Sample records for octadecyltrichlorosilane self-assembled monolayers

  1. AFM investigation of effect of absorbed water layer structure on growth mechanism of octadecyltrichlorosilane self-assembled monolayer on oxidized silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaowei; Zheng, Yanjun, E-mail: zhengyj@cup.edu.cn; Chen, Changfeng

    2016-06-28

    The growth mechanism of an octadecyltrichlorosilane (OTS) self-assembled monolayer on a silicon oxide surface at various relative humidities has been investigated. Atomic force microscopy images show that excess water may actually hinder the nucleation and growth of OTS islands. A moderate amount of water is favorable for the nucleation and growth of OTS islands in the initial stage; however, the completion of the monolayer is very slow in the final stage. The growth of OTS islands on a low-water-content surface maintains a relatively constant speed and requires the least amount of time. The mobility of water molecules is thought tomore » play an important role in the OTS monolayers, and a low-mobility water layer provides a steady condition for OTS monolayer growth.« less

  2. AFM investigation of effect of absorbed water layer structure on growth mechanism of octadecyltrichlorosilane self-assembled monolayer on oxidized silicon

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Zheng, Yanjun; Chen, Changfeng

    2016-06-01

    The growth mechanism of an octadecyltrichlorosilane (OTS) self-assembled monolayer on a silicon oxide surface at various relative humidities has been investigated. Atomic force microscopy images show that excess water may actually hinder the nucleation and growth of OTS islands. A moderate amount of water is favorable for the nucleation and growth of OTS islands in the initial stage; however, the completion of the monolayer is very slow in the final stage. The growth of OTS islands on a low-water-content surface maintains a relatively constant speed and requires the least amount of time. The mobility of water molecules is thought to play an important role in the OTS monolayers, and a low-mobility water layer provides a steady condition for OTS monolayer growth.

  3. Pseudorotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    DOE PAGES

    Steinrück, H. -G.; Magerl, A.; Deutsch, M.; ...

    2014-10-06

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in themore » crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. As a result, the increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.« less

  4. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vijay, E-mail: cirivijaypilani@gmail.com; Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani; Puri, Paridhi

    2016-04-13

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO{sub 2} and Si{sub 3}N{sub 4} is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO{sub 2}, Si{sub 3}N{sub 4} and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope,more » Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.« less

  5. Atomistic characterization of SAM coatings as gate insulators in Si-based FET devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gala, F.; Zollo, G.

    2014-06-19

    Many nano-material systems are currently under consideration as possible candidates for gate dielectric insulators in both metal-oxide-semiconductor (MOSFET) and organic (OFET) field-effect transistors. In this contribution, the possibility of employing self-assembled monolayers (SAMs) of hydroxylated octadecyltrichlorosilane (OTS) chains on a (111) Si substrate as gate dielectrics is discussed; in particular ab initio theoretical simulations have been employed to study the structural properties, work function modifications, and the insulating properties of OTS thin film coatings on Si substrates.

  6. Atomistic characterization of SAM coatings as gate insulators in Si-based FET devices

    NASA Astrophysics Data System (ADS)

    Gala, F.; Zollo, G.

    2014-06-01

    Many nano-material systems are currently under consideration as possible candidates for gate dielectric insulators in both metal-oxide-semiconductor (MOSFET) and organic (OFET) field-effect transistors. In this contribution, the possibility of employing self-assembled monolayers (SAMs) of hydroxylated octadecyltrichlorosilane (OTS) chains on a (111) Si substrate as gate dielectrics is discussed; in particular ab initio theoretical simulations have been employed to study the structural properties, work function modifications, and the insulating properties of OTS thin film coatings on Si substrates.

  7. Organic field-effect transistor with octadecyltrichlorosilane (OTS) self-assembled monolayers on gate oxide: effect of OTS quality

    NASA Astrophysics Data System (ADS)

    Devynck, M.; Tardy, P.; Wantz, G.; Nicolas, Y.; Hirsch, L.

    2011-12-01

    The effect of OTS (octadecyltrichlorosilane) Self-Assembled Monolayer (SAM) grafted on SiO2 gate dielectric of pentacene-based OFETs (organic field-effect transistors) is investigated. A significant improvement of the charge mobility (μ), up to 0.74 cm2/V s, is reached thanks to OTS treatment. However, in spite of improved performances, several drawbacks, such as an increase in mobility dispersion, substantial hysteresis in IDS-VG characteristics and high threshold voltages (VT), are observed. Changing solvent and deposition method turns out to have no significant effect on the mobility dispersion. A more accurate approach on the evolution of the mobility and the threshold voltage dispersion with OTS storage time highlights the effect of the OTS solution aging. Even if no difference is evidenced in the surface energy and roughness of the OTS layer, electrical characteristics exhibit considerable deterioration with OTS solution storage time. Using an "aged" OTS solution, opened under air, kept under argon and distilled before use, results in an increase of the IDS-VG hysteresis as well as in VT and in mobility dispersion. In comparison, fresh-OTS-based OFETs present a very low hysteresis, a threshold voltage close to 0 and a much lower mobility dispersion. It is demonstrated that aged OTS solutions contain impurities that are not removed by distillation process, which leads to a less densely packed layer causing interfacial charge traps thus deteriorated performances.

  8. A simple process based on NH2- and CH3-terminated monolayers for low contact resistance and adherent Au electrode in bottom-contact OTFTs

    NASA Astrophysics Data System (ADS)

    Abdur, Rahim; Lim, Jeongeun; Jeong, Kyunghoon; Rahman, Mohammad Arifur; Kim, Jiyoung; Lee, Jaegab

    2016-03-01

    An efficient process for the low contact resistance and adherent source/drain Au electrode in bottom-contact organic thin film transistors (OTFTs) was developed. This was achieved by using two different surface-functional groups of self-assembled monolayers, 3-aminopropyltriethoxysilane (APS), and octadecyltrichlorosilane (OTS), combined with atmospheric-pressure (AP) plasma treatment. Prior to the deposition of Au electrode, the aminoterminated monolayer self-assembles on SiO2 dielectrics, enhancing the adhesion of Au electrode as a result of the acid-base interaction of Au with the amino-terminal groups. AP plasma treatment of the patterned Au electrode on the APS-coated surface activates the entire surface to form an OTS monolayer, allowing the formation of a high quality pentacene layer on both the electrode and active region by evaporation. In addition, negligible damage by AP plasma was observed for the device performance. The fabricated OTFTs based on the two monolayers by AP plasma treatment showed the mobility of 0.23 cm2/Vs, contact resistance of 29 kΩ-cm, threshold voltage of -1.63 V, and on/off ratio of 9.8 × 105, demonstrating the application of the simple process for robust and high-performance OTFTs. [Figure not available: see fulltext.

  9. Rapid localized deactivation of self-assembled monolayers by propagation-controlled laser-induced plasma and its application to self-patterning of electronics and biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Jongsu; Kwon, Seung-Gab; Back, Seunghyun; Kang, Bongchul

    2018-03-01

    We present a novel laser-induced surface treatment process to rapidly control the spatial wettabilities of various functional solutions with submicron to micron resolutions. Ultrathin hydrophobic self-assembled monolayers (SAMs) that little absorb typical laser lights due to short penetration depth were selectively deactivated by instantaneous interaction with laser-induced metallic plasmas. The spatial region of the deactivated SAM, which corresponds to process resolution, is adjustable by controlling the spatial propagation of the plasma. This method leads to the parallel formation of hydrophilic functional solutions on glass substrates with a minimum resolution on the submicron scale. To show its feasibility in device engineering fields, this method was applied to the cost-effective fabrication of electronics and biosensors. Rapid self-patterning of electronic and biological functional solutions (silver nanoparticle solution and streptavidin protein solution) was successfully realized by selective deactivation of two different SAMs (tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) for electronics and the hetero-hybrid SAM (octadecyltrichlorosilane (OTS)/2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG)) for biosensors). As a result, this method can be exploited for the rapid and low-cost fabrication of various thin film devices such as electronics, biosensors, energy, displays, and photonics.

  10. Fabrication of plasmonic cavity arrays for SERS analysis

    NASA Astrophysics Data System (ADS)

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-01

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  11. Fabrication of plasmonic cavity arrays for SERS analysis.

    PubMed

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-05

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 10 5 and 9.97 × 10 5 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  12. Human Growth Hormone Adsorption Kinetics and Conformation on Self-Assembled Monolayers

    PubMed Central

    Buijs, Jos; Britt, David W.; Hlady, Vladimir

    2012-01-01

    The adsorption process of the recombinant human growth hormone on organic films, created by self-assembly of octadecyltrichlorosilane, arachidic acid, and dipalmitoylphosphatidylcholine, is investigated and compared to adsorption on silica and methylated silica substrates. Information on the adsorption process of human growth hormone (hGH) is obtained by using total internal reflection fluorescence (TIRF). The intensity, spectra, and quenching of the intrinsic fluorescence emitted by the growth hormone’s single tryptophan are monitored and related to adsorption kinetics and protein conformation. For the various alkylated hydrophobic surfaces with differences in surface density and conformational freedom it is observed that the adsorbed amount of growth hormone is relatively large if the alkyl chains are in an ordered structure while the amounts adsorbed are considerably lower for adsorption onto less ordered alkyl chains of fatty acid and phospholipid layers. Adsorption on methylated surfaces results in a relatively large conformational change in the growth hormone’s structure, as displayed by a 7 nm blue shift in emission wavelength and a large increase in the effectiveness of fluorescence quenching. Conformational changes are less evident for hGH adsorption onto the fatty acid and phospholipid alkyl chains. Adsorption kinetics on the hydrophilic head groups of the self-assembled monolayers are similar to those on solid hydrophilic surfaces. The relatively small conformational changes in the hGH structure observed for adsorption on silica are even further reduced for adsorption on fatty acid head groups. PMID:25125795

  13. Cumulative effects of electrode and dielectric surface modifications on pentacene-based transistors

    NASA Astrophysics Data System (ADS)

    Devynck, Mélanie; Tardy, Pascal; Wantz, Guillaume; Nicolas, Yohann; Vellutini, Luc; Labrugère, Christine; Hirsch, Lionel

    2012-01-01

    Surface modifications of the dielectric and the metal of pentacene-based field effect transistors using self-assembled monolayer (SAM) were studied. First, a low interfacial trap density and pentacene 2D-growth were favored by the nonpolar and low surface energy of octadecyltrichlorosilane-based SAM. This treatment leaded to increased mobility up to 0.4 cm2 V-1 s-1 and no observable hysteresis on transfer curves. Second, reduced hole injection barrier and contact resistance were achieved by fluorinated thiols deposited on gold contacts resulting in an increased mobility up to 0.6 cm2 V-1 s-1. Finally, a high mobility of 2.6 cm2 V-1 s-1 was achieved by cumulative effects of both treatments.

  14. Organosilane self-assembled layers (SAMs) and hybrid silicate magnesium-rich primers for the corrosion protection of aluminum alloy 2024 T3

    NASA Astrophysics Data System (ADS)

    Wang, Duhua

    Although current chromate coatings function very well in corrosion protection for aircraft alloys, such as aluminum alloy 2024 T3, the U.S. Environmental Protection Agency is planning to totally ban the use of chromates as coating materials in the next decade or so because of their extremely toxic effect. For this purpose, both self-assembled layers and silicate magnesium-rich primers were tested to provide the corrosion protection for aluminum alloy. The long-term goal of this research is to develop a coating system to replace the current chromate coating for aircraft corrosion protection. Aluminum alloy 2024 T3 substrates were modified with self-assembled monolayer or multilayer thin films from different alkylsilane compounds. Mono-functional silanes, such as octadecyltrichlorosilane (C18SiCl3), can form a mixed hydrophobic monolayer or multilayer thin film on the aluminum oxide surface to provide a barrier to water and other electrolytes, so the corrosion resistance of the SAMs modified surface was increased significantly. On the other hand, the bi-functional silane self-assembly could attach the aluminum surface through the silicon headgroup while using its functional tailgroup to chemically bond the polymer coating, thus improving the adhesion between the aluminum substrate and coating substantially, and seems to contribute more to corrosion protection of aluminum substrate. Organosilanes were also combined with tetraethyl orthosilicate (TEOS) in propel ratios to form a sol-gel binder to make silicate magnesium-rich primers. Analogue to the inorganic zinc-rich coatings, the silicate magnesium-rich primers also showed excellent adhesion and solvent resistance. The sacrificial magnesium pigments and the chemically inert silicate binder both contribute to the anti-corrosion properties. Future studies will be focused on the formula optimization for better toughness, chemical resistance and anticorrosion performance.

  15. Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates.

    PubMed

    Liu, Chih-Ting; Tsai, Chia-Chan; Chu, Chien-Wei; Chi, Mu-Huan; Chung, Pei-Yun; Chen, Jiun-Tai

    2018-04-18

    We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.

  16. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  17. Molecular orientation of organic thin films on dielectric solid substrates: a phase-sensitive vibrational SFG study.

    PubMed

    Ge, Aimin; Peng, Qiling; Qiao, Lin; Yepuri, Nageshwar R; Darwish, Tamim A; Matsusaki, Michiya; Akashi, Mitsuru; Ye, Shen

    2015-07-21

    Broadband phase-sensitive vibrational sum frequency generation (SFG) spectroscopy was utilized to study the molecular orientation of molecules adsorbed on dielectric solid substrates. A gold thin film was employed to generate a SFG signal as a local oscillator (LO). To simplify the phase measurement, a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) was used as a standard sample for phase correction of the phase-sensitive SFG measurements on the solid/air interface. It was demonstrated that the absolute orientation of molecules in the LB films on a fused quartz surface can be clearly distinguished by phase-sensitive SFG measurement. In addition, the observation on the SAM of d35-OTS reveals that the two C-H stretching modes for α-CH2 group are in opposite phase. Furthermore, by using the present phase-sensitive SFG setup, the orientation flipping of water molecules on positively and negatively charged solid/liquid interface can be distinguished.

  18. High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors.

    PubMed

    Chaure, Nandu B; Cammidge, Andrew N; Chambrier, Isabelle; Cook, Michael J; Cain, Markys G; Murphy, Craig E; Pal, Chandana; Ray, Asim K

    2011-04-01

    Solution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl) copper phthalocyanine (CuPc 6 ) were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs) in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO 2 ) as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS) resulted in values of 4×10 -2 cm 2 V -1 s -1 and 10 6 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3 V for untreated devices to -2 V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones.

