Sample records for oceanography distributed active

  1. JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) data availability, version 1-94

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and integrated water vapor. The JPL PO.DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and is the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  2. Data catalog for JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC)

    NASA Technical Reports Server (NTRS)

    Digby, Susan

    1995-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory contains satellite data sets and ancillary in-situ data for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Geophysical parameters available from the archive include sea-surface height, surface-wind vector, surface-wind speed, surface-wind stress vector, sea-surface temperature, atmospheric liquid water, integrated water vapor, phytoplankton pigment concentration, heat flux, and in-situ data. PO.DAAC is an element of the Earth Observing System Data and Information System and is the United States distribution site for TOPEX/POSEIDON data and metadata.

  3. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  4. (abstract) Satellite Physical Oceanography Data Available From an EOSDIS Archive

    NASA Technical Reports Server (NTRS)

    Digby, Susan A.; Collins, Donald J.

    1996-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory archives and distributes data as part of the Earth Observing System Data and Information System (EOSDIS). Products available from JPL are largely satellite derived and include sea-surface height, surface-wind speed and vectors, integrated water vapor, atmospheric liquid water, sea-surface temperature, heat flux, and in-situ data as it pertains to satellite data. Much of the data is global and spans fourteen years.There is email access, a WWW site, product catalogs, and FTP capabilities. Data is free of charge.

  5. Oceanography. Boy Scouts of America Merit Badge Series.

    ERIC Educational Resources Information Center

    Boy Scouts of America, Irving, TX.

    Presented are various activities and projects intended to help Boy Scouts earn a merit badge in oceanography. Each project and/or activity is related to a requirement (objective) found in a list at the beginning of the booklet. Topic areas and/or related activities and projects include: (1) nature of oceanography (naming oceanography branches,…

  6. The Pale Blue Dot: Utilizing Real World Globes in High School and Undergraduate Oceanography Classrooms

    NASA Astrophysics Data System (ADS)

    Rogers, D. B.

    2017-12-01

    Geoscience classrooms have benefitted greatly from the use of interactive, dry-erasable globes to supplement instruction on topics that require three-dimensional visualization, such as seismic wave propagation and the large-scale movements of tectonic plates. Indeed, research by Bamford (2013) demonstrates that using three-dimensional visualization to illustrate complex processes enhances student comprehension. While some geoscience courses tend to bake-in lessons on visualization, other disciplines of earth science that require three-dimensional visualization, such as oceanography, tend to rely on students' prior spatial abilities. In addition to spatial intelligence, education on the three-dimensional structure of the ocean requires knowledge of the external processes govern the behavior of the ocean, as well as the vertical and lateral distribution of water properties around the globe. Presented here are two oceanographic activities that utilize RealWorldGlobes' dry-erase globes to supplement traditional oceanography lessons on thermohaline and surface ocean circulation. While simultaneously promoting basic plotting techniques, mathematical calculations, and unit conversions, these activities touch on the processes that govern global ocean circulation, the principles of radiocarbon dating, and the various patterns exhibited by surface ocean currents. These activities challenge students to recognize inherent patterns within their data and synthesize explanations for their occurrence. Spatial visualization and critical thinking are integral to any geoscience education, and the combination of these abilities with engaging hands-on activities has the potential to greatly enhance oceanography education in both secondary and postsecondary settings

  7. In Pursuit of Oceanography and a Better Life for All.

    ERIC Educational Resources Information Center

    Hollister, Charles D.

    1983-01-01

    Discusses the nature of and activities in marine geology/geophysics, oceanographic engineering, physical oceanography, chemical oceanography, and biological oceanography. This information, which includes comments on major employment positions (academic, government, industry, consulting), is provided to help students select possible careers in…

  8. Oceanography Information Sources 70.

    ERIC Educational Resources Information Center

    Vetter, Richard C.

    This booklet lists oceanography information sources in the first section under industries, laboratories and departments of oceanography, and other organizations which can provide free information and materials describing programs and activities. Publications listed in the second section include these educational materials: bibliographies, career…

  9. Physical Oceanography Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Benada, J. Robert

    1997-01-01

    This new TOPEX/POSEIDON product provides the full mission data set in a new format with many data quality improvements brought about by the work of many scientists during the mission. It is a revised form to the MGDR-A CD-ROM set which covered data from the beginning of the mission, Septermber 22, 1992 to April 23, 1996.

  10. LABORATORY EXERCISES IN OCEANOGRAPHY FOR HIGH SCHOOLS.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    DESCRIBED ARE LABORATORY EXERCISES IN OCEANOGRAPHY DEVELOPED FOR USE IN HIGH SCHOOLS BY THE SECONDARY SCHOOL TEACHERS IN THE 1967 NATIONAL SCIENCE FOUNDATION (NSF) SUMMER INSTITUTE IN OCEANOGRAPHY AT FLORIDA STATE UNIVERSITY. INCLUDED ARE SUCH ACTIVITIES AS (1) THE MEASUREMENT OF TEMPERATURE, WATER VAPOR, PRESSURE, SALINITY, DENSITY, AND OTHERS,…

  11. Use of the Research Vessel Savannah in Support of 2015 ONR S and T Demo, Project ID: 104458

    DTIC Science & Technology

    2016-07-26

    Approved for Public Release; distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Skidaway Institute of Oceanography provided the RV...Skidaway Institute of Oceanography of the University of Georgia was approached and agreed to supply the Research Vessel Savannah to support work funded by

  12. Some Thoughts on Free Textbooks

    ERIC Educational Resources Information Center

    Stewart, Robert

    2009-01-01

    The author publishes and freely distributes three online textbooks. "Introduction to Physical Oceanography" is available as a typeset book in Portable Document Format (PDF) or as web pages. "Our Ocean Planet: Oceanography in the 21st Century" and "Environmental Science in the 21st Century" are both available as web pages. All three books, which…

  13. Global Data Assembly Center (GDAC) Report to the GHRSST Science Team

    NASA Technical Reports Server (NTRS)

    Armstrong, Edward; Vazquez, Jorge; Bingham, Andy; Gierach, Michelle; Huang, Thomas; Chen, Cynthia; Finch, Chris; Thompson, Charles

    2013-01-01

    In 2012-2013 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational GHRSST data streams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Our presentation reported on our data management activities and infrastructure improvements since the last science team meeting in 2012.

  14. NOAC Yokosuka

    Science.gov Websites

    Naval Oceanography Antisubmarine Warfare Center Fleet Activities Yokosuka The NOAC Yokosuka Portal has moved to Naval Oceanography Portal - Public Facing(NOP-PF) Please update your bookmarks. You will

  15. 78 FR 12676 - Timing Requirements for the Submission of a Site Assessment Plan (SAP) or General Activities Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ...: Including: (1) Hazard information Meteorology, oceanography, sediment transport, geology, and shallow...: (1) Hazard information Meteorology, oceanography, sediment transport, geology, and shallow geological...

  16. Introductory Oceanography Taught as a Laboratory Science--An Experiment That Worked.

    ERIC Educational Resources Information Center

    Anderson, Franz E.

    1979-01-01

    Describes a college level introductory oceanography course that incorporates a hands-on laboratory component. The activities include the determination of density and buoyancy, light transmission in sea water, and wave refraction. (MA)

  17. The Structure of Oceanography in China.

    ERIC Educational Resources Information Center

    Churgin, James

    1984-01-01

    Describes the structure of marine science in China. Includes organization and activities of China's National Bureau of Oceanography and programs administered through various ministries, Academia Sinica (China's Academy of Sciences), universities, and provincial institutes. Comments on research vessionals and other development initiatives are also…

  18. What Is Physical Oceanography? A Learning Experience for Coastal and Oceanic Awareness Studies, No. 217. [Project COAST].

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Coll. of Education.

    This unit is concerned with an overview of physical oceanography - the study of currents, tides, waves, and particle movements. The activities are designed for use by junior high school age students. Included in the unit are activities related to properties of sea water, physical phenomena of the ocean, and physical features of the ocean.…

  19. Connecting Middle School, Oceanography, and the Real World.

    ERIC Educational Resources Information Center

    Brown, Susan W.; Hansen, Terri M.

    2000-01-01

    Introduces an activity that features 16 oceanography work stations and integrates other disciplines. Assigns students different oceanic life forms and requires students to work in stations. Explains seven of 16 stations which cover oil spills, the periodic table, ocean floor, currents, and classification of oceanic organisms. (YDS)

  20. The Relationship Among Oceanography, Prey Fields, and Beaked Whale Foraging Habitat in the Tongue of the Ocean

    DTIC Science & Technology

    2011-04-01

    the use of large ships to study their behavior and distribution [3]. Testament to the difficulty in studying them, ecological studies have been able... ecology has made assessing the potential risk from anthropogenic activity much more difficult. Recent research using short-duration tags around...28,29,30]. A multi-directional bottom-mounted hydrophone was deployed at Cross seamount southwest of the Kona coast and found a high number of beaked whale

  1. Marine and Environmental Studies Field Manual.

    ERIC Educational Resources Information Center

    Cranston School Dept., RI.

    This laboratory manual was developed for a field-oriented high school oceanology program. The organization of the units includes a selection of supplementary activities to allow students to explore ocean studies in more depth. Included are 19 units. The units include biological oceanography, physical oceanography, and some social science topics. A…

  2. Ocean Surface Topography Data Products and Tools

    NASA Technical Reports Server (NTRS)

    Case, Kelley E.; Bingham, Andrew W.; Berwin, Robert W.; Rigor, Eric M.; Raskin, Robert G.

    2004-01-01

    The Physical Oceanography Distributed Active Archiving Center (PO.DAAC), NASA's primary data center for archiving and distributing oceanographic data, is supporting the Jason and TOPEX/Poseidon satellite tandem missions by providing a variety of data products, tools, and distribution methods to the wider scientific and general community. PO.DAAC has developed several new data products for sea level residual measurements, providing a longterm climate data record from 1992 to the present These products provide compatible measurements of sea level residuals for the entire time series including the tandem TOPEX/Poseidon and Jason mission. Several data distribution tool. are available from NASA PO.DAAC. The Near-Real-Time Image Distribution Server (NEREIDS) provides quicklook browse images and binary data files The PO.DAAC Ocean ESIP Tool (POET) provides interactive, on-tine data subsetting and visualization for several altimetry data products.

  3. Active-Learning Methods To Improve Student Performance and Scientific Interest in a Large Introductory Oceanography Course.

    ERIC Educational Resources Information Center

    Yuretich, Richard F.; Khan, Samia A.; Leckie, R. Mark; Clement, John J.

    2001-01-01

    Transfers the environment of a large enrollment oceanography course by modifying lectures to include cooperative learning via interactive in-class exercises and directed discussion. Results of student surveys, course evaluations, and exam performance demonstrate that learning of the subject under these conditions has improved. (Author/SAH)

  4. AGU Fellow Roger Revelle Dies

    NASA Astrophysics Data System (ADS)

    DeVito, M. Catherine

    AGU Fellow Roger R.D. Revelle, past Oceanography section president and recipient of the William Bowie Medal, died July 15. Revelle was a pioneer in global warming research and plate tectonics, and a major contributor to oceanography, education, and public policy.Appointed an AGU Fellow in 1936, Revelle was president of the Oceanography section from 1953-1956. In 1968 he was awarded the Bowie Medal, AGU's highest honor. Revelle extended his activities beyond the limits of his specialty to actively work with scientists in other fields for the betterment of science. In presenting the award, George E. Backus described Revelle's career as one of bold and selfless service to science and his fellow man. “If scientific progress is built on the shoulders of giants, Roger Revelle is certainly to be counted among the giants.”

  5. Oceanography - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Oceanography USNO Logo USNO Info Oceanography The following Oceanography components have moved their publicly-available products to http://www.metoc.navy.mil: Naval Oceanography

  6. Northeastern Gulf of Mexico coastal and marine ecosystem program: Data search and synthesis, annotated bibliography. Appendix A: Physical oceanography. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This study summarizes environmental and socioeconomic information related to the Florida Panhandle Outer Continental Shelf (OCS). It contains a conceptual model of active processes and identification of information gaps that will be useful in the design of future environmental studies in the geographic area. The annotated bibliography for this study is printer in six volumes, each pertaining to a specific topic. They are as follows: Appendix A--Physical Oceanography; Appendix B--Meteorology; Appendix C--Geology; Appendix D--Chemistry; Appendix E--Biology; and Appendix F--Socioeconomics. This volume contains bibliographic references pertaining to physical oceanography.

  7. Technologies for Online Data Management of Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Zodiatis, G.; Hayes, D.; Karaolia, A.; Stylianou, S.; Nikolaidis, A.; Constantinou, I.; Michael, S.; Galanis, G.; Georgiou, G.

    2012-04-01

    The need for efficient and effective on line data management is greatly recognized today by the marine research community. The Cyprus Oceanography Center at the University of Cyprus, realizing this need, is continuously working in this area and has developed a variety of data management and visualization tools which are currently utilized for both the Mediterranean and the Black Sea. Bythos, CYCOFOS and LAS server are three different systems employed by the Oceanography Center, each one dealing with different data sets and processes. Bythos is a rich internet application that combines the latest technologies and enables scientists to search, visualize and download climatological oceanographic data with capabilities of being applied worldwide. CYCOFOS is an operational coastal ocean forecasting and observing system which provides in near real time predictions for sea currents, hydrological characteristics, waves, swells and tides, remote sensing and in-situ data from various remote observing platforms in the Mediterranean Sea, the EEZ and the coastal areas of Cyprus. LAS (Live Access Server) is deployed to present distributed various types of data sets as a unified virtual data base through the use of OpenDap networking. It is first applied for providing an integrated, high resolution system for monitoring the energy potential from sea waves in the Exclusive Economic Zone of Cyprus and the Eastern Mediterranean Levantine Basin. This paper presents the aforementioned technologies as currently adopted by the Cyprus Oceanography Center and describes their utilization that supports both the research and operational activities in the Mediterranean.

  8. Learning about Oceanography. Superific Science Book VII. A Good Apple Science Activity Book for Grades 5-8+.

    ERIC Educational Resources Information Center

    Conway, Lorraine

    Based upon the recognition that the sea has great potential as a future source of energy, minerals, and water, this document was developed to provide students with learning experiences in oceanography. It contains background information about ocean tides, waves, chemistry, depths, and plant and animal life. The book provides the teacher with…

  9. Increasing Climate Literacy in Introductory Oceanography Classes Using Ocean Observation Data from Project Dynamo

    NASA Astrophysics Data System (ADS)

    Hams, J. E.

    2015-12-01

    This session will present educational activities developed for an introductory Oceanography lecture and laboratory class by NOAA Teacher-at-Sea Jacquelyn Hams following participation in Leg 3 of Project DYNAMO (Dynamics of the Madden-Julian Oscillation) in November-December 2011. The Madden-Julian Oscillation (MJO) is an important tropical weather phenomenon with origins in the Indian Ocean that impacts many other global climate patterns such as the El Nino Southern Oscillation (ENSO), Northern Hemisphere monsoons, tropical storm development, and pineapple express events. The educational activities presented include a series of lessons based on the observational data collected during Project DYNAMO which include atmospheric conditions, wind speeds and direction, surface energy flux, and upper ocean turbulence and mixing. The lessons can be incorporated into any introductory Oceanography class discussion on ocean properties such as conductivity, temperature, and density, ocean circulation, and layers of the atmosphere. A variety of hands-on lessons will be presented ranging from short activities used to complement a lecture to complete laboratory exercises.

  10. Developing Online Oceanography at UCSB

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.; Dodson, H.

    2001-12-01

    Oceanography at UCSB is an introductory general education science course taken by up to 200 students per quarter. The emphasis is on learning science process by engaging in authentic science activities that use real earth data. Recently, to increase student motivation, the course has been modified to include an Earth Summit framework. The online support being developed for this course is the first step in the creation of a completely online oceanography class. Foundation software was first tested in the class during Spring 2001. Online activities that are supported are writing and instructor feedback, online threaded discussion with live chat and graphics, automatically graded homeworks and games, auto graded quizzes with questions randomly selected from a database, and thought problems graded by the instructor(s). Future plans include integration with commercial course management software. To allow choice of assignments, all course activities totaled110%. Since grades were based on A=90-100, B=80-90, C= 70-80, etc, it was possible to get a better than A grade. Students see the effect (on their grade) of each assignment by calculating their current course grade. Course activities included (most of which are automatically graded): weekly lab homeworks, weekly mini-quizzes (10 multiple choice questions selected at random from a topic database), weekly thought questions (graded by the TA), 3 written assignments, and "Question of the Day" from lecture (credit given for handing it in), The online writing software allowed students to enter their writing, edit and link to graphic images, print the paper, and electronically hand it in. This has the enormous advantage of allowing the instructor and TA's convenient access to all student papers. At the end of the course, students were asked how effective each of the course activities were in learning the course material. On a five point scale, ranging from highest contribution to lowest, the percentage of students giving ratings of 4 or 5 (highest) were: lectures: 27%, labs: 70%, earth summit activities: 57%, weekly thought questions: 36%, Questions of the day: 34%, weekly quizzes: 51%, weekly homeworks: 48%, writing assignments: 68%. Course difficulty responses were symmetrically peaked at a rating of 3, indicating that the course was taught at the right level. 64% of the students responded with 4 or 5 level to "I worked very hard in this class." Join the DLESE "Oceanography" interest group (www.dlese.org) to discuss and help develop oceanography course materials. >http://oceanography.geol.ucsb.edu/Support/CourseWare/Index.html

  11. Oceanography Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › FNMOC › Oceanography Products FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Oceanography Products Global

  12. Meteorology/Oceanography Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Meteorology/Oceanography Help USNO Logo USNO Info Meteorology/Oceanography Help Send an e-mail regarding meteorology or oceanography products. Privacy Advisory Your E-Mail

  13. Improving the Navys Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    DTIC Science & Technology

    2015-09-30

    DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Improving the Navy’s Passive Underwater Acoustic...mpl.ucsd.edu LONG-TERM GOALS The long-term goals of this research effort are to improve the Navy’s passive underwater acoustic monitoring of marine...research of a graduate student in marine bioacoustics and ocean acoustics at the Scripps Institution of Oceanography. OBJECTIVES The

  14. Review of the physical oceanography of the Cape Hatteras, North Carolina Region. Volume 1. Literature synthesis. Appendix A. Annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, C.E.; Berger, T.J.; Boicourt, W.C.

    The report, second in a three set series, is an annotated bibliography of the pertinent literature, primarily from 1970 to the present. The literature discusses the physical oceanography of the complex region offshore of Cape Hatteras, North Carolina as it relates to the ocean circulation and fate of any discharges resulting from offshore oil and gas activity.

  15. Applied oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, J.M.

    This book combines oceanography principles and applications such as marine pollution, resources, and transportation. It is divided into two main parts treating the basic principles of physical oceanography, and presenting a unique systems framework showing how physical oceanography, marine ecology, economics, and government policy may be combined to define the newly developing field of applied oceanography.

  16. Early Adolescence: Active Science for Middle Schoolers.

    ERIC Educational Resources Information Center

    Padilla, Michael; Griffin, Nancy

    1980-01-01

    Describes activities appropriate for involving middle school students as active participants in the learning process. Topics discussed include archaeology, bulletin boards, dramatizations, physics experiments using the human body, oceanography, and ecology. (CS)

  17. The PO.DAAC Portal and its use of the Drupal Framework

    NASA Astrophysics Data System (ADS)

    Alarcon, C.; Huang, T.; Bingham, A.; Cosic, S.

    2011-12-01

    The Physical Oceanography Distributed Active Archive Center portal (http://podaac.jpl.nasa.gov) is the primary interface for discovering and accessing oceanographic datasets collected from the vantage point of space. In addition, it provides information about NASA's satellite missions and operational activities at the data center. Recently the portal underwent a major redesign and deployment utilizing the Drupal framework. The Drupal framework was chosen as the platform for the portal due to its flexibility, open source community, and modular infrastructure. The portal features efficient content addition and management, mailing lists, forums, role based access control, and a faceted dataset browse capability. The dataset browsing was built as a custom Drupal module and integrates with a SOLR search engine.

  18. The Naval Oceanography Operations Command (NOOC) - Naval Oceanography

    Science.gov Websites

    Oceanography Ice You are here: Home › NOOC NOOC Logo NOOC FWC Norfolk Logo FWC-N FWC-SD Logo FWC-SD JTWC Logo JTWC NOAC-Yokosuka NOAC-Y Info The Naval Oceanography Operations Command (NOOC) The NOOC advises Navy Center - Pearl Harbor and the Naval Oceanography Antisubmarine Warfare Center - Yokosuka. The Fleet

  19. Oceanography in the next decade: Building new partnerships

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The field of oceanography has existed as a major scientific discipline in the United States since World War 2, largely funded by the federal government. In this report, the Ocean Studies Board documents the state of the field of oceanography and assesses the health of the partnership between the federal government and the academic oceanography community. The objectives are to document and discuss important trends in the human, physical, and fiscal resources available to oceanographers, especially academic oceanographers, over the last decade; to present the Ocean Studies Board's best assessment of scientific opportunities in physical oceanography, marine geochemistry, marine geology and geophysics, biological oceanography, and coastal oceanography during the upcoming decade; and to provide a blueprint for more productive partnerships between academic oceanographers and federal agencies.

  20. The Central Role of the Mississippi River and its Delta in the Oceanography, Ecology and Economy of the Gulf of Mexico: A Synthesis

    NASA Astrophysics Data System (ADS)

    Kolker, A.; Chu, P. Y.; Taylor, C.; Roberts, B. J.; Renfro, A. A.; Peyronnin, N.; Fitzpatrick, C.

    2017-12-01

    While it has long been recognized that the Mississippi River is the largest source of freshwater, nutrients and sediments to the Gulf of Mexico, many questions remain unanswered about the impacts of the material on oceanography of the system. Here we report on the results of a regional synthesis study that examined how the Mississippi River and its delta influence the oceanography, ecology and the economy of the Gulf of Mexico. By employing a series of expert-opinion working groups, and using multi-dimensional numerical physical oceanographic models coupled to in-situ environmental data, this project is working to quantify how variability in discharge, meteorological forcings, and seasonal conditions influence the spatial distribution of the Mississippi River plume and its influence. Results collected to date indicate that the dimensions of the river plume are closely coupled to discharge, but in a non-linear fashion, that incorporates fluxes, flow distributions, offshore and meteorological forcings in the context of the local bathymetry. Ongoing research is using these human and numerical tools to help further elucidate the impacts of this river on the biogeochemistry of the region, and the distribution of key macrofauna. Further work by this team is examining how the delta's impacts on the ecology of the region, and the role that the delta plays as both a source of material for key offshore fauna, and a barrier to dispersal. This information is being used to help further the development of a research agenda for the northern Gulf of Mexico that will be useful through the mid-21st century.

  1. The status of coastal oceanography in heavily impacted Yellow and East China Sea: Past trends, progress, and possible futures

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Hua; Cho, Yang-Ki; Guo, Xinyu; Wu, Chau-Ron; Zhou, Junliang

    2015-09-01

    Coastal environments are a key location for transport, commercial, residential and defence infrastructure, and have provided conditions suitable for economic growth. They also fulfil important cultural, recreational and aesthetic needs; have intrinsic ecosystem service values; and provide essential biogeochemical functions such as primary productivity, nutrient cycling and water filtration. The rapid expansion in economic development and anticipated growth of the population in the coastal zones along the Yellow and East China Sea basin has placed this region under intense multiple stresses. Here we aim to: 1) synthesize the new knowledge/science in coastal oceanography since 2010 within the context of the scientific literature published in English; 2) report on a citation analysis that assesses whether new research topics have emerged and integrated over time, indicate the location of modelling and field-based studies; and 3) suggest where the new research should develop for heavily impacted estuaries and coastal seas of East Asia. The conclusions of the synthesis include: 1) China has emerged as a dominant force in the region in producing scientific literature in coastal oceanography, although the area of publications has shifted from its traditional fields such as physical oceanography; 2) there has been an increasing number of publications with cross-disciplinary themes between physical oceanography and other fields of the biological, chemical, and geological disciplines, but vigorous and systematic funding mechanisms are still lacking to ensure the viability of large scale multi-disciplinary teams and projects in order to support trans-disciplinary research and newly emerging fields; 3) coastal oceanography is responding to new challenges, with many papers studying the impacts of human activities on marine environment and ecology, but so far very few studying management and conservation strategies or offering policy solutions.

  2. Careers in Oceanography.

    ERIC Educational Resources Information Center

    Hollister, Charles D., Ed.

    This booklet was prepared by practicing oceanographers to help college students in their search for professional direction. The booklet: (1) points out some frontiers of current research; (2) describes five major subfields of oceanography (marine geology and geophysics, oceanographic engineering, physical oceanography, chemical oceanography, and…

  3. Evolution of a Western Arctic Ice Ocean Boundary Layer and Mixed Layer Across a Developing Thermodynamically Forced Marginal Ice Zone

    DTIC Science & Technology

    2016-09-01

    Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN PHYSICAL OCEANOGRAPHY from the NAVAL POSTGRADUATE...SCHOOL September 2016 Approved by: Timothy P. Stanton William J. Shaw Research Professor of Research Associate Professor Oceanography of... Oceanography Dissertation Committee Chair Timour Radko Andrew Roberts Associate Professor of Research Assistant Professor Oceanography of Oceanography

  4. Teaching marine science to the next generation: Innovative programs for 6th”8th Graders gain momentum

    NASA Astrophysics Data System (ADS)

    Tebbens, S. F.; Coble, P. G.; Greely, T.

    Three educational outreach programs designed for middle school students (grades 6, 7, and 8) by faculty at the University of South Florida (USF) Department of Marine Science are turning kids onto science. The programs are bringing marine science research and its various technologies into the classroom, where students follow up with hands-on activities. Project Oceanography (PO) is an interactive broadcast that exposes students to the concepts and tools of current marine science research. The Oceanography Camp for Girls (OCG) boosts girls' curiosity and interest in science and nature. And teachers become better equipped to present current marine science topics and technology to their students at the Teachers Oceanography Workshop (TOW). All of the programs created by USF are provided at no cost to students or their institutions.

  5. Key Concepts in Microbial Oceanography

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence (Santa Cruz Boardwalk); R Foster, S Mansergh and P Moisander (UC Santa Cruz); A Culley, K Doggett, J Edmonds, A Eiler, A Fong, D Hayakawa, D Karl, P Kemp, B Li, N Puniwai, B Wai, and S Wilson (U Hawaii); J Becker and M Nieto-Cid (WHOI); M McCaffrey (CIRES).

  6. The plume of the Yukon River in relation to the oceanography of the Bering Sea

    NASA Technical Reports Server (NTRS)

    Dean, Kenneson G.; Mcroy, C. Peter; Ahlnas, Kristina; Springer, Alan

    1989-01-01

    The ecosystem of the northern Bering-Sea shelf was studied using data from the NOAA Very High Resolution Radiometer and AVHRR and the Landsat MSS and Thematic Mapper (TM) in conjunction with shipboard measurements. Emphasis was placed on the influence of the Yukon River on this inner shelf environment and on the evaluation of the utility of the new Landsat TM data for oceanography. It was found that the patterns of water mass distribution obtained from satellite images agreed reasonably well with the areal patterns of temperature, salinity, and phytoplankton distributions. The AVHRR, MSS, and TM data show that the Yukon-River discharge is warmer and more turbid than the surrounding coastal water that originates to the south; thus, the Yukon water contributes to the higher temperatures and lower transmissivity of the coastal water. The high resolution of the TM thermal IR band made it possible to observe complex patterns and structures in the surface water that could not be resolved on previous data sets.

  7. Meteorology Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Oceanography Products Tropical Applications Climatology and Archived Data Info Meteorology Products Global Tropical Warnings Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS

  8. Reading in Marine Science, A Partially Annotated Bibliography for Young Readers, Nonprofessionals, and Teachers.

    ERIC Educational Resources Information Center

    Oregon State Univ., Corvallis. Dept. of Oceanography.

    Included is a partially annotated bibliography of mostly non-technical books for non-professional readers, young readers, and teachers. There are about 300 entries grouped into these subjects: general references, historical and exploration, biological oceanography, chemical oceanography, geological oceanography, and physical oceanography. (PR)

  9. A Source Book for Teaching Chemical Oceanography.

    ERIC Educational Resources Information Center

    Loder, Theodore C.; Glibert, Patricia M.

    Chemical oceanography or marine chemistry are taught in many colleges and universities. This publication provides sources for instructors of such courses. The first section of this report is a detailed composite outline of a course in chemical oceanography. It includes fundamental topics taught in many chemical oceanography classes. The outline…

  10. Measurements of Aerosol Size Distributions in the Lower Troposphere over Northern Europe.

    DTIC Science & Technology

    1981-06-01

    ADAG 7 SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA VISA--ETC F/6 4/ 1 MEASUREMENTS OF AEROSOL SIZE DISTRIBUTIONS IN THE LOWER TROPOSP--ETC(U) JUN... 1 I"’Zt J~ 9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK University of California, San Diego ARA 62101F 7...AIR FORCE HANSCOM AFB, MASSACHUSETTS 0 1731 k i J 1 Summary Airborne measurements of particle size distributions were made at several altitudes within

  11. C-MORE Science Kits: Putting Technology in the Hands of K-12 Teachers and Students

    NASA Astrophysics Data System (ADS)

    Achilles, K.; Weersing, K.; Daniels, C.; Puniwai, N.; Matsuzaki, J.; Bruno, B. C.

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a NSF Science and Technology Center based at the University of Hawaii. The C-MORE education and outreach program offers a variety of resources and professional development opportunities for science educators, including online resources, participation in oceanography research cruises, teacher-training workshops, mini-grants to incorporate microbial oceanography-related content and activities into their classroom and, most recently, C- MORE science kits. C-MORE science kits provide hands-on classroom, field, and laboratory activities related to microbial oceanography for K-12 students. Each kit comes with complete materials and instructions, and is available free of charge to Hawaii's public school teachers. Several kits are available nationwide. C-MORE science kits cover a range of topics and technologies and are targeted at various grade levels. Here is a sampling of some available kits: 1) Marine Murder Mystery: The Case of the Missing Zooxanthellae. Students learn about the effect of climate change and other environmental threats on coral reef destruction through a murder-mystery experience. Participants also learn how to use DNA to identify a suspect. Grades levels: 3-8. 2) Statistical sampling. Students learn basic statistics through an exercise in random sampling, with applications to microbial oceanography. The laptops provided with this kit enable students to enter, analyze, and graph their data using EXCEL. Grades levels: 6-12. 3) Chlorophyll Lab. A research-quality fluorometer is used to measure the chlorophyll content in marine and freshwater systems. This enables students to compare biomass concentrations in samples collected from various locations. Grades levels: 9-12. 4) Conductivity-Temperature-Depth (CTD). Students predict how certain variables (e.g., temperature, pressure, chlorophyll, oxygen) vary with depth. A CTD, attached to a laptop computer, is deployed into deep water off a dock or a ship to collect real-time data and test their hypotheses. Grades levels: 9-12.

  12. Physical oceanography and tracer chemistry of the southern ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report considers technical and scientific developments and research questions in studies of the Southern Ocean since its predecessor, /open quotes/Southern Ocean Dynamics--A Strategy for Scientific Exploration 1973-1983/close quotes/ was published. The summary lists key research questions in Southern Ocean oceanography. Chapter 1 describes how Southern Ocean research has evolved to provide the basis for timely research toward more directed objectives. Chapter 2 recommends four research programs, encompassing many of the specific recommendations that follow. Appendix A provides the scientific background and Reference/Bibliography list for this report for: on air-sea-ice interaction; the Antarctic Circumpolar Current; water mass conversion; chemical tracermore » oceanography; and numerical modeling of the Southern Ocean. Appendix B describes the satellite-based observation systems expected to be active during the next decade. Appendix C is a list of relevant reports published during 1981-1987. 146 refs.« less

  13. Fleet Weather Center- San Diego, California - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Oceanography Portal at its new location: http://www.metoc.navy.mil/fwcsd/fwc-sd.html USNO Master Clock Time for Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis

  14. Real-Time Access to Altimetry and Operational Oceanography Products via OPeNDAP/LAS Technologies : the Example of Aviso, Mercator and Mersea Projects

    NASA Astrophysics Data System (ADS)

    Baudel, S.; Blanc, F.; Jolibois, T.; Rosmorduc, V.

    2004-12-01

    The Products and Services (P&S) department in the Space Oceanography Division at CLS is in charge of diffusing and promoting altimetry and operational oceanography data. P&S is so involved in Aviso satellite altimetry project, in Mercator ocean operational forecasting system, and in the European Godae /Mersea ocean portal. Aiming to a standardisation and a common vision and management of all these ocean data, these projects led to the implementation of several OPeNDAP/LAS Internet servers. OPeNDAP allows the user to extract via a client software (like IDL, Matlab or Ferret) the data he is interested in and only this data, avoiding him to download full information files. OPeNDAP allows to extract a geographic area, a period time, an oceanic variable, and an output format. LAS is an OPeNDAP data access web server whose special feature consists in the facility for unify in a single vision the access to multiple types of data from distributed data sources. The LAS can make requests to different remote OPeNDAP servers. This enables to make comparisons or statistics upon several different data types. Aviso is the CNES/CLS service which distributes altimetry products since 1993. The Aviso LAS distributes several Ssalto/Duacs altimetry products such as delayed and near-real time mean sea level anomaly, absolute dynamic topography, absolute geostrophic velocities, gridded significant wave height and gridded wind speed modulus. Mercator-Ocean is a French operational oceanography centre which distributes its products by several means among them LAS/OPeNDAP servers as part of Mercator Mersea-strand1 contribution. 3D ocean description (temperature, salinity, current and other oceanic variables) of the North Atlantic and Mediterranean are real-time available and weekly updated. LAS special feature consisting in the possibility of making requests to several remote data centres with same OPeNDAP configurations particularly fitted to Mersea strand-1 problematics. This European project (June 2003 to June 2004) sponsored by the European Commission was the first experience of an integrated operational oceanography project. The objective was the assessment of several existing operational in situ and satellite monitoring and numerical forecasting systems for the future elaboration (Mersea Integrated Project, 2004-2008) of an integrated system able to deliver, operationally, information products (physical, chemical, biological) towards end-users in several domains related to environment, security and safety. Five forecasting ocean models with data assimilation coming from operational in situ or satellite data centres, have been intercompared. The main difficulty of this LAS implementation has lied in the ocean model metrics definition and a common file format adoption which forced the model teams to produce the same datasets in the same formats (NetCDF, COARDS/CF convention). Notice that this was a pioneer approach and that it has been adopted by Godae standards (see F. Blanc's paper in this session). Going on these web technologies implementation and entering a more user-oriented issue, perspectives deal with the implementation of a Map Server, a GIS opensource server which will communicate with the OPeNDAP server. The Map server will be able to manipulate simultaneously raster and vector multidisciplinary remote data. The aim is to construct a full complete web oceanic data distribution service. The projects in which we are involved allow us to progress towards that.

  15. Using Oceanography to Support Active Learning

    NASA Astrophysics Data System (ADS)

    Byfield, V.

    2012-04-01

    Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from satellites and Argo floats - all combined with background information about the Ocean. Many also aim to inspire and enthuse, by bringing in the human and personal, for example through blogs and Q/A sessions. This presentation takes a look at what has worked, and what may perhaps have been a little less successful.

  16. The Oceanography Concept Inventory: A Semicustomizable Assessment for Measuring Student Understanding of Oceanography

    ERIC Educational Resources Information Center

    Arthurs, Leilani; Hsia, Jennifer F.; Schweinle, William

    2015-01-01

    We developed and evaluated an Oceanography Concept Inventory (OCI), which used a mixed-methods approach to test student achievement of 11 learning goals for an introductory-level oceanography course. The OCI was designed with expert input, grounded in research on student (mis)conceptions, written with minimal jargon, tested on 464 students, and…

  17. Honors

    NASA Astrophysics Data System (ADS)

    2012-02-01

    James Yoder, vice president for academic programs and dean at the Woods Hole Oceanographic Institution, Woods Hole, Mass., has been selected as a fellow of the Oceanography Society (TOS) “for his innovative and visionary application of satellite ocean color technologies to interdisciplinary oceanography and his extraordinary service to oceanography.” TOS also has three new councilors. Blanche Meeson of NASA Goddard Space Flight Center, Greenbelt, Md., is TOS's education councilor; Janet Sprintall, Scripps Institution of Oceanography, La Jolla, Calif., is TOS's councilor for physical biology; and Deborah Steinberg, Virginia Institute of Marine Sciences, Gloucester Point, is biological oceanography councilor.

  18. Remote sensing in biological oceanography

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1981-01-01

    The main attribute of remote sensing is seen as its ability to measure distributions over large areas on a synoptic basis and to repeat this coverage at required time periods. The way in which the Coastal Zone Color Scanner, by showing the distribution of chlorophyll a, can locate areas productive in both phytoplankton and fishes is described. Lidar techniques are discussed, and it is pointed out that lidar will increase the depth range for observations.

  19. Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Tropical Warnings Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS

  20. Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis Space

  1. Post-glacial redistribution and shifts in productivity of giant kelp forests

    PubMed Central

    Graham, Michael H.; Kinlan, Brian P.; Grosberg, Richard K.

    2010-01-01

    Quaternary glacial–interglacial cycles create lasting biogeographic, demographic and genetic effects on ecosystems, yet the ecological effects of ice ages on benthic marine communities are unknown. We analysed long-term datasets to develop a niche-based model of southern Californian giant kelp (Macrocystis pyrifera) forest distribution as a function of oceanography and geomorphology, and synthesized palaeo-oceanographic records to show that late Quaternary climate change probably drove high millennial variability in the distribution and productivity of this foundation species. Our predictions suggest that kelp forest biomass increased up to threefold from the glacial maximum to the mid-Holocene, then rapidly declined by 40–70 per cent to present levels. The peak in kelp forest productivity would have coincided with the earliest coastal archaeological sites in the New World. Similar late Quaternary changes in kelp forest distribution and productivity probably occurred in coastal upwelling systems along active continental margins worldwide, which would have resulted in complex shifts in the relative productivity of terrestrial and marine components of coastal ecosystems. PMID:19846450

  2. Ice - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Center Norfolk new site for Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100

  3. Annual Tropical Cyclone Reports - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Center Norfolk new site for Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100

  4. News! from the Naval Observatory - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You More... Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS 39529

  5. Ask the Librarian - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Oceanography Command, 1100 Balch Blvd, Stennis Space Center, MS 39529 Fleet Forces Command | navy.com | Freedom

  6. The Naval Oceanographic Office (NAVO) - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Center Norfolk new site for Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100

  7. Tools, Services & Support of NASA Salinity Mission Data Archival Distribution through PO.DAAC

    NASA Astrophysics Data System (ADS)

    Tsontos, V. M.; Vazquez, J.

    2017-12-01

    The Physical Oceanography Distributed Active Center (PO.DAAC) serves as the designated NASA repository and distribution node for all Aquarius/SAC-D and SMAP sea surface salinity (SSS) mission data products in close collaboration with the projects. In addition to these official mission products, that by December 2017 will include the Aquarius V5.0 end-of-mission data, PO.DAAC archives and distributes high-value, principal investigator led satellite SSS products, and also datasets from NASA's "Salinity Processes in the Upper Ocean Regional Study" (SPURS 1 & 2) field campaigns in the N. Atlantic salinity maximum and high rainfall E. Tropical Pacific regions. Here we report on the status of these data holdings at PO.DAAC, and the range of data services and access tools that are provided in support of NASA salinity. These include user support and data discovery services, OPeNDAP and THREDDS web services for subsetting/extraction, and visualization via LAS and SOTO. Emphasis is placed on newer capabilities, including PODAAC's consolidated web services (CWS) and advanced L2 subsetting tool called HiTIDE.

