range, whereas in the presence of AuNPs (0.649 μg/mL and 0.008 μg/mL) thermotaxis of the E. coli DH5α cells has been inhibited. The results show that the spherical AuNPs intervenes in the themotaxis of E. coli DH5α cells and inhibits the cell migration. The reason for the failure in thermotaxis response mechanism may be due to decreased F-type ATP synthase activity and collapse of membrane potential by AuNPs, which, in turn, leads to decreased ATP levels. This has been hypothesized since both thermotaxis and chemotaxis follows the same response mechanism for migration in which ATP plays critical role.
NASA Astrophysics Data System (ADS)
Ghashami, Mohammad; Geng, Hongyao; Kim, Taehoon; Iacopino, Nicholas; Cho, Sung Kwon; Park, Keunhan
2018-04-01
Despite its strong potentials in emerging energy applications, near-field thermal radiation between large planar structures has not been fully explored in experiments. Particularly, it is extremely challenging to control a subwavelength gap distance with good parallelism under large thermal gradients. This article reports the precision measurement of near-field radiative energy transfer between two macroscale single-crystalline quartz plates that support surface phonon polaritons. Our measurement scheme allows the precise control of a gap distance down to 200 nm in a highly reproducible manner for a surface area of 5 × 5 mm2 . We have measured near-field thermal radiation as a function of the gap distance for a broad range of thermal gradients up to ˜156 K , observing more than 40 times enhancement of thermal radiation compared to the blackbody limit. By comparing with theoretical prediction based on fluctuational electrodynamics, we demonstrate that such remarkable enhancement is owing to phonon-polaritonic energy transfer across a nanoscale vacuum gap.
Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species
Pellissier, Loïc; Bråthen, Kari Anne; Vittoz, Pascal; Yoccoz, Nigel G.; Dubuis, Anne; Meier, Eliane S.; Zimmermann, Niklaus E.; Randin, Christophe F.; Thuiller, Wilfried; Garraud, Luc; Van Es, Jérémie; Guisan, Antoine
2014-01-01
Aim Understanding the stability of realized niches is crucial for predicting the responses of species to climate change. One approach is to evaluate the niche differences of populations of the same species that occupy regions that are geographically disconnected. Here, we assess niche conservatism along thermal gradients for 26 plant species with a disjunct distribution between the Alps and the Arctic. Location European Alps and Norwegian Finnmark. Methods We collected a comprehensive dataset of 26 arctic-alpine plant occurrences in two regions. We assessed niche conservatism through a multispecies comparison and analysed species rankings at cold and warm thermal limits along two distinct gradients corresponding to (1) air temperatures at 2 m above ground level and (2) elevation distances to the tree line (TLD) for the two regions. We assessed whether observed relationships were close to those predicted under thermal limit conservatism. Results We found a weak similarity in species ranking at the warm thermal limits. The range of warm thermal limits for the 26 species was much larger in the Alps than in Finnmark. We found a stronger similarity in species ranking and correspondence at the cold thermal limit along the gradients of 2-m temperature and TLD. Yet along the 2-m temperature gradient the cold thermal limits of species in the Alps were lower on average than those in Finnmark. Main conclusion We found low conservatism of the warm thermal limits but a stronger conservatism of the cold thermal limits. We suggest that biotic interactions at the warm thermal limit are likely to modulate species responses more strongly than at the cold limit. The differing biotic context between the two regions is probably responsible for the observed differences in realized niches. PMID:24790524
NASA Astrophysics Data System (ADS)
Kawasaki, K.; Tachibana, Y.; Nakamura, T.; Yamazaki, K.; Kodera, K.
2016-12-01
It is commonly known that the formation of a stationery precipitation zone in association with the Baiu front is influenced by the existence of the warm Tibetan Plateau. Some GCM studies in which the Tibetan Plateau is removed pointed out that without the Tibetan Plateau, the Baiu front wound not appear. The cold Okhotsk Sea, which is located to the north of Japan, is also important in forming cold air for the Bai front. This study focused on the role of the Okhotsk Sea in the formation of the Baiu front by using an atmospheric GCM. One GCM is executed without the Okhotsk Sea, in which was changed to an eastern part of the Eurasian continent as if the Okhotsk Sea was totally landfilled (land run). The other (sea run) is a control run under the boundary condition of climatic seasonal changes of the SST over the globe. The comparison of the land run with the sea run showed that precipitation over Japan would weaken in the Baiu season without the Okhotsk Sea, indicating that the existence of the Okhotsk Sea has an impact on the increase in precipitation. The precipitation increase in the sea run is directly accounted by the strengthening of southeast wind in association with the strengthening of the subtropical high located over the Pacific Ocean (Fig. 1). The westerly jet, which is located at the northern part of the subtropical high, was also accelerated in the sea run. The subtropical high in association with the accelerated jet was strengthened by meridional atmospheric thermal gradient caused by underlying cold Okhotsk Sea and the warm Pacific Ocean. The strengthened thermal gradient also activated the storm track that extends zonally over the Okhotsk Sea, and the activated storm track further strengthened the jet and subtropical high by wave-mean flow feedback. This feedback loop could further strengthen the Baiu precipitation. In consequence, the Okhotsk plays a significant role in the strengthening the subtropical high and its associated Baiu precipitation.
Phase Change Material Thermal Power Generator
NASA Technical Reports Server (NTRS)
Jones, Jack A.
2013-01-01
An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.
Development of Detectability Limits for On-Orbit Inspection of Space Shuttle Wing Leading Edge
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.; Johnson, David G.; Mastropietro, A. J.; Ancarrow, Walt C.
2005-01-01
At the conclusion of the Columbia Accident Investigation, one of the recommendations of the Columbia Accident Investigation Board (CAIB) was that NASA develop and implement an inspection plan for the Reinforced Carbon-Carbon (RCC) system components of the Space Shuttle. To address these issues, a group of scientists and engineers at NASA Langley Research Center proposed the use of an IR camera to inspect the RCC. Any crack in an RCC panel changes the thermal resistance of the material in the direction perpendicular to the crack. The change in thermal resistance can be made visible by introducing a heat flow across the crack and using an IR camera to image the resulting surface temperature distribution. The temperature difference across the crack depends on the change in the thermal resistance, the length of the crack, the local thermal gradient, and the rate of radiation exchange with the environment. This paper describes how the authors derived the minimum thermal gradient detectability limits for a through crack in an RCC panel. This paper will also show, through the use of a transient, 3-dimensional, finite element model, that these minimum gradients naturally exist on-orbit. The results from the finite element model confirm that there are sufficient thermal gradient to detect a crack on 96% of the RCC leading edge.
Use of vertical temperature gradients for prediction of tidal flat sediment characteristics
Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei
2012-01-01
Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.
Ectotherm thermal stress and specialization across altitude and latitude.
Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G
2013-10-01
Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures.
Thermal Models of the Ocean Floor: from Wegener to Cerro Prieto
NASA Astrophysics Data System (ADS)
Sclater, J. G.; Negrete-Aranda, R.
2017-12-01
Wegener (1925) argued that hot rock could explain the shallower depths of ridges in the center of the Atlantic Ocean. Hess (1963) proposed that the intrusion of molten rock occurred at a world encircling mid-ocean ridge system. However, he accounted for the elevation of the ridges by the formation of serpentinite and thermal convection. Langseth et al. (1966) provided the major advance by using a 100 km thick plate to argue such a concept could not explain the depth, heat flow versus distance relations. They had the correct model but misinterpreted the data. Reformulating theoretically, McKenzie (1967) created the generally accepted thermal model for the ocean floor. Unfortunately, in attempting to match erroneously low heat flow data, he used a 50 km thick plate. Addition of the effect of water and the realization of the importance of advective flow, enabled various groups to create thermal plate models that accounted for the heat flow and depth age relations. From this came the understanding of hydrothermal circulation in the oceanic crust, the thermal boundary layer concept of the oceanic plate and the realization that all thermal models differed only in the way the different groups had chosen to analyze the data. During the past 40 years many have applied similar concepts to continental margins: (1) Measurement of subsidence of the Atlantic margin, continental stretching and a Time Temperature, Depth and Maturation analysis of continental basins have created the field of Basin Analysis; (2) Changes in heat flow at ocean continent boundaries have determined the position of the transition and (3) In attempting to examine the ocean continent transition process in the northernmost basin of the Gulf of California, Neumann et al (in press) observed conductive heat flow values greater than 0.75 Watts, at a depth of < 150 m, along a 10 km section of a profile across the southern extension of the Cerro Prieto fault. The magnitude of these values overwhelms local environmental effects and indicates a very large thermal output. Their full potential depends upon the amount of advective flow. Whatever the case, these measurements have opened up shallow continental margins as a new area for geothermic investigation.
Magma oceanography. I - Thermal evolution. [of lunar surface
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Longhi, J.
1977-01-01
Fractional crystallization and flotation of cumulate plagioclase in a cooling 'magma ocean' provides the simplest explanation for early emplacement of a thick feldspar-rich lunar crust. The complementary mafic cumulates resulting from the differentiation of such a magma ocean have been identified as the ultimate source of mare basalt liquids on the basis or rare-earth abundance patterns and experimental petrology studies. A study is conducted concerning the thermal evolution of the early differentiation processes. A range of models of increasing sophistication are considered. The models developed contain the essence of the energetics and the time scale for magma ocean differentiation. Attention is given to constraints on a magma ocean, modeling procedures, single-component magma oceans, fractionating magma oceans, and evolving magma oceans.
NASA Astrophysics Data System (ADS)
Barge, Laurie
2016-07-01
Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar System where life could have emerged.
Gradient of the temperature function at the voxel (i, j, k) for heterogeneous bio-thermal model
NASA Astrophysics Data System (ADS)
Cen, Wei; Hoppe, Ralph; Sun, Aiwu; Gu, Ning; Lu, Rongbo
2018-06-01
Determination of the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples based on numerical methods is essential in biomedical engineering (e.g. microwave thermal ablation in clinic). In this paper, the gradient expression is examined and analyzed in detail, as how the gradient operators can be discretized is the only real difficulty to the solution of bio-heat equation for highly inhomogeneous model utilizing implicit scheme.
Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence
NASA Astrophysics Data System (ADS)
Lovecchio, Salvatore; Zonta, Francesco; Marchioli, Cristian; Soldati, Alfredo
2017-05-01
Thermal stratification in water bodies influences the exchange of heat, momentum, and chemical species across the air-water interface by modifying the sub-surface turbulence characteristics. Turbulence modifications may in turn prevent small motile algae (phytoplankton, in particular) from reaching the heated surface. We examine how different regimes of stable thermal stratification affect the motion of these microscopic organisms (modelled as gyrotactic self-propelling cells) in a free-surface turbulent channel flow. This archetypal setup mimics an environmentally plausible situation that can be found in lakes and oceans. Results from direct numerical simulations of turbulence coupled with Lagrangian tracking reveal that rising of bottom-heavy self-propelling cells depends strongly on the strength of stratification, especially near the thermocline where high temperature and velocity gradients occur: Here hydrodynamic shear may disrupt directional cell motility and hamper near-surface accumulation. For all gyrotactic re-orientation times considered in this study (spanning two orders of magnitude), we observe a reduction of the cell rising speed and temporary confinement under the thermocline: If re-orientation is fast, cells eventually trespass the thermocline within the simulated time span; if re-orientation is slow, confinement lasts much longer because cells align in the streamwise direction and their vertical swimming is practically annihilated.
We tested hatchling and yearling Florida red-bellied turtles (Pseudemys nelsoni) in laboratory thermal gradient chambers to determine if they would prefer particular temperatures. Most 1995 hatchlings selected the highest temperature zone of 27degrees C (Test 1) and 30 degrees ...
Drift in ocean currents impacts intergenerational microbial exposure to temperature
Doblin, Martina A.; van Sebille, Erik
2016-01-01
Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034–1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming. PMID:27140608
2005-03-01
quartiles, and thus locates the central 50% of the data. The center bar through each box represents the persistence median. The whiskers extend away from...level of tropical cyclone activity. Numerous factors (e.g., scarcity of observations over large ocean basins , various scales of motion present in the... central South Indian Ocean, South Pacific Ocean east of New Zealand, and South Atlantic Ocean near the Falkland Islands. The increased pressure gradient
NASA Astrophysics Data System (ADS)
Nagel, Thorsten; Düsterhöft, Erik; Schiffer, Christian
2017-04-01
We investigate the signature relevant mantle lithologies leave in the receiver function record for different adiabatic thermal gradients down to 800 kilometers depth. The parameter space is chosen to target the visibility of upwelling mantle (a plume). Seismic velocities for depleted mantle, primitive mantle, and three pyroxenites are extracted from thermodynamically calculated phases diagrams, which also provide the adiabatic decompression paths. Results suggest that compositional variations, i.e. the presence or absence of considerable amounts of pyroxenites in primitive mantle should produce a clear footprint while horizontal differences in thermal gradients for similar compositions might be more subtle. Peridotites best record the classic discontinuities at around 410 and 650 kilometers depth, which are associated with the olivin-wadsleyite and ringwoodite-perovskite transitions, respectively. Pyroxenites, instead, show the garnet-perovskite transition below 700 kilometers depth and SiO2-supersaturated compositions like MORB display the coesite-stishovite transition between 300 and 340 kilometers depth. The latter shows the strongest temperature-depth dependency of all significant transitions potentially allowing to infer information about the thermal state if the mantle contains a sufficient fraction of MORB-like compositions. For primitive and depleted mantle compositions, the olivin-wadsleyite transition shows a certain temperature-depth dependency reflected in slightly larger delay times for higher thermal gradients. The lower-upper-mantle discontinuity, however, is predicted to display larger delay times for higher thermal gradients although the associated assemblage transition occurs at shallower depths thus requiring a very careful depth migration if a thermal anomaly should be recognized. This counterintuitive behavior results from the downward replacement of the assemblage wadsleyite+garnet with the assemblage garnet+periclase at high temperatures. This transition causes even lower seismic velocities with greater depth (following an adiabatic gradient), the highly continuous nature of the reaction, however, should produce only a smooth negative conversion. In contrast, a small positive conversion is expected at normal thermal gradients in the same depth range between 500 and 550 kilometers because of the wadsleyite-ringwoodite-transition. Hence, the polarity of the 520 discontinuity also offers a possibility to recognize the thermal state of the upper mantle.
Preliminary map of temperature gradients in the conterminous United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guffanti, M.; Nathenson, M.
1980-09-01
Temperature gradients have been determined from temperature/depth measurements made in drill holes deeper than 600 m and used in the construction of a temperature-gradient map of the conterminous United States. The map displays temperature gradients (in /sup 0/C/km) that can be expected to exist regionally in a conductive thermal regime to a depth of 2 km. The major difference between this map and the AAPG-USGS temperature-gradient map is in the midcontinental region where the AAPG-USGS map does not demarcate a division between colder eastern and warmer western thermal regimes. A comparison with the heat-flow map of Sass et al. (1980)more » indicates that temperature gradients commonly reflect regional heat flow, and the gross east-west division of the United States on the basis of heat flow is also expressed by temperature gradient.« less
NASA Astrophysics Data System (ADS)
Singarayer, Joy; Stone, Emma; Whipple, Matthew; Lunt, Dan; Bouttes, Nathaelle; Gregory, Jonathan
2014-05-01
Global sea level during the last interglacial is likely to have been between 5.5 and 9m above present (Dutton and Lambeck, 2012). Recent calculations, taking into account latest NEEM ice core information, suggest that Greenland would probably not have contributed more than 2.2m to this (Stone et al, 2013), implying a considerable contribution from Antarctica. Previous studies have suggested a significant loss from the West Antarctic ice-sheet (e.g. Holden et al, 2010), which could be initiated following a collapse of the Atlantic Meridional Overturning Circulation (AMOC) and resultant warming in the Southern Ocean. Here, model simulations with FAMOUS and HadCM3 have been performed of the last interglacial under various scenarios of reduced Greenland and Antarctic ice-sheet configurations, and with and without collapsed AMOC. Thermal expansion and changes in regional density structure (resulting from ocean circulation changes) can also influence sea level, in addition to ice mass effects discussed thus far. The HadCM3 and FAMOUS simulations will be used to estimate the contribution to global and regional sea level change in interglacials from the latter two factors using a similar methodology to the IPCC TAR/AR4 estimations of future sea level rise (Gregory and Lowe, 2000). The HadCM3 and FAMOUS both have a rigid lid in their ocean model, and consequently a fixed ocean volume. Thermal expansion can, however, be calculated as a volume change from in-situ density (a prognostic variable from the model). Relative sea surface topography will then be estimated from surface pressure gradients and changes in atmospheric pressure. Dutton A., and Lambeck K., 2013. Ice Volume and Sea Level During the Last Interglacial. Science, 337, 216-219 Gregory J.M. and Lowe J.A., 2000. Predictions of global and regional sea-level using AOGCMs with and without flux adjustment. GRL, 27, 3069-3072 Holden P. et al., 2010. Interhemispheric coupling, the West Antarctic Ice Sheet and warm Antarctic interglacials. Clim. Past, 6, 431-443 Stone E.J., et al., 2013. Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Clim. Past, 9, 621-639
Functional Innovations and the Conquest of the Oceans by Acanthomorph Fishes.
Wainwright, Peter C; Longo, Sarah J
2017-06-05
The world's oceans are home to many fantastic creatures, including about 16,000 species of actinopterygian, or ray-finned, fishes. Notably, 85% of marine fish species come from a single actinopterygian subgroup, the acanthomorph or spiny-rayed fishes. Here, we review eight functional innovations found in marine acanthomorphs that have been instrumental in the adaptive radiation of this group in the marine realm. Jaw protrusion substantially enhances the suction feeding mechanism found in all fish. Fin spines serve as a major deterrent to predators and enhance the locomotor function of fins. Pharyngognathy, a specialization of the second pair of jaws in the pharynx, enhances the ability of fishes to process hard and tough prey. Endothermy allows fishes to function at high levels of physiological performance in cold waters and facilitates frequent movement across strong thermal gradients found in the open ocean. Intramandibular joints enhance feeding for fishes that bite and scrape prey attached to hard surfaces. Antifreeze proteins prevent ice crystal growth in extracellular fluids, allowing fish to function in cold waters that would otherwise freeze them. Air-breathing allowed fishes at the water's edge to exploit terrestrial habitats. Finally, bioluminescence functions in communication, attracting prey and in hiding from predators, particularly for fishes of the deep ocean. All of these innovations have evolved multiple times in fishes. The frequent occurrence of convergent evolution of these complex functional novelties speaks to the persistence and potency of the selective forces in marine environments that challenge fishes and stimulate innovation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2002-01-01
Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.
Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Lima, Fernando P.; Castillo, Karl D.
2016-01-01
Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003–2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change. PMID:27606598
Baumann, Justin H; Townsend, Joseph E; Courtney, Travis A; Aichelman, Hannah E; Davies, Sarah W; Lima, Fernando P; Castillo, Karl D
2016-01-01
Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change.
Direct Electricity from Heat: A Solution to Assist Aircraft Power Demands
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2010-01-01
A thermionic device produces an electrical current with the application of a thermal gradient whereby the temperature at one electrode provides enough thermal energy to eject electrons. The system is totally predicated on the thermal gradient and the work function of the electrode collector relative to the emitter electrode. Combined with a standard thermoelectric device high efficiencies may result, capable of providing electrical energy from the waste heat of gas turbine engines.
The interaction of horizontal eddy transport and thermal drive in the stratosphere
NASA Technical Reports Server (NTRS)
Salby, Murry L.; O'Sullivan, Donal; Callaghan, Patrick; Garcia, Rolando R.
1990-01-01
The two processes that determine the average state of the circulation; i.e., horizontal eddy transport and thermal dissipation, are examined, and the effects of their interaction on circulation and on tracer distribution in the stratosphere are investigated using barotropic calculations on the sphere. It is shown that eddy advection tends to homogenize the meridional gradient Q at low latitudes, while thermal dissipation restores the gradient after episodes of mixing.
Robinson, James B.; Brown, Leon D.; Jervis, Rhodri; Taiwo, Oluwadamilola O.; Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P.; Eastwood, David S.; Reinhard, Christina; Lee, Peter D.; Brett, Daniel J. L.; Shearing, Paul R.
2014-01-01
A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature. PMID:25178003
Recent assimilation developments of FOAM the Met Office ocean forecast system
NASA Astrophysics Data System (ADS)
Lea, Daniel; Martin, Matthew; Waters, Jennifer; Mirouze, Isabelle; While, James; King, Robert
2015-04-01
FOAM is the Met Office's operational ocean forecasting system. This system comprises a range of models from a 1/4 degree resolution global to 1/12 degree resolution regional models and shelf seas models at 7 km resolution. The system is made up of the ocean model NEMO (Nucleus for European Modeling of the Ocean), the Los Alomos sea ice model CICE and the NEMOVAR assimilation run in 3D-VAR FGAT mode. Work is ongoing to transition to both a higher resolution global ocean model at 1/12 degrees and to run FOAM in coupled models. The FOAM system generally performs well. One area of concern however is the performance in the tropics where spurious oscillations and excessive vertical velocity gradients are found after assimilation. NEMOVAR includes a balance operator which in the extra-tropics uses geostrophic balance to produce velocity increments which balance the density increments applied. In the tropics, however, the main balance is between the pressure gradients produced by the density gradient and the applied wind stress. A scheme is presented which aims to maintain this balance when increments are applied. Another issue in FOAM is that there are sometimes persistent temperature and salinity errors which are not effectively corrected by the assimilation. The standard NEMOVAR has a single correlation length scale based on the local Rossby radius. This means that observations in the extra tropics have influence on the model only on short length-scales. In order to maximise the information extracted from the observations and to correct large scale model biases a multiple correlation length-scale scheme has been developed. This includes a larger length scale which spreads observation information further. Various refinements of the scheme are also explored including reducing the longer length scale component at the edge of the sea ice and in areas with high potential vorticity gradients. A related scheme which varies the correlation length scale in the shelf seas is also described.
NASA Astrophysics Data System (ADS)
Ayela, Frédéric; Medrano-Muñoz, Manuel; Amans, David; Dujardin, Christophe; Brichart, Thomas; Martini, Matteo; Tillement, Olivier; Ledoux, Gilles
2013-10-01
Thermosensitive fluorescent nanoparticles seeded in deionized water combined with confocal microscopy enables thermal mapping over three dimensions of the liquid phase flowing through a microchannel interrupted by a microdiaphragm. This experiment reveals the presence of a strong thermal gradient up to ˜105 K/m only when hydrodynamic cavitation is present. Here hydrodynamic cavitation is the consequence of high shear rates downstream in the diaphragm. This temperature gradient is located in vortical structures associated with eddies in the shear layers. We attribute such overheating to the dissipation involved by the cavitating flow regime. Accordingly, we demonstrate that the microsizes of the device enhance the intensity of the thermal gap.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene.
Zhang, Zhongshi; Nisancioglu, Kerim H; Ninnemann, Ulysses S
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ(13)C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ(13)C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene
Zhang, Zhongshi; Nisancioglu, Kerim H.; Ninnemann, Ulysses S.
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ13C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ13C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features. PMID:23422667
Weller, Evan; Cai, Wenju; Min, Seung-Ki; Wu, Lixin; Ashok, Karumuri; Yamagata, Toshio
2014-01-01
The Intertropical Convergence Zone (ITCZ) in the tropical eastern Indian Ocean exhibits strong interannual variability, often co-occurring with positive Indian Ocean Dipole (pIOD) events. During what we identify as an extreme ITCZ event, a drastic northward shift of atmospheric convection coincides with an anomalously strong north-minus-south sea surface temperature (SST) gradient over the eastern equatorial Indian Ocean. Such shifts lead to severe droughts over the maritime continent and surrounding islands but also devastating floods in southern parts of the Indian subcontinent. Understanding future changes of the ITCZ is therefore of major scientific and socioeconomic interest. Here we find a more-than-doubling in the frequency of extreme ITCZ events under greenhouse warming, estimated from climate models participating in the Coupled Model Intercomparison Project phase 5 that are able to simulate such events. The increase is due to a mean state change with an enhanced north-minus-south SST gradient and a weakened Walker Circulation, facilitating smaller perturbations to shift the ITCZ northwards. PMID:25124737
Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung
2017-03-22
A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, M.W.; Forbes, I.A.; Turnage, J.C.