  19. High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors

    PubMed Central

    Chaure, Nandu B; Cammidge, Andrew N; Chambrier, Isabelle; Cook, Michael J; Cain, Markys G; Murphy, Craig E; Pal, Chandana; Ray, Asim K

    2011-01-01

    Solution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl) copper phthalocyanine (CuPc6) were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs) in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO2) as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS) resulted in values of 4×10−2 cm2 V−1 s−1 and 106 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3 V for untreated devices to -2 V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones. PMID:27877383

  20. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    PubMed

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  1. Organic-inorganic field effect transistor with SnI-based perovskite channel layer using vapor phase deposition technique

    NASA Astrophysics Data System (ADS)

    Matsushima, Toshinori; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2003-11-01

    High field-effect hole mobility of (formula available in paper)and threshold voltage is -3.2 V) in organic-inorganic layered perovskite film (formula available in paper)prepared by a vapor phase deposition technique have been demonstrated through the octadecyltrichlorosilane treatment of substrate. Previously, the (formula available in paper)films prepared on the octadecyltrichlorosilane-covered substrates using a vapor evaporation showed not only intense exciton absorption and photoluminescence in the optical spectroscopy but also excellent crystallinity and large grain structure in X-ray and atomic force microscopic studies. Especially, the (formula available in paper)structure in the region below few nm closed to the surface of octadecyltrichlorosilane monolayer was drastically improved in comparison with that on the non-covered substrate. Though our initial (formula available in paper)films via a same sequence of preparation of (formula available in paper)and octadecyltrichlorosilane monolayer did not show the field-effect properties because of a lack of spectral, structural, and morphological features. The unformation of favorable (formula available in paper)structure in the very thin region, that is very important for the field-effect transistors to transport electrons or holes, closed to the surface of non-covered (formula available in paper)dielectric layer was also one of the problems for no observation of them. By adding further optimization and development, such as deposition rate of perovskite, substrate heating during deposition, and tuning device architecture, with hydrophobic treatment, the vacuum-deposited (formula available in paper)have achieved above-described high performance in organic-inorganic hybrid transistors.

  2. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  3. Traps and Interface Fixed Charge Effects on a Solution-Processed n-Type Polymeric-Based Organic Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Hafsi, B.; Boubaker, A.; Guerin, D.; Lenfant, S.; Kalboussi, A.; Lmimouni, K.

    2017-02-01

    Organic field-effect transistors based on poly{[ N, N0- bis(2-octyldodecyl)- naphthalene-1,4,5,8- bis(dicarboximide)-2,6-diyl]-alt-5,50-(2,20-bithiophene)}, [P(NDI2OD-T2)n], were fabricated and characterized. The effect of octadecyltrichlorosilane (OTS) a self-assembled monolayer (SAM) grafted on to a SiO2 gate dielectric was investigated. A significant improvement of the charge mobility ( μ), up to 0.22 cm2/V s, was reached thanks to the OTS treatment. Modifying some technological parameters relating to fabrication, such as solvents, was also studied. We have analyzed the electrical properties of these thin-film transistors by using a two-dimensional drift-diffusion simulator, Integrated System Engineering-Technology Computer Aided Design (ISE-TCAD®). We studied the fixed surface charges at the organic semiconductor/oxide interface and the bulk traps effect. The dependence of the threshold voltage on the density and energy level of the trap states has also been considered. We finally found a good agreement between the output and transfer characteristics for experimental and simulated data.

  4. Design of Solid-Gas Interfaces for Enhanced Thermal Transfer

    DTIC Science & Technology

    2015-09-28

    modifications. Specifically, for metal surfaces modified with organic self - assembled monolayers (SAMs), both TAC and MAC are close to its theoretical...we designed solid surfaces functionalized with organic self - assembled monolayers (SAMs) and demonstrated associated significant improvement of the...at solid-gas interfaces by self - assembled monolayers ” Applied Physics Letters 102, 061907 (2013). 2. Zhi Liang, William Evans, and Pawel Keblinski

  5. Enhanced Thermal Transport of Surfaces with Superhydrophobic Coatings

    DTIC Science & Technology

    2015-07-01

    transport, superhydrophobic, jumping droplet, cooling, nanostructure, self - assembled monolayer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...modified from a hydrophilic chemistry (oxide) to a hydrophobic surface using a fluorinated (or protonated) self - assembled monolayer (SAM). Chemical...seconds and dried with filtered nitrogen. 2.3 SAM Deposition The final step involved the deposition of a self - assembled monolayer onto the silvered

  6. Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers

    NASA Astrophysics Data System (ADS)

    Fontana, Jake; Livenere, John; Bezares, Francisco J.; Caldwell, Joshua D.; Rendell, Ronald; Ratna, Banahalli R.

    2013-05-01

    We demonstrate an average surface-enhanced Raman scattering enhancement on the order of 108 from benzenethiol molecules using self-assembled, macroscopic, and tunable gold nanosphere monolayers on non-templated substrates. The self-assembly of the nanosphere monolayers uses a simple and efficient technique that allows for the creation of a high-density, chemically functionalized gold nanosphere monolayers with enhancement factors comparable to those produced using top-down fabrication techniques. These films may provide an approach for the future development of portable chemical/biological sensors.

  7. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices

    DTIC Science & Technology

    1998-05-12

    SUBTITLE " Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices" 6. AUTHORS Michael B. Miller 5. FUNDING NUMBERS F49620-97...ii. Lü. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices Final Technical Report Performance Period: 15 August 1997...Investigator F&S. Inc.N ̂ 1. INTRODUCTION .’ 2 2. PROGRAM TASK REVIEW 2 3. BACKGROUND 4 3.1 NONLINEAR OPTICAL THIN FILMS 4 3.2 IONIC SELF

  8. Multifunctional Self-Assembled Monolayers for Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Cernetic, Nathan

    Organic field effect transistors (OFETs) have the potential to reach commercialization for a wide variety of applications such as active matrix display circuitry, chemical and biological sensing, radio-frequency identification devices and flexible electronics. In order to be commercially competitive with already at-market amorphous silicon devices, OFETs need to approach similar performance levels. Significant progress has been made in developing high performance organic semiconductors and dielectric materials. Additionally, a common route to improve the performance metric of OFETs is via interface modification at the critical dielectric/semiconductor and electrode/semiconductor interface which often play a significant role in charge transport properties. These metal oxide interfaces are typically modified with rationally designed multifunctional self-assembled monolayers. As means toward improving the performance metrics of OFETs, rationally designed multifunctional self-assembled monolayers are used to explore the relationship between surface energy, SAM order, and SAM dipole on OFET performance. The studies presented within are (1) development of a multifunctional SAM capable of simultaneously modifying dielectric and metal surface while maintaining compatibility with solution processed techniques (2) exploration of the relationship between SAM dipole and anchor group on graphene transistors, and (3) development of self-assembled monolayer field-effect transistor in which the traditional thick organic semiconductor is replaced by a rationally designed self-assembled monolayer semiconductor. The findings presented within represent advancement in the understanding of the influence of self-assembled monolayers on OFETs as well as progress towards rationally designed monolayer transistors.

  9. Novel High-Activity Organic Piezoelectric Materials - From Single-Molecule Response to Energy Harvesting Films

    DTIC Science & Technology

    2015-08-24

    microcontact printing techniques to deposit and pattern intrinsically polar self - assembled monolayers (SAMs) on smooth template-stripped gold films...and large piezoresponse. Stamp Stamp Gold Gold 10 μm 10 μ m 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 nm Fig. 7. Patterned self - assembled monolayers of...SAM. Importantly, deposition and patterning of thiol self - assembled monolayers on gold surfaces is facile, creating in intrinsically polar film for

  10. Improved organic thin-film transistor performance using novel self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    McDowell, M.; Hill, I. G.; McDermott, J. E.; Bernasek, S. L.; Schwartz, J.

    2006-02-01

    Pentacene-based organic thin-film transistors have been fabricated using a phosphonate-linked anthracene self-assembled monolayer as a buffer between the silicon dioxide gate dielectric and the active pentacene channel region. Vast improvements in the subthreshold slope and threshold voltage are observed compared to control devices fabricated without the buffer. Both observations are consistent with a greatly reduced density of charge trapping states at the semiconductor-dielectric interface effected by introduction of the self-assembled monolayer.

  11. The study of VOPc thin film transistors on modified substrates

    NASA Astrophysics Data System (ADS)

    Song, De; Xu, Qi; Cheng, Hongcang; Li, Bao-zeng; Shang, Yubin

    2018-02-01

    The vanadyl phthalocyanine (VOPc) organic thin film transistors (OTFTs) were fabricated on the various organosilane self-assembled monolayer (SAM) modified substrates. And the effect of the surface properties on the performance of these transistors was studied. The atomic force morphologies and X-ray diffraction (XRD) spectrums of vanadyl phthalocyanine films on different SAM-modified surfaces were studied. They reveal that the terminal functional groups of organosilane affect the growth of VOPc film and device performance. The VOPc film on octadecyltrichlorosilane (OTS) modified substrate has larger crystal size and effective crystal thickness than those on phenyltrichlorosilane (PTS), 1H,1H,2H,2H-Perfluorodec-yltrichlorosilane (FDTS) as well as non-modified substrate, which contributes the mobility of corresponding device several and several dozen times relative to other ones. The effective crystal thickness and crystal grain size of VOPc film on PTS is between that on OTS treated and that on non-modified substrate due to the stronger attractive force between VOPc and SiO2. The VOPc films' performance and effective crystal thickness on FDTS treated are worse than that on PTS due to the existents of attractive force between -CF3 and VOPc.

  12. A sensitive capacitive immunosensor for direct detection of human heart fatty acid-binding protein (h-FABP).

    PubMed

    Mihailescu, Carmen-Marinela; Stan, Dana; Iosub, Rodica; Moldovan, Carmen; Savin, Mihaela

    2015-01-01

    The fabrication of a capacitive interdigitated immunosensor (CID) based on a mixed self-assembled monolayer (mSAM) film for the direct detection of heart fatty-acid binding protein (h-FABP) without any labeling is described. The capacitance changes of mSAMs vs. homogenous ordered self-assembled monolayers (hSAMs) on gold work electrodes/covalently bonded antibodies/buffered medium are utilized for monitoring the specific antibody-antigen interaction. Capacitance measurements in the absence and presence of Faradaic currents were performed. The electrochemical properties of mixed monolayers were compared with those of a pure monolayer of 11-mercaptoundecanoic acid (MUA) self-assembled on gold surfaces. Taking into account the stability of the studied monolayers during the electrochemical experiments with the Faradaic process, the best SAM functionalization method was used for developing a sensitive capacitive immunosensor with a non-Faradaic process for direct immune detection of human h-FABP. Under the optimized conditions, the proposed mixed self-assembled monolayer (mSAM1) on gold electrode exhibited good insulating properties such as a capacitive behavior when detecting h-FABP from human serum in the range of 98 pg ml(-1)-100 ng ml(-1), with a detection limit of 0.836 ng ml(-1) comparative with a homogenous self-assembled monolayer (hSAM). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Vibrational energy distribution in aniline scattered from surfaces covered with organized organic monolayers

    NASA Astrophysics Data System (ADS)

    Paz, Y.; Naaman, R.

    1990-08-01

    Energy distribution in aniline molecules scattered from organized organic monolayers was investigated using a resonance-enhanced two-photon ionization technique. Two type of monolayers were used, one exposing a floppy unsubstituted aliphatic chain (OTS, n-octadecyltrichlorosilane), and the second having a perfluorinated tail (PFDA, perfluorodecanoic acid). The dependence of the internal and translational energy of the scattered aniline is monitored as a function of collision energy and surface properties. The data reveal an unusually high propensity for excitation of the NH 2 inversion mode in aniline. Vibrationally excited molecules are scattered with a narrower time-of-flight (TOF) distribution than those in the ground vibrational state.

  14. Surface-enhanced Raman spectroscopic and surface plasmon resonance in situ study of self-assembly of 4-mercaptobenzoic acid on gold surface

    NASA Astrophysics Data System (ADS)

    Thi, Minh Do; Volka, Karel

    2010-07-01

    A feasibility study has been undertaken to assess the suitability of a commercially available SERS substrate for monitoring of self-assembling deposition process. Monolayer self-assembly of 4-mercaptobenzoic acid on SERS active substrate Klarite™ from absolute and acidified ethanol was studied and compared with deposition on SPR substrate from absolute ethanol. Changes in integral intensity of the phenyl bands at 1587 and 1076 cm -1 and ethanol band at 1451 cm -1 allow to follow structural changes in the monolayer. Stability of the monolayer assembled from acidified ethanol in contrast to the pure ethanol was demonstrated.

  15. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory

    ERIC Educational Resources Information Center

    McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.

    2004-01-01

    An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.

  16. Monoatomic and cluster beam effect on ToF-SIMS spectra of self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Tuccitto, N.; Torrisi, V.; Delfanti, I.; Licciardello, A.

    2008-12-01

    Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Au n-) in comparison with the molecular ions (M -) and clusters (M xAu y-) by using Bi +, Bi 3+, Bi 5+ beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.

  17. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.

    PubMed

    Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric

    2012-02-01

    We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Backfilled, self-assembled monolayers and methods of making same

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Addleman, R Shane [Benton City, WA; Aardahl, Christopher L [Sequim, WA; Zheng, Feng [Richland, WA; Busche, Brad [Raleigh, NC; Egorov, Oleg B [West Richland, WA

    2009-06-30

    Backfilled, self-assembled monolayers and methods of making the same are disclosed. The self-assembled monolayer comprises at least one functional organosilane species and a substantially random dispersion of at least one backfilling organosilane species among the functional organosilane species, wherein the functional and backfilling organosilane species have been sequentially deposited on a substrate. The method comprises depositing sequentially a first organosilane species followed by a backfilling organosilane species, and employing a relaxation agent before or during deposition of the backfilling organosilane species, wherein the first and backfilling organosilane species are substantially randomly dispersed on a substrate.

  19. Self-organization of a wedge-shaped surfactant in monolayers and multilayers.

    PubMed

    Cain, Nicholas; Van Bogaert, Josh; Gin, Douglas L; Hammond, Scott R; Schwartz, Daniel K

    2007-01-16

    The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.

  20. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vicki L.

    1998-01-01

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.

  1. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A.P.; Colvin, V.L.

    1998-05-12

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

  2. Fabrication of an a-IGZO thin film transistor using selective deposition of cobalt by the self-assembly monolayer (SAM) process.

    PubMed

    Cho, Young-Je; Kim, HyunHo; Park, Kyoung-Yun; Lee, Jaegab; Bobade, Santosh M; Wu, Fu-Chung; Choi, Duck-Kyun

    2011-01-01

    Interest in transparent oxide thin film transistors utilizing ZnO material has been on the rise for many years. Recently, however, IGZO has begun to draw more attention due to its higher stability and superior electric field mobility when compared to ZnO. In this work, we address an improved method for patterning an a-IGZO film using the SAM process, which employs a cost-efficient micro-contact printing method instead of the conventional lithography process. After a-IGZO film deposition on the surface of a SiO2-layered Si wafer, the wafer was illuminated with UV light; sources and drains were then patterned using n-octadecyltrichlorosilane (OTS) molecules by a printing method. Due to the low surface energy of OTS, cobalt was selectively deposited on the OTS-free a-IGZO surface. The selective deposition of cobalt electrodes was successful, as confirmed by an optical microscope. The a-IZGO TFT fabricated using the SAM process exhibited good transistor performance: electric field mobility (micro(FE)), threshold voltage (V(th)), subthreshold slope (SS) and on/off ratio were 2.1 cm2/Vs, 2.4 V, 0.35 V/dec and 2.9 x 10(6), respectively.