  8. News, Tours, & Events - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You This Week The Sky This Week, 2018 May 22 - 29 More... Naval Meteorology and Oceanography Command, 1100

  9. Tour Information for USNO Washington DC - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Week, 2018 May 22 - 29 More... Naval Meteorology and Oceanography Command, 1100 Balch Blvd, Stennis

  10. Data Assembly and Processing for Operational Oceanography: 10 Years of Achievements

    DTIC Science & Technology

    2009-07-20

    Processing for Operational Oceanography: 10 Years of Acheivements 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0602435N 6... operational oceanography infrastructure. They provide data and products needed by modeling and data assimilation systems; they also provide products...directly useable for applications. The paper will discuss the role and functions of the data centers for operational oceanography and describe some of

  11. Effective, Active Learning Strategies for the Oceanography Classroom

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.; Marinov, I.

    2014-12-01

    A decline in enrollment in STEM fields at the university level has prompted extensive research on alternative ways of teaching and learning science. Inquiry-based learning as well as the related "flipped" or "active" lectures, and similar teaching methods and philosophies have been proposed as more effective ways to disseminate knowledge in science classes than the traditional lecture. We will provide a synopsis of our experiences in implementing some of these practices into our Introductory Oceanography, Global Climate Change, and Ocean Atmosphere Dynamics undergraduate courses at the University of Pennsylvania, with both smaller and larger enrollments. By implementing tools such as at-home modules; computer labs; incorporation of current research; pre- and post-lecture quizzes; reflective, qualitative writing assignments; peer review; and a variety of in-class learning strategies, we aim to increase the science literacy of the student population and help students gain a more comprehensive knowledge of the topic, enhance their critical thinking skills, and correct misconceptions. While implementing these teaching techniques with college students is not without complications, we argue that a blended class that flexibly and creatively accounts for class size and science level improves the learning experience and the acquired knowledge. We will present examples of student assignments and activities as well as describe the lessons we have learned, and propose ideas for moving forward to best utilize innovative teaching tools in order to increase science literacy in oceanography and other climate-related courses.

  12. Biological Oceanography

    NASA Astrophysics Data System (ADS)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  13. Data Analysis and Synthesis for the ONR Undersea Sand Dunes in the South China Sea Field Experiments

    DTIC Science & Technology

    2015-09-30

    understanding of coastal oceanography by means of applying simple dynamical theories to high-quality observations obtained in the field. My primary...area of expertise is physical oceanography , but I also enjoy collaborating with biological, chemical, acoustical, and optical oceanographers to work... oceanography , and impact of the bottom configuration and physical oceanography on acoustic propagation. • The space and time scales of the dune

  14. The role of ocean climate data in operational Naval oceanography

    NASA Technical Reports Server (NTRS)

    Chesbrough, Radm G.

    1992-01-01

    Local application of global-scale models describes the U.S. Navy's basic philosophy for operational oceanography in support of fleet operations. Real-time data, climatologies, coupled air/ocean models, and large scale computers are the essential components of the Navy's system for providing the war fighters with the performance predictions and tactical decision aids they need to operate safely and efficiently. In peacetime, these oceanographic predictions are important for safety of navigation and flight. The paucity and uneven distribution of real-time data mean we have to fall back on climatology to provide the basic data to operate our models. The Navy is both a producer and user of climatologies; it provides observations to the national archives and in turn employs data from these archives to establish data bases. Suggestions for future improvements to ocean climate data are offered.

  15. An Earth Summit in a Large General Education Oceanography Class

    NASA Astrophysics Data System (ADS)

    Dodson, H.; Prothero, W. A.

    2001-12-01

    An Earth Summit approach in UCSB's undergraduate physical oceanography course has raised student interest level while it also supports the course goals of increased learner awareness of the process of science, and critical analysis of scientific claims. At the beginning of the quarter, each group of students chooses a country to represent in the Earth Summit. During the course of the quarter, these groups relate each of the class themes to their chosen country. Themes include 1) ocean basins and plate tectonics, 2) atmospheres, oceans and climate, and 3) fisheries. Students acquire and utilize Earth data to support their positions. Earth data sources include the "Our Dynamic Planet" CDROM (http://oceanography.geol.ucsb.edu/ODP_Advert/odp_onepage.htm), NOAA's ocean and climate database (http://ferret.wrc.noaa.gov/las/), WorldWatcher CD (http://www.worldwatcher.northwestern.edu/) and JPL's Seawinds web site (http://haifung.jpl.nasa.gov/index.html). During the atmospheres, oceans and climate theme, students choose from 12 mini-studies that use various kinds of on-line Earth data related to important global or regional phenomena relevant to the course. The Earth datasets that the students access for their analysis include: winds; atmospheric pressure; ocean chemistry; sea surface temperature; solar radiation; precipitation, etc. The first group of 6 mini-studies focus on atmosphere and ocean, and are: 1) global winds and surface currents, 2) atmosphere and ocean interactions, 3) stratospheric ozone depletion, 4) El Nino, 5) Indian monsoon, and 6) deep ocean circulation. The second group focus on the Earth's heat budget and climate and are: 1) influence of man's activities on the climate, 2) the greenhouse effect, 3) seasonal variation and the Earth's heat budget, 4) global warming, 5) paleoclimate, and 6) volcanoes and climate. The students use what they have learned in these mini-studies to address atmospheric and climatic issues pertinent to their specific Earth Summit countries. For example, students representing the country of Chile might model their investigations after a)winds and surface currents, b)atmosphere and ocean interactions, c) stratospheric ozone depletion, d)El Nino; and/or e)volcanoes and climate. Please join the "Oceanography" interest group of DLESE to discuss, develop, and access oceanography related mini-studies that use earth data (http://oceanography.geol.ucsb.edu/dlese/wg_oceanog/Index.html). >http://oceanography.geol.ucsb.edu/AWP/Class_Info/GS-4/Labs/Labs Index.html

  16. EarthEd Online: Open Source Online Software to Support Large Courses

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2003-12-01

    The purpose of the EarthEd Online software project is to support a modern instructional pedagogy in a large, college level, earth science course. It is an ongoing development project that has evolved in a large general education oceanography course over the last decade. Primary goals for the oceanography course are to support learners in acquiring a knowledge of science process, an appreciation for the relevance of science to society, and basic content knowledge. In order to support these goals, EarthEd incorporates: a) integrated access to various kinds of real earth data (and links to web-based data browsers), b) online discussions, live chat, with integrated graphics editing, linking, and upload, c) online writing, reviewing, and grading, d) online homework assignments, e) on demand grade calculation, and f) instructor grade entry and progress reports. The software was created using Macromedia Director. It is distributed to students on a CDROM and updates are downloaded and installed automatically. Data browsers for plate tectonics relevant data ("Our Dynamic Planet"), a virtual exploration of the East Pacific Rise, the World Ocean Atlas-98, and a fishing simulation game are integrated with the EarthEd software. The system is modular which allows new capabilities, such as new data browsers, to be added. Student reactions to the software are positive overall. They are especially appreciative of the on demand grade computation capability. The online writing, commenting and grading is particularly effective in managing the large number of papers that get submitted. The TA's grade the papers, but the instructor can provide feedback to them as they grade the papers, and a record is maintained of all comments and rubric item grades. Commenting is made easy by simply "dragging" a selection of pre-defined comments into the student's text. Scoring is supported by an integrated scoring rubric. All assignments, rubrics, etc. are configured in text files that are downloaded from the course web server. Students rate the writing assignments as the most effective learning activity in the course. This project is in an evaluation and dissemination phase. An open source model is planned for distribution. For documentation and information about the EarthEd team, see: http://oceanography.geol.ucsb.edu/Collab/software.html

  17. Physics as an Integrative Theme in Oceanography.

    ERIC Educational Resources Information Center

    Myers, Richard L.

    1990-01-01

    The teaching of physics as an integral part of an undergraduate oceanography course is described. A general outline of oceanography and the corresponding physics topics is given. The objectives, organization, and difficulties of such a course are discussed. (CW)

  18. A community engagement project in an undergraduate oceanography course to increase engagement and representation in marine science among high school students

    NASA Astrophysics Data System (ADS)

    Clark, C. D.; Prairie, J. C.; Walters, S. A.

    2016-02-01

    In the context of undergraduate education in oceanography, we are constantly striving for innovative ways to enhance student learning and enthusiasm for marine science. Community engagement is a form of experiential education that not only promotes a better understanding of concepts among undergraduate students but also allows them to interact with the community in a way that is mutually beneficial to both parties. Here I present on my experience in incorporating a community engagement project in my undergraduate physical oceanography course at the University of San Diego (USD) in collaboration with Mission Bay High School (MBHS), a local Title 1 International Baccalaureate high school with a high proportion of low-income students and students from underrepresented groups in STEM. As part of this project, the undergraduate students from my physical oceanography course were challenged to develop interactive workshops to present to the high school students at MBHS on some topic in oceanography. Prior to the workshops, the USD students met with the high school students at MBHS during an introductory meeting in which they could learn about each other's interests and backgrounds. The USD students then worked in teams of three to design a workshop proposal in which they outlined their plan for a workshop that was interactive and engaging, relying on demonstrations and activities rather than lecture. Each of the three teams then presented their workshops on separate days in the Mission Bay High School classroom. Finally, the USD students met again with the high school students at MBHS for a conclusion day in which both sets of students could discuss their experiences with the community engagement project. Through the workshop itself and a reflection essay written afterwards, the USD students learned to approach concepts in oceanography from a different perspective, and think about how student backgrounds can inform teaching these concepts. I will describe preliminary outcomes of this project and discuss the potential of community engagement projects in general to positively impact and integrate both undergraduate and high school education in ocean science.

  19. Doctoral Scientists in Oceanography.

    ERIC Educational Resources Information Center

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    The purpose of this report was to classify and count doctoral scientists in the United States trained in oceanography and/or working in oceanography. Existing data from three sources (National Research Council's "Survey of Earned Doctorates," and "Survey of Doctorate Recipients," and the Ocean Sciences Board's "U.S. Directory of Marine…

  20. What Oceanography Concepts are Taught in Ohio's Schools?

    ERIC Educational Resources Information Center

    Skinner, Ray, Jr.; Martin, Ralph E., Jr.

    1985-01-01

    A survey listing 21 major oceanographic concepts and several sub-concepts was mailed to all Ohio earth science teachers. Respondents indicated that most of the oceanography topics taught were geologically-oriented. Oceanography concepts relating to ecology, chemical, physical or life science are considered less important. (DH)

  1. Biological Oceanography

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  2. Centering on Sea Life in the Classroom.

    ERIC Educational Resources Information Center

    Gruendike, Janis L.

    1982-01-01

    Describes an oceanography learning center for elementary/middle school students, focusing on use of games (review jeopardy), instructional tapes, flash cards, activity felt boards, picture puzzles, reading materials, science displays, and experiment stations. (JN)

  3. MAOS: An Innovative Way to Teach High School.

    ERIC Educational Resources Information Center

    Harray, Nancy; And Others

    1997-01-01

    Describes an innovative high school program that uses oceanography, mathematics, and science as common threads in the instructional program. The program utilizes an innovative class structure, community involvement, and hands on activities. (DDR)

  4. Capturing Excitement: Oceanography

    ERIC Educational Resources Information Center

    Boyer, Robert E.; Butts, David P.

    1971-01-01

    Describes four elementary school earth science activities. Each student experience is designed to help children answer questions about the ocean floor, continental drift, volcanism and mountain chains. Includes a bibliography of related articles, books, and maps. (JM)

  5. Flower Garden Banks (northwest Gulf of Mexico): Environmental characteristics and human interaction. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deslarzes, K.J.P.

    1998-10-01

    This report is a multidisciplinary update of various topics concerning the Banks -- oceanography, meteorology, commercial fishing, recreation, military activities, hydrocarbon development, and potential environmental impacts. The area surrounding the Flower Garden Banks is increasingly active with oil and gas development.

  6. Tools of Oceanography. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Sands, Florence

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  7. High School Oceanography.

    ERIC Educational Resources Information Center

    Falmouth Public Schools, MA.

    This book is a compilation of a series of papers designed to aid high school teachers in organizing a course in oceanography for high school students. It consists of twelve papers, with references, covering each of the following: (1) Introduction to Oceanography, (2) Geology of the Ocean, (3) The Continental Shelves, (4) Physical Properties of Sea…

  8. Only One Ocean: Marine Science Activities for Grades 5-8. Teacher's Guide.

    ERIC Educational Resources Information Center

    Halversen, Catherine; Strang, Craig

    This guide was designed by the Marine Activities, Resources & Education (MARE) Program through the Great Explorations in Math and Science (GEMS) ongoing curriculum development program for middle school students. This GEMS guide addresses the concepts of the interconnectedness of the ocean basins, respect for organisms, oceanography, physical…

  9. A Study of Enlisted Training and Education in Applied Oceanography.

    ERIC Educational Resources Information Center

    Schriner, Karl Leonard

    The study concludes that the primary reason for present programs of enlisted training and education in oceanography is to support Anti-Submarine Warfare (ASW). There is a significant lack of courses, schools, and self-study material available to enlisted personnel on the subject of oceanography. Through more extensive training the aviation ASW…

  10. Curriculum Outline for a General Oceanography Field Laboratory (Review Cycle-Annual).

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    A curriculum guide, in outline form, for oceanography field laboratories is presented. Designed to complement and expand upon an oceanography lecture course, it provides a list of objectives related to student experiences in three areas: (1) operating oceanographic equipment; (2) gathering, manipulating, and evaluating data; and (3) writing formal…

  11. Assessment of Differences in University Oceanography Students' Scientific Writing.

    ERIC Educational Resources Information Center

    Takao, Allison Y.; Kelly, Gregory J.

    The purpose of this paper is to assess the differences in university oceanography students' scientific writing. Specifically, the authors examine the argumentation structures of a high scoring paper and a low scoring paper. This study was conducted in an introductory level oceanography course in a large public university. In this course students…

  12. Estuarine Oceanography. CEGS Programs Publication Number 18.

    ERIC Educational Resources Information Center

    Wright, F. F.

    Estuarine Oceanography is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. Designed for those interested in coastal oceanography or limnology, the module is structured as a laboratory supplement for undergraduate college classes but should be useful at all levels. The module has two…

  13. Supplementary Activities for Enriching the Teaching of Earth Science: Astronomy, Geology, Meteorology, Oceanography.

    ERIC Educational Resources Information Center

    Exline, Joseph D., Ed.

    This publication is intended to be an aid for secondary school science teachers in providing some additional student-oriented activities to enrich the earth science program. These activities have been classroom tested by teachers and have been considered by these teachers to be educationally successful. This publication is a product of the Earth…

  14. [Oceanography and King Dom Carlos I's collection of iconography].

    PubMed

    Jardim, Maria Estela; Peres, Isabel Marília; Ré, Pedro Barcia; Costa, Fernanda Madalena

    2014-01-01

    After the Challenger expedition (1872-1878), other nations started to show interest in oceanographic research and organizing their own expeditions. As of 1885, Prince Albert I of Monaco conducted oceanographic campaigns with the collaboration of some of the best marine biologists and physical oceanographers of the day, inventing new techniques and instruments for the oceanographic work. Prince Albert's scientific activity certainly helped kindle the interest of his friend, Dom Carlos I, king of Portugal, in the study of the oceans and marine life. Both shared the need to use photography to document their studies. This article analyzes the role of scientific photography in oceanography, especially in the expeditions organized by the Portuguese monarch.

  15. Diploma of Higher Studies in Oceanography. Red Sea & Gulf of Aden Programme (PERSGA).

    ERIC Educational Resources Information Center

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents four courses for the diploma of higher studies in oceanography conducted by the Department of Oceanography, Faculty of Science, University of Alexandria, Egypt. These courses are organized by the Arab League Educational, Cultural and Scientific Organization (ALECSO). Each course is designed to be taught in one academic year…

  16. Enhancing Ocean Research Data Access

    NASA Astrophysics Data System (ADS)

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter

    2014-05-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  17. Earth resources programs at the Langley Research Center. Part 2: Coastal zone oceanography program

    NASA Technical Reports Server (NTRS)

    Bressette, W. E.

    1972-01-01

    The approaches used to develop the coastal zone oceanic research program are outlined, and activities in the areas of satellite application, estuaries, continental shelf and environmental modeling are briefly described.

  18. Dispersant Effectiveness, In-Situ Droplet Size Distribution and Numerical Modeling to Assess Subsurface Dispersant Injection as a Deepwater Blowout Oil Spill Response Option and Evaluation of Oil Fluorescence Characteristics to Improve Forensic Response Tools

    EPA Science Inventory

    This report summarizes two projects covered under an Interagency Agreement between the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Environmental Protection Agency (EPA) in collaboration with the Bedford Institute of Oceanography, Department of Fisheries and...

  19. Chemical Oceanography and the Marine Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  20. Does behaviour affect the dispersal of flatback post-hatchlings in the Great Barrier Reef?

    PubMed Central

    Critchell, Kay; Fuentes, Mariana M. P. B.; Limpus, Colin J.; Wolanski, Eric; Hamann, Mark

    2017-01-01

    The ability of individuals to actively control their movements, especially during the early life stages, can significantly influence the distribution of their population. Most marine turtle species develop oceanic foraging habitats during different life stages. However, flatback turtles (Natator depressus) are endemic to Australia and are the only marine turtle species with an exclusive neritic development. To explain the lack of oceanic dispersal of this species, we predicted the dispersal of post-hatchlings in the Great Barrier Reef (GBR), Australia, using oceanographic advection-dispersal models. We included directional swimming in our models and calibrated them against the observed distribution of post-hatchling and adult turtles. We simulated the dispersal of green and loggerhead turtles since they also breed in the same region. Our study suggests that the neritic distribution of flatback post-hatchlings is favoured by the inshore distribution of nesting beaches, the local water circulation and directional swimming during their early dispersal. This combination of factors is important because, under the conditions tested, if flatback post-hatchlings were entirely passively transported, they would be advected into oceanic habitats after 40 days. Our results reinforce the importance of oceanography and directional swimming in the early life stages and their influence on the distribution of a marine turtle species. PMID:28573024

  1. Argo workstation: a key component of operational oceanography

    NASA Astrophysics Data System (ADS)

    Dong, Mingmei; Xu, Shanshan; Miao, Qingsheng; Yue, Xinyang; Lu, Jiawei; Yang, Yang

    2018-02-01

    Operational oceanography requires the quantity, quality, and availability of data set and the timeliness and effectiveness of data products. Without steady and strong operational system supporting, operational oceanography will never be proceeded far. In this paper we describe an integrated platform named Argo Workstation. It operates as a data processing and management system, capable of data collection, automatic data quality control, visualized data check, statistical data search and data service. After it is set up, Argo workstation provides global high quality Argo data to users every day timely and effectively. It has not only played a key role in operational oceanography but also set up an example for operational system.

  2. SUPPORT FOR THE CONFERENCE ''WOCE & BEYOND'' TO BE HELD NOVEMBER 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowlin, Worth, D., Jr., Distinguished Professor, Department of Oceanography, Texas A&M University

    OAK B188 We are proud to report that the WOCE and Beyond meeting was a tremendous success, garnering praise for its content and execution from federal agency representatives, international sponsors, the speakers, and the audience. The conference attracted 379 registered participants (total attendance was 401) from 22 countries; 319 posters were presented; and 30 oral presentations by distinguished researchers touched on all aspects of WOCE science.Particularly gratifying to the organizers was the active participation of 43 students from around the world. In addition to helping underwrite infrastructure costs related to the poster sessions, DOE's grant supported the travel and subsistencemore » of 12 students and funded the awards for outstanding student posters (31 student posters were judged for three prizes of $500 each). Thus a strategic goal of the meeting-entraining young scientists into the WOCE research stream-was achieved with the help of DOE funding.Post-conference, the meeting' s website (http://www.woce2002.tamu.edu) was revamped to link to the plenary session presentations and poster abstracts. This website will be maintained until June of 2003. A copy of the meeting document, combining the program and poster abstracts will be sent to Dr. Anna Palmisano, DOE Scientific Officer.Recipients of travel support were: Mr Marcelo Barreiro, Texas A&M University Ms Elena Brambilla, Scripps Institution of Oceanography Ms Shuimin Chen, University of Hawaii Ms Meyre da Silva, Texas A&M University Ms Elizabeth Douglass, Scripps Institution of Oceanography Mr Shane Elipot, Scripps Institution of Oceanography Mr Joong-Tae Kim, Texas A&M University Mr Yueng-Djern Lenn, Scripps Institution of Oceanography's Nadja Lonnroth, Texas A&M University Mr Alvaro Montenegro, Florida State University Ms Sarah Zedler, Scripps Institution of Oceanography's Li Zhang, Texas A&M University Recipients of $500 Prizes for Outstanding Student Posters: Mr Geoffrey Gebbie, Massachusetts Institute of Technology ''An Eddy-resolving State Estimate of the Ocean Circulation during the Subduction Experiment Using a North Atlantic Regional Model (ECCO)'' Mr Hiroki Uehara, Tohoku University ''The role of Mesoscale Eddies on Formation and Transport of the North Pacific Subtropical Mode Water Demonstrated with Argo Floats'' Mr Josh Willis, Scripps Institution of Oceanography ''Combining Altimetric Height with Broadside Profile Data: A Technique for Estimating Subsurface Variability''« less

  3. Discovery of Sound in the Sea 2014 Annual Report

    DTIC Science & Technology

    2014-09-30

    Gail Scowcroft Graduate School of Oceanography University of Rhode Island Narragansett, RI 02882 phone: (401) 874-6724 fax: (401) 874-6486 email...past twelve years, Marine Acoustics, Inc. (MAI) and the University of Rhode Island’s Graduate School of Oceanography (GSO) have developed a...Peter Worcester (Scripps Institution of Oceanography), James H. Miller ( University of Rhode Island), and Darlene Ketten (Harvard University Medical

  4. Bringing the Ocean into the Social Studies Classroom: What Can Oceanography Do for Sixth through Twelfth Grade Social Studies?

    ERIC Educational Resources Information Center

    Nagel, Paul B.; Earl, Richard A.

    2003-01-01

    In this article, the authors show how oceanography can enlighten and energize the teaching of middle- and high-school social studies on a grade-by-grade basis, and they describe "hooks" from oceanography that will heighten students' interest in various social studies topics. They base the article on their own experiences--as a…

  5. The sixth conference on satellite meteorology and oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauth, F.F.; Purdom, J.F.W.

    The Sixth Conference on Satellite Meteorology and Oceanography was held in conjunction with the AMS Annual Meeting in Atlanta, Georgia, the week of 6 January 1992. Over 150 scientific papers were presented orally or in poster sessions. Joint sessions were held with the Symposium on Weather Forecasting and the Eighth International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology. The quality of the papers in the preprint volume, as well as in the presentations at both oral and poster sessions, reflects the robustness of national and international operational and research interests in satellite meteorology and oceanography.more » A preprint volume for this conference is available through the AMS.« less

  6. The Navy’s Application of Ocean Forecasting to Decision Support

    DTIC Science & Technology

    2014-09-01

    Prediction Center (OPC) website for graphics or the National Operational Model Archive and Distribution System ( NOMADS ) for data files. Regional...inputs: » GLOBE = Global Land One-km Base Elevation » WVS = World Vector Shoreline » DBDB2 = Digital Bathymetry Data Base 2 minute resolution » DBDBV... Digital Bathymetry Data Base variable resolution Oceanography | Vol. 27, No.3130 Very High-Resolution Coastal Circulation Models Nearshore

  7. Coastal Aerosol Distribution by Data Assimilation

    DTIC Science & Technology

    2006-09-30

    useful for forecasts of dust storms in areas downwind of the large deserts of the world: Arabian Gulf, Sea of Japan, China Sea , Mediterranean Sea ...and the Tropical Atlantic Ocean. NAAPS also accurately predicts the fate of large-scale smoke and pollution plumes. With its global and continuous...The collaboration with Scripps Institute of Oceanography and the University of Warsaw has led to the addition of a sea salt component to NAAPS. The

  8. Remote Sensing of Earth Resources: A literature survey with indexes (1970 - 1973 supplement). Section 1: Abstracts

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Abstracts of reports, articles, and other documents introduced into the NASA scientific and technical information system between March 1970 and December 1973 are presented in the following areas: agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  9. Advances in satellite oceanography

    NASA Technical Reports Server (NTRS)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  10. Quantifying Acoustic Uncertainty due to Marine Mammals and Fish Near the Shelfbreak Front off Cape Hatteras

    DTIC Science & Technology

    2016-10-19

    SUPPLEMENTARY NOTES NA 14. ABSTRACT See attached. 15. SUBJECTTERMS Ocean Acoustics, Fish Scatter, Acoustic Propagation, Oceanography 16...imaging fish schools and tracking vocalizing marine mam mals, and 3) understand the correlation between the detailed physica l oceanography and the...Cape Hatteras, N.C. to measure the acoustics, biology, and physica l oceanography of fish schools) and 2) finish publishing our results. APPROACH

  11. John Murray / MABAHISS expedition versus the International Indian Ocean Expedition (IIOE) in retrospect

    NASA Astrophysics Data System (ADS)

    Aleem, A. A.; Morcos, S. A.

    In addition to its scientific achievements, the John Murray/Mabahiss Expedition was a unique experiment in technology transfer and it pioneered bilateral relations in the field of oceanography, at a time when the Law of the Sea was not even an embryonic concept. The Expedition will be remembered for its profound influence on the development of oceanography in Egypt, and subsequently in several Arab and African countries, as well as for its socio-economic impact in Egypt. The International Indian Ocean Expedition (IIOE) was an elaborate exercise involving both the most sophisticated developments in oceanography of the day and the full complexity of international relations which necessitated the scientific, coordinating and supporting mechanisms of SCOR, IOC and Unesco combined. Each exercise separated by 25 years represented a significant event in the development of oceanography. Each was a natural product of the prevailing state of the art and the international climate. Oceanography had made a quantum jump in technology in the intervening quarter of a century, which had put the cost of deep sea oceanography quite beyond the financial capabilities of many developing countries, an important factor to bear in mind when comparing the impact of the John Murray/Mabahiss Expedition on Egypt with that of the IIOE, on the Indian Ocean countries.

  12. Utilizing social media for informal ocean conservation and education: The BioOceanography Project

    NASA Astrophysics Data System (ADS)

    Payette, J.

    2016-02-01

    Science communication through the use of social media is a rapidly evolving and growing pursuit in academic and scientific circles. Online tools and social media are being used in not only scientific communication but also scientific publication, education, and outreach. Standards and usage of social media as well as other online tools for communication, networking, outreach, and publication are always in development. Caution and a conservative attitude towards these novel "Science 2.0" tools is understandable because of their rapidly changing nature and the lack of professional standards for using them. However there are some key benefits and unique ways social media, online systems, and other Open or Open Source technologies, software, and "Science 2.0" tools can be utilized for academic purposes such as education and outreach. Diverse efforts for ocean conservation and education will continue to utilize social media for a variety of purposes. The BioOceanography project is an informal communication, education, outreach, and conservation initiative created for enhancing knowledge related to Oceanography and Marine Science with an unbiased yet conservation-minded approach and in an Open Source format. The BioOceanography project is ongoing and still evolving, but has already contributed to ocean education and conservation communication in key ways through a concerted web presence since 2013, including a curated Twitter account @_Oceanography and BioOceanography blog style website. Social media tools like those used in this project, if used properly can be highly effective and valuable for encouraging students, networking with researchers, and educating the general public in Oceanography.

  13. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2013-10-01

    The launch of the French/US mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and friends.

  14. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2013-07-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. In the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution and the development of Argo were essential to the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and friends.

  15. 78 FR 53285 - Seagoing Barges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... exclusively in instruction in oceanography or limnology, or both, or exclusively in oceanographic research.... 441 an oceanographic research vessel ``. . . being employed exclusively in instruction in oceanography...

  16. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  17. Horizon: The Portable, Scalable, and Reusable Framework for Developing Automated Data Management and Product Generation Systems

    NASA Astrophysics Data System (ADS)

    Huang, T.; Alarcon, C.; Quach, N. T.

    2014-12-01

    Capture, curate, and analysis are the typical activities performed at any given Earth Science data center. Modern data management systems must be adaptable to heterogeneous science data formats, scalable to meet the mission's quality of service requirements, and able to manage the life-cycle of any given science data product. Designing a scalable data management doesn't happen overnight. It takes countless hours of refining, refactoring, retesting, and re-architecting. The Horizon data management and workflow framework, developed at the Jet Propulsion Laboratory, is a portable, scalable, and reusable framework for developing high-performance data management and product generation workflow systems to automate data capturing, data curation, and data analysis activities. The NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC)'s Data Management and Archive System (DMAS) is its core data infrastructure that handles capturing and distribution of hundreds of thousands of satellite observations each day around the clock. DMAS is an application of the Horizon framework. The NASA Global Imagery Browse Services (GIBS) is NASA's Earth Observing System Data and Information System (EOSDIS)'s solution for making high-resolution global imageries available to the science communities. The Imagery Exchange (TIE), an application of the Horizon framework, is a core subsystem for GIBS responsible for data capturing and imagery generation automation to support the EOSDIS' 12 distributed active archive centers and 17 Science Investigator-led Processing Systems (SIPS). This presentation discusses our ongoing effort in refining, refactoring, retesting, and re-architecting the Horizon framework to enable data-intensive science and its applications.

  18. The Chemical Oceanographer.

    ERIC Educational Resources Information Center

    Abel, Robert B.

    1983-01-01

    Discusses career opportunities in oceanography for chemists. These include opportunities related to food, physical oceanography, mining, drugs, and other areas. Educational background needed and degree program are considered. (JN)

  19. Modeling & Simulation Education for the Acquisition and T&E Workforce: FY07 Deliverable Package

    DTIC Science & Technology

    2007-12-01

    oceanography, meteorology, and near- earth space science) to represent how systems interact with and are influenced by their environment. E12.1 E12.2 E12.3 E12.4...fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems interact with and...description: Describe the fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems

  20. Graduate Training Program in Ocean Engineering. Final Report.

    ERIC Educational Resources Information Center

    Frey, Henry R.

    Activities during the first three years of New York University's Ocean Engineering Program are described including the development of new courses and summaries of graduate research projects. This interdepartmental program at the master's level includes aeronautics, chemical engineering, metallurgy, and physical oceanography. Eleven courses were…

  1. January Term

    ERIC Educational Resources Information Center

    Norton, Frank; White, Marjorie

    1976-01-01

    A transdisciplinary course in marine biology and oceanography is described. The course was conducted during an experimental educational venture in which the school calendar was organized into two shortened semesters and a one-month miniterm in January. The field experience involved activities in the Florida Keys during the miniterm. (EB)

  2. UN and the Sea. UNITAR News, Vol. 6 No. 1.

    ERIC Educational Resources Information Center

    McDougall, Christina, Ed.

    This publication presents news and views related to the governance of ocean space, and includes two papers related to the Law of the Sea, main issues before the third United Nations Conference on the Law of the Sea. A list of sample activities related to marine pollution is presented, as well as activities related to Oceanography--Meteorology,…

  3. Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.

    ERIC Educational Resources Information Center

    Ford, Brent A.; Smith, P. Sean

    This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…

  4. Early Student Support for Process Studies of Surface Freshwater Dispersal

    DTIC Science & Technology

    2016-06-24

    Hole Oceanographic Institution REPORT NUMBER Department of Physical Oceanography - MS #29 FINAL Woods Hole, MA 02543 9. SPONSORING/MONITORING AGENCY...s proJect supports .e researc m p ysrcal oceanography of a Ph.D. student m the MIT/WHO! Jomt Program. The prOJect beoefited from, and... oceanography and has presented his work at meetings and conferences. He is working on manuscripts for publication and expects to complete his Ph.D. in 20 18

  5. Extended Analysis of the PhilSea10 Data Set from the Western Tropical Pacific and Transitioning Results to the Operational Navy

    DTIC Science & Technology

    2015-09-30

    term goal is to enhance our understanding of coastal oceanography by means of applying simple dynamical theories to high-quality observations...obtained in the field. My primary area of expertise is physical oceanography , but I also enjoy collaborating with biological, chemical, acoustical, and...for the operational models. The results can be understood by understanding the oceanography that sound is propagating through, and its variability

  6. The International System of Units (SI) in Oceanography. Report of IAPSO Working Group on Symbols, Units and Nomenclature in Physical Oceanography (SUN). Unesco Technical Papers in Marine Science 45. IAPSO Publication Scientifique No. 32.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    This report introduces oceanographers to the International System of Units (SI) in physical oceanography. The SI constitutes a universal language, designed to be understood by all scientists. It facilitates their mutual comprehension and exchange of views and results of their work. The first part of the report is devoted to physical quantities,…

  7. Graduate students in oceanography: Recruitment, success, and career prospects

    NASA Astrophysics Data System (ADS)

    Nowell, Arthur R. M.; Hollister, Charles D.

    Graduate education, student quality, stipend support, and subsequent employment form a triad of concern to many oceanographers. While the number of graduate degree programs in oceanography in the U.S. exceeds 50, remarkably few data are available on numbers of student applications, student survival rates, the quality of the applicants and accepted students, and their subsequent employment.Consequently, most discussions within an institution are based on data from a single school, while most statements made to federal government program managers by scientists are based on personal perceptions and feelings. With the emerging global initiatives, which are very labor intensive, it appears appropriate to ask, “Is there an impending crisis in graduate education in oceanography?” Widespread concern about availability of new talent, the quality of incoming students, and the overall national crisis in science and engineering student recruitment has led many scientists to state that oceanography has widespread problems in terms of student numbers and, more importantly, quality. Often, when a scientist does not find a student in the spring application rites, the scientist declares there is a national shortage of well-qualified students. Moreover, in certain subdisciplines of the field (e.g., physical oceanography) the crisis is perceived as severe and immediate, though as we shall see, physical oceanography is in an improving mode and is also experiencing an interesting increase in the numbers of well-qualified women applicants.

  8. Astrometry - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You is the branch of astronomy concerned with the determination of positions, proper motions, and

  9. Oceanography: the present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, P.G.

    This volume is the proceedings of a symposium held September 29 to October 2, 1980 at Woods Hole, Massachusetts, commemorating the 50th anniversary of the founding of the Woods Hole Oceanographic Institution. The book is the companion volume to ''Oceanography: the Past'' also published by Springer-Verlag. The papers are organized not by conventional disciplinary topics but by the ''scale'' of the oceanographic process: Part I, Small and Local Scale Oceanography; Part II, Regional Scale Oceanography; Part III, Global Scale Oceanography; and Part IV, The Human Scale. The articles presented, however, do not summarize such projects but give recognizable disciplinary summariesmore » and predictions in line with the subtitle of the book. In general, the articles are classed by this scale concept, although ''Shoreline Research'' by Pilkey and ''The Oceans Nearby'' by Murphy are better placed in the section The Human Scale and Bolin's ''Changing Global Biogeochemistry'' switched from The Human Scale to Global Scale as indicated by the title. This volume should be of value to marine geologists and geochemists, sedimentologists, and public-interest (environmental) geologists interested in oceanographic processes.« less

  10. In the Footsteps of Roger Revelle: Seagoing Oceanography for Middle School Science

    NASA Astrophysics Data System (ADS)

    Brice, D.; Foley, S.; Knox, R. A.; Mauricio, P.

    2007-12-01

    Now in its fourth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with National Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO), Woods Hole Oceanographic Institution (WHOI), National Oceanic and Atmospheric Administration (NOAA), Office of Naval Research (ONR), National Science Foundation (NSF), San Diego County Office of Education (SDCOE), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum encourages active inquiry with intellectually stimulating problem-solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role- models. Recent science test scores with IFRR students have shown significant increases in classes where this curriculum has been implemented as compared to other classes where the traditional curriculum has been used. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens - a benefit for a country that depends increasingly on technically proficient personnel, and a benefit for society at large.

  11. A distributed analysis of Human impact on global sediment dynamics

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Syvitski, J. P.

    2012-12-01

    Understanding riverine sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. Ever increasing human activity during the Anthropocene have affected sediment dynamics in two major ways: (1) an increase is hillslope erosion due to agriculture, deforestation and landscape engineering and (2) trapping of sediment in dams and other man-made reservoirs. The intensity and dynamics between these man-made factors vary widely across the globe and in time and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment flux and water discharge model (WBMsed) to compare a pristine (without human input) and disturbed (with human input) simulations. Using these 50 year simulations we will show and discuss the complex spatial and temporal patterns of human effect on riverine sediment flux and water discharge.

  12. Barely Afloat, or Please Pass the Plankton

    ERIC Educational Resources Information Center

    Hemenway, Leone

    1974-01-01

    Although oceanography is included in most elementary school curricula, there are few easily read oceanography books for the school library. An annotated list of 70 recommended titles is included. (PF)

  13. Contact Information Regarding Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You UTGPS (GPS-based UT1-like quantity). Astronomy Products Astronomical phenomena, astronomical data

  14. Moored Observations of Internal Waves in Luzon Strait: 3-D Structure, Dissipation, and Evolution

    DTIC Science & Technology

    2016-03-01

    Strait: 3-D Structure, Dissipation, and Evolution Matthew H. Alford Scripps Institution of Oceanography 9500 Gilman Drive, mail code 0213 La...during IWISE. This work is done in collaboration with Craig Lee (APL/UW), and Dan Rudnick and Shaun Johnston at Scripps Institution of Oceanography ...Y.J. Yang, M.-H. Chang, and Q. Li. 2011. From Luzon Strait to Dongsha Plateau: Stages in the life of an internal wave. Oceanography 24(4):64–77

  15. Oceanography, Volume 5, Number 1

    DTIC Science & Technology

    1992-01-01

    SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE. N k At H I R I OCEANOGRAPHY"SERVIN(i OAIrAN SCIENC!’ I\\ S APPLI...79 Cglw I;E.TU D Oceanographv (ISSN 1042-8275) is published by The Oceanography Society, 1701 K Street, NW.. #300. Washington. D.C., 20006-1509...focused on the exciting topic of "Words in Our Publications." The polarization of 1701 K Street, N W. #300Washington, D C 20006-1509 this topic quickly

  16. How To...Activities in Physical Oceanography.

    ERIC Educational Resources Information Center

    Nimmer, Donald N.; Sagness, Richard L.

    This series of experiments seeks to provide laboratory exercises which demonstrate concepts in Earth Science, particularly oceanology. Materials used in the experiments are easily obtainable. Examples of experiments include: (1) comparison of water hardness; (2) preparation of fresh water from sea water; (3) determination of water pressure; (4)…

  17. From Chaos To MAOS: Launching an Oceanography High School.

    ERIC Educational Resources Information Center

    Martin, Marlene

    1997-01-01

    Discusses the background of a specialty high school in Monterey Bay, California focusing on oceanography. Describes the collaborative research relationship that exists between the school and the scientific community. (DDR)

  18. Amery Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... funded by NASA and undertaken by the Scripps Institution of Oceanography and the Australian Antarctic Division. The Multi-angle Imaging ... Laboratory), and Helen A. Fricker (Scripps Institution of Oceanography). Other formats available at JPL Oct 6, ...

  19. Oceanic Transport

    NASA Technical Reports Server (NTRS)

    Chase, R.; Mcgoldrick, L.

    1984-01-01

    The importance of large-scale ocean movements to the moderation of Global Temperature is discussed. The observational requirements of physical oceanography are discussed. Satellite-based oceanographic observing systems are seen as central to oceanography in 1990's.