The potential of new and future energy technologies is discussed, with information provided on availability, technical and economic feasibility, and limitations due to the form of the energy. Energy sources not presently in use (i.e., shale oil, garbage, geothermal, wind, tidal, breeder reactors, ocean thermal gradients, solar energy, and fusion) are expected to supply only 10 to 15% of the Nation's energy requirements in the year 2000. The following chapters are included: Energy Use and Supply; Extending Chemical Fuel Resources, which covers oil shale and tar sands, coal gasification and liquefaction, garbage, and biomass energy; Harnessing the Forces of Nature,more » which describes geothermal, tidal, hydro, wind, and solar energy; New Nuclear Technology (e.g., converter reactors, breeder reactors, fusion by magnetic confinement, and laser fusion); and Improving Energy Production Efficiency, with discussions on energy storage, MHD (magnetohydrodynamics), and combined cycles. (64 references) (BYB)« less
NASA Astrophysics Data System (ADS)
Ahadi, Floriane; Delpech, Guillaume; Gautheron, Cécile; Nomade, Sébastien; Zeyen, Hermann; Guillaume, Damien
2017-04-01
Low temperature thermochronology on plutonic rocks is traditionally used to calculate erosion rates over large time scale. However, this method requires a good knowledge of the local or regional geology and particularly the thermal structure and evolution of the crust. The Kerguelen Islands (48-50°S, 68/5-70.5°E, Indian Ocean) are the emerged part of a vast oceanic plateau and are mostly made up of Oligocene basaltic traps that are cross cut by a dense network of large and deep valleys. Numerous plutonic complexes of various age (20-4.5 Ma) locally intrude theses traps and cover about 15% of the main island's surface. The Rallier du Baty peninsula is the largest plutonic complex, it is mainly constituted of syenites and is divided into two adjacent circular plutonic complexes whose centres are distant of 15 km. The southern part has a laccolith structure with satellites plutons and was emplaced at shallow depth (about 1 to 3 km) between 13.7 ± 0.3 and 8.0 ± 0.2 Ma. The northern part was emplaced later between 7.8 ± 0.25 and 4.5 ± 0.1 Ma. The Kerguelen Islands are of particular interest to understand the impact of Cenozoïc climatic variations on the long-term geomorphological evolution of emerged reliefs at mid-latitudes. To understand the erosion of the area, we conducted the first study on the Kerguelen Islands using the biotite 40Ar/39Ar (BAr), apatite and zircon (U-Th)/He thermochronometers (AHe and ZHe). In the southern part, the BAr ages for the various intrusions of the complex range from 9.44 ± 0.13 Ma to 13.84 ± 0.07 Ma. These ages are identical to high-temperature crystallisation ages (U-Pb on zircon) indicating an extremely rapid cooling between ˜700 and ˜300°C. The mean ZHe ages range between 7.1 ± 2.3 and 8.8 ± 1.4 and the mean AHe ages range between 4.4 ± 0.3 Ma and 7.4 ± 0.7 Ma. The AHe ages of the southern complex are similar to the crystallization ages of the northern part of the complex. The mean AHe ages in the northern part are much younger and range from 1.4 ± 0.7 Ma to 0.8 ± 0.1 Ma. Combined with the thermochronological approach, the thermal structure of the crust beneath the Kerguelen Plateau was established by inverse modelling of gravity, geoid and topography data. The results suggest a mean current thermal gradient of ˜40°/km for the Kerguelen Plateau. Moreover, thermal modelling allows reconstructing heat diffusion in 1D after successive sill intrusions (vertically and horizontally) in order to confirm AHe data can be interpreted as exhumation ages in both complexes. In this case, the mean thermal gradient can be considered to convert the cooling rates in erosion rates.
Constantz, J.; Thomas, C.L.
1997-01-01
Stream bed temperature profiles were monitored continuously during water year 1990 and 1991 (WY90 and 91) in two New Mexico arroyos, similar in their meteorological features and dissimilar in their hydrological features. Stream bed temperature profiles between depths of 30 and 300 cm were examined to determine whether temporal changes in temperature profiles represent accurate indicators of the timing, depth and duration of percolation in each stream bed. These results were compared with stream flow, air temperature, and precipitation records for WY90 and 91, to evaluate the effect of changing surface conditions on temperature profiles. Temperature profiles indicate a persistently high thermal gradient with depth beneath Grantline Arroyo, except during a semi-annual thermal reversal in spring and autumn. This typifies the thermal response of dry sediments with low thermal conductivities. High thermal gradients were disrupted only during infrequent stream flows, followed by rapid re-establishment of high gradients. The stream bed temperature at 300 cm was unresponsive to individual precipitation or stream flow during WY90 and 91. This thermal pattern provides strong evidence that most seepage into Grantline Arroyo failed to percolate at a sufficient rate to reach 300 cm before being returned to the atmosphere. A distinctly different thermal pattern was recorded beneath Tijeras Arroyo. Low thermal gradients between 30 and 300 cm and large diurnal variations in temperature, suggest that stream flow created continuous, advection-dominated heat transport for over 300 days, annually. Beneath Tijeras Arroyo, low thermal gradients were interrupted only briefly during periodic, dry summer conditions. Comparisons of stream flow records for WY90 and 91 with stream bed temperature profiles indicate that independent analysis of thermal patterns provides accurate estimates of the timing, depth and duration of percolation beneath both arroyos. Stream flow loss estimates indicate that seepage rates were 15 times greater for Tijeras Arroyo than for Grantline Arroyo, which supports qualitative conclusions derived from analysis of stream bed temperature responses to surface conditions. ?? 1997 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2002-01-01
Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... determined by the Secretary charged with its administration. (m) The Ocean Thermal Energy Conversion Act of... of NOAA for the ownership, construction, location, and operation of ocean thermal energy conversion... Energy Regulatory Agency (FERC) to issue licenses for the construction and the operation and maintenance...
The effects of Venus' thermal structure on buoyant magma ascent
NASA Technical Reports Server (NTRS)
Sakimoto, S. E. H.; Zuber, M. T.
1992-01-01
The recent Magellan images have revealed a broad spatial distribution of surface volcanism on Venus. Previous work in modeling the ascent of magma on both Venus and Earth has indicated that the planetary thermal structure significantly influences the magmatic cooling rates and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of the thermal structure have the greatest influence on the cooling of ascending magma, we have constructed magma cooling curves for both plutonic and crack buoyant ascent mechanisms, and evaluated the curves for variations in the planetary mantle temperature, thermal gradient curvature with depth, surface temperature gradient, and surface temperature. The planetary thermal structure is modeled as T/T(sub 0) = 1-tau(1-Z/Z(sub 0)(exp n), where T is the temperature, T(sub 0) is the source depth temperature, tau = 1-(T(sub s)/T(sub 0)) where T(sub s) is the planetary surface temperature, Z is the depth, Z(sub 0) is the source depth, and n is a constant that controls thermal gradient curvature with depth. The equation is used both for mathematical convenience and flexibility, as well as its fit to the thermal gradients predicted by the cooling half-space models. We assume a constant velocity buoyant ascent, body-averaged magma temperatures and properties, an initially crystal-free magma, and the same liquidus and solidus for both Venus and Earth.
Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
NASA Astrophysics Data System (ADS)
Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov
2016-02-01
Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.
NASA Astrophysics Data System (ADS)
Ziegler, Martin; Diz, Paula; Hall, Ian R.; Zahn, Rainer
2013-06-01
The rise in atmospheric CO2 concentrations observed at the end of glacial periods has, at least in part, been attributed to the upwelling of carbon-rich deep water in the Southern Ocean. The magnitude of outgassing of dissolved CO2, however, is influenced by the biological fixation of upwelled inorganic carbon and its transfer back to the deep sea as organic carbon. The efficiency of this biological pump is controlled by the extent of nutrient utilization, which can be stimulated by the delivery of iron by atmospheric dust particles. Changes in nutrient utilization should be reflected in the δ13C gradient between intermediate and deep waters. Here we use the δ13C values of intermediate- and bottom-dwelling foraminifera to reconstruct the carbon isotope gradient between thermocline and abyssal water in the subantarctic zone of the South Atlantic Ocean over the past 360,000 years. We find millennial-scale oscillations of the carbon isotope gradient that correspond to changes in dust flux and atmospheric CO2 concentrations as reported from Antarctic ice cores. We interpret this correlation as a relationship between the efficiency of the biological pump and fertilization by dust-borne iron. As the correlation is exponential, we suggest that the sensitivity of the biological pump to dust-borne iron fertilization may be increased when the background dust flux is low.
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Fisher, A. T.; Winslow, D. M.; Stauffer, P. H.; Gable, C. W.
2017-12-01
The flanks of mid-ocean ridges experience coupled flows of fluid, heat, and solutes that are critical for a wide range of global processes, including the cycling of carbon and nutrients, which supports a vast crustal biosphere. Only a few ridge-flank sites have been studied in detail; hydrogeologic conditions and processes in the volcanic crust are best understood on the eastern flank of the Juan de Fuca Ridge. This area has been extensively explored with decades of drilling, submersible, observatory, and survey expeditions and experiments, including the first hole-to-hole tracer injection experiment in the ocean crust. This study describes the development of reactive transport simulations for this ridge-flank setting using three-dimensional coupled (thermal-hydrological) models of crustal-scale circulation, beginning with the exploration of tracer transport. The prevailing flow direction is roughly south to north as a result of outcrop-to-outcrop flow, with a bulk flow rate in the range of meters/year. However, tracer was detected 500 m south ("upstream") from the injection borehole during the first year following injection. This may be explained by local mixing and/or formation fluid discharge from the southern borehole during and after injection. The constraints and parameters required to fit the observed tracer behavior can be used as a basis for modeling reactive transport processes such as nutrient delivery or microbial community evolution as a function of fluid flow. For example, the sulfate concentration in fluid samples from Baby Bare outcrop ( 8 km south of the tracer transport experiment) was 17.8 mmol/kg, whereas at Mama Bare outcrop ( 8 km to north of the tracer transport experiment) the sulfate concentration was 16.3 mmol/mg. By integrating laboratory-derived sulfate reduction rates from microbial samples originating from Juan de Fuca borehole observatories into reactive transport models, we can explore the range of microbial activity that supports the observed concentration gradients of sulfate and other solutes in the volcanic ocean crust.
NASA Astrophysics Data System (ADS)
Snow, T.; Shepherd, B.; Skinner, S.; Abdalati, W.; Scambos, T. A.
2017-12-01
The Greenland ice sheet (GIS) contributes one-quarter of the globe's total sea level rise each year and one-third of its mass loss occurs at outlet glaciers. One mechanism for this loss is through melting at the ice-ocean boundary through interactions with relatively warm ocean water. In situ ocean measurements serve as the predominant method for studying these harsh and remote fjord environments, but have often only been acquired within the last decade in most Greenland fjords. Since many outlet glaciers began to accelerate and retreat before that period, the lack of earlier measurements requires us to rely on an understanding of contemporary fjord processes and inference of past conditions to evaluate the ocean's role in observed glacier change. Remotely sensed sea surface temperature (SST) have been widely unused in studies of glacial fjords and may hold clues to fjord circulation and ice-ocean interactions spanning before rapid change began at the turn of the century. However, the utility of this method in studying glacial fjords has not been thoroughly explored. In this study, we compare remotely sensed SSTs to previously published in situ ocean temperature measurements taken from 2009 to present at the Sermilik Fjord and 2015-2016 at the Petermann, in order to determine the utility of SSTs in studying polar fjord waters. SSTs were derived from Landsat 7 and 8 thermal infrared imagery to produce a time series of the fjord surface. The time series was correlated with coincident mooring and shipboard ocean temperature measurements using various lags and spatial offsets. Sermilik Fjord SSTs frequently gave temperatures 2C warmer than adjacent surface in situ measurements, while Petermann temperatures show much closer relationships. These trends are likely driven by variability in wind velocities and density gradients that influence mixing within the surface layer of the ocean. However, variability in the offsets between SSTs and in situ measurements also provides insight into subglacial discharge, fjord circulation, and subglacial melting between seasons. Continued work at the Sermilik and Petermann Fjords will help to determine further linkages between SSTs and the fjord water column and how that relationship varies from one glacier system to the next.
NASA Astrophysics Data System (ADS)
Mittelstaedt, E. L.; Olive, J. A. L.; Barreyre, T.
2016-12-01
Hydrothermal circulation at the axis of mid-ocean ridges has a profound effect on chemical and biological processes in the deep ocean, and influences the thermo-mechanical state of young oceanic lithosphere. Yet, the geometry of fluid pathways beneath the seafloor and its relation to spatial gradients in crustal permeability remain enigmatic. Here we present new laboratory models of hydrothermal circulation aimed at constraining the self-organization of porous convection cells in homogeneous as well as highly heterogeneous crust analogs. Oceanic crust analogs of known permeability are constructed using uniform glass spheres and 3-D printed plastics with a network of mutually perpendicular tubes. These materials are saturated with corn syrup-water mixtures and heated at their base by a resistive silicone strip heater to initiate thermal convection. A layer of pure fluid (i.e., an analog ocean) overlies the porous medium and allows an "open-top" boundary condition. Areas of fluid discharge from the crust into the ocean are identified by illuminating microscopic glass particles carried by the fluid, using laser sheets. Using particle image velocimetry, we estimate fluid discharge rates as well as the location and extent of fluid recharge. Thermo-couples distributed throughout the crust provide insights into the geometry of convection cells at depth, and enable estimates of convective heat flux, which can be compared to the heat supplied at the base of the system. Preliminary results indicate that in homogeneous crust, convection is largely confined to the narrow slot overlying the heat source. Regularly spaced discharge zones appear focused while recharge areas appear diffuse, and qualitatively resemble the along-axis distribution of hydrothermal fields at oceanic spreading centers. By varying the permeability of the crustal analogs, the viscosity of the convecting fluid, and the imposed basal temperature, our experiments span Rayleigh numbers between 10 and 10,000. This allows us to precisely map the conditions of convection initiation, and test scaling relations between the Nusselt and Rayleigh numbers. Finally, we investigate how these scalings and convection geometry change when a slot of high-permeability material (i.e., an analog fault) is introduced in the middle of the porous domain.
NASA Technical Reports Server (NTRS)
Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia;
2016-01-01
The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sealevel rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the model spread in behaviour in terms of physical processes as formulated in the models.
Infrared characterization of thermal gradients on disc brakes
NASA Astrophysics Data System (ADS)
Panier, Stephane; Dufrenoy, Philippe; Bremond, Pierre
2003-04-01
The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localized contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage, early failure and unacceptable braking performances such as brake fade or undesirable low frequency vibrations called hot judder. In this paper, an experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermograph measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. The infrared system was set to take temperature readings in snap shot mode precisely synchronized with the rotation of the disc. Very short integration time allows reducing drastically haziness of thermal images. Based on thermographs, a classification of hot-spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Thanks to infrared measurements at high frequency with high resolution, observations give new highlights on the conditions of hot spots appearance. Comparison of the experimental observations with the theoretical approaches is finally discussed.
NASA Astrophysics Data System (ADS)
Glazer, R.; Bourassa, M. A.; Hart, R. E.
2013-12-01
It has long been known that generally the warmer the sea surface temperature (SST), the more possible tropical cyclone (TC) genesis is, assuming the atmosphere is supportive. The conventional wisdom has been that - apart from what the TC cools through upwelling -- one value of SST represents the state of the ocean surface in the region of the storm's inner circulation. With the advent of the satellite era and fine resolution SST datasets now becoming available, we know that in reality there are gradients of SST across which developing TCs move. The influence of those gradients on tropical convection and TC genesis is largely unknown at this time. Previous studies have shown that SST gradients can significantly impact the overlying ocean surface winds leading to areas of enhanced convergence/divergence and Vorticity (Chelton et al. 2004; O'Neill et al. 2005, 2010). The magnitude of this effect approximately increases as the surface wind increases. Work by Minobe et al. (2008) concluded that a sharp SST Gradient, over the Gulf Stream for instance, could produce enough surface wind convergence to maintain a band of precipitation along the ocean front. An analysis of satellite derived SST data over the Atlantic shows that it is not uncommon for SST gradients of 2 C/200km or more to exist in the immediate environment of a Tropical System. The authors seek to understand whether the conclusions made in previous works can be applied in the case of a developing Tropical System and whether SST Gradients exist in the Tropical Atlantic to a degree that would influence the cyclogenesis process. To address this, the effects of SST gradients on tropical cyclogenesis processes are investigated using model simulations of the Weather Research and Forecasting Model (WRF). WRF is run at cloud permitting scales (2km) for real cases of co-location between a tropical system and an SST gradient exceeding 2 C/200km in the environment of the system. In subsequent runs to this control run, the SSTs are modified to give a smaller or larger SST Gradient with the same atmospheric conditions. All cases are chosen from Atlantic Hurricane Seasons between 2002-2011. The results are then analyzed in the framework of previous studies that have sought to model and understand tropical cyclogenesis using WRF (Nolan 2007; Fang and Zhang 2010).
Exploring the Biotic Pump Hypothesis along Non-linear Transects in Tropical South America
NASA Astrophysics Data System (ADS)
Molina, R.; Bettin, D. M.; Salazar, J. F.; Villegas, J. C.
2014-12-01
Forests might actively transport atmospheric moisture from the oceans, according to the biotic pump of atmospheric moisture (BiPAM) hypothesis. The BiPAM hypothesis appears to be supported by the fact that precipitation drops exponentially with distance from ocean along non-forested land transects, but not on their forested counterparts. Yet researchers have discussed the difficulty in defining proper transects for BiPAM studies. Previous studies calculate precipitation gradients either along linear transects maximizing distance to the ocean, or along polylines following specific atmospheric pathways (e.g., aerial rivers). In this study we analyzed precipitation gradients along curvilinear streamlines of wind in tropical South America. Wind streamlines were computed using long-term quarterly averages of meridional and zonal wind components from the ERA-Interim and NCEP/NCAR reanalyses. Total precipitation along streamlines was obtained from four data sources: TRMM, UDEL, ERA-Interim, and NCEP/NCAR. Precipitation on land versus distance from the ocean was analyzed along selected streamlines for each data source. As predicted by BiPAM, precipitation gradients did not decrease exponentially along streamlines in the vicinity of the Amazon forest, but dropped rapidly as distance from the forest increased. Remarkably, precipitation along streamlines in some areas outside the Amazon forest did not decrease exponentially either. This was possibly owing to convergence of moisture conveyed by low level jets (LLJs) in those areas (e.g., streamlines driven by the Caribbean and CHOCO jets on the Pacific coast of Colombia). Significantly, BiPAM held true even along long transects displaying strong sinuosity. In fact, the general conclusions of previous studies remain valid. Yet effects of LLJs on precipitation gradients need to be thoroughly considered in future BiPAM studies.
Ghashami, Mohammad; Geng, Hongyao; Kim, Taehoon; Iacopino, Nicholas; Cho, Sung Kwon; Park, Keunhan
2018-04-27
Despite its strong potentials in emerging energy applications, near-field thermal radiation between large planar structures has not been fully explored in experiments. Particularly, it is extremely challenging to control a subwavelength gap distance with good parallelism under large thermal gradients. This article reports the precision measurement of near-field radiative energy transfer between two macroscale single-crystalline quartz plates that support surface phonon polaritons. Our measurement scheme allows the precise control of a gap distance down to 200 nm in a highly reproducible manner for a surface area of 5×5 mm^{2}. We have measured near-field thermal radiation as a function of the gap distance for a broad range of thermal gradients up to ∼156 K, observing more than 40 times enhancement of thermal radiation compared to the blackbody limit. By comparing with theoretical prediction based on fluctuational electrodynamics, we demonstrate that such remarkable enhancement is owing to phonon-polaritonic energy transfer across a nanoscale vacuum gap.
NASA Astrophysics Data System (ADS)
Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang
2017-12-01
While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.
Ordering pathway of block copolymers under dynamic thermal gradients studied by in situ GISAXS
Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.; ...
2016-10-31
Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less
Improved Cloud Condensation Nucleus Spectrometer
NASA Technical Reports Server (NTRS)
Leu, Ming-Taun
2010-01-01
An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main chamber at the inlet end. The inlet assembly is designed to offer improved (relative to prior such assemblies) laminar-flow performance within the main chamber. Dry aerosols are subjected to activation and growth in the supersaturation field. f) After aerosol activation, at the outlet end of the main chamber, a polished stainless-steel probe is used to sample droplets into a laser particle counter. The probe features an improved design for efficient sampling. The counter has six channels with size bins in the range of 0.5- to 5.0-micron diameter. g) To enable efficient sampling, the probe is scanned along the width axis of the main chamber (thereby effecting scanning along the temperature gradient and thereby, further, effecting scanning along the supersaturation gradient) by means of a computer-controlled translation stage.
NASA Technical Reports Server (NTRS)
Song, Y. T.
1998-01-01
A Jacobian formulation of the pressure gradient force for use in models with topography following coordinates is proposed. It can be used in conjunction with any vertical coordinate system and is easily implemented.
NASA Astrophysics Data System (ADS)
Fang, J.
2017-12-01
The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean- atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere system.
NASA Astrophysics Data System (ADS)
Groppo, Chiara; Rolfo, Franco; Sachan, Himanshu K.; Rai, Santosh K.
2016-05-01
Although the Himalaya is the archetype of collisional orogens, formed as a consequence of the closure of the Neo-Tethyan ocean separating India from Asia, high-pressure metamorphic rocks are rare. Beside few eclogites, corresponding to the metamorphosed continental Indian crust dragged below Asia or underthrusted beneath southern Tibet, blueschists occur seldom along the Yarlung-Tsangpo Suture zone, i.e. the suture marking the India-Asia collision. These blueschists, mostly interpreted as related to paleo-accretionary prisms formed in response to the subduction of the Neo-Tethyan ocean below the Asian plate, are crucial for constraining the evolution of the India-Asia convergence zone during the closure of the Neo-Tethyan Ocean. In the Western Himalaya, the best occurrence of blueschist is that of the Sapi-Shergol Ophiolitic Mélange in Ladakh. This unit is dominated by volcanoclastic sequences rich in mafic material with subordinate interbedding of metasediments, characterized by very fresh lawsonite blueschist-facies assemblages. In this paper, the lawsonite blueschist-facies metasediments have been petrologically investigated with the aims of (i) constraining the P-T evolution of the Sapi-Shergol Ophiolitic Mélange, (ii) evaluating the influence of Fe2O3 and of H2O on the stability of the high-pressure mineral assemblages, (iii) understanding the processes controlling lawsonite formation and preservation, and (iv) interpreting the P-T evolution of the Sapi-Shergol blueschists in the framework of India-Asia collision. Our results indicate that (i) the Sapi-Shergol blueschists experienced a cold subduction history along a low thermal gradient, up to peak conditions of ca. 470 °C, 19 kbar; furthermore, in order to preserve lawsonite in the studied lithologies, exhumation must have been coupled with significant cooling, i.e. the resulting P-T path is characterized by a clockwise hairpin loop along low thermal gradients (< 8-9 °C/km); (ii) the presence of ferric iron in the investigated system has a non-negligible (lowering) effect on pressure estimates, whereas temperatures estimates are not influenced by the oxidation state of the system; (iii) the observed sequence of mineral growth (i.e. simultaneous growth of lawsonite and garnet) suggests that (a) the system was initially H2O-undersaturated and lawsonite growth was triggered by a protracted H2O influx at high pressure (equilibrium approach), or (b) the system was H2O-saturated since the beginning, but lawsonite growth was delayed due to the predominance of kinetic factors over equilibrium dynamics (nonequilibrium approach); (iv) the inferred P-T evolution is consistent with a cold subduction zone system in an intra-oceanic subduction setting. Moreover, the estimated peak P-T conditions roughly coincide with the maximum P-T estimates predicted by thermo-mechanical models for the metasediments exhumed in accretionary wedges, and with the maximum P-T conditions recorded by natural occurrences of blueschist accretionary complexes worldwide.
Relationships between heat flow, thermal and pressure fields in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Husson, L.; Henry, P.; Le Pichon, X.
2004-12-01
The thermal field of the Gulf of Mexico (GoM) is restored from a comprehensive temperature-depth database. A striking feature is the systematic sharp gradient increase between 2500 and 4000 m. The analysis of the pressure (fracturation tests and mud weights) indicates a systematic correlation between the pressure and temperature fields, as well as with the thickness of Plio-Pleistocene sedimentary layer, and is interpreted as the fact of cooling from fluid flow in the upper, almost hydrostatically pressured layer. The Nusselt number, that we characterize by the ratio between the near high-P gradient over low-P gradient varies spatially and is correlated to the structural pattern of the GoM; this observation outlines the complex relationships between heat and fluid flows, structure and sedimentation. The deep thermal signal is restored in terms of gradient and heat flow density from a statistical analysis of the thermal data combined to the thermal modelling of about 175 wells. At a regional scale, although the sedimentary cover is warmer in Texas than in Louisiana in terms of temperature, the steady state basal heat flow is higher in Louisiana. In addition, beneath the Corsair Fault, which lay offshore parallel to the Texan coast, the high heat flow suggests a zone of Tertiary lithospheric thinning.