  3. Effective passivation of exfoliated black phosphorus transistors against ambient degradation.

    PubMed

    Wood, Joshua D; Wells, Spencer A; Jariwala, Deep; Chen, Kan-Sheng; Cho, EunKyung; Sangwan, Vinod K; Liu, Xiaolong; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2014-12-10

    Unencapsulated, exfoliated black phosphorus (BP) flakes are found to chemically degrade upon exposure to ambient conditions. Atomic force microscopy, electrostatic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are employed to characterize the structure and chemistry of the degradation process, suggesting that O2 saturated H2O irreversibly reacts with BP to form oxidized phosphorus species. This interpretation is further supported by the observation that BP degradation occurs more rapidly on hydrophobic octadecyltrichlorosilane self-assembled monolayers and on H-Si(111) versus hydrophilic SiO2. For unencapsulated BP field-effect transistors, the ambient degradation causes large increases in threshold voltage after 6 h in ambient, followed by a ∼ 10(3) decrease in FET current on/off ratio and mobility after 48 h. Atomic layer deposited AlOx overlayers effectively suppress ambient degradation, allowing encapsulated BP FETs to maintain high on/off ratios of ∼ 10(3) and mobilities of ∼ 100 cm(2) V(-1) s(-1) for over 2 weeks in ambient conditions. This work shows that the ambient degradation of BP can be managed effectively when the flakes are sufficiently passivated. In turn, our strategy for enhancing BP environmental stability will accelerate efforts to implement BP in electronic and optoelectronic applications.

  4. Electric field induced self-assembly of monolayers of gold nanoparticles for surface enhanced Raman scattering applications

    NASA Astrophysics Data System (ADS)

    Das, Suchandra; Musunuri, Naga; Kucheryavy, Pavel; Lockard, Jenny; Fischer, Ian; Singh, Pushpendra; New Jersey Institute of Technology Collaboration; Rutgers University Newark Collaboration

    2017-11-01

    We present a technique that uses an electric field in the direction normal to the interface for self-assembling monolayers of gold nanoparticles on fluid-liquid interfaces and freezing these monolayers onto the surface of a flexible thin film. The electric field gives rise to dipole-dipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another fluid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film. We are using these films for surface enhanced Raman scattering (SERS) applications. Initial measurements indicate improved performance over commercially available SERS substrates.

  5. A technique to functionalize and self-assemble macroscopic nanoparticle-ligand monolayer films onto template-free substrates.

    PubMed

    Fontana, Jake; Spillmann, Christopher; Naciri, Jawad; Ratna, Banahalli R

    2014-05-09

    This protocol describes a self-assembly technique to create macroscopic monolayer films composed of ligand-coated nanoparticles. The simple, robust and scalable technique efficiently functionalizes metallic nanoparticles with thiol-ligands in a miscible water/organic solvent mixture allowing for rapid grafting of thiol groups onto the gold nanoparticle surface. The hydrophobic ligands on the nanoparticles then quickly phase separate the nanoparticles from the aqueous based suspension and confine them to the air-fluid interface. This drives the ligand-capped nanoparticles to form monolayer domains at the air-fluid interface. The use of water-miscible organic solvents is important as it enables the transport of the nanoparticles from the interface onto template-free substrates. The flow is mediated by a surface tension gradient and creates macroscopic, high-density, monolayer nanoparticle-ligand films. This self-assembly technique may be generalized to include the use of particles of different compositions, size, and shape and may lead to an efficient assembly method to produce low-cost, macroscopic, high-density, monolayer nanoparticle films for wide-spread applications.

  6. High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres.

    PubMed

    Garcia-Sucerquia, J; Alvarez-Palacio, D C; Kreuzer, H J

    2008-09-10

    We report the observation of the Talbot self-imaging effect in high resolution digital in-line holographic microscopy (DIHM) and its application to structural characterization of periodic samples. Holograms of self-assembled monolayers of micron-sized polystyrene spheres are reconstructed at different image planes. The point-source method of DIHM and the consequent high lateral resolution allows the true image (object) plane to be identified. The Talbot effect is then exploited to improve the evaluation of the pitch of the assembly and to examine defects in its periodicity.

  7. Self-assembling Gold Nanoparticle Monolayers in a Three-phase System - Overcoming Ligand Size Limitations

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Nanda, Jagjit; Wang, Boya; Chen, Gang; Hallinan, Daniel T., Jr.

    An effective self-assembly technique was developed to prepare centimeter-scale monolayer gold nanoparticle (Au NP) films of long-range order with hydrophobic ligands. Aqueous Au NPs were entrapped in the organic/aqueous interface where the Au NP surface was in situ modified with different types of amine ligands, including amine-terminated polystyrene. The Au NPs then spontaneously relocated to the air/water interface to form an NP monolayer. The spontaneous formation of an Au NP film at the organic/water interface was due to the minimization of the system Helmholtz free energy. Self-assembled Au NP films has a hexagonal close packed structure. The interparticle spacing was dictated by the amine ligand length. Thus-assembled Au NP monolayers exhibit tunable surface plasma resonance and excellent spacial homogeneity of surface-enhanced Raman-scattering. The ``air/water/oil'' self-assembly method developed in this study not only benefits the fundamental understanding of NP ligand conformations, but is also promising to scale up the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. This study was financially supported by start-up funding supplied by the Florida State University and the FAMU-FSU College of Engineering.

  8. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    EPA Science Inventory

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  9. Building a Low-Cost, Six-Electrode Instrument to Measure Electrical Properties of Self-Assembled Monolayers of Gold Nanoparticles

    ERIC Educational Resources Information Center

    Gerber, Ralph W.; Oliver-Hoyo, Maria

    2007-01-01

    The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.

  10. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  11. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies.

    PubMed

    Nieciecka, Dorota; Krysinski, Pawel

    2011-02-01

    We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.

  12. MURI Center for Materials Chemistry in the Space Environment

    DTIC Science & Technology

    2006-11-30

    ionic species in relevant reaction environments, surface photochemistry expertise, synchrotron-based measurement and irradiation, synthesis of structural...and Ne+ ions with dodecanethiolate and semifluorinated dodecanethiolate self-assembled monolayers (SAM), polyhedral oligomeric silsesquioxane (POSS...POSS/Kapton models as gas phase species, and with alkane thiol self assembled monolayers on gold surfaces, and with liquid squalane. We have also

  13. The Molecular Boat: A Hands-On Experiment to Demonstrate the Forces Applied to Self-Assembled Monolayers at Interfaces

    ERIC Educational Resources Information Center

    Chan, Charlene J.; Salaita, Khalid

    2012-01-01

    Demonstrating how surface chemistry and self-assembled monolayers (SAMs) control the macroscopic properties of materials is challenging as it often necessitates the use of specialized instrumentation. In this hands-on experiment, students directly measure a macroscopic property, the floatation of glass coverslips on water as a function of…

  14. Close-packed monolayer self-assembly of silica nanospheres assisted by infrared irradiation

    NASA Astrophysics Data System (ADS)

    Minh, Nguyen Van; Hue, Nguyen Thi; Lien, Nghiem Thi Ha; Hoang, Chu Manh

    2018-01-01

    In this paper, we report on a fast and cost-effective drop coating technique for the self-assembly of silica nano-spheres from a mono-dispersed colloidal suspension into close-packed monolayer (CMP) on hydrophilic single-crystal silicon substrate. The technique includes the self-assembly of silica nano-spheres on slanted silicon substrate and infrared irradiation during evaporation process of the coated droplet. The influence of the substrate slant angle and infrared irradiation on the formation of silica nano-sphere monolayer is investigated. This achievement is promising for various applications, such as a mask layer for nano-sphere lithography that is employed for producing fundamental elements in photonics, plasmonics, and solar cell. [Figure not available: see fulltext.

  15. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    PubMed

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  16. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  17. Nanoscale Electronics from a Molecular Perspective

    DTIC Science & Technology

    2012-01-19

    Cyclohexanethiolate Self-Assembled Monolayers with Local Barrier Height Imaging, Journal of Physical Chemistry C, (07 2011): 0. doi: 2012/01/05 20:34:27...accepted for publication in the Journal of Physical Chemistry-C regarding the adsorption, ordering, and local work function measurements for...cyclohexanethiol on Au(111): Unveiling Molecular Adsorption Geometry in Cyclohexanethiolate Self-Assembled Monolayers with Local Barrier Height Imaging

  18. Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Oh, Sewook; Kim, Minkeun; Kim, Yejin; Jung, Hunsang; Yoon, Tae-Sik; Choi, Young-Jin; Jung Kang, Chi; Moon, Myeong-Ju; Jeong, Yong-Yeon; Park, In-Kyu; Ho Lee, Hyun

    2013-08-01

    An organic memory structure using monolayered aptamer conjugated gold nanoparticles (Au NPs) as charge storage nodes was demonstrated. Metal-pentacene-insulator-semiconductor device was adopted for the non-volatile memory effect through self assembly monolayer of A10-aptamer conjugated Au NPs, which was formed on functionalized insulator surface with prostate-specific membrane antigen protein. The capacitance versus voltage (C-V) curves obtained for the monolayered Au NPs capacitor exhibited substantial flat-band voltage shift (ΔVFB) or memory window of 3.76 V under (+/-)7 V voltage sweep. The memory device format can be potentially expanded to a highly specific capacitive sensor for the aptamer-specific biomolecule detection.

  19. Plasma combined self-assembled monolayer pretreatment on electroplated-Cu surface for low temperature Cu-Sn bonding in 3D integration

    NASA Astrophysics Data System (ADS)

    Wang, Junqiang; Wang, Qian; Wu, Zijian; Tan, Lin; Cai, Jian; Wang, Dejun

    2017-05-01

    A novel pretreatment of plasma combined self-assembled monolayer (PcSAM) was proposed to improve surface properties of electroplated Cu for low temperature Cu-Sn bonding in 3D integration. Measurement results revealed that self-assemble monolayer (SAM) would be easier absorbed on plasma-activated Cu surface and protect the clean surface from re-oxidation when storage. The absorbed SAM layer could be removed by thermal desorption during bonding process. With optimal PcSAM pretreatment, oxygen content of the Cu surface was reduced to as low as 1.39%. The followed Cu-Sn bonding was realized at low temperature of 200 °C. Finally, bonding interface exhibited a defect-free interconnection, and bonding strength has reached as high as 68.7 MPa.

  20. Structure-Property Relationship of Phenylene-Based Self-Assembled-Monolayers for Record Low Work Function of Indium Tin Oxide.

    PubMed

    Benneckendorf, Frank S; Hillebrandt, Sabina; Ullrich, Florian; Rohnacher, Valentina; Hietzschold, Sebastian; Jänsch, Daniel; Freudenberg, Jan; Beck, Sebastian; Mankel, Eric; Jaegermann, Wolfram; Pucci, Annemarie; Bunz, Uwe H F; Müllen, Klaus

    2018-06-20

    Studying the structure-property relations of tailored dipolar phenyl and biphenylphosphonic acids we report self-assembled monolayers with a significant decrease of the work function (WF) of indium-tin oxide (ITO) electrodes. While the strengths of the dipoles are varied through the different molecular lengths and the introduction of electron-withdrawing fluorine atoms, the surface energy is kept constant through the electron-donating N,N dimethylamine head groups. The self-assembled monolayer formation and its modification of the electrodes are investigated via infrared reflection absorption spectroscopy, contact angle measurements, and photoelectron spectroscopy. The WF decrease of ITO correlates with increasing molecular dipoles. The lowest ever recorded WF of 3.7 eV is achieved with the fluorinated biphenylphosphonic acid.

  1. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach

    PubMed Central

    Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo

    2017-01-01

    Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664

  2. In situ sulfonation of alkyl benzene self-assembled monolayers: product distribution and kinetic analysis.

    PubMed

    Katash, Irit; Luo, Xianglin; Sukenik, Chaim N

    2008-10-07

    The sulfonation of aromatic rings held at the surface of a covalently anchored self-assembled monolayer has been analyzed in terms of the rates and isomer distribution of the sulfonation process. The observed product distributions are similar to those observed in solution, though the data obtained suggest that the reaction rate and the ortho/para product ratio depend on the length of the tether anchoring the aryl ring to the monolayer interface. It was also found that the interface becomes progressively more disordered and the observed reaction rates decrease as the reaction progresses. There is no evidence for a bias in favor of reaction at the more exposed para-position nor is there evidence for an enhanced reaction rate due to the increased disorder and/or improved wetting as the reaction proceeds. This is the first detailed study of electrophilic aromatic substitution at a monolayer interface. It introduces new approaches to the spectroscopic analysis of reactions on self-assembled monolayers and provides a new general approach to the analysis of isomeric product distribution in such a setting.

  3. Characterization of Self-Assembled Monolayers on a Ruthenium Surface

    PubMed Central

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on piranha-cleaned and piranha + H2SO4 cleaned substrates were compared to monolayers formed on H-radical-cleaned Ru surfaces. We found that alkanethiols on H-radical-cleaned Ru formed densely packed monolayers that remained stable when kept in a nitrogen atmosphere. X-ray photoelectron spectroscopy (XPS) shows a distinct sulfur peak (BE = 162.3 eV), corresponding to metal–sulfur bonding. When exposed to ambient conditions, the SAM decayed over a period of hours. PMID:28585831

  4. Antibacterial and tribological behavior of self-assembled monolayer on optical lens

    NASA Astrophysics Data System (ADS)

    Horng, J. H.; Jeng, Y. R.; Wei, C. C.; Tasi, Y. T.

    2010-10-01

    This paper studies the effects of the antibacterial and anti-adhesion properties of self-assembled monolayers (SAMs) on optical parts. Therefore, the experiments in this study prepared several kinds of SAMs, including alkyl and biphenyl spacer chains with different surface terminal groups (-CH3,-COOH) and head groups (-SH). This study reports the growth of eight self-assembled monolayers on optical parts: OTS, ODS, OTS with antibacterial solution, ODS with antibacterial solution, and pure antibacterial solution, with bio-compatibility. Experimental results regarding the contact angle of five self-assembled monolayers show that ODS with antibacterial illustrated the maximum contact angle 103° 12 hours after reaction. The solutions of OTS, ODS with antibacterial, OTS with antibacterial, and pure anti-bacterial showed contact angles of 102°, 99°, 101°, and 59° respectively. These results indicate that the antibacterial solution has negligible effects on anti-adhesion property of optical lenses. The results of digital optical microscope system analysis show that in the antibacterial experiment of eight kinds of selfassembled monolayers, the OTSanti50% effect cultured for 24 hours achieved the best results, with a growth rate of 12%. The descending order of antibacterial effect is antibacterial 10%>ODS>OTS> antibacterial 50%>ODSanti50%>OTSanti10%>ODSanti10%. In summary, the surface treatment of optical lenses involving OTSanti 50% is the most capable of effectively increasing antifouling and antibacterial functions.