  20. Zooplankton and the oceanography of the eastern tropical Pacific: A review

    NASA Astrophysics Data System (ADS)

    Fernández-Álamo, María Ana; Färber-Lorda, Jaime

    2006-05-01

    We review the spatial and temporal patterns of zooplankton in the eastern tropical Pacific Ocean and relationships with oceanographic factors that affect zooplankton distribution, abundance and trophic relationships. Large-scale spatial patterns of some zooplankton groups show broad coincidence with surface water masses, circulation, and upwelling regions, in agreement with an ecological and dynamic partitioning of the pelagic ecosystem. The papers reviewed and a new compilation of zooplankton volume data at large-scale show that abundance patterns of zooplankton biomass have their highest values in the upwelling regions, including the Gulf of Tehuantepec, the Costa Rica Dome, the equatorial cold tongue, and the coast of Peru. Some of the first studies of zooplankton vertical distribution were done in this region, and a general review of the topic is presented. The possible physiological implications of vertical migration in zooplankton and the main hypotheses are described, with remarks on the importance of the oxygen minimum zone (OMZ) as a barrier to both the vertical distribution and migration of zooplankton in the region. Recent results, using multiple-net gear, show that vertical distribution is more complex than previously thought. There are some well-adapted species that do live and migrate within the OMZ. Temporal patterns are reviewed and summarized with historical data. Seasonal variations in zooplankton biomass follow productivity cycles in upwelling areas. No zooplankton time series exist to resolve ENSO effects in oceanic regions, but some El Niño events have had effects in the Peru Current ecosystem. Multidecadal periods of up to 50 years show a shift from a warm sardine regime with a low zooplankton biomass to a cool anchovy regime in the eastern Pacific with higher zooplankton biomasses. However, zooplankton volume off Peru has remained at low values since the 1972 El Niño, a trend opposite to that of anchoveta biomass since 1984. Studies of trophic relations emphasize the difference in the productivity cycle in the eastern tropical Pacific compared to temperate or polar ecosystems, with no particular peaks in the stocks of either zooplankton or phytoplankton. Productivity is more dependent on local events like coastal upwelling or water circulation, especially in the equatorial countercurrent and around the equatorial cool-tongue. Micrograzers are very important in the tropics as are predatory mesozooplankton. Up to 70% of the daily primary productivity is consumed by microzooplankton, which thus regulates the phytoplankton stocks. Micrograzers are an important link between primary producers, including bacteria, and mesozooplankton, constituting up to 80% of mesozooplankton food. Oceanography affects zooplankton trophic relationships through spatial-temporal effects on primary productivity and on the distributions of metabolic factors, food organisms, and predators. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.

  1. ASW Reach-Back Cell Oceanography Analysis System (ARCOAS) Version 3 User’s Guide

    DTIC Science & Technology

    2012-02-24

    65 Table of Figures Figure 2.1: Warning dialog box indicating ActiveX ...Click OK in response to the message box indicating that ActiveX controls are being used by the application (Figure 2.1). Figure 2.1: Warning...dialog box indicating ActiveX controls could be unsafe. 3. Open an existing map or create a new empty map. 4. Start ARCOAS by clicking the ARCOAS

  2. Constructing Knowledge of Marine Sediments in Introductory Geology and Oceanography Courses Using DSDP, ODP, and IODP Data

    NASA Astrophysics Data System (ADS)

    St. John, K. E.; Leckie, R. M.; Jones, M. H.; Pound, K. S.; Pyle, E. J.

    2008-12-01

    Lithologic data from 40 DSDP, ODP, and IODP scientific ocean drilling cores from the Pacific and North Atlantic oceans are the basis for an inquiry-based classroom exercise module for college introductory geology and oceanography courses. Part 1 of this exercise module is designed as an initial inquiry aimed at drawing out student beliefs and prior knowledge. In Parts 2-3 students observe and describe the physical characteristics of sediment cores using digital core photos, and determine the sediment composition using smear slide data and a decision tree. In Part 4 students combine their individual site data to construct a map showing the distribution of the primary marine sediment types of the Pacific and North Atlantic Oceans, and develop hypotheses to explain the distribution of the sediment types shown on their map. The transportable skills of observation, forming questions, plotting data, interpreting data, and scientific synthesis are embedded in this module, benefitting non-majors as well as majors. The exercise module was tested in the 2008 School of Rock program and the 2008 Urbino Summer School for Paleoceanography, and is currently being tested in undergraduate courses at James Madison University, North Hennipen Community College, St. Cloud State University and University of Massachusetts, Amherst in classes that range in size from 16 students to >150 students. The student worksheets, instructor guide, and preliminary evaluation data will be presented.

  3. Tropical Applications - Naval Oceanography Portal

    Science.gov Websites

    are here: Home › FNMOC › Tropical Applications FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Tropical Applications Satellite

  4. Correlating GRACE with Standardized Precipitation Indices and Precipitation Gauges for the High Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Miller, K. A.; Clancy, K.

    2016-12-01

    The NASA and German Aerospace Center Gravity Recovery and Climate Experiment (GRACE) detects monthly changes in the gravity of the earth assumed to be water storage using the distance between two satellites, GRACE A and GRACE B, as a phase change. We will use level 3 GRACE Tellus data from the NASA Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (PO.DAAC). The data have a resolution of 9 km2 and are available for 2002 to 2015. We examine GRACE data for the High Plains aquifer (Texas, Oklahoma, Wyoming, Nebraska, Kansas, New Mexico, Colorado and South Dakota) and compare changes to monthly averaged precipitation gauges, standardized precipitation indices for one, three, six, and twelve-months. We hypothesize that GRACE data will correlate best with 1) three-month standardized precipitation indices; 2) regions with natural land cover; 3) and in years where precipitation is at or above average.

  5. Jobs in Marine Science. Job Family Series.

    ERIC Educational Resources Information Center

    Science Research Associates, Inc., Chicago, IL.

    The instructional booklet explores various occupations in the job family of marine science. Following a brief introduction to the concept of occupational clusters, the student is given an overall orientation to the general area of oceanography and marine-related careers. A shore research station and the activities of a marine biologist are…

  6. Marine Program Annual Report 1973.

    ERIC Educational Resources Information Center

    New Hampshire Univ., Durham. Marine Program.

    This report describes the activities of a program designed to develop the information and systems necessary for managing the Continental Shelf and Coastal Zone of Northern New England. Ten research areas or projects are discussed: aquaculture, biology and ecology, coastal oceanography, buoy systems studies, man in the sea, marine platforms and…

  7. The social oceanography of top oceanic predators and the decline of sharks: A call for a new field

    NASA Astrophysics Data System (ADS)

    Jacques, Peter J.

    2010-07-01

    The decline of top oceanic predators (TOPs), such as great sharks, and worldwide erosion of the marine food web is among the most important functional changes in marine systems. Yet, even though human pressures on sharks are one of the most important factors in the collapse of TOPs, the social science of shark fishing has not kept pace with the biophysical science. Such a gap highlights the need for a marine social science, and this paper uses the case of sharks to illustrate some advances that a coherent marine social science community could bring to science and sustainability, and calls for the development of this new field. Social oceanography is proposed as a “discursive space” that will allow multiple social science and humanities disciplines to holistically study and bring insight to a diverse but essential community. Such a community will not provide answers for the physical sciences, but it will add a new understanding of the contingencies that riddle social behavior that ultimately interact with marine systems. Such a field should reflect the broad and diverse approaches, epistemologies, philosophies of science and foci that are in the human disciplines themselves. Social oceanography would complete the triumvirate of biological and physical oceanography where human systems profoundly impact these other areas. This paper tests the theory that institutional rules are contingent on social priorities and paradigms. I used content analysis of all available (1995-2006) State of the World Fisheries and Aquaculture (SOFIA) reports from the United Nations Food and Agricultural Organization (FAO) to measure the symbolic behavior-i.e., what they say-as an indication of the value of sharks in world fisheries. Similar tests were also performed for marine journals and the Convention on Migratory Species of Wild Animals to corroborate these findings. Then, I present an institutional analysis of all international capacity building and regulatory institutions as they pertain to sharks. We find that sharks are not a high priority compared to other fisheries; and, amongst issue areas, ecological concerns are overshadowed by a paradigm of economism (economic values are demonstrated above all others). Further, sharks have no global binding institutions for conservation, and only new and problematic rules at regional levels. Consequently, human pressures on sharks are partially explained through social marginalization that legitimizes permissive international rules that: (1) have limited scope of authority, (2) provide little-to-no active management of sharks, (3) have important enforcement problems, and (4) are generally not reinforced with National Plans of Action demonstrating a lack of commitment at both national and international scales. Thus, active management of shark populations is nearly non-existent meanwhile pressures on sharks, such as through finning, have increased in the last 20 years and there is strong evidence that many shark species are in decline and may not be able to recover. This paper concludes by arguing that biological oceanography of sharks is fundamentally linked to human dimensions, and, therefore, theories and systematic study of human dimensions in oceanography are crucial to provide more comprehensive understanding of complete social-marine systems.

  8. Applications of the Coastal Zone Color Scanner in oceanography

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1988-01-01

    Research activity has continued to be focused on the applications of the Coastal Zone Color Scanner (CZCS) imagery in oceanography. A number of regional studies were completed including investigations of temporal and spatial variability of phytoplankton populations in the South Atlantic Bight, Northwest Spain, Weddell Sea, Bering Sea, Caribbean Sea and in tropical Atlantic Ocean. In addition to the regional studies, much work was dedicated to developing ancillary global scale meteorological and hydrographic data sets to complement the global CZCS processing products. To accomplish this, SEAPAK's image analysis capability was complemented with an interface to GEMPAK (Severe Storm Branch's meteorological analysis software package) for the analysis and graphical display of gridded data fields. Plans are being made to develop a similar interface to SEAPAK for hydrographic data using EPIC (a hydrographic data analysis package developed by NOAA/PMEL).

  9. Historical Photos, Artwork, and Objects - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You along with a vast collection of rare astronomy texts. USNO Master Clock Time Javascript must be Enabled

  10. The Fleet Numerical Meteorology and Oceanography Center (FNMOC) - Naval

    Science.gov Websites

    Prediction Charts (EFS). WxMAP depictions of NAVGEM predictions for side-by-side comparison with NCEP global NWP model (GFS) are also available. Oceanography Products This area provides Global & Regional

  11. Federated Giovanni: A Distributed Web Service for Analysis and Visualization of Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2014-01-01

    The Geospatial Interactive Online Visualization and Analysis Interface (Giovanni) is a popular tool for users of the Goddard Earth Sciences Data and Information Services Center (GES DISC) and has been in use for over a decade. It provides a wide variety of algorithms and visualizations to explore large remote sensing datasets without having to download the data and without having to write readers and visualizers for it. Giovanni is now being extended to enable its capabilities at other data centers within the Earth Observing System Data and Information System (EOSDIS). This Federated Giovanni will allow four other data centers to add and maintain their data within Giovanni on behalf of their user community. Those data centers are the Physical Oceanography Distributed Active Archive Center (PO.DAAC), MODIS Adaptive Processing System (MODAPS), Ocean Biology Processing Group (OBPG), and Land Processes Distributed Active Archive Center (LP DAAC). Three tiers are supported: Tier 1 (GES DISC-hosted) gives the remote data center a data management interface to add and maintain data, which are provided through the Giovanni instance at the GES DISC. Tier 2 packages Giovanni up as a virtual machine for distribution to and deployment by the other data centers. Data variables are shared among data centers by sharing documents from the Solr database that underpins Giovanni's data management capabilities. However, each data center maintains their own instance of Giovanni, exposing the variables of most interest to their user community. Tier 3 is a Shared Source model, in which the data centers cooperate to extend the infrastructure by contributing source code.

  12. Perspectives on chemical oceanography in the 21st century: Participants of the COME ABOARD Meeting examine aspects of the field in the context of 40 years of DISCO

    USGS Publications Warehouse

    Fassbender, Andrea J.; Palevsky, Hilary I.; Martz, Todd R.; Ingalls, Anitra E.; Gledhill, Martha; Fawcett, Sarah E.; Brandes, Jay; Aluwihare, Lihini; Anderson, Robert M.; Bender, Sara; Boyle, Ed; Bronk, Debbie; Buesseler, Ken; Burdige, David J.; Casciotti, Karen; Close, Hilary; Conte, Maureen; Cutter, Greg; Estapa, Meg; Fennel, Katja; Ferron, Sara; Glazer, Brian; Goni, Miguel; Grand, Max; Guay, Chris; Hatta, Mariko; Hayes, Chris; Horner, Tristan; Ingall, Ellery; Johnson, Kenneth G.; Juranek, Laurie; Knapp, Angela; Lam, Phoebe; Luther, George; Matrai, Paty; Nicholson, David; Paytan, Adina; Pellenbarg, Robert; Popendorf, Kim; Reddy, Christopher M.; Ruttenberg, Kathleen; Sabine, Chris; Sansone, Frank; Shaltout, Nayrah; Sikes, Liz; Sundquist, Eric T.; Valentine, David; Wang, Zhao (Aleck); Wilson, Sam; Barrett, Pamela; Behrens, Melanie; Belcher, Anna; Biermann, Lauren; Boiteau, Rene; Clarke, Jennifer; Collins, Jamie; Coppola, Alysha; Ebling, Alina M.; Garcia-Tigreros, Fenix; Goldman, Johanna; Guallart, Elisa F.; Haskell, William; Hurley, Sarah; Janssen, David; Johnson, Winn; Lennhartz, Sinikka; Liu, Shuting; Rahman, Shaily; Ray, Daisy; Sarkar, Amit; Steiner, Zvika; Widner, Brittany; Yang, Bo

    2017-01-01

    The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the field.

  13. An oceanography summer school in Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    Arbic, B. K.; Ansong, J. K.; Johnson, W.; Nyadjro, E. S.; Nyarko, E.

    2016-02-01

    Because oceanography is a global science, it clearly benefits from the existence of a world-wide network of oceanographers. As with most STEM disciplines, sub-Saharan Africa is not as well represented in the field of oceanography as it should be, given its large population. The need for oceanographers in sub-Saharan Africa is great, due to a long list of ocean-related issues affecting African development, including but not limited to fishing, oil drilling, sea level rise, coastal erosion, shipping, and piracy. We view this as an opportunity as well as a challenge. Many of the world's fastest growing economies are in sub-Saharan Africa, and STEM capacity building could further fuel this growth. With support from the US National Science Foundation, we ran an oceanography summer school from August 24-27, 2015, at the Regional Maritime University (RMU) in Ghana, West Africa. This first summer school was lecture-based, with a focus on basic chemical oceanography, basic physical oceanography, ocean modeling, and satellite oceanography. About 35 participants came to almost every lecture, and about 20 other participants came to some of the lectures as their time permitted. The participants included RMU faculty, 12 students from the Kwame Nkrumah University of Science and Technology, one Associate Oceanographer from the University of Ghana, and some participants from private sector companies and Ghanaian governmental agencies. There were long and lively discussions at the end of each lecture, and there was a lengthy discussion at the conclusion of the school on how to improve future summer schools. In 2016 and 2017, we plan to divide into smaller groups so that participants can pursue their particular interests in greater depth, and to allow time for student presentations. We also plan to begin exploring the potential for research partnerships, and to utilize distance learning to involve more faculty and students from locations throughout Ghana and perhaps from even other countries in sub-Saharan Africa.

  14. Applied Coastal Oceanography--A Course That Integrates Science and Business.

    ERIC Educational Resources Information Center

    Montvilo, Jerome A.; Levin, Douglas R.

    1998-01-01

    Describes a course designed to teach students the fundamentals of coastal oceanography and the scientific methodologies used in studying this field. Business applications of this information also play an important role in the course. (DDR)

  15. Oceanography, the new Frontier for the Twenty-First Century

    ERIC Educational Resources Information Center

    Marshall, Nelson

    1973-01-01

    Discusses the discipline of oceanography and some of its specific areas of concern. Describes the major resources of the oceans and reflects on how these may be utilized and shared by nations in the future. (JR)

  16. Mentoring Women in Physical Oceanography

    NASA Astrophysics Data System (ADS)

    Gerber, Lisa M.; Lozier, M. Susan

    2010-08-01

    MPOWIR Pattullo Conference; Charleston, South Carolina, 23-26 May 2010; Initiated in 2004, Mentoring Physical Oceanography Women to Increase Retention (MPOWIR) is a community-initiated and community-led program aimed at providing mentoring to junior women in physical oceanography to improve their retention in the field. The centerpiece of the MPOWIR program is the Pattullo Conference, a two-and-a-half-day mentoring event held biannually. The second conference was held in South Carolina. The conference is named for June Pattullo, the first woman to receive a Ph.D. in physical oceanography. The goals of the Pattullo Conference are to build community networks among junior and senior scientists, to provide junior scientists with feedback on their current and planned research projects, to provide advice to junior scientists on their career goals, to introduce both senior and junior scientists to aspects of professional development, and to raise awareness of issues confronting junior women among the senior scientist community.

  17. Macroecology: A Primer for Biological Oceanography

    NASA Astrophysics Data System (ADS)

    Li, W. K. W.

    2016-02-01

    Macroecology is the study of ecological patterns discerned at a spatial, temporal, or organization scale higher than that at which the focal entities interact. Such patterns are statistical or emergent manifestations arising from the ensemble of component entities. Although macroecology is a neologism largely based in terrestrial and avian ecology, macroscopic patterns have long been recognised in biological oceanography. Familiar examples include Redfield elemental stoichiometry, Elton trophic pyramids, Sheldon biomass spectrum, and Margalef life-forms mandala. Macroecological regularities can often be found along various continua, such as along body size in power-law scaling or along habitat temperature in metabolic theory. Uniquely in oceanography, a partition of the world ocean continuum into Longhurst biogeochemical provinces provides a spatial organization well-suited for macroecological investigations. In this rational discrete approach, fundamental processes in physical and biological oceanography that differentiate a set of non-overlapping ocean regions also appear to shape the macroecological structure of phytoplankton communities.

  18. National Ocean Sciences Bowl in 2013: A National Competition for High School Ocean Science Education

    DTIC Science & Technology

    2013-09-30

    The school even has begun to list oceanography as an extracurricular activity in its advertisements! I have seen firsthand how NOSB has raised an...event at the NOSB Finals; • Develop a career booklet to help guide students selecting a career related to ocean sciences; and • Actively encourage...students from diverse communities to participate in NOSB activities . APPROACH The National Ocean Sciences Bowl® (NOSB ®) is a nationally

  19. D. Carlos de Braganca, a Pioneer of Experimental Marine Oceanography: Filling the Gap between Formal and Informal Science Education

    ERIC Educational Resources Information Center

    Faria, Claudia; Pereira, Goncalo; Chagas, Isabel

    2012-01-01

    The activities presented in this paper are part of a wider project that investigates the effects of infusing the history of science in science teaching, toward students' learning and attitude. Focused on the work of D. Carlos de Braganca, King of Portugal from 1889 to 1908, and a pioneer oceanographer, the activities are addressed at the secondary…

  20. Production Mechanisms, Number Concentration, Size Distribution. Chemical Composition, and Optical Properties of Sea Spray Aerosols

    NASA Technical Reports Server (NTRS)

    Meskhidze, Nicholas; Petters, Markus; Tsigaridis, Kostas; Bates. Tim; O'Dowd, Colin; Reid, Jeff; Lewis, Ernie R.; Gantt, Brett; Anguelova, Magdalena D.; Bhave, Prakash V.; hide

    2013-01-01

    Over forty scientists from six countries convened in Raleigh, NC on June 4-6 2012 to review the status and prospects of sea spray aerosol research. Participants were researchers from the oceanography and atmospheric science communities, including academia, private industry, and government agencies. The recommendations from the working groups are summarized in a science prioritization matrix that is meant to prioritize the research agenda and identify areas of investigation by the magnitude of their impact on proposed science questions. Str

  1. The Sky This Week, 2015 December 15 - 22 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You . Even my high-school astronomy teacher, who served as a gunnery officer on a convoy transport in World

  2. History of Science and Science Museums

    ERIC Educational Resources Information Center

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-01-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish…

  3. Questions about Careers in Oceanography.

    ERIC Educational Resources Information Center

    Anderson, Aubrey L.

    Knowing the relationship of the ocean to man, the weather and climate, availability of resources from the ocean, use of the ocean in transporation, waste disposal, and defense, and developing an understanding of the impact on the oceans of human activity are all goals of oceanographers. The goal of this brochure is to provide concise informative…

  4. HF Surface Wave Radar for Oceanography -- A Review of Activities in Germany

    DTIC Science & Technology

    2005-04-14

    Environmental and Remote Sensing Center (NERSC). The model and data assimilation technique is described by Breivik and Sætra [2]. Figure 10 shows a...forecasts with the measurements taken at that time, the rms error increases to 20 cm/s. Breivik and Sætra, 2001, present scatter plots and correlations

  5. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  6. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  7. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  8. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  9. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  10. 32 CFR 770.31 - List of major naval installations in the State of Hawaii and cognizant commanders authorized to...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 96860. (2) Naval Western Oceanography Center, Pearl Harbor. Contact: Commanding Officer, Naval Western Oceanography Center, Box 113, Pearl Harbor, HI 96860. (3) Naval Air Station, Barbers Point. Contact: Commanding...

  11. Inverse Problems in Hydrologic Radiative Transfer

    DTIC Science & Technology

    2003-09-30

    Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438⎯1454...coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438⎯1454. G.C. Boynton and H.R. Gordon, 2002, An irradiance inversion

  12. Application of optimal data assimilation techniques in oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.N.

    Application of optimal data assimilation methods in oceanography is, if anything, more important than it is in numerical weather prediction, due to the sparsity of data. Here, a general framework is presented and practical examples taken from the author`s work are described, with the purpose of conveying to the reader some idea of the state of the art of data assimilation in oceanography. While no attempt is made to be exhaustive, references to other lines of research are included. Major challenges to the community include design of statistical error models and handling of strong nonlinearity.

  13. Dissertations Initiative for the Advancement of Limnology and Oceanography (DIALOG)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The DIALOG Program was founded by the American Society of Limnology and Oceanography (ASLO), in order to reduce the historical, institutional and philosophical barriers that limit the exchange of information between limnologists and oceanographers, and to foster interdisciplinary and inter-institutional research. This was achieved by targeting a recent cohort of Ph.D. recipients whose work included a biological component of limnology or oceanography. The program included: (1) publication of the submitted Ph.D. dissertation abstracts; (2) a symposium to facilitate exchange across institutions and disciplines; and (3) establishment of a centralized data base for applicant characterization and tracking.

  14. IEOOS: the Spanish Institute of Oceanography Observing System

    NASA Astrophysics Data System (ADS)

    Tel, E.; Balbin, R.; Cabanas, J. M.; Garcia, M. J.; Garcia-Martinez, M. C.; Gonzalez-Pola, C.; Lavin, A.; Lopez-Jurado, J. L.; Rodriguez, C.; Ruiz-Villarreal, M.; Sanchez-Leal, R. F.; Vargas-Yanez, M.; Velez-Belchi, P.

    2015-10-01

    Since its foundation, 100 years ago, the Spanish Institute of Oceanography (IEO) has been observing and measuring the ocean characteristics. Here is a summary of the initiatives of the IEO in the field of the operational oceanography (OO). Some systems like the tide gauges network has been working for more than 70 years. The IEO standard sections began at different moments depending on the local projects, and nowadays there are more than 180 coastal stations and deep-sea ones that are systematically sampled, obtaining physical and biochemical measurements. At this moment, the IEO Observing System (IEOOS) includes 6 permanent moorings equipped with currentmeters, an open-sea ocean-meteorological buoy offshore Santander and an SST satellital image reception station. It also supports the Spanish contribution to the ARGO international program with 47 deployed profilers, and continuous monitoring thermosalinometers, meteorological stations and ADCP onboard the IEO research vessels. The system is completed with the IEO contribution to the RAIA and Gibraltar observatories, and the development of regional prediction models. All these systematic measurements allow the IEO to give responses to ocean research activities, official agencies requirements and industrial and main society demands as navigation, resource management, risks management, recreation, etc, as well as for management development pollution-related economic activities or marine ecosystems. All these networks are linked to international initiatives, framed largely in supranational programs Earth observation sponsored by the United Nations or the European Union. The synchronic observation system permits following spatio-temporal description of some events, as new deep water formation in the Mediterranean Sea and the injection of heat to intermediate waters in the Bay of Biscay after some colder northern storms in winter 2005.

  15. IEOOS: the Spanish Institute of Oceanography Observing System

    NASA Astrophysics Data System (ADS)

    Tel, Elena; Balbin, Rosa; Cabanas, Jose-Manuel; Garcia, Maria-Jesus; Garcia-Martinez, M. Carmen; Gonzalez-Pola, Cesar; Lavin, Alicia; Lopez-Jurado, Jose-Luis; Rodriguez, Carmen; Ruiz-Villarreal, Manuel; Sánchez-Leal, Ricardo F.; Vargas-Yáñez, Manuel; Vélez-Belchí, Pedro

    2016-03-01

    Since its foundation, 100 years ago, the Spanish Institute of Oceanography (IEO) has been observing and measuring the ocean characteristics. Here is a summary of the initiatives of the IEO in the field of the operational oceanography. Some systems like the tide gauges network has been working for more than 70 years. The standard sections began at different moments depending on the local projects, and nowadays there are more than 180 coastal stations and deep-sea ones that are systematically sampled, obtaining physical and biochemical measurements. At this moment, the Observing System includes six permanent moorings equipped with current meters, an open-sea ocean-meteorological buoy offshore Santander and a sea-surface temperature satellite image station. It also supports the Spanish contribution to the Argo international programme with 47 deployed profilers, and continuous monitoring thermosalinometers, meteorological stations and vessel-mounted acoustic Doppler current profilers on the research vessel fleet. The system is completed with the contribution to the Northwest Iberian peninsula and Gibraltar observatories, and the development of regional prediction models. All these systematic measurements allow the IEO to give responses to ocean research activities, official agencies requirements and industrial and main society demands such as navigation, resource management, risks management, recreation, as well as for management development pollution-related economic activities or marine ecosystems. All these networks are linked to international initiatives, framed largely in supranational programmes of Earth observation sponsored by the United Nations or the European Union. The synchronic observation system permits a spatio-temporal description of some events, such as new deep water formation in the Mediterranean Sea and the injection of heat to intermediate waters in the Bay of Biscay after some colder northern storms in winter 2005.

  16. Review of the physical oceanography of the Cape Hatteras, North Carolina Region. Volume 1. Literature synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, C.E.; Berger, T.J.; Boicourt, W.C.

    The present study is part of a sequence of programs designed to provide the MMS with a basis for evaluating the potential environmental impacts of oil and gas production off of the Cape Hatteras region. The primary objective of this review is to summarize and critique the present state of knowledge of the physical oceanography of the complex region offshore of Cape Hatteras, North Carolina, within the context of understanding the regional circulation and its relation to the fate of any discharges resulting from offshore oil and gas activity. The two other related objectives are to produce an annotated bibliographymore » of the pertinent literature, primarily from 1970 to the present, and to identify relevant oceanographic data sets which can provide a basis for an improved understanding of circulation patterns and physical oceanographic conditions in the study area.« less

  17. ONR Ocean Wave Dynamics Workshop

    NASA Astrophysics Data System (ADS)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  18. Commercial applications of satellite oceanography

    NASA Technical Reports Server (NTRS)

    Montgomery, D. R.

    1981-01-01

    It is shown that in the next decade the oceans' commercial users will require an operational oceanographic satellite system or systems capable of maximizing real-time coverage over all ocean areas. Seasat studies suggest that three spacecraft are required to achieve this. Here, the sensor suite would measure surface winds, wave heights (and spectral energy distribution), ice characteristics, sea-surface temperature, ocean colorimetry, height of the geoid, salinity, and subsurface thermal structure. The importance of oceanographic data being distributed to commercial users within two hours of observation time is stressed. Also emphasized is the importance of creating a responsive oceanographic satellite data archive. An estimate of the potential dollar benefits of such an operational oceanographic satellite system is given.

  19. Human and climate impact on global riverine water and sediment fluxes - a distributed analysis

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Syvitski, J. P.

    2013-05-01

    Understanding riverine water and sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of climate, landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. The intensity and dynamics between man-made and climatic factors vary widely across the globe and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment and water discharge model (WBMsed) to simulate human and climate effect on our planet's large rivers.

  20. Teachers Guide.

    ERIC Educational Resources Information Center

    Linsky, Ronald B.; Schnitger, Ronald L.

    This guide provides teachers with copies of the materials given to students participating in the oceanography program of the Orange County Floating Laboratory Program and provides information concerning colleges and universities offering courses in oceanography and marine science, source of films, and sources of publications concerning the Navy's…

  1. Agricultural and hydrological applications of radar

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1976-01-01

    Program objectives, covering a wide range of disciplines and activities in radar remote sensing, include radar systems development and analysis, data processing and display, and data interpretation in geology, geography and oceanography. Research was focused on the evaluation of radar remote sensing applications in hydrology and agriculture based on data acquired with the Microwave Active Spectrometer (MAS) system. The title, author(s) and abstract of each of the 62 technical reports generated under this contract are appended.

  2. 1960-69 Cumulative Index of Articles Related to Oceanography and Limnology Education in The Science Teacher.

    ERIC Educational Resources Information Center

    Cohen, Maxwell

    Indexed are articles relating to oceanography and limnology published in "The Science Teacher" between 1960 and 1969. Articles are indexed under title, author, and topic. Topics include background information, course descriptions, and laboratory equipment and techniques. (EB)

  3. AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report

    DTIC Science & Technology

    2015-12-12

    Prepared by: Paul D. Bueren Scripps Institution of Oceanography (SIO) 297 Rosecrans St. San Diego, CA 98106 Date: 12 December 2015 Program Officer...ORGANIZATION NAME(S) AND ADDRESS(ES) Scripps Institution of Oceanography (SIO),,297 Rosecrans St.,,San Diego,,CA, 98106 8. PERFORMING ORGANIZATION

  4. Additional Resources - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You , including research and development results. Includes Astronomy and Space, as well as Earth and Ocean Sciences subject categories. Astronomy Resources Union List of Astronomy Serials (ULAS) - Bibliographic

  5. Software Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You astronomy. Available as Fortran, C, or Python source code. Current version: 3.1 Software Products by Our computer or programmable calculator. Standards Of Fundamental Astronomy (SOFA) Libraries The International

  6. The Oceans and You.

    ERIC Educational Resources Information Center

    American Society for Oceanography, Washington, DC.

    This Oceanographic Information Kit consists of seven booklets which discuss career opportunities and related information in oceanography as follows: a general overview of the nature of oceanography and the study necessary in preparing for a career in this field; oceanographic employment opportunities possible with the federal government described…

  7. The Biological and Chemical Oceanography Data Management Office

    NASA Astrophysics Data System (ADS)

    Allison, M. D.; Chandler, C. L.; Groman, R. C.; Wiebe, P. H.; Glover, D. M.; Gegg, S. R.

    2011-12-01

    Oceanography and marine ecosystem research are inherently interdisciplinary fields of study that generate and require access to a wide variety of measurements. In late 2006 the Biological and Chemical Oceanography Sections of the National Science Foundation (NSF) Geosciences Directorate Division of Ocean Sciences (OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO). In late 2010 additional funding was contributed to support management of research data from the NSF Office of Polar Programs Antarctic Organisms & Ecosystems Program. The BCO-DMO is recognized in the 2011 Division of Ocean Sciences Sample and Data Policy as one of several program specific data offices that support NSF OCE funded researchers. BCO-DMO staff members offer data management support throughout the project life cycle to investigators from large national programs and medium-sized collaborative research projects, as well as researchers from single investigator awards. The office manages and serves all types of oceanographic data and information generated during the research process and contributed by the originating investigators. BCO-DMO has built a data system that includes the legacy data from several large ocean research programs (e.g. United States Joint Global Ocean Flux Study and United States GLOBal Ocean ECosystems Dynamics), to which data have been contributed from recently granted NSF OCE and OPP awards. The BCO-DMO data system can accommodate many different types of data including: in situ and experimental biological, chemical, and physical measurements; modeling results and synthesis data products. The system enables reuse of oceanographic data for new research endeavors, supports synthesis and modeling activities, provides availability of "real data" for K-12 and college level use, and provides decision-support field data for policy-relevant investigations. We will present an overview of the data management system capabilities including: map-based and text-based data discovery and access systems; recent enhancements to data search tools; data export and download utilities; and strategic use of controlled vocabularies to facilitate data integration and to improve data system interoperability.

  8. The ARMADA Project: Bringing Oceanography and the Arctic to the Midwest

    NASA Astrophysics Data System (ADS)

    Pazol, J.

    2010-12-01

    In the fall of 2009, I spent 6 weeks aboard the Coast Guard Icebreaker Healy on a mapping expedition in the Arctic Ocean, through participation in the University of Rhode Island's ARMADA Project. Because I grew up in the Midwest, went to college here, and teach in the Chicago suburbs, I had limited first-hand experience in oceanography, as did most of my students. During my time aboard the ship, I primarily served as a member of the mapping team, collecting bathymetric and seismic data. My other science activities included aiding geologists and acoustic engineers in dredging projects and deployment of under-ice recording devices. I collected water data, sent off weather balloons, and assisted marine mammal observers. For the ARMADA Project I kept an on-line journal, which had a far-reaching impact. Students in many schools kept track of my activities and communicated with me via e-mail. Colleagues and friends shared the journal through other media, such as Facebook. Several of my entries were published in blogs belonging to NOAA and the USGS. I received a grant for renting a satellite phone, and through it was able to make "Live from the Arctic" phone calls. After introductory PowerPoints I communicated with more than 420 students in 5 schools in 3 states. When I returned, I made a series of presentations about the Arctic and my adventures to hundreds of people and was featured in an educational magazine with a circulation of more than 90,000. I also participated in an in-depth mentoring program with a new teacher to help her succeed during the first years of her career. The results: My students and I now have a direct connection to the Arctic and to the fields of oceanography, acoustic engineering, and geology. On their own initiative, students have developed individual projects exploring aspects of my research. They have attended presentations from the Extreme Ice Center and have become involved in drilling issues in the Chukchi Sea. A group of students is exploring the possibility of working with scientists from Scripps Institution of Oceanography to analyze the acoustic data. These are just some of the ways that a teacher's research experience can be effectively translated into the classroom setting.

  9. Oceanography Field Practicum, Spring Half-Term, 1972.

    ERIC Educational Resources Information Center

    Monahan, Edward C.; And Others

    A description of the course and the facilities for the course are given. The Course Log which lists the lectures, cruises, and other activities available to students is also given. The abstract or the paper of each students' individual research project has also been printed. The subjects of these projects range through all fields of earth science…

  10. Marine Biology and Oceanography, Grades Nine to Twelve. Part II.

    ERIC Educational Resources Information Center

    Kolb, James A.

    This unit, one of a series designed to develop and foster an understanding of the marine environment, presents marine science activities for students in grades 9-12. The unit, focusing on sea plants/animals and their interactions with each other and the non-living environment, has sections dealing with: marine ecology; marine bacteriology;…

  11. Marine Biology and Oceanography, Grades Seven and Eight.

    ERIC Educational Resources Information Center

    Kolb, James A.

    This unit, one of a series designed to develop and foster an understanding of the marine environment, presents marine science activities for students in grades 7 and 8. The unit, focusing on life in the sea and the physical factors which influence that life, is divided into sections dealing with: (1) the theory of plate tectonics; (2) ocean floor…

  12. Shedding Light on the Sea: André Morel's Legacy to Optical Oceanography

    NASA Astrophysics Data System (ADS)

    Antoine, David; Babin, Marcel; Berthon, Jean-François; Bricaud, Annick; Gentili, Bernard; Loisel, Hubert; Maritorena, Stéphane; Stramski, Dariusz

    2014-01-01

    André Morel (1933-2012) was a prominent pioneer of modern optical oceanography, enabling significant advances in this field. Through his forward thinking and research over more than 40 years, he made key contributions that this field needed to grow and to reach its current status. This article first summarizes his career and then successively covers different aspects of optical oceanography where he made significant contributions, from fundamental work on optical properties of water and particles to global oceanographic applications using satellite ocean color observations. At the end, we share our views on André's legacy to our research field and scientific community.

  13. Marine geology and oceanography of Arabian Sea and coastal Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haq, B.U.; Milliman, J.D.

    This volume is a collection of papers presented at the first US-Pakistan workshop in marine science held in Karachi, Pakistan, in November 1982. Of the twenty-four contributions in this book, fourteen cover topics specific to the Arabian Sea-coastal Pakistan region. These include six papers on the geology, tectonics, and petroleum potential of Pakistan, four papers on sedimentary processes in the Indus River delta-fan complex, and four papers on the biological oceanography of the Arabian Sea and coastal Pakistan. The additional ten papers are overviews of shelf sedimentation processes, paleoceanography, the marine nutrient cycle, and physical and chemical oceanography.

  14. Shedding light on the sea: André Morel's legacy to optical oceanography.

    PubMed

    Antoine, David; Babin, Marcel; Berthon, Jean-François; Bricaud, Annick; Gentili, Bernard; Loisel, Hubert; Maritorena, Stéphane; Stramski, Dariusz

    2014-01-01

    André Morel (1933-2012) was a prominent pioneer of modern optical oceanography, enabling significant advances in this field. Through his forward thinking and research over more than 40 years, he made key contributions that this field needed to grow and to reach its current status. This article first summarizes his career and then successively covers different aspects of optical oceanography where he made significant contributions, from fundamental work on optical properties of water and particles to global oceanographic applications using satellite ocean color observations. At the end, we share our views on André's legacy to our research field and scientific community.

  15. Physics in Oceanography.

    ERIC Educational Resources Information Center

    Charnock, H.

    1980-01-01

    Described is physical oceanography as analyzed by seven dependent variables, (three components of velocity, the pressure, density, temperature and salinity) as a function of three space variables and time. Topics discussed include the heat balance of the earth, current patterns in the ocean, heat transport, the air-sea interaction, and prospects…

  16. Astronomy - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Astronomy USNO Logo USNO Astronomical Applications AA Data Services Astronomical Optical/IR Products VLBI-based Products Astrometry Information Center Info Astronomy The Sky This Week a

  17. A Field Study of an Iris Identification System

    DTIC Science & Technology

    2008-05-01

    conducted a field trial of a commercial iris identification scanner at the US Navy Fleet Numerical Meterology and Oceanography Center (FNMOC) in...identification scanner at the US Navy Fleet Numerical Meterology and Oceanography Center (FNMOC) in Mon- terey, CA. Scans were performed by US military guards

  18. Epistemic Levels in Argument: An Analysis of University Oceanography Students' Use of Evidence in Writing.

    ERIC Educational Resources Information Center

    Kelly, Gregory J.; Takao, Allison

    2002-01-01

    Examines university oceanography students' use of evidence in writing considering the relative epistemic status of propositions comprising student' written texts. Defines the epistemic levels by discipline-specific geological constructs from descriptions of data, to identification of features, to relational aspects of features, to theoretical…

  19. Education in Marine Science and Technology--Historical and Current Issues.

    ERIC Educational Resources Information Center

    Abel, Robert B.

    This review of marine science and technology education and related issues was presented to the American Association for the Advancement of Science, December 27, 1967. Areas reviewed include manpower supply and demand, oceanography education history, oceanography and the social sciences, training of technicians, the ocean engineer, education for…

  20. The Epistemological Framing of a Discipline: Writing Science in University Oceanography.

    ERIC Educational Resources Information Center

    Kelly, Gregory J.; Chen, Catherine; Prothero, William

    2000-01-01

    Examines how instruction in scientific writing in a university oceanography course communicated epistemological positions of the discipline. Uses an ethnographic perspective to explore how teachers and students came to define particular views of disciplinary knowledge. Identifies epistemological issues such as uses of evidence, role of expertise,…

  1. Synthesis of Moored Observations Collected During the IWISE 2011 Field Program in the South China Sea

    DTIC Science & Technology

    2015-09-30

    understanding of coastal oceanography by means of applying simple dynamical theories to high-quality observations obtained in the field. My primary...area of expertise is physical oceanography , but I also enjoy collaborating with biological, chemical, acoustical, and optical oceanographers to work

  2. Digital image enhancement techniques used in some ERTS application problems. [geology, geomorphology, and oceanography

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Billingsley, F. C.

    1974-01-01

    Enhancements discussed include contrast stretching, multiratio color displays, Fourier plane operations to remove striping and boosting MTF response to enhance high spatial frequency content. The use of each technique in a specific application in the fields of geology, geomorphology and oceanography is demonstrated.