Dynamic and Thermal Turbulent Time Scale Modelling for Homogeneous Shear Flows
NASA Technical Reports Server (NTRS)
Schwab, John R.; Lakshminarayana, Budugur
1994-01-01
A new turbulence model, based upon dynamic and thermal turbulent time scale transport equations, is developed and applied to homogeneous shear flows with constant velocity and temperature gradients. The new model comprises transport equations for k, the turbulent kinetic energy; tau, the dynamic time scale; k(sub theta), the fluctuating temperature variance; and tau(sub theta), the thermal time scale. It offers conceptually parallel modeling of the dynamic and thermal turbulence at the two equation level, and eliminates the customary prescription of an empirical turbulent Prandtl number, Pr(sub t), thus permitting a more generalized prediction capability for turbulent heat transfer in complex flows and geometries. The new model also incorporates constitutive relations, based upon invariant theory, that allow the effects of nonequilibrium to modify the primary coefficients for the turbulent shear stress and heat flux. Predictions of the new model, along with those from two other similar models, are compared with experimental data for decaying homogeneous dynamic and thermal turbulence, homogeneous turbulence with constant temperature gradient, and homogeneous turbulence with constant temperature gradient and constant velocity gradient. The new model offers improvement in agreement with the data for most cases considered in this work, although it was no better than the other models for several cases where all the models performed poorly.
Two-dimensional modeling of thermal inversion layers in the middle atmosphere of Mars
NASA Technical Reports Server (NTRS)
Theodore, B.; Chassefiere, E.
1993-01-01
There is some evidence that the thermal structure of the martian middle atmosphere may be altered in a significant way by the general circulation motions. Indeed, while it is well known that the circulation in the meridional plane is responsible for the reversal of the latitudinal thermal gradient at the solstice through the adiabatic heating due to sinking motions above the winter pole, here we want to emphasize that a likely by-product effect could be the formation of warm layers, mainly located in the winter hemisphere, and exhibiting an inversion of the vertical thermal gradient.
Estimation of surface temperature variations due to changes in sky and solar flux with elevation
NASA Technical Reports Server (NTRS)
Hummer-Miller, S.
1981-01-01
The magnitude of elevation effects due to changes in solar and sky fluxes, on interpretation of single thermal images and composite products such as temperature difference and thermal inertia, are examined. Simple expressions are derived for the diurnal behavior of the two parameters, by fitting field observations in one tropic (Hawaii) and two semi-arid climates (Wyoming and Colorado) (Hummer-Miller, 1981). It is shown that flux variations with elevation can cause changes in the mean diurnal temperature gradient from -4 to -14 degrees C/km, evaluated at 2000 m. Changes in the temperature-difference gradient of 1 to 2 degrees C/km are also produced which is equivalent to an effective thermal-inertia gradient of 100 W s(exp 1/2)/sq m-K-km. An example is presented showing an elevation effect of 12 degrees C on the day and night thermal scenes of a test site in Arizona.
To assess the relative importance of terrestrial versus oceanic nutrient sources, we assembled natural abundance nitrogen stable isotope (δ15N) data for nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast o...
Ocean Thermal Energy Conversion (OTEC)
NASA Technical Reports Server (NTRS)
Lavi, A.
1977-01-01
Energy Research and Development Administration research progress in Ocean Thermal Energy Conversion (OTEC) is outlined. The development program is being focused on cost effective heat exchangers; ammonia is generally used as the heat exchange fluid. Projected costs for energy production by OTEC vary between $1000 to $1700 per kW.
Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions
NASA Technical Reports Server (NTRS)
Schrage, Dean S.
1991-01-01
An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.
NASA Astrophysics Data System (ADS)
Delboni, L. F.; Iulek, J.; Burger, R.; da Silva, A. C. R.; Moreno, A.
2002-02-01
The expression, purification, crystallization, and characterization by X-ray diffraction of α-amylase are described here. Dynamic and static light scattering methods with a temperature controller was used to optimize the crystallization conditions of α-amylase from Bacillus stearothermophilus an important enzyme in many fields of industrial activity. After applying thermal gradients for growing crystals, X-ray cryo-crystallographic methods were employed for the data collection. Crystals grown by these thermal-gradients diffracted up to a maximum resolution of 3.8 Å, which allowed the determination of the unit cell constants as follows: a=61.7 Å, b=86.7 Å, c=92.2 Å and space group C222 (or C222 1).
Active Pattern Factor Control for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
May, James E.
1998-01-01
Small variations in fuel/air mixture ratios within gas turbine combustors can result in measurable, and potentially detrimental, exit thermal gradients. Thermal gradients can increase emissions, as well as shorten the design life of downstream turbomachinery, particularly stator vanes. Uniform temperature profiles are usually sought through careful design and manufacturing of related combustor components. However, small componentto-component variations as well as numerous aging effects degrade system performance. To compensate for degraded thermal performance, researchers are investigating active, closed-loop control schemes.
Distribution of thermal neutrons in a temperature gradient
NASA Astrophysics Data System (ADS)
Molinari, V. G.; Pollachini, L.
A method to determine the spatial distribution of the thermal spectrum of neutrons in heterogeneous systems is presented. The method is based on diffusion concepts and has a simple mathematical structure which increases computing efficiency. The application of this theory to the neutron thermal diffusion induced by a temperature gradient, as found in nuclear reactors, is described. After introducing approximations, a nonlinear equation system representing the neutron temperature is given. Values of the equation parameters and its dependence on geometrical factors and media characteristics are discussed.
Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program
2006-06-01
ORION, NSF’s proposed NEON network) to gain quantitative understanding of ecosystem processes in representative systems and across gradients of...these interactions and subsequent effects expected to vary across gradients of land use (i.e., from unmanaged to managed or urban ecosystems) and...ecosystem processes along a gradient of managed to unmanaged landscapes? How will changes in freshwater inputs affect the coastal oceans? 2.4 How
NASA Astrophysics Data System (ADS)
Rau, G. H.; Baird, J.; Noland, G.
2016-12-01
The vertical thermal energy potential in the ocean is a massive renewable energy resource that is growing due to anthropogenic warming of the surface and near-surface ocean. The conversion of this thermal energy to useful forms via Ocean Thermal Energy Conversion (OTEC) has been demonstrated over the past century, albeit at small scales. Because OTEC removes heat from the surface ocean, this could help directly counter ongoing, deleterious ocean/atmosphere warming. The only other climate intervention that could do this is solar radiation "geoengineering". Conventional OTEC requires energy intensive, vertical movement of seawater resulting in ocean and atmospheric chemistry alteration, but this can be avoided via more energy efficient, vertical closed-cycle heating and cooling of working fluid like CO2 or NH3. An energy carrier such as H2 is required to transport energy optimally extracted far offshore, and methods of electrochemically generating H2 while also consuming CO2 and converting it to ocean alkalinity have been demonstrated. The addition of such alkalinity to the ocean would provide vast, stable, carbon storage, while also helping chemically counter the effects of ocean acidification. The process might currently be profitable given the >$100/tonne CO2 credit offered by California's Low Carbon Fuel Standard for transportation fuels like H2. Negative-Emissions OTEC, NEOTEC, thus can potentially provide constant, cost effective, high capacity, negative-emissions energy while: a) reducing surface ocean heat load, b) reducing thermal ocean expansion and sea-level rise, c) utilizing a very large, natural marine carbon storage reservoir, and d) helping mitigate ocean acidification. The technology also avoids the biophysical and land use limitations posed by negative emissions methods that rely on terrestrial biology, such as afforestation and BECCS. NEOTEC and other marine-based, renewable energy and CO2 removal approaches could therefore greatly increase the likelihood of satisfying growing global energy demand while helping to stabilize or reduce atmospheric CO2 and its impacts. Policies supporting the search and evaluation of renewable energy and negative emissions options beyond biotic- and land-based methods are needed.
Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.
2017-12-01
Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.
Impact of Antarctic Polar Front Variability on Southern Ocean Biogeochemistry
NASA Astrophysics Data System (ADS)
Freeman, N. M.; Lovenduski, N. S.; Gent, P. R.
2016-12-01
The Antarctic Polar Front (PF) is an important biogeochemical divide in the Southern Ocean, often coinciding with sharp gradients in silicate and nitrate concentration at the surface. Variability in the PF has the potential to influence Southern Ocean biogeochemistry and biological productivity both locally and at the basin scale. Characterizing PF variability is important for contextualizing recent biogeochemical observations from ORCAS, SOCCOM, and the Drake Passage time-series, as well as for understanding how anthropogenic change is influencing Southern Ocean biogeochemistry. Here, we employ a suite of remote sensing observations and output from the Community Earth System Model (CESM) to better understand the relationship between the PF and local biogeochemistry in the Southern Ocean. Using microwave SST measurements spanning 2002-2014 that avoid cloud contamination, we show that the PF has shifted northward (southward) in the Pacific (Indian) sector and intensified at nearly all longitudes along its circumpolar path. We identify the PF in CESM at both coarse (1°x1°) and fine (0.1°x0.1°) horizontal resolutions using temperature and silicate gradient maxima, and quantify its spatial and temporal variability. We further investigate co-variance between the position and intensity of the PF and local phytoplankton community structure.
NASA Astrophysics Data System (ADS)
Greenhalgh, E. E.; Kusznir, N. J.
2006-12-01
Satellite gravity inversion incorporating a lithosphere thermal gravity correction has been used to map crustal thickness and lithosphere thinning factor for the N.E. Atlantic. The inversion of gravity data to determine crustal thickness incorporates a lithosphere thermal gravity anomaly correction for both oceanic and continental margin lithosphere. Predicted crustal thicknesses in the Norwegian Basin are between 7 and 4 km on the extinct Aegir oceanic ridge which ceased sea-floor spreading in the Oligocene. Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thicknesses determined by gravity inversion for the Aegir Ridge are consistent with recent estimates derived using refraction seismology by Breivik et al. (2006). Failure to incorporate a lithosphere thermal gravity anomaly correction produces an over-estimate of crustal thickness. Oceanic crustal thicknesses within the Norwegian Basin are predicted by the gravity inversion to increase to 9-10 km eastwards towards the Norwegian (Moere) and westwards towards the Jan Mayen micro-continent, consistent with volcanic margin continental breakup at the end of the Palaeocene. The observation (from gravity inversion and seismic refraction studies) of thin oceanic crust produced by the Aegir ocean ridge in the Oligocene has implications for the temporal evolution of asthenosphere temperature under the N.E. Atlantic during the Tertiary. Thin Oligocene oceanic crust may imply cool (normal) asthenosphere temperatures during the Oligocene in contrast to elevated asthenosphere temperatures in the Palaeocene and Miocene-Recent as indicated by volcanic margin formation and the formation of Iceland respectively. Gravity inversion also predicts a region of thin oceanic crust to the west of the northern part of the Jan Mayen micro-continent and to the east of the thicker oceanic crust currently being formed at the Kolbeinsey Ridge. Thicker crust (c.f. ocean basins) is predicted for the Jan Mayen micro- continent south of Jan Mayen Island, with crust of the order of 20 km thickness extending southwards to connect with both the Faroes-Iceland Ridge and N.E. Iceland. Predicted crustal thicknesses under the Faroes- Iceland Ridge are approximately 25 km. The lithosphere thermal model used to predict the lithosphere thermal gravity anomaly correction may be conditioned using magnetic isochron data to provide the age of oceanic lithosphere. The resulting crustal thickness determination and the location of ocean-continent transition (OCT) are however sensitive to errors in the magnetic isochron data. An alternative method of inverting satellite gravity to give crustal thickness, incorporating a lithosphere thermal correction, has been used which does not use magnetic isochron data and provides an independent prediction of crustal thickness and OCT location. The crustal thickness estimates and OCT locations detailed above are robust to these sensitivity tests.
Crystal growth and annealing for minimized residual stress
Gianoulakis, Steven E.
2002-01-01
A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing.
Use of Ground Penetrating Radar to Study Gradient Media
NASA Astrophysics Data System (ADS)
Titov, A.
2016-12-01
Nowadays Ground Penetrating Radar (GPR) is often used to solve different problems of applied geophysics including the hydrological ones. This work was motivated by detection of weak reflections in the body of water observed during the surveys on the freshwater lakes using GPR. The same reflections were first analyzed by John Bradford in 2007. These reflections can arise from the thermal gradient layer or thermocline due to different dielectric permittivity of cold and warm water. We employed physical and mathematical modeling to identify the properties of such thermoclines. We have constructed a special GPR stand to study the gradient media in our laboratory. The stand consists of a water-filled plastic tank and plastic tubes, which gather the cold water under the warm water. Our stand allows for changing parameters of the gradient layer, such as limits of dielectric permittivity and the thickness of the gradient layer. GPR antenna was placed slightly under the water surface to remove the parasitic reflections. To visualize the thermal distribution, an infrared camera and thermal sensors were used. Analysis of the GPR traces after physical modeling, performed in the MATLAB environment, allows us to locate the weak reflection from the gradient layer. We observed that (i) the change of the gradient boundary values alters the amplitude of the signal, (ii) the arrival time of the impulse reflected from the gradient layer corresponds to the arrival time of the impulse reflected from the top boundary of this layer, and (iii) the shape of the signal reflected from the gradient layer coincides with the shape of the signal reflected from the non-gradient boundary between two bodies. The quantitative properties of thermocline can be determined using amplitude analysis of GPR signals. Finally, the developed methods were successfully applied to real field data.
Applying Physics to Clean Energy Needs
ERIC Educational Resources Information Center
Environmental Science and Technology, 1975
1975-01-01
Solar and ocean thermal energy sources offer real potential for an environmentally clean fuel by the year 2000. A review of current research contracts relating to ocean-thermal energy, cost requirements of plant construction and uses of the electricity produced, such as synthesizing ammonia and synthetic fuels, are discussed. (BT)
Karelitz, Sam E; Uthicke, Sven; Foo, Shawna A; Barker, Mike F; Byrne, Maria; Pecorino, Danilo; Lamare, Miles D
2017-02-01
As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting distributions of species under climate change scenarios. The effects of reduced seawater pH on the thermal windows of fertilization, embryology and larval morphology were examined using five echinoderm species: two polar (Sterechinus neumayeri and Odontaster validus), two temperate (Fellaster zelandiae and Patiriella regularis) and one tropical (Arachnoides placenta). Responses were examined across 12-13 temperatures ranging from -1.1 °C to 5.7 °C (S. neumayeri), -0.5 °C to 10.7 °C (O. validus), 5.8 °C to 27 °C (F. zelandiae), 6.0 °C to 27.1 °C (P. regularis) and 13.9 °C to 34.8 °C (A. placenta) under present-day and near-future (2100+) ocean acidification conditions (-0.3 pH units) and for three important early developmental stages 1) fertilization, 2) embryo (prehatching) and 3) larval development. Thermal windows for fertilization were broad and were not influenced by a pH decrease. Embryological development was less thermotolerant. For O. validus, P. regularis and A. placenta, low pH reduced normal development, albeit with no effect on thermal windows. Larval development in all five species was affected by both temperature and pH; however, thermal tolerance was not reduced by pH. Results of this study suggest that in terms of fertilization and development, temperature will remain as the most important factor influencing species' latitudinal distributions as the ocean continues to warm and decrease in pH, and that there is little evidence of a synergistic effect of temperature and ocean acidification on the thermal control of species ranges. © 2016 John Wiley & Sons Ltd.
Melissa L. Snover; Michael J. Adams; Donald T. Ashton; Jamie B. Bettaso; Hartwell H. Welsh
2015-01-01
Summary1. Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing...
NASA Astrophysics Data System (ADS)
Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.
2018-04-01
Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.
NASA Astrophysics Data System (ADS)
Liu, Haoliang; McLaughlin, Ryan; Sun, Dali; Valy Vardeny, Z.
2018-04-01
Coupling of spins and phonons in ferromagnets (FM) may persist up to mm length scale, thus generating macroscopic spatially distributed spin accumulation along the direction of an applied thermal gradient to an FM slab. This typical feature of transverse spin Seebeck effect (TSSE) has been demonstrated so far using electrical detection methods in FM films, in particular in a patterned structure, in which FM stripes grown onto a substrate perpendicular to the applied thermal gradient direction are electrically and magnetically isolated. Here we report optically detected TSSE response in isolated FM stripes based on permalloy deposited on SiN substrate, upon the application of a thermal gradient. For these measurements we used the magneto-optic Kerr effect measured by an ultrasensitive Sagnac interferometer microscope that is immune to thermo-electrics artefacts. We found that the optical TSSE coefficient in the NiFe stripes geometry is about one order of magnitude smaller than that in the continuous NiFe film, which is due to the limited phonons path in the FM stripes along the thermal gradient direction. Our results further confirm the existence of TSSE response in conducting FM compounds.
Thermal Design to Meet Stringent Temperature Gradient/Stability Requirements of SWIFT BAT Detectors
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2000-01-01
The Burst Alert Telescope (BAT) is an instrument on the National Aeronautics and Space Administration (NASA) SWIFT spacecraft. It is designed to detect gamma ray burst over a broad region of the sky and quickly align the telescopes on the spacecraft to the gamma ray source. The thermal requirements for the BAT detector arrays are very stringent. The maximum allowable temperature gradient of the 256 cadmium zinc telluride (CZT) detectors is PC. Also, the maximum allowable rate of temperature change of the ASICs of the 256 Detector Modules (DMs) is PC on any time scale. The total power dissipation of the DMs and Block Command & Data Handling (BCDH) is 180 W. This paper presents a thermal design that uses constant conductance heat pipes (CCHPs) to minimize the temperature gradient of the DMs, and loop heat pipes (LHPs) to transport the waste heat to the radiator. The LHPs vary the effective thermal conductance from the DMs to the radiator to minimize heater power to meet the heater power budget, and to improve the temperature stability. The DMs are cold biased, and active heater control is used to meet the temperature gradient and stability requirements.
Thermal preference predicts animal personality in Nile tilapia Oreochromis niloticus.
Cerqueira, Marco; Rey, Sonia; Silva, Tome; Featherstone, Zoe; Crumlish, Margaret; MacKenzie, Simon
2016-09-01
Environmental temperature gradients provide habitat structure in which fish orientate and individual thermal choice may reflect an essential integrated response to the environment. The use of subtle thermal gradients likely impacts upon specific physiological and behavioural processes reflected as a suite of traits described by animal personality. In this study, we examine the relationship between thermal choice, animal personality and the impact of infection upon this interaction. We predicted that thermal choice in Nile tilapia Oreochromis niloticus reflects distinct personality traits and that under a challenge individuals exhibit differential thermal distribution. Nile tilapia were screened following two different protocols: 1) a suite of individual behavioural tests to screen for personality and 2) thermal choice in a custom-built tank with a thermal gradient (TCH tank) ranging from 21 to 33 °C. A first set of fish were screened for behaviour and then thermal preference, and a second set were tested in the opposite fashion: thermal then behaviour. The final thermal distribution of the fish after 48 h was assessed reflecting final thermal preferendum. Additionally, fish were then challenged using a bacterial Streptococcus iniae model infection to assess the behavioural fever response of proactive and reactive fish. Results showed that individuals with preference for higher temperatures were also classified as proactive with behavioural tests and reactive contemporaries chose significantly lower water temperatures. All groups exhibited behavioural fever recovering personality-specific thermal preferences after 5 days. Our results show that thermal preference can be used as a proxy to assess personality traits in Nile tilapia and it is a central factor to understand the adaptive meaning of animal personality within a population. Importantly, response to infection by expressing behavioural fever overrides personality-related thermal choice. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, Eric M.; Waltz, R. E.
Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less
Bass, Eric M.; Waltz, R. E.
2017-12-08
Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less
Limitations of using a thermal imager for snow pit temperatures
NASA Astrophysics Data System (ADS)
Schirmer, M.; Jamieson, B.
2013-10-01
Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow pit and atmospheric temperatures are enhanced. At crusts or other heterogeneities, we were unable to create a sufficiently homogenous snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack even with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.
Convection induced by thermal gradients on thin reaction fronts
NASA Astrophysics Data System (ADS)
Ruelas Paredes, David R. A.; Vasquez, Desiderio A.
2017-09-01
We present a thin front model for the propagation of chemical reaction fronts in liquids inside a Hele-Shaw cell or porous media. In this model we take into account density gradients due to thermal and compositional changes across a thin interface. The front separating reacted from unreacted fluids evolves following an eikonal relation between the normal speed and the curvature. We carry out a linear stability analysis of convectionless flat fronts confined in a two-dimensional rectangular domain. We find that all fronts are stable to perturbations of short wavelength, but they become unstable for some wavelengths depending on the values of compositional and thermal gradients. If the effects of these gradients oppose each other, we observe a range of wavelengths that make the flat front unstable. Numerical solutions of the nonlinear model show curved fronts of steady shape with convection propagating faster than flat fronts. Exothermic fronts increase the temperature of the fluid as they propagate through the domain. This increment in temperature decreases with increasing speed.
Spin and charge thermopower effects in the ferromagnetic graphene junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahedi, Javad, E-mail: javahedi@gmail.com; Center for Theoretical Physics of Complex Systems, Institute for Basic Science; Barimani, Fattaneh
2016-08-28
Using wave function matching approach and employing the Landauer-Buttiker formula, a ferromagnetic graphene junction with temperature gradient across the system is studied. We calculate the thermally induced charge and spin current as well as the thermoelectric voltage (Seebeck effect) in the linear and nonlinear regimes. Our calculation revealed that due to the electron-hole symmetry, the charge Seebeck coefficient is, for an undoped magnetic graphene, an odd function of chemical potential while the spin Seebeck coefficient is an even function regardless of the temperature gradient and junction length. We have also found with an accurate tuning external parameter, namely, the exchangemore » filed and gate voltage, the temperature gradient across the junction drives a pure spin current without accompanying the charge current. Another important characteristic of thermoelectric transport, thermally induced current in the nonlinear regime, is examined. It would be our main finding that with increasing thermal gradient applied to the junction the spin and charge thermovoltages decrease and even become zero for non zero temperature bias.« less
NASA Astrophysics Data System (ADS)
Vitale Brovarone, Alberto; Chu, Xu; Martin, Laure; Ague, Jay J.; Monié, Patrick; Groppo, Chiara; Martinez, Isabelle; Chaduteau, Carine
2018-04-01
The interplay between the processes controlling the mobility of H2O and C-bearing species during subduction zone metamorphism exerts a critical control on plate tectonics and global volatile recycling. Here we present the first study on fresh, carbonate-bearing, lawsonite eclogite-facies metabasalts from Alpine Corsica, France, which reached the critical depths at which important devolatilization reactions occur in subducting slabs. The studied samples indicate that the evolution of oceanic crustal sequences subducted under present-day thermal regimes is dominated by localized fluid-rock interactions that are strongly controlled by the nature and extent of inherited (sub)seafloor hydrothermal processes, and by the possibility of deep fluids to be channelized along inherited or newly-formed discontinuities. Fluid channelization along inherited discontinuities controlled local rehydration and dehydration/decarbonation reactions and the stability of carbonate and silicate minerals at the blueschist-eclogite transition. Fluid-mediated decarbonation was driven by upward, up-temperature fluid flow in the inverted geothermal gradient of a subducting oceanic slab, a process that has not been documented in natural samples to date. We estimate that the observed fluid-rock reactions released 20-60 kg CO2 per m3 of rock (i.e. 0.7-2.1 wt% CO2), which is in line with the values predicted from decarbonation of metabasalts in open systems at these depths. Conversely, the estimated time-integrated fluid fluxes (20-50 t/m2) indicate that the amount of carbon transported by channelized fluid flow within the volcanic part of subducting oceanic plates is potentially much higher than previous numerical estimates, testifying to the percolation of C-bearing fluids resulting from devolatilization/dissolution processes operative in large reservoirs.
Laser window with annular grooves for thermal isolation
Warner, B.E.; Horton, J.A.; Alger, T.W.
1983-07-13
A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan
2016-01-01
This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Banerdt, W. B.
2000-01-01
We conclude from MOC and MOLA data that the northern plains of Mars were infilled by a sediment-rich, mud ocean. Evidence for subsidence within the north polar basin and reversed channel-floor gradients are consistent with tectonic deformation due to the sediment load.