  5. Chemoselective covalent coupling of oligonucleotide probes to self-assembled monolayers.

    PubMed

    Devaraj, Neal K; Miller, Gregory P; Ebina, Wataru; Kakaradov, Boyko; Collman, James P; Kool, Eric T; Chidsey, Christopher E D

    2005-06-22

    A chemoselective route to routinely and rapidly attach oligonucleotide probes to well-defined surfaces is presented. Cu(I) tris(benzyltriazolylmethyl)amine-catalyzed coupling of terminal acetylenes to azides on a self-assembled monolayer is used instead of traditional nucleophilic-electrophilic coupling reactions. The reaction proceeds well even in the presence of purposely introduced nucleophilic and electrophilic impurities. The density of oligonucleotide probes can be controlled by controlling the amount of azide functionality. Although most of our work was done on gold surfaces, this technique should be readily applicable to any surface on which an azide-containing monolayer can be assembled as we have preliminarily demonstrated by derivatizing azidotrimethoxysilane-modified glass slides with fluorescein-containing oligonucleotides.

  6. Low-voltage self-assembled monolayer field-effect transistors on flexible substrates.

    PubMed

    Schmaltz, Thomas; Amin, Atefeh Y; Khassanov, Artoem; Meyer-Friedrichsen, Timo; Steinrück, Hans-Georg; Magerl, Andreas; Segura, Juan José; Voitchovsky, Kislon; Stellacci, Francesco; Halik, Marcus

    2013-08-27

    Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccharide Sensing-Interface

    PubMed Central

    Chen, Hongxia; Lee, Minsu; Lee, Jaebeom; Kim, Jae-Ho; Gal, Yeong-Soon; Hwang, Yoon-Hwae; An, Won Gun; Koh, Kwangnak

    2007-01-01

    We designed and synthesized phenylboronic acid as a molecular recognition model system for saccharide detection. The phenylboronic acid derivatives that have boronic acid moiety are well known to interact with saccharides in aqueous solution; thus, they can be applied to a functional interface of saccharide sensing through the formation of self-assembled monolayer (SAM). In this study, self-assembled phenylboronic acid derivative monolayers were formed on Au surface and carefully characterized by atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS), surface enhanced Raman spectroscopy (SERS), and surface electrochemical measurements. The saccharide sensing application was investigated using surface plasmon resonance (SPR) spectroscopy. The phenylboronic acid monolayers showed good sensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10−12 M). The SPR angle shift derived from interaction between phenylboronic acid and monosaccharide was increased with increasing the alkyl spacer length of synthesized phenylboronic acid derivatives.

  8. Humidity dependence of molecular tunnel junctions with an AlOx/COOH- interface

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohang; McGill, Stephen; Xiong, Peng

    2006-03-01

    We have studied the electron transport in planar tunneling junctions with aluminum oxide and an organic self-assembled monolayer (SAM) as the tunnel barrier. The structure of the junctions is Al/AlOx/SAM/(Au, Pb) with a junction area of ˜ 0.4mm^2. The organic molecules investigated include mercaptohexadecanoic acid (MHA), hexadecanoic acid (HDA), and octadecyltrichlorosilane (OTS); all of which form ordered SAMs on top of aluminum oxide. The use of a superconducting electrode (Al) enables us to determine unambiguously that these are high-quality tunnel junctions. For junctions incorporating MHA, the transport behavior is found to be strongly humidity dependent. The resistance of these junctions drops more than 50% when placed in dry nitrogen and recovers when returned into the ambient. The same drop also occurs when the sample is placed into a vacuum, and backfilling the vacuum with either dry N2 or O2 has negligible effect on the resistance. For comparison, junctions with HDA show the same humidity dependence, while OTS samples do not. Since both MHA and HDA have carboxylic groups and OTS does not, the results suggest that water molecules at the AlOx/COOH- interface play the central role in the observed behavior. Inelastic tunneling spectroscopy (IETS) has also been performed to understand the role of water. This work was supported by a FSU Research Foundation PEG grant.

  9. Mesoscale Graphene-like Honeycomb Mono- and Multilayers Constructed via Self-Assembly of Coclusters.

    PubMed

    Hou, Xue-Sen; Zhu, Guo-Long; Ren, Li-Jun; Huang, Zi-Han; Zhang, Rui-Bin; Ungar, Goran; Yan, Li-Tang; Wang, Wei

    2018-02-07

    Honeycomb structure endows graphene with extraordinary properties. But could a honeycomb monolayer superlattice also be generated via self-assembly of colloids or nanoparticles? Here we report the construction of mono- and multilayer molecular films with honeycomb structure that can be regarded as self-assembled artificial graphene (SAAG). We construct fan-shaped molecular building blocks by covalently connecting two kinds of clusters, one polyoxometalate and four polyhedral oligomeric silsesquioxanes. The precise shape control enables these complex molecules to self-assemble into a monolayer 2D honeycomb superlattice that mirrors that of graphene but on the mesoscale. The self-assembly of the SAAG was also reproduced via coarse-grained molecular simulations of a fan-shaped building block. It revealed a hierarchical process and the key role of intermediate states in determining the honeycomb structure. Experimental images also show a diversity of bi- and trilayer stacking modes. The successful creation of SAAG and its stacks opens up prospects for the preparation of novel self-assembled nanomaterials with unique properties.

  10. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE PAGES

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.; ...

    2017-08-23

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  11. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  12. Skin-like self-assembled monolayers on InAs/GaSb superlattice photodetectors

    NASA Astrophysics Data System (ADS)

    Salihoglu, Omer; Muti, Abdullah; Kutluer, Kutlu; Tansel, Tunay; Turan, Rasit; Aydinli, Atilla

    2012-09-01

    We report on the effects of monolayer (ML) thick skin-like octadecanethiol (ODT, CH3[CH2]17SH) on type-II InAs/GaSb MWIR photodetectors. Circumventing the ageing effects of conventional sulfur compounds, we use ODT, a self-assembling, long molecular chain headed with a sulfur atom. Photodiodes coated with and without the self-assembled monolayer (SAM) ODT were compared for their electrical and optical performances. For ODT-coated diodes, the dark current density was improved by two orders of magnitude at 77 K under -100 mV bias. The zero bias responsivity and detectivity were 1.04 A W-1 and 2.15 × 1013 Jones, respectively, at 4 µm and 77 K. The quantum efficiency was determined to be 37% for a cutoff wavelength of 5.1 µm.

  13. Different Interfacial Behaviors of Peptides Chemically Immobilized on Surfaces with Different Linker Lengths and via Different Termini

    DTIC Science & Technology

    2014-02-20

    spectroscopy was applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial ...modified antimicrobial peptide cecropin P1 (CP1) was chemically immobilized onto SAM with a maleimide terminal group. Two important characteristics...applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial peptide cecropin

  14. A new organofunctional ethoxysilane self-assembly monolayer for promoting adhesion of rubber to aluminum.

    PubMed

    Wang, Fang; Xu, Juan; Luo, Heyi; Wang, Jinggang; Wang, Qian

    2009-10-12

    Practical adhesion of rubber to aluminum is measured for various aluminum silanization treatments. In this study, 6-(3-triethoxysilylpropylamino)-1,3,5-triazine-2,4-dithiol (TES) was used as the coupling agent for preparing self-assembly monolayers (SAMs) on an aluminum surface. The structure and chemical composition of the SAMs were analyzed using Fourier transform infra-red spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The changes in the surface features of the aluminum surface due to TES treatment were investigated by atomic force microscopy (AFM). The adhesive properties of the silanized aluminum surface and EPDM rubber have been evaluated by a T-peel strength test. The results suggested that the Si-O-Al bonding at aluminum TES interface existed and a TES self-assembly monolayer was formed on the aluminum surface. More than 6.0 KN/m adhesion strength is obtained when the aluminum is silanized with 2.5 mmol/dm(3) TES, cured at 160 degrees C and vulcanized with EPDM rubber at 160 degrees C for 30 min. It is suggested that the TES self-assembly monolayer is bound to aluminum through its ethoxysilyl functional group, and the thiol function group is strongly crosslinked to EPDM rubber, respectively.

  15. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    NASA Astrophysics Data System (ADS)

    Moldovan, Carmen; Mihailescu, Carmen; Stan, Dana; Ruta, Lavinia; Iosub, Rodica; Gavrila, Raluca; Purica, Munizer; Vasilica, Schiopu

    2009-08-01

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti- Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti- E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab') 2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  16. Electrochemical and surface plasmon resonance characterization of β-cyclodextrin-based self-assembled monolayers and evaluation of their inclusion complexes with glucocorticoids

    NASA Astrophysics Data System (ADS)

    Frasconi, Marco; Mazzei, Franco

    2009-07-01

    This paper describes the characterization of a self-assembled β-cyclodextrin (β-CD)-derivative monolayer (β-CD-SAM) on a gold surface and the study of their inclusion complexes with glucocorticoids. To this aim the arrangement of a self-assembled β-cyclodextrin-derivative monolayer on a gold surface was monitored in situ by means of surface plasmon resonance (SPR) spectroscopy and double-layer capacitance measurements. Film thickness and dielectric constant were evaluated for a monolayer of β-CD using one-color-approach SPR. The selectivity of the β-CD host surface was verified by using electroactive species permeable and impermeable in the β-CD cavity. The redox probe was selected according to its capacity to permeate the β-CD monolayer and its electrochemical behavior. In order to evaluate the feasibility of an inclusion complex between β-CD-SAM with some steroids such as cortisol and cortisone, voltammetric experiments in the presence of the redox probes as molecules competitive with the steroids have been performed. The formation constant of the surface host-guest by β-CD-SAM and the steroids under study was calculated.

  17. Ordered Self-Assembled Monolayers of Peptide Nucleic Acids with DNA Recognition Capability

    NASA Astrophysics Data System (ADS)

    Briones, C.; Mateo-Marti, E.; Gómez-Navarro, C.; Parro, V.; Román, E.; Martín-Gago, J. A.

    2004-11-01

    We report on the formation of ordered self-assembled monolayers (SAMs) of single-stranded peptide nucleic acids (ssPNA). In spite of their remarkable length (7nm) thiolated PNAs assemble standing up on gold surfaces similarly to the SAMs of short alkanethiols. SAMs of ssPNA recognize complementary nucleic acids, acting as specific biosensors that discriminate even a point mutation in target ssDNA. These results are obtained by surface characterization techniques that avoid labeling of the target molecule: x-ray photoemission, x-ray absorption and atomic force microscopy.

  18. Electrostatic self-assembly of polyions on charged substrates

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Adams, W. W.; Bunning, T. J.; Visser, D.; Bliznyuk, V. N.; Tsukruk, V. V.

    1997-03-01

    The kinetics of formation of self-assembled monolayers is studied for polystyrene sulfonate(PSS) adsorbed on oppositely charged surfaces of amine terminated self-assembled monolayers(SAM) and polyallylamine(PAA). During the early stages of deposition in both cases, an inhomogeneous deposition is noted as measured by atomic force and friction force microscopy. Island formation of unperturbed PSS coils on defect sites is observed during the initial stage of deposition. Longer deposition times result in an equilibration of the polymer layers into highly flattened macromolecular chains. AFM and FFM measurements are combined with ellipsometer and X-ray reflectivity results to quantitate the layer thicknesses and roughness with time.

  19. Characterization of iron surface modified by 2-mercaptobenzothiazole self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Feng, Yuanyuan; Chen, Shenhao; Zhang, Honglin; Li, Ping; Wu, Ling; Guo, Wenjuan

    2006-12-01

    A self-assembled monolayer of 2-mercaptobenzothiazole (MBT) adsorbed on the iron surface was prepared. The films were characterized by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared reflection spectroscopy (FT-IR) and scanning electron microscopy (SEM). Besides, the microcalorimetry method was utilized to study the self-assembled process on iron surface and the adsorption mechanism was discussed from the power-time curve. The results indicated that MBT was able to form a film spontaneously on iron surface and the presence of it could protect iron from corrosion effectively. However, the assembling time and the concentration influence the protection efficiency. Quantum chemical calculations, according to which adsorption mechanism was discussed, could explain the experimental results to some extent.

  20. Recognition tunneling measurement of the conductance of DNA bases embedded in self-assembled monolayers.

    PubMed

    Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart

    2010-12-09

    The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs.

  1. Recognition tunneling measurement of the conductance of DNA bases embedded in self-assembled monolayers

    PubMed Central

    Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart

    2010-01-01

    The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs. PMID:21197382

  2. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    PubMed

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  3. Microsecond MD Simulations of Nano-patterned Polymer Brushes on Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Buie, Creighton; Qiu, Liming; Cheng, Kwan; Park, Soyeun

    2010-03-01

    Nano-patterned polymer brushes end-grafted onto self-assembled monolayers have gained increasing research interests due to their unique thermodynamic properties and their chemical and biomedical applications in colloids, biosensing and tissue engineering. So far, the interactions between the polymer brushes with the surrounding environments such as the floor and solvent at the nanometer length scale and microsecond time scale are still difficult to obtained experimentally and computationally. Using a Coarse-Grained MD approach, polymer brushes of different monomeric lengths, grafting density and hydrophobicity of the monomers grafted on self-assembled monolayers and in explicit solvent were studied. Molecular level information, such as lateral diffusion, transverse height and volume contour of the brushes, were calculated from our microsecond-MD simulations. Our results demonstrated the significance of the hydration of the polymer in controlling the conformational arrangement of the polymer brushes.

  4. Infrared spectroscopy of organic semiconductors modified by self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Khatib, O.; Lee, B.; Podzorov, V.; Yuen, J.; Heeger, A. J.; Li, Z. Q.; di Ventra, M.; Basov, D. N.

    2009-03-01

    Recently, self-assembled monolayers (SAMs) were used to modify electronic surface properties of organic single crystals, leading to several orders of magnitude increase in the electrical conductivity^1. Motivated by this discovery, the same technique was applied to polymers. Here we present a thorough spectroscopic investigation of organic semiconductors based on poly(3-hexlthiophene) (P3HT) that have been treated with a fluorinated trichlorosilane SAM. Infrared spectroscopy offers access to details of charge injection, electrostatic doping, and the electronic structure that are not always available from transport measurements, which can be dominated by defects and contact effects. In polymer films, the SAM molecules penetrate into the bulk, leading to a rich spectrum of electronic excitations in the mid-infrared energy range. ^1 M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson, V. Podzorov, Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers, Nature Mater. 7, 84--89 (2008)

  5. Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles.