  3. Publications about Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › Publications about Products USNO Logo USNO Navigation Earth Orientation Products GPS-based Products VLBI-based Products EO Information Center

  4. Software - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › Software USNO Logo USNO Navigation Earth Orientation Search databases Auxiliary Software Supporting Software Form Folder Earth Orientation Matrix Calculator

  5. VLBI-based Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You terrestrial reference frames and to predict the variable orientation of the Earth in three-dimensional space antennas that define a VLBI-based Terrestrial Reference Frame (TRF) and the Earth Orientation Parameters

  6. Data Services - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You the Earth's surface for any date and time. Apparent Disk of Solar System Object Creates a synthetic image of the telescopic appearance of the Moon or other solar system object for specified date and time

  7. Astronomical Applications - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Information Center Background information on common astronomical phenomena, calendars and time, and related topics Rise, Set, and Twilight Definitions World Time Zone Map Phases of the Moon and Percent of the Moon

  8. Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You ) provides a wide range of astronomical data and products, and serves as the official source of time for the U.S. Department of Defense and a standard of time for the entire United States. The following NMOC

  9. USNO Scientific Colloquia - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Navigation Tour Information USNO Scientific Colloquia Info USNO Scientific Colloquia Time and Place: Unless departure. Add additional time prior to arriving at the colloquium for issuance of a visitors badge and

  10. Oceanography for Landlocked Classrooms. Monograph V.

    ERIC Educational Resources Information Center

    Madrazo, Gerry M., Jr., Ed.; Hounshell, Paul B., Ed.

    This monograph attempts to show the importance of bringing marine biology into science classrooms, discusses what makes the ocean so important and explains why oceanography should be included in the science curriculum regardless of where students live. Section I, "Getting Started," includes discussions on the following: (1) "Why Marine Biology?";…

  11. Atmospheric rivers emerge as a global science and applications focus

    USGS Publications Warehouse

    Ralph, F. Martin; Dettinger, Michael; Lavers, David A.; Gorodetskaya, Irina; Martin, Andrew; Viale, Maximilliano; White, Allen; Oakley, Nina; Rutz, Jonathan; Spackman, J. Ryan; Wernli, Heini; Cordeira, Jason

    2017-01-01

    Recent advances in atmospheric sciences and hydrology have identified the key role of atmo-spheric rivers (ARs) in determining the distribution of strong precipitation events in the midlatitudes. The growth of the subject is evident in the increase in scientific publications that discuss ARs (Fig. 1a). Combined with related phenomena, that is, warm conveyor belts (WCBs) and tropical moisture exports (TMEs), the frequency, position, and strength of ARs determine the occurrence of floods, droughts, and water resources in many parts of the world. A conference at the Scripps Institution of Oceanography in La Jolla, California, recently gathered over 100 experts in atmospheric, hydrologic, oceanic, and polar science; ecology; water management; and civil engineering to assess the state of AR science and to explore the need for new information. This first International Atmospheric Rivers Conference (IARC) allowed for much needed introductions and interactions across fields and regions, for example, participants came from five continents, and studies covered ARs in six continents and Greenland (Fig. 1b). IARC also fostered discussions of the status and future of AR science, and attendees strongly supported the idea of holding another IARC at the Scripps Institution of Oceanography in the summer of 2018.

  12. An example of fisheries oceanography: Walleye pollock in Alaskan waters

    NASA Astrophysics Data System (ADS)

    Schumacher, Jim; Kendall, Arthur W.

    1995-07-01

    A major area of research in fisheries oceanography examines relationships between recruitment dynamics of fish populations and the marine environment. A primary goal is to understand the natural causes of variability in year-class strength of commercially valuable species and apply this knowledge to management [Perry, 1994]. The paradigm that the majority of mortality occurs during transport of early life history stages from spawning to nursery grounds [Rothschild, 1986; Houde, 1987] provides an initial temporal focus for most research. The spatial domain includes the region occupied by early life history stages. Since global climate variability impacts regional ecosystem dynamics, however, the spatial domain often must be expanded. The relative importance and manifestation of biological factors [starvation and predation] that limit survival varies each year. Marked interannual and longer period variations in temperature (an influence on metabolic rates and behavior), transport of planktonic stages, and turbulence can exert an influence on both survival of early life history stages, and distribution of juveniles and adults. To understand how these environmental factors influence reproductive success of fish stocks also requires knowledge of the impact of these factors on predators and prey throughout the food web.

  13. Earth Resources: A continuing bibliography with indexes, issue 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This bibliography lists 616 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1974 and March 1974. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory, natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  14. Earth resources: A continuing bibliography with indexes, issue 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This bibliography lists 472 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1974 and September 1974. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory, natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing, and distribution systems, instrumentation and sensors, and economic analysis.

  15. Earth resources: A continuing bibliography with indexes (issue 60)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 485 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors.

  16. Earth resources: A continuing bibliography with indexes (issue 61)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 606 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors, and economic analysis.

  17. Earth Resources: a Continuing Bibliography with Indexes (Issue 63)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 449 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1 and September 31, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors.

  18. Earth resources: A continuing bibliography with indexes (issue 59)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 518 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors.

  19. Geophysical Fluid Dynamics Laboratory Open Days at the Woods Hole Oceanographic Institution

    NASA Astrophysics Data System (ADS)

    Hyatt, Jason; Cenedese, Claudia; Jensen, Anders

    2015-11-01

    This event was hosted for one week for two consecutive years in 2013 and 2014. It targeted postdocs, graduate students, K-12 students and local community participation. The Geophysical Fluid Dynamics Laboratory at the Woods Hole Oceanographic Institution hosted 10 hands-on demonstrations and displays, with something for all ages, to share the excitement of fluid mechanics and oceanography. The demonstrations/experiments spanned as many fluid mechanics problems as possible in all fields of oceanography and gave insight into using fluids laboratory experiments as a research tool. The chosen experiments were `simple' yet exciting for a 6 year old child, a high school student, a graduate student, and a postdoctoral fellow from different disciplines within oceanography. The laboratory is a perfect environment in which to create excitement and stimulate curiosity. Even what we consider `simple' experiments can fascinate and generate interesting questions from both a 6 year old child and a physics professor. How does an avalanche happen? How does a bath tub vortex form? What happens to waves when they break? How does a hurricane move? Hands-on activities in the fluid dynamics laboratory helped students of all ages in answering these and other intriguing questions. The laboratory experiments/demonstrations were accompanied by `live' videos to assist in the interpretation of the demonstrations. Posters illustrated the oceanographic/scientific applicability and the location on Earth where the dynamics in the experiments occur. Support was given by the WHOI Doherty Chair in Education.

  20. Putting the Deep Biosphere on the Map for Oceanography Courses: Gas Hydrates As a Case Study for the Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Sikorski, J. J.; Briggs, B. R.

    2014-12-01

    The ocean is essential for life on our planet. It covers 71% of the Earth's surface, is the source of the water we drink, the air we breathe, and the food we eat. Yet, the exponential growth in human population is putting the ocean and thus life on our planet at risk. However, based on student evaluations from our introductory oceanography course it is clear that our students have deficiencies in ocean literacy that impact their ability to recognize that the ocean and humans are inextricably connected. Furthermore, life present in deep subsurface marine environments is also interconnected to the study of the ocean, yet the deep biosphere is not typically covered in undergraduate oceanography courses. In an effort to improve student ocean literacy we developed an instructional module on the deep biosphere focused on gas hydrate deposits. Specifically, our module utilizes Google Earth and cutting edge research about microbial life in the ocean to support three inquiry-based activities that each explore different facets of gas hydrates (i.e. environmental controls, biologic controls, and societal implications). The relevant nature of the proposed module also makes it possible for instructors of introductory geology courses to modify module components to discuss related topics, such as climate, energy, and geologic hazards. This work, which will be available online as a free download, is a solid contribution toward increasing the available teaching resources focused on the deep biosphere for geoscience educators.

  1. Marine Biology and Oceanography, Grades Nine to Twelve. Part I.

    ERIC Educational Resources Information Center

    Kolb, James A.

    This unit, one of a series designed to develop and foster an understanding of the marine environment, presents marine science activities for students in grades 9-12. The unit, focusing on physical factors influencing life in the sea, is divided into sections dealing with: (1) the ocean floor; (2) tides; (3) ocean waves; (4) ocean currents; (5)…

  2. Research activities of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor)

    1984-01-01

    A broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography are discussed. The NASA programs, include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX), and the Geopotential Research Mission (GRM). The papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.

  3. Officer Education and Training in Oceanography for ASW and Other Naval Applications.

    ERIC Educational Resources Information Center

    Waterman, Larry Wayne

    The study into the knowledge and experience required for optimum performance by officers assigned to operational, R & D, and managerial duties in Anti-submarine Warfare concludes that oceanography should receive the major emphasis on an interdisciplinary graduate level program of the contributing disciplines in ASW. In planning education and…

  4. Research and Teaching: Implementation of Interactive Engagement Teaching Methods in a Physical Oceanography Course

    ERIC Educational Resources Information Center

    Keiner, Louis E.; Gilman, Craig

    2015-01-01

    This study measures the effects of increased faculty-student engagement on student learning, success rates, and perceptions in a Physical Oceanography course. The study separately implemented two teaching methods that had been shown to be successful in a different discipline, introductory physics. These methods were the use of interactive…

  5. The Sky This Week - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You . Read More... The Sky This Week, 2018 April 17 - 24 Celebrate Dark-sky Week and Astronomy Day! Read More More... The Sky This Week, 2018 April 3 - 10 April is Astronomy Month...no fooling. Read More... The

  6. Leap Second Announcement - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › Leap Second Announcement USNO Logo USNO Navigation Earth Orientation Products GPS-based Products VLBI-based Products EO Information Center Publications

  7. Earth Orientation - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation USNO Logo USNO Navigation Earth Orientation Products GPS -based Products VLBI-based Products EO Information Center Publications about Products Software Info Earth

  8. Skills Conversion Project: Chapter 10, Ocean Engineering and Oceanography. Final Report.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    In order to determine the potential utilization of displaced aerospace and defense technical professionals in oceanography and ocean engineering, a study of ocean-oriented industry in Florida and Southern California was conducted by The National Society of Professional Engineers for the U.S. Department of Labor. After recent consolidation, this…

  9. C-MORE Science Kits as a Classroom Learning Tool

    ERIC Educational Resources Information Center

    Foley, J. M.; Bruno, B. C.; Tolman, R. T.; Kagami, R. S.; Hsia, M. H.; Mayer, B.; Inazu, J. K.

    2013-01-01

    To support teachers in enhancing ocean literacy, the Center for Microbial Oceanography: Research and Education (C-MORE) has developed a series of portable, hands-on science kits on selected topics in oceanography. This paper provides an overview of kit content, describes how the kits were developed, and evaluates their efficacy as a curriculum…

  10. The United States Naval Observatory (USNO) - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Orientation Precise Time James M. Gilliss Library News, Tours & Events About Us Info The United States positions and motion of celestial bodies, motions of the Earth, and precise time. USNO provides tailored

  11. Warning Graphic Legend - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You The next radii represents 64 knot winds. Typhoon Back to top Time Labels Labels indicate the time of = universal time/Zulu Label Back to top Current Postion The current position is the black tropical cyclone

  12. A Resource Guide for Oceanography and Coastal Processes.

    ERIC Educational Resources Information Center

    Walker, Sharon H., Ed.; Damon-Randall, Kimberly, Ed.; Walters, Howard D., Ed.

    This resource guide was developed for elementary, middle, and high school teachers to teach about oceanography and coastal processes. This guide contains information on the program's history and names and contact information for all Operation Pathfinder participants since 1993. The body is divided into 6 topics. Topic 1 is on Physical Parameters,…

  13. Let's Talk About You and Sharks, American Oceanography Special Educational Newsletter.

    ERIC Educational Resources Information Center

    Kraft, Thomas L.; Miloy, Leatha

    1971-01-01

    This special educational newsletter of the American Society for Oceanography presents information on marine oriented subjects, primarily for reading by junior high and secondary school students. Major articles consider the habits and stinging effects of sharks, jelly fish, and sting rays, and what one should do if stung by these fish while…

  14. Distribution and abundance of cetaceans in the north-central and western Gulf of Mexico. Final report. Volume 3. Appendix C. Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.W.; Fargion, G.S.

    1996-05-24

    The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. Appendix C Part 2 contains the hydrogrpahic data collected during TIO Cruises 5-7. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less

  15. Distribution and abundance of cetaceans in the north-central and western Gulf of Mexico. Final report. Volume 1. Executive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.W.; Fargion, G.S.

    1996-05-24

    The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. This volume summarizes the results of the study. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less

  16. Distribution and abundance of cetaceans in the north-central and western Gulf of Mexico. Final report. Volume 3. Appendix B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-24

    The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. Appendix B contains the hydrographic data collected during all four NMFS-SEFSC cruises. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less

  17. Distribution and abundance of cetaceans in the north-central and western Gulf of Mexico. Final report. Volume 2. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.W.; Fargion, G.S.

    1996-05-24

    The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. This volume summarizes the results of the study. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less

  18. Distribution and abundance of cetaceans in the north-central and western Gulf of Mexico. Final report. Volume 3. Appendix C. Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.W.; Fargion, G.S.

    1996-05-24

    The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. Appendix C Part 1 contains the hydrographic data collected during TIO Cruises 1-4. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less

  19. Oceanography and Geoscience Scholars at Texas A&M University Funded through the NSF S-STEM (Scholarships in Science, Technology, Engineering and Mathematics) Program

    NASA Astrophysics Data System (ADS)

    Richardson, M. J.; Gardner, W. D.

    2016-02-01

    Over the last seven years we have led the creation and implementation of the Oceanography and Geoscience Scholars programs at Texas A&M University. Through these programs we have been able to provide scholarship support for 92 undergraduates in Geosciences and 29 graduate students in Oceanography. Fifty-seven undergraduate scholars have graduated in Geosciences: 30 undergraduate students in Meteorology, 7 in Geology, and 20 in Environmental Geosciences. Two students have graduated in other STEM disciplines. Twenty-four students are in the process of completing their undergraduate degrees in STEM disciplines. Twenty-three students have graduated with MS or PhD degrees in Oceanography and five PhD students are completing their dissertations. As specified in the program solicitation all of the scholars are academically talented students with demonstrated financial need as defined by the FAFSA (Free Application for Federal Student Aid). We have endeavored to recruit students from underrepresented groups. One-third of the undergraduate scholars were from underrepresented groups; 28% of the graduate students. We will present the challenges and successes of these programs.

  20. From marine ecology to biological oceanography

    NASA Astrophysics Data System (ADS)

    Mills, Eric L.

    1995-03-01

    Looking back from the 1990s it seems natural to view the work done in the Biologische Anstalt Helgoland by Friedrich Heincke and his colleagues, beginning in 1892, as marine ecology or marine biology, and that done in Kiel, under Victor Hensen and Karl Brandt, as biological oceanography. But historical analysis shows this view to be untenable. Biological oceanography, as a research category and a profession, does not appear until at least the 1950's. In the German tradition of marine research, “Ozeanographie”, originating in 19th century physical geography, did not include the biological sciences. The categories “Meereskunde” and “Meeresforschung” covered all aspects of marine research in Germany from the 1890's to the present day. “Meeresbiologie” like that of Brandt, Heincke, and other German marine scientists, fitted comfortably into these. But in North America no such satisfactory professional or definitional structure existed before the late 1950's. G. A. Riley, one of the first biological oceanographers, fought against descriptive, nonquantitative American ecology. In 1951 he described biological oceanography as the “ecology of marine populations”, linking it with quantitative population ecology in the U.S.A. By the end of the 1960's the U.S. National Science Foundation had recognized biological oceanography as a research area supported separately from marine biology. There was no need for the category “biological oceanography” in German marine science because its subject matter lay under the umbrella of “Meereskunde” or “Meeresforschung”. But in North America, biological oceanography — a fundamental fusion of physics and chemistry with marine biology — was created to give this marine science a status higher than that of the conceptually overloaded ecological sciences. The sociologists Durkheim and Mauss claimed in 1903 that, “the classification of things reproduces the classification of men”; similarly, in science, the classification of professions reproduces the status that their practitioners hope to achieve.

  1. From satellite altimetry to operational oceanography and Argo: three revolutions in oceanography (Fridtjof Nansen Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2012-04-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. Topex/Poseidon revolutionized our vision and understanding of the ocean. It provided new views of the large scale seasonal and interannual sea level and ocean circulation variations. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. The ERS-1/2 orbit was well adapted for mesoscale circulation sampling but the orbit determination and altimeter performance were much less precise than for T/P. We demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. This was an essential first step for the merging of T/P and ERS-1/2. The second step required the development of a global optimal interpolation method. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 years. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution was essential to the development of global ocean forecasting, a second revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) (1998-2008) was phased with the T/P and ERS-1/2 successors (Jason-1 and ENVISAT) and was instrumental in the development of global operational oceanography capabilities. Europe played a leading role in GODAE. In 1998, the global in-situ observing system was inadequate for the global scope of GODAE. This led to the development of Argo, an initial joint venture between CLIVAR and GODAE. Argo has been an outstanding success. The 3000 Argo profiling floats now provide the most important global in-situ observations to monitor and understand the role of the ocean on the earth climate. This is a third revolution in oceanography. I was lucky enough to be involved with many colleagues and friends in these three revolutions or breakthroughs in oceanography. The presentation will provide some historical background on the development of the SSALTO/DUACS merged altimeter products and an overview of their utility and use for ocean research and operational oceanography. I will thengo throughthe development of operational oceanography and Argo over the past 15 years focussing on European contributions, in particular, in the framework of the GMES Marine Service, EuroGOOSand the Euro-Argo research infrastructure. Perspectives and new challenges for the integrated global ocean observing system will be finally discussed.

  2. meeting summary 10th AMS Symposium on Education.

    NASA Astrophysics Data System (ADS)

    Smith, D. R.; Hayes, M. C.; Ramamurthy, M. K.; Zeitler, J. W.; Murphy, K. A.; Croft, P. J.; Nese, J. M.; Friedman, H. A.; Robinson, H. W.; Thormeyer, C. D.; Ruscher, P. A.; Pandya, R. E.

    2001-12-01

    The American Meteorological Society held its 10th Symposium on Education in conjunction with the 82nd Annual Meeting in Albuquerque, New Mexico. The theme of 2001's symposium was enhancing public awareness of the atmospheric and oceanic environments. Thirty-six oral presentations and 38 poster presentations summarized a variety of educational programs or examined educational issues at both the precollege and university levels. There was a special session on increasing awareness of meteorology and oceanography through popular and informal educational activities, as well as a joint session with the 17th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology on using the World Wide Web to deliver information pertaining to the atmosphere, oceans, and coastal zone. Over 200 people representing a wide spectrum of the Society attended one or more of the sessions in this 2-day conference. The program for the 10th Symposium on Education can be viewed in the November 2000 issue of the Bulletin.

  3. Short Training Course in Oceanography. Red Sea & Gulf of Aden Programme (PERSGA).

    ERIC Educational Resources Information Center

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents a training course in oceanography intended for Junior Bachelor of Science (B.S.) graduates in physics, mathematics, chemistry, zoology, botany or geology to give them the minimum qualifications required to work in any of the marine science stations. This 14-week course, organized by the Arab League Educational, Cultural and…

  4. Oceanographic satellite remote sensing: Registration, rectification, and data integration requirements

    NASA Technical Reports Server (NTRS)

    Nichols, D. A.

    1982-01-01

    The problem of data integration in oceanography is discussed. Recommendations are made for technique development and evaluation, understanding requirements, and packaging techniques for speed, efficiency and ease of use. The primary satellite sensors of interest to oceanography are summarized. It is concluded that imaging type sensors make image processing an important tool for oceanographic studies.

  5. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    the analysis of data collected during the VHF acoustics test con- ducted in a wave tank at the Scripps Institution of Oceanography in October 2015...Institution of Oceanography , the co-PI on these exper- iments, undertook the design and fabrication of a new mounting mechanism to eliminate this mounting

  6. Applying Argumentation Analysis To Assess the Quality of University Oceanography Students' Scientific Writing.

    ERIC Educational Resources Information Center

    Takao, Allison Y.; Prothero, William A.; Kelly, Gregory J.

    2002-01-01

    Presents the methods and results of an assessment of students' scientific writing. Studies an introductory oceanography course in a large public university that used an interactive CD-ROM, "Our Dynamic Planet". Analyzes the quality of students' written arguments by using a grading rubric and an argumentation analysis model. Includes 18…

  7. Astronomy Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Astronomy Help USNO Logo USNO Info Astronomy Help Send an e-mail regarding Astronomy related products. Please choose from the topical menu below. Privacy Advisory Your E-Mail Address

  8. VLBI-based Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › VLBI-based Products USNO Logo USNO Navigation Earth determine Earth Orientation Parameters (EOP) is Very Long Baseline Interferometry (VLBI). USNO provides both

  9. Earth Orientation Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Earth Orientation Help USNO Logo USNO Info Earth Orientation Help Send an e-mail regarding Earth Orientation products. Privacy Advisory Your E-Mail Address Subject ■ Select

  10. USNO Master Clock - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › Master Clock USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info USNO Master Clock clock vault The USNO Master Clock is the

  11. GPS timing products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › GPS USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info GPS timing products USNO monitors the GPS constellation and provides

  12. Precise Time - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info Precise Time The U. S. Naval Observatory is charged with maintaining the

  13. Time Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Time Help USNO Logo USNO Info Time Help Send in a request for help on our timing products. Privacy Advisory Your E-Mail Address Subject General Time Inquiries GPS TWSTT NTP

  14. Two-way Satellite Time Transfer - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › TWSTT USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT What is TWSTT? Operational Services Calibration Services Precision Telephone Time NTP Info

  15. Gulf of Mexico physical-oceanography program final report: years 1 and 2. Volume 1. Executive summary. Technical report, 1983-1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In 1982, Minerals Management Service (MMS) initiated a multi-year program under contract with Science Applications International Corp. (SAIC) to study the physical oceanography of the Gulf of Mexico as part of its outer continental shelf environmental-studies programs. This particular program, called the Gulf of Mexico Physical Oceanography Program (GOMPOP), has two primary goals: (1) develop a better understanding and description of conditions and processes governing Gulf circulation; and (2) establish a data base that could be used as initial and boundary conditions by a companion MMS-funded numerical circulation-modeling program. The report presents results from the first two of three yearsmore » of observations in the eastern Gulf.« less

  16. Current Research Activities.

    DTIC Science & Technology

    1975-02-01

    and PoZonium- 210 Investigations of lead- 210 and polonium - 210 in sediments offshore of the 4 Columbia River are under way, with the dual aims of...Geochemical bepb’~for of mercury in Bellingham Bay .. .. ....... 45IiD Lead-ZlO. and polonium -ZlO. .. ............... ..... 46 E. Hydrocarbons in Lake...Biological oceanography, marine food chain dynamics, carbon cycling in the ocean. Martin, Seelye,Ph.D., Johns Hopkins. Geophysical fluid dynamics

  17. Oceanography in Second Life: Use of a Virtual Reality to Enhance Undergraduate Education in Marine Science

    NASA Astrophysics Data System (ADS)

    Villareal, T. A.; Jarmon, L.; Triggs, R.

    2009-12-01

    Shipboard research is a fundamental part of oceanography, but has numerous legal and practical constraints virtually eliminate it as a regular part of large-enrollment programs in marine science. The cost of a properly equipped research vessel alone can prevent student access. While much can be learned by active exploration of archived data by students, the limitations placed on real oceanographic programs by distance, vessel speed, and time are difficult to reproduce in exercises. Pre-cruise planning and collaboration between investigators are likewise a challenge to incorporate. We have used design students in the College of Liberal Arts to construct a oceanographic expedition in Second Life for use in a marine science course (Fall 2009). Second Life is a highly collaborative environment with a variety of tools that allow users to create their own environment and interact with it. Second LIfe is free, highly portable, and inherently amenable to distance or remote teaching. In our application, the research vessel exists as an moving platform with sampling abilities. Software code queries an external MySQL database that contains information from the World Ocean Atlas for the entire ocean, and returns strings of data from standard depths. Students must plan the cruise track to test hypothesis about the ocean, collaborate with other teams to develop the big picture and use standard oceanographic software (Ocean Data Viewer; ODV) to analyze the data. Access to the entire database in ODV then allows comparison to the actual properties and distributions. The effectiveness of this approach is being evaluated by a pre- and post-class surveys and post semester focus group interviews. Similar surveys of the design students that created the environment noted that use of Second Life created a learning experience that was both more immersive and process oriented than traditional college courses. Initial impressions in the marine science class indicate that the strong social networking presence captures these digital native undergraduates rapidly, and that this is a strong positive motivation for working on assigned class activities in Second Life.

  18. Distribution and trajectories of floating and benthic marine macrolitter in the south-eastern North Sea.

    PubMed

    Gutow, Lars; Ricker, Marcel; Holstein, Jan M; Dannheim, Jennifer; Stanev, Emil V; Wolff, Jörg-Olaf

    2018-06-01

    In coastal waters the identification of sources, trajectories and deposition sites of marine litter is often hampered by the complex oceanography of shallow shelf seas. We conducted a multi-annual survey on litter at the sea surface and on the seafloor in the south-eastern North Sea. Bottom trawling was identified as a major source of marine litter. Oceanographic modelling revealed that the distribution of floating litter in the North Sea is largely determined by the site of origin of floating objects whereas the trajectories are strongly influenced by wind drag. Methods adopted from species distribution modelling indicated that resuspension of benthic litter and near-bottom transport processes strongly influence the distribution of litter on the seafloor. Major sink regions for floating marine litter were identified at the west coast of Denmark and in the Skagerrak. Our results may support the development of strategies to reduce the pollution of the North Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. In the Footsteps of Roger Revelle: A STEM Partnership Between Scripps Institution of Oceanography, Office of Naval Research and Middle School Science Students Bringing Next Generation Science Standards into the Classroom through Ocean Science

    NASA Astrophysics Data System (ADS)

    Brice, D.; Appelgate, B., Jr.; Mauricio, P.

    2014-12-01

    Now in its tenth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with Next Generation Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO Ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of Biogeochemical research in the field as it relates to their classroom studies. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum models the Next Generation Science Standards encouraging active inquiry and critical thinking with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role-models. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens, a benefit for our society at large.

  20. Compilation of Abstracts of Theses Submitted by Candidates for Degrees

    DTIC Science & Technology

    1988-09-30

    MONITORING OF CIVILIAN TRAINING RECORDS Sharon Elizabeth Slominski Lieutenant Commander, United States Navy B.A., Radford College, 1975 Ivon Ralph Young...mechanical ice removal. Master of Science in Advisor: R.H. Bourke Meteorology and Oceanography Department of December 1987 Oceanography 494 THE EFFECTS OF...588, 592, 599, 600 Bonsper, D.E.----------------------------------- 383 Bourke , R.H.------------------------------------ 493-4 Bradley, G.H

  1. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonally-Retreating Marginal Ice Zone

    DTIC Science & Technology

    2016-12-30

    of Oceanography . Also, ITP-V investigators have collaborated with aNa a! Postgraduate School 3 student (Gallaher) whose dissertation is based on...under Arctic sea-ice. Journal of Physical Oceanography , doi: http://dx.doi.org/l 0.1175/JPO-D-12-0191.1 Cole, S.T. , F.T. Thwaites, R.A. Krishfield

  2. Developing a Teaching Assistant Preparation Program in the School of Oceanography, University of Washington.

    ERIC Educational Resources Information Center

    McManus, Dean A.

    2002-01-01

    Reports on the development of a program preparing graduate students to teach in the School of Oceanography, University of Washington, in response to repeated graduate student complaints about the lack of a program. Describes the program which is based on surveys of groups affected by the program and research on teaching assistant preparation,…

  3. Oceanography and Mine Warfare

    DTIC Science & Technology

    2000-03-13

    of breaking waves , the position and strength of surface currents, and the propagation of the tide into very shallow waters. In the surf zone...6) sediment properties determine shock wave propagation , a method for mine neutralization in the surf zone. 48 OCEANOGRAPHY AND MINE WARFARE...mines will be buried in the sediments, sedimentary explosive shock wave propagation is critical for determining operational performance. Presently, we

  4. Syllabus for an Associate Degree Program in Applied Marine Biology and Oceanography.

    ERIC Educational Resources Information Center

    Banerjee, Tapan

    Included is a detailed outline of the content of each course required or offered as an elective in the associate degree program. With an 18 or 19 unit load each semester the program requires two years, and includes 64 hours at sea every semester. In addition to chemistry, physics, biology, and oceanography courses, there is a required course in…

  5. Telephone Time - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › Telephone Time USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info Telephone Time USNO provides both voice announcements of the

  6. Astronomical Information Center - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You the Moon Illuminated Time Universal Time and Greenwich Mean Time What is Terrestrial Time? Computing Greenwich Apparent Sidereal Time What are the U.S. Time Zones? World Time Zone Map When Does Daylight Time

  7. The Sky This Week, 2016 February 2 - 9 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Moon occurs on the 8th at 9:39 am Eastern Daylight Time. Look for Luna about four degrees northwest of same time! According to folklore, the lack of a shadow cast by an indigenous rodent in rural

  8. Web-Based Time Synchronization - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › Display Clocks USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info Web-Based Time Synchronization Web time displays from the

  9. The Sky This Week, 2016 March 8 - 15 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You This Week, 2016 March 8 - 15 Info The Sky This Week, 2016 March 8 - 15 Springing forward in time week, waxing to First Quarter on the 15th at 1:03 pm Eastern Daylight Time. She joins the stars of the

  10. The Sky This Week, 2016 April 5 - 12 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You to the evening sky this week, with New Moon falling on the 7th at 7:24 am Eastern Daylight Time. Try . Take some time this week to consider the night sky and the wonderful resource that it truly is. During

  11. Network Time Protocol - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › NTP USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Eastern TZ Mountain TZ DoD Customers Info Network Time Protocol Network

  12. The Sky This Week, 2016 April 12 - 19 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You constellations. First Quarter occurs on the 13th at 11:59 pm Eastern daylight Time. Luna will pass just over a time to talk about artificial night lighting and its role in reducing our view of the sky. It's a great

  13. An analysis of the ionosphere around equinoxes from the COSMIC radio occultation and other observations

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Wan, Weixing; He, Maosheng; Yue, Xinan

    The seasonal behaviors of the ionosphere have been investigated for many decades, but the differences of the ionosphere between the March and September Equinoxes are still lacking investigations. In this report we utilize data of ionospheric electron density (Ne) profiles from COSMIC radio occultation measurements, total electron density (TEC) from TOPEX and Jason-1, and TEC from Global Positioning System (GPS) receivers as well as global ionosonde measurements of the F2 layer critical frequency to investigate the behaviors of the daytime ionosphere around equinoxes at low solar activity (LSA). With the comination of the data from the above sources, we characterize the intensity of the differences between the two equinoxes. The equinoctial differences show a latitudinal dependence as well as an altitude pattern. Our result indicates that the principal difference of the ionosphere are centered around the crest latitudes of the equatorial ionization anomaly. There are some discrepancies in the equinoctial differences shown in these data sources. This work is supported by National Natural Science Foundation of China (40725014). This study made use of IRO data from the COSMIC Data Analysis and Archive Center (CDAAC). Ionosonde data are provided from National Institute of Information and Communications Technology, IPS Radio and Space Services of Australia, and from SPIDR. The JPL GIMs are downloaded from the site: ftp://cddis.gsfc.nasa.gov. TOPEX/POSEIDON and Jason-1 dataset is produced and distributed by the JPL, Physical Oceanography Distributed Active Archive Center.

  14. First photographic records of the giant manta ray Manta birostris off eastern Australia

    PubMed Central

    Jaine, Fabrice R.A.; Kashiwagi, Tom

    2015-01-01

    We present the first photographic evidence of the presence of the giant manta ray Manta birostris in east Australian waters. Two individuals were photographed off Montague Island in New South Wales and off the north east coast of Tasmania, during summer 2012 and 2014, respectively. These sightings confirm previous unverified reports on the species occurrence and extend the known distribution range of M. birostris to 40°S. We discuss these findings in the context of the species’ migratory behaviour, the regional oceanography along the south east Australian coastline and local productivity events. PMID:25649395

  15. First photographic records of the giant manta ray Manta birostris off eastern Australia.

    PubMed

    Couturier, Lydie I E; Jaine, Fabrice R A; Kashiwagi, Tom

    2015-01-01

    We present the first photographic evidence of the presence of the giant manta ray Manta birostris in east Australian waters. Two individuals were photographed off Montague Island in New South Wales and off the north east coast of Tasmania, during summer 2012 and 2014, respectively. These sightings confirm previous unverified reports on the species occurrence and extend the known distribution range of M. birostris to 40°S. We discuss these findings in the context of the species' migratory behaviour, the regional oceanography along the south east Australian coastline and local productivity events.

  16. Charney's Influence on Modern Oceanography

    NASA Astrophysics Data System (ADS)

    Cane, M. A.

    2017-12-01

    In this talk I will review some of Jule Charney's impacts on current oceanographic research. He was of course a major seminal figure in geophysical fluid dynamics, an approach to understanding the atmosphere and oceans that has been thoroughly absorbed in contemporary thinking. In oceanography, his publications make vorticity dynamics the centerpiece of his analysis. Here I pursue two other aspects of his work. The first is to note that his 1955 paper "The Gulf Stream as an inertial boundary layer" appears to be the earliest numerical model in oceanography. The second is that his work on the equatorial undercurrent leads to a simplification of equatorial ocean structure that was exploited by Zebiak and Cane in their model for ENSO, and thus structures later views of how equatorial ocean dynamics influence sea surface temperature.

  17. Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography

    NASA Astrophysics Data System (ADS)

    Yokota, Yusuke; Ishikawa, Tadashi; Watanabe, Shun-ichi

    2018-06-01

    After the twenty-first century, the Global Navigation Satellite System-Acoustic ranging (GNSS-A) technique detected geodetic events such as co- and postseismic effects following the 2011 Tohoku-oki earthquake and slip-deficit rate distributions along the Nankai Trough subduction zone. Although these are extremely important discoveries in geodesy and seismology, more accurate observation that can capture temporal and spatial changes are required for future earthquake disaster prevention. In order to upgrade the accuracy of the GNSS-A technique, it is necessary to understand disturbances in undersea sound speed structures, which are major error sources. In particular, detailed temporal and spatial variations are difficult to observe accurately, and their effect was not sufficiently extracted in previous studies. In the present paper, we reconstruct an inversion scheme for extracting the effect from GNSS-A data and experimentally apply this scheme to the seafloor sites around the Kuroshio. The extracted gradient effects are believed to represent not only a broad sound speed structure but also a more detailed structure generated in the unsteady disturbance. The accuracy of the seafloor positioning was also improved by this new method. The obtained results demonstrate the feasibility of using the GNSS-A technique to detect a seafloor crustal deformation for oceanography research.

  18. Department of the Navy Justification of Estimates for Fiscal Year 1987 Submitted to Congress February 1986. Operation & Maintenance, Navy. Book 3. Budget Activity 3: Intelligence & Communications Budget Activity 8: Training, Medical & OGPA Budget Activity 9: Administration & Assoc Acts. Budget Activity 10: Support to Other Nations

    DTIC Science & Technology

    1986-02-01

    ionospheric sensing 118 I device, provide more reliable comnunications, especially when HF propagation is uncertain, by determining which frequencies...the Fleet Numerical Oceanography Center computer systems. GDEM generates a sound velocity profile from the surface to the sea floor at every 1/2...degrees of lat/log for the Northern Hemisphere oceans. GDEM is a Navy standard data base for all acoustic models. 18) Software Improvement Plan (SIP) as 600

  19. Sailing for Science: on board experiences for transferring knowledge on Historical Oceanography for Future Innovation

    NASA Astrophysics Data System (ADS)

    Garvani, Sara; Carmisciano, Cosmo; Locritani, Marina; Grossi, Luigi; Mori, Anna; Stroobant, Mascha; Schierano, Erika; De Strobel, Federico; Manzella, Giuseppe; Muzi, Enrico; Leccese, Dario; Sinapi, Luigi; Morellato, Claudio; La Tassa, Hebert; Talamoni, Roberta; Coelho, Emanuel; Nacini, Francesca

    2017-04-01

    Smart, sustainable and inclusive Blue Growth means also knowing past technology and the paths followed by ancients in order to understand and monitor marine environments. In general, history of Science is a matter that is not enough explored and explained or promoted in high schools or university official programmes, and, usually, scientist do not consider it as an important part of their curricula. However, bad or good ideas, abandoned or forgotten beliefs, concepts, opinions, do still have a great potential for inspiring present and future scientists, no matter in which historical period they may have been formulated: they should be always be taken into consideration, critically examined and observed by a very close point of view, not just as part of the intellectual framework of some obsolete 'Cabinet of Curiosities' with limited access except for the chosen few. Moreover, history of Science should be transmitted in a more practical way, with hands-on labs showing the limits and challenges that prior generations of ocean explorers, investigators and seafarers had to face in order to answer to crucial questions as self-orientation in open sea, understanding main currents and waves, predicting meteorological conditions for a safe navigation. Oceanography is a relatively young branch of science, and still needs further approvals and knowledge (National Science Foundation, 2000). The Scientific Dissemination Group (SDG) "La Spezia Gulf of Science" - made up by Research Centres, Schools and Cultural associations located in La Spezia (Liguria, Italy) - has a decadal experience in initiatives aimed at people and groups of people of all ages, who are keen on science or who can be guided in any case to take an interest in scientific matters (Locritani et al., 2015). Amongst the SDG activities, the tight relationship with the Historical Oceanography Society, the Italian Navy and the Naval Technical Museum (that collects a rich heritage of civilization, technology and culture witnesses, related to the naval history of seamanship from the origins up to nowadays), allowed the creation of a special educational format based on Historical Oceanography, for university and high school students as an integration for their curriculum. The Historical Oceanography Society has provided the major knowledges included in the ancient volumes of its archive, thanks to the availability of its members that also held theoretical and practical lessons during the course. The present paper will describe the one-week special course (about 60 hours of theory and practice with technical visits to Research centres and Museums) that has been planned to be carried out on board of the Italian Training Navy Ship (A. Vespucci) and has been organized in order to give the hints about on board life, as well as theoretical lessons on modern and historical oceanography, hands-on labs on oceanographic instruments from public and private collections, physiology of diving techniques and astronomy. The general aim of this course has been, hence, to give to excellent students all those technological but also creative and imaginative features of our past. References M. Locritani, I. Batzu, C. Carmisciano, F. Muccini, R. Talamoni, H.L. Tassa, M. Stroobant, G. Guccinelli, L. Benvenuti, M. Abbate, S. Furia, A. Benedetti, M.I. Bernardini, R. Centi, L. Casale, C. Vannucci, F. Giacomazzi, C. Marini, D. Tosi, S. Merlino, E. Mioni, F. Nacini, Feeling the pulse of public perception of science: Does research make our hearts beat faster?, in: MTS/IEEE OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy for a New World, 2015. National Science Foundation, 50 Years of Ocean Discovery: National Science Foundation 1950-2000. Ocean Studies Board, National Research Council ISBN: 0-309-51744-3, 276 pages, 8.5 x 11, 2000. E.L. Mills, The Historian of Science and Oceanography After Twenty Years, Earth Sciences History. 12 (1993) 5-18. J.A. Bennett, History of Technology - McConnell Anita, Historical instruments in oceanography. London: Her Majesty's Stationery Office, 1981. Pp. iv + 51. ISBN 0-11-290324-X. £95. A. McConnell, No sea too deep: the history of oceanographic instruments. Bristol: Adam, The British Journal for the History of Science. 17 (1984) 332.

  20. Ocean studies board has new chairman

    NASA Astrophysics Data System (ADS)

    Katsouros, Mary Hope

    John Sclater of the University of Texas at Austin has succeeded Walter Munk as chairman of the National Research Council's Ocean Studies Board. His term runs to June 30, 1991. The 17 members of OSB represent major disciplines in oceanography. The board advises the academic community and agencies of the federal government responsible for funding basic and applied research in oceanography and for maintaining the wellbeing of the oceans.

  1. SWOT Oceanography and Hydrology Data Product Simulators

    NASA Technical Reports Server (NTRS)

    Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis

    2013-01-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.