Effects of Planetary Thermal Structure on the Ascent and Cooling of Magma on Venus
NASA Technical Reports Server (NTRS)
Sakimoto, Susan E. H.; Zuber, Maria T.
1995-01-01
Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.
An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient
NASA Technical Reports Server (NTRS)
Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun
2013-01-01
Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.
Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano
2017-09-01
The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Livsey, C.; Spero, H. J.; Kozdon, R.
2016-12-01
The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target <5 μm - sized domains for δ18O using secondary ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679-699.
NASA Astrophysics Data System (ADS)
Roche, D. M.; Caley, T.
2013-09-01
The H218O stable isotope was previously introduced in the three coupled components of the earth system model iLOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H218O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ18O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in palaeoclimatic context.
NASA Astrophysics Data System (ADS)
Roche, D. M.; Caley, T.
2013-03-01
The H218O stable isotope was previously introduced in the three coupled components of the Earth System Model iLOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H218O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ18O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in paleoclimatic context.
Strain effects on thermal conductivity of nanostructured silicon by Raman piezothermography
NASA Astrophysics Data System (ADS)
Murphy, Kathryn Fay
A fundamental problem facing the rational design of materials is the independent control of electrical and thermal properties, with implications for a wide range of applications including thermoelectrics, solar thermal power generation, and thermal logic. One strategy for controlling transport involves manipulating the length scales which affect it. For instance, Si thermal conductivity may be reduced with relatively little change in electrical properties when the confining dimension (e.g., nanowire diameter) is small enough that heat carriers are preferentially scattered at free surfaces. However, tailoring properties by geometry or chemistry alone does not allow for on-demand modification, precluding applications which require responsive behavior such as thermal transistors, thermoelectric modules which adapt to their environmental temperature, or switchable thermal barriers. One means of tuning transport is elastic strain, which has long been exploited to improve carrier mobility in electronic devices. Uniform strain is predicted to affect thermal conductivity primarily via changes in heat capacity and phonon velocity, and crystalline defects such as vacancies or dislocations---which induce large strain gradients---should lower thermal conductivity by decreasing the phonon mean free path. Nanowires are ideal for the study of strain and defect effects due to the availability of a range of elastic strain an order of magnitude larger than in bulk and due to their small volumes. However, experimental measurements of strain-mediated thermal conductivity in nanowires have been limited due to the complexity of simultaneously applying and measuring stress or strain, heating, and measuring temperature. In this dissertation, we measure strain effects on thermal conductivity using a novel non-contact approach which we name Raman piezothermography. We apply a uniaxial load to individual Si nanowires, Si thin films, and Si micromeshes under a confocal mu-Raman microscope and, using the Raman laser as a heat source and the Raman spectrum as a measure of temperature, determine thermal transport properties. We show that uniaxial strain up to ˜1% has a weak effect on Si nanowire or thin film thermal conductivity, but irradiation-induced defects in nanowires yield dramatic reductions due to increased phonon scattering. Such defects are accompanied by large strain gradients, but decoupling the effect of these gradients from local changes in mass and interatomic potential is experimentally untenable. To isolate the effect of strain gradients, we extend our method to Si micromeshes, which exhibit nonuniform strains upon loading. The complex strain states achieved cause more drastic reductions of thermal conductivity due to enhanced phonon-phonon scattering in the presence of a strain gradient. The directions suggested by our experiments, as well as the development of the method, will allow for more robust understanding and control of thermal transport in nanostructures.
Colloidal attraction induced by a temperature gradient.
Di Leonardo, R; Ianni, F; Ruocco, G
2009-04-21
Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.
Divergent plate boundaries and crustal spreading on Venus: Evidence from Aphrodite Terra
NASA Technical Reports Server (NTRS)
Crumpler, L. S.; Head, James W.
1989-01-01
The modes of lithospheric heat transfer and the tectonic styles may differ between Earth and Venus, depending on how the high surface temperature (700 K = 430 C), dense and opaque atmosphere (approx. 10 MPa = 100 bars), lack of water oceans, and the other known ways in which Venus differs from Earth, influence basic lithospheric processes, thermal gradient, upper mantle temperature, thermal and chemical evolution, and convection. A fundamental question is whether the lithosphere of Venus is horizontally stable, like the other terrestrial planets, or is mobile like that on Earth. The variety of characteristics, their integrated relationships, and their predictable behavior throughout Western Aphrodite Terra are similar to those features known to occur in association with the terrestrial seafloor at spreading centers and divergent plate boundaries. It is concluded that Western Aphrodite Terra represents the site of crustal spreading centers and divergent plate boundaries. The extent of similar characteristics and processes elsewhere on Venus outside of the 13,000 km long Western and Eastern Aphrodite Terra rise is unknown at the present, but their presence in other areas of the equatorial highlands, suggested from recent analysis, may be tested with forthcoming Magellan data.
NASA Astrophysics Data System (ADS)
Hogan, B.; Stone, W.; Bramall, N. E.; Siegel, V.; Lelievre, S.; Rothhammer, B.; Richmond, K.; Flesher, C.
2016-12-01
Subsurface exploration of icy ocean worlds requires an efficient method of penetrating ice to significant depths under extreme environment conditions. Searching for extant life dictates descent to a depth which is habitable or where biomarkers can survive and allow detection. It's anticipated that several meters to 10s of meters of shielding is required to prevent cosmic background radiation and other energetic particles from destroying biomarker evidence. We have devised, developed and demonstrated an entirely novel ice penetrating technology utilizing laser light carried by an optical fiber tether and emitted from a probe's optical nose cone and radiated directly into the volume of ice preceding the penetrator. We have termed it a "Direct Laser Penetrator" or DLP. We present design details, modeling, and test data from preliminary proof-of-concept experiments conducted at Stone Aerospace with results exceeding expectations and achieving the fastest reported thermal probe descent rate to date (> 12 m / hr). DLP has critical benefits over conventional "hot point" melt probes, which must generate large temperature gradients to force heat by conduction through the nose cone, and layers of ice and water. Additionally, hot point melt probes tested under vacuum have shown extreme difficulty initiating penetration, as virtually no thermal contact exists between the probe nose and rough ice surface. The ice simply sublimates and any transferred heat is quickly dissipated due to the low power density and extreme cold. DLP requires NO thermal contact between the probe nose and the ice surface since the laser energy is radiated directly into the volume (vs. surface) of ice preceding the penetrator. A proposed key element of the DLP is the fiber optic tether, coupled with a dedicated sensor fiber, enables "optical access" to the subsurface environment by a lander's shared or DLP dedicated on-board instruments (Raman / Fluorescence / fiber / UV / VIS / NIR spectroscopy, etc). These sensors can search for extant life by detecting biomarkers as well as characterizing the radiation / light environment for subsurface habitability. The combination of a laser penetrator w/ integrated fiber coupled instruments could be an important tool for an icy ocean worlds lander. (Supported by NASA funded SAS projects VALKYRIE and SPINDLE)
Thermo-chemical evolution of a one-plate planet: application to Mars
NASA Astrophysics Data System (ADS)
Plesa, A.-C.; Breuer, D.
2012-04-01
Little attention has been devoted so far to find a modelling framework able to explain the geophysical implications of the Martian meteorites, the so-called SNC meteorites. Geochemical analysis of the SNC meteorites implies the rapid formation, i.e. before ~4.5 Ga, of three to four isotopically distinct reservoirs that did not remix since then [3]. In [4] the authors argue that a fast overturn of an early fractionated magma ocean may have given origin to a stably stratified mantle with a large density gradient capable to keep the mantle heterogeneous and to prevent mixing due to thermal convection. This model, albeit capable to provide a plausible explanation to the SNC meteorites, suggests a conductive mantle after the overturn which is clearly at odds with the volcanic history of Mars. This is best explained by assuming a convective mantle and partial melting as the principal agents responsible for the generation and evolution of Martian volcanism. In this work, we present an alternative scenario assuming a homogeneous mantle and accounting for compositional changes and melting temperature variations due to mantle depletion, dehydration stiffening of the mantle material due to water partitioning from the minerals into the melt, redistribution of radioactive heat sources between mantle and crust and thermal conductivity decrease in crustal regions. We use the 2D cylindrical - 3D spherical convection code Gaia [1, 2] and to model the above mentioned effects of partial melting we use a Lagrangian, particle based method. Simulation results show that chemical reservoirs, which can be formed due to partial melting when accounting for compositional changes and dehydration stiffening, remain stable over the entire thermal evolution of Mars. However, an initially depleted (i.e. buoyant harzburgite) layer of about 200 km is needed. This depleted layer in an otherwise homogeneous mantle may be the consequence of equilibrium fractionation of a freezing magma ocean where only the residual melt rises to the surface. If the heat released by accretion never allowed for a magma ocean to build, a large amount of partial melting of about 20% in the earliest stage is required to form such a buoyant layer. These models show an active convective interior and long lived partial melt production, which agrees with the volcanic history of Mars [5].
Dynamics of the global meridional ice flow of Europa's icy shell
NASA Astrophysics Data System (ADS)
Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli
2018-01-01
Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.
Heating-freezing effects on the orientation of kaolin clay particles
Jaradat, Karam A.; Darbari, Zubin; Elbakhshwan, Mohamed; ...
2017-09-29
The effects of temperature changes on the particle orientation of a consolidated kaolin are studied using XRD experiments. Here, two sets of equipment were utilized in this study: a benchtop equipment, and a synchrotron beamline at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The kaolin specimens tested in the benchtop XRD were subjected to elevated and freezing temperatures ex-situ, while those used for the NSLS-II experiment were exposed to the temperature changes in-situ. The temperatures considered in this study range from freezing (-10 °C) to elevated temperature below boiling (90 °C). The thermally-induced reorientation of claymore » mineral particles is highly dependent on the relative orientation of the clay mineral particles with respect to the applied thermal gradient. For example, kaolin samples with kaolinite particles oriented perpendicular to the thermal gradient, and to the expected thermally-induced pore water flow, experience much higher particles reorientations compared to samples with particles initially oriented parallel to the thermal gradient. Lastly, freezing kaolin preserved its microstructure as ice crystals form.« less
Heating-freezing effects on the orientation of kaolin clay particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaradat, Karam A.; Darbari, Zubin; Elbakhshwan, Mohamed
The effects of temperature changes on the particle orientation of a consolidated kaolin are studied using XRD experiments. Here, two sets of equipment were utilized in this study: a benchtop equipment, and a synchrotron beamline at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The kaolin specimens tested in the benchtop XRD were subjected to elevated and freezing temperatures ex-situ, while those used for the NSLS-II experiment were exposed to the temperature changes in-situ. The temperatures considered in this study range from freezing (-10 °C) to elevated temperature below boiling (90 °C). The thermally-induced reorientation of claymore » mineral particles is highly dependent on the relative orientation of the clay mineral particles with respect to the applied thermal gradient. For example, kaolin samples with kaolinite particles oriented perpendicular to the thermal gradient, and to the expected thermally-induced pore water flow, experience much higher particles reorientations compared to samples with particles initially oriented parallel to the thermal gradient. Lastly, freezing kaolin preserved its microstructure as ice crystals form.« less
NASA Technical Reports Server (NTRS)
Choi, Michael K.
1999-01-01
A heritage wine-rack thermal/mechanical design for the nickel-hydrogen batteries was the baseline at the Landsat-7 Preliminary Design Review. An integrated thermal and power analysis of the batteries performed by the author in 1994 revealed that the maximum cell-to-cell gradient was 6.6 C. The author proposed modifying the heritage wine-rack design by enhancing heat conduction from cells to cells, and from cells to battery frame. At the 1995 Intersociety Energy Conversion Engineering Conference (IECEC), the author presented a paper on methods of modifying the wine-rack design. It showed that the modified wine-rack option, which uses a metallic filler, could reduce the maximum cell-to-cell temperature gradient to 1.30 C, and could also reduce the maximum cell temperature by as much as 80 C. That design concept was adopted by the Landsat7 Project Office, and a design change was made at the Critical Design Review. Results of the spacecraft thermal vacuum and thermal balance tests, and temperature data in flight show that the temperatures of the battery cells are very uniform. The maximum cell-to-cell gradient is 1.50 C. They validate the modified wine-rack thermal design.
Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea
NASA Astrophysics Data System (ADS)
Bruneau, Nicolas; Zika, Jan; Toumi, Ralf
2017-10-01
We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.
Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…
NASA Astrophysics Data System (ADS)
Garg, P.; Nesbitt, S. W.; Lang, T. J.; Chronis, T.; Thayer, J. D.; Hence, D. A.
2017-12-01
Cold pools generated in the wake of convective activity can enhance the surface sensible heat flux, latent heat flux, and also changes in evaporation out of, and fresh water flux into, the ocean. Recent studies have shown that over the open ocean, cold pool outflow boundaries and their intersections can organize and initiate a spectrum of deep convective clouds, which is a key driver of shallow and deep convection over conditionally-unstable tropical oceans. The primary goal of this study is to understand the structure and characteristics of cold pools over the tropical oceans using observations. With the idea that cold pools will have strong wind gradients at their boundaries, we use ASCAT vector wind retrievals. We identify regions of steep gradients in wind vectors as gradient features (GFs), akin to cold pools. Corresponding to these GFs, sensible and latent heat fluxes were calculated using the observed winds and background temperatures from MERRA-2 reanalysis. To evaluate the proposed technique, cold pools were observed using S-PolKa radar from the DYNAMO/AMIE field campaign in the Indian Ocean for the period of 1 October 2011 to 31 March 2012 and were compared with ASCAT GFs. To relate the thermodynamic and kinematic characteristics of observed and simulated cold pools, simulations were carried out on WRF on a 3-km domain explicitly. The areas of cold pools were identified in the models using virtual temperature (Tv), which is a direct measure of air density, while GFs were identified using model simulated winds. Quantitative measures indicate that GFs are highly correspondent with model-simulated cold pools. In global measurements of cold pools from 2007-2015, it is possible to examine the characteristics of GFs across all tropical ocean basins, and relate them to meteorological conditions, as well as the characteristics of the parent precipitation systems. Our results indicate that while there is a general relationship between the amount of precipitation and the number of cold pools, the largest cold pools exist over the Eastern Pacific basin, where the most stratiform rain is produced from oceanic MCSs. It is anticipated that improved understanding of cold pools, which are a primary triggering mechanism of oceanic shallow and deep convection, will improve prediction of this important component of the climate system.
Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.
2015-01-01
Given the importance of size and age at reproductive maturity to population dynamics, this information on counter-gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.
Termination for superconducting power transmission systems
Forsyth, E.B.; Jensen, J.E.
1975-08-26
This patent relates to a cold, electrical gradient, terminal section for a superconducting cable for alternating current power transmission. A cold electrical gradient section filled with a gaseous coolant acting as an insulator is provided in series with a separate thermal gradient section. (auth)
Thermal Gradient Fining of Glass
NASA Technical Reports Server (NTRS)
Wilcox, W.
1983-01-01
Molten glass fined (cleared of bubbles) by heating with suitable temperature gradient, according to preliminary experiments. Temperature gradient produces force on gas bubbles trapped in molten glass pushing bubbles to higher temperature region where they are collected. Concept demonstrated in experiments on Earth and on rocket.
Behaviour and physiology: the thermal strategy of leatherback turtles.
Bostrom, Brian L; Jones, T Todd; Hastings, Mervin; Jones, David R
2010-11-10
Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of ≥8°C in sub-polar waters and ≤4°C in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. We show for the first time that leatherbacks are indeed capable of thermoregulation from studies on juvenile leatherbacks of 16 and 37 kg. In cold water (< 25°C), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3°C was maintained between body and environment. In warm water (25 - 31°C), turtles were inactive and heat loss through their plastron, carapace and flippers increased. The thermal gradient was minimized (0.5°C). Using a scaling model, we estimate that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2°C in cold sub-polar waters. In juvenile leatherbacks, heat gain is controlled behaviourally by increasing activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Hence, harnessing physiology and behaviour allows leatherbacks to keep warm while foraging in cold sub-polar waters and to prevent overheating in a tropical environment.
Behaviour and Physiology: The Thermal Strategy of Leatherback Turtles
Bostrom, Brian L.; Jones, T. Todd; Hastings, Mervin; Jones, David R.
2010-01-01
Background Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of ≥8°C in sub-polar waters and ≤4°C in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. Methodology/Principal Findings We show for the first time that leatherbacks are indeed capable of thermoregulation from studies on juvenile leatherbacks of 16 and 37 kg. In cold water (< 25°C), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3°C was maintained between body and environment. In warm water (25 – 31°C), turtles were inactive and heat loss through their plastron, carapace and flippers increased. The thermal gradient was minimized (0.5°C). Using a scaling model, we estimate that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2°C in cold sub-polar waters. Conclusions/Significance In juvenile leatherbacks, heat gain is controlled behaviourally by increasing activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Hence, harnessing physiology and behaviour allows leatherbacks to keep warm while foraging in cold sub-polar waters and to prevent overheating in a tropical environment. PMID:21085716
Langland, Kathleen M.; Wethington, Susan M.; Powers, Sean D.; Graham, Catherine H.
2017-01-01
At high temperature (greater than 40°C) endotherms experience reduced passive heat dissipation (radiation, conduction and convection) and increased reliance on evaporative heat loss. High temperatures challenge flying birds due to heat produced by wing muscles. Hummingbirds depend on flight for foraging, yet inhabit hot regions. We used infrared thermography to explore how lower passive heat dissipation during flight impacts body-heat management in broad-billed (Cynanthus latirostris, 3.0 g), black-chinned (Archilochus alexandri, 3.0 g), Rivoli's (Eugenes fulgens, 7.5 g) and blue-throated (Lampornis clemenciae, 8.0 g) hummingbirds in southeastern Arizona and calliope hummingbirds (Selasphorus calliope, 2.6 g) in Montana. Thermal gradients driving passive heat dissipation through eye, shoulder and feet dissipation areas are eliminated between 36 and 40°C. Thermal gradients persisted at higher temperatures in smaller species, possibly allowing them to inhabit warmer sites. All species experienced extended daytime periods lacking thermal gradients. Broad-billed hummingbirds lacking thermal gradients regulated the mean total-body surface temperature at approximately 38°C, suggesting behavioural thermoregulation. Blue-throated hummingbirds were inactive when lacking passive heat dissipation and hence might have the lowest temperature tolerance of the four species. Use of thermal refugia permitted hummingbirds to tolerate higher temperatures, but climate change could eliminate refugia, forcing distributional shifts in hummingbird populations. PMID:29308244
Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition
NASA Astrophysics Data System (ADS)
Goldner, A.; Herold, N.; Huber, M.
2014-07-01
Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.
Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.
Goldner, A; Herold, N; Huber, M
2014-07-31
Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.
NASA Astrophysics Data System (ADS)
González, H. E.; Castro, L. R.; Daneri, G.; Iriarte, J. L.; Silva, N.; Tapia, F.; Teca, E.; Vargas, C. A.
2013-12-01
Patagonian fjord systems, and in particular the fjords and channels associated with the Baker/Pascua Rivers, are currently under conspicuous natural and anthropogenic perturbations. These systems display very high variability, where limnetic and oceanic features overlap generating strong vertical and horizontal physicochemical gradients. The CIMAR 14-Fiordos cruise was conducted in the Chilean fjords located between 47° and 50°S during the spring (October-November) of 2008. The main objectives were to study vertical and horizontal gradients in physical, chemical and biological characteristics of the water column, and to assess plankton dynamics and trophic carbon fluxes in the fjords and channels of central-south Patagonia. The water column was strongly stratified, with a pycnocline at ca. 20 m depth separating a surface layer of silicic acid-rich freshwater discharged by rivers, from the underlying nitrate- and orthophosphate-rich Subantarctic waters. The outflows from the Baker and Pascua Rivers, which range annually between 500 and 1500 m3 s-1, generate the strong land-ocean gradient in salinity (1-32 psu) and inorganic nutrient concentrations (2-8 and 2-24 μM in nitrate and silicic-acid, respectively) we observed along the Baker Fjord. The POC:chl-a ratio fluctuated from 1087 near the fjord’s head to 175 at its oceanic end in the Penas Gulf. This change was mainly due to an increase in diatom dominance and a concurrent decrease in allochthonous POC towards the ocean. Depth-integrated net primary production (NPP) and bacterial secondary production (BSP) fluctuated between 49 and 1215 and 36 and 150 mg C m-2 d-1, respectively, with higher rates in oceanic waters. At a time series station located close to the Baker River mouth, the average NPP was lower (average 360 mg C m-2 d-1) than at more oceanic stations (average 1063 mg C m-2 d-1), and numerically dominated (45%) by the picoplankton (<2 μm) and nanoplankton (2-20 μm) size fractions. The high average vertical carbon flux (234 mg m-2 d-1) and high export production (65% of the NPP) support the idea that Patagonian fjords may behave as a net sink for CO2 during the productive (spring) season. Trophic fluxes near the head of the fjords, with oligotrophic low-salinity waters, were dominated by heterotrophic nanoflagellates (HNF) and small copepods (52 mg C m-2 d-1, each), suggesting that the microbial food web is the main trophic pathway in these environments.
Ping, Y.; Fernandez-Panella, A.; Sio, H.; ...
2015-09-04
We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.
NASA Astrophysics Data System (ADS)
Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.
2017-11-01
The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude. The effect over the boresight at the instrument focal plane has also been analyzed. The results show that the effect of the FDT HREW thermal gradients on the FDT performance can be optically corrected. The influence of the thermal gradients on the system is also presented.
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.
2016-12-01
Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.
2016-02-01
Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.
Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.
Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W
2011-02-04
Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.
The Effect of Large Scale Salinity Gradient on Langmuir Turbulence
NASA Astrophysics Data System (ADS)
Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.
2017-12-01
Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by large fresh water inflow due to flooding from the Mississippi river. Model results indicate that the strong salinity gradient can reduce the mean flow in the ML and inhibit the turbulence in the planetary boundary layer. The Langmuir cells are also rotated clockwise by the pressure gradient.
Ancient Living Organisms Escaping from, or Imprisoned in, the Vents?
Jackson, J. Baz
2017-01-01
We have recently criticised the natural pH gradient hypothesis which purports to explain how the difference in pH between fluid issuing from ancient alkali vents and the more acidic Hadean ocean could have driven molecular machines that catalyse reactions that are useful in prebiotic and autotrophic chemistry. In this article, we temporarily suspend our earlier criticism while we consider difficulties for primitive organisms to have managed their energy supply and to have left the vents and become free-living. We point out that it may have been impossible for organisms to have acquired membrane-located proton (or sodium ion) pumps to replace the natural pH gradient, and independently to have driven essential molecular machines such as the ATP synthase. The volumes of the ocean and of the vent fluids were too large for a membrane-located pump to have generated a significant ion concentration gradient. Our arguments apply to three of the four concurrent models employed by the proponents of the natural pH gradient hypothesis. A fourth model is exempt from these arguments but has other intrinsic difficulties that we briefly consider. We conclude that ancient organisms utilising a natural pH gradient would have been imprisoned in the vents, unable to escape and become free-living. PMID:28914790
The influence of meridional ice transport on Europa's ocean stratification and heat content
NASA Astrophysics Data System (ADS)
Zhu, Peiyun; Manucharyan, Georgy E.; Thompson, Andrew F.; Goodman, Jason C.; Vance, Steven D.
2017-06-01
Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the previously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.
The influence of meridional ice transport on Europa's ocean stratification and heat content
NASA Astrophysics Data System (ADS)
Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.
2017-12-01
Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.
Thermosolutal convection in high-aspect-ratio enclosures
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chen, C. T.
1988-01-01
Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.
A Theoretical and Experimental Study of Emission Spectroscopy of Planetary Surfaces
NASA Astrophysics Data System (ADS)
Henderson, Bradley Gray
1995-01-01
This thesis explores the spectral emissivity of particulate materials on planetary surfaces through theoretical modeling and supporting laboratory and field investigations. In the first part of the thesis, I develop a Monte Carlo ray tracing model to calculate the directional and spectral emissivity and the polarization state of the radiation emitted from a particulate, isothermal surface for emission angles 0^circ-90^ circ and wavelengths 7-16 mu m. The results show that roughness and scattering significantly affect the character of the emitted radiation field and should be taken into account when interpreting the physical properties of a planetary surface from IR spectrophotometry or spectropolarimetry. The remainder of the thesis focuses on understanding near-surface thermal gradients and their effects on emission spectra for different planetary environments. These gradients are formed by radiative cooling in the top few hundred microns of low conductivity particulate materials on planetary surfaces with little or no atmosphere. I model the heat transfer by conduction and radiation in the top few millimeters of a planetary regolith for scattering and non-scattering media. In conjunction with the modeling, I measure emission spectra of fine-grained quartz in an environment chamber designed to simulate the conditions on other planetary surfaces. The results show that significant thermal gradients will form in the near surface of materials on the surface of the Moon and Mercury. Their presence increases spectral contrast and creates emission maxima in the transparent regions of the spectrum. Thermal gradients are shown to be responsible for the observed wavelength shifts of the Christiansen emission peak with variations in thermal conductivity and grain size. The results are also used to analyze recent telescopic spectra of the Moon and Mercury and can explain certain features seen in those data. Thermal gradients are shown to be minor for the surface of Mars and negligible on Earth. I conclude that the spectral effects created by near-surface thermal gradients are predictable and might even provide an extra source of information about the physical nature of a planetary surface, and mid-IR emission spectroscopy should therefore prove to be useful for remote sensing of airless bodies.