    PubMed

    Arakaki, Atsushi; Hideshima, Sho; Nakagawa, Takahito; Niwa, Daisuke; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Osaka, Tetsuya

    2004-11-20

    For developing a magnetic bioassay system, an investigation to determine the presence of a specific biomolecular interaction between biotin and streptavidin was done using magnetic nanoparticles and a silicon substrate with a self-assembled monolayer. Streptavidin was immobilized on the magnetic particles, and biotin was attached to the monolayer-modified substrate. The reaction of streptavidin-modified magnetic particles on the biotin-modified substrate was clearly observed under an optical microscope. The magnetic signals from the particles were detected using a magnetic force microscope. The results of this study demonstrate that the combination of a monolayer-modified substrate with biomolecule-modified magnetic particles is useful for detecting biomolecular interactions in medical and diagnostic analyses. (c) 2004 Wiley Periodicals, Inc

  6. Fast self-assembly of silver nanoparticle monolayer in hydrophobic environment and its application as SERS substrate

    NASA Astrophysics Data System (ADS)

    Leiterer, Christian; Zopf, David; Seise, Barbara; Jahn, Franka; Weber, Karina; Popp, Jürgen; Cialla-May, Dana; Fritzsche, Wolfgang

    2014-09-01

    We present a method which allows the straightforward wet-chemical synthesis of silver nanoparticles (AgNPs), hydrophobic coating assembling into monolayer, and their utilization as substrates for surface-enhanced Raman spectroscopy (SERS). In order to fabricate the SERS-active substrates, AgNPs were synthesized in water by chemical reduction of Ag+, coated with a hydrophobic shell (dodecanethiol), transferred to a non-polar solvent, and finally assembled through precipitation into a SERS-active self-assembled monolayer (SAM). Simple approaches for concentration and purification of the coated AgNPs are shown. The synthesized particles and SAMs were characterized by transmission electron microscopy, optical imaging, and spectroscopic measurements. This manuscript can be used as a do-it-yourself (DIY) tutorial which allows making SAMs from coated AgNPs (<15 nm) in every laboratory within less than 1 h and their utilization as potential low-cost SERS substrates (movie 1-4).

  7. Grafted self-assembled monolayers derived from naturally occurring phenolic lipids.

    PubMed

    Pillot, J-P; Birot, M; Tran, T T T; Dao, T M; Belin, C; Desbat, B; Lazare, S

    2005-04-12

    Self-assembled monolayers grafted onto silicon surfaces were obtained from the hydrosilylation products by trialcoxysilanes of naturally occurring phenolic lipid allyl ethers. The as-obtained materials were characterized by various physical and physicochemical methods. Thus, contact angles of water drops showed that they possess very high hydrophobicity. Their excellent regularity was corroborated by AFM microscopy. The frequencies of the stretching CH2 infrared modes indicate the presence of alkyl chains mainly in the trans/trans conformation. Additionally, optical ellipsometry and quartz microbalance measurements enabled us to estimate the thickness of the films. The results, as a whole, are in good agreement with the formation of densely packed monolayers.

  8. Photo-switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    DTIC Science & Technology

    2015-11-05

    AFRL-AFOSR-VA-TR-2015-0396 (HBCU) Photo-switchable Donor-Acceptor for Organic Photovoltaic Cells Luis Echegoyen UNIVERSITY OF TEXAS AT EL PASO Final...Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0053 5c...demonstrated using impedance spectroscopy for several triphenylamine-fullerene dyads, but their performance in photovoltaic devices was not remarkable, likely

  9. Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Nanda, Jagjit; Wang, Boya

    Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode–electrolyte interphases. Surface-enhance Raman spectroscopy could satisfy this need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 nm diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm.more » The monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. Lastly, the EFs for the best performing Au NP monolayer are between 10 6 and 10 8 and give quantitative signal response when analyte concentration is changed.« less

  10. Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy.

    PubMed

    Yang, Guang; Nanda, Jagjit; Wang, Boya; Chen, Gang; Hallinan, Daniel T

    2017-04-19

    Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode-electrolyte interphases. Surface-enhance Raman spectroscopy could satisfy this need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 nm diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm. The monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. The EFs for the best performing Au NP monolayer are between 10 6 and 10 8 and give quantitative signal response when analyte concentration is changed.

  11. Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy

    DOE PAGES

    Yang, Guang; Nanda, Jagjit; Wang, Boya; ...

    2017-04-04

    Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode–electrolyte interphases. Surface-enhance Raman spectroscopy could satisfy this need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 nm diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm.more » The monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. Lastly, the EFs for the best performing Au NP monolayer are between 10 6 and 10 8 and give quantitative signal response when analyte concentration is changed.« less

  12. Immobilization of acetylcholinesterase in lipid membranes deposited on self-assembled monolayers.

    PubMed

    Milkani, Eftim; Khaing, Aung M; Huang, Fei; Gibson, Daniel G; Gridley, Scott; Garceau, Norman; Lambert, Christopher R; McGimpsey, W Grant

    2010-12-21

    Human red blood cell acetylcholinesterase was incorporated into planar lipid membranes deposited on alkanethiol self-assembled monolayers (SAMs) on gold substrates. Activity of the protein in the membrane was detected with a standard photometric assay and was determined to be similar to the protein in detergent solution or incorporated in lipid vesicles. Monolayer and bilayer lipid membranes were generated by fusing liposomes to hydrophobic and hydrophilic SAMs, respectively. Liposomes were formed by the injection method using the lipid dimyristoylphosphatidylcholine (DMPC). The formation of alkanethiol SAMs and lipid monolayers on SAMs was confirmed by sessile drop goniometry, ellipsometry, and electrochemical impedance spectroscopy. In this work, we report acetylcholinesterase immobilization in lipid membranes deposited on SAMs formed on the gold surface and compare its activity to enzyme in solution.

  13. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts

    DOE PAGES

    Hunt, Sean T.; Milina, Maria; Alba-Rubio, Ana C.; ...

    2016-05-20

    Here, we demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti 0.1W 0.9C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading,more » enhance the activity, and increase the stability of noble metal catalysts.« less

  14. Recent advances in self-assembled monolayers based biomolecular electronic devices.

    PubMed

    Arya, Sunil K; Solanki, Pratima R; Datta, Monika; Malhotra, Bansi D

    2009-05-15

    Self-assembled monolayers (SAMs) have aroused much interest due to their potential applications in biosensors, biomolecular electronics and nanotechnology. This has been largely attributed to their inherent ordered arrangement and controllable properties. SAMs can be formed by chemisorption of organic molecules containing groups like thiols, disulphides, amines, acids or silanes, on desired surfaces and can be used to fabricate biomolecular electronic devices. We focus on recent applications of organosulphur compounds (thiols) based SAMs to biomolecular electronic devices in the last about 3 years.

  15. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports

    PubMed Central

    Meyerson, Joel R.; Rao, Prashant; Kumar, Janesh; Chittori, Sagar; Banerjee, Soojay; Pierson, Jason; Mayer, Mark L.; Subramaniam, Sriram

    2014-01-01

    Poor partitioning of macromolecules into the holes of holey carbon support grids frequently limits structural determination by single particle cryo-electron microscopy (cryo-EM). Here, we present a method to deposit, on gold-coated carbon grids, a self-assembled monolayer whose surface properties can be controlled by chemical modification. We demonstrate the utility of this approach to drive partitioning of ionotropic glutamate receptors into the holes, thereby enabling 3D structural analysis using cryo-EM methods. PMID:25403871

  16. Enzyme-free Detection of Hydrogen Peroxide from Cerium Oxide Nanoparticles Immobilized on Poly(4-vinylpyridine) Self-Assembled Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat

    2013-05-02

    A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.

  17. Passivation of Black Phosphorus via Self-Assembled Organic Monolayers by van der Waals Epitaxy.

    PubMed

    Zhao, Yinghe; Zhou, Qionghua; Li, Qiang; Yao, Xiaojing; Wang, Jinlan

    2017-02-01

    An effective passivation approach to protect black phosphorus (BP) from degradation based on multi-scale simulations is proposed. The self-assembly of perylene-3,4,9,10-tetracarboxylic dianhydride monolayers via van der Waals epitaxy on BP does not break the original electronic properties of BP. The passivation layer thickness is only 2 nm. This study opens up a new pathway toward fine passivation of BP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.

    PubMed

    Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai

    2018-03-15

    Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular Recognition in Gels, Monolayers, and Solids

    DTIC Science & Technology

    1991-12-01

    monolayers (SAMs) of alkyl thiolates on gold to the study of protein adsorption on organic surfaces; and the use of networkc 20. ISTIBUION AVALABLITYOF...areas of molecular recognition: affinity polymers and molecular self-assembly. We illustrute these artas by examples drawn frozr affinity gel electro...polyacmy~amides be’.ring,,sialic acid groups; the application of self-a-eseinbled monolayers (SAMs) of alkyl thiolates on gold to the study of protein

  20. Role of Thermal Process on Self-Assembled Structures of 4′-([2,2′:6′,2″-Terpyridin]-4′-Yl)-[1,1′-Biphenyl]-4-Carboxylic Acid on Au(III)

    PubMed Central

    Liu, Xiaoqing; Wang, Yongli; Song, Xin; Chen, Feng; Ouyang, Hongping; Zhang, Xueao; Cai, Yingxiang; Liu, Xiaoming; Wang, Li

    2013-01-01

    The role of dynamic processes on self-assembled structures of 4′-([2,2′:6′, 2″-terpyridin]-4′-yl)-[1,1′-biphenyl]-4-carboxylic acid (l) molecules on Au(III) has been studied by scanning tunneling microscopy. The as-deposited monolayer is closed-packed and periodic in a short-range due to dipole forces. A thermal annealing process at 110 degrees drives such disordered monolayer into ordered chain-like structures, determined by the combination of the dipole forces and hydrogen bonding. Further annealing at 130 degrees turns the whole monolayer into a bowknot-like structure in which hydrogen bonding plays the dominant role in the formation of assembled structures. Such dependence of an assembled structure on the process demonstrates that an assembled structure can be regulated and controlled not only by the molecular structure but also by the thermal process to form the assembled structure. PMID:23478440

  1. Self-assemblies of luminescent rare earth compounds in capsules and multilayers.

    PubMed

    Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth

    2014-05-01

    This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Control of average spacing of OMCVD grown gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Rezaee, Asad

    Metallic nanostructures and their applications is a rapidly expanding field. Nobel metals such as silver and gold have historically been used to demonstrate plasmon effects due to their strong resonances, which occur in the visible part of the electromagnetic spectrum. Localized surface plasmon resonance (LSPR) produces an enhanced electromagnetic field at the interface between a gold nanoparticle (Au NP) and the surrounding dielectric. This enhanced field can be used for metal-dielectric interfacesensitive optical interactions that form a powerful basis for optical sensing. In addition to the surrounding material, the LSPR spectral position and width depend on the size, shape, and average spacing between these particles. Au NP LSPR based sensors depict their highest sensitivity with optimized parameters and usually operate by investigating absorption peak: shifts. The absorption peak: of randomly deposited Au NPs on surfaces is mostly broad. As a result, the absorption peak: shifts, upon binding of a material onto Au NPs might not be very clear for further analysis. Therefore, novel methods based on three well-known techniques, self-assembly, ion irradiation, and organo-meta1lic chemical vapour deposition (OMCVD) are introduced to control the average-spacing between Au NPs. In addition to covalently binding and other advantages of OMCVD grown Au NPs, interesting optical features due to their non-spherical shapes are presented. The first step towards the average-spacing control is to uniformly form self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) as resists for OMCVD Au NPs. The formation and optimization of the OTS SAMs are extensively studied. The optimized resist SAMs are ion-irradiated by a focused ion beam (Fill) and ions generated by a Tandem accelerator. The irradiated areas are refilled with 3-mercaptopropyl-trimethoxysilane (MPTS) to provide nucleation sites for the OMCVD Au NP growth. Each step during sample preparation is monitored by using surface characterization methods such as contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), Rutherford backscattering spectroscopy (RBS), UV-Visible spectroscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). Keywords: Absorption, Array, Average Spacing, Binary Mixture, Density, Deposition, Dose, Fm, Gold Nanoparticle, Growth, Ion Irradiation, LSPR, Nanolithography, Nearest Neighbour Distance, OMCVD, Optical Response, OTS, Polarization, Refilling, Resist, SAM, Self-assembly, SEM Image Analysis, Sensing, Surface, Thin Film, Transparent Substrate.

  3. Mixed Monolayers of Spiropyrans Maximize Tunneling Conductance Switching by Photoisomerization at the Molecule–Electrode Interface in EGaIn Junctions

    PubMed Central

    2016-01-01

    This paper describes the photoinduced switching of conductance in tunneling junctions comprising self-assembled monolayers of a spiropyran moiety using eutectic Ga–In top contacts. Despite separation of the spiropyran unit from the electrode by a long alkyl ester chain, we observe an increase in the current density J of a factor of 35 at 1 V when the closed form is irradiated with UV light to induce the ring-opening reaction, one of the highest switching ratios reported for junctions incorporating self-assembled monolayers. The magnitude of switching of hexanethiol mixed monolayers was higher than that of pure spiropyran monolayers. The first switching event recovers 100% of the initial value of J and in the mixed-monolayers subsequent dampening is not the result of degradation of the monolayer. The observation of increased conductivity is supported by zero-bias DFT calculations showing a change in the localization of the density of states near the Fermi level as well as by simulated transmission spectra revealing positive resonances that broaden and shift toward the Fermi level in the open form. PMID:27602432

  4. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  5. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  6. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    DOE PAGES

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; ...

    2016-06-15

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. In this study, we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO 3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generatedmore » in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. In conclusion, this work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.« less

  7. Better Organic Ternary Memory Performance through Self-Assembled Alkyltrichlorosilane Monolayers on Indium Tin Oxide (ITO) Surfaces.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Zhou, Jin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-11-16

    Recently, surface engineering of the indium tin oxide (ITO) electrode of sandwich-like organic electric memory devices was found to effectively improve their memory performances. However, there are few methods to modify the ITO substrates. In this paper, we have successfully prepared alkyltrichlorosilane self-assembled monolayers (SAMs) on ITO substrates, and resistive random access memory devices are fabricated on these surfaces. Compared to the unmodified ITO substrates, organic molecules (i.e., 2-((4-butylphenyl)amino)-4-((4-butylphenyl)iminio)-3-oxocyclobut-1-en-1-olate, SA-Bu) grown on these SAM-modified ITO substrates have rougher surface morphologies but a smaller mosaicity. The organic layer on the SAM-modified ITO further aged to eliminate the crystalline phase diversity. In consequence, the ternary memory yields are effectively improved to approximately 40-47 %. Our results suggest that the insertion of alkyltrichlorosilane self-assembled monolayers could be an efficient method to improve the performance of organic memory devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface

    PubMed Central

    Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang

    2014-01-01

    Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties. PMID:24615153

  9. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    PubMed Central

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-01-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863

  10. Peptide interfaces with graphene: an emerging intersection of analytical chemistry, theory, and materials.

    PubMed

    Russell, Shane R; Claridge, Shelley A

    2016-04-01

    Because noncovalent interface functionalization is frequently required in graphene-based devices, biomolecular self-assembly has begun to emerge as a route for controlling substrate electronic structure or binding specificity for soluble analytes. The remarkable diversity of structures that arise in biological self-assembly hints at the possibility of equally diverse and well-controlled surface chemistry at graphene interfaces. However, predicting and analyzing adsorbed monolayer structures at such interfaces raises substantial experimental and theoretical challenges. In contrast with the relatively well-developed monolayer chemistry and characterization methods applied at coinage metal surfaces, monolayers on graphene are both less robust and more structurally complex, levying more stringent requirements on characterization techniques. Theory presents opportunities to understand early binding events that lay the groundwork for full monolayer structure. However, predicting interactions between complex biomolecules, solvent, and substrate is necessitating a suite of new force fields and algorithms to assess likely binding configurations, solvent effects, and modulations to substrate electronic properties. This article briefly discusses emerging analytical and theoretical methods used to develop a rigorous chemical understanding of the self-assembly of peptide-graphene interfaces and prospects for future advances in the field.