  2. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonality Retreating Marginal Ice Zone

    DTIC Science & Technology

    2016-12-30

    graduate school at the Scripps institution of Oceanography . Also, ITP-Y investigators have collaborated with a Naval Postgraduate School 3 student...Physical Oceanography , doi: http://dx.doi.org/10. l J 75/JPO-D-1 2-0 19 l. l Cole, S.T., F.T. Thwaites, R.A. Kri shfield, and J.M. Toole, 2015

  3. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    NASA Technical Reports Server (NTRS)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  4. The Sky This Week, 2016 February 23 - March 1 - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Time. Luna rises with Jupiter on the evening of the 23rd, then passes the bright star Spica in the wee goes back to the time of Ptolemy, but it was the Roman emperor Julius Caesar who first gave us our

  5. Report on the FY 1986 Activities of the Defense Science Study Group. Volume 1.

    DTIC Science & Technology

    1987-05-01

    Reactors Improved Techniques for Wavefront Sensing and Correction in Adaptive Optics Hypervelocity Launchers Underground Facilities 0 Automated...oceanography and sound propagation in partially coherent media such as the turbulent ocean. There are large fixed arrays such as the Sound Surveillance System...Aircraft Continuous Patrol Aircraft Miscellaneous Studies Review of the Plutonium Special Isotope Separation Program of the DOE 4r Fusion Fission Hybrid

  6. Development and Applications of Technology for Sensing Zooplankton

    DTIC Science & Technology

    2003-09-30

    zooplankton-like particles. WORK COMPLETED In support of our first objective, in prior years we occupied sites in both East and West Sound at Orcas ...Island in northern Puget Sound , WA. We have also made deployments at four sites on open linear coasts, including one just north of Oceanside, CA (Red...layers. Multi-static, multi-frequency methods Most active bioacoustical methods in oceanography exclusively utilize the sound that is scattered

  7. A Case for Data and Service Fusions

    NASA Astrophysics Data System (ADS)

    Huang, T.; Boening, C.; Quach, N. T.; Gill, K.; Zlotnicki, V.; Moore, B.; Tsontos, V. M.

    2015-12-01

    In this distributed, data-intensive era, developing any solution that requires multi-disciplinary data and service requires careful review of interfaces with data and service providers. Information is stored in many different locations and data services are distributed across the Internet. In design and development of mash-up heterogeneous data systems, the challenge is not entirely technological; it is our ability to document the external interface specifications and to create a coherent environment for our users. While is impressive to present a complex web of data, the true measure of our success is in the quality of the data we are serving, the throughput of our creation, and user experience. The presentation presents two current funded NASA projects that require integration of heterogeneous data and service that reside in different locations. The NASA Sea Level Change Portal is designed a "one-stop" source for current sea level change information. Behind this portal is an architecture that integrates data and services from various sources, which includes PI-generated products, satellite products from the DAACs, and metadata from ESDIS Common Metadata Repository (CMR) and other sources, and services reside in the data centers, universities, and ESDIS. The recently funded Distributed Oceanographic Matchup Service (DOMS) project is a project under the NASA Advance Information Technology (AIST) program. DOMS will integrate with satellite products managed by NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) and three different in-situ projects that are located in difference parts of the U.S. These projects are good examples of delivering content-rich solutions through mash-up of heterogeneous data and systems.

  8. Distribution and abundance of cetaceans in the north-central and western Gulf of Mexico. Final report. Volume 3. Appendix A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.W.; Fargion, G.S.

    1996-05-24

    The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. Appendix A contains: the cetacean, trutle, and bird sighting data from all shipboard and aerial visual surveys; contact data from the shipboard acoustic survey; and the cetacean environmental profiles. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less

  9. The Effective and Evolving Role of Graduate Students in the SURFO REU Program

    NASA Astrophysics Data System (ADS)

    Pockalny, R. A.

    2005-12-01

    The Summer Undergraduate Research Fellowships in Oceanography (SURFO) program is a 10-week research/educational program designed to expose 9 undergraduates per year to cutting-edge, authentic oceanographic research at the Graduate School of Oceanography/University of Rhode Island. The SURFO program primarily focuses on the more quantitative aspects of oceanography (e.g., physical oceanography, geophysical fluid dynamics and marine geophysics), which closely parallel the strengths of GSO/URI. Thus, the primary undergraduate population targeted by the program includes students from various disciplines, but with strong backgrounds in math, physics, computer science, and engineering. Over its 20-year existence, the SURFO program has continuously evolved; however, three basics goals of the program have been maintained: 1) expose students to the breadth and depth of oceanography, 2) provide students with an authentic research experience, and 3) integrate/assimilate students into the lifestyle and community of a graduate research institution. An integral component for achieving these goals has been the inclusion of graduate students as workshop leaders/instructors, research mentors, and social directors. In these roles the graduate students act as a 'big brother/sister' to transition the undergraduates into the academic and research community. The graduate students also initially behave as liaisons between the senior researcher and the SURFO participant by fielding questions and concerns the undergraduate may be too intimidated to voice. As the summer progresses, the graduate students typically evolve into a lead research advisor and begin to learn effective techniques for advising students. Responses from SURFO participants on exit questionnaires frequently comment on how their experience and research project were directly affected by the extent of graduate student participation during the summer. Anecdotal evidence also indicates the participating graduate students gain maturity in their approach to research and become more willing advisees.

  10. Remote sensing for oceanography: Past, present, future

    NASA Technical Reports Server (NTRS)

    Mcgoldrick, L. F.

    1984-01-01

    Oceanic dynamics was traditionally investigated by sampling from instruments in situ, yielding quantitative measurements that are intermittent in both space and time; the ocean is undersampled. The need to obtain proper sampling of the averaged quantities treated in analytical and numerical models is at present the most significant limitation on advances in physical oceanography. Within the past decade, many electromagnetic techniques for the study of the Earth and planets were applied to the study of the ocean. Now satellites promise nearly total coverage of the world's oceans using only a few days to a few weeks of observations. Both a review of the early and present techniques applied to satellite oceanography and a description of some future systems to be launched into orbit during the remainder of this century are presented. Both scientific and technologic capabilities are discussed.

  11. Tenth AMS Conference on Satellite Meteorology and Oceanography

    NASA Technical Reports Server (NTRS)

    Ferraro, R.; Colton, M.; Deblonde, G.; Jedlovec, G.; Lee, T.

    2000-01-01

    The American Meteorological Society held its Tenth Conference on Satellite Meteorology and Oceanography in conjunction with the 80th Annual Meeting in Long Beach, California. For the second consecutive conference, a format that consisted of primarily posters, complemented by invited theme oriented oral presentations, and panel discussions on various aspects on satellite remote sensing were utilized. Joint sessions were held with the Second Conference on Artificial Intelligence, the Eleventh Conference on Middle Atmosphere, and the Eleventh symposium on Global Change Studies. In total, there were 23 oral presentations, 170 poster presentations, and four panel discussions. Over 450 people representing a wide spectrum of the society attended one or more of the sessions in the five-day meeting. The program for the Tenth Conference on Satellite Meteorology and Oceanography can viewed in the October 1999 issue of the Bulletin.

  12. The United States Navy Arctic Roadmap for 2014 to 2030

    DTIC Science & Technology

    2014-02-01

    of the Oceanographer of the Navy; the Chief of Naval Research; Commander, Naval Meteorology and Oceanography Command; Commander, Office of Naval...Q3, FY14 Q3, FY15 FY15-18 FY18 2.3.4: Improve traditional meteorological forecast capability in the polar regions through the...CNE Commander Naval Forces Europe CNIC Commander Navy Installations Command CNMOC Commander Naval Meteorology and Oceanography Command CNO Chief

  13. New developments in satellite oceanography and current measurements

    NASA Technical Reports Server (NTRS)

    Huang, N. E.

    1979-01-01

    Principal satellite remote sensing techniques and instruments are described and attention is given to the application of such techniques to ocean current measurement. The use of radiometers, satellite tracking drifters, and altimeters for current measurement is examined. Consideration is also given to other applications of satellite remote sensing in physical oceanography, including measurements of surface wind stress, sea state, tides, ice, sea surface temperature, salinity, ocean color, and oceanic leveling.

  14. Secretary of the Navy Professor of Oceanography

    DTIC Science & Technology

    2013-11-18

    of better predicting polar ice melting processes and the associated global rise in sea level. 15. SUBJECT TERMS Wind-drag, ocean surface roughness...Ross Sea with the goal of better predicting polar ice melting processes and the associated global rise in sea level. PUBLICATIONS Farrell, W. and W...Oceanography, LaJolla, CA; 12 May 2011 Attended: International Symposium on Interactions of Glaciers and Ice Sheets with the Ocean SIO, Scripps Institution

  15. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupferman, S.L.

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group hasmore » also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base.« less

  16. Earth Observing System: Information on NASA’s Incorporation of Existing Data Into EOSDIS

    DTIC Science & Technology

    1992-09-25

    oceanography, and marine resources can be derived from this data set. The Landsat Pathfinder Project comprises three separate activities, two of which...contain informnation about atmospheric properties such as water vapor and rain rate, ocean surface properties such as surface wind speed, and land...Ferrari, Assignment Manager anagement and Elizabeth L. Johnston, Evaluator-in-Charge ,chnology Division, ashington, D.C. Page 11 GAO/ AMTEC -92-79 Earth

  17. Isotopic Techniques for Assessment of Groundwater Discharge to the Coastal Ocean

    DTIC Science & Technology

    2003-09-30

    estimates of the pore water Rn activity. The red line (based on an average groundwater concentration of 170 dpm/L) is considered our best estimate and...Isotopic Techniques For Assessment of Groundwater Discharge to the Coastal Ocean William C. Burnett Department of Oceanography Florida State...evaluating the influence of submarine groundwater discharge (SGD) into the ocean. Our long-term goal is to develop geochemical tools (e.g., radon and

  18. Naval Meteorology and Oceanography Command exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  19. Marine Science Syllabus for Secondary Schools. Report of an IOC Workshop on the Preparation of a Marine Science Syllabus for Secondary Schools. Unesco Reports in Marine Science, 5.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    Presented is a syllabus for introducing oceanography and the marine environment into the secondary school curricula of all IOC Member States, whether developed or developing. The main purpose of the syllabus is to promote an understanding of oceanography and the marine environment. The syllabus is action- and output-oriented, as well as…

  20. EPOCA-95 cruise report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, S.E.; Carroll, J.; Johnson, D.R.

    1996-02-13

    The EPOCA 95 expedition (Environmental Pollution and Oceanography in Arctic Seas) collected data and samples in the Kara Sea in order to assess the impact of anthropogenic pollution, both radioactive and chemical on one of the marginal Arctic seas and to study the oceanography of the Kara Sea in order to better understand circulation and transport pathways of potential pollutants. This expedition included measurements near dump sites for the fueled reactors dumped by the former Soviet Union.

  1. Scripps museum receives NSF grant

    NASA Astrophysics Data System (ADS)

    Scripps Institution of Oceanography has been awarded a $500,000 grant from the National Science Foundation for a 37,000-square-foot museum exhibition on ocean sciences entitled “Exploring the Blue Planet.” The exhibition will be installed in the Scripps Hall of Oceanography of the new Stephen Birch Aquarium-Museum. The facility is under construction at the University of California, San Diego, and is scheduled to open in fall 1992.NSF is providing approximately half of the funds required for “Exploring the Blue Planet,” which is designed to help visitors explore the many fields of oceanography. “This NSF grant will fund interactive exhibits and changing displays featuring the latest Scripps research that will allow children and adults to experience science as an approachable, creative process that can be used to understand the changing world,” said Luther Williams, NSF Assistant Director for Education and Human Resources.

  2. Fleet Numerical Oceanography Center Software Development Standards: An Implementation of DoD-STD-2167A

    DTIC Science & Technology

    1989-09-01

    STD-2167A by William T. Livings September 1989 Thesis Advisor: Barry A. Frew Approved for public release; distribution is unlimited UNCLASSIFIED...f’P) TfLI Po*i~o1 (InoriudC A,.’-g IOle) *’, i 14 41 iProf.- Barry A. Frow (Q11rioqAr. DD Form 1 413, JUN 86 ’Ciij ’iI ’ ti)P ,i I. ij j-~-~I i~4~~6...easily changed or corrected when errors are found; and programs that are delivered for use months or even years too late. ( Pressman , 1988, pp. I- 2

  3. Science opportunities using the NASA scatterometer on N-ROSS

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.

    1985-01-01

    The National Aeronautics and Space Administration scatterometer (NSCAT) is to be flown as part of the Navy Remote Ocean Sensing System (N-ROSS) scheduled for launch in 1989. The NSCAT will provide frequent accurate and high-resolution measurements of vector winds over the global oceans. NSCAT data will be applicable to a wide range of studies in oceanography, meteorology, and instrument science. The N-ROSS mission, is outlined, are described. The capabilities of the NSCAT flight instrument and an associated NASA research ground data-processing and distribution system, and representative oceanographic meteorological, and instrument science studies that may benefit from NSCAT data are surveyed.

  4. Offshore survey provides answers to coastal stability and potential offshore extensions of landslides into Abalone Cove, Palos Verdes peninsula, Calif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dill, R.F.; Slosson, J.E.

    1993-04-01

    The configuration and stability of the present coast line near Abalone Cove, on the south side of Palos Verdes Peninsula, California is related to the geology, oceanographic conditions, and recent and ancient landslide activity. This case study utilizes offshore high resolution seismic profiles, side-scan sonar, diving, and coring, to relate marine geology to the stability of a coastal region with known active landslides utilizing a desk top computer and off-the-shelf software. Electronic navigation provided precise positioning that when applied to computer generated charts permitted correlation of survey data needed to define the offshore geology and sea floor sediment patterns. Amore » mackintosh desk-top computer and commercially available off-the-shelf software provided the analytical tools for constructing a base chart and a means to superimpose template overlays of topography, isopachs or sediment thickness, bottom roughness and sediment distribution patterns. This composite map of offshore geology and oceanography was then related to an extensive engineering and geological land study of the coastal zone forming Abalone Cove, an area of active landslides. Vibrocoring provided ground sediment data for high resolution seismic traverses. This paper details the systems used, present findings relative to potential landslide movements, coastal erosion and discuss how conclusions were reached to determine whether or not onshore landslide failures extend offshore.« less

  5. Understanding the ontogeny of foraging behaviour: insights from combining marine predator bio-logging with satellite-derived oceanography in hidden Markov models.

    PubMed

    Grecian, W James; Lane, Jude V; Michelot, Théo; Wade, Helen M; Hamer, Keith C

    2018-06-01

    The development of foraging strategies that enable juveniles to efficiently identify and exploit predictable habitat features is critical for survival and long-term fitness. In the marine environment, meso- and sub-mesoscale features such as oceanographic fronts offer a visible cue to enhanced foraging conditions, but how individuals learn to identify these features is a mystery. In this study, we investigate age-related differences in the fine-scale foraging behaviour of adult (aged ≥ 5 years) and immature (aged 2-4 years) northern gannets Morus bassanus Using high-resolution GPS-loggers, we reveal that adults have a much narrower foraging distribution than immature birds and much higher individual foraging site fidelity. By conditioning the transition probabilities of a hidden Markov model on satellite-derived measures of frontal activity, we then demonstrate that adults show a stronger response to frontal activity than immature birds, and are more likely to commence foraging behaviour as frontal intensity increases. Together, these results indicate that adult gannets are more proficient foragers than immatures, supporting the hypothesis that foraging specializations are learned during individual exploratory behaviour in early life. Such memory-based individual foraging strategies may also explain the extended period of immaturity observed in gannets and many other long-lived species. © 2018 The Authors.

  6. Navy Sea Ice Prediction Systems

    DTIC Science & Technology

    2002-01-01

    for the IABP drifting buoys (red), the model (green), and the model with assimilation (black). 55 Oceanography • Vol. 15 • No. 1/2002 trate the need...SPECIAL ISSUE – NAVY OPERATIONAL MODELS : TEN YEARS LATER Oceanography • Vol. 15 • No. 1/2002 44 ice extent and/or ice thickness. A general trend...most often based on a combination of models and data. Modeling sea ice can be a difficult problem, as it exists in many different forms (Figure 1). It

  7. Assessment of Superflux relative to marine science and oceanography. [airborne remote sensing of the Chesapeake Bay plume and shelf regions

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1981-01-01

    A general assessment of the Superflux project is made in relation to marine science and oceanography. It is commented that the program clearly demonstrated the effectiveness of state-of-the-art technology required to study highly dynamic estuarine plumes, and the necessity of a broadly interdisciplinary, interactive remote sensing and shipboard program required to significantly advance the understanding of transport processes and impacts of estuarine outflows.

  8. Naval Meteorology and Oceanography Command exhibit entrance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.

  9. USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 427.

    DTIC Science & Technology

    1978-08-15

    Friction in Tropical Circulation 6 III. OCEANOGRAPHY.. 7 News ’ "Akademik Kurchatov" Participates in " Polimode " Experiment... 7 Notes on...OCEANOGRAPHY News "AKADEMIK KURCHATOV" PARTICIPATES IN " POLIMODE " EXPERIMENT Moscow IZVESTIYA in Russian 28 Jul 78 p 3 [Article by V. Vukovich : "To...where it will participate in the final stage of the joint Soviet-American hydrophysical " POLIMODE " experiment. [5] [516] NOTES ON OPERATIONS OF

  10. Meeting on the Physical Oceanography of Sea Straits (2nd). Held in Villefanche-sur-Mer, France on 15-19 April 2002

    DTIC Science & Technology

    2002-04-19

    apply in the presence of mixing and dissipation. Some people prefer to think of control in terms of information transmission (wave propagation...2002, in preparation. Officer. C . B., Physical Oceanography of Estuaries. John Wiley and Sons, 1976. Pawlak, G. & Armi, L. Vortex dynamics in a...few decades. Hard thinking , new obser- 1964. vational techniques. and increasingly sophisticated models Gerdes. F, C . Garrett, and D. Farmer, On

  11. Letter exchange documents 50 years of progress in oceanography

    NASA Astrophysics Data System (ADS)

    Leipper, Dale F.; Lewis, John M.

    During World War II the Scripps Institution of Oceanography (SIO) became involved in the oceanographic training of officers. This, combined with a rekindling of interest in the Pacific Ocean during and after the war, catapulted SIO in the late 1940s to a position of prominence in oceanographic education. The leader of the institution, both administratively and academically, was Harald Sverdrup (Figure 1). When he became director in 1936, only five graduate students were enrolled.

  12. United States data collection activities and requirements, volume 1

    NASA Technical Reports Server (NTRS)

    Hrin, S.; Mcgregor, D.

    1977-01-01

    The potential market for a data collection system was investigated to determine whether the user needs would be sufficient to support a satellite relay data collection system design. The activities of 107,407 data collections stations were studied to determine user needs in agriculture, climatology, environmental monitoring, forestry, geology, hydrology, meteorology, and oceanography. Descriptions of 50 distinct data collections networks are described and used to form the user data base. The computer program used to analyze the station data base is discussed, and results of the analysis are presented in maps and graphs. Information format and coding is described in the appendix.

  13. Merging Marine Ecosystem Models and Genomics

    NASA Astrophysics Data System (ADS)

    Coles, V.; Hood, R. R.; Stukel, M. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2015-12-01

    oceanography. One of the grand challenges of oceanography is to develop model techniques to more effectively incorporate genomic information. As one approach, we developed an ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response cuves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Realistic community size spectra and chlorophyll-a concentrations emerge in the model. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  14. Geodynamics Branch research report, 1982

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor)

    1983-01-01

    The research program of the Geodynamics Branch is summarized. The research activities cover a broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography. The NASA programs which are supported by the work described include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX) and Geopotential Research Mission. The individual papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.

  15. Descriptive statistics and spatial distributions of geochemical variables associated with manganese oxide-rich phases in the northern Pacific

    USGS Publications Warehouse

    Botbol, Joseph Moses; Evenden, Gerald Ian

    1989-01-01

    Tables, graphs, and maps are used to portray the frequency characteristics and spatial distribution of manganese oxide-rich phase geochemical data, to characterize the northern Pacific in terms of publicly available nodule geochemical data, and to develop data portrayal methods that will facilitate data analysis. Source data are a subset of the Scripps Institute of Oceanography's Sediment Data Bank. The study area is bounded by 0° N., 40° N., 120° E., and 100° W. and is arbitrarily subdivided into 14-20°x20° geographic subregions. Frequency distributions of trace metals characterized in the original raw data are graphed as ogives, and salient parameters are tabulated. All variables are transformed to enrichment values relative to median concentration within their host subregions. Scatter plots of all pairs of original variables and their enrichment transforms are provided as an aid to the interpretation of correlations between variables. Gridded spatial distributions of all variables are portrayed as gray-scale maps. The use of tables and graphs to portray frequency statistics and gray-scale maps to portray spatial distributions is an effective way to prepare for and facilitate multivariate data analysis.

  16. Physical oceanography of the US Atlantic and eastern Gulf of Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milliman, J.D.; Imamura, E.

    The report provides a summary of the physical oceanography of the U.S. Atlantic and Eastern Gulf of Mexico and its implication to offshore oil and gas exploration and development. Topics covered in the report include: meteorology and air-sea interactions, circulation on the continental shelf, continental slope and rise circulation, Gulf Stream, Loop Current, deep-western boundary current, surface gravity-wave climatology, offshore engineering implications, implications for resource commercialization, and numerical models of pollutant dispersion.

  17. The Sky This Week, 2016 January 27 - February 2 - Naval Oceanography

    Science.gov Websites

    Oceanography Ice You are here: Home › USNO › News, Tours & Events › Sky This Week › The Sky This Sky This Week The Sky This Week, 2016 January 27 - February 2 Info The Sky This Week, 2016 January 27 - February 2 Lest we forget. NOFS_Winter_2016_01small.jpg Dome of the Kaj Strand 1.55-meter (61-inch

  18. Ocean images in music compositions and folksongs

    NASA Astrophysics Data System (ADS)

    Liu, C. M.

    2017-12-01

    In general, ocean study usually ranges from physical oceanography, chemical oceanography, marine biology, marine geology, and other related fields. In addition to pure scientific fields, ocean phenomenon influence not only human mood but also the shaping of local cultures. In this paper, we present some ocean images and concepts appeared in music compositions and folksongs to show the mixing, influence and interaction between them. This may give a novel way not for science teachers but also music teachers to deliver the knowledge of ocean science in classes.

  19. The Group for High Resolution Sea Surface Temperature: Past, Present and Future.

    NASA Astrophysics Data System (ADS)

    Donlon, Craig; Casey, Kenneth; Minnett, Peter; Corlett, Gary

    2014-05-01

    In the last decade, satellite Agencies, science, operational user/producer and Sea Surface Temperature practitioner communities have come together within the Group for High Resolution SST (GHRSST) to create a new framework for generation, delivery and application of improved common format high-resolution (~1-10 km) satellite SST datasets for the benefit of society. The GHRSST data system is a mature, robust, and highly reliable near real time and delayed mode data system known as the GHRSST Regional/Global Task Sharing framework (R/GTS) and has operated in NRT since 2006. It consists of distributed Regional Data Assembly Centers (RDACs) around the world that submit their data to a Global Data Assembly Center (GDAC) maintained at the NASA Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC), where all the data are available for 30 days. After that they are transferred to the GHRSST Long Term Stewardship and Reanalysis Facility (LTSRF) at the U.S. National Oceanographic Data Center (NODC) for long-term preservation and distribution. The extensive user base includes many operational meteorological services, the scientific community, industry and Government. Since the R/GTS has operated, statistics show over 72,000 users have accessed the R/GTS in NRT, accessing over 100 million files amounting to more than 232 Tb of information. GHRSST has an organisation structure that has both fixed and flexible components allowing it to respond effectively and efficiently to new and emerging challenges. GHRSST has often been cited as a model for other Virtual Communities/Constellations. GHRSST is underpinned by an international Science Team and International Project Office together. Long-standing GHRSST Technical Advisory Groups (TAG) and ad hoc Working Groups (WG) are typically at the "cutting edge" of international SST activities delivering real coordination in space-based Earth observations for societal benefit through the prioritized activities. Most recently, GHRSST has formed a strategic alliance with the Committee for Earth Observation Satellites (CEOS) SST Virtual Constellation further strengthening the important and active international GHRSST Community. This paper reviews the development of GHRSST since its early inception in 2000 its evolution and future prospects.

  20. Seasonal oceanography from physics to micronekton in the south-west Pacific

    NASA Astrophysics Data System (ADS)

    Menkes, C. E.; Allain, V.; Rodier, M.; Gallois, F.; Lebourges-Dhaussy, A.; Hunt, B. P. V.; Smeti, H.; Pagano, M.; Josse, E.; Daroux, A.; Lehodey, P.; Senina, I.; Kestenare, E.; Lorrain, A.; Nicol, S.

    2015-03-01

    Tuna catches represent a major economic and food source in the Pacific Ocean, yet are highly variable. This variability in tuna catches remains poorly explained. The relationships between the distributions of tuna and their forage (micronekton) have been mostly derived from model estimates. Observations of micronekton and other mid-trophic level organisms, and their link to regional oceanography, however are scarce and constitute an important gap in our knowledge and understanding of the dynamics of pelagic ecosystems. To fill this gap, we conducted two multidisciplinary cruises (Nectalis1 and Nectalis2) in the New Caledonian Exclusive Economic Zone (EEZ) at the southeastern edge the Coral Sea, in 2011 to characterize the oceanography of the region during the cool (August) and the hot (December) seasons. The physical and biological environments were described by hydrology, nutrients and phytoplankton size structure and biomass. Zooplankton biomass was estimated from net sampling and acoustics and micronecton was estimated from net sampling, the SEAPODYM ecosystem model, a dedicated echosounder and non-dedicated acoustics. Results demonstrated that New Caledonia is located in an oligotrophic area characterized by low nutrient and low primary production which is dominated by a high percentage of picoplankton cyanobacteria Prochlorococcus (>90%). The area exhibits a large-scale north-south temperature and salinity gradient. The northern area is influenced by the equatorial Warm Pool and the South Pacific Convergence Zone and is characterized by higher temperature, lower salinity, lower primary production and micronekton biomass. The southern area is influenced by the Tasman Sea and is characterized by cooler temperature, higher salinity, higher primary production and micronekton biomass. The dynamic oceanography and the complex topography create a myriad of mesoscale features including eddies, inducing patchy structures in the ecosystem. During the cool season, a tight coupling existed between the ocean dynamics and primary production, while there was a stronger decoupling during the hot season. There was little difference in the composition of mid-trophic level organisms (zooplankton and micronekton) between the two seasons. This may be due to different turn-over times and delays in the transmission of primary production to upper trophic levels. Examination of various sampling gears for zooplankton and micronekton showed that net biomass estimates and acoustic-derived estimates compared reasonably well. Estimates of micronekton from net observations and the SEAPODYM model were in the same range. The non-dedicated acoustics adequately reproduced trends observed in zooplankton from nets, but the acoustics could not differentiate between zooplankton and micronekton and absolute biomasses could not be calculated. Understanding the impact of mesoscale features on higher trophic levels will require further investigation and patchiness induced by eddies raises the question of how to best sample highly dynamic areas via sea experiments.

  1. Techniques for integrating the animations, multimedia, and interactive features of NASA’s climate change website, Climate Change: NASA’s Eyes on the Earth, into the classroom to advance climate literacy and encourage interest in STEM disciplines

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Jackson, R.; Greene, M.

    2009-12-01

    I developed a variety of educational content for the "Climate Change: NASA’s Eyes on the Earth" website, notably an interactive feature for the "Key Indicators: Ice Mass Loss" link that includes photo pair images of glaciers around the world, changes in Arctic sea ice extent videos, Greenland glacial calving time lapse videos, and Antarctic ice shelf break up animations, plus news pieces and a Sea Level Quiz. I integrated these resources and other recent NASA and JPL climate and oceanography data and information into climate change components of Oceanography Lab exercises, Oceanography lectures and Introduction to Environmental Technology courses. I observed that using these Internet interactive features in the classroom greatly improved student participation, topic comprehension, scientific curiosity and interest in Earth and climate science across diverse student populations. Arctic Sea Ice Extent Summer 2007 Credit: NASA

  2. Current Research Activities of the Department of Oceanography.

    DTIC Science & Technology

    1981-04-01

    being analyzed in terms of the structure of the East Pacific A multi-institutional investi- Rise at 12* N and the change in crus- gation on the abundance...seismic experiment at the axis of the East Pacific Rise . Marine Geology 35: 147-169. No. 1090 McDaniel, N . and K. Banse (1979) A novel method of...proceeded eastward from Tahiti ducted off the Oregon and Washington to the East Pacific Rise area, then coasts. In late August a return back to Tahiti. On

  3. Proceedings of the Arctic Oceanography Conference and Workshop Held at the Naval Ocean Research and Development Activity, NSTL, MS on June 11-14, 1985

    DTIC Science & Technology

    1985-01-01

    Patrol (IIP) has been conducted by the U. S. Coast Guard, to provide the North Atlantic Mariner with a warning of hazardous icebergs in the region...of the Grand Banks of Newfoundland. During the iceberg season, March to August, IIP conducts iceberg reconnaissance flights using HC-130 aircraft...Connecticut. 1. INTRODUCTION Icebergs and sea ice have been hazards to navigation in northern waters for centuries, but the threat did not attract

  4. Mission requirements for a manned earth observatory. Volume 1, task 1: Experiment selection, definition, and documentation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Information related to proposed earth observation experiments for shuttle sortie missions (SSM) in the 1980's is presented. The step-wise progression of study activities and the development of the rationale that led to the identification, selection, and description of earth observation experiments for SSM are listed. The selected experiments are described, defined, and documented by individual disciplines. These disciplines include: oceanography; meteorology; agriculture, forestry, and rangeland; geology; hydrology; and environmental impact.

  5. Connecting Oceanography and Music

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2016-02-01

    Capturing and retaining the interest of non-science majors in science classes can be difficult, no matter what type of science. At Berklee College of Music, this challenge is especially significant, as all students are music majors. In my Introductory Oceanography course, I use a final project as a way for the students to link class material with their own interests. The students may choose any format to present their projects to the class; however, many students write and perform original music. The performances of ocean-themed music have become a huge draw of the Introductory Oceanography course. In an effort to expand the reach of this music, several colleagues and I organized the first Earth Day event at Berklee, `Earthapalooza 2015.' This event included performances of music originally written for the final projects, as well as other musical performances, poetry readings, guest talks, and information booths. Although the idea of an Earth Day event is not new, this event is unique in that student performances really resonate with the student audience. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of oceanography through music. In this presentation, I will play examples of original student compositions and show video of the live student performances. I will also discuss the benefits and challenges of the final projects and the Earth Day event. Finally, I will highlight the future plans to continue ocean-themed music at Berklee.

  6. SOCIB Glider toolbox: from sensor to data repository

    NASA Astrophysics Data System (ADS)

    Pau Beltran, Joan; Heslop, Emma; Ruiz, Simón; Troupin, Charles; Tintoré, Joaquín

    2015-04-01

    Nowadays in oceanography, gliders constitutes a mature, cost-effective technology for the acquisition of measurements independently of the sea state (unlike ships), providing subsurface data during sustained periods, including extreme weather events. The SOCIB glider toolbox is a set of MATLAB/Octave scripts and functions developed in order to manage the data collected by a glider fleet. They cover the main stages of the data management process, both in real-time and delayed-time modes: metadata aggregation, downloading, processing, and automatic generation of data products and figures. The toolbox is distributed under the GNU licence (http://www.gnu.org/copyleft/gpl.html) and is available at http://www.socib.es/users/glider/glider_toolbox.

  7. Using Food to Demonstrate Earth Science Concepts

    NASA Astrophysics Data System (ADS)

    Walter, J.; Francek, M.

    2001-12-01

    One way to better engage K-16 students with the earth sciences is through classroom demonstrations with food. We summarize references from journals and the world wide web that use food to illustrate earth science concepts. Examples of how edible substances have been used include using candy bars to demonstrate weathering concepts, ice cream to mimic glaciers, and grapes to demonstrate evaporation. We also categorize these demonstrations into geology, weather, space science, and oceanography categories. We further categorize the topics by grade level, web versus traditional print format, amount of time necessary to prepare a lesson plan, and whether the activity is better used as a demonstration or hands on activity.

  8. Highlights of the 2014 Ocean Sciences Meeting

    NASA Astrophysics Data System (ADS)

    Sharp, Jonathan; Briscoe, Melbourne; Itsweire, Eric

    2014-07-01

    The 2014 Ocean Sciences Meeting was the 17th biennial gathering since the inception of ocean sciences meetings in 1982. A joint venture of the Association for the Sciences of Limnology and Oceanography (ASLO), The Oceanography Society (TOS), and the Ocean Sciences section of AGU, the meeting was by far the largest ever: More than 5600 attendees made this meeting more than 30% larger than any previous one. Forty percent of attendees live outside the United States, hailing from 55 countries, showing the importance of this meeting as an international gathering of ocean scientists.

  9. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography.

    PubMed

    van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M

    2007-05-01

    We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.

  10. Genomic perspectives in microbial oceanography.

    PubMed

    DeLong, Edward F; Karl, David M

    2005-09-15

    The global ocean is an integrated living system where energy and matter transformations are governed by interdependent physical, chemical and biotic processes. Although the fundamentals of ocean physics and chemistry are well established, comprehensive approaches to describing and interpreting oceanic microbial diversity and processes are only now emerging. In particular, the application of genomics to problems in microbial oceanography is significantly expanding our understanding of marine microbial evolution, metabolism and ecology. Integration of these new genome-enabled insights into the broader framework of ocean science represents one of the great contemporary challenges for microbial oceanographers.

  11. Multibeam synthetic aperture radar for global oceanography

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1979-01-01

    A single-frequency multibeam synthetic aperture radar concept for large swath imaging desired for global oceanography is evaluated. Each beam iilluminates a separate range and azimuth interval, and images for different beams may be separated on the basis of the Doppler spectrum of the beams or their spatial azimuth separation in the image plane of the radar processor. The azimuth resolution of the radar system is selected so that the Doppler spectrum of each beam does not interfere with the Doppler foldover due to the finite pulse repetition frequency of the radar system.

  12. Cumulative and Synergistic Effects of Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can We Listen for Open Water?

    DTIC Science & Technology

    2013-09-30

    Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can we listen for... Soundscapes Under Sea Ice: Can we listen for open water? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...the source. These different sounds can be described as “ soundscapes ”, and graphically represented by comparing two or more features of the sound

  13. Assessment of Hydrologic Response to Variable Precipitation Forcing: Russian River Case Study

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Hsu, C.; Johnson, L. E.

    2014-12-01

    NOAA Hydrometeorology Testbed (HMT) activities in California have involved deployment of advanced sensor networks to better track atmospheric river (AR) dynamics and inland penetration of high water vapor air masses. Numerical weather prediction models and decision support tools have been developed to provide forecasters a better basis for forecasting heavy precipitation and consequent flooding. The HMT also involves a joint project with California Department of Water Resources (CA-DWR) and the Scripps Institute for Oceanography (SIO) as part of CA-DWR's Enhanced Flood Response and Emergency Preparedness (EFREP) program. The HMT activities have included development and calibration of a distributed hydrologic model, the NWS Office of Hydrologic Development's (OHD) Research Distributed Hydrologic Model (RDHM), to prototype the distributed approach for flood and other water resources applications. HMT has applied RDHM to the Russian-Napa watersheds for research assessment of gap-filling weather radars for precipitation and hydrologic forecasting and for establishing a prototype to inform both the NWS Monterey Forecast Office and the California Nevada River Forecast Center (CNRFC) of RDHM capabilities. In this presentation, a variety of precipitation forcings generated with and without gap filling radar and rain gauge data are used as input to RDHM to assess the hydrologic response for selected case study events. Both the precipitation forcing and hydrologic model are run at different spatial and temporal resolution in order to examine the sensitivity of runoff to the precipitation inputs. Based on the timing of the events and the variations of spatial and temporal resolution, the parameters which dominate the hydrologic response are identified. The assessment is implemented at two USGS stations (Ukiah near Russian River and Austin Creek near Cazadero) that are minimally influenced by managed flows and objective evaluation can thus be derived. The results are assessed using statistical metrics, including daily Nash scores, Pearson Correlation, and sub daily timing errors.

  14. Experiences of ocean literacy with different users of operational oceanography services and with high school students

    NASA Astrophysics Data System (ADS)

    Agostini, Paola; Coppini, Giovanni; Martinelli, Sara; Bonarelli, Roberto; Lecci, Rita; Pinardi, Nadia; Cretì, Sergio; Turrisi, Giuseppe; Ciliberti, Stefania Angela; Federico, Ivan; Mannarini, Gianandrea; Verri, Giorgia; Jansen, Eric; Lusito, Letizia; Macchia, Francesca; Montagna, Fabio; Buonocore, Mauro; Marra, Palmalisa; Tedesco, Luca; Cavallo, Arturo

    2017-04-01

    According to a common definition, ocean literacy is an understanding of the ocean's influence on people and people influence on the ocean. An ocean-literate person is able to make informed and responsible decisions regarding the ocean and its resources. To this aim, this paper presents operational oceanographic tools developed to meet the needs of different users, and activities performed in collaboration with high school students to support new developments of the same tools. Operational oceanography allows to deal with societal challenges such as maritime safety, coastal and marine environment management, climate change assessment and marine resources management. Oceanographic products from the European Copernicus Marine Monitoring Service - CMEMS are transformed and communicated to public and stakeholders through adding-value chains (downstreaming), which consider advanced visualization, usage of multi-channels technological platforms and specific models and algorithms. Sea Situational Awareness is strategically important for management and safety purposes of any marine domain and, in particular, the Mediterranean Sea and its coastal areas. Examples of applications for sea situational awareness and maritime safety are here presented, through user-friendly products available both by web and mobile channels (that already reach more than 100.000 users in the Mediterranean area). Further examples of ocean literacy are web bulletins used to communicate the technical contents and information related to oceanographic forecasts to a wide public. They are the result of a collaboration with high school students, with whom also other activities on improving products visualization and online communication have been performed.

  15. Response of seabirds to fluctuations in forage fish density

    USGS Publications Warehouse

    Piatt, John F.

    2002-01-01

    Following the Exxon Valdez Oil Spill (EVOS), one concern was that prevailing ecological conditions in the Gulf of Alaska (GOA) would not favor recovery of damaged seabird populations. To address this issue, we examined relationships between oceanography, forage fish and seabirds near three seabird colonies in lower Cook Inlet (LCI) in 1995-1999 (some colony work continued until 2001). Upwelling of cold, nutrient-rich GOA waters at the entrance to the shallow LCI estuary supports a high density of juvenile pollock, sand lance, and capelin; which in turn are exploited by high densities of breeding seabirds (murres, kittiwakes, puffins, etc.) on the east side of LCI. Waters on the west side of LCI are oceanographically distinct (warmer, less saline, outflowing), and much less productive for forage fish and seabirds. Patterns of seabird foraging behavior, productivity and population change reflected patterns of forage fish abundance and distribution, which in turn depended on local oceanography. Most seabird parameters varied with forage fish density in a non-linear (e.g., sigmoidal, exponential) fashion, and in some areas and years, productivity was limited by food availability.  Current and projected ecological conditions favor recovery of seabirds from the EVOS at some colonies. In 14 chapters, this report summarizes data and compiles it into 247 tables, figures and appendices. Chapter 14 provides a thorough synthesis of overall project findings. Final analyses and interpretations of data will be published later in peer-reviewed journals (in addition to 61 articles already completed).

  16. A satellite constellation optimization for a regional GNSS remote sensing mission

    NASA Astrophysics Data System (ADS)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  17. Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy

    NASA Astrophysics Data System (ADS)

    Klotz, S.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.

    2013-12-01

    The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography. These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC. Distribution Statement A: Approved for Public Release; distribution is unlimited

  18. Interpreting the spatio-temporal patterns of sea turtle strandings: Going with the flow

    USGS Publications Warehouse

    Hart, K.M.; Mooreside, P.; Crowder, L.B.