Do, F; Rocheteau, A
2002-06-01
The thermal dissipation method is simple and widely used for measuring sap flow in large stems. As with several other thermal methods, natural temperature gradients are assumed to be negligible in the sapwood being measured. We studied the magnitude and variability of natural temperature gradients in sapwood of Acacia trees growing in the Sahelian zone of Senegal, analyzed their effects on sap flow measurements, and investigated possible solutions. A new measurement approach employing cyclic heating (45 minutes of heating and 15 minutes of cooling; 45/15) was also tested. Three-day measurement sequences that included 1 day without heating, a second day with continuous heating and a third day with cyclic heating were recorded during a 6.5-month period using probes installed at three azimuths in a tree trunk. Natural temperature gradients between the two probes of the sensor unit, spaced 8 to 10 cm vertically, were rarely negligible (i.e., < 0.2 degrees C): they were positive during the night and negative during the day, with an amplitude ranging from 0.3 to 3.5 degrees C depending on trunk azimuth, day and season. These temperature gradients had a direct influence on the signal from the continuously heated sensors, inducing fluctuations in the nighttime reference signal. The resulting errors in sap flow estimates can be greater than 100%. Correction protocols have been proposed in previous studies, but they were unsuitable because of the high spatial and temporal variability of the natural temperature gradients. We found that a measurement signal derived from a noncontinuous heating system could be an attractive solution because it appears to be independent of natural temperature gradients. The magnitude and variability of temperature gradients that we observed were likely exacerbated by the combination of open stand, high solar radiation and low sap flow rate. However, for all applications of the thermal dissipation method, it is wise to check regularly for natural temperature gradients by switching off the heater.
Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter
2017-10-15
Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Epiphytes on seagrass (Zostera marina) growing in the lower intertidal were examined along an estuarine gradient within Yaquina Bay, Oregon over a period of 4 years. The Yaquina Estuary receives high levels of nutrients from the watershed during the wet season and from the ocean...
NASA Astrophysics Data System (ADS)
Ogata, Tomomichi; Johnson, Stephanie J.; Schiemann, Reinhard; Demory, Marie-Estelle; Mizuta, Ryo; Yoshida, Kohei; Osamu Arakawa
2017-11-01
In this study, we compare the resolution sensitivity of the Asian Summer Monsoon (ASM) in two Atmospheric General Circulation Models (AGCMs): the MRI-AGCM and the MetUM. We analyze the MetUM at three different resolutions, N96 (approximately 200-km mesh on the equator), N216 (90-km mesh) and N512 (40-km mesh), and the MRI-AGCM at TL95 (approximately 180-km mesh on the equator), TL319 (60-km mesh), and TL959 (20-km mesh). The MRI-AGCM and the MetUM both show decreasing precipitation over the western Pacific with increasing resolution, but their precipitation responses differ over the Indian Ocean. In MRI-AGCM, a large precipitation increase appears off the equator (5-20°N). In MetUM, this off-equatorial precipitation increase is less significant and precipitation decreases over the equator. Moisture budget analysis demonstrates that a changing in moisture flux convergence at higher resolution is related to the precipitation response. Orographic effects, intra-seasonal variability and the representation of the meridional thermal gradient are explored as possible causes of the resolution sensitivity. Both high-resolution AGCMs (TL959 and N512) can represent steep topography, which anchors the rainfall pattern over south Asia and the Maritime Continent. In MRI-AGCM, representation of low pressure systems in TL959 also contributes to the rainfall pattern. Furthermore, the seasonal evolution of the meridional thermal gradient appears to be more accurate at higher resolution, particularly in the MRI-AGCM. These findings emphasize that the impact of resolution is only robust across the two AGCMs for some features of the ASM, and highlights the importance of multi-model studies of GCM resolution sensitivity.
Evaluation of thermal gradients in longitudinal spin Seebeck effect measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, A., E-mail: a.sola@inrim.it; Kuepferling, M.; Basso, V.
2015-05-07
In the framework of the longitudinal spin Seebeck effect (LSSE), we developed an experimental setup for the characterization of LSSE devices. This class of device consists in a layered structure formed by a substrate, a ferrimagnetic insulator (YIG) where the spin current is thermally generated, and a paramagnetic metal (Pt) for the detection of the spin current via the inverse spin-Hall effect. In this kind of experiments, the evaluation of a thermal gradient through the thin YIG layer is a crucial point. In this work, we perform an indirect determination of the thermal gradient through the measurement of the heatmore » flux. We developed an experimental setup using Peltier cells that allow us to measure the heat flux through a given sample. In order to test the technique, a standard LSSE device produced at Tohoku University was measured. We find a spin Seebeck S{sub SSE} coefficient of 2.8×10{sup −7} V K{sup −1}.« less
Thermal regimes of Malaysian sedimentary basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdul Halim, M.F.
1994-07-01
Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulationmore » time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.« less
Saiter, Felipe Z; Eisenlohr, Pedro V; França, Glauco S; Stehmann, João R; Thomas, William W; De Oliveira-Filho, Ary T
2015-01-01
We submitted tree species occurrence and geoclimatic data from 59 sites in a river basin in the Atlantic Forest of southeastern Brazil to ordination, ANOVA, and cluster analyses with the goals of investigating the causes of phytogeographic patterns and determining whether the six recognized subregions represent distinct floristic units. We found that both climate and space were significantly (p ≤ 0.05) important in the explanation of phytogeographic patterns. Floristic variations follow thermal gradients linked to elevation in both coastal and inland subregions. A gradient of precipitation seasonality was found to be related to floristic variation up to 100 km inland from the ocean. The temperature of the warmest quarter and the precipitation during the coldest quarter were the main predictors. The subregions Sandy Coastal Plain, Coastal Lowland, Coastal Highland, and Central Depression were recognized as distinct floristic units. Significant differences were not found between the Inland Highland and the Espinhaço Range, indicating that these subregions should compose a single floristic unit encompassing all interior highlands. Because of their ecological peculiarities, the ferric outcrops within the Espinhaço Range may constitute a special unit. The floristic units proposed here will provide important information for wiser conservation planning in the Atlantic Forest hotspot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, R.M.; Harding, J.M.; Pollak, K.D.
1992-02-01
Global-scale analyses of ocean thermal structure produced operationally at the U.S. Navy`s Fleet Numerical Oceanography Center are verified, along with an ocean thermal climatology, against unassimilated bathythermograph (bathy), satellite multichannel sea surface temperature (MCSST), and ship sea surface temperature (SST) data. Verification statistics are calculated from the three types of data for February-April of 1988 and February-April of 1990 in nine verification areas covering most of the open ocean in the Northern Hemisphere. The analyzed thermal fields were produced by version 1.0 of the Optimum Thermal Interpolation System (OTIS 1.0) in 1988, but by an upgraded version of this model,more » referred to as OTIS 1.1, in 1990. OTIS 1.1 employs exactly the same analysis methodology as OTIS 1.0. The principal difference is that OTIS 1.1 has twice the spatial resolution of OTIS 1.0 and consequently uses smaller spatial decorrelation scales and noise-to-signal ratios. As a result, OTIS 1.1 is able to represent more horizontal detail in the ocean thermal fields than its predecessor. Verification statistics for the SST fields derived from bathy and MCSST data are consistent with each other, showing similar trends and error levels. These data indicate that the analyzed SST fields are more accurate in 1990 than in 1988, and generally more accurate than climatology for both years. Verification statistics for the SST fields derived from ship data are inconsistent with those derived from the bathy and MCSST data, and show much higher error levels indicative of observational noise.« less
Zamora-Camacho, Francisco Javier; Rubiño-Hispán, María Virtudes; Reguera, Senda; Moreno-Rueda, Gregorio
2015-08-01
Sprint speed has a capital relevance in most animals' fitness, mainly for fleeing from predators. Sprint performance is maximal within a certain range of body temperatures in ectotherms, whose thermal upkeep relies on exogenous thermal sources. Ectotherms can respond to diverse thermal environments either by shifting their thermal preferences or maintaining them through different adaptive mechanisms. Here, we tested whether maximum sprint speed of a lizard that shows conservative thermal ecology along a 2200-meter elevational gradient differs with body temperature in lizards from different elevations. Lizards ran faster at optimum than at suboptimum body temperature. Notably, high-elevation lizards were not faster than mid- and low-elevation lizards at suboptimum body temperature, despite their low-quality thermal environment. This result suggests that both preferred body temperature and thermal dependence of speed performance are co-adapted along the elevational gradient. High-elevation lizards display a number of thermoregulatory strategies that allow them to achieve high optimum body temperatures in a low thermal-quality habitat and thus maximize speed performance. As for reproductive condition, we did not find any effect of it on sprint speed, or any significant interaction with elevation or body temperature. However, strikingly, gravid females were significantly slower than males and non-gravid females at suboptimum temperature, but performed similarly well at optimal temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pasquale, V.; Chiozzi, P.; Verdoya, M.
2013-05-01
Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.
Crystal growth and annealing method and apparatus
Gianoulakis, Steven E.; Sparrow, Robert
2001-01-01
A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.
Thermal-gradient migration of brine inclusions in salt crystals
NASA Astrophysics Data System (ADS)
Yagnik, S. K.
1982-09-01
High level nuclear waste disposal in a geologic repository was proposed. Natural salt deposits which are considered contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all liquid and gas liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusion shape and size are discussed.
Oceanic lithosphere and asthenosphere - Thermal and mechanical structure
NASA Technical Reports Server (NTRS)
Schubert, G.; Yuen, D. A.; Froidevaux, C.
1976-01-01
A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.
Thermal anomalies and magmatism due to lithospheric doubling and shifting
NASA Astrophysics Data System (ADS)
Vlaar, N. J.
1983-11-01
We present some thermal and magmatic consequences of the processes of lithospheric doubling and lithospheric shifting. Lithospheric doubling concerns the obduction of a cold continental or old oceanic lithospheric plate over a young and hot oceanic lithosphere/upper mantle system, including an oceanic ridge. Lithospheric shifting concerns the translation and rotation of a lithospheric plate relative to the upper mantle. In both cases the resulting thermal state of the upper mantle below the obducting or shifting lithosphere may be perturbed relative to a "normal" continental or oceanic geothermal situation. The perturbed geothermal state gives rise to a density inversion at depth and thus induces a vertical gravitational instability which favours magmatism. We speculate about the magmatic consequences of this situation and infer that in the case of lithospheric doubling our model may account for the petrology and geochemistry of the resulting magma. The original layering and composition of the overridden young oceanic lithosphere may strongly influence magmatic processes. We dwell shortly on the genesis of kimberlites within the framework of our lithospheric doubling model and on magmatism in general. Lithospheric recycling is inherent to the mechanism of lithospheric doubling.
1980-12-01
exchangers . The performance of heat exchangers will therefore decide the ultimate success or failure of OTEC . BACKGROUND Hardware development in support...8217AD-AG9 216 NAVAL COASTAL SYSTEMS CENTER PANAMA CITY FL F/S 13/10 HEAT EXCHANGER CLEANING IN SUPPORT OF OCEAN THERMAL ENERGY CONV"-ETC(U) DEC 80 D F...block minI ber) Heat Exchangers Chlorination Cleaning Electronics Thermal Energy Conversion 2%AISTRACT (Centhmes en; rewwe ide it neseer end iftefb Op
Warm ocean processes and carbon cycling in the Eocene.
John, Eleanor H; Pearson, Paul N; Coxall, Helen K; Birch, Heather; Wade, Bridget S; Foster, Gavin L
2013-10-28
Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.
Pettit, Laura R; Smart, Christopher W; Hart, Malcolm B; Milazzo, Marco; Hall-Spencer, Jason M
2015-05-01
Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH ∼8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH ∼7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera.
Pettit, Laura R; Smart, Christopher W; Hart, Malcolm B; Milazzo, Marco; Hall-Spencer, Jason M
2015-01-01
Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH ∼8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH ∼7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera. PMID:26140195
In situ determination of heat flow in unconsolidated sediments
Sass, J.H.; Kennelly, J.P.; Wendt, W.E.; Moses, T.H.; Ziagos, J.P.
1979-01-01
Subsurface thermal measurements are the most effective, least ambiguous tools for identifying and delineating possible geothernml resources. Measurements of thermal gradient in the upper few tens of meters generally are sufficient to outline the major anomalies, but it is always desirable to combine these gradients with reliable estimates of thermal conductivity to provide data on the energy flux and to constrain models for the heat sources responsible for the observed, near-surface thermal anomalies. The major problems associated with heat-flow measurements in the geothermal exploration mode are concerned with the economics of casing and/or grouting holes, the repeated site visits necessary to obtain equilibrium temperature values, the possible legal liability associated with the disturbance of underground aquifers, the surface hazards presented by pipes protruding from the ground, and the security problems associated with leaving cased holes open for periods of weeks to months. We have developed a technique which provides reliable 'real-time' determinations of temperature, thermal conductivity, and hence, of heat flow during the drilling operation in unconsolidated sediments. A combined temperature, gradient, and thermal conductivity experiment can be carried out, by driving a thin probe through the bit about 1.5 meters into the formation in the time that would otherwise be required for a coring trip. Two or three such experiments over the depth range of, say, 50 to 150 meters provide a high-quality heat-flow determination at costs comparable to those associated with a standard cased 'gradient hole' to comparable depths. The hole can be backfilled and abandoned upon cessation of drilling, thereby eliminating the need for casing, grouting, or repeated site visits.
Escalation of polymerization in a thermal gradient
Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter
2013-01-01
For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jilinski, Pavel; Meju, Max A.; Fontes, Sergio L.
2013-10-01
The commonest technique for determination of the continental-oceanic crustal boundary or transition (COB) zone is based on locating and visually correlating bathymetric and potential field anomalies and constructing crustal models constrained by seismic data. In this paper, we present a simple method for spatial correlation of bathymetric and potential field geophysical anomalies. Angular differences between gradient directions are used to determine different types of correlation between gravity and bathymetric or magnetic data. It is found that the relationship between bathymetry and gravity anomalies can be correctly identified using this method. It is demonstrated, by comparison with previously published models for the southwest African margin, that this method enables the demarcation of the zone of transition from oceanic to continental crust assuming that this it is associated with geophysical anomalies, which can be correlated using gradient directions rather than magnitudes. We also applied this method, supported by 2-D gravity modelling, to the more complex Liberia and Cote d'Ivoire-Ghana sectors of the West African transform margin and obtained results that are in remarkable agreement with past predictions of the COB in that region. We suggest the use of this method for a first-pass interpretation as a prelude to rigorous modelling of the COB in frontier areas.
A model of ocean basin crustal magnetization appropriate for satellite elevation anomalies
NASA Technical Reports Server (NTRS)
Thomas, Herman H.
1987-01-01
A model of ocean basin crustal magnetization measured at satellite altitudes is developed which will serve both as background to which anomalous magnetizations can be contrasted and as a beginning point for studies of tectonic modification of normal ocean crust. The model is based on published data concerned with the petrology and magnetization of the ocean crust and consists of viscous magnetization and induced magnetization estimated for individual crustal layers. Thermal remanent magnetization and chemical remanent magnetization are excluded from the model because seafloor spreading anomalies are too short in wavelength to be resolved at satellite altitudes. The exception to this generalization is found at the oceanic magnetic quiet zones where thermal remanent magnetization and chemical remanent magnetization must be considered along with viscous magnetization and induced magnetization.
A geodynamic constraint on Archean continental geotherms
NASA Astrophysics Data System (ADS)
Bailey, R. C.
2003-04-01
Dewey (1988) observed that gravitational collapse appears to currently limit the altitudes of large plateaus on Earth to about 3 to 5 km above sea level. Arndt (1999) summarized the evidence for the failure of large parts of the continental crust to reach even sea-level during the Archean. If this property of Archean continental elevations was also enforced by gravitational collapse, it permits an estimation of the geothermal gradient in Archean continental crust. If extensional (collapse) tectonics is primarily a balance between gravitational power and the power consumed by extensional (normal) faulting in the upper brittle crust, as analysed by Bailey (1999), then it occurs when continental elevations above ocean bottoms exceed about 0.4 times the thickness of the brittle crust (Bailey, 2000). Assuming an Archean oceanic depth of about 5 km, it follows that that the typical thickness of Archean continental brittle crustal must have been less than about 12 km. Assuming the brittle-ductile transition to occur at about 350 degrees Celsius, this suggests a steep geothermal gradient of at least 30 degrees Celsius per kilometer for Archean continents, during that part of the Archean when continents were primarily submarine. This result does not help resolve the Archean thermal paradox (England and Bickle, 1984) whereby the high global heat flow of the Archean conflicts with the rather shallow crustal Archean geotherms inferred from geobarometry. In fact, the low elevation of Archean continental platforms raises another paradox, a barometric one: that continents were significantly below sea-level implies, by isostasy, that continental crustal thicknesses were significantly less than 30 km, yet the geobarometric data utilized by England and Bickle indicated burial pressures of Archean continental material of up to 10 kb. One resolution of both paradoxes (as discussed by England and Bickle) would be to interpret such deep burials as transient crustal thickening events of duration less than the crustal thermal equilibriation time (about 10 to 30 Ma). Temporary entrainment in the wake of basal eclogite ``sinkers'' might provide such transient burial. Vlaar's (1994) modelling of this eclogite delamination process (tectonically elaborated by Zegers and van Keken (2001)) indicates such sinker events would be significantly shorter than 10 Ma. The topographic re-equilibriation of a hot moho above such a process would be similarly short (Kaufmann and Royden, 1994).
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.
The tectonic fabric of the ocean basins
NASA Astrophysics Data System (ADS)
Matthews, Kara J.; Müller, R. Dietmar; Wessel, Paul; Whittaker, Joanne M.
2011-12-01
We present a global community data set of fracture zones (FZs), discordant zones, propagating ridges, V-shaped structures and extinct ridges, digitized from vertical gravity gradient (VGG) maps. We use a new semi-automatic FZ tracking program to test the precision of our hand-digitized traces and find a Mean Absolute Deviation of less than 3.4 km from the raw VGG minima that most clearly delineate each feature, and less than 5.4 km from the FZ location predicted by fitting model profiles to the VGG data that represent the morphology of the individual FZs. These offsets are small considering gravity data only provide an approximation for the underlying basement morphology. We further investigate the origin of non-FZ seafloor fabric by combining published abyssal hill heights computed from gravity anomalies with global half-spreading rates. A residual abyssal hill height grid, with spreading rate effects removed, combined with our interpreted tectonic fabric reveals several types of seafloor fabric distinct from typical abyssal hills. Where discordant zones do not overprint abyssal hill signals, residual abyssal hill height anomalies correspond to seafloor that accreted near mantle thermal anomalies or zones of melt-depletion. Our analysis reveals several areas where residual abyssal hill height anomalies reflect pseudo-faults and extinct ridges associated with ridge propagation and/or microplate formation in the southern Pacific Ocean.
Renosh, P R; Schmitt, Francois G; Loisel, Hubert
2015-01-01
Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics.
Onset and localisation of convection during transient growth of mushy sea ice
NASA Astrophysics Data System (ADS)
Wells, Andrew; Hitchen, Joe
2017-11-01
More than 20 million square kilometres of the polar oceans freeze over each year to form sea ice. Sea ice is a mushy layer: a reactive, porous, multiphase material consisting of ice crystals bathed in liquid brine. Atmospheric cooling generates a density gradient in the interstitial brine, which can drive convection and rejection of brine from the sea ice to force ocean circulation and mixing. We use linear stability analysis and nonlinear numerical simulations to consider the convection in a transiently growing mushy layer. An initial salt water layer is cooled from above via a linearised thermal exchange with the atmosphere, and generates a growing mushy layer with the porosity varying in space and time. We determine how the critical porous-medium Rayleigh number for the onset of convection varies with the surface cooling rate, and the initial temperature and salinity of the solidifying salt water. Differences in the cooling conditions modify the structure of the ice and the resulting convection cells. Weak cooling leads to full-depth convection through ice with slowly varying porosity, whilst stronger cooling leads to localised convection confined to a highly permeable basal layer. These results provide insight into the onset of convective brine drainage from growing sea ice.
The surface of the ice-age Earth.
1976-03-19
In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based ice sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of pack ice and marine-based ice sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea ice. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent ice and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.
NASA Astrophysics Data System (ADS)
Mascarenhas, A.
2001-11-01
The entrance to the Gulf of California, the only evaporative basin on the Pacific, is wide (200 km) and deep (>2.5 km), allowing free exchanges of waters with the Pacific Ocean. Although being comparable to the Mediterranean and Red Seas with respect to evaporation rate (0.61 m/year), the gulf differs from these seas because it actually gains heat at an annual rate of 60 W/m^2. These water loss and heat gain result in modification of water properties, creation of unique water masses, and strong exchanges with the Pacific Ocean. Here the results of the analysis of a recent set of observations is discussed from the point of view of exchange of thermohaline properties and the fluxes of heat, salt and volume. The thermohaline structure at the entrance to the Gulf suggested a thermal (saline) gradient toward Sinaloa (Baja California) shelf. This structure is associated to a cyclonic gyre that is not well defined in the upper layer due to the influence of the wind field. The computed heat flux display an annual cycle with maximum outflow (inflow) during November (May). The salt outflow maximum occurs when the Gulf of California Water is most predominant in the entrance (winter and spring). The volume fluxes appear to have a semiannual signal.
Heat flow and continental breakup: The Gulf of Elat (Aqaba)
NASA Technical Reports Server (NTRS)
Ben-Avraham, Z.; Vonherzen, R. P.
1985-01-01
Heat flow measurements were made in the major basins of the Gulf of Elat (Aqaba), northern Red Sea. The gulf is located at the southern portion of the Dead Sea rift which is a transform plate boundary. Gradient measurements at each site were made with a probe which allows multiple penetration of the bottom during a single deployment of the instrument. Thermal conductivity was determined by needle probe measurements on sedimentary cores. The mean heat flux, about 80 mWm(-2), is significantly above the continental mean, and probably also above that from the adjacent Sinai and Arabian continental blocks. The heat flow appears to increase from north to south. Such an increase may be related to the more advanced rifting stage of the Red Sea immediately to the south, which presently includes creation of an oceanic crust. This trend also corresponds to the general trend of the deep crustal structure in the gulf. Evidence from various geophysical fields suggest a gradual thinning of the crust towards the direction of the Red Sea where a normal oceanic crust exists. The heat flow data, together with other geophysical data, indicate a propagation of mature rifting activity from the Red Sea into the Gulf of Elat. This process is acting simultaneously with the transform motion along the Dead Sea rift.
Thermal Diffusion Fractionation of Cr and V Isotope in Silicate Melt
NASA Astrophysics Data System (ADS)
Lin, X.; Lundstrom, C.
2017-12-01
Earth's mantle is isotopically heavy relative to chondrites for V, Cr and some other siderophile elements. A possible solution is that isotopic fractionation by thermal diffusion occurs in a thermal boundary layer between solid mantle and an underlying basal magma ocean (BMO:Labrosse et al.,2007). If so, isotopically light composition might partition into the core, resulting in a complimentary isotopically heavy solid mantle. To verify how much fractionation could happen in this process, piston cylinder experiment were conducted to investigate the fractionation of Cr and V isotope ratios in partially molten silicate under an imposed temperature gradient from 1650 °C to 1350 °C at 1 GPa for 10 to 50 hours to reach a steady state isotopic profile. The temperature profile for experiments was determined by the spinel-growth method at the same pressure and temperature. Experimental runs result in 100% glass at the hot end progressing to nearly 100 % olivine at the cold end. Major and minor element concentrations of run products show systematic changes with temperature. Glass MgO contents increase and Al2O3 and CaO contents decrease by several weight percent as temperature increases across the charge. These are well modeled using IRIDIUM (Boudreau 2003) to simulate the experiments. Isotopic composition measurements of Cr and V at different temperatures are in progress, providing the first determinations of thermal diffusion isotopic sensitivity, Ω (permil isotopic fractionation per temperature offset per mass unit) for these elements. These results will be compared with previously determined Ω for network formers and modifiers and used in a BMO-based thermal diffusion model for formation of Earth's isotopically heavy mantle.