  11. Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives.

    PubMed

    Pengo, Paolo; Şologan, Maria; Pasquato, Lucia; Guida, Filomena; Pacor, Sabrina; Tossi, Alessandro; Stellacci, Francesco; Marson, Domenico; Boccardo, Silvia; Pricl, Sabrina; Posocco, Paola

    2017-12-01

    Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.

  12. Self-assembled monolayer and multilayer films of the nanocluster [HxPMo12O40 subsetH4Mo72Fe30(O2CMe)15O254(H2O)68] on gold.

    PubMed

    Colorado, Ramon; Crouse, Christopher A; Zeigler, Christopher N; Barron, Andrew R

    2008-08-19

    Films of the molybdenum-iron nanocluster [H x PMo 12O 40 subsetH 4Mo 72Fe 30(O 2CMe) 15O 254(H2O) 68] (FeMoC) were generated on gold via the self-assembly technique using two divergent routes. The first route entails the self-assembly of unfunctionalized FeMoC onto a preprepared carboxyl-terminated SAM on gold. The second route involves the preparation of thiol-terminated functionalized FeMoC clusters, which are then allowed to self-assemble onto bare gold surfaces. Monolayer films of FeMoC clusters are attained via both routes, with the second route requiring shorter immersion times (2 days) than the first route (6 days). Multilayer films of FeMoC are formed via the second route for immersion times longer than 2 days. Characterization of these films using optical ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy confirm the self-assembly of the clusters on the surfaces.

  13. The production and verification of pristine semi-fluorinated thiol monolayers on gold.

    PubMed

    Ford, Kym; Battersby, Bronwyn J; Wood, Barry J; Gentle, Ian R

    2012-03-15

    The presence of adventitious contamination of self-assembled monolayers (SAMs) is a well-known phenomenon that is often overlooked or underestimated in the literature. Herein, we demonstrate that it is possible to produce pristine self-assembled monolayers (SAMs) on gold surfaces that are devoid of adventitious species. The chemical purity or the pristine quality of the SAM was verified by the experimental relative atomic ratios measured by X-ray photoelectron spectroscopy (XPS) of all elements including carbon and corresponded to within 5% of the stoichiometric ratios. Perfluoro-octyl-thiolate (F8) was used as a model compound in this study, where monolayers were assembled from solutions of an acetylated F8 precursor. Quantitative elemental characterization of the acetylated F8 precursor by cold-stage XPS provided valuable reference data for the analysis of the subsequent SAMs. Comprehensive analysis of high-resolution XPS C 1s spectra proved to be essential for establishing the purity of the SAMs, since the peaks of the adventitious species were easily distinguished from those of the F8. Analyses of deliberately contaminated F8 SAMs showed that the adventitious species persisted during the process of self-assembly and therefore co-existed with the SAM in the interfacial region. The work also established that even a lengthy deposition time of 18 h was incapable of displacing the adventitious species present at the interface. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. pH-modulated self-assembly of colloidal nanoparticles in a dual-droplet inkjet printing process.

    PubMed

    Al-Milaji, Karam Nashwan; Radhakrishnan, Vinod; Kamerkar, Prajakta; Zhao, Hong

    2018-06-05

    Interfacial self-assembly has been demonstrated as a powerful driving mechanism for creating various nanostructured assemblies. In this work, we employed a dual-droplet printing process and interfacial self-assembly mechanism to produce deposits with controlled assembly structures of colloidal nanoparticles. We hypothesize that pH modulation of the droplet will influence the interfacial self-assembly through the multibody interactions, e.g. particle-particle, particle-interface, and particle-substrate interactions, correspondingly affecting the deposition morphology of the colloidal nanoparticles. During the dual-droplet printing, a wetting droplet, containing colloidal nanoparticles, was jetted over a supporting droplet that contains water only. pH modulation was carried out to the supporting droplet. The self-assembly of two kinds of functionalized polystyrene (PS) nanoparticles (carboxyl-PS and sulfate-PS) was systematically investigated under various pH conditions. Depending on the pH level of the supporting droplet, deposits of carboxyl-PS particles ranging from clear ring-like patterns to nearly uniform monolayer depositions have been obtained. On the other hand, the sulfate-PS particles, even at extreme basic and acidic environments, successfully assemble into nearly monolayer depositions. The multibody interactions are discussed. Such findings can be harnessed in manufacturing high-performance optical and electronic devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Modeling the self-assembly of functionalized fullerenes on solid surfaces using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bubnis, Gregory J.

    Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and hydrogen-bonding interactions can cooperate to guide self-assembly or compete to hinder it. Finally, we consider three bis-fullerene molecules, each with a different "bridging group" covalently joining two fullerenes. To effectively study the competing "standing-up" and "lying-down" morphologies, we use Monte Carlo simulations in conjunction with replica exchange and force field biasing methods. For clusters adsorbed to smooth model surfaces, we determine free energy landscapes and demonstrate their utility for rationalizing and predicting self-assembly.

  16. Beam Damage of HS (CH2)15 COOH Terminated Self Assembled Monolayer (SAM) as Observed by X-Ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Tarasevich, Barbara J.; Baer, Donald R.

    2011-10-25

    XPS spectra of HS(CH{sub 2}){sub 15} COOH terminated a self assembled monolayer (SAM)sample was collected over a period of 242 minutes to determine specimen damage during long exposures to monochromatic Al Ka x-rays. For this COOH terminated SAM we measured the loss of oxygen as a function of time by rastering a focused 100 W, 100 um diameter x-ray beam over a 1.4 mm x 0.2 mm area of the sample.

  17. Ionically self-assembled monolayers (ISAMs)

    NASA Astrophysics Data System (ADS)

    Janik, John

    2001-04-01

    Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).

  18. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.

    PubMed

    Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping

    2018-01-09

    It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.

  19. A dielectric model of self-assembled monolayer interfaces by capacitive spectroscopy.

    PubMed

    Góes, Márcio S; Rahman, Habibur; Ryall, Joshua; Davis, Jason J; Bueno, Paulo R

    2012-06-26

    The presence of self-assembled monolayers at an electrode introduces capacitance and resistance contributions that can profoundly affect subsequently observed electronic characteristics. Despite the impact of this on any voltammetry, these contributions are not directly resolvable with any clarity by standard electrochemical means. A capacitive analysis of such interfaces (by capacitance spectroscopy), introduced here, enables a clean mapping of these features and additionally presents a means of studying layer polarizability and Cole-Cole relaxation effects. The resolved resistive term contributes directly to an intrinsic monolayer uncompensated resistance that has a linear dependence on the layer thickness. The dielectric model proposed is fully aligned with the classic Helmholtz plate capacitor model and additionally explains the inherently associated resistive features of molecular films.

  20. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer.

    PubMed

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-31

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  1. Functionalization of biodegradable magnesium alloy implants with alkylphosphonate self-assembled films.

    PubMed

    Grubač, Z; Metikoš-Huković, M; Babić, R; Rončević, I Škugor; Petravić, M; Peter, R

    2013-05-01

    Mg and Mg-alloys are promising materials for biodegradable implants. In order to slowdown the Mg-alloy (AZ91D) degradation and enhance its biocompatibility, the alloy surface was modified with alkylphosphonate self-assembling films. The binding configuration and the structural organization of alkylphosphonate monolayers on the Mg-alloy surface were investigated using contact angle measurements, FTIR, and XPS. Combination of FTIR and XPS data indicated the presence of several different bonding modes (mono-, di-, and tri dentate) of phosphonate head groups with the alloy surface. The existence of well organized and ordered self-assembled alkylphosphonate monolayers with good barrier protecting properties in a physiological solution is a key step in the development of biocompatible Mg-alloy implants. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode.

    PubMed

    Noyhouzer, Tomer; Mandler, Daniel

    2011-01-17

    The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ngL(-1)) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications.

    PubMed

    Carrascosa, Laura G; Martínez, Lidia; Huttel, Yves; Román, Elisa; Lechuga, Laura M

    2010-09-01

    A detailed study of the immobilization of three differently sulfur-modified DNA receptors for biosensing applications is presented. The three receptors are DNA-(CH)n-SH-, DNA-(CH)n-SS-(CH)n-DNA, and DNA-(CH)n-SS-DMTO. Nanomechanical and surface plasmon resonance biosensors and fluorescence and radiolabelling techniques were used for the experimental evaluation. The results highlight the critical role of sulfur linker type in DNA self-assembly, affecting the kinetic adsorption and spatial distribution of DNA chains within the monolayer and the extent of chemisorption and physisorption. A spacer (mercaptohexanol, MCH) is used to evaluate the relative efficiencies of chemisorption of the three receptors by analysing the extent to which MCH can remove physisorbed molecules from each type of monolayer. It is demonstrated that -SH derivatization is the most suitable for biosensing purposes as it results in densely packed monolayers with the lowest ratio of physisorbed probes.

  4. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  5. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-05-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  6. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-06-22

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  7. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2005-01-25

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  8. Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy.

    PubMed Central

    Wagner, P; Hegner, M; Kernen, P; Zaugg, F; Semenza, G

    1996-01-01

    We have worked out a procedure for covalent binding of native biomacromolecules on flat gold surfaces for scanning probe microscopy in aqueous buffer solutions and for other nanotechnological applications, such as the direct measurement of interaction forces between immobilized macromolecules, of their elastomechanical properties, etc. It is based on the covalent immobilization of amino group-containing biomolecules (e.g., proteins, phospholipids) onto atomically flat gold surfaces via omega-functionalized self-assembled monolayers. We present the synthesis of the parent compound, dithio-bis(succinimidylundecanoate) (DSU), and a detailed study of the chemical and physical properties of the monolayer it forms spontaneously on Au(111). Scanning tunneling microscopy and atomic force microscopy (AFM) revealed a monolayer arrangement with the well-known depressions that are known to stem from an etch process during the self-assembly. The total density of the omega-N-hydroxysuccinimidyl groups on atomically flat gold was 585 pmol/cm(2), as determined by chemisorption of (14)C-labeled DSU. This corresponded to approximately 75% of the maximum density of the omega-unsubstituted alkanethiol. Measurements of the kinetics of monolayer formation showed a very fast initial phase, with total coverage within 30 S. A subsequent slower rearrangement of the chemisorbed molecules, as indicated by AFM, led to a decrease in the number of monolayer depressions in approximately 60 min. The rate of hydrolysis of the omega-N-hydroxysuccinimide groups at the monolayer/water interface was found to be very slow, even at moderately alkaline pH values. Furthermore, the binding of low-molecular-weight amines and of a model protein was investigated in detail. Images FIGURE 1 FIGURE 2 FIGURE 9 PMID:9172730

  9. Surface Patterning of Benzene Carboxylic Acids on Graphite: Influence of structure, solvent, and concentration on molecular self-assembly

    NASA Astrophysics Data System (ADS)

    Florio, Gina; Stiso, Kimberly; Campanelli, Joseph; Dessources, Kimberly; Folkes, Trudi

    2012-02-01

    Scanning tunneling microscopy (STM) was used to investigate the molecular self-assembly of four different benzene carboxylic acid derivatives at the liquid/graphite interface: pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), trimellitic acid (1,2,4-benzenetricarboxylic acid), trimesic acid (1,3,5-benzenetricarboxylic acid), and 1,3,5-benzenetriacetic acid. A range of two dimensional networks are observed that depend sensitively on the number of carboxylic acids present, the nature of the solvent, and the solution concentration. We will describe our recent efforts to determine (a) the preferential two-dimensional structure(s) for each benzene carboxylic acid at the liquid/graphite interface, (b) the thermodynamic and kinetic factors influencing self-assembly (or lack thereof), (c) the role solvent plays in the assembly, (e) the effect of in situ versus ex situ dilution on surface packing density, and (f) the temporal evolution of the self-assembled monolayer. Results of computational analysis of analog molecules and model monolayer films will also be presented to aid assignment of network structures and to provide a qualitative picture of surface adsorption and network formation.

  10. A novel fullerene lipoic acid derivative: Synthesis and preparation of self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Viana, A. S.; Leupold, S.; Eberle, C.; Shokati, T.; Montforts, F.-P.; Abrantes, L. M.

    2007-11-01

    Synthesis and preparation of self-assembled monolayers of a novel fullerene lipoic acid derivative on gold are reported. The presence of densely packed SAMs was confirmed by ellipsometry and cyclic voltammetry. The electrochemical response of the modified electrode in organic media exhibits the first two redox peaks characteristic of the extended π-electron system of fullerene. C 60 surface coverage (1.4 × 10 -10 mol cm -2) has been electrochemically determined by the redox process of the adsorbed fullerene moiety and by reductive desorption of the SAM in strong alkaline solution. Electrochemical data indicate that all four sulphur atoms are involved in the self-assembly process, providing an increase of SAM stability in comparison to mono or di-thiolated appended molecules. Visualisation of discrete fullerene molecules by scanning tunnelling microscopy supplied further evidence for gold modification and molecular distribution on the surface. Mixed monolayers of hexanethiol and fullerene derivatives in a proportion of 1:2 have been also studied with the purpose of controlling the amount and distribution of fullerene units on the gold surface.