    2006-01-01

    Knowledge of the spatial and temporal distribution of specific mortality sources is crucial for management of species that are vulnerable to human interactions. Beachcast carcasses represent an unknown fraction of at-sea mortalities. While a variety of physical (e.g., water temperature) and biological (e.g., decomposition) factors as well as the distribution of animals and their mortality sources likely affect the probability of carcass stranding, physical oceanography plays a major role in where and when carcasses strand. Here, we evaluate the influence of nearshore physical oceanographic and wind regimes on sea turtle strandings to decipher seasonal trends and make qualitative predictions about stranding patterns along oceanfront beaches. We use results from oceanic drift-bottle experiments to check our predictions and provide an upper limit on stranding proportions. We compare predicted current regimes from a 3D physical oceanographic model to spatial and temporal locations of both sea turtle carcass strandings and drift bottle landfalls. Drift bottle return rates suggest an upper limit for the proportion of sea turtle carcasses that strand (about 20%). In the South Atlantic Bight, seasonal development of along-shelf flow coincides with increased numbers of strandings of both turtles and drift bottles in late spring and early summer. The model also predicts net offshore flow of surface waters during winter - the season with the fewest relative strandings. The drift bottle data provide a reasonable upper bound on how likely carcasses are to reach land from points offshore and bound the general timeframe for stranding post-mortem (< two weeks). Our findings suggest that marine turtle strandings follow a seasonal regime predictable from physical oceanography and mimicked by drift bottle experiments. Managers can use these findings to reevaluate incidental strandings limits and fishery takes for both nearshore and offshore mortality sources. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Medclic: the Mediterranean in one click

    NASA Astrophysics Data System (ADS)

    Troupin, Charles; Frontera, Biel; Sebastián, Kristian; Pau Beltran, Joan; Krietemeyer, Andreas; Gómara, Sonia; Gomila, Mikel; Escudier, Romain; Juza, Mélanie; Mourre, Baptiste; Garau, Angels; Cañellas, Tomeu; Tintoré, Joaquín

    2016-04-01

    "Medclic: the Mediterranean in one click" is a research and dissemination project focused on the scientific, technological and societal approaches of the Balearic Islands Coastal Observing and Forecasting System ({SOCIB}{www.socib.es}) in a collaboration with "la Caixa" Foundation. SOCIB aims at research excellence and the development of technology which enables progress toward the sustainable management of coastal and marine environments, providing solutions to meet the needs of society. Medclic goes one step forward and has two main goals: at the scientific level, to advance in establishing and understanding the mesoscale variability at the regional scale and its interaction, and thus improving the characterisation of the "oceanic weather" in the Mediterranean; at the outreach level: to bring SOCIB and the new paradigm of multi-platform observation in real time closer to society, through scientific outreach. SOCIB Data Centre is the core of the new multi-platform and real time oceanography and is responsible for directing the different stages of data management, ranging from data acquisition to its distribution and visualization through web applications. The system implemented relies on open source solutions and provides data in line with international standards and conventions (INSPIRE, netCDF Climate and Forecast, ldots). In addition, the Data Centre has implemented a REST web service, called Data Discovery. This service allows data generated by SOCIB to be integrated into applications developed by the Data Centre itself or by third parties, as it is the case with Medclic. Relying on this data distribution, the new web Medclic, www.medclic.es, constitutes an interactive scientific and educational area of communication that contributes to the rapprochement of the general public with the new marine and coastal observing technologies. Thanks to the Medclic web, data coming from new observing technologies in oceanography are available in real time and in one clic for all the society. Exploring different observing systems, knowing the temperature and swell forecasts, and discovering the importance of oceanographic research will be possible in a playful and interactive way.

  20. Information technology Governance standards on mobile applications for fishing zone based onCobIT 5 Framework in Majene

    NASA Astrophysics Data System (ADS)

    Palalloi, Irfan Andi; Anwar, Azwar; Syarifuddin

    2018-05-01

    Most of the activities of Majene regency society dominant as a fisherman, by and large, they work based on the hereditary experiences of their ancestors. This is proven by fishery industry statistic that highest from other industry with 18,30 % in the distribution of the gross regional domestic product. In each specific case, utilization of technology becomes a necessity that plays a key role. Adoption of technology for fishermen groups in use of GPSequipment has frequently committed by the government also non-profit organization go through training and mentoring. Nowadays there are some modern mobile applications has been developed by government agency assist the group of fishermen handy on managing their fishing activity. Such us ZPPI data row from Lapan Satelite, nelpinwas also known as smart fisheries, infrastructure development for space oceanography (indeso). However, all of them carry out of the risk and problems on the user side. One of them related toaccuracy and reliability. In this research, we elaborate technical factor, governance, through Cobit framework and analyze the best practice standardfor implementing the technology. All in all, the result presented of the governance standard on control and implementing technology under customer dimension in information technology governance on the standard process to ensure benefit delivery for implementing mobile application fishery in DKP Majene regency.

  1. Satellite observations of the ice cover of the Kuril Basin region of the Okhotsk Sea and its relation to the regional oceanography

    NASA Technical Reports Server (NTRS)

    Wakatsuchi, Masaaki; Martin, Seelye

    1990-01-01

    For the period 1978-1982, this paper examines the nature of the sea ice which forms over the Kuril Basin of the Okhotsk Sea and describes the impact of this ice on the regional oceanography. The oceanographic behavior during the heavy ice season associated with the cold 1979 winter is compared with the behavior during the lighter ice years of 1980 and 1982. Examination of the oceanography in the Okhotsk and the adjacent Pacific shows that the early summer water column structure depends on the heat loss from the Okhotsk during the preceding ice season, the total amount of Okhotsk ice formation, and, specifically, the amount of the ice formation in the Kuril Basin. Following the 1979 ice season, the upper 200-300 m of the Kuril Basin waters were cooler, less saline, and richer in oxygen than for the other years. This modification appears to be a process local to the Kuril Basin, driven by eddy-induced mixing, local cooling, and ice melting.

  2. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume IV. Bibliography and supporting data for physical oceanography. Final report. [421 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significantmore » adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume IV contains the following: bibliography; appendices for supporting data for physical oceanography, and summary of the physical oceanography along the western Louisiana coast.« less

  3. Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  4. Polar Seas Oceanography: An Integrated Case Study of the Kara Sea

    NASA Astrophysics Data System (ADS)

    Harms, Ingo

    2004-02-01

    What strikes first when browsing through this book is that the main title is misleading. Polar Seas Oceanography is, first of all, a book on ``an integrated case study of the Kara Sea,'' as the subtitle says. For readers who are interested more generally in polar oceanography, the book is probably the wrong choice. The Kara Sea is a rather shallow shelf sea within the Arctic Ocean, located between the Barents Sea to the west and the Laptev Sea to the east. The importance of the Kara Sea is manifold: climate change issues like ice formation and freshwater runoff, environmental problems from dumping of radioactive waste or oil exploitation, and finally, the Northern Sea route, which crosses large parts of the Kara Sea, underline the economical and ecological relevance of that region. In spite of severe climate conditions, the Kara Sea is relatively well investigated. This was achieved through intense oceanographic expeditions, aircraft surveys, and polar drift stations. Russian scientists from the Arctic and Antarctic Research Institute (AARI) carried out a major part of this outstanding work during the second half of the last century.

  5. Seascape Genetics of a Globally Distributed, Highly Mobile Marine Mammal: The Short-Beaked Common Dolphin (Genus Delphinus)

    PubMed Central

    Amaral, Ana R.; Beheregaray, Luciano B.; Bilgmann, Kerstin; Boutov, Dmitri; Freitas, Luís; Robertson, Kelly M.; Sequeira, Marina; Stockin, Karen A.; Coelho, M. Manuela; Möller, Luciana M.

    2012-01-01

    Identifying which factors shape the distribution of intraspecific genetic diversity is central in evolutionary and conservation biology. In the marine realm, the absence of obvious barriers to dispersal can make this task more difficult. Nevertheless, recent studies have provided valuable insights into which factors may be shaping genetic structure in the world's oceans. These studies were, however, generally conducted on marine organisms with larval dispersal. Here, using a seascape genetics approach, we show that marine productivity and sea surface temperature are correlated with genetic structure in a highly mobile, widely distributed marine mammal species, the short-beaked common dolphin. Isolation by distance also appears to influence population divergence over larger geographical scales (i.e. across different ocean basins). We suggest that the relationship between environmental variables and population structure may be caused by prey behaviour, which is believed to determine common dolphins' movement patterns and preferred associations with certain oceanographic conditions. Our study highlights the role of oceanography in shaping genetic structure of a highly mobile and widely distributed top marine predator. Thus, seascape genetic studies can potentially track the biological effects of ongoing climate-change at oceanographic interfaces and also inform marine reserve design in relation to the distribution and genetic connectivity of charismatic and ecologically important megafauna. PMID:22319634

  6. Characterizing habitat suitability for a central-place forager in a dynamic marine environment.

    PubMed

    Briscoe, Dana K; Fossette, Sabrina; Scales, Kylie L; Hazen, Elliott L; Bograd, Steven J; Maxwell, Sara M; McHuron, Elizabeth A; Robinson, Patrick W; Kuhn, Carey; Costa, Daniel P; Crowder, Larry B; Lewison, Rebecca L

    2018-03-01

    Characterizing habitat suitability for a marine predator requires an understanding of the environmental heterogeneity and variability over the range in which a population moves during a particular life cycle. Female California sea lions ( Zalophus californianus ) are central-place foragers and are particularly constrained while provisioning their young. During this time, habitat selection is a function of prey availability and proximity to the rookery, which has important implications for reproductive and population success. We explore how lactating females may select habitat and respond to environmental variability over broad spatial and temporal scales within the California Current System. We combine near-real-time remotely sensed satellite oceanography, animal tracking data ( n  = 72) from November to February over multiple years (2003-2009) and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea lion occurrence based on environmental covariates. Results indicate that sea lion presence is associated with cool ( <14°C ), productive waters, shallow depths, increased eddy activity, and positive sea-level anomalies. Predictive habitat maps generated from these biophysical associations suggest winter foraging areas are spatially consistent in the nearshore and offshore environments, except during the 2004-2005 winter, which coincided with an El Niño event. Here, we show how a species distribution model can provide broadscale information on the distribution of female California sea lions during an important life history stage and its implications for population dynamics and spatial management.

  7. Study of the marine environment of the northern Gulf of California. [seasonal variations in oceanography

    NASA Technical Reports Server (NTRS)

    Hendrickson, J. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Results of studies of the oceanography of the northern Gulf of California (Mexico) are reported. A remote, instrumented buoy measuring and telemetering oceanographic data by ERTS-1 satellite was designed, constructed, deployed, and tested. Regular cruises by a research ship on a pattern of 47 oceanographic stations collected data which are analyzed and referenced to analysis of ERTS-1 satellite imagery. A thermal dynamic model of current patterns in the northern Gulf of California is proposed. Findings are examined in relation to the model.

  8. Lindstrom Receives 2013 Ocean Sciences Award: Citation

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.; Lagerloef, Gary S. E.

    2014-09-01

    Eric J. Lindstrom's record over the last 3 decades exemplifies both leadership and service to the ocean science community. Advancement of ocean science not only depends on innovative research but is enabled by support of government agencies. As NASA program scientist for physical oceanography for the last 15 years, Eric combined his proven scientific knowledge and skilled leadership abilities with understanding the inner workings of our government bureaucracy, for the betterment of all. He is a four-time NASA headquarters medalist for his achievements in developing a unified physical oceanography program that is well integrated with those of other federal agencies.

  9. Pacific Northwest regional AGU meeting

    NASA Astrophysics Data System (ADS)

    Hyndman, Roy

    The 27th Annual Pacific Northwest Regional American Geophysical Union Meeting, held September 25 and 26, 1980, was hosted by the Pacific Geoscience Centre at the Institute of Ocean Sciences, near Victoria, British Columbia. A total of 79 papers was presented to the 150 registrants in six general sessions: seismology; electromagnetic induction; general geophysics; volcanology; hydrology; and oceanography, and in three special symposia: ‘The Queen Charlotte-Fairweather fault system and other active faults of the Pacific Northwest’ ‘Coastal circulation in the northeast Pacific’ and ‘Studies of the eruption of Mount St. Helens.’

  10. Report on the Global Data Assembly Center (GDAC) to the 12th GHRSST Science Team Meeting

    NASA Technical Reports Server (NTRS)

    Armstrong, Edward M.; Bingham, Andrew; Vazquez, Jorge; Thompson, Charles; Huang, Thomas; Finch, Chris

    2011-01-01

    In 2010/2011 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational Group for High Resolution Sea Surface Temperature (GHRSST) datastreams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Here we report on our data management activities and infrastructure improvements since the last science team meeting in June 2010.These include the implementation of all GHRSST datastreams in the new PO.DAAC Data Management and Archive System (DMAS) for more reliable and timely data access. GHRSST dataset metadata are now stored in a new database that has made the maintenance and quality improvement of metadata fields more straightforward. A content management system for a revised suite of PO.DAAC web pages allows dynamic access to a subset of these metadata fields for enhanced dataset description as well as discovery through a faceted search mechanism from the perspective of the user. From the discovery and metadata standpoint the GDAC has also implemented the NASA version of the OpenSearch protocol for searching for GHRSST granules and developed a web service to generate ISO 19115-2 compliant metadata records. Furthermore, the GDAC has continued to implement a new suite of tools and services for GHRSST datastreams including a Level 2 subsetter known as Dataminer, a revised POET Level 3/4 subsetter and visualization tool, a Google Earth interface to selected daily global Level 2 and Level 4 data, and experimented with a THREDDS catalog of GHRSST data collections. Finally we will summarize the expanding user and data statistics, and other metrics that we have collected over the last year demonstrating the broad user community and applications that the GHRSST project continues to serve via the GDAC distribution mechanisms. This report also serves by extension to summarize the activities of the GHRSST Data Assembly and Systems Technical Advisory Group (DAS-TAG).

  11. Remote sensing science for the Nineties; Proceedings of IGARSS '90 - 10th Annual International Geoscience and Remote Sensing Symposium, University of Maryland, College Park, May 20-24, 1990. Vols. 1, 2, & 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.

  12. Experiential Learning: High School Student Response to Learning Oceanography at Sea

    NASA Astrophysics Data System (ADS)

    Fiedler, J. W.; Tamsitt, V. M.; Crosby, S. C.; Ludka, B. C.

    2016-12-01

    The GOTO-SEE (Graduate students Onboard Teaching Oceanography - Scripps Educational Experience) cruises were conducted with two days of ship time off of Point Loma, CA, on the R/V Robert Gordon Sproul in July 2016. The cruises, funded through UC Ship Funds program, provided a unique training opportunity for graduate students to design, coordinate and conduct ship-based field experiments as well as teaching and mentoring students. The cruises allowed for instruction at sea for high school students in the UCSD Academic Connections program in two small classes: a two-week long Global Environmental Leadership and Sustainability Program and a 3-week long class entitled Wind, Waves and Currents: Physics of the Ocean World. Students in both classes assisted with the collection of data, including two repeat cross-shore vertical CTD sections with nutrient sampling, and the deployment and recovery of a 10-day moored vertical thermistor array. Additional activities included plankton net tows, sediment sampling, depth soundings, and simple experiments regarding light absorption in the ocean. The students later plotted the data collected as a class assignment and presented a scientific poster to their peers. Here, we present the lessons learned from the cruises as well as student responses to the unique in-the-field experience, and how those responses differed by curriculum.

  13. A Satellite-Based Lagrangian View on Phytoplankton Dynamics

    NASA Astrophysics Data System (ADS)

    Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan

    2018-01-01

    The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter—the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.

  14. A Satellite-Based Lagrangian View on Phytoplankton Dynamics.

    PubMed

    Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan

    2018-01-03

    The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter-the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.

  15. Efficient bootstrap estimates for tail statistics

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Aarnes, Ole Johan

    2017-03-01

    Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates from the extremal behaviour of the sample. Specifically, the confidence intervals on return value estimates or bounds on in-sample tail statistics can be obtained using bootstrap techniques. However, non-parametric bootstrapping from the entire sample is expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire sample. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology, oceanography and hydrology where return values are calculated from very large gridded model integrations spanning decades at high temporal resolution or from large ensembles of independent and identically distributed model fields. In such cases the computational savings are substantial.

  16. Dynamic biogeochemical provinces in the global ocean

    NASA Astrophysics Data System (ADS)

    Reygondeau, Gabriel; Longhurst, Alan; Martinez, Elodie; Beaugrand, Gregory; Antoine, David; Maury, Olivier

    2013-12-01

    In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and interannual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll a concentration, surface temperature, and salinity) are used to infer the spatial distribution of each BGCP over 1997-2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and interannual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.

  17. The Fourth International Conference on Southern Hemisphere Meteorology and Oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karoly, D.J.; Rosen, R.D.

    The Fourth International Conference on Southern Hemisphere Meteorology and Oceanography was held during the week of 29 March-2 April 1993 in Hobart, Tasmania, Australia. The conference was a joint meeting of the American Meteorological Society and the Australian Meteorological and Oceanographic Society and was cosponsored by the Australian Academy of Sciences, the Intergovernmental Oceanographic Commission, and the World Meteorological Organization. There was great interest in the conference, with 398 participants attending from 25 countries, including 92 participants from the Unites States. Student participation was strongly encouraged,and thanks to support from a number of agencies, as many as 60 students weremore » able to attend and actively contribute to the conference. The program included 110 oral and about 200 poster presentations. Each day started with two invited papers in the first morning session, followed by parallel oral sessions later in the morning and most afternoons. These were followed in turn by a poster session on three of the afternoons, with two of these days closed by a keynote address. The presentations were organized around seven major themes: general circulation, climate change, TOGA COARE and tropical studies, chemical cycles, numerical prediction and data analysis, regional studies, and Antarctic environment. The aim of the conference, to encourage greater communication between oceanographers and meteorologists interested in the Southern Hemisphere, was accomplished by including papers from both groups in each of the sessions. This review presents summaries of the invited keynote and invited papers and also briefly describes other activities of the conference.« less

  18. Tactile Digital Video Globes: a New Way to Outreach Oceanography.

    NASA Astrophysics Data System (ADS)

    Poteau, A.; Claustre, H.; Scheurle, C.; Jessin, T.; Fontana, C.

    2016-02-01

    One objective of the "Ocean Autonomous Observation" team of the Laboratory of Oceanography of Villefranche-sur-mer is to develop new means to outreach our science activities to various audiences. Besides the scientific community, this includes students and targets the general public, school pupils, and stakeholders. In this context, we have acquired a digital video globe with tactile capabilities and we will present here the various applications that we have been developing. A first type of products concerns the visualization of oceanic properties (SST, salinity, density, Chla, O2, NO3, irradiance) by diving from the surface (generally from satellite data) into the Ocean interior (through the use of global data bases, Argo, WOA). In second place, specific applications deal with surface animations allowing highlighting the seasonality of some properties (Chla, SST, ice cover, currents; based on satellite as well as modeling outputs). Finally, we show a variety of applications developed using the tactile functionality of the spherical display. In particular real-time vertical profiles acquired by Bio-Argo floats become directly accessible for the entire open ocean. Such a new tool plus its novel applications has been presented to school children, and to the wider public (at the so-called "fête de la science") as well as to potential sponsors of our science-outreach activities. Their feedback has always been highly positive and encouraging in terms of impact. From the scientists point of view, the use of this new support can easily compete with the classical PowerPoint, is much more attractive and fun and undeniably helps to outreach the various aspects of our pluridisciplinary science.

  19. Phylogeography and historical demography of the anadromous fish Leucopsarion petersii in relation to geological history and oceanography around the Japanese Archipelago.

    PubMed

    Kokita, Tomoyuki; Nohara, Kenji

    2011-01-01

    Phylogeographical patterns of marine and diadromous organisms are often influenced by dynamic ocean histories. For example, the marine realm around the Japanese Archipelago is an interesting area for phylogeographical research because of the wide variation in the environments driven by repeated shifts in sea level in the Quaternary. We analysed mitochondrial cyt b gene and nuclear myh6 gene sequences for individuals collected from throughout the range of the anadromous fish Leucopsarion petersii to assess the lineage divergence, phylogeographical pattern and historical demography in relation to geological history and oceanographic features around the archipelago. Leucopsarion petersii has two major lineages (the Japan Sea and Pacific Ocean lineages), which diverged during the late-early to middle Pleistocene. Geographical distributions of the two lineages were closely related to the pathways of the two warm currents, the Tsushima Current and the Kuroshio Current, that flow past the archipelago. Evidence of introgressive hybridization between these lineages was found at two secondary contact zones. Demographic tests suggested that the Japan Sea and Pacific Ocean lineages carried the genetic signal of different historical demographic processes, and these signals are probably associated with differences in habitat stability during recent glacial periods. The Japan Sea lineage has a larger body-size and more vertebrae, probably in relation to severe habitat conditions through Pleistocene climatic oscillations. Thus, the two lineages have long independent evolutionary histories, and the phylogeographical structure and demography of this species have been influenced both by historical events and the present-day oceanography around the Japanese Archipelago. © 2010 Blackwell Publishing Ltd.

  20. Equatorial oceanography. [review of research

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Sarachik, E. S.

    1983-01-01

    United States progress in equatorial oceanography is reviewed, focusing on the low frequency response of upper equatorial oceans to forcing by the wind. Variations of thermocline depth, midocean currents, and boundary currents are discussed. The factors which determine sea surface temperature (SST) variability in equatorial oceans are reviewed, and the status of understanding of the most spectacular manifestation of SST variability, the El Nino-Southern Oscillation phenomenon, is discussed. The problem of observing surface winds, regarded as a fundamental factor limiting understanding of the equatorial oceans, is addressed. Finally, an attempt is made to identify those current trends which are expected to bear fruit in the near and distant future.

  1. Fall 1991 Ocean Sciences Student Papers

    NASA Astrophysics Data System (ADS)

    1992-04-01

    Michele Okihiro received an Outstanding Student Paper Award for a paper she presented at the AGU Fall 1991 Meeting entitled “Infragravity Bound Waves in Shallow and Deep Water.” Okihiro received a Bachelor of Arts degree in mathematics from Pomona College in 1980, a Bachelor of Science degree in civil engineering from the University of Hawaii in 1988, and a Master of Science degree in oceanography from the University of California at San Diego in 1986. Okihiro is currently working toward her doctorate in oceanography at the University of California at San Diego. Her research at Scripps Institution concerns infragravity waves and their role in forcing resonant harbor oscillations.

  2. Is the Oceanography of the New Zealand Subantarctic Region Responding to the Tropics?

    NASA Astrophysics Data System (ADS)

    Forcen-Vazquez, A. N.

    2016-02-01

    The Campbell Plateau, south of New Zealand plays an important role in New Zealand's regional climate and its oceanography may have a significant impact on fluctuations in fish stocks and marine mammal populations. It is located between the Subtropical and Subantarctic Fronts and exhibits marked variability over long time scales. It has been previously assumed, because of its location, that the Campbell Plateau oceanography is driven by Subantarctic and polar processes. Recent analysis, presented here, suggests this in not the case, and instead forcing comes from the tropics and subtropics. This is supported by positive correlations of Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) with the Southern Oscillation Index (SOI) with SOI leading changes on the Campbell Plateau by two months for SLA and seven months for SST. Here we will present evidence of the similarity between the Campbell Plateau and the Tasman Sea SLA trends which suggests a closer relationship with the subtropical region. Satellite collected SLA data and SST from the last two decades are investigated to understand trends and long-term variability over the Campbell Plateau and its relationship with the surrounding open ocean, and other potential remote drivers of variability.

  3. Retaining STEM women with community-based mentoring

    NASA Astrophysics Data System (ADS)

    Lozier, M.

    2011-12-01

    While women have been graduating from physical oceanography programs in increasing numbers for the past two decades, the number of women occupying senior positions in the field remains relatively low. Thus, the disparity between the percentages of women at various career stages seems to be related to the retention of those completing graduate school in physical oceanography, not in recruiting women to the field. Studies indicate that a positive mentoring experience is strongly correlated with success in science, and as such, MPOWIR (Mentoring Physical Oceanography Women to Increase Retention) provides this essential mentoring to physical oceanographers from late graduate school through their early careers. Our network includes over 400 scientists at 70 institutions participating in a variety of online and face-to-face mentoring opportunities. The MPOWIR website (www.mpowir.org) includes resources for junior scientists, ways to get involved, data and career profiles, and a blog with job postings and relevant information. In October 2011, we will hold the third Pattullo conference to bring mentors and mentees together. The 43 participants at this conference will share their research, attend professional development sessions, and openly discuss issues related to the retention of young scientists in the field.

  4. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus

    PubMed Central

    Biller, Steven J.; Berube, Paul M.; Berta-Thompson, Jessie W.; Kelly, Libusha; Roggensack, Sara E.; Awad, Lana; Roache-Johnson, Kathryn H.; Ding, Huiming; Giovannoni, Stephen J.; Rocap, Gabrielle; Moore, Lisa R.; Chisholm, Sallie W.

    2014-01-01

    The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity—both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography. PMID:25977791

  5. Satellite oceanography - The instruments

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  6. The Gulf of Mexico ecosystem, six years after the Macondo oil well blowout

    NASA Astrophysics Data System (ADS)

    Joye, Samantha B.; Bracco, Annalisa; Özgökmen, Tamay M.; Chanton, Jeffrey P.; Grosell, Martin; MacDonald, Ian R.; Cordes, Erik E.; Montoya, Joseph P.; Passow, Uta

    2016-07-01

    The Gulf of Mexico ecosystem is a hotspot for biological diversity and supports a number of industries, from tourism to fishery production to oil and gas exploration, that serve as the economic backbone of Gulf coast states. The Gulf is a natural hydrocarbon basin, rich with stores of oil and gas that lie in reservoirs deep beneath the seafloor. The natural seepage of hydrocarbons across the Gulf system is extensive and, thus, the system's biological components experience ephemeral, if not, frequent, hydrocarbon exposure. In contrast to natural seepage, which is diffuse and variable over space and time, the 2010 Macondo oil well blowout, represented an intense, focused hydrocarbon infusion to the Gulf's deepwaters. The Macondo blowout drove rapid shifts in microbial populations and activity, revealed unexpected phenomena, such as deepwater hydrocarbon plumes and marine "oil snow" sedimentation, and impacted the Gulf's pelagic and benthic ecosystems. Understanding the distribution and fate of Macondo oil was limited to some degree by an insufficient ability to predict the physical movement of water in the Gulf. In other words, the available physical oceanographic models lacked critical components. In the past six years, much has been learned about the physical oceanography of the Gulf, providing transformative knowledge that will improve the ability to predict the movement of water and the hydrocarbons they carry in future blowout scenarios. Similarly, much has been learned about the processing and fate of Macondo hydrocarbons. Here, we provide an overview of the distribution, fate and impacts of Macondo hydrocarbons and offer suggestions for future research to push the field of oil spill response research forward.

  7. State of the Oceans: A Satellite Data Processing System for Visualizing Near Real-Time Imagery on Google Earth

    NASA Astrophysics Data System (ADS)

    Thompson, C. K.; Bingham, A. W.; Hall, J. R.; Alarcon, C.; Plesea, L.; Henderson, M. L.; Levoe, S.

    2011-12-01

    The State of the Oceans (SOTO) web tool was developed at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory (JPL) as an interactive means for users to visually explore and assess ocean-based geophysical parameters extracted from the latest archived data products. The SOTO system consists of four extensible modules, a data polling tool, a preparation and imaging package, image server software, and the graphical user interface. Together, these components support multi-resolution visualization of swath (Level 2) and gridded Level 3/4) data products as either raster- or vector- based KML layers on Google Earth. These layers are automatically updated periodically throughout the day. Current parameters available include sea surface temperature, chlorophyll concentration, ocean winds, sea surface height anomaly, and sea surface temperature anomaly. SOTO also supports mash-ups, allowing KML feeds from other sources to be overlaid directly onto Google Earth such as hurricane tracks and buoy data. A version of the SOTO software has also been installed at Goddard Space Flight Center (GSFC) to support the Land Atmosphere Near real-time Capability for EOS (LANCE). The State of the Earth (SOTE) has similar functionality to SOTO but supports different data sets, among them the MODIS 250m data product.

  8. Earth Matters: Promoting Science Exploration through Blogs and Social Media

    NASA Astrophysics Data System (ADS)

    Ward, K.; Voiland, A. P.; Carlowicz, M. J.; Simmon, R. B.; Allen, J.; Scott, M.; Przyborski, P. D.

    2012-12-01

    NASA's Earth Observatory (EO) is a 13-year old online publication focusing on the communication of NASA Earth science research, including climate change, weather, geology, oceanography, and solar flares. We serve two primary audiences: the "attentive public"--people interested in and willing to seek out information about science, technology, and the environment--and popular media. We use the EO website (earthobservatory.nasa.gov) to host a variety of content including image-driven stories (natural events and research-based), articles featuring NASA research and, more recently, blogs that give us the ability to increase interaction with our users. For much of our site's history, our communication has been largely one way, and we have relied primarily on traditional online marketing techniques such as RSS and email listservs. As the information ecosystem evolves into one in which many users expect to play a more active role in distributing and even developing content through social media, we've experimented with various social media outlets (blogs, Twitter, Facebook, Google+, etc.) that offer new opportunities for people to interact with NASA data, scientists, and the EO editorial team. As part of our explorations, we are learning about how, and to what extent, these outlets can be used for interaction and outright promotion and how to achieve those goals with existing personnel and resources.

  9. The flushing and exchange of the South China Sea derived from salt and mass conservation

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Bye, John A. T.; You, Yuzhu; Bao, Xianwen; Wu, Dexing

    2010-07-01

    In this paper, we use two kinds of hydrographic data, historical cruise data, Array for Real-time Geostrophic Oceanography (Argo) float data, and atmospheric data to study the water exchange between the South China Sea (SCS) and the Pacific Ocean through the Luzon Strait. The annual mean distributions of temperature and salinity at five different levels in the SCS and the adjacent Pacific Ocean are presented, which indicate the occurrence of active water exchange through the Luzon Strait. The flushing and exchange of the SCS are then determined by the application of salt and mass conservation in a multi-layered thermohaline system, using an estimate of the net rainfall obtained from reanalysis data. The results show that the annual mean flushing time is 44±8 months with an inflow rate of 11±2 Sv (1 Sv=10 6 m 3 s -1), part of which recirculates at a deeper level through the Luzon Strait, the remainder (6±2 Sv) forming the SCS throughflow. The diffusive influx of salt is also estimated and accounts for about 10% of the total influx, and hence advection dominates over diffusion in the water exchange through the Luzon Strait. The seasonal cycle of exchange shows a maximum in autumn and winter of about twice the annual mean rate.

  10. Ecosystem oceanography for global change in fisheries.

    PubMed

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  11. NCAR CSM ocean model by the NCAR oceanography section. Technical note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This technical note documents the ocean component of the NCAR Climate System Model (CSM). The ocean code has been developed from the Modular Ocean Model (version 1.1) which was developed and maintained at the NOAA Geophysical Fluid Dynamics Laboratory in Princeton. As a tribute to Mike Cox, and because the material is still relevant, the first four sections of this technical note are a straight reproduction from the GFDL Technical Report that Mike wrote in 1984. The remaining sections document how the NCAR Oceanography Section members have developed the MOM 1.1 code, and how it is forced, in order tomore » produce the NCAR CSM Ocean Model.« less

  12. Microbial oceanography: paradigms, processes and promise.

    PubMed

    Karl, David M

    2007-10-01

    Life on Earth most likely originated as microorganisms in the sea. Over the past approximately 3.5 billion years, microorganisms have shaped and defined Earth's biosphere and have created conditions that have allowed the evolution of macroorganisms and complex biological communities, including human societies. Recent advances in technology have highlighted the vast and previously unknown genetic information that is contained in extant marine microorganisms, from new protein families to novel metabolic processes. Now there is a unique opportunity, using recent advances in molecular ecology, metagenomics, remote sensing of microorganisms and ecological modelling, to achieve a comprehensive understanding of marine microorganisms and their susceptibility to environmental variability and climate change. Contemporary microbial oceanography is truly a sea of opportunity and excitement.

  13. Coupling biology and oceanography in models.

    PubMed

    Fennel, W; Neumann, T

    2001-08-01

    The dynamics of marine ecosystems, i.e. the changes of observable chemical-biological quantities in space and time, are driven by biological and physical processes. Predictions of future developments of marine systems need a theoretical framework, i.e. models, solidly based on research and understanding of the different processes involved. The natural way to describe marine systems theoretically seems to be the embedding of chemical-biological models into circulation models. However, while circulation models are relatively advanced the quantitative theoretical description of chemical-biological processes lags behind. This paper discusses some of the approaches and problems in the development of consistent theories and indicates the beneficial potential of the coupling of marine biology and oceanography in models.

  14. Assessment of the U. S. outer continental shelf environmental studies program. 1. Physical oceanography. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Federal responsibility for oil and gas development on the U.S. outer continental shelf (OCS) resides with the Minerals Management Service (MMS) of the U.S. Department of the Interior (DOI). The DOI's Environmental Studies Program (ESP) is the program through which MMS conducts environmental studies on the OCS and collects information to prepare environmental impact statements (EISs). It appeared to MMS in 1986 that the time was ripe to assess the status of the present program and to explore the needs for future studies. MMS requested an evaluation of the adequacy and applicability of ESP studies, a review of the generalmore » state of knowledge in the appropriate disciplines, and recommendations for future studies. Three panels were established, one of which, the Physical Oceanography Panel, investigated the physical oceanographic aspects of the ESP, the subject of the report, which is the first of three in a series. In reviewing the ESP's physical oceanography program, the panel evaluated the quality and relevance of studies carried out in waters under federal control, which extend from the limits of state jurisdictions (3-12 miles offshore) and include the central and outer continental shelf waters and the continental slope.« less

  15. Myths in funding ocean research at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Duce, Robert A.; Benoit-Bird, Kelly J.; Ortiz, Joseph; Woodgate, Rebecca A.; Bontempi, Paula; Delaney, Margaret; Gaines, Steven D.; Harper, Scott; Jones, Brandon; White, Lisa D.

    2012-12-01

    Every 3 years the U.S. National Science Foundation (NSF), through its Advisory Committee on Geosciences, forms a Committee of Visitors (COV) to review different aspects of the Directorate for Geosciences (GEO). This year a COV was formed to review the Biological Oceanography (BO), Chemical Oceanography (CO), and Physical Oceanography (PO) programs in the Ocean Section; the Marine Geology and Geophysics (MGG) and Integrated Ocean Drilling Program (IODP) science programs in the Marine Geosciences Section; and the Ocean Education and Ocean Technology and Interdisciplinary Coordination (OTIC) programs in the Integrative Programs Section of the Ocean Sciences Division (OCE). The 2012 COV assessed the proposal review process for fiscal year (FY) 2009-2011, when 3843 proposal actions were considered, resulting in 1141 awards. To do this, COV evaluated the documents associated with 206 projects that were randomly selected from the following categories: low-rated proposals that were funded, high-rated proposals that were funded, low-rated proposals that were declined, high-rated proposals that were declined, some in the middle (53 awarded, 106 declined), and all (47) proposals submitted to the Rapid Response Research (RAPID) funding mechanism. NSF provided additional data as requested by the COV in the form of graphs and tables. The full COV report, including graphs and tables, is available at http://www.nsf.gov/geo/acgeo_cov.jsp.

  16. Improving quantitative skills in introductory geoscience courses at a four-year public institution using online math modules

    NASA Astrophysics Data System (ADS)

    Gordon, E. S.

    2011-12-01

    Fitchburg State University has a diverse student population comprised largely of students traditionally underrepresented in higher education, including first-generation, low-income, and/or students with disabilities. Approximately half of our incoming students require developmental math coursework, but often enroll in science classes prior to completing those courses. Since our introductory geoscience courses (Oceanography, Meteorology, Geology, Earth Systems Science) do not have prerequisites, many students who take them lack basic math skills, but are taking these courses alongside science majors. In order to provide supplemental math instruction without sacrificing time for content, "The Math You Need, When You Need It (TMYN), a set of online math tutorials placed in a geoscience context, will be implemented in three of our introductory courses (Oceanography, Meteorology, and Earth Systems Science) during Fall, 2011. Students will complete 5-6 modules asynchronously, the topics of which include graphing skills, calculating rates, unit conversions, and rearranging equations. Assessment of quantitative skills will be tracked with students' pre- and post-test results, as well as individual module quiz scores. In addition, student assessment results from Oceanography will be compared to student data from Academic Year 2010-11, during which quantitative skills were evaluated with pre- and post-test questions, but students did not receive online supplemental instruction.

  17. Toward Dynamic Ocean Management: Fisheries assessment and climate projections informed by community developed habitat models based on dynamic coastal oceanography

    NASA Astrophysics Data System (ADS)

    Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.

    2016-12-01

    Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.

  18. Toward Dynamic Ocean Management: Fisheries assessment and climate projections informed by community developed habitat models based on dynamic coastal oceanography

    NASA Astrophysics Data System (ADS)

    Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.

    2016-02-01

    Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.

  19. Dispersant Effectiveness, In-Situ Droplet Size Distribution and ...

    EPA Pesticide Factsheets

    This report summarizes two projects covered under an Interagency Agreement between the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Environmental Protection Agency (EPA) in collaboration with the Bedford Institute of Oceanography, Department of Fisheries and Oceans Canada (BIO DFO), New Jersey Institute of Technology (NJIT) and Dalhousie University. Both projects dovetail together in addressing the ability to differentiate physical from chemical dispersion effectiveness using dispersed oil simulations within a flume tank for improving forensic response monitoring tools. This report is split into separateTasks based upon the two projects funded by BSEE: 1) Dispersant Effectiveness, In-Situ Droplet Size Distribution and Numerical Modeling to Assess Subsurface Dispersant Injection as a Deepwater Blowout Oil Spill Response Option. 2) Evaluation of Oil Fluorescence Characteristics to Improve Forensic Response Tools. This report summarizes 2 collaborative projects funded through an Interagency Agreement with DOI BSEE and a Cooperative Agreement with DFO Canada. BSEE required that the projects be combined into one report as they are both covered under the one Interagency Agreement. Task B (Fluorescence of oils) is an SHC 3.62 FY16 product.

  20. Aviso: altimetry products and services in 2013

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Bronner, Emilie; Maheu, Caroline; Mertz, Françoise

    2013-04-01

    Since the launch of Topex/Poseidon, more than 20 years ago, satellite altimetry has evolved in parallel with the user community and oceanography. As a result of this evolution, we now have: - A bigger choice of products, more and more easy-to-use, spanning complete GDRs to pre-computed sea level anomalies and gridded datasets and indicators such as MSL index or ENSO index. - a mature approach, combining altimetric data from various satellites and merging data acquired using different observation techniques, including altimetry, to give us a global view of the ocean; - data available in real or near-real time for operational use. Different services are available either to choose between the various datasets, or to download, extract or even visualize the data. An Ipad-Iphone application, AvisOcean has also been opened in September 2012, for information about the data and their updates. 2013 will see major changes in Aviso data distribution, both in data products themselves and in their distribution, including an online extraction tool in preparation (Online Data Extraction Service). An overview of available products & services, how to access them today, will be presented.

  1. (abstract) TOPEX/Poseidon: Four Years of Synoptic Oceanography

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    1996-01-01

    Exceeding all expectations of measurement precision and accuracy, the US/France TOPEX/Poseidon satellite mission is now in its 5th year. Returning more than 98 percent of the altimetric data, the measured global geocentric height of the sea surface has provided unprecedented opportunities to address a host of scientific problems ranging from the dynamics of ocean circulation to the distribution of internal tidal energy. Scientific highlights of this longest-running altimetric satellite mission include improvements in our understanding of the dynamics and thermodynamics of the large-scale ocean variability, such as, the properties of planetary waves; the energetics of basin-wide gyres; the heat budget of the ocean; and the ocean's response to wind forcing. For the first time, oceanographers have quantitative descriptions of a dynamic variable of the physical state of the global oceans available in near-real-time.

  2. Chemical oceanography. Increasing anthropogenic nitrogen in the North Pacific Ocean.

    PubMed

    Kim, Il-Nam; Lee, Kitack; Gruber, Nicolas; Karl, David M; Bullister, John L; Yang, Simon; Kim, Tae-Wook

    2014-11-28

    The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited. Copyright © 2014, American Association for the Advancement of Science.

  3. Evaluation of brine disposal from the Bryan Mound site of the Strategic Petroleum Reserve Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, R.W. Jr.; Randall, R.E.