Thermal and chemical variations of the Nigerian Benue trough lead-zinc-barite-fluorite deposits
NASA Astrophysics Data System (ADS)
Ogundipe, Ibukun Emmanuel
2017-08-01
The Benue trough is an intra-continental rift initiated in the Cretaceous during the opening of the South Atlantic Ocean. Lead-zinc-barite-fluorite mineralization occurs along the 600 km axis of the trough in three discrete sub-basins which coincide with the lower, middle and upper mineral districts of the Benue Valley. Lithologically these sub-basins are dominated by black carbonaceous shale in the Lower Benue, platform carbonates in the Middle Benue and sandstones in the Upper Benue. Micro-thermometric analysis of fluid inclusions in sphalerite, fluorite, barite and quartz have shown that each mineral district has its own unique thermal and chemical imprint. For example, the temperature can be bracketed between 109 °C and 160 °C for lower Benue, 89 °C-144 °C for the Middle Benue and 176 °C-254 °C for the Upper Benue. Chemical differentiation also exists between each mineral district with the Lower Benue having 22 wt % equivalent NaCl while the Middle and Upper Benue have 18 and 16 wt % equivalent NaCl respectively. This study shows that inter-district thermal and chemical variations exist between the ore-stage sulfide and post-sulfide gangue minerals of the entire Benue Valley. Similarly, intra-district thermal and chemical variations have also been observed among all the paragenetic minerals of each district. The thermal variations may be as a result of variations in the geothermal gradient accompanying continental rifting from one district to the other. The variations in the chemistry between the Lower Benue and the Upper Benue paragenic minerals may be as a result of the distinct lithological differences across the Benue Trough.
The thermal infrared radiance properties of dust aerosol over ocean
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Tu, Qianguang; Gong, Fang; Chen, Jianyu
2015-10-01
Asian dust storms, which can long-range transport to ocean, often occur on spring. The present of Asian dust aerosols over ocean makes some difficult for other studies, such as cloud detection, and also take some advantage for ocean, such as take nutrition into the ocean by dry or wet deposition. Therefore, it is important to study the dust aerosol and retrieve the properties of dust from satellite observations that is mainly from the thermal infrared radiance. In this paper, the thermal infrared radiance properties of dust aerosol over ocean are analyzed from MODIS and MTSAT2 observations and Streamer model simulations. By analyzing some line samples and a series of dust aerosol region, it shows that the dust aerosol brightness temperature at 12μm (BT12) is always greater than BT11 and BT8.5, and BT8.5 is general greater than BT11. The brightness temperature different between 11μm and 12μm (BTD11-12) increases with the dust intensity. And the BTD11-12 will become positive when the atmospheric relative humidity is greater than 70%. The BTD11-12 increases gradually with the surface temperature while the effect on BTD11-12 of dust layer temperature is not evident. Those are caused by the transmission of the dust aerosol is different at the two thermal infrared channels. During daytime, dust infrared brightness temperature at mid-infrared bands should reduce the visual radiance, which takes about 25K or less. In general, BT3.7 is greater than BT11 for dust aerosol. Those results are helpful to monitor or retrieve dust aerosol physical properties over ocean from satellite.
Simulation of Tropical Rainfall Variability
NASA Astrophysics Data System (ADS)
Bader, J.; Latif, M.
2002-12-01
The impact of sea surface temperature (SST) - especially the role of the tropical Atlantic meridional SST gradient and the El Nino-Southern Oscillation - on precipitation is investigated with the atmospheric general circulation model ECHAM4/T42. Ensemble experiments - driven with observed SST - show that Atlantic SST has a significant influence on precipitation over West Africa and northeast Brazil. SST sensitivity experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropical Atlantic caused only significant changes along the Guinea Coast, with a positive anomaly (SSTA) increasing rainfall and a negative SSTA reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, especially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. The influence of SST on precipitation over northeast Brazil (Nordeste) was also investigated. Three experiments were performed in which the climatological SST was enhanced/decreased or decreased/enhanced by one Kelvin in the North/South Atlantic and increased by two Kelvin in the Nino3 ocean area. All experiments caused significant changes over Nordeste, with an enhanced/reduced SST gradient in the Atlantic increasing/reducing rainfall. The response was nearly linear. The main effect of the Atlantic SST gradient was a shift of the ITCZ, caused by trade wind changes. The ''El Nino'' event generates a significant reduction in Nordeste rainfall. A significant positive SLP anomaly occurs in northeast Brazil which may be associated with the descending branch of the Walker circulation. Also a significant positive SLP over the Atlantic from 30S to 10N north occurs. This results in a reduced SLP gradient from the subtropical highs to the equator and a weakening of the trade winds.
Hostetler, S.; Pisias, N.; Mix, A.
2006-01-01
The faunal and floral gradients that underlie the CLIMAP (1981) sea-surface temperature (SST) reconstructions for the Last Glacial Maximum (LGM) reflect ocean temperature gradients and frontal positions. The transfer functions used to reconstruct SSTs from biologic gradients are biased, however, because at the warmest sites they display inherently low sensitivity in translating fauna to SST and they underestimate SST within the euphotic zones where the pycnocline is strong. Here we assemble available data and apply a statistical approach to adjust for hypothetical biases in the faunal-based SST estimates of LGM temperature. The largest bias adjustments are distributed in the tropics (to address low sensitivity) and subtropics (to address underestimation in the euphotic zones). The resulting SSTs are generally in better agreement than CLIMAP with recent geochemical estimates of glacial-interglacial temperature changes. We conducted a series of model experiments using the GENESIS general atmospheric circulation model to assess the sensitivity of the climate system to our bias-adjusted SSTs. Globally, the new SST field results in a modeled LGM surface-air cooling relative to present of 6.4 ??C (1.9 ??C cooler than that of CLIMAP). Relative to the simulation with CLIMAP SSTs, modeled precipitation over the oceans is reduced by 0.4 mm d-1 (an anomaly -0.4 versus 0.0 mm d-1 for CLIMAP) and increased over land (an anomaly -0.2 versus -0.5 mm d-1 for CLIMAP). Regionally strong responses are induced by changes in SST gradients. Data-model comparisons indicate improvement in agreement relative to CLIMAP, but differences among terrestrial data inferences and simulated moisture and temperature remain. Our SSTs result in positive mass balance over the northern hemisphere ice sheets (primarily through reduced summer ablation), supporting the hypothesis that tropical and subtropical ocean temperatures may have played a role in triggering glacial changes at higher latitudes.
NASA Astrophysics Data System (ADS)
Majorowicz, Jacek A.; Embry, Ashton F.
1998-06-01
Calculations of the present geothermal gradient and terrestrial heat flow were made on 156 deep wells of the Canadian Arctic Archipelago. Corrected bottom hole temperature (BHT) data and drill stem test (DST) temperatures were used to determine the thermal gradients for sites for which the quality of data was sufficient. Thermal gradients evaluated for depths below the base of permafrost for the onshore wells and below sea bottom for the offshore wells were combined with the estimates of effective thermal conductivity to approximate heat flow for these sites. The present geothermal gradient is in the 15-50 mK/m range (mean = 31 ± 7 mK/m). Present heat flow is mainly in the 35-90 mW/m 2 range (mean = 53 ± 12 mW/m 2). Maps of the present geothermal gradient and present heat flow have been constructed for the basin. The analysis of vitrinite reflectance profiles and the calculation of logarithmic coalification gradients for 101 boreholes in the Sverdrup Basin showed large variations related in many cases to regional variations of present terrestrial heat flow. Paleo-geothermal gradients estimated from these data are mostly in the range of 15-50 mK/m (mean = 28 ± 9 mK/m) and paleo-heat flow is in the 40-90 mW/m 2 range (mean = 57 ± 18 mW/m 2) related to the time of maximum burial in the Early Tertiary. Mean values of the present heat flow and paleo-heat flow for the Sverdrup Basin are almost identical considering the uncertainties of the methods used (53 ± 12 versus 57 ± 18 mW/m 2, respectively). Present geothermal gradients and paleo-geothermal gradients are also close when means are compared (31 ± 7 versus 28 ± 9 mK/m respectively). A zone of high present heat flow and a paleo-heat flow zone coincide in places with the northeastern-southwestern incipient rift landward of the Arctic margin first described by Balkwill and Fox (1982). Correlation between present heat flow and paleo-heat flow for the time of maximum burial in the earliest Tertiary suggests that the high heat flow zone has prevailed since that time.
Physical vapor transport of mercurous chloride under a nonlinear thermal profile
NASA Technical Reports Server (NTRS)
Mennetrier, Christophe; Duval, Walter M. B.; Singh, Narsingh B.
1992-01-01
Our study investigates numerically the flow field characteristics during the growth of mercurous chloride (Hg2Cl2) crystals in a rectangular ampoule under terrestrial and microgravity conditions for a nonlinear thermal gradient. With a residual gas lighter than the nutrient, the solutal Grashof number is dominant. We observe that in tilted configurations, when solutal convection is dominant, the maximum transport rate occurs at approximately 40 percent. For the vertical configurations, we were able to obtain solutions only for the cases either below the critical Rayleigh numbers or the stabilized configurations. The total mass flux decreases exponentially with an increase of pressure of residual gas, but it increases following a power law with the temperature difference driving the transport. The nonlinear thermal gradient appears to destabilize the flow field when thermal convection is dominant for both vertical top-heated and bottom-heated configurations. However, when the solutal Grashof number is dominant, the density gradient resulting from the solutal gradient appears to stabilize the flow for the bottom-heated configuration. The flow field for the top-heated configuration is destabilized for high Grashof numbers. The microgravity environment provides a means for lowering convection. For gravity levels of 10(exp -3) g(0) or less, the Stefan wind drives the flow, and no recirculating cell is predicted.
NASA Astrophysics Data System (ADS)
Morales, Carmen; Anabalón, Valeria; Hormazábal, Samuel; Cornejo, Marcela; Bento, Joaquim; Silva, Nelson
2016-04-01
The impact that sub-mesoscale (1-10 km) to mesocale (50-100 km) oceanographic variability has on plankton and nutrient distributions (horizontal and vertical) in the coastal upwelling and transition zones off Concepcion was the focus of this study. Satellite time-series data (wind, sea-surface temperature (SST), and altimetry) were used to understand the dynamic context of in situ data derived from a short-term front survey (3 d) during the upwelling period (3-6 February, 2014). The survey included two transects perpendicular to the coast, covering the shelf and shelf-break areas just north of Punta Lavapie, a main upwelling center (˜37° S). Wind and SST time-series data indicated that the survey was undertaken just after a moderate upwelling event (end of January) which lead to a relaxation phase during early February. A submesoscale thermal front was detected previous to and during the survey and results from an eddy tracking algorithm based on altimetry data indicated that this front (F1) was flanked on its oceanic side by an anticyclonic, mesoscale eddy (M1), which was ˜25 d old at the sampling time. M1 strengthened the thermal gradient of F1 by bringing warmer oceanic water nearer to the colder coastal upwelling zone. The distributions of hydrographic variables and nutrients in the water column (<300 m depth) also denoted these two features. Phytoplankton biomass (Chl-a) and diatom abundance were highest in the surface layer (<20 m depth) between the coast and F1, with primary maxima in the latter, whereas they were highest at the subsurface (20-40 m depth) towards M1 and associated with secondary maxima. The distribution of dominant diatoms in the top layer (<100 m depth) indicated that both coastal and oceanic species were aggregated at F1 and in M1. These results suggest that the front-eddy interaction creates a complex field of submesoscale processes in the top layer, including vertical nutrient injections and lateral stirring, which contributes to the exportation of coastal communities to the open ocean in this region. We discuss how this interaction might affect ecosystem productivity in the coastal band.
Thermal adaptation of net ecosystem exchange
USDA-ARS?s Scientific Manuscript database
Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). In this study, we const...
Numerical simulation of gas-phonon coupling in thermal transpiration flows.
Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A
2009-10-01
Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.
In laboratory test, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperature (Tbs) of C. serpentina were lower tha...
Causes of strong ocean heating during glacial periods
NASA Astrophysics Data System (ADS)
Zimov, N.; Zimov, S. A.
2013-12-01
During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface are taken as constant. Energy income to the interior box from the geothermal heat flux is also taken as constant. Even though energy inputs are taken as constants, the model manages to recreate the glacial-interglacial cycles. In the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior box accumulates heat, while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal convection take place, and the ocean quickly (within 14,600 years) releases the heat. The magnitude and duration of such cycles correspond with magnitudes and durations reconstructed for actual glacial-interglacial cycles. From the proposed mechanism it follows that during the glaciations it is likely that the Arctic Ocean was a big reservoir of isotopically light fresh ice. If in a glacial period, the World Ocean were half filled with warm water from the Red Sea and bioproductivity of the ocean declined because of the slow circulation, then carbon storage within the ocean reservoir would decline by ~2000 Pg (10^15 g) of carbon.
Thermal history of Bakken shale in Williston basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J.
1989-12-01
Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships includemore » factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.« less
Clark, Timothy D; Roche, Dominique G; Binning, Sandra A; Speers-Roesch, Ben; Sundin, Josefin
2017-10-01
Theoretical models predict that ocean acidification, caused by increased dissolved CO 2 , will reduce the maximum thermal limits of fishes, thereby increasing their vulnerability to rising ocean temperatures and transient heatwaves. Here, we tested this prediction in three species of damselfishes on the Great Barrier Reef, Australia. Maximum thermal limits were quantified using critical thermal maxima (CT max ) tests following acclimation to either present-day or end-of-century levels of CO 2 for coral reef environments (∼500 or ∼1000 µatm, respectively). While species differed significantly in their thermal limits, whereby Dischistodus perspicillatus exhibited greater CT max (37.88±0.03°C; N =47) than Dascyllus aruanus (37.68±0.02°C; N =85) and Acanthochromis polyacanthus (36.58±0.02°C; N =63), end-of-century CO 2 had no effect ( D. aruanus ) or a slightly positive effect (increase in CT max of 0.16°C in D. perspicillatus and 0.21°C in A. polyacanthus ) on CT max Contrary to expectations, early-stage juveniles were equally as resilient to CO 2 as larger conspecifics, and CT max was higher at smaller body sizes in two species. These findings suggest that ocean acidification will not impair the maximum thermal limits of reef fishes, and they highlight the critical role of experimental biology in testing predictions of theoretical models forecasting the consequences of environmental change. © 2017. Published by The Company of Biologists Ltd.
Johnson, Vivienne R; Russell, Bayden D; Fabricius, Katharina E; Brownlee, Colin; Hall-Spencer, Jason M
2012-09-01
Predicting the impacts of ocean acidification on coastal ecosystems requires an understanding of the effects on macroalgae and their grazers, as these underpin the ecology of rocky shores. Whilst calcified coralline algae (Rhodophyta) appear to be especially vulnerable to ocean acidification, there is a lack of information concerning calcified brown algae (Phaeophyta), which are not obligate calcifiers but are still important producers of calcium carbonate and organic matter in shallow coastal waters. Here, we compare ecological shifts in subtidal rocky shore systems along CO2 gradients created by volcanic seeps in the Mediterranean and Papua New Guinea, focussing on abundant macroalgae and grazing sea urchins. In both the temperate and tropical systems the abundances of grazing sea urchins declined dramatically along CO2 gradients. Temperate and tropical species of the calcifying macroalgal genus Padina (Dictyoaceae, Phaeophyta) showed reductions in CaCO3 content with CO2 enrichment. In contrast to other studies of calcified macroalgae, however, we observed an increase in the abundance of Padina spp. in acidified conditions. Reduced sea urchin grazing pressure and significant increases in photosynthetic rates may explain the unexpected success of decalcified Padina spp. at elevated levels of CO2 . This is the first study to provide a comparison of ecological changes along CO2 gradients between temperate and tropical rocky shores. The similarities we found in the responses of Padina spp. and sea urchin abundance at several vent systems increases confidence in predictions of the ecological impacts of ocean acidification over a large geographical range. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay
2014-01-01
The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.
NASA Astrophysics Data System (ADS)
Engwirda, Darren; Kelley, Maxwell; Marshall, John
2017-08-01
Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.
NASA Astrophysics Data System (ADS)
Lineweaver, C. H.
2005-12-01
The principle of Maximum Entropy Production (MEP) is being usefully applied to a wide range of non-equilibrium processes including flows in planetary atmospheres and the bioenergetics of photosynthesis. Our goal of applying the principle of maximum entropy production to an even wider range of Far From Equilibrium Dissipative Systems (FFEDS) depends on the reproducibility of the evolution of the system from macro-state A to macro-state B. In an attempt to apply the principle of MEP to astronomical and cosmological structures, we investigate the problematic relationship between gravity and entropy. In the context of open and non-equilibrium systems, we use a generalization of the Gibbs free energy to include the sources of free energy extracted by non-living FFEDS such as hurricanes and convection cells. Redox potential gradients and thermal and pressure gradients provide the free energy for a broad range of FFEDS, both living and non-living. However, these gradients have to be within certain ranges. If the gradients are too weak, FFEDS do not appear. If the gradients are too strong FFEDS disappear. Living and non-living FFEDS often have different source gradients (redox potential gradients vs thermal and pressure gradients) and when they share the same gradient, they exploit different ranges of the gradient. In a preliminary attempt to distinguish living from non-living FFEDS, we investigate the parameter space of: type of gradient and steepness of gradient.
The NTF Inlet Guide Vanes Thermal Gradient Problem and Its Mitigation
NASA Technical Reports Server (NTRS)
Venkat, Venki S.; Paryz, Roman W.; Bissett, Owen W.; Kilgore, W.
2013-01-01
The National Transonic Facility (NTF) utilizes Inlet Guide Vanes (IGV) to provide precise, quick response Mach number control for the tunnel. During cryogenic operations, the massive IGV structure can experience large thermal gradients, measured as "Delta T or (Delta)T", between the IGV ring and its support structure called the transfer case. If these temperature gradients are too large, the IGV structure can be stressed beyond its safety limit and cease operation. In recent years, (Delta)T readings exceeding the prescribed safety limits were observed frequently during cryogenic operations, particularly during model access. The tactical operation methods of the tunnel to minimize (Delta)T did not always succeed. One obvious option to remedy this condition is to warm up the IGV structure by disabling the main drive operation, but this "natural" warm up method can takes days in some cases, resulting in productivity loss. This paper documents the thermal gradient problem associated with the IGV structure during cryogenic operation and how the facility has recently achieved an acceptable mitigation which has resulted in improved efficiency of operations.
Laser-induced cracks in ice due to temperature gradient and thermal stress
NASA Astrophysics Data System (ADS)
Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun
2018-06-01
This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.
NASA Astrophysics Data System (ADS)
Lubieniecki, Michał; Roemer, Jakub; Martowicz, Adam; Wojciechowski, Krzysztof; Uhl, Tadeusz
2016-03-01
Gas foil bearings have become widespread covering the applications of micro-turbines, motors, compressors, and turbocharges, prevalently of small size. The specific construction of the bearing, despite all of its advantages, makes it vulnerable to a local difference in heat generation rates that can be extremely detrimental. The developing thermal gradients may lead to thermal runaway or seizure that eventually causes bearing failure, usually abrupt in nature. The authors propose a method for thermal gradient removal with the use of current-controlled thermoelectric modules. To fulfill the task of control law adoption the numerical model of the heat distribution in a bearing has been built. Although sparse readings obtained experimentally with standard thermocouples are enough to determine thermal gradients successfully, validation of the bearing numerical model may be impeded. To improve spatial resolution of the experimental measurements the authors proposed a matrix of customized thermocouples located on the top foil. The foil acts as a shared conductor for each thermocouple that reduces the number of cable connections. The proof of concept of the control and measurement systems has been demonstrated in a still bearing heated by a cartridge heater.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2000-01-01
A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.
NASA Astrophysics Data System (ADS)
Hull, Tony; Westerhoff, Thomas; Weidmann, Gunter
2015-09-01
A key consideration in defining a space telescope mission is definition of the optical materials. This selection defines both the performance of the system and system complexity and cost. Optimal material selection for system stability must consider the thermal environment and its variation. Via numerical simulations, we compare the thermal and structural-mechanical behavior of ZERODUR® and SiC as mirror substrates for telescope assemblies in space. SiC has significantly larger CTE values then ZERODUR®, but also its thermal diffusivity k/(ρcp) is larger, and that helps to homogenize thermal gradients in the mirror. Therefore it is not obvious at first glance which material performs with better dimensional stability under realistic unsteady, inhomogeneous thermal loads. We specifically examine the telescope response to transient, gradient driving, thermal environments representative of low- and high-earth- orbits.
Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives
Badgley, Catherine; Smiley, Tara M.; Terry, Rebecca; Davis, Edward B.; DeSantis, Larisa R.G.; Fox, David L.; Hopkins, Samantha S.B.; Jezkova, Tereza; Matocq, Marjorie D.; Matzke, Nick; McGuire, Jenny L.; Mulch, Andreas; Riddle, Brett R.; Roth, V. Louise; Samuels, Joshua X.; Strömberg, Caroline A.E.; Yanites, Brian J.
2018-01-01
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. PMID:28196688
Reversed flow of Atlantic deep water during the Last Glacial Maximum.
Negre, César; Zahn, Rainer; Thomas, Alexander L; Masqué, Pere; Henderson, Gideon M; Martínez-Méndez, Gema; Hall, Ian R; Mas, José L
2010-11-04
The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.
NASA Astrophysics Data System (ADS)
Piotrowski, A. M.; Elderfield, H.; Howe, J. N. W.
2014-12-01
The last few million years saw changing boundary conditions to the Earth system which set the stage for bi-polar glaciation and Milankovich-forced glacial-interglacial cycles which dominate Quaternary climate variability. Recent studies have highlighted the relative importance of temperature, ice volume and ocean circulation changes during the Mid-Pleistocene Transition at ~900 ka (Elderfield et al., 2012, Pena and Goldstein, 2014). Reconstructing the history of global deep water mass propagation and its carbon content is important for fully understanding the ocean's role in amplifying Milankovich changes to cause glacial-interglacial transitions. A new foraminiferal-coating Nd isotope record from ODP Site 1123 on the deep Chatham Rise is interpreted as showing glacial-interglacial changes in the bottom water propagation of Atlantic-sourced waters into the Pacific via the Southern Ocean during the last 1 million years. This is compared to globally-distributed bottom water Nd isotope records; including a new deep western equatorial Atlantic Ocean record from ODP Site 929, as well as published records from ODP 1088 and Site 1090 in the South Atlantic (Pena and Goldstein, 2014), and ODP 758 in the deep Indian Ocean (Gourlan et al., 2010). Atlantic-to-Pacific gradients in deep ocean neodymium isotopes are constructed for key time intervals to elucidate changes in deep water sourcing and circulation pathways through the global ocean. Benthic carbon isotopes are used to estimate deep water nutrient contents of deep water masses and constrain locations and modes of deep water formation. References: Elderfield et al. Science 337, 704 (2012) Pena and Goldstein, Science 345, 318 (2014) Gourlan et al., Quaternary Science Reviews 29, 2484-2498 (2010)
The influence of extratropical cloud phase and amount feedbacks on climate sensitivity
NASA Astrophysics Data System (ADS)
Frey, William R.; Kay, Jennifer E.
2018-04-01
Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2002-01-01
Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests (in air), to investigate the water vapor effect. All cyclic tests were conducted using a 60-min hot-time temperature.
Thermal Transgressions and Phanerozoic Extinctions
NASA Astrophysics Data System (ADS)
Worsley, T. R.; Kidder, D. L.