  11. Selectivity and Sensitivity of Ultrathin Monolayer Electrodes

    NASA Astrophysics Data System (ADS)

    Cheng, Quan

    The objective of this work is to build a molecular architecture on the electrode surface with a well-defined morphology and desirable electrochemical characteristics. The goal is accomplished by means of self-assembly of thioctic acid, a sulfur-terminated organic molecule with a short alkyl chain and a hydrophilic carboxylic headgroup, on a gold electrode. Characterization of the monolayer structure and the electrochemical response of the monolayer electrodes is performed by means of capacitance measurements and voltammetry. Investigation of the capacitance of the self-assembled monolayers provides insight into the macroscopic permeability of the films and reveals that penetration of solvent/ions into the thioctic acid monolayer film occurs extensively. Voltammetric results demonstrate that permselectivity of the monolayer electrode can be obtained as a result of the induced electrostatic interactions between the monolayer interface and the electroactive species. Measurement of the voltammetric response of the redox probes at the monolayers as a function of the electrolyte concentration and composition is used to qualitatively analyze the effect of electrolyte on response. A model describing the role of the interfacial charge in the electrochemical response of the monolayers as a function of the solution composition and surface smoothness is proposed. A strategy is developed to further explore the applications of the monolayer electrodes to control the electrochemical response of the biological molecules such as catecholamines. The ability to control the surface hydrophobicity of the monolayer electrodes through coadsorption of thioctic acid and hexanethiol, to display different electrochemical properties towards biological molecules is tested. The optimum conditions for detection of the biological molecules on the monolayer electrodes are discussed. In order to pursue selective analysis in microenvironments, the thioctic acid monolayer formed on the ultramicroelectrodes (UME) is investigated, demonstrating high permselectivity and high sensitivity of the monolayer modified UMEs. Because of the more effective mass transport to the UMEs, effects of electrolyte on the monolayer response can be characterized facilely. Amperometric pH sensing on the thioctic acid UMEs using a redox mediator is discussed. Finally, the thioctic acid monolayer microelectrode is applied to investigate direct electrochemistry of a redox protein, cytochrome c. A sketch for developing a biosensor via mediation effects using the monolayer assembly is proposed.

  12. Applying AFM-based nanofabrication for measuring the thickness of nanopatterns: the role of head groups in the vertical self-assembly of omega-functionalized n-alkanethiols.

    PubMed

    Kelley, Algernon T; Ngunjiri, Johnpeter N; Serem, Wilson K; Lawrence, Steve O; Yu, Jing-Jiang; Crowe, William E; Garno, Jayne C

    2010-03-02

    Molecules of n-alkanethiols with methyl head groups typically form well-ordered monolayers during solution self-assembly for a wide range of experimental conditions. However, we have consistently observed that, for either carboxylic acid or thiol-terminated n-alkanethiols, under certain conditions nanografted patterns are generated with a thickness corresponding precisely to a double layer. To investigate the role of head groups for solution self-assembly, designed patterns of omega-functionalized n-alkanethiols were nanografted with systematic changes in concentration. Nanografting is an in situ approach for writing patterns of thiolated molecules on gold surfaces by scanning with an AFM tip under high force, accomplished in dilute solutions of desired ink molecules. As the tip is scanned across the surface of a self-assembled monolayer under force, the matrix molecules are displaced from the surface and are immediately replaced with fresh molecules from solution to generate nanopatterns. In this report, side-by-side comparison of nanografted patterns is achieved for different matrix molecules using AFM images. The chain length and head groups (i.e., carboxyl, hydroxyl, methyl, thiol) were varied for the nanopatterns and matrix monolayers. Interactions such as head-to-head dimerization affect the vertical self-assembly of omega-functionalized n-alkanethiol molecules within nanografted patterns. At certain threshold concentrations, double layers were observed to form when nanografting with head groups of carboxylic acid and dithiols, whereas single layers were generated exclusively for nanografted patterns with methyl and hydroxyl groups, regardless of changes in concentration.

  13. Reflection and extinction of light by self-assembled monolayers of a quinque-thiophene derivative: A coherent scattering approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholamrezaie, Fatemeh; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl; Leeuw, Dago M. de

    Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extractedmore » coherence length of the Frenkel exciton is discussed.« less

  14. Resistive Switching of Sub-10 nm TiO2 Nanoparticle Self-Assembled Monolayers

    PubMed Central

    Schmidt, Dirk Oliver; Raab, Nicolas; Santhanam, Venugopal; Dittmann, Regina; Simon, Ulrich

    2017-01-01

    Resistively switching devices are promising candidates for the next generation of non-volatile data memories. Such devices are up to now fabricated mainly by means of top-down approaches that apply thin films sandwiched between electrodes. Recent works have demonstrated that resistive switching (RS) is also feasible on chemically synthesized nanoparticles (NPs) in the 50 nm range. Following this concept, we developed this approach further to the sub-10 nm range. In this work, we report RS of sub-10 nm TiO2 NPs that were self-assembled into monolayers and transferred onto metallic substrates. We electrically characterized these monolayers in regard to their RS properties by means of a nanorobotics system in a scanning electron microscope, and found features typical of bipolar resistive switching. PMID:29113050

  15. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach.

    PubMed

    Prucker, V; Bockstedte, M; Thoss, M; Coto, P B

    2018-03-28

    A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.

  16. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Boris N.; Liu, Zhonghui; Ye, Jian; Khlebtsov, Nikolai G.

    2015-12-01

    Recent studies have conclusively shown that the plasmonic properties of Au nanorods can be finely controlled by Ag coating. Here, we investigate the effect of asymmetric silver overgrowth of Au nanorods on their extinction and surface-enhanced Raman scattering (SERS) properties for colloids and self-assembled monolayers. Au@Ag core/shell cuboids and dumbbells were fabricated through a seed-mediated anisotropic growth process, in which AgCl was reduced by use of Au nanorods with narrow size and shape distribution as seeds. Upon tailoring the reaction rate, monodisperse cuboids and dumbbells were synthesized and further transformed into water-soluble powders of PEGylated nanoparticles. The extinction spectra of AuNRs were in excellent agreement with T-matrix simulations based on size and shape distributions of randomly oriented particles. The multimodal plasmonic properties of the Au@Ag cuboids and dumbbells were investigated by comparing the experimental extinction spectra with finite-difference time-domain (FDTD) simulations. The SERS efficiencies of the Au@Ag cuboids and dumbbells were compared in two options: (1) individual SERS enhancers in colloids and (2) self-assembled monolayers formed on a silicon wafer by drop casting of nanopowder solutions mixed with a drop of Raman reporters. By using 1,4-aminothiophenol Raman reporter molecules, the analytical SERS enhancement factor (AEF) of the colloidal dumbbells was determined to be 5.1×106, which is an order of magnitude higher than the AEF=4.0×105 for the cuboids. This difference can be explained by better fitting of the dumbbell plasmon resonance to the excitation laser wavelength. In contrast to the colloidal measurements, the AEF=5×107 of self-assembled cuboid monolayers was almost twofold higher than that for dumbbell monolayers, as determined with rhodamine 6G Raman reporters. According to TEM data and electromagnetic simulations, the better SERS response of the self-assembled cuboids is due to uniform packing and more efficient generation of electromagnetic hot spots, as compared to the dumbbell monolayers.

  17. Compression of self-assembled nano-objects: 2D/3D transitions in films of (perfluoroalkyl)alkanes--persistence of an organized array of surface micelles.

    PubMed

    de Gracia Lux, Caroline; Gallani, Jean-Louis; Waton, Gilles; Krafft, Marie Pierre

    2010-06-25

    Understanding and controlling the molecular organization of amphiphilic molecules at interfaces is essential for materials and biological sciences. When spread on water, the model amphiphiles constituted by C(n)F(2n+1)C(m)H(2m+1) (FnHm) diblocks spontaneously self-assemble into surface hemimicelles. Therefore, compression of monolayers of FnHm diblocks is actually a compression of nanometric objects. Langmuir films of F8H16, F8H18, F8H20, and F10H16 can actually be compressed far beyond the "collapse" of their monolayers at approximately 30 A(2). For molecular areas A between 30 and 10 A(2), a partially reversible, 2D/3D transition occurs between a monolayer of surface micelles and a multilayer that coexist on a large plateau. For A<10 A(2), surface pressure increases again, reaching up to approximately 48 mN m(-1) before the film eventually collapses. Brewster angle microscopy and AFM indicate a several-fold increase in film thickness when scanning through the 2D/3D coexistence plateau. Compression beyond the plateau leads to a further increase in film thickness and, eventually, to film disruption. Reversibility was assessed by using compression-expansion cycles. AFM of F8H20 films shows that the initial monolayer of micelles is progressively covered by one (and eventually two) bilayers, which leads to a hitherto unknown organized composite arrangement. Compression of films of the more rigid F10H16 results in crystalline-like inflorescences. For both diblocks, a hexagonal array of surface micelles is consistently seen, even when the 3D structures eventually disrupt, which means that this monolayer persists throughout the compression experiments. Two examples of pressure-driven transformations of films of self-assembled objects are thus provided. These observations further illustrate the powerful self-assembling capacity of perfluoroalkyl chains.

  18. Corrosion behaviour of Nitinol alloy coated with alkylsilanes and polypyrrole.

    PubMed

    Flamini, D O; Saidman, S B

    2014-11-01

    Nitinol (equiatomic Ni and Ti alloy (NiTi)) substrate was modified using a coating system formed by a self-assembled film of alkylsilane compounds (propyltrichlorosilane (C3H7SiCl3) or octadecyltrichlorosilane (C18H37SiCl3)) and polypyrrole (PPy) doped with sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT or AOT). The combination of alkylsilanes and the presence of a voluminous molecule like AOT entrapped into the PPy films improve the pitting corrosion resistance of the substrate in chloride solution. The best performance was achieved with the longest alkylsilane chains, where the PPy film remains adhered to the underlying coating after a pitting corrosion test. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Conformational order of n-dodecanethiol and n-dodecaneselenol monolayers on polycrystalline copper investigated by PM-IRRAS and SFG spectroscopy

    NASA Astrophysics Data System (ADS)

    Fonder, G.; Cecchet, F.; Peremans, A.; Thiry, P. A.; Delhalle, J.; Mekhalif, Z.

    2009-08-01

    Self-assembled monolayers (SAMs) of n-dodecanethiol (C 12H 25SH) and n-dodecaneselenol (C 12H 25SeH) on polycrystalline copper have been elaborated with the purpose of achieving densely packed and crystalline-like assemblies. By combining the surface sensitivity of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), the effect of the self-assembly time (15 min, 30 min, 1 h, 2 h and 24 h) on the formation of n-dodecanethiol and n-dodecaneselenol monolayers on untreated and electrochemically reduced polycrystalline copper has been investigated. On electrochemically reduced copper, PM-IRRAS spectroscopy shows that both molecules are able to form well organized layers. SFG spectroscopy indicates that the C 12H 25SeH SAMs are slightly better ordered than those achieved with C 12H 25SH. On untreated copper, the two molecules lead to different film organizations. Both PM-IRRAS and SFG indicate that C 12H 25SH SAMs are of the same film quality as those obtained on electrochemically reduced copper. On the contrary, C 12H 25SeH monolayers are invariably poorly organized at the molecular level.

  20. A pentacene monolayer trapped between graphene and a substrate.

    PubMed

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  1. Self-assembling layers created by membrane proteins on gold.

    PubMed

    Shah, D S; Thomas, M B; Phillips, S; Cisneros, D A; Le Brun, A P; Holt, S A; Lakey, J H

    2007-06-01

    Membrane systems are based on several types of organization. First, amphiphilic lipids are able to create monolayer and bilayer structures which may be flat, vesicular or micellar. Into these structures membrane proteins can be inserted which use the membrane to provide signals for lateral and orientational organization. Furthermore, the proteins are the product of highly specific self-assembly otherwise known as folding, which mostly places individual atoms at precise places in three dimensions. These structures all have dimensions in the nanoscale, except for the size of membrane planes which may extend for millimetres in large liposomes or centimetres on planar surfaces such as monolayers at the air/water interface. Membrane systems can be assembled on to surfaces to create supported bilayers and these have uses in biosensors and in electrical measurements using modified ion channels. The supported systems also allow for measurements using spectroscopy, surface plasmon resonance and atomic force microscopy. By combining the roles of lipids and proteins, highly ordered and specific structures can be self-assembled in aqueous solution at the nanoscale.

  2. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    PubMed Central

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-01-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536

  3. Electrochemistry of redox-active self-assembled monolayers

    PubMed Central

    Eckermann, Amanda L.; Feld, Daniel J.; Shaw, Justine A.; Meade, Thomas J.

    2010-01-01

    Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs. PMID:20563297

  4. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-02-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  5. Effect of Structure and Disorder on the Charge Transport in Defined Self-Assembled Monolayers of Organic Semiconductors.

    PubMed

    Schmaltz, Thomas; Gothe, Bastian; Krause, Andreas; Leitherer, Susanne; Steinrück, Hans-Georg; Thoss, Michael; Clark, Timothy; Halik, Marcus

    2017-09-26

    Self-assembled monolayer field-effect transistors (SAMFETs) are not only a promising type of organic electronic device but also allow detailed analyses of structure-property correlations. The influence of the morphology on the charge transport is particularly pronounced, due to the confined monolayer of 2D-π-stacked organic semiconductor molecules. The morphology, in turn, is governed by relatively weak van-der-Waals interactions and is thus prone to dynamic structural fluctuations. Accordingly, combining electronic and physical characterization and time-averaged X-ray analyses with the dynamic information available at atomic resolution from simulations allows us to characterize self-assembled monolayer (SAM) based devices in great detail. For this purpose, we have constructed transistors based on SAMs of two molecules that consist of the organic p-type semiconductor benzothieno[3,2-b][1]benzothiophene (BTBT), linked to a C 11 or C 12 alkylphosphonic acid. Both molecules form ordered SAMs; however, our experiments show that the size of the crystalline domains and the charge-transport properties vary considerably in the two systems. These findings were confirmed by molecular dynamics (MD) simulations and semiempirical molecular-orbital electronic-structure calculations, performed on snapshots from the MD simulations at different times, revealing, in atomistic detail, how the charge transport in organic semiconductors is influenced and limited by dynamic disorder.

  6. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    PubMed Central

    Yang, Guang; Hallinan, Daniel T.