    1980-12-01

    The purpose of this report is to describe the environmental conditions found by the principal investigators during the predisposal study conducted from September 1977 through February 1980 prior to the start of brine discharge in March 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management. Volume 1 describes the results of the predisposal study, and it is divided into eight chapters entitled: Physical Oceanography, Analsyis of the Discharge Plume, Water and Sediment Quality, Nekton, Benthos, Zooplankton, Phytoplankton, and Data Management. Volume 2 consists ofmore » appendices which contain additional supporting data in the form of figures and tables.« less

  4. Summary of the physical oceanography of the Pacific Northwest Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdy, D.F.

    The technical report summarizes current information on the physical oceanography of the Pacific Coast of Washington and Oregon, including information on currents, water mass characteristics, vertical stratification and mixing, upwelling, and waves. A general outline of the California current system is given, including the California and Davidson surface currents, the California and Washington undercurrents, and shelf currents. Conditions affecting local and nearshore currents, considered important in the event of an oil spill, are discussed. A summary of wave data is included from several sources including the Corps of Engineers WIS (Wave Information Study), based on meteorological information, and the Mineralsmore » Management Service's Coastal Wave Statistical Data Base (CWSDB), based on high quality data from a system of buoys.« less

  5. Evaluation of brine disposal from the Bryan Mound site of the Strategic Petroleum Reserve Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, R.W. Jr.; Randall, R.E.

    1980-12-01

    The purpose of this report is to describe the environmental conditions found by the principal investigators during the predisposal study conducted from September 1977 through February 1980 prior to the start of brine discharge in March 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management. Volume 1 describes the results of the predisposal study, and it is divided into eight chapters entitled: Physical Oceanography, Analysis of the Discharge Plume, Water and Sediment Quality, Nekton, Benthos, Zooplankton, Phytoplankton, and Data Management. Volume 2 consists ofmore » appendices which contain additional supporting data in the form of figures and tables.« less

  6. Oceanography from space

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1982-01-01

    Active and passive spaceborne instruments that can observe the sea are discussed. Attention is given to satellite observations of ocean surface temperature and heating, wind speed and direction, ocean currents, wave height, ocean color, and sea ice. Specific measurements now being made from space are described, the accuracy of various instruments is considered, and problems associated with the analysis of satellite data are examined. It is concluded that the satellites and techniques used by different nations should be sufficiently standard that data from one satellite can be directly compared with data from another and that accurate calibration and overlap of satellite data are necessary to confirm the continuity and homogeneity of the data.

  7. Studying the Earth's Environment from Space: Computer Laboratory Exercised and Instructor Resources

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.; Alfultis, Michael

    1998-01-01

    Studying the Earth's Environment From Space is a two-year project to develop a suite of CD-ROMs containing Earth System Science curriculum modules for introductory undergraduate science classes. Lecture notes, slides, and computer laboratory exercises, including actual satellite data and software, are being developed in close collaboration with Carla Evans of NASA GSFC Earth Sciences Directorate Scientific and Educational Endeavors (SEE) project. Smith and Alfultis are responsible for the Oceanography and Sea Ice Processes Modules. The GSFC SEE project is responsible for Ozone and Land Vegetation Modules. This document constitutes a report on the first year of activities of Smith and Alfultis' project.

  8. Science at Sea.

    ERIC Educational Resources Information Center

    Phillips, Mary Nied

    2001-01-01

    Describes a three-week inservice teacher education program that involves two sessions of preparatory classes ashore in nautical science and oceanography, and concludes with a nine-day sea voyage. (ASK)

  9. Innovations

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 1972

    1972-01-01

    Listed are some new programs added in different institutions. Topics listed are oceanography, environmental education, interdisciplinary education, computer assisted instruction in chemistry laboratory, elementary education and FORTRAN IV for beginning students. (PS)

  10. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  11. New Species Found!

    ERIC Educational Resources Information Center

    Reinemann, Deborah; Thomas, Jolie

    2003-01-01

    Explains a 4th grade lesson on oceans in which students create imaginary marine animals. Creatively assesses student understanding of habitat and adaptation. Overviews 14 lessons in the oceanography unit. (SOE)

  12. The global abundance and size distribution of lakes, ponds, and impoundments

    USGS Publications Warehouse

    Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, Robert G.; McDowell, W.H.; Kortelainen, Pirkko; Caraco, N.F.; Melack, J.M.; Middelburg, J.J.

    2006-01-01

    One of the major impediments to the integration of lentic ecosystems into global environmental analyses has been fragmentary data on the extent and size distribution of lakes, ponds, and impoundments. We use new data sources, enhanced spatial resolution, and new analytical approaches to provide new estimates of the global abundance of surface-water bodies. A global model based on the Pareto distribution shows that the global extent of natural lakes is twice as large as previously known (304 million lakes; 4.2 million km 2 in area) and is dominated in area by millions of water bodies smaller than 1 km2. Similar analyses of impoundments based on inventories of large, engineered dams show that impounded waters cover approximately 0.26 million km2. However, construction of low-tech farm impoundments is estimated to be between 0.1 % and 6% of farm area worldwide, dependent upon precipitation, and represents >77,000 km 2 globally, at present. Overall, about 4.6 million km2 of the earth's continental "land" surface (>3%) is covered by water. These analyses underscore the importance of explicitly considering lakes, ponds, and impoundments, especially small ones, in global analyses of rates and processes. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  13. Honors

    NASA Astrophysics Data System (ADS)

    Anonymous

    2012-10-01

    Many AGU members are among the American Meteorological Society's (AMS) 2013 honorary members, awardees, lecturers, and fellows. Among the AMS honorary members is Susan Solomon, the Ellen Swallow Richards Professor of Atmospheric Chemistry and Climate Science at the Massachusetts Institute of Technology (MIT). Dennis Hartmann, of the University of Washington, Seattle, is the recipient of AMS's Carl-Gustaf Rossby Research Medal "for significant contributions to the synthesis of knowledge of radiative and dynamical processes leading to a deeper understanding of the climate system." R. Alan Plumb, professor of meteorology at MIT, receives the Jule G. Charney Award "for fundamental contributions to the understanding of geophysical fluid dynamics, stratospheric dynamics, chemical transport, and the general circulation of the atmosphere and oceans." The Verner E. Suomi Award has been given to Richard Johnson, professor of atmospheric science at Colorado State University, Fort Collins, "for exquisite design of rawinsonde networks in field campaigns and insightful analysis of interactions between convective clouds and the largescale atmospheric circulation." W. Kendall Melville, professor of oceanography at the Scripps Institution of Oceanography, University of California, San Diego, has been awarded the Sverdrup Gold Medal Award "for pioneering contributions in advancing knowledge on the role of surface wave breaking and related processes in air-sea interaction." AMS announced that Laurence Armi, also a professor of oceanography at Scripps, is recipient of the Henry Stommel Research Award "for his deeply insightful studies of stratified flow, his pioneering work on boundary mixing and other turbulent mechanisms."

  14. The Indigo V Indian Ocean Expedition: a prototype for citizen microbial oceanography

    NASA Astrophysics Data System (ADS)

    Lauro, Federico; Senstius, Jacob; Cullen, Jay; Lauro, Rachelle; Neches, Russell; Grzymski, Joseph

    2014-05-01

    Microbial Oceanography has long been an extremely expensive discipline, requiring ship time for sample collection and thereby economically constraining the number of samples collected. This is especially true for under-sampled water bodies such as the Indian Ocean. Specialised scientific equipment only adds to the costs. Moreover, long term monitoring of microbial communities and large scale modelling of global biogeochemical cycles requires the collection of high-density data both temporally and spatially in a cost-effective way. Thousands of private ocean-going vessels are cruising around the world's oceans every day. We believe that a combination of new technologies, appropriate laboratory protocols and strategic operational partnerships will allow researchers to broaden the scope of participation in basic oceanographic research. This will be achieved by equipping sailing vessels with small, satcom-equipped sampling devices, user-friendly collection techniques and a 'pre-addressed-stamped-envelope' to send in the samples for analysis. We aim to prove that 'bigger' is not necessarily 'better' and the key to greater understanding of the world's oceans is to forge the way to easier and cheaper sample acquisition. The ultimate goal of the Indigo V Expedition is to create a working blue-print for 'citizen microbial oceanography'. We will present the preliminary outcomes of the first Indigo V expedition, from Capetown to Singapore, highlighting the challenges and opportunities of such endeavours.

  15. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  16. Integrated Stewardship of NASA Satellite and Field Campaign Data

    NASA Astrophysics Data System (ADS)

    Hausman, J.; Tsontos, V. M.; Hardman, S. H.

    2016-02-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is NASA's archive, steward and distributor for physical oceanographic satellite data. Those data are typically organized along the lines of single parameters, such as Sea Surface Temperature, Ocean Winds, Salinity, etc. However there is a need supplement satellite data with in situ and various other remote sensing data to provide higher spatial and temporal sampling and information on physical processes that the satellites are not capable of measuring. This presentation will discuss how PO.DAAC is creating a stewardship and distribution plan that will accommodate satellite, in situ and other remote sensing data that can be used to solve a more integrated approach to data access and utilization along thematic lines in support of science and applications, specifically those posed by Salinity Processes in the Upper Ocean Regional Study (SPURS) and Oceans Melting Greenland (OMG) projects. SPURS used shipboard data, moorings and in situ instruments to investigate changes in salinity and how that information can be used in explaining the water cycle. OMG is studying ice melt in Greenland and how it contributes to changes in sea level through shipboard measurements, airborne and a variety of in situ instruments. PO.DAAC plans on adapting to stewarding and distributing these varieties of data through applications of file format and metadata standards (so data are discoverable and interoperable), extend the internal data system (to allow for better archiving, collection generation and querying of in situ and airborne data) and integration into tools (visualization and data access). We are also working on Virtual Collections with ESDWG, which could provide access to relevant data across DAACs/Agencies along thematic lines. These improvements will improve long-term data management and make it easier for users of various background, regardless if remote sensing or in situ, to discover and use the data.

  17. Elective Program Projects

    ERIC Educational Resources Information Center

    Estrada, Christelle

    1976-01-01

    Outlined is an interdisciplinary program in Ecology and Oceanography for grades six through eight. Numerous student projects are suggested in the outline and the course requirements and the project system are explained. (MA)

  18. 78 FR 38358 - Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel, Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...

  19. 78 FR 55754 - Second Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...

  20. Oceanography Satellite Launches on This Week @NASA – January 22, 2016

    NASA Image and Video Library

    2016-01-22

    On Jan. 17, Jason-3, a U.S.-European oceanography satellite mission launched from California’s Vandenberg Air Force Base aboard a SpaceX Falcon 9 rocket. The mission is led by the National Oceanic and Atmospheric Administration (NOAA) in partnership with NASA, the French space agency, CNES, and the European Organisation for the Exploitation of Meteorological Satellites. After a six-month checkout period, Jason-3 will start full science operations – continuing a nearly quarter-century record of tracking global sea level rise, direction of ocean currents and amount of solar energy stored by oceans – all, key data to understanding changes in global climate and more accurately forecasting severe weather. Also, 2015 global temperatures announced, 10-year anniversary of New Horizons’ launch and ABCs from space!

  1. Cruise to the Chukchi Borderland, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; ,

    1993-01-01

    Oceanography and geology were the principal focuses of the U.S. Geological Survey-sponsored expedition Arctic Summer West '92, which traveled to the eastern part of the Chukchi Borderland of the Amerasia Basin, western Arctic Ocean. The expedition took place from August 20 to September 25, 1992, aboard the Coast Guard cutter Polar Star. USGS investigated the geologic framework and tectonic origin of the borderland, Arctic Quaternary paleoclimate, sea-ice transport of particulate matter in the Beaufort Gyre, and possible radionuclide contamination of the water column and seafloor off Alaska from sources in the Russian Arctic. Researchers from five other institutions studied the area's oceanography, age of the water column, paleoenvironment of the Holocene sediment, physical properties and synthetic-aperture radar backscatter of sea ice, and the drop-stone content of late Quaternary sediment.

  2. Remote sensing of atmosphere and oceans; Proceedings of Symposium 1 and of the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)

    1989-01-01

    Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.

  3. Problems inherent in using aircraft for radio oceanography studies

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1977-01-01

    Some of the disadvantages relating to altitude stability and proximity to the ocean are described for radio oceanography studies using aircraft. The random oscillatory motion introduced by the autopilot in maintaining aircraft altitude requires a more sophisticated range tracker for a radar altimeter than would be required in a satellite application. One-dimensional simulations of the sea surface (long-crested waves) are performed using both the JONSWAP spectrum and the Pierson-Moskowitz spectrum. The results of the simulation indicate that care must be taken in trying to experimentally verify instrument measurement accuracy. Because of the relatively few wavelengths examined from an aircraft due to proximity to the ocean and low velocity compared to a satellite, the random variation in the sea surface parameters being measured can far exceed an instrument's ability to measure them.

  4. Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor.

    PubMed

    Edwards, Katrina J; Bach, Wolfgang; McCollom, Thomas M

    2005-09-01

    Oceanography is inherently interdisciplinary and, since its inception, has included the study of microbe-mineral interactions. From early studies of manganese nodules, to the discovery of hydrothermal vents, it has been recognized that microorganisms are involved at various levels in the transformation of rocks and minerals at and below the seafloor. Recent studies include mineral weathering at low temperatures and microbe-mineral interactions in the subseafloor "deep biosphere". A common characteristic of seafloor and subseafloor geomicrobiological processes that distinguishes them from terrestrial or near-surface processes is that they occur in the dark, one or more steps removed from the sunlight that fuels the near-surface biosphere on Earth. This review focuses on geomicrobiological studies and energy flow in dark, deep-ocean and subseafloor rock habitats.

  5. Virophages to viromes: a report from the frontier of viral oceanography.

    PubMed

    Culley, Alexander I

    2011-07-01

    The investigation of marine viruses has advanced our understanding of ecology, evolution, microbiology, oceanography and virology. Significant findings discussed in this review include the discovery of giant viruses that have genome sizes and metabolic capabilities that distort the line between virus and cell, viruses that participate in photosynthesis and apoptosis, the detection of communities of viruses of all genomic compositions and the preeminence of viruses in the evolution of marine microbes. Although we have made great progress, we have yet to synthesize the rich archive of viral genomic data with oceanographic processes. The development of cutting edge methods such as single virus genomics now provide a toolset to better integrate viruses into the ecology of the ocean. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Time series of the northeast Pacific

    NASA Astrophysics Data System (ADS)

    Peña, M. Angelica; Bograd, Steven J.

    2007-10-01

    In July 2006, the North Pacific Marine Science Organization (PICES) and Fisheries & Oceans Canada sponsored the symposium “Time Series of the Northeast Pacific: A symposium to mark the 50th anniversary of Line P”. The symposium, which celebrated 50 years of oceanography along Line P and at Ocean Station Papa (OSP), explored the scientific value of the Line P and other long oceanographic time series of the northeast Pacific (NEP). Overviews of the principal NEP time-series were presented, which facilitated regional comparisons and promoted interaction and exchange of information among investigators working in the NEP. More than 80 scientists from 8 countries attended the symposium. This introductory essay is a brief overview of the symposium and the 10 papers that were selected for this special issue of Progress in Oceanography.

  7. Relationships between High River Discharge, Upwelling Events, and Bowhead Whale (Balaena mysticetus) Occurrence in the Central Alaskan Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Clarke, J.; Okkonen, S. R.; Potter, R. A.

    2016-02-01

    Aerial surveys of bowhead whales have been conducted in September in the central Alaskan Beaufort Sea (144°W-150°W) for several decades. These surveys, co-managed by BOEM and NOAA, have documented bowhead whale distribution that is almost exclusively on the continental shelf, generally from <1 to 70 km from shore. Most whales observed in September are actively migrating and swimming in a westerly direction, with feeding behavior occasionally observed. In September 2014, several hundred bowhead whales were observed feeding on several occasions within a few kilometers of local barrier islands. This is an unusual situation that has been observed in September in only one other year (1997). To investigate local conditions that might be conducive to increased bowhead whale occurrence, freshwater discharge data from the Sagavanirktok and Kuparak rivers, surface wind data, and suspended sediment data obtained from MODIS satellite imagery were analyzed and compared to bowhead whale observations for September 1989-2014. Results indicate that anomalously high freshwater river discharge coupled with prior upwelling events, based on surface winds >5.4 m s-1, may combine to promote the aggregation of bowhead whale prey on the shallow shelf. When these two conditions were met, whales were sighted more frequently, were more likely to be in groups of ≥2 animals, and be closer to shore. Conversely, when either of the two conditions was not met, whales were sighted less frequently, more likely to be single animals, and be farther from shore. These results underscore annual variation during the bowhead whale fall migration and the physical oceanography processes that may be related to whale distribution and behavior.

  8. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  9. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  10. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  11. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  12. 46 CFR 90.10-16 - Industrial vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ventures. Included in this classification are such vessels as drill rigs, missile range ships, dredges... classification are vessels carrying freight for hire or engaged in oceanography, limnology, or the fishing...

  13. Satellite Altimetry Outreach During Hurricane Rita: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Leben, R.; Born, G. H.; Srinivasan, M.

    2006-07-01

    The 2005 hurricane season was th e most costly on record with estimated d amages in th e U.S. of over 100 billion. What may hav e been lost in the signif icant after math of these storms is the pr imary role th at Gulf of Mexico oceanography played in this very active hurricane season. The four most destructive storms - Dennis (1.84 B), Katrin a (80B), Rita (9.4B) , and Wilma ($14.4 B) - all interacted w ith deep warm ocean currents in th e Gulf contributing to the intensity of these storms and their destructive po ten tial. In the aftermath of Hurrican e K atr ina and during Hurricane Rita we made a concer ted effort to tell this story through satellite altimetry ou treach activ ities at the Un iversity of Colorado, Boulder .

  14. Contribution of the "Institut Scientifique Chérifien" to the development of geoscientific research in Northwest Africa since its creation in 1914

    NASA Astrophysics Data System (ADS)

    Medina, F.

    2013-08-01

    The contribution of the "Institut Scientifique Chérifien", the oldest scientific research centre in Morocco, is reviewed since its creation almost a century ago. Planned in 1914 by the French protectorate of Morocco, this institute has played, since its effective creation in 1920, an important role in the development of several geosciences in North Africa, such as meteorology and climatology, geophysics (gravimetry, magnetism and especially seismology), geomorphology, geology and oceanography. After the independence of Morocco in 1955, several activities, such as meteorology, were transferred elsewhere, but others, such as seismology and magnetism, remained important elements of the centre until recent years. In addition to the research activities, its observatories and libraries that were built during the early years are unique in Northwest Africa.

  15. The relationship among oceanography, prey fields, and beaked whale foraging habitat in the Tongue of the Ocean.

    PubMed

    Hazen, Elliott L; Nowacek, Douglas P; St Laurent, Louis; Halpin, Patrick N; Moretti, David J

    2011-04-27

    Beaked whales, specifically Blainville's (Mesoplodon densirostris) and Cuvier's (Ziphius cavirostris), are known to feed in the Tongue of the Ocean, Bahamas. These whales can be reliably detected and often localized within the Atlantic Undersea Test and Evaluation Center (AUTEC) acoustic sensor system. The AUTEC range is a regularly spaced bottom mounted hydrophone array covering >350 nm(2) providing a valuable network to record anthropogenic noise and marine mammal vocalizations. Assessments of the potential risks of noise exposure to beaked whales have historically occurred in the absence of information about the physical and biological environments in which these animals are distributed. In the fall of 2008, we used a downward looking 38 kHz SIMRAD EK60 echosounder to measure prey scattering layers concurrent with fine scale turbulence measurements from an autonomous turbulence profiler. Using an 8 km, 4-leaf clover sampling pattern, we completed a total of 7.5 repeat surveys with concurrently measured physical and biological oceanographic parameters, so as to examine the spatiotemporal scales and relationships among turbulence levels, biological scattering layers, and beaked whale foraging activity. We found a strong correlation among increased prey density and ocean vertical structure relative to increased click densities. Understanding the habitats of these whales and their utilization patterns will improve future models of beaked whale habitat as well as allowing more comprehensive assessments of exposure risk to anthropogenic sound.

  16. Characterizing a Foraging Hotspot for Short-Finned Pilot Whales and Blainville’s Beaked Whales Located off the West Side of Hawai‘i Island by Using Tagging and Oceanographic Data

    PubMed Central

    Abecassis, Melanie; Polovina, Jeffrey; Baird, Robin W.; Copeland, Adrienne; Drazen, Jeffrey C.; Domokos, Reka; Oleson, Erin; Jia, Yanli; Schorr, Gregory S.; Webster, Daniel L.; Andrews, Russel D.

    2015-01-01

    Satellite tagging data for short-finned pilot whales (Globicephala macrorhynchus) and Blainville’s beaked whales (Mesoplodon densirostris) were used to identify core insular foraging regions off the Kona (west) Coast of Hawai‘i Island. Ship-based active acoustic surveys and oceanographic model output were used in generalized additive models (GAMs) and mixed models to characterize the oceanography of these regions and to examine relationships between whale density and the environment. The regions of highest density for pilot whales and Blainville’s beaked whales were located between the 1000 and 2500 m isobaths and the 250 and 2000 m isobaths, respectively. Both species were associated with slope waters, but given the topography of the area, the horizontal distribution of beaked whales was narrower and located in shallower waters than that of pilot whales. The key oceanographic parameters characterizing the foraging regions were bathymetry, temperature at depth, and a high density of midwater micronekton scattering at 70 kHz in 400–650 m depths that likely represent the island-associated deep mesopelagic boundary community and serve as prey for the prey of the whales. Thus, our results suggest that off the Kona Coast, and potentially around other main Hawaiian Islands, the deep mesopelagic boundary community is key to a food web that supports insular cetacean populations. PMID:26605917

  17. The Relationship among Oceanography, Prey Fields, and Beaked Whale Foraging Habitat in the Tongue of the Ocean

    PubMed Central

    Hazen, Elliott L.; Nowacek, Douglas P.; St. Laurent, Louis; Halpin, Patrick N.; Moretti, David J.

    2011-01-01

    Beaked whales, specifically Blainville's (Mesoplodon densirostris) and Cuvier's (Ziphius cavirostris), are known to feed in the Tongue of the Ocean, Bahamas. These whales can be reliably detected and often localized within the Atlantic Undersea Test and Evaluation Center (AUTEC) acoustic sensor system. The AUTEC range is a regularly spaced bottom mounted hydrophone array covering >350 nm2 providing a valuable network to record anthropogenic noise and marine mammal vocalizations. Assessments of the potential risks of noise exposure to beaked whales have historically occurred in the absence of information about the physical and biological environments in which these animals are distributed. In the fall of 2008, we used a downward looking 38 kHz SIMRAD EK60 echosounder to measure prey scattering layers concurrent with fine scale turbulence measurements from an autonomous turbulence profiler. Using an 8 km, 4-leaf clover sampling pattern, we completed a total of 7.5 repeat surveys with concurrently measured physical and biological oceanographic parameters, so as to examine the spatiotemporal scales and relationships among turbulence levels, biological scattering layers, and beaked whale foraging activity. We found a strong correlation among increased prey density and ocean vertical structure relative to increased click densities. Understanding the habitats of these whales and their utilization patterns will improve future models of beaked whale habitat as well as allowing more comprehensive assessments of exposure risk to anthropogenic sound. PMID:21556355

  18. Launching the Next Generation IODP Site Survey Data Bank

    NASA Astrophysics Data System (ADS)

    Miller, S. P.; Helly, J.; Clark, D.; Eakins, B.; Sutton, D.; Weatherford, J.; Thatch, G.; Miville, B.; Zelt, B.

    2005-12-01

    The next generation all-digital Site Survey Data Bank (SSDB) became operational on August 15, 2005 as an online resource for Integrated Ocean Drilling Program (IODP) proponents, reviewers, panels and operations, worldwide. There are currently 123 active proposals for drilling at sites distributed across the globe, involving nearly 1000 proponents from more than 40 countries. The goal is to provide an authoritative, persistent, secure, password-controlled and easily-used home for contributed data objects, as proposals evolve through their life cycle from preliminary phases to planned drilling expeditions. Proposal status can be monitored graphically by proposal number, data type or date. A Java SSDBviewer allows discovery of all proposal data objects, displayed over a basemap of global topography, crustal age or other custom maps. Data can be viewed or downloaded under password control. Webform interfaces assist with the uploading of data and metadata. Thirty four different standard data types are currently supported. The system was designed as a fully functioning digital library, not just a database or a web archive, drawing upon the resources of the SIOExplorer Digital Library project. Blocks of metadata are organized to support discovery and use, as appropriate for each data type. The SSDB has been developed by a UCSD team of researchers and computer scientists at the Scripps Institution of Oceanography and the San Diego Supercomputer Center, under contract with IODP Management International Inc., supported by NSF OCE 0432224.

  19. Seasonal and interannual variability of dissolved oxygen around the Balearic Islands from hydrographic data

    NASA Astrophysics Data System (ADS)

    Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.

    2014-10-01

    Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.

  20. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  1. Operational marine products from Copernicus Sentinel-3 mission

    NASA Astrophysics Data System (ADS)

    Tomazic, Igor; Montagner, Francois; O'Carroll, Anne; Kwiatkowska, Ewa; Scharroo, Remko; Nogueira Loddo, Carolina; Martin-Puig, Cristina; Bonekamp, Hans; Lucas, Bruno; Dinardo, Salvatore; Dash, Prasanjit; Taberner, Malcolm; Coto Cabaleiro, Eva; Santacesaria, Vincenzo; Wilson, Hilary

    2017-04-01

    The first Copernicus Sentinel-3 satellite, Sentinel-3A, was launched in early 2016, with the mission to provide a consistent, long-term collection of marine and land data for operational analysis, forecasting and environmental and climate monitoring. The marine centre is part of the Sentinel-3 Payload Data Ground Segment, located at EUMETSAT. This centre together with the existing EUMETSAT facilities provides a routine centralised service for operational meteorology, oceanography, and other Sentinel-3 marine users as part of the European Commission's Copernicus programme. The EUMETSAT marine centre delivers operational Sea Surface Temperature, Ocean Colour and Sea Surface Topography data products based on the measurements from the Sea and Land Surface Temperature Radiometer (SLSTR), Ocean and Land Colour Instrument (OLCI) and Synthetic Aperture Radar Altimeter (SRAL), respectively, all aboard Sentinel-3. All products have been developed together with ESA and industry partners and EUMETSAT is responsible for the production, distribution, and future evolution of Level-2 marine products. We will give an overview of the scientific characteristics and algorithms of all marine Level-2 products, as well as instrument calibration and product validation results based on on-going Sentinel-3 Cal/Val activities. Information will be also provided about the current status of the product dissemination and the future evolutions that are envisaged. Also, we will provide information how to access Sentinel-3 data from EUMETSAT and where to look for further information.

  2. Characterizing a Foraging Hotspot for Short-Finned Pilot Whales and Blainville's Beaked Whales Located off the West Side of Hawai'i Island by Using Tagging and Oceanographic Data.

    PubMed

    Abecassis, Melanie; Polovina, Jeffrey; Baird, Robin W; Copeland, Adrienne; Drazen, Jeffrey C; Domokos, Reka; Oleson, Erin; Jia, Yanli; Schorr, Gregory S; Webster, Daniel L; Andrews, Russel D

    2015-01-01

    Satellite tagging data for short-finned pilot whales (Globicephala macrorhynchus) and Blainville's beaked whales (Mesoplodon densirostris) were used to identify core insular foraging regions off the Kona (west) Coast of Hawai'i Island. Ship-based active acoustic surveys and oceanographic model output were used in generalized additive models (GAMs) and mixed models to characterize the oceanography of these regions and to examine relationships between whale density and the environment. The regions of highest density for pilot whales and Blainville's beaked whales were located between the 1000 and 2500 m isobaths and the 250 and 2000 m isobaths, respectively. Both species were associated with slope waters, but given the topography of the area, the horizontal distribution of beaked whales was narrower and located in shallower waters than that of pilot whales. The key oceanographic parameters characterizing the foraging regions were bathymetry, temperature at depth, and a high density of midwater micronekton scattering at 70 kHz in 400-650 m depths that likely represent the island-associated deep mesopelagic boundary community and serve as prey for the prey of the whales. Thus, our results suggest that off the Kona Coast, and potentially around other main Hawaiian Islands, the deep mesopelagic boundary community is key to a food web that supports insular cetacean populations.

  3. The Aegean Sea marine security decision support system

    NASA Astrophysics Data System (ADS)

    Perivoliotis, L.; Krokos, G.; Nittis, K.; Korres, G.

    2011-05-01

    As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System) project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON), into an active element of the European Decision Support System (EuroDeSS). The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.

  4. The Aegean sea marine security decision support system

    NASA Astrophysics Data System (ADS)

    Perivoliotis, L.; Krokos, G.; Nittis, K.; Korres, G.

    2011-10-01

    As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System) project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON), into an active element of the European Decision Support System (EuroDeSS). The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order to support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.

  5. Continuous resistivity profiling to delineate submarine groundwater discharge - Examples and limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; White, E.A.; Johnson, C.D.; Lane, J.W.; Belaval, M.

    2006-01-01

    Aquifer-ocean interaction, saline intrusion, and submarine groundwater discharge (SGD) are emerging topics in hydrology and oceanography with important implications for water-resource management and estuarine ecology. Although the threat of saltwater intrusion has long been recognized in coastal areas, SGD has, until recently, received much less attention. It is clear that SGD constitutes a major nutrient flux to coastal waters, with implications for estuarine ecology, eutrophication, and loss of coral reefs; however, fundamental questions regarding SGD remain unanswered: What are the spatial and temporal distributions of SGD offshore? How do seasonal and storm-related variations in aquifer recharge affect SGD flux and nutrient loading? What controls do aquifer structure and heterogeneity impose? How are SGD and saline recirculation related? Geophysical methods can provide insights to help answer these questions and improve the understanding of this intriguing and environmentally relevant hydrologic phenomenon. ?? 2006 Society of Exploration Geophysicists.

  6. North Atlantic Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Bennett, T. (Editor); Broecker, W. S. (Editor); Hansen, J. (Editor)

    1984-01-01

    Various studies concerning differing aspects of the North Atlantic are presented. The three major topics under which the works are classified include: (1) oceanography; (2) paleoclimate; and (3) ocean, ice and climate modeling.

  7. 75 FR 71734 - Outer Continental Shelf (OCS), Scientific Committee (SC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... program covers a wide range of field and laboratory studies in biology, chemistry, and physical... SC has 15 vacancies in the following disciplines: Biological oceanography/marine biology; social...

  8. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    One of the earliest ocean-related flights was that of Amundsen to be first across the North Pole and Arctic from Svalbard to Alaska in the airship Norge in 1926. Twenty five years later Cox & Munk flew a B-17G "Flying Fortress" bomber over Hawaiian waters measuring sea surface slope statistics from photographs of sun glitter and wind speed from a yacht. The value of Cox & Munk's "airborne oceanography" became apparent another twenty five years later with the short-lived Seasat microwave remote-sensing mission, since interpretation of the Seasat data in geophysical variables required scattering theories that relied on their data. The universal acceptance of remote sensing in oceanography began in 1992 with the launch of, and successful analysis of sea surface height data from, the Topex/Poseidon radar altimeter. With that and the development of more realistic coupled atmosphere-ocean models it became apparent that our understanding of weather and climate variability in both the atmosphere and the ocean depends crucially on our ability to measure processes in boundary layers spanning the interface. Ten years ago UNOLS formed the Scientific Committee for Oceanographic Aircraft Research (SCOAR) "...to improve access to research aircraft facilities for ocean sciences"; an attempt to make access to aircraft as easy as access to research vessels. SCOAR emphasized then that "Aircraft are ideal for both fast-response investigations and routine, long-term measurements, and they naturally combine atmospheric measurements with oceanographic measurements on similar temporal and spatial scales." Since then developments in GPS positioning and miniaturization have made scientific measurements possible from smaller and smaller platforms, including the transition from manned to unmanned aerial vehicles (UAVs). Furthermore, ship-launched and recovered UAVs have demonstrated how they can enhance the capabilities and reach of the research vessels, "projecting" research and science, just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  9. Virtual Research Expeditions along Plate Margins: Examples from an Online Oceanography Course

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H. J.

    2010-12-01

    An undergraduate online course in oceanography is based on the participation of each student in a series of virtual, at-sea, research expeditions, two of which are used to examine the tectonic processes at plate boundaries. The objective is to leverage the results of major federal research initiatives in the ocean sciences into effective learning tools with a long lifespan for use in undergraduate geoscience courses. These web-based expeditions examine: (1) hydrothermal vents along the divergent plate boundary at the Explorer Ridge and (2) the convergent plate boundary fault along the Nankai Trough, which is the objective of the multi-year NanTroSEIZE drilling program. Here we focus on the convergent plate boundary in NanTroSEIZE 3-D, which is based on a seismic survey supported through NSF-MARGINS, IODP and CDEX in Japan to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan. The virtual voyage can be used in undergraduate classes at anytime, since it is not directly tied to the finite duration of a specific seagoing project, and comes in two versions, one that is being used in geoscience major courses and the other in non-major courses, such as the oceanography course mentioned above and a lower-division global studies course with a science emphasis. NanTroSEIZE in 3-D places undergraduate learning in an experiential framework as students participate on the expedition and carry out research on the structure of the plate boundary fault. Students learn the scientific background of the program, especially the critical role of international collaboration, and meet the chief scientists before joining the 3-D seismic imaging expedition to identify the active faults that were the likely sources of devastating earthquakes and tsunamis in Japan in 1944 and 1948. The initial results of phase I ODP drilling that began in 2007 are also reviewed. Students document their research on a worksheet that accompanies the expedition, interpret a slice through the 3-D seismic volume, and compose an “AGU-style” abstract summarizing their work, which is submitted to the instructor for review. NanTroSEIZE in 3-D is openly available and can be accessed through the MARGINS Mini-lesson section of the Science Education Resource Center (SERC).

  10. Stratified Fronts in Well-Mixed Estuaries

    DTIC Science & Technology

    2013-09-01

    Thornton Thomas Murphree Professor of Oceanography (Emer.) Professor of Meteorology Approved by...J. C. Warner (2012), Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping, J. Geophys

  11. Oscillation Rules as the Pacific Cools

    NASA Image and Video Library

    2008-12-13

    The latest image of sea-surface height measurements from NASA U.S./French Jason-1 oceanography satellite shows the Pacific Ocean remains locked in a strong, cool phase of the Pacific Decadal Oscillation.

  12. Ten Days at Sea: For Grades K through 3

    ERIC Educational Resources Information Center

    Seddon, Marian

    1977-01-01

    Outlines a 10-day unit in oceanography for the primary grades. Suggest stories, chalkboard work, topics for discussion, coloring projects, experiments, films, reference books, and topics for research projects. (CS)

  13. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 9: Oceans

    NASA Technical Reports Server (NTRS)

    Lietzke, K. R.

    1974-01-01

    The impact of remote sensing upon marine activities and oceanography is presented. The present capabilities of the current Earth Resources Technology Satellite (ERTS-1), as demonstrated by the principal investigators are discussed. Cost savings benefits are quantified in the area of nautical and hygrographic mapping and charting. Benefits are found in aiding coastal zone management and in the fields of weather (marine) prediction, fishery harvesting and management, and potential uses for ocean vegetation. Difficulties in quantification are explained, the primary factor being that remotely sensed information will be of greater benefit as input to forecasting models which have not yet been constructed.

  14. The potential impact of scatterometry on oceanography - A wave forecasting case

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Cardone, V. J.

    1981-01-01

    A series of observing system simulation experiments have been performed in order to assess the potential impact of marine surface wind data on numerical weather prediction. In addition to conventional data, the experiments simulated the time-continuous assimilation of remotely sensed marine surface wind or temperature sounding data. The wind data were fabricated directly for model grid points intercepted by a Seasat-1 scatterometer swath and were assimilated into the lowest active level (945 mb) of the model using a localized successive correction method. It is shown that Seasat wind data can greatly improve numerical weather forecasts due to better definition of specific features. The case of the QE II storm is examined.

  15. Electronic access to ONREUR/ONRAISIA S and T reports

    NASA Technical Reports Server (NTRS)

    Mccluskey, William

    1994-01-01

    The Office of Naval Research maintains two foreign field offices in London, England and in Tokyo, Japan. These offices survey world-wide findings, trends and achievements in science and technology. These offices maintain liaison between U.S. Navy and foreign scientific research and development organizations conducting programs of naval interest. Expert personnel survey foreign scientific and technical activities, identify new directions and progress of potential interest, and report their findings. Report topics cover a broad range of basic scientific thrusts in mathematics, physics, chemistry, computer science, and oceanography, as well as advances in technologies such as electronics, materials, optics, and robotics. These unclassified reports will be made available via the Internet in 1995, replacing hard-copy publication.

  16. Life from a plantary perspective: Fundamental issues in global ecology

    NASA Technical Reports Server (NTRS)

    Botkin, D. B.

    1980-01-01

    Twenty-three scientists from diverse disciplines met for one week at the University of California, Santa Barbara to discuss life from a planetary perspective. The scientists represented the major disciplines concerned with the Earth's biota, oceans, atmosphere and sediments, including geochemistry, atmospheric chemistry, chemical oceanography, limnology, forestry, terrestrial ecology, microbiology, biophysics, geography and remote sensing as well as mathematics. These twenty-three scientists met to discuss whether there was, at this time, a set of scientific issues concerning life and the entire Earth as a single unit, to set down the major tractable issues, and to suggest a set of activities that would promote the study of the issues identified. Their conclusions are summarized.

  17. Oceanography: A sea butterfly flaps its wings

    NASA Astrophysics Data System (ADS)

    Ries, Justin B.

    2012-12-01

    Ocean acidification is predicted to harm the ocean's shell-building organisms over the coming centuries. Sea butterflies, an ecologically important group of molluscs in the Arctic and Southern oceans, are already suffering the effects.

  18. Progress in the Determination of the Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H. (Editor)

    1989-01-01

    Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.

  19. The Great Hydrometer Construction Contest!

    ERIC Educational Resources Information Center

    McGinnis, James Randy; Padilla, Michael J.

    1991-01-01

    The relationship between specific gravity, salinity, and density in brine solutions is investigated. Students construct hydrometers to reinforce concepts learned in oceanography. Background information, salt requirements for the unknowns, directions, and reproducible worksheets are included. (KR)

  20. The James Melville Gilliss Library - Naval Oceanography Portal

    Science.gov Websites

    Librarian Search - URANIA SAO/NASA ADS Library Collections Historical Photos, Artwork, Objects Library Astrophysical Data System (ADS) Search the SAO/NASA Astrophysical Data System (ADS) Library Collections Recently

  1. A two-dimensional composite grid numerical model based on the reduced system for oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y.F.; Browning, G.L.; Chesshire, G.

    The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system, is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are discussed. Numerical resultsmore » are presented for circular and kidney-shaped basins by using a set of analytic solutions constructed in this paper.« less

  2. Conference on Satellite Meteorology and Oceanography, 6th, Atlanta, GA, Jan. 5-10, 1992, Preprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The present volume on satellite meteorology and oceanography discusses cloud retrieval from collocated IR sounder data and imaging systems, satellite retrievals of marine stratiform cloud systems, multispectral analysis of satellite observations of smoke and dust, and image and graphical analysis of principal components of satellite sounding channels. Attention is given to an evaluation of results from classification retrieval methods, the use of TOVS radiances, estimation of path radiance on the basis of remotely sensed data, and a reexamination of SST as a predictor for tropical storm intensity. Topics addressed include optimal smoothing of GOES VAS for upper-atmosphere thermal waves, obtainingmore » cloud motion vectors from polar orbiting satellites, the use of cloud relative animation in the analysis of satellite data, and investigations of a polar low using geostationary satellite data.« less

  3. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  4. Graphical methods and Cold War scientific practice: the Stommel Diagram's intriguing journey from the physical to the biological environmental sciences.