2007-12-01
A number of significant Phanerozoic extinctions are associated with marine transgressions that were probably driven by rapid ocean warming. The conditions associated with what we call thermal transgressions are extremely stressful to life on Earth. The Earth system setting associated with end-Permian extinction exemplifies an end-member case of our model. The conditions favoring extreme warmth and sea-level increases driven by thermal expansion are also conducive to changes in ocean circulation that foster widespread anoxia and sulfidic subsurface ocean waters. Equable climates are characterized by reduced wind shear and weak surface ocean circulation. Late Permian and Early Triassic thermohaline circulation differs considerably from today's world, with minimal polar sinking and intensified mid-latitude sinking that delivers sulfate from shallow evaporative areas to deeper water where it is reduced to sulfide. Reduced nutrient input to oceans from land at many of the extinction intervals results from diminished silicate weathering and weakened delivery of iron via eolian dust. The falloff in iron-bearing dust leads to minimal nitrate production, weakening food webs and rendering faunas and floras more susceptible to extinction when stressed. Factors such as heat, anoxia, ocean acidification, hypercapnia, and hydrogen sulfide poisoning would significantly affect these biotas. Intervals of tectonic quiescence set up preconditions favoring extinctions. Reductions in chemical silicate weathering lead to carbon dioxide buildup, oxygen drawdown, nutrient depletion, wind and ocean current abatement, long-term global warming, and ocean acidification. The effects of extinction triggers such as large igneous provinces, bolide impacts, and episodes of sudden methane release are more potent against the backdrop of our proposed preconditions. Extinctions that have characteristics we call for in the thermal transgressions include the Early Cambrian Sinsk event, as well as extinction events at the Frasnian-Famennian, end-Devonian, end Permian, Early Toarcian, Cenomanian-Turonian, and end Cretaceous. The Late Paleocene and end Triassic extinctions are still under evaluation. The extinctions associated with the glacio-eustatic sea-level change in the Late Ordovician are not consistent with the conditions of our model.
Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon
NASA Technical Reports Server (NTRS)
Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.
1989-01-01
The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.
Detecting depth gradients in the mid-Cretaceous Western Interior Seaway
NASA Astrophysics Data System (ADS)
Bryant, R.
2017-12-01
Multivariate data sets can be simplified using techniques like ordination and detrended correspondence analysis to identify important ecological gradients such as water depth, and thus provide insight into the environmental distribution of species (Patzkowsky & Holland, 2012). Here, these methods will be applied to abundance data of foraminiferal assemblages from the Western Interior Seaway through the Cenomanian/Turonian boundary ( 94-93 Ma). Through this interval the seaway experienced rapid and abrupt environmental and oceanographic changes, including the onset of Oceanic Anoxic Event 2 (OAE2) and peak transgression. The intense ocean and biosphere changes are well documented in the WIS, but the effect of OAE2 coupled with rising sea level on foraminiferal communities across the seaway is still poorly understood.
Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil
NASA Astrophysics Data System (ADS)
Loureiro, A.; Schnürle, P.; Klingelhöfer, F.; Afilhado, A.; Pinheiro, J.; Evain, M.; Gallais, F.; Dias, N. A.; Rabineau, M.; Baltzer, A.; Benabdellouahed, M.; Soares, J.; Fuck, R.; Cupertino, J. A.; Viana, A.; Matias, L.; Moulin, M.; Aslanian, D.; Vinicius Aparecido Gomes de Lima, M.; Morvan, L.; Mazé, J. P.; Pierre, D.; Roudaut-Pitel, M.; Rio, I.; Alves, D.; Barros Junior, P.; Biari, Y.; Corela, C.; Crozon, J.; Duarte, J. L.; Ducatel, C.; Falcão, C.; Fernagu, P.; Le Piver, D.; Mokeddem, Z.; Pelleau, P.; Rigoti, C.; Roest, W.; Roudaut, M.; Salsa Team
2018-07-01
Twelve combined wide-angle refraction and coincident multi-channel seismic profiles were acquired in the Jequitinhonha-Camamu-Almada, Jacuípe, and Sergipe-Alagoas basins, NE Brazil, during the SALSA experiment in 2014. Profiles SL11 and SL12 image the Jequitinhonha basin, perpendicularly to the coast, with 15 and 11 four-channel ocean-bottom seismometers, respectively. Profile SL10 runs parallel to the coast, crossing profiles SL11 and SL12, imaging the proximal Jequitinhonha and Almada basins with 17 ocean-bottom seismometers. Forward modelling, combined with pre-stack depth migration to increase the horizontal resolution of the velocity models, indicates that sediment thickness varies between 3.3 km and 6.2 km in the distal basin. Crustal thickness at the western edge of the profiles is of around 20 km, with velocity gradients indicating a continental origin. It decreases to less than 5 km in the distal basin, with high seismic velocities and gradients, not compatible with normal oceanic crust nor exhumed upper mantle. Typical oceanic crust is never imaged along these about 200 km-long profiles and we propose that the transitional crust in the Jequitinhonha basin is a made of exhumed lower continental crust.
On the shortening of Indian summer monsoon season in a warming scenario
NASA Astrophysics Data System (ADS)
Sabeerali, C. T.; Ajayamohan, R. S.
2018-03-01
Assessing the future projections of the length of rainy season (LRS) has paramount societal impact considering its potential to alter the seasonal mean rainfall over the Indian subcontinent. Here, we explored the projections of LRS using both historical and Representative Concentration Pathways 8.5 (RCP8.5) simulations of the Coupled Model Intercomparison Project Phase5 (CMIP5). RCP8.5 simulations project shortening of the LRS of Indian summer monsoon by altering the timing of onset and withdrawal dates. Most CMIP5 RCP8.5 model simulations indicate a faster warming rate over the western tropical Indian Ocean compared to other regions of the Indian Ocean. It is found that the pronounced western Indian Ocean warming and associated increase in convection results in warmer upper troposphere over the Indian Ocean compared to the Indian subcontinent, reducing the meridional gradient in upper tropospheric temperature (UTT) over the Asian summer monsoon (ASM) domain. The weakening of the meridional gradient in UTT induces weakening of easterly vertical wind shear over the ASM domain during first and last phase of monsoon, facilitate delayed (advanced) monsoon onset (withdrawal) dates, ensues the shortening of LRS of the Indian summer monsoon in a warming scenario.
NASA-UVa light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.
1991-01-01
The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.
1987-01-01
The objective of the Elevated Temperature Crack Growth Program is to evaluate proposed nonlinear fracture mechanics methods for application to hot section components of aircraft gas turbine engines. Progress during the past year included linear-elastic fracture mechanics data reduction on nonlinear crack growth rate data on Alloy 718. The bulk of the analytical work centered on thermal gradient problems and proposed fracture mechanics parameters. Good correlation of thermal gradient experimental displacement data and finite element prediction was obtained.
Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo
2017-12-13
Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.
NASA Technical Reports Server (NTRS)
Hathaway, D. H.; Fowlis, W. W.
1986-01-01
Experimental flow regime diagrams are determined for a new rotating cylindrical annulus configuration which permits a measure of control over the internal vertical temperature gradient. The new annulus has radial temperature gradients imposed on plane horizontal thermally conducting endwalls (with the cylindrical sidewalls as insulators) and is considered to be more relevant to atmospheric dynamics studies than the classical cylindrical annulus. Observations have revealed that, in addition to the axisymmetric flow and nonaxisymmetric baroclinic wave flow which occur in the classical annulus, two additional nonaxisymmetric flow types occur in the new annulus: boundary-layer thermal convection and deep thermal convection. Flow regime diagrams for three different values of the imposed vertical temperature difference are presented, and explanations for the flow transitions are offered. The new annulus provides scientific backup for the proposed Atmospheric General Circulation Experiment for Spacelab. The apparatus diagram is included.
NASA Technical Reports Server (NTRS)
Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.
2008-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.
NASA Technical Reports Server (NTRS)
Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.
2014-01-01
Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Lieberman, Diana; Lieberman, Milton; Hartshorn, Gary S.; Peralta, Rodolfo
1990-01-01
Thermal infrared Multispectral Scanner (TIMS) data were collected at a resolution of 5 to 10 m from a tropical rain forest over an elevation gradient from 35 to 2700 m in the Braulio Carrillo National Park in Costa Rica. Flight lines were repeated with a 15 to 30 minute time difference for measurement of forest canopy thermal response over time. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture provided inputs to LOWTRAN6 for atmospheric radiance corrections of the TIMS data. Techniques for using calibrated aircraft-based thermal scanner data to examine tropical forest canopy thermal properties are described. Forest canopy temperature changes over time assessed between repeated, duplicated flight lines were combined with estimates of surface radiative energy measurements from towers above the forest canopy to determine temperature spatial variability, calculate Thermal Response Numbers (TRN), and estimate evapotranspiration along the elevation gradient from selected one hectare forest inventory plots.
NASA Astrophysics Data System (ADS)
Doblin, M.; van Sebille, E.
2016-02-01
The analytical framework for understanding fluctuations in ocean habitats has typically involved a Eulerian view. However, for marine microbes, this framework does not take into account their transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Using a modelling approach, we show that generations of upper ocean microbes experience along-trajectory temperature variability up to 10°C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents contributes to environmental fluctuation experienced by microbes and suggests that microbial populations may be adapted to upstream rather than local conditions. In an empirical test, we demonstrate that microbes in a warm, poleward flowing western boundary current (East Australian Current) have a different thermal response curve to microbes in coastal water at the same latitude (p < 0.05). Our findings suggest that advection has the capacity to influence microbial community assemblies such that water masses with relatively small thermal fluctuations select for thermal specialists, and communities with broad temperature performance curves are found in locations where ocean currents are strong or along-trajectory temperature variation is high.
Analysis of vortical structures in turbulent natural convection
NASA Astrophysics Data System (ADS)
Park, Sangro; Lee, Changhoon
2014-11-01
Natural convection of fluid within two parallel walls, Rayleigh-Bénard convection, is studied by direct numerical simulation using a spectral method. The flow is in soft turbulence regime with Rayleigh number 106, 107, 108, Prandtl number 0 . 7 and aspect ratio 4. We investigate the relations between thermal plumes and vortical structures through manipulating the evolution equations of vorticity and velocity gradient tensor. According to simulation results, horizontal vorticity occurs near the wall and changes into vertical vorticity by vertical stretching of fluid element which is caused by vertical movement of the thermal plume. Additionally, eigenvalues, eigenvectors and invariants of velocity gradient tensor show the topologies of vortical structures, including how vortical structures are tilted or stretched. Difference of velocity gradient tensor between inside thermal plumes and background region is also investigated, and the result indicates that thermal plumes play an important role in changing the distribution of vortical structures. The results of this study are consistent with other researches which suggest that vertical vorticity is stronger in high Rayleigh number flows. Details will be presented in the meeting.
The role of thermal vapor diffusion in the subsurface hydrologic evolution of Mars
NASA Technical Reports Server (NTRS)
Clifford, Stephen M.
1991-01-01
The hydrologic response of groundwater to the thermal evolution of the early martian crust is considered. When a temperature gradient is present in a moist porous medium, it gives rise to a vapor-pressure gradient that drives the diffusion of water vapor from regions of high to low temperature. By this process, a geothermal gradient as small as 15 K/km could drive the vertical transport of 1 km of water to the freezing front at the base of the martian crysophere every 10 exp 6-10 exp 7 years, or the equivalent of about 100-1000 km of water over the course of martian geologic history. Models of the thermal history of Mars suggest that this thermally-driven vapor flux may have been as much as 3-5 times greater in the past. The magnitude of this transport suggests that the process of geothermally-induced vapor diffusion may have played a critical role in the initial emplacement of ground ice and the subsequent geomorphic and geochemical evolution of the martian crust.
NASA Astrophysics Data System (ADS)
Jiang, W. G.; Xiong, C. A.; Wu, X. G.
2013-11-01
The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Trittel, Torsten; Stannarius, Ralf; Eremin, Alexey; Harth, Kirsten; Clark, Noel A.; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2016-01-01
Freely suspended smectic films of sub-micrometer thickness and lateral extensions of several millimeters are used to study thermally driven convection and diffusion in the film plane. The experiments were performed during a six minute microgravity phase of a TEXUS suborbital rocket flight (Texus 52, launched April 27, 2015). The project served as a preliminary test for a planned ISS Experiment with liquid crystal films (OASIS), and in addition it provided new experimental data on smectic films exposed to in-plane thermal gradients.We find an attraction of the smectic material towards the cold edge of the film in a temperature gradient, similar to a Soret effect. This process is reversed when this edge is heated up again. Thermal convection driven by two thermocontacts in the film is practically absent, even at temperature gradients up to 10 Kmm, thermally driven convection sets in when the hot post reaches the transition temperature to the nematic phase.An additional experiment was performed under microgravity conditions to test the stability of liquid crystal bridges in different smectic phases.
EARTHSHINE ON A YOUNG MOON: EXPLAINING THE LUNAR FARSIDE HIGHLANDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Arpita; Wright, Jason T.; Sigurðsson, Steinn
2014-06-20
The lunar farside highlands problem refers to the curious and unexplained fact that the farside lunar crust is thicker, on average, than the nearside crust. Here we recognize the crucial influence of Earthshine, and propose that it naturally explains this hemispheric dichotomy. Since the accreting Moon rapidly achieved synchronous rotation, a surface and atmospheric thermal gradient was imposed by the proximity of the hot, post-giant impact Earth. This gradient guided condensation of atmospheric and accreting material, preferentially depositing crust-forming refractories on the cooler farside, resulting in a primordial bulk chemical inhomogeneity that seeded the crustal asymmetry. Our model provides amore » causal solution to the lunar highlands problem: the thermal gradient created by Earthshine produced the chemical gradient responsible for the crust thickness dichotomy that defines the lunar highlands.« less
Response of Al-Based Micro- and Nanocomposites to Rapid Fluctuations in Thermal Environments
NASA Astrophysics Data System (ADS)
Dash, K.; Ray, B. C.
2018-05-01
The focus of this work is to highlight the relative response of Al-based micro- and nanocomposites in the form of enhancement in flexural strength via induced thermal stresses at high and cryogenic temperatures in ex situ and in situ atmospheres. In this investigation, we have tried to explore the reliability, matrix-reinforcement interaction and microstructural integrity of these materials in their service period by designing appropriate heat treatment regimes. Al-Al2O3 micro- and nanocomposites had been fabricated by powder processing method. The micro- and nanocomposites were subjected to down-thermal shock (from positive to negative temperature) and up-thermal shock (from negative to positive temperature) with varying thermal gradients. For isothermal conditioning, the composites were exposed to + 80 and - 80 °C for 1 h separately. High-temperature three-point flexural tests were performed at 100 and 250 °C on the composites. All the composites subjected to thermal shock and isothermal conditioning was tested in three-point flexural mode post-treatments. Al-1 vol.% Al2O3 nanocomposite's flexural strength improved to 118 MPa post-thermal shock treatment of gradient of 160 °C. The Al-5 and 10 vol.% Al2O3 microcomposites possessed flexural strength of 200 and 99.8 MPa after thermal shock treatment of gradient of 160 and 80 °C, respectively. The observed improvement in flexural strength of micro- and nanocomposites post-thermal excursions were compared and have been discussed with the support of fractography. The microcomposites showed a higher positive scale of response to the thermal excursions as compared to that of the nanocomposites.
Interactive Mechanisms of Sliding-Surface Bearings.
1983-08-01
lower, upper) bearing surface V Three-dimensional gradient operator ix Two-dimensional surface gradient operator ( ),. Pertaining to the bearing surface...thermal gradients . The tilt-pad feature required the pad inclination to be determined by the condition of moment equilibrium about the pivot point. This...into the computation of pressure and shear in a fluid film. Incipience Point of Film Rupture On page 93 of Appendix A, pressure gradient and pressure of
Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.
Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua
2017-04-18
Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg 0.9 Fe 0.1 ) 2 SiO 4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.
NASA Astrophysics Data System (ADS)
Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek
2015-06-01
The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.
NASA Astrophysics Data System (ADS)
Radwan, Ahmed F.; Sobhy, Mohammed
2018-06-01
This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.
Minimum maximum temperature gradient coil design.
While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart
2013-08-01
Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.
Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation
NASA Astrophysics Data System (ADS)
Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.
2018-01-01
Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.
NASA Astrophysics Data System (ADS)
Lill, Adrian Wilfred Thomas; Schallenberg, Marc; Lal, Aparna; Savage, Candida; Closs, Gerard Patrick
2013-08-01
Morphometric and physicochemical variables are key determinants of biotic community structure in estuaries and are influenced by changes to estuary mouth state (open/closed). This study examined and compared the consequences of intermittent connection to the ocean on environmental gradients among estuaries; specifically, how estuary morphology and hydrology relate to physical connection to the sea, and the influence of this relationship on the physicochemical environment. By sampling 20 estuaries across New Zealand and using historical aerial photographs, a continuous index of estuarine connection to the ocean was developed and independently validated using berm elevation derived from Airborne Laser Scanning (ALS) data. Using published literature, this index was compared to equivalent indices in South Africa and Australia. A clear relationship between connections to the ocean, freshwater flow and productivity indices underlie the environmental differences between permanently open and intermittently closed estuaries. Consistent patterns across the Southern Hemisphere, albeit with regional variations in estuarine characteristics, suggest that remote sensing is useful for predicting the physicochemical environment of small estuaries across regions. Principal components analysis for Otago estuaries showed that 40% of measured variation in the environment could be attributed to the gradient of relative connectivity (EOI), or isolation (berm elevation) to the ocean. Evaluating these relationships is central to understanding how global and local environmental changes may affect estuarine connectivity regimes and, ultimately, the functioning of estuarine ecosystems.
REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.
SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.
Maki, Syou
2016-01-01
Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc.
Distribution and movement of Caenorhabditis elegans on a thermal gradient.
Yamada, Yohko; Ohshima, Yasumi
2003-08-01
To analyze thermal responses of Caenorhabditis elegans in detail, distribution of a worm population and movement of individual worms were examined on a linear, reproducible and broad temperature gradient. Assay methods were improved compared with those reported previously to ensure good motility and dispersion of worms. Well-fed, wild-type worms distributed over a wide temperature range of up to 10 degrees C, and, within this range, worms migrated in both directions of the gradient at similar frequencies without any specific response to the growth temperature in most cases. By contrast, worms migrated down the gradient if put in a region warmer than the warm boundary of distribution. The distribution range changed depending on the growth temperature and starvation, but active avoidance of a starvation temperature was not detected. These findings contradict previous hypotheses of taxis or migration to the growth temperature in association with food and instead indicate avoidance of a warm temperature. Our results favor a model for thermal response of C. elegans that postulates a single drive based on warm sensation rather than downward and upward drives in the physiological temperature range. Mutants in ttx-3, tax-2, tax-4 or egl-4 genes showed abnormal thermal responses, suggesting that these genes are involved in warm avoidance. Laser ablation and gene expression studies suggest that AFD neurons are not important, and tax-4 expression in neurons other than AFD is required, for warm avoidance.
Unlocking Electric Power in the Oceans.
ERIC Educational Resources Information Center
Hurwood, David L.
1985-01-01
Cruising or stationary ocean thermal plants could convert the vast heat energy of the ocean into electricity for islands and underdeveloped countries. This approach to energy conservation is described with suggestions for design and outputs of plants. A model project operating in Hawaii is noted. (DH)
Large Deployable Reflector (LDR) thermal characteristics
NASA Technical Reports Server (NTRS)
Miyake, R. N.; Wu, Y. C.
1988-01-01
The thermal support group, which is part of the lightweight composite reflector panel program, developed thermal test and analysis evaluation tools necessary to support the integrated interdisciplinary analysis (IIDA) capability. A detailed thermal mathematical model and a simplified spacecraft thermal math model were written. These models determine the orbital temperature level and variation, and the thermally induced gradients through and across a panel, for inclusion in the IIDA.
Limitations of using a thermal imager for snow pit temperatures
NASA Astrophysics Data System (ADS)
Schirmer, M.; Jamieson, B.
2014-03-01
Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other heterogeneities, we were unable to create a sufficiently planar snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.
Environmental programs for ocean thermal energy conversion (OTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, P.
1981-07-01
The environmental research effort in support of the US Department of Energy's Ocean Thermal Energy Conversion (OTEC) program has the goal of providing documented information on the effect of proposed operations on the ocean and the effect of oceanic conditions on the plant. The associated environment program consists of archival studies in potential areas serial oceanographic cruises to sites or regions of interest, studies from various fixed platforms at sites, and compilation of such information for appropriate legal compliance and permit requirements and for use in progressive design of OTEC plants. Site/regions investigated are south of Mobile and west ofmore » Tampa, Gulf of Mexico; Punta Tuna, Puerto Rico; St. Croix, Virgin Islands; Kahe Point, Oahu and Keahole Point, Hawaii, Hawaiian Islands; and off the Brazilian south Equatorial Coast. Four classes of environmental concerns identified are: redistribution of oceanic properties (ocean water mixing, impingement/entrainment etc.); chemical pollution (biocides, working fluid leaks, etc.); structural effects (artificial reef, aggregation, nesting/migration, etc.); socio-legal-economic (worker safety, enviromaritime law, etc.).« less
The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation
NASA Technical Reports Server (NTRS)
Mills, Ryan D.
2013-01-01
Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.
2012-09-30
Lamont-Doherty Earth Observatory of Columbia University Ocean and Climate Physics Division 61 Route 9W Palisades , NY 10964 Phone: (845) 365-8547...Route 9W Palisades , NY 10964 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...convective cells in the region as seen in the S-Pol. The robust large-scale temperature gradient of nearly 1°C is real with window and atmosphere
2008-03-01
this roughness is important for numerical modeling and prediction of the Arctic air-ice-ocean system, which will play a significant role as the US Navy...is important for numerical modeling and prediction of the Arctic air-ice-ocean system, which will play a significant role as the US Navy increases... Model 1 is based on a sequence of plane parallel layers each with a constant gradient whereas Model 2 is based on a series of flat layers of
NASA Technical Reports Server (NTRS)
Claud, Chantal; Mognard, Nelly M.; Katsaros, Kristina B.; Chedin, Alain; Scott, Noelle A.
1993-01-01
Many polar lows are generated at the boundary between sea ice and the ocean, in regions of large temperature gradients, where in situ observations are rare or nonexistent. Since satellite observations are frequent in high-latitude regions, they can be used to detect polar lows and track their propagation and evolution. The Special Sensor Microwave/Imager (SSM/I) providing estimates of surface wind speed, integrated cloud liquid water content, water vapor content, and precipitation size ice-scattering signal over the ocean; the Geosat radar altimeter measuring surface wind speed and significant wave height; and the TIROS-N Operational Vertical Sounder (TOVS) allowing the determination of temperature and humidity profiles in the atmosphere have been used in synergy for a specific case which occurred in the Norwegian Sea on January, 23-24 1988. All three instruments show sharp atmospheric gradients associated with the propagation of this low across the ocean, which permit the detection of the polar low at a very early stage and tracking it during its development, propagation, and decay. The wind speed gradients are measured with good qualitative agreement between the altimeter and SSM/I. TOVS retrieved fields prior to the formation of the low confirm the presence of an upper level trough, while during the mature phase baroclinicity can be observed in the 1000-500 hPa geopotential thicknesses.
Recent tectonic activity on Pluto driven by phase changes in the ice shell
NASA Astrophysics Data System (ADS)
Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.
2016-07-01
The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.
2017-01-01
Understanding how populations adapt to heterogeneous thermal regimes is essential for comprehending how latitudinal gradients in species diversification are formed, and how taxa will respond to ongoing climate change. Adaptation can occur by innate genetic factors, by phenotypic plasticity, or by a combination of both mechanisms. Yet, the relative contribution of such mechanisms to large-scale latitudinal gradients of thermal tolerance across conspecific populations remains unclear. We examine thermal performance in 11 populations of the intertidal copepod Tigriopus californicus, ranging from Baja California Sur (Mexico) to British Columbia (Canada). Common garden experiments show that survivorship to acute heat-stress differs between populations (by up to 3.8°C in LD50 values), reflecting a strong genetic thermal adaptation. Using a split-brood experiment with two rearing temperatures, we also show that developmental phenotypic plasticity is beneficial to thermal tolerance (by up to 1.3°C), and that this effect differs across populations. Although genetic divergence in heat tolerance strongly correlates with latitude and temperature, differences in the plastic response do not. In the context of climate warming, our results confirm the general prediction that low-latitude populations are most susceptible to local extinction because genetic adaptation has placed physiological limits closer to current environmental maxima, but our results also contradict the prediction that phenotypic plasticity is constrained at lower latitudes. PMID:28446698
An Overview of the Thermal Challenges of Designing Microgravity Furnaces
NASA Technical Reports Server (NTRS)
Westra, Douglas G.