    PubMed

    Vance, Tiffany C; Doel, Ronald E

    2010-01-01

    In the last quarter of the twentieth century, an innovative three-dimensional graphical technique was introduced into biological oceanography and ecology, where it spread rapidly. Used to improve scientists' understanding of the importance of scale within oceanic ecosystems, this influential diagram addressed biological scales from phytoplankton to fish, physical scales from diurnal tides to ocean currents, and temporal scales from hours to ice ages. Yet the Stommel Diagram (named for physical oceanographer Henry Stommel, who created it in 1963) had not been devised to aid ecological investigations. Rather, Stommel intended it to help plan large-scale research programs in physical oceanography, particularly as Cold War research funding enabled a dramatic expansion of physical oceanography in the 1960s. Marine ecologists utilized the Stommel Diagram to enhance research on biological production in ocean environments, a key concern by the 1970s amid growing alarm about overfishing and ocean pollution. Before the end of the twentieth century, the diagram had become a significant tool within the discipline of ecology. Tracing the path that Stommel's graphical techniques traveled from the physical to the biological environmental sciences reveals a great deal about practices in these distinct research communities and their relative professional and institutional standings in the Cold War era. Crucial to appreciating the course of that path is an understanding of the divergent intellectual and social contexts of the physical versus the biological environmental sciences.

  5. Physical oceanography of continental shelves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.S.; Beardlsey, R.C.; Blanton, J.O.

    Knowledge of the physical oceanography of continental shelves has increased tremendously in recent years, primarily as a result of new current and hydrographic measurements made in locations where no comparable measurements existed previously. In general, observations from geographically distinct continental shelves have shown that the nature of the flow may vary considerably from region to region. Although some characteristics, such as the response of currents to wind forcing, are common to many shelves, the relative importance of various physical processes in influencing the shelf flow field frequently is different. In the last several years, the scientific literature on shelf studiesmore » has expanded rapidly, with that for separate regions, to some extent, developing independently because of the variable role played by different physical effects. Consequently, it seems that a simultaneous review of progress in physical oceanographic research in different shelf regions would be especially useful at this time in order to help assess the overall progress in the field. This multi-author report has been compiled as a result. Included are sections on the physical oceanography of continental shelves, in or off of, the eastern Bering Sea, northern Gulf of Alaska, Pacific Northwest, southern California, west Florida, southeastern US, Middle Atlantic Bight, Georges Bank and Peru. These discussions clearly point to the diverse nature of the dominant physics in several of the regions, as well as to some of the dynamical features they share in common. 390 references, 23 figures.« less

  6. What's New in the Ocean in Google Earth and Maps

    NASA Astrophysics Data System (ADS)

    Austin, J.; Sandwell, D. T.

    2014-12-01

    Jenifer Austin, Jamie Adams, Kurt Schwehr, Brian Sullivan, David Sandwell2, Walter Smith3, Vicki Ferrini4, and Barry Eakins5, 1 Google Inc., 1600 Amphitheatre Parkway, Mountain View, California, USA 2 University of California-San Diego, Scripps Institute of Oceanography, La Jolla, California ,USA3 NOAA Laboratory for Satellite Altimetry, College Park, Maryland, USA4 Lamont Doherty, Columbia University5 NOAAMore than two-thirds of Earth is covered by oceans. On the almost 6 year anniversary of launching an explorable ocean seafloor in Google Earth and Maps, we updated our global underwater terrain dataset in partnership with Lamont-Doherty at Columbia, the Scripps Institution of Oceanography, and NOAA. With this update to our ocean map, we'll reveal an additional 2% of the ocean in high resolution representing 2 years of work by Columbia, pulling in data from numerous institutions including the Campeche Escarpment in the Gulf of Mexico in partnership with Charlie Paul at MBARI and the Schmidt Ocean Institute. The Scripps Institution of Oceanography at UCSD has curated 30 years of data from more than 8,000 ship cruises and 135 different institutions to reveal 15 percent of the seafloor at 1 km resolution. In addition, explore new data from an automated pipeline built to make updates to our Ocean Map more scalable in partnership with NOAA's National Geophysical Data Center (link to http://www.ngdc.noaa.gov/mgg/bathymetry/) and the University of Colorado CIRES program (link to http://cires.colorado.edu/index.html).

  7. Interested in Pelagic Food Webs? BCO-DMO has your Data.

    NASA Astrophysics Data System (ADS)

    Chandler, C. L.; Groman, R. C.; Kinkade, D.; Rauch, S.; Allison, M. D.; Gegg, S. R.; Shepherd, A.; Wiebe, P. H.; Glover, D. M.

    2016-02-01

    Interdisciplinary research collaborations that address complex, global research themes such as the interactive effects of global warming and studies of pelagic food webs require access to a broad range of data types from all disciplines of oceanography, from all platforms (e.g. ships, gliders, floats, moorings), with the in situ observations complementing and being complemented by laboratory and model results. In an effort to build a comprehensive database of marine ecosystem research data, the National Science Foundation (NSF) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO; bco-dmo.org) to support the data management requirements of investigators funded by the NSF's Polar Programs (PLR) and Biological and Chemical Oceanography Sections (OCE). Since 2006, investigators funded by NSF PLR and OCE have been working with support from BCO-DMO data scientists, to build a data system that now includes the full range of ocean biogeochemistry data resulting from decades of research. In addition to data from recently funded PIs, the BCO-DMO data system also serves data from legacy programs (e.g. US Joint Global Ocean Flux Study and US Global Ocean Ecosystem Dynamics). The data are open-access, available for download in a variety of user-selectable formats, and accompanied by sufficient documentation to enable re-use. This presentation will highlight the diversity of data available from the BCO-DMO system and demonstrate some of the features that enable discovery, access and download of data relevant to studies of pelagic food webs.

  8. Honors

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Many AGU members are among the American Meteorological Society's (AMS) 2013 honorary members, awardees, lecturers, and fellows. Among the AMS honorary members is Susan Solomon, the Ellen Swallow Richards Professor of Atmospheric Chemistry and Climate Science at the Massachusetts Institute of Technology (MIT). Dennis Hartmann, of the University of Washington, Seattle, is the recipient of AMS's Carl-Gustaf Rossby Research Medal “for significant contributions to the synthesis of knowledge of radiative and dynamical processes leading to a deeper understanding of the climate system.” R. Alan Plumb, professor of meteorology at MIT, receives the Jule G. Charney Award “for fundamental contributions to the understanding of geophysical fluid dynamics, stratospheric dynamics, chemical transport, and the general circulation of the atmosphere and oceans.” The Verner E. Suomi Award has been given to Richard Johnson, professor of atmospheric science at Colorado State University, Fort Collins, “for exquisite design of rawinsonde networks in field campaigns and insightful analysis of interactions between convective clouds and the largescale atmospheric circulation.” W. Kendall Melville, professor of oceanography at the Scripps Institution of Oceanography, University of California, San Diego, has been awarded the Sverdrup Gold Medal Award “for pioneering contributions in advancing knowledge on the role of surface wave breaking and related processes in air-sea interaction.” AMS announced that Laurence Armi, also a professor of oceanography at Scripps, is recipient of the Henry Stommel Research Award “for his deeply insightful studies of stratified flow, his pioneering work on boundary mixing and other turbulent mechanisms.”

  9. Ambient noise imaging in warm shallow waters; robust statistical algorithms and range estimation.

    PubMed

    Chitre, Mandar; Kuselan, Subash; Pallayil, Venugopalan

    2012-08-01

    The high frequency ambient noise in warm shallow waters is dominated by snapping shrimp. The loud snapping noises they produce are impulsive and broadband. As the noise propagates through the water, it interacts with the seabed, sea surface, and submerged objects. An array of acoustic pressure sensors can produce images of the submerged objects using this noise as the source of acoustic "illumination." This concept is called ambient noise imaging (ANI) and was demonstrated using ADONIS, an ANI camera developed at the Scripps Institution of Oceanography. To overcome some of the limitations of ADONIS, a second generation ANI camera (ROMANIS) was developed at the National University of Singapore. The acoustic time series recordings made by ROMANIS during field experiments in Singapore show that the ambient noise is well modeled by a symmetric α-stable (SαS) distribution. As high-order moments of SαS distributions generally do not converge, ANI algorithms based on low-order moments and fractiles are developed and demonstrated. By localizing nearby snaps and identifying the echoes from an object, the range to the object can be passively estimated. This technique is also demonstrated using the data collected with ROMANIS.

  10. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean.

    PubMed

    Li, W K W

    2002-09-12

    Many issues in biological oceanography are regional or global in scope; however, there are not many data sets of extensive areal coverage for marine plankton. In microbial ecology, a fruitful approach to large-scale questions is comparative analysis wherein statistical data patterns are sought from different ecosystems, frequently assembled from unrelated studies. A more recent approach termed macroecology characterizes phenomena emerging from large numbers of biological units by emphasizing the shapes and boundaries of statistical distributions, because these reflect the constraints on variation. Here, I use a set of flow cytometric measurements to provide macroecological perspectives on North Atlantic phytoplankton communities. Distinct trends of abundance in picophytoplankton and both small and large nanophytoplankton underlaid two patterns. First, total abundance of the three groups was related to assemblage mean-cell size according to the 3/4 power law of allometric scaling in biology. Second, cytometric diversity (an ataxonomic measure of assemblage entropy) was maximal at intermediate levels of water column stratification. Here, intermediate disturbance shapes diversity through an equitable distribution of cells in size classes, from which arises a high overall biomass. By subsuming local fluctuations, macroecology reveals meaningful patterns of phytoplankton at large scales.

  11. Aviso: altimetry products & services in 2013

    NASA Astrophysics Data System (ADS)

    Mertz, F.; Bronner, E.; Rosmorduc, V.; Maheu, C.

    2013-12-01

    Since the launch of Topex/Poseidon, more than 20 years ago, satellite altimetry has evolved in parallel with the user community and oceanography. As a result of this evolution, we now have: - a wide range of products, more and more easy-to-use, spanning complete GDRs to pre-computed sea level anomalies, gridded datasets and indicators such as MSL index or ENSO index. - a wide range of applications in the oceanographic community: ocean observation, biology, climate, ... - a mature approach, combining altimetric data from various satellites and merging data acquired using different observation techniques, including altimetry, to give us a global view of the ocean; - data available in real or near-real time for operational use. Different services are available either to choose between the various datasets, or to download, extract or even visualize the data. An Ipad-Iphone application, AvisOcean has also been opened in September 2012, for information about the data and their updates. 2013 has seen major changes in Aviso data distribution, both in data products themselves and in their distribution, including an online extraction tool in preparation (Online Data Extraction Service). An overview of available products & services, how to access them today, will be presented.

  12. El Niño Continues to Grow

    NASA Image and Video Library

    2002-12-12

    The latest image from NASA Jason oceanography satellite, taken during a 10-day collection cycle ending December 2, 2002, shows the Pacific dominated by two significant areas of higher-than-normal sealevel warmer ocean temperatures.

  13. El Ni?o Last Stand?

    NASA Image and Video Library

    2010-03-16

    Recent sea-level height data from NASA Jason-2 oceanography satellite show a weakening of trade winds in western and central equatorial Pacific during late-January through February has triggered yet another strong, eastward-moving Kelvin wave.

  14. Microprocessor-based interface for oceanography

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1979-01-01

    Ocean floor imaging system incorporates five identical microprocessor-based interface units each assigned to specific sonar instrument to simplify system. Central control module based on same microprocessor eliminates need for custom tailoring hardware interfaces for each instrument.

  15. Applications of adenine nucleotide measurements in oceanography

    NASA Technical Reports Server (NTRS)

    Holm-Hansen, O.; Hodson, R.; Azam, F.

    1975-01-01

    The methodology involved in nucleotide measurements is outlined, along with data to support the premise that ATP concentrations in microbial cells can be extrapolated to biomass parameters. ATP concentrations in microorganisms and nucleotide analyses are studied.

  16. Earth Science Principles Pertinent to the General Education Programs in Junior High Schools

    ERIC Educational Resources Information Center

    Henson, Kenneth Tyrone

    1970-01-01

    Presents the procedures, and findings of a study designed to identify principles in astronomy, geology, meterology, oceanography and physical geography pertinent to general education programs in junior high schools. (LC)

  17. About Us - Naval Oceanography Portal

    Science.gov Websites

    USNO's Telescopes A Brief History Frequently Asked Questions The James M. Gilliss Library Info About Us Questions The James M. Gilliss Library CONTACTBANNER.gif AA_Logo_Border.jpg U.S. Naval Observatory 3450

  18. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  19. Communicating Ocean Science at the Lower-Division Level

    NASA Astrophysics Data System (ADS)

    Coopersmith, A.

    2011-12-01

    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their activities and presentations with the advice of local practitioners who share their experiences for incorporating both Hawaiian ways of learning and environmental practices.

  20. Visualizing the Bay: Bringing a Research Experience into a High Enrollment Online Oceanography Course

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Anglin, J.

    2005-12-01

    General education courses at many universities are required to demonstrate specific student learning outcomes and methodologies of learning assessment that can be measure the success, or lack thereof, of meeting these outcomes. A primary learning outcome of the SJSU general education program is to have students apply a scientific approach to problems of the earth and environment. This requirement can be challenging in high enrollment classes offered at universities without the resources of graduate teaching assistantships. In order to meet this outcome through an active learning environment, we have redesigned a web-based oceanography course, primarily for non-science majors, that has students assume the role of shipboard scientists on a number of ocean-going virtual research experiences. One activity has students participate on a virtual research voyage based on a multi-beam sonar study of the central San Francisco Bay described in USGS Circular 1259 by Chin et al (2004). Students carry out the duties of virtual shipboard scientists, including pre- and post-cruise scientific meetings, sonar data acquisition, processing and visualization, and interpretation of the seafloor mapping data using a combination of scientific visualizations, animations, and audio and video segments. While on the voyage, students are required to: (1) determine the navigational hazards posed by three submerged rocks near the main shipping lane in the bay, (2) assess the long-term viability of a disposal site for mud dredged from the bay, and (3) generate a sediment characteristics map of the bay floor that can be used as a basis for future studies of contaminant transport. Upon completion of the voyage students are required to write an abstract describing their research for publication in the proceedings volume of a virtual scientific conference in the form of an essay question on the mid-term exam. Based on the work of over 200 students, this question has received the highest score of four essay questions on the exam during the past two terms.

  1. Extracting physical parameters from marine seismic data: New methods in seismic oceanography and velocity inversion

    NASA Astrophysics Data System (ADS)

    Fortin, Will F. J.

    The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear internal wave pulses in the South China Sea. Coupling observations from the seismic images with turbulent patterns, we find no evidence for hydraulic jumps in the Luzon passage. Our data suggests geometric resonance may be the underlying physics behind large amplitude nonlinear internal wave pulses seen in the region. We find increased levels of turbulent diffusivity in deep water below 1000 m, associated with internal tide pulses, and near the steep slopes of both the Heng-Chun and Lan-Yu ridges.

  2. Recruitment variation of eastern Bering Sea crabs: Climate-forcing or top-down effects?

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Kruse, Gordon H.

    2006-02-01

    During the last three decades, population abundances of eastern Bering Sea (EBS) crab stocks fluctuated greatly, driven by highly variable recruitment. In recent years, abundances of these stocks have been very low compared to historical levels. This study aims to understand recruitment variation of six stocks of red king ( Paralithodes camtschaticus), blue king ( P. platypus), Tanner ( Chionoecetes bairdi), and snow ( C. opilio) crabs in the EBS. Most crab recruitment time series are not significantly correlated with each other. Spatial distributions of three broadly distributed crab stocks (EBS snow and Tanner crabs and Bristol Bay red king crab) have changed considerably over time, possibly related in part to the regime shift in climate and physical oceanography in 1976-1977. Three climate-forcing hypotheses on larval survival have been proposed to explain crab recruitment variation of Bristol Bay red king crab and EBS Tanner and snow crabs. Some empirical evidence supports speculation that groundfish predation may play an important role in crab recruitment success in the EBS. However, spatial dynamics in the geographic distributions of groundfish and crabs over time make it difficult to relate crab recruitment strength to groundfish biomass. Comprehensive field and spatially explicit modeling studies are needed to test the hypotheses and better understand the relative importance and compound effects of bottom-up and top-down controls on crab recruitment.

  3. Nearest-Neighbor Distances and Aggregative Effects in Turbulence

    NASA Astrophysics Data System (ADS)

    Lanerolle, Lyon W. J.; Rothschild, B. J.; Yeung, P. K.

    2000-11-01

    The dispersive nature of turbulence which causes fluid elements to move apart (on average) is well known. Here we study another facet of turbulent mixing relevant to marine population dynamics - on how small organisms (approximated by fluid particles) are brought close to each other and allowed to interact. The crucial role played by the small scales in this process allows us to use direct numerical simulations of stationary isotropic turbulence, here with Taylor-scale Reynolds numbers (R_λ) from 38 to 91. We study the evolution of the Nearest-Neighbor Distances (NND) for collections of fluid particles initially located randomly in space satisfying Poisson-type distributions with mean values from 0.5 to 2.0 Kolmogorov length scales. Our results show that as particles begin to disperse on average, some also begin to aggregate in space. In particular, we find that (i) a significant proportion of particles are closer to each other than if their NNDs were randomly distributed, (ii) aggregative effects become stronger with R_λ, and (iii) although the mean value of NND grows monotonically with time in Kolmogorov variables, the growth rates are slower at higher R_λ. These results may assist in explaining the ``patchiness'' in plankton distributions observed in biological oceanography. Further details are given in B. J. Rothschild et al., The Biophysical Interpretation of Spatial Effects of Small-scale Turbulent Flow in the Ocean (paper in prep.).

  4. Characterizing marine particles and their impact on biogeochemical cycles in the GEOTRACES program

    NASA Astrophysics Data System (ADS)

    Anderson, Robert F.; Hayes, Christopher T.

    2015-04-01

    Trace elements and their isotopes (TEIs) are of priority interest in several subdisciplines of oceanography. For example, the vital role of trace element micronutrients in regulating the growth of marine organisms, which, in turn, may influence the structure and composition of marine ecosystems, is now well established (Morel and Price, 2003; Twining and Baines, 2013). Natural distributions of some TEIs have been severely impacted by anthropogenic emissions, leading to substantial perturbations of natural ocean inventories. Pb and Hg, for example, (Lamborg et al., 2002; Schaule and Patterson, 1981), may represent a significant threat to human food supply. Furthermore, much of our knowledge of past variability in the ocean environment, including the ocean's role in climate change, has been developed using TEI proxies archived in marine substrates such as sediments, corals and microfossils. Research in each of these areas relies on a comprehensive knowledge of the distributions of TEIs in the ocean, and on the sensitivity of these distributions to changing environmental conditions. With numerous processes affecting the regional supply and removal of TEIs in the ocean, a comprehensive understanding of the marine biogeochemical cycles of TEIs can be attained only by a global, coordinated, international effort. GEOTRACES, an international program designed to study the marine biogeochemical cycles of trace elements and their isotopes (Anderson et al., 2014; Henderson et al., 2007), aims to achieve these goals.

  5. Depth distributions of uranium-236 and cesium-137 in the Japan/East Sea; toward the potential use as a new oceanic circulation tracer

    NASA Astrophysics Data System (ADS)

    Sakaguchi, A.; Kadokura, A.; Steier, P.; Takahashi, Y.; Shizuma, K.; Yamamoto, M.

    2012-04-01

    137Cs (T1/2=30.2 y) has been spread all over the world as a fission product of atmospheric nuclear weapons tests in the 1960s. This nuclide has been used as a powerful tool for oceanography due to the well-defined origin and conservative behaviour in water . However, the number of atoms has decayed already to one thirds compared with its initial levels, and it will become more difficult to measure. In this situation, we focus on 236U (T1/2=2.342-107 y) as a candidate for a new isotopic tracer for oceanography. The detection of 236U in the environment has become possible only recently, by the development of measuring techniques with high sensitivity based on AMS. Our group showed that global fallout from bomb tests contains 236U, which might be produced as nuclear reactions of 235U(n,γ) and/or 238U(n,3n). So 236U has been therefore globally distributed in the surface environment. Thus, 236U has a similar potential as a tracer for environmental dynamics as 137Cs, especially for oceanography. In this study, a comprehensive attempt was made to measure the concentration of 236U in marine samples such as water, suspended solid and bottom sediments to clarify the environmental behaviour of this isotope. Furthermore, the discussion of the circulation of deep and bottom water in "Miniature Ocean", the Japan Sea, has been attempted. Bottom sediments (4 sites) and seawater samples (7 sites) were collected from the Japan Sea. The sediment core was cut into 1 cm segments from the surface to 5 cm in depth within a few hours after the sampling. About 20 L of seawater samples were collected from some depths in each site, and immediately after the sampling, the water was filtered with 0.45 μm pore-size membrane-filters. After the appropriate pre-treatment for each sample, uranium isotope and 137Cs were measured with AMS and Ge-detector, respectively. 236U was successfully detected for all seawater samples, and 236U/238U atom ratios in seawater were in the range of (0.19-1.75)-10-9. The dissolved 236U concentration showed a subsurface maximum and decreased steeply with depth. The minimum value was found at a depth of 2500 m and bottom (about 3000 m in depth) in the northern and the southern areas, respectively. These profiles are markedly different from that of natural 238U which is nearly constant over the depth, suggesting that 236U has not yet reached steady state. For the SS sample, 236U could not be detected in significant levels. The total 236U inventory of the water column was estimated at 1012-1013 atom/m2. This value is nearly the same as the global fallout level (17.8-1012 atom/m2). 236U was also found in the bottom sediments, and the inventory was about 1/40 compared with that in water column. All above characters are comparable with 137Cs which is anthropogenic conservative nuclide in ocean. Actually, the diffusion coefficients for both nuclides show the nearly same value. The detail discussion including the circulation of deep-water in the Japan Sea will be given in our presentation.

  6. Research program of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor); Boccucci, B. S. (Editor)

    1986-01-01

    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members.

  7. SSC marks anniversary of Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    2006-01-01

    At the Hurricane Katrina observance held Aug. 29 in the StenniSphere auditorium, Stennis Space Center Deputy Director David Throckmorton (left) and RAdm. Timothy McGee, Commander, Naval Meteorology and Oceanography Command, unveil a plaque dedicated to SSC employees.

  8. SSC marks anniversary of Hurricane Katrina

    NASA Image and Video Library

    2006-08-29

    At the Hurricane Katrina observance held Aug. 29 in the StenniSphere auditorium, Stennis Space Center Deputy Director David Throckmorton (left) and RAdm. Timothy McGee, Commander, Naval Meteorology and Oceanography Command, unveil a plaque dedicated to SSC employees.

  9. Mission Possible: The Sea Semester Program.

    ERIC Educational Resources Information Center

    Saveland, Robert N.; Stoner, Allan W.

    1985-01-01

    The "Research Vessel Westward" provides a sea-going research laboratory for students from various disciplines to learn oceanography concepts and research techniques while earning university credit. Descriptions of equipment, organizational structure, and student research responsibilities are presented. (DH)

  10. Building Websites for Science Literacy.

    ERIC Educational Resources Information Center

    Welborn, Victoria; Kanar, Bryn

    2000-01-01

    Suggests guidelines for evaluating and organizing Websites on scientific concepts that are developed from definitions of science literacy and science information literacy. Includes a sample webilography and a sample search strategy on the topic of acoustical oceanography. (Author/LRW)

  11. Underwater Web Work

    ERIC Educational Resources Information Center

    Wighting, Mervyn J.; Lucking, Robert A.; Christmann, Edwin P.

    2004-01-01

    Teachers search for ways to enhance oceanography units in the classroom. There are many online resources available to help one explore the mysteries of the deep. This article describes a collection of Web sites on this topic appropriate for middle level classrooms.

  12. A Semester of Geology in Bermuda.

    ERIC Educational Resources Information Center

    Pestana, Harold R.

    1982-01-01

    Described is a nine-week undergraduate semester program (12 credit hours) conducted at the Bermuda Biological Station for Research which included three courses: introductory oceanography, sedimentology, and independent field study. Brief descriptions of sample student projects are included. (DC)

  13. Library Collections - Naval Oceanography Portal

    Science.gov Websites

    are here: Home › USNO › James M. Gilliss Library › Library Collections USNO Logo USNO Navigation of the James M. Gilliss library include: recently cataloged books, electronic journals, publications

  14. Climatology and Archived Data - Naval Oceanography Portal

    Science.gov Websites

    Archived Data godae_text_logo.png Global Ocean Data Assimilation Experiment (GODAE) The Global Ocean Data Assimilation Experiment (GODAE) is a practical demonstration of near-real-time, global ocean data assimilation

  15. The Chemistry of Seashells.

    ERIC Educational Resources Information Center

    Kinard, W. Frank

    1980-01-01

    Describes the use of infrared and atomic absorption spectrometry in an introductory chemical oceanography course to introduce students to carbonate mineralogy by having them determine both the crystal structure and the magnesium content of seashells that they have collected. (Author/JN)

  16. Conference on Satellite Meteorology and Oceanography, 5th, London, England, Sept. 3-7, 1990, Preprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The present conference on satellite meteorology and oceanography discusses climate and clouds, retrieval algorithms, air-sea phenomenology, oceanographic applications, SSM/I, mesoscale, synoptic, and NWP applications, and future satellites and systems. Attention is given to the properties of cirrus clouds measured by satellites and lidars, the geographical variation of the diurnal cycle of clouds from ISCCP, the susceptibility of cloud reflectance to pollution, and a global analysis of aerosol-cloud interactions. Topics addressed include precision intercomparisons between MSU channel 2 and radiosonde data over the U.S., humidity estimates from Meteosat observations, the assimilation of altimeter observations into a global wave model, and atmosphericmore » stratification effects on scatterometer model functions. Also discussed are observations of Indian Ocean eddy variability, the deconvolution of GOES infrared data, short-range variations in total cloud cover in the tropics, and rainfall monitoring by the SSM/I in middle latitudes.« less

  17. Seeing the oceans in the shadow of Bergen values.

    PubMed

    Hamblin, Jacob Darwin

    2014-06-01

    Although oceanographers such as Roger Revelle are typically associated with key indicators of anthropogenic change, he and other scientists at midcentury had very different scientific priorities and ways of seeing the oceans. How can we join the narrative of the triumph of mathematical, dynamic oceanography with the environmental narrative? Dynamic methods entailed a broad set of values that touched the professional lives of marine scientists in a variety of disciplines all over the world, for better or for worse. The present essay highlights three aspects of "Bergen values" in need of greater exploration by scholars. First, how did the dominance of Scandinavian outlooks influence scientific questions across the broad spectrum of oceanography? Second, did oceanographers' particular means of making the oceans legible through instrumentation challenge their ability to perceive the oceans differently? Third, given the immense quantity of data, was the historical legacy of the dynamic oceanographers more descriptive than they imagined?

  18. Kick-off symposium series to help New Ph.D.s is a success

    NASA Astrophysics Data System (ADS)

    Chernys, Michael; Roughan, Moninya

    The U.S. National Science Foundation (NSF) and the U.S. Office of Naval Research (ONR) recently sponsored the first of what is expected to be many symposia to be held every couple of years to help new scientists begin their research careers. The inaugural dissertation symposium, Physical Oceanography Dissertation Symposium I (PODS I), provided a forum for new Ph.D.s and doctoral candidates soon to receive their degrees in physical oceanography or a related field, to discuss science and forge future professional relationships. The next symposium is expected to be in October 2003, in Hawaii, in concert with the Dissertation Symposium for Chemical Oceanographers (DISCO); information to be posted at http://spars.aibs.org/pods/. Applications from prospective participants were sought internationally, with the sponsoring agencies and coordinators advertising by e-mail, through personal communication with established researchers, and by informing degree-granting institutions in the related fields.

  19. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  20. Environmental drivers of epibenthic megafauna on a deep temperate continental shelf: A multiscale approach

    NASA Astrophysics Data System (ADS)

    Lacharité, Myriam; Metaxas, Anna

    2018-03-01

    Evaluating the role of abiotic factors in influencing the distribution of deep-water (>75-100 m depth) epibenthic megafaunal communities at mid-to-high latitudes is needed to estimate effects of environmental change, and support marine spatial planning since these factors can be effectively mapped. Given the disparity in scales at which these factors operate, incorporating multiple spatial and temporal scales is necessary. In this study, we determined the relative importance of 3 groups of environmental drivers at different scales (sediment, geomorphology, and oceanography) on epibenthic megafauna on a deep temperate continental shelf in the eastern Gulf of Maine (northwest Atlantic). Twenty benthic photographic transects (range: 611-1021 m; total length surveyed: 18,902 m; 996 images; average of 50 ± 16 images per transect) were performed in July and August 2009 to assess the abundance, composition and diversity of these communities. Surficial geology was assessed using seafloor imagery processed with a novel approach based on computer vision. A bathymetric terrain model (horizontal resolution: 100 m) was used to derive bathymetric variability in the vicinity of transects (1.5, 5 km). Oceanography at the seafloor (temperature, salinity, current speed, current direction) over 10 years (1999-2008) was determined using empirical (World Ocean Database 2013) and modelled data (Finite-Volume Community Ocean Model; 45 vertical layers; horizontal resolution: 1.7-9.5 km). The relative influence of environmental drivers differed between community traits. Abundance was enhanced primarily by swift current speeds, while higher diversity was observed in coarser and more heterogeneous substrates. In both cases, the role of geomorphological features was secondary to these drivers. Environmental variables were poor predictors of change in community composition at the scale of the eastern Gulf of Maine. This study demonstrated the need for explicitly incorporating scales into habitat modelling studies in these regions, and targeting specific drivers for community traits of interest.

  1. A hypothesis of a redistribution of North Atlantic swordfish based on changing ocean conditions

    NASA Astrophysics Data System (ADS)

    Schirripa, Michael J.; Abascal, F.; Andrushchenko, Irene; Diaz, Guillermo; Mejuto, Jaime; Ortiz, Maricio; Santos, M. N.; Walter, John

    2017-06-01

    Conflicting trends in indices of abundance for North Atlantic swordfish starting in the mid-to late 1990s, in the form of fleet specific catch-per-unit-effort (CPUE), suggest the possibility of a spatial shift in abundance to follow areas of preferred temperature. The observed changes in the direction of the CPUEs correspond with changes in trends in the summer Atlantic Multidecadal Oscillation (AMO), a long term mode of variability of North Atlantic sea surface temperature. To test the hypothesis of a relation between the CPUE and the AMO, the CPUEs were made spatially explicit by re-estimating using an ;areas-as-fleets; approach. These new CPUEs were then used to create alternative stock histories. The residuals of the fit were then regressed against the summer AMO. Significant, and opposite, relations were found in the regressions between eastern and western Atlantic areas. When the AMO was in a warm phase, the CPUEs in the western (eastern) areas were higher (lower) than predicted by the assessment model fit. Given the observed temperature tolerance limits of swordfish, it is possible that either their preferred habitat, prey species, or both have shifted spatial distributions resulting in conflicting CPUE indices. Because the available CPUE time series only overlaps with one change in the sign of the AMO ( 1995), it is not clear whether this is a directional or cyclical trend. Given the relatively localized nature of many of the fishing fleets, and the difficulty of separating fleet effects from changes in oceanography we feel that it is critical to create CPUE indices by combining data across similar fleets that fish in similar areas. This approach allowed us to evaluate area-specific catch rates which provided the power to detect basin-wide responses to changing oceanography, a critical step for providing robust management advice in a changing climate.

  2. GOCE User Toolbox and Tutorial

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Knudsen, Per

    2016-07-01

    The GOCE User Toolbox GUT is a compilation of tools for the utilisation and analysis of GOCE Level 2 products. GUT support applications in Geodesy, Oceanography and Solid Earth Physics. The GUT Tutorial provides information and guidance in how to use the toolbox for a variety of applications. GUT consists of a series of advanced computer routines that carry out the required computations. It may be used on Windows PCs, UNIX/Linux Workstations, and Mac. The toolbox is supported by The GUT Algorithm Description and User Guide and The GUT Install Guide. A set of a-priori data and models are made available as well. Without any doubt the development of the GOCE user toolbox have played a major role in paving the way to successful use of the GOCE data for oceanography. The GUT version 2.2 was released in April 2014 and beside some bug-fixes it adds the capability for the computation of Simple Bouguer Anomaly (Solid-Earth). During this fall a new GUT version 3 has been released. GUTv3 was further developed through a collaborative effort where the scientific communities participate aiming on an implementation of remaining functionalities facilitating a wider span of research in the fields of Geodesy, Oceanography and Solid earth studies. Accordingly, the GUT version 3 has: - An attractive and easy to use Graphic User Interface (GUI) for the toolbox, - Enhance the toolbox with some further software functionalities such as to facilitate the use of gradients, anisotropic diffusive filtering and computation of Bouguer and isostatic gravity anomalies. - An associated GUT VCM tool for analyzing the GOCE variance covariance matrices.

  3. Satellite observations of the ice cover of the Kuril Basin Region of the Okhotsk Sea and its relation to the regional oceanography

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Masaaki; Martin, Seelye

    1990-08-01

    For the period 1978-1982, this paper examines the nature of the sea ice which forms over the Kuril Basin of the Okhotsk Sea and describes the impact of this ice on the regional oceanography. The paper compares the oceanographic behavior during the heavy ice season associated with the cold 1979 winter with the behavior during the lighter ice years of 1980 and 1982. Examination of the oceanography in the Okhotsk and the adjacent Pacific shows that the early summer water column structure depends on the heat loss from the Okhotsk during the preceding ice season, the total amount of Okhotsk ice formation, and specifically the amount of ice formation in the Kuril Basin. Following the 1979 ice season, the upper 200-300 m of the Kuril Basin waters were cooler, less saline, and richer in oxygen than for the other years. This modification appears to be a process local to the Kuril Basin, driven by eddy-induced mixing, local cooling, and ice melting. In the depths 300-1200 m, the water modification is caused by the advection of water from the northern Okhotsk. For 1979, this deeper water is also less saline, colder, and richer in oxygen than for the lighter ice years. The water modified in the Okhotsk enters the adjacent North Pacific through the Bussol' Strait, where for 1979 the adjacent waters are also cooler, less saline, and richer in oxygen down to a depth of 1000 m than for the lighter ice years.

  4. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    USGS Publications Warehouse

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.

    2005-01-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  5. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    NASA Astrophysics Data System (ADS)

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.

    2005-07-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  6. Airborne multicamera system for geo-spatial applications

    NASA Astrophysics Data System (ADS)

    Bachnak, Rafic; Kulkarni, Rahul R.; Lyle, Stacey; Steidley, Carl W.

    2003-08-01

    Airborne remote sensing has many applications that include vegetation detection, oceanography, marine biology, geographical information systems, and environmental coastal science analysis. Remotely sensed images, for example, can be used to study the aftermath of episodic events such as the hurricanes and floods that occur year round in the coastal bend area of Corpus Christi. This paper describes an Airborne Multi-Spectral Imaging System that uses digital cameras to provide high resolution at very high rates. The software is based on Delphi 5.0 and IC Imaging Control's ActiveX controls. Both time and the GPS coordinates are recorded. Three successful test flights have been conducted so far. The paper present flight test results and discusses the issues being addressed to fully develop the system.

  7. Teaching Sustainability and Resource Management Using NOAA's Voices Of The Bay Community Fisheries Education Curriculum

    NASA Astrophysics Data System (ADS)

    Hams, J. E.; Uttal, L.; Hunter-Thomson, K.; Nachbar, S.

    2010-12-01

    This presentation highlights the implementation of the NOAA VOICES OF THE BAY education curriculum at a two-year college. The VOICES OF THE BAY curriculum provides students with an understanding of the marine ecology, economy, and culture of fisheries through three interdisciplinary modules that use hands-on activities while meeting a wide range of science, math, social science, and communications standards. In the BALANCE IN THE BAY module, students use critical-thinking skills and apply principles of ecosystem-based management to analyze data, debate and discuss their findings, and make decisions that recognize the complex dynamics associated with maintaining a balance in fisheries. Through role-playing, teamwork, and a little fate, the FROM OCEAN TO TABLE module provides students with an opportunity to get an insider’s view of what it takes to be an active stakeholder in a commercial fishery. In the CAPTURING THE VOICES OF THE BAY module, students research, plan, and conduct personal interviews with citizens of the local fishing community and explore the multiple dimensions of fisheries and how they inter-connect through the lives of those who live and work in the region. The VOICES OF THE BAY modules were introduced into the curriculum at Los Angeles Valley College during the Fall 2009 semester and are currently being used in the introductory Oceanography lecture, introductory Oceanography laboratory, and Environmental Science laboratory courses. Examples of curriculum materials being used (power point presentations, module worksheets and simulated fishing activities) will be presented. In addition, samples of completed student worksheets for the three interdisciplinary modules are provided. Students commented that their overall awareness and knowledge of the issues involved in sustainable fishing and managing fishery resources increased following completion of the VOICES OF THE BAY education curriculum. Students enrolled in the laboratory sections commented that the lab was more enjoyable than the typical lab exercises and the hands-on nature of the activity made the concept of sustainable fishing more real to them. The Office of National Marine Sanctuaries and the Monterey Bay National Marine Sanctuary sponsor professional development workshops to selected faculty to introduce the VOICES OF THE BAY fisheries education curriculum and assist with implementation in the classroom. Classroom materials are also available on the website http://sanctuaries.noaa.gov/education/voicesofthebay.html or by contacting voicesofthebay@noaa.gov.

  8. Comparative Research Productivity Measures for Economic Departments.

    ERIC Educational Resources Information Center

    Huettner, David A.; Clark, William

    1997-01-01

    Develops a simple theoretical model to evaluate interdisciplinary differences in research productivity between economics departments and related subjects. Compares the research publishing statistics of economics, finance, psychology, geology, physics, oceanography, chemistry, and geophysics. Considers a number of factors including journal…

  9. 78 FR 50037 - Hydrographic Services Review Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... pilotage, coastal and fishery management, and other disciplines as determined appropriate by the... oceanography; coastal resource management, including fisheries management and regional marine planning; and...) Describe your leadership or professional experiences which you believe will contribute to the effectiveness...

  10. La Niña Exit Leaves Climate Forecasts in Limbo

    NASA Image and Video Library

    2011-07-06

    The latest image of Pacific Ocean sea surface heights from the NASA OSTIM/Jason-2 oceanography satellite, on June 11, 2010, shows that Pacific has switched from warm red to cold blue during the last few months.

  11. Catalog of Computer Programs Used in Undergraduate Geological Education. Second Edition. Installment 4.

    ERIC Educational Resources Information Center

    Burger, H. Robert

    1984-01-01

    Describes 70 computer programs related to (1) structural geology; (2) sedimentology and stratigraphy; and (3) the environment, groundwater, glacial geology, and oceanography. Potential use(s), language, required hardware, and sources are included. (JM)

  12. Updating the Vision for Marine Education.

    ERIC Educational Resources Information Center

    Klemm, E. Barbara

    1988-01-01

    Discusses the need to update the content, philosophical stance, and pedagogy of marine education to reflect recent advances in these areas. Cites some developments in oceanography and ocean engineering. Proposes ways teachers can learn about and utilize this knowledge. (RT)

  13. Earth Observing System. Volume 1, Part 2: Science and Mission Requirements. Working Group Report Appendix

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Areas of global hydrologic cycles, global biogeochemical cycles geophysical processes are addressed including biological oceanography, inland aquatic resources, land biology, tropospheric chemistry, oceanic transport, polar glaciology, sea ice and atmospheric chemistry.

  14. An Overview of Global Observing Systems Relevant to GODAE

    DTIC Science & Technology

    2009-10-29

    GODAE Paper presented1 at the Final GODAE Symposium. Nice. France. November 12-15, 2008. Abstract available at: http-V/www.gouac. •wg/2.1 SW-abstract html (accessed lune 2, 2009). Oceanography September 2009 33

  15. Microbial oceanography: Killers of the winners

    NASA Astrophysics Data System (ADS)

    Kirchman, David L.

    2013-02-01

    Viruses that infect the SAR11 group of oceanic bacteria have finally been found and sequenced. Because SAR11 is ubiquitous, these viruses may be the most abundant in the oceans -- and perhaps in the entire biosphere. See Letter p.357

  16. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  17. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  18. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  19. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  20. Foundations of geophysics. [College textbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheidegger, A.E.

    1976-01-01

    The following subjects are covered/: geography, geodesy, and geology; seismology, gravity, and the Earth's interior; magnetic and electrical properties of the earth; thermicity of the earth and related subjects; tectonophysics; geophysical exploration; geohydrology; physical oceanography; physical meteorology; and engineering geophysics. (MHR)

Top