2001-01-01
Marshall Space Flight Center is involved in a wide variety of microgravity projects that require furnaces, with hot zone temperatures ranging from 300 C to 2300 C, requirements for gradient processing and rapid quench, and both semi-conductor and metal materials. On these types of projects, the thermal engineer is a key player in the design process. Microgravity furnaces present unique challenges to the thermal designer. One challenge is designing a sample containment assembly that achieves dual containment, yet allows a high radial heat flux. Another challenge is providing a high axial gradient but a very low radial gradient. These furnaces also present unique challenges to the thermal analyst. First, there are several orders of magnitude difference in the size of the thermal 'conductors' between various parts of the model. A second challenge is providing high fidelity in the sample model, and connecting the sample with the rest of the furnace model, yet maintaining some sanity in the number of total nodes in the model. The purpose of this paper is to present an overview of the challenges involved in designing and analyzing microgravity furnaces and how some of these challenges have been overcome. The thermal analysis tools presently used to analyze microgravity furnaces and will be listed. Challenges for the future and a description of future analysis tools will be given.
NASA Astrophysics Data System (ADS)
Etnoyer, Peter; Canny, David; Mate, Bruce R.; Morgan, Lance E.; Ortega-Ortiz, Joel G.; Nichols, Wallace J.
2006-02-01
Sea-surface temperature (SST) fronts are integral to pelagic ecology in the North Pacific Ocean, so it is necessary to understand their character and distribution, and the way these features influence the behavior of endangered and highly migratory species. Here, telemetry data from sixteen satellite-tagged blue whales ( Balaenoptera musculus) and sea turtles ( Caretta caretta, Chelonia mydas, and Lepidochelys olivacea) are employed to characterize 'biologically relevant' SST fronts off Baja California Sur. High residence times are used to identify presumed foraging areas, and SST gradients are calculated across advanced very high resolution radiometer (AVHRR) images of these regions. The resulting values are compared to classic definitions of SST fronts in the oceanographic literature. We find subtle changes in surface temperature (between 0.01 and 0.10 °C/km) across the foraging trajectories, near the lowest end of the oceanographic scale (between 0.03 and 0.3 °C/km), suggesting that edge-detection algorithms using gradient thresholds >0.10 °C/km may overlook pelagic habitats in tropical waters. We use this information to sensitize our edge-detection algorithm, and to identify persistent concentrations of subtle SST fronts in the Northeast Pacific Ocean between 2002 and 2004. The lower-gradient threshold increases the number of fronts detected, revealing more potential habitats in different places than we find with a higher-gradient threshold. This is the expected result, but it confirms that pelagic habitat can be overlooked, and that the temperature gradient parameter is an important one.
Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean
Byrne, D.; Münnich, M.; Frenger, I.; Gruber, N.
2016-01-01
Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10–200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere–ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front. PMID:27292447
Solar thermal technology report, FY 1981. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.
Evaluating the Ocean Component of the US Navy Earth System Model
NASA Astrophysics Data System (ADS)
Zamudio, L.
2017-12-01
Ocean currents, temperature, and salinity observations are used to evaluate the ocean component of the US Navy Earth System Model. The ocean and atmosphere components of the system are an eddy-resolving (1/12.5° equatorial resolution) version of the HYbrid Coordinate Ocean Model (HYCOM), and a T359L50 version of the NAVy Global Environmental Model (NAVGEM), respectively. The system was integrated in hindcast mode and the ocean results are compared against unassimilated observations, a stand-alone version of HYCOM, and the Generalized Digital Environment Model ocean climatology. The different observation types used in the system evaluation are: drifting buoys, temperature profiles, salinity profiles, and acoustical proxies (mixed layer depth, sonic layer depth, below layer gradient, and acoustical trapping). To evaluate the system's performance in each different metric, a scorecard is used to translate the system's errors into scores, which provide an indication of the system's skill in both space and time.
Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives.
Badgley, Catherine; Smiley, Tara M; Terry, Rebecca; Davis, Edward B; DeSantis, Larisa R G; Fox, David L; Hopkins, Samantha S B; Jezkova, Tereza; Matocq, Marjorie D; Matzke, Nick; McGuire, Jenny L; Mulch, Andreas; Riddle, Brett R; Roth, V Louise; Samuels, Joshua X; Strömberg, Caroline A E; Yanites, Brian J
2017-03-01
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effects of post-accretion sedimentation on the magnetization of oceanic crust
NASA Astrophysics Data System (ADS)
Dyment, J.; Granot, R.
2016-12-01
The presence of marine magnetic anomalies related to seafloor spreading is often considered a key evidence to locate the continent-ocean boundary (COB) at passive margins. Conversely, thermal demagnetization is also advocated to explain the poor shape of such oceanic anomalies under thick sedimentary cover. To investigate the effects of post-accretion sedimentation on marine magnetic anomalies, we focus our study on two conjugate regions of the southern South Atlantic Ocean (Anomalies M4 to M0) that, although formed at the same time and along the same spreading segments, reveal contrasting characters. The anomalies exhibit strong amplitudes (>400 nT) and a well-marked shape off South Africa, where the sediments are less than 3 km-thick, but become weaker ( 200 nT) and much smoother off northern Argentina, where the sedimentary cover is thicker than 5 km. We interpret this observation as reflecting thermal demagnetization of the extrusive layer and its low Curie temperature titanomagnetite. We perform a series of thermo-magnetic models (Dyment and Arkani-Hamed, Geophys. J. Int., 1995, modified to include the sedimentary cover) to simulate the acquisition and loss of remanent magnetization in the oceanic lithosphere. We assume that most of the sediments accumulated shortly after crustal accretion. We investigate a range of possible thermal demagnetization temperatures for the extrusive layer and find that 200°C to 280ºC best explains the observations, in reasonable agreement with Curie temperatures of titanomagnetite, suggesting that most of the extrusive layer may be demagnetized under sediments thicker than 5 km. Thermal demagnetization should therefore be considered while interpreting marine magnetic anomalies for the age and nature of the crust (i.e., continental versus oceanic) in regions with thick sedimentary cover.
Global ocean climatology of the 13C Suess effect and preindustrial δ13C
NASA Astrophysics Data System (ADS)
Eide, Marie; Olsen, Are; Ninnemann, Ulysses; Eldevik, Tor; Johannessen, Truls
2017-04-01
We present the first observationally based estimate of the full global ocean 13C Suess effect since preindustrial times. This was constructed by using Olsen and Ninnemann's [2010] back-calculation method to calculate the 13C Suess effect with data from 29 cruises spanning the world ocean. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the Subtropical Gyres of the Northern Hemisphere, where δ13C has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The magnitude of the 13C Suess effect is correlated with the concentration of anthropogenic carbon, but their relationship varying strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. From the 13C Suess effect estimates, we have estimated the preindustrial δ13C (δ13CPI) along the 29 sections. Further, we developed regional multilinear regression equations, which were applied on the World Ocean Atlas data to construct the δ13CPI climatology, which reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values, and we find that in some regions in the high northern latitudes, the gradient in modern ocean δ13C is completely reversed compared to the preindustrial. Maximum δ13CPI, of up to 1.8‰, are found in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and Apparent Oxygen Utilization (AOU) than between δ13C and phosphate that occurs because both δ13C and AOU, in contrast to phosphate, are partly reset when waters are ventilated in the Southern Ocean. This makes δ13C a robust proxy for past changes in ocean oxygen content and ventilation. Our δ13CPI climatology has strong applications in paleo-sciences, and can be used for example for improved model evaluation, interpretation of sediment δ13C records, and core top comparison. Olsen, A., and U. Ninnemann (2010), Large δ13C gradients in the preindustrial North Atlantic revealed, Science, 330(6004), 658-659, doi:10.1126/science.1193769.
Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-01-01
An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)
Cecchetto, Nicolas Rodolfo; Naretto, Sergio
2015-10-01
Body temperature is a key factor in physiological processes, influencing lizard performances; and life history traits are expected to generate variability of thermal preferences in different individuals. Gender, body size and reproductive condition may impose specific requirements on preferred body temperatures. If these three factors have different physiological functions and thermal requirements, then the preferred temperature may represent a compromise that optimizes these physiological functions. Therefore, the body temperatures that lizards select in a controlled environment may reflect a temperature that maximizes their physiological needs. The tegu lizard Tupinambis merianae is one of the largest lizards in South America and has wide ontogenetic variation in body size and sexual dimorphism. In the present study we evaluate intraspecific variability of thermal preferences of T. merianae. We determined the selected body temperature and the rate at which males and females attain their selected temperature, in relation to body size and reproductive condition. We also compared the behavior in the thermal gradient between males and females and between reproductive condition of individuals. Our study show that T. merianae selected body temperature within a narrow range of temperatures variation in the laboratory thermal gradient, with 36.24±1.49°C being the preferred temperature. We observed no significant differences between sex, body size and reproductive condition in thermal preferences. Accordingly, we suggest that the evaluated categories of T. merianae have similar thermal requirements. Males showed higher rates to obtain heat than females and reproductive females, higher rates than non-reproductive ones females. Moreover, males and reproductive females showed a more dynamic behavior in the thermal gradient. Therefore, even though they achieve the same selected temperature, they do it differentially. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ecology and Physics of Bacterial Chemotaxis in the Ocean
Seymour, Justin R.
2012-01-01
Summary: Intuitively, it may seem that from the perspective of an individual bacterium the ocean is a vast, dilute, and largely homogeneous environment. Microbial oceanographers have typically considered the ocean from this point of view. In reality, marine bacteria inhabit a chemical seascape that is highly heterogeneous down to the microscale, owing to ubiquitous nutrient patches, plumes, and gradients. Exudation and excretion of dissolved matter by larger organisms, lysis events, particles, animal surfaces, and fluxes from the sediment-water interface all contribute to create strong and pervasive heterogeneity, where chemotaxis may provide a significant fitness advantage to bacteria. The dynamic nature of the ocean imposes strong selective pressures on bacterial foraging strategies, and many marine bacteria indeed display adaptations that characterize their chemotactic motility as “high performance” compared to that of enteric model organisms. Fast swimming speeds, strongly directional responses, and effective turning and steering strategies ensure that marine bacteria can successfully use chemotaxis to very rapidly respond to chemical gradients in the ocean. These fast responses are advantageous in a broad range of ecological processes, including attaching to particles, exploiting particle plumes, retaining position close to phytoplankton cells, colonizing host animals, and hovering at a preferred height above the sediment-water interface. At larger scales, these responses can impact ocean biogeochemistry by increasing the rates of chemical transformation, influencing the flux of sinking material, and potentially altering the balance of biomass incorporation versus respiration. This review highlights the physical and ecological processes underpinning bacterial motility and chemotaxis in the ocean, describes the current state of knowledge of chemotaxis in marine bacteria, and summarizes our understanding of how these microscale dynamics scale up to affect ecosystem-scale processes in the sea. PMID:23204367
Ecology and physics of bacterial chemotaxis in the ocean.
Stocker, Roman; Seymour, Justin R
2012-12-01
Intuitively, it may seem that from the perspective of an individual bacterium the ocean is a vast, dilute, and largely homogeneous environment. Microbial oceanographers have typically considered the ocean from this point of view. In reality, marine bacteria inhabit a chemical seascape that is highly heterogeneous down to the microscale, owing to ubiquitous nutrient patches, plumes, and gradients. Exudation and excretion of dissolved matter by larger organisms, lysis events, particles, animal surfaces, and fluxes from the sediment-water interface all contribute to create strong and pervasive heterogeneity, where chemotaxis may provide a significant fitness advantage to bacteria. The dynamic nature of the ocean imposes strong selective pressures on bacterial foraging strategies, and many marine bacteria indeed display adaptations that characterize their chemotactic motility as "high performance" compared to that of enteric model organisms. Fast swimming speeds, strongly directional responses, and effective turning and steering strategies ensure that marine bacteria can successfully use chemotaxis to very rapidly respond to chemical gradients in the ocean. These fast responses are advantageous in a broad range of ecological processes, including attaching to particles, exploiting particle plumes, retaining position close to phytoplankton cells, colonizing host animals, and hovering at a preferred height above the sediment-water interface. At larger scales, these responses can impact ocean biogeochemistry by increasing the rates of chemical transformation, influencing the flux of sinking material, and potentially altering the balance of biomass incorporation versus respiration. This review highlights the physical and ecological processes underpinning bacterial motility and chemotaxis in the ocean, describes the current state of knowledge of chemotaxis in marine bacteria, and summarizes our understanding of how these microscale dynamics scale up to affect ecosystem-scale processes in the sea.
Understanding Rossby wave trains forced by the Indian Ocean Dipole
NASA Astrophysics Data System (ADS)
McIntosh, Peter C.; Hendon, Harry H.
2018-04-01
Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.
NASA Astrophysics Data System (ADS)
Coats, Sloan; Karnauskas, Kristopher
2017-04-01
The pattern of sea surface temperature (SST) in the tropical Pacific Ocean provides an important control on global climate, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease is, in part, a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), we provide evidence that a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a weakening Walker circulation and thus can help to reconcile the range of opposing theories and observations of anthropogenic climate change in the tropical Pacific Ocean. Because of a newly identified bias in their simulation of equatorial coupled atmosphere-ocean dynamics, however, CMIP5 models do not capture the magnitude of the response of the EUC to anthropogenic radiative forcing. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific Ocean.
Coral Calcification Across a Natural Gradient in Ocean Acidification
NASA Astrophysics Data System (ADS)
Cohen, A. L.; Brainard, R. E.; Young, C.; Shamberger, K. E.; McCorkle, D. C.; Feely, R. A.; Mcleod, E.; Cantin, N.; Rose, K.; Lohmann, G. P.
2011-12-01
Much of our understanding of the impact of ocean acidification on coral calcification comes from laboratory manipulation experiments in which corals are reared under a range of seawater pH and aragonite saturation states (μar) equivalent to those projected for the next hundred years. In general, experiments show a consistently negative impact of acidification on coral calcification, leading to predictions of mass coral reef extinctions by dissolution as natural rates of carbonate erosion exceed the rates at which corals and other reef calcifiers can replace it. The tropical oceans provide a natural laboratory within which to test hypotheses about the longer term impact and adaptive potential of corals to acidification of the reef environment. Here we report results of a study in which 3-D CT scan and imaging techniques were used to quantify annual rates of calcification by conspecifics at 12 reefs sites spanning a natural gradient in ocean acidification. In situ μar calculated from alkalinity and DIC measurements of reef seawater ranged from less than 2.7 on an eastern Pacific Reef to greater than 4.0 in the central Red Sea. No correlation between μar and calcification was observed across this range. Corals living on low μar reefs appear to be calcifying as fast, sometimes faster than conspecifics living on high μar reefs. We used total lipid and tissue thickness to index the energetic status of colonies collected at each of our study sites. Our results support the hypothesis that energetics plays a key role in the coral calcification response to ocean acidification. Indeed, the true impact of acidification on coral reefs will likely be felt as temperatures rise and the ocean becomes more stratified, depleting coral energetic reserves through bleaching and reduced nutrient delivery to oceanic reefs.
El Nino-southern oscillation: A coupled response to the greenhouse effect?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, De-Zheng
The purpose of this article to elucidate the link between the El Nino-Southern Oscillation (ENSO) and radiative forcing (of which the greenhouse effect is a major part). A unified theory for the tropical Pacific climate is developed by considering the response of the coupled ocean-atmosphere to a changing radiative forcing. The hypothesis is that both the zonal surface sea temperature (SST) gradients and ENSO are a coupled response to the strong radiative heating or the tropical warmth. Owing to ocean-atmosphere interaction, the stronger the radiative heating, the larger the zonal SST gradients. When the SST gradients exceed a critical value,more » however, the ocean-atmosphere interaction in the cold-tongue region is too strong for the coupled system to hold steady. Consequently, the coupled system enters an oscillatory state. These coupled dynamics are examined in a simple mathematical model whose behavior is consistent with the hypothesis. With a linear temperature profile throughout the depth of subsurface ocean, the model predicts that both the magnitude and period of the oscillation increase with increases in radiative forcing or the greenhouse effect. The increase in the magnitude of the oscillation largely comes from an enhancement of the magnitude of the cold anomalies, while the increase in the period mostly comes from a prolonged duration of the warm events. With a profile in which the lapse rate decreases with depth, the sensitivity is more moderate. The simplicity of the model prevents a quantitative simulation of the sensitivity of ENSO to increases in the greenhouse effect, but qualitatively the model results support the empirical interpretation of the prolonged duration of the 1990-1995 ENSO event. 5 refs., 7 figs.« less
The role of the oceanic oxygen minima in generating biodiversity in the deep sea
NASA Astrophysics Data System (ADS)
Rogers, Alex D.
2000-01-01
Many studies on the deep-sea benthic biota have shown that the most species-rich areas lie on the continental margins between 500 and 2500 m, which coincides with the present oxygen-minimum in the world's oceans. Some species have adapted to hypoxic conditions in oxygen-minimum zones, and some can even fulfil all their energy requirements through anaerobic metabolism for at least short periods of time. It is, however, apparent that the geographic and vertical distribution of many species is restricted by the presence of oxygen-minimum zones. Historically, cycles of global warming and cooling have led to periods of expansion and contraction of oxygen-minimum layers throughout the world's oceans. Such shifts in the global distribution of oxygen-minimum zones have presented many opportunities for allopatric speciation in organisms inhabiting slope habitats associated with continental margins, oceanic islands and seamounts. On a smaller scale, oxygen-minimum zones can be seen today as providing a barrier to gene-flow between allopatric populations. Recent studies of the Arabian Sea and in other regions of upwelling also have shown that the presence of an oxygen-minimum layer creates a strong vertical gradient in physical and biological parameters. The reduced utilisation of the downward flux of organic material in the oxygen-minimum zone results in an abundant supply of food for organisms immediately below it. The occupation of this area by species exploiting abundant food supplies may lead to strong vertical gradients in selective pressures for optimal rates of growth, modes of reproduction and development and in other aspects of species biology. The presence of such strong selective gradients may have led to an increase in habitat specialisation in the lower reaches of oxygen-minimum zones and an increased rate of speciation.
NASA Astrophysics Data System (ADS)
Andersson, A. J.; Bates, N. R.; dePutron, S.; Collins, A.; Neely, K.; Best, M.; Noyes, T.
2011-12-01
To accurately predict future consequences of ocean acidification on coastal environments and ecosystems, it is critical to understand present conditions and variability. As part of the Bermuda ocean acidification and coral reef investigation (BEACON), significant efforts have been dedicated to characterize the complete surface seawater carbonic-acid system at different temporal and spatial scales on the Bermuda coral reef platform to understand current levels and variability in seawater CO2 parameters, reef metabolism, and future potential changes arising from ocean acidification. A four years monthly time-series of seawater carbonic-acid parameters at eight different locations on the Bermuda coral reef platform reveals strong seasonal patterns in dissolved inorganic carbon (DIC), total alkalinity (TA), pH, pCO2, and [HCO3-], and somewhat weaker trends in [CO32-] and saturation state with respect to CaCO3 minerals. Strong spatial gradients are also observed in DIC and TA during summertime owing to reef metabolism, but no or weak spatial gradients of these parameters are observed in the wintertime. Interestingly, maximum pH-sws (~8.15) is observed during wintertime when minimum aragonite saturation state (<3.0) is observed. In contrast, minimum pH-sws (~7.95) is observed in the summertime when maximum aragonite saturation state (>3.70) is observed. The observed trends and gradients point to complex relationships and interactions between seawater chemistry, biology and physics that need to be considered in the context of ocean acidification and in making future predictions on the effects of this perturbation on coral reefs and coastal ecosystems.
Observation of the Spin Nernst Effect in Platinum
NASA Astrophysics Data System (ADS)
Goennenwein, Sebastian
Thermoelectric effects - arising from the interplay between thermal and charge transport phenomena - have been extensively studied and are considered well established. Upon taking into account the spin degree of freedom, however, qualitatively new phenomena arise. A prototype example for these so-called magneto-thermoelectric or spin-caloritronic effects is the spin Seebeck effect, in which a thermal gradient drives a pure spin current. In contrast to their thermoelectric counterparts, not all the spin-caloritronic effects predicted from theory have yet been observed in experiment. One of these `missing' phenomena is the spin Nernst effect, in which a thermal gradient gives rise to a transverse pure spin current. We have observed the spin Nernst effect in yttrium iron garnet/platinum (YIG/Pt) thin film bilayers. Upon applying a thermal gradient within the YIG/Pt bilayer plane, a pure spin current flows in the direction orthogonal to the thermal drive. We detect this spin current as a thermopower voltage, generated via magnetization-orientation dependent spin transfer into the adjacent YIG layer. Our data shows that the spin Nernst and the spin Hall effect in in Pt have different sign, but comparable magnitude, in agreement with first-principles calculations. Financial support via Deutsche Forschungsgemeinschaft Priority Programme SPP 1538 Spin-Caloric Transport is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Zarhloule, Y.; Lahrache, A.; Ben Abidate, L.; Khattach, D.; Bouri, S.; Boukdir, A.; Ben Dhia, H.
2001-05-01
Shallow geothermal prospecting ( < 700 m) has been performed in four zones in Morocco for which few deep data are available: northwestern basin, northeastern basin, Tadla Basin and Agadir Basin. These areas are different geologically and hydrogeologically. The temperature data from 250 wells at depths between 15 and 500 m have been analysed in order to estimate the natural geothermal gradient in these areas, to determine the principal thermal anomalies, to identify the main thermal indices and to characterise the recharge, discharge and potential mixing limits of the aquifers. The hydrostratigraphical study of each basin revealed several potential reservoir layers in which the Turonian carbonate aquifer (Tadal and Agadir Basins) and Liassic acquifer (Moroccan northwestern and northeastern basins) are the most important hot water reservoirs in Morocco. The recharge zones of each aquifer are characterised by high topography, high water potential, shallow cold water, low geothermal gradient and negative anomalies. The discharge zones are characterized by low topography, low piezometric level, high geothermal gradient, high temperature with hot springs and positive anomalies. The main thermal indices and the principal thermal anomalies that coincide with the artesian zones of the Turonian and Liassic aquifers have been identified.
Atlantic Ocean Circulation and Climate: The Current View From the Geological Record
NASA Astrophysics Data System (ADS)
Curry, W.
2006-12-01
Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.
Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System
NASA Astrophysics Data System (ADS)
Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan
2018-04-01
This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.
Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T
2016-08-26
The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Ocean Chlorophyll Studies from a U-2 Aircraft Platform
NASA Technical Reports Server (NTRS)
Kim, H. H.; Mcclain, C. R.; Blaine, L. R.; Hart, W. D.; Atkinson, L. P.; Yoder, J. A.
1979-01-01
Chlorophyll gradient maps of large ocean areas were generated from U-2 ocean color scanner data obtained over test sites in the Pacific and Atlantic Oceans. The delineation of oceanic features using the upward radiant intensity relies on an analysis method which presupposes that radiation backscattered from the atmosphere and ocean surface can be properly modeled using a measurement made at 778 nm. An estimation of the chlorophyll concentration was performed by properly ratioing radiances measured at 472 nm and 548 nm after removing the atmospheric effects. The correlation between the remotely sensed data and in-situ surface chlorophyll measurements was validated in two sets of data. The results show that the correlation between the in-situ measured chlorophyll and the derived quantity is a negative exponential function and the correlation coefficient was calculated to be -0.965.
Amplification, attenuation, and dispersion of sound in inhomogeneous flows
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1975-01-01
First order effects of gradients in nonuniform potential flows of a compressible gas are included in a dispersion relation for sound waves. Three nondimensional numbers, the ratio of the change in the kinetic energy in one wavelength to the thermal energy of the gas, the ratio of the change in the total energy in one wavelength to the thermal energy, and the ratio of the dillatation frequency (the rate of expansion per unit volume) to the acoustic frequency, play a role in the separation of the effects of flow gradients into isotropic and anisotropic effects. Dispersion and attenuation (or amplification) of sound are found to be proportional to the wavelength for small wavelength, and depend on the direction of wave propagation relative to flow gradients. Modification of ray acoustics for the effects of flow gradients is suggested, and conditions for amplification and attenuation of sound are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.
Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less
Tarling, Geraint A; Ward, Peter; Thorpe, Sally E
2018-01-01
The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926-1938) and contemporary campaigns (1996-2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s-1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It further demonstrates that this community is thermally resilient to present levels of sea surface warming. © 2017 John Wiley & Sons Ltd.
Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Barreiro, Amelia; Rurali, Riccardo; Hernández, Eduardo R.; Moser, Joel; Pichler, Thomas; Forró, László; Bachtold, Adrian
2008-05-01
An important issue in nanoelectromechanical systems is developing small electrically driven motors. We report on an artificial nanofabricated motor in which one short carbon nanotube moves relative to another coaxial nanotube. A cargo is attached to an ablated outer wall of a multiwalled carbon nanotube that can rotate and/or translate along the inner nanotube. The motion is actuated by imposing a thermal gradient along the nanotube, which allows for subnanometer displacements, as opposed to an electromigration or random walk effect.