    2016-01-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. PMID:27762394

  7. Nanoscale water condensation on click-functionalized self-assembled monolayers.

    PubMed

    James, Michael; Ciampi, Simone; Darwish, Tamim A; Hanley, Tracey L; Sylvester, Sven O; Gooding, J Justin

    2011-09-06

    We have examined the nanoscale adsorption of molecular water under ambient conditions onto a series of well-characterized functionalized surfaces produced by Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC or "click") reactions on alkyne-terminated self-assembled monolayers on silicon. Water contact angle (CA) measurements reveal a range of macroscopic hydrophilicity that does not correlate with the tendency of these surfaces to adsorb water at the molecular level. X-ray reflectometry has been used to follow the kinetics of water adsorption on these "click"-functionalized surfaces, and also shows that dense continuous molecular water layers are formed over 30 h. For example, a highly hydrophilic surface, functionalized by an oligo(ethylene glycol) moiety (with a CA = 34°) showed 2.9 Å of adsorbed water after 30 h, while the almost hydrophobic underlying alkyne-terminated monolayer (CA = 84°) showed 5.6 Å of adsorbed water over the same period. While this study highlights the capacity of X-ray reflectometry to study the structure of adsorbed water on these surfaces, it should also serve as a warning for those intending to characterize self-assembled monolayers and functionalized surfaces to avoid contamination by even trace amounts of water vapor. Moreover, contact angle measurements alone cannot be relied upon to predict the likely degree of moisture uptake on such surfaces. © 2011 American Chemical Society

  8. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    PubMed Central

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-01-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012

  9. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    PubMed

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stable doping of carbon nanotubes via molecular self assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.; Chen, Y.; Podzorov, V., E-mail: podzorov@physics.rutgers.edu

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodesmore » greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.« less

  11. Interfacial engineering of microstructured materials

    NASA Astrophysics Data System (ADS)

    Poda, Aimee

    The tribological behavior of octadecyltrichlorosilane self assembled monolayers (OTS-SAMs) has been successfully exploited to reduce energy losses and to produce adequate adhesion barrier properties on many MEMS surfaces. Unfortunately, performance discrepancies are reported in the literature between films produced on smooth surfaces as compared to typical MEMS surfaces maintaining topographical roughness. Rational explanations in terms of reproducibility issues, production considerations, and the scale of measurement technique have been introduced to account for some of the variation. The tribological phenomena at the micro-scale are complicated by the fact that rather than inertial effects, the forces associated with the surface become dominant factors influencing the mechanical behavior of contacting components. In MEMS, real mechanical contacts typically consist of a few nanometer scale asperities. Furthermore, various surface topographies exist for MEMS device fabrication and their corresponding asperity profiles can vary drastically based on the production process. This dissertation presents research focusing on the influence of topographical asperities on OTS film properties of relevance for efficient tribological improvement. A fundamental approach has been taken to carefully examine the factors that contribute to high quality film formation, specifically formation temperature and the role of interfacial water layer associated with the sample surface. As evidenced on smooth surfaces, the characteristics for successful tribological performance of OTS films are strongly dependent on the lateral packing density and molecular orientation of the monolayer. Limited information is available on how monolayers associate on topographical asperities and whether these topographical asperities influence the interfacial reactivity of MEMS surfaces. A silica film produced from a low temperature, vapor-phase hydrolysis of tetrachlorosilane with a tunable topography is introduced and leveraged as a novel investigative platform for advanced analytical investigations often restricted to use on smooth surfaces. This tunable surface allows intellectual insight into the nature of surface properties associated with silica surfaces, the uptake of interfacial water and the subsequent influence of surface morphology on OTS film formation. FTIR analysis was utilized for an examination of interfacial properties on both smooth Si(100) surfaces and on the tunable MVD topography in combination with an investigation of OTS film formation mechanism. A dilute etchant technique is developed to provide topographic contrast for AFM imaging to allow direct examination of film packing characteristics in relation to surface asperities. A relationship between monolayer adsorption characteristics and topographical asperities with observed variations in monolayer order resultant from surface roughness has been elucidated. Results show that the packing structure of OTS monolayers is dependent on the local asperity curvature which is qualitatively different from that observed on flat surfaces. In addition, a difference in surface reactivity is observed as a result of different surface topographies with thicker silica layers maintaining a thicker interfacial water layer resulting in a higher coverage of OTS monolayers at similar reaction times and conditions. This work shows changes in surface reactivity as a consequence of different morphological surface characteristics and preparation procedures. Additional research is presented on a new class of SAM, namely octadecylphoshonic acid and its monolayer formation mechanism and properties are compared to conventional OTS monolayers. This monolayer is translated to investigative probes based on Aluminum oxide specifically tailored for a tribological comparison across multi-scale friction regimes.

  12. Low-temperature poly(oxymethylene) direct bonding via self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Fu, Weixin; Ma, Bo; Kuwae, Hiroyuki; Shoji, Shuichi; Mizuno, Jun

    2018-02-01

    A direct bonding of poly(oxymethylene) (POM) was feasible at 100 °C by using self-assembled monolayer (SAM) as a surface modification method. (3-aminopropyl)triethoxysilane (APTES) and (3-glycidyloxypropyl)trimethoxysilane (GOPTS) were used in our work. X-ray photoelectron spectroscopy showed that both APTES and GOPTS modified the POM surface successfully. Bonding strength evaluation revealed that surface modification was affected by pretreatment (VUV/O3) process time. In addition, the bonding condition with highest strength had an average strength of 372 kPa. This technology is expected to be used in packaging for micro-/nano-electromechanical systems, such as biomedical devices.

  13. Method for selective immobilization of macromolecules on self assembled monolayer surfaces

    DOEpatents

    Laskin, Julia [Richland, WA; Wang, Peng [Billerica, MA

    2011-11-29

    Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.

  14. Confirmation of heavy metal ions in used lubricating oil from a passenger car using chelating self-assembled monolayer.

    PubMed

    Ko, Young Gun; Kim, Choong Hyun

    2006-09-01

    In order to prevent engine failure, the oil must be changed before it loses its protective properties. It is necessary to monitor the actual physical and chemical condition of the oil to reliably determine the optimum oil-change interval. Our study focuses on the condition of the lubricating oil in an operated car engine. Shear stress curves and viscosity curves as a function of the shear rate for fresh and used lubricating oil were examined. Metal nitrate was detected in the lubricating oil from the operated car engine through the use of a chelating self-assembled monolayer.

  15. Surface Assisted Transient Displacement Charge Technique. II. Effect of Gases on Photoinduced Charge Transfer in Self-Assembled Monolayers

    PubMed Central

    Krasnoslobodtsev, Alexey V.; Smirnov, Sergei N.

    2008-01-01

    Surface assisted photoinduced transient displacement charge (SPTDC) technique was used to study charge transfer in self-assembled monolayers of 7-diethylaminocoumarin covalently linked to oxide surface in atmosphere of different gases. The dipole signal was found to be opposite to that in solution and dependent on the nature of gas and its pressure. The results were explained by collision-induced relaxation that impedes uninhibited tilting of molecules onto the surface. Collisions with paramagnetic oxygen induce intersystem crossing to long-lived triplet dipolar states of coumarin with the rate close to the half of that for the collision rate. PMID:16956285

  16. Surface passivation of (100) GaSb using self-assembled monolayers of long-chain octadecanethiol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papis-Polakowska, E., E-mail: papis@ite.waw.pl; Kaniewski, J.; Jurenczyk, J.

    2016-05-15

    The passivation of (100) GaSb surface was investigated by means of the long-chain octadecanethiol (ODT) self-assembled monolayer (SAM). The properties of ODT SAM on (100) GaSb were characterized by the atomic force microscopy using Kelvin probe force microscopy mode and X-ray photoelectron spectroscopy. The chemical treatment of 10 mM ODT-C{sub 2}H{sub 5}OH has been applied to the passivation of a type-II superlattice InAs/GaSb photodetector. The electrical measurements indicate that the current density was reduced by one order of magnitude as compared to an unpassivated photodetector.

  17. A Simple Bioconjugate Attachment Protocol for Use in Single Molecule Force Spectroscopy Experiments Based on Mixed Self-Assembled Monolayers

    PubMed Central

    Attwood, Simon J.; Simpson, Anna M. C.; Stone, Rachael; Hamaia, SamirW.; Roy, Debdulal; Farndale, RichardW.; Ouberai, Myriam; Welland, Mark E.

    2012-01-01

    Single molecule force spectroscopy is a technique that can be used to probe the interaction force between individual biomolecular species. We focus our attention on the tip and sample coupling chemistry, which is crucial to these experiments. We utilised a novel approach of mixed self-assembled monolayers of alkanethiols in conjunction with a heterobifunctional crosslinker. The effectiveness of the protocol is demonstrated by probing the biotin-avidin interaction. We measured unbinding forces comparable to previously reported values measured at similar loading rates. Specificity tests also demonstrated a significant decrease in recognition after blocking with free avidin. PMID:23202965

  18. Toward tunable doping in graphene FETs by molecular self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Li, Bing; Klekachev, Alexander V.; Cantoro, Mirco; Huyghebaert, Cedric; Stesmans, André; Asselberghs, Inge; de Gendt, Stefan; de Feyter, Steven

    2013-09-01

    In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant.In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant. Electronic supplementary information (ESI) available: AFM images of self-assembled monolayers of OA on HOPG; AFM height image of the graphene surface on a SiC substrate; high resolution STM image of a self-assembled monolayer of OA on HOPG; transfer curves of a graphene FET with and without baking steps; transfer curves of a graphene FET under high vacuum conditions; transfer curves of a graphene FET and its Raman response before and after OA treatment; transfer curves of a graphene FET before and after rinsing with n-hexane. See DOI: 10.1039/c3nr01255g

  19. Quantitative Analysis of Scattering Mechanisms in Highly Crystalline CVD MoS2 through a Self-Limited Growth Strategy by Interface Engineering.

    PubMed

    Wan, Xi; Chen, Kun; Xie, Weiguang; Wen, Jinxiu; Chen, Huanjun; Xu, Jian-Bin

    2016-01-27

    The electrical performance of highly crystalline monolayer MoS2 is remarkably enhanced by a self-limited growth strategy on octadecyltrimethoxysilane self-assembled monolayer modified SiO2 /Si substrates. The scattering mechanisms in low-κ dielectric, including the dominant charged impurities, acoustic deformation potentials, optical deformation potentials), Fröhlich interaction, and the remote interface phonon interaction in dielectrics, are quantitatively analyzed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of organosilicon derivatives of [1]benzothieno[3,2-b][1]-benzothiophene for efficient monolayer Langmuir-Blodgett organic field effect transistors.

    PubMed

    Borshchev, O V; Sizov, A S; Agina, E V; Bessonov, A A; Ponomarenko, S A

    2017-01-16

    For the first time, the synthesis of organosilicon derivatives of dialkyl[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) capable of forming a semiconducting monolayer at the water-air interface is reported. Self-assembled monolayer organic field-effect transistors prepared from these materials using the Langmuir-Blodgett technique showed high hole mobilities and excellent air stability.

  1. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chien-Ching

    1995-12-06

    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pK a of phenylcarboxylic acids and pyridylcarboxylic acids monolayers onmore » Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.« less

  2. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    NASA Astrophysics Data System (ADS)

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  3. Measurements of the thickness compressibility of an n-octadecyltriethoxysilane monolayer self-assembled on mica.

    PubMed

    Kim, Sungsoo; Cho, Kilwon; Curry, Joan E

    2005-08-30

    The surface forces apparatus technique and the Johnson-Kendall-Roberts theory were used to study the elastic properties of an n-octadecyltriethoxysilane self-assembled monolayer (OTE-SAM) on both untreated and plasma-treated mica. Our aim was to measure the thickness compressibilities of OTE monolayers on untreated and plasma-treated mica and to estimate their surface densities and phase-states from the film compressibility. The compressibility moduli of OTE are (0.96 +/- 0.02) x 10(8) N/m(2) on untreated mica and (1.24 +/- 0.06) x 10(8) N/m(2) on plasma-treated mica. This work suggests that the OTE phase-state is pseudocrystalline. In addition, the results from the compressibility measurements in water vapor suggest that the OTE-SAM on both untreated and plasma-treated mica is not homogeneous but rather contains both crystalline polymerized OTE domains and somewhat hydrophilic gaseous regions.

  4. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    NASA Astrophysics Data System (ADS)

    Vikholm-Lundin, Inger; Rosqvist, Emil; Ihalainen, Petri; Munter, Tony; Honkimaa, Anni; Marjomäki, Varpu; Albers, Willem M.; Peltonen, Jouko

    2016-08-01

    Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more particles could be assembled on the surface.

  5. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    NASA Astrophysics Data System (ADS)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  6. Interfacial binding of divalent cations to calixarene-based Langmuir monolayers

    DOE PAGES

    Tulli, Ludovico G.; Wang, Wenjie; Lindemann, William R.; ...

    2015-02-20

    The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl 2, CoCl 2, MnCl 2, and NiCl 2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu 2+ ions. The interactions of 1-based monolayers with Co 2+ and Cu 2+ ions were further investigated by means of synchrotron radiation-based X-ray reflectivitymore » (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazing incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu 2+ than Co 2+ ions. In the presence of relatively high concentrations of Cu 2+ ions in the subphase (1.4 × 10 -3 M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Furthermore, both measurements suggest the formation of Cu 2+ clusters contiguous to the monolayer of 1.« less

  7. Electrochemical behavior of self-assembled monolayers based on functionalized oligothiophenes

    NASA Astrophysics Data System (ADS)

    Michalitsch, R.; El Kassmi, A.; Lang, P.; Yassar, A.; Garnier, F.

    1998-06-01

    Self-assembled monolayers (SAMs) of 6-(2,2':5',2”-terthien-5yl)- hexanethiol (α-3T-hex-SH) have been prepared onto platinum substrates. The anodic oxidation of the monolayer effects a polymerisation of the monolayer. The conjugation length of the polymer is significantly higher than that of the terthiophene-derivative, although a major part of the terminal CH-α bonds of the terthiophenes are still available for reactions with other monomers. This suggests a contribution of the aromatic CH-β positions at the formation of the conjugated polymer. Des monocouches auto-assemblées, (SAM), de 6-(2,2':5',2”-terthien-5yl)- hexanethiol (α-3T-hex-SH) ont été préparées sur le platine. L'oxydation anodique effectue une polymérisation de la monocouche. La longueur de conjugaison du polymère est significativement plus élevée qu'au dérivée du terthiophène, bien que la plupart des liaisons CH-α terminal des terthiophènes restent disponibles pour des réaction avec des autres monomères. Ce qui propose la participation des C-H en position β des terthiophène à la formation d'une couche d'un polymère conjugué.

  8. Quaterrylene molecules on Ag(111): self-assembly behavior and voltage pulse induced trimer formation.

    PubMed

    He, Yangyong; Cai, Zeying; Shao, Jian; Xu, Li; She, Limin; Zheng, Yue; Zhong, Dingyong

    2018-05-03

    The self-assembly behavior of quaterrylene (QR) molecules on Ag(111) surfaces has been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that the QR molecules are highly mobile on the Ag(111) surface at 78 K. No ordered assembled structure is formed on the surface with a sub-monolayer coverage up to 0.8 monolayer due to the intermolecular repulsive interactions, whereas ordered molecular structures are observed at one monolayer coverage. According to our DFT calculations, charge transfer occurs between the substrate and the adsorbed QR molecule. As a result, out-of-plane dipoles appear at the interface, which are ascribed to the repulsive dipole-dipole interactions between the QR molecules. Furthermore, due to the planar geometry, the QR molecules exhibit relatively low diffusion barriers on Ag(111). By applying a voltage pulse between the tunneling gap, immobilization and aggregation of QR molecules take place, resulting in the formation of a triangle-shaped trimer. Our work demonstrates the ability of manipulating intermolecular repulsive and attractive interactions at the single molecular level.

  9. Three-Component Reaction Discovery Enabled by Mass Spectrometry of Self-Assembled Monolayers

    PubMed Central

    Montavon, Timothy J.; Li, Jing; Cabrera-Pardo, Jaime R.; Mrksich, Milan; Kozmin, Sergey A.

    2011-01-01

    Multi-component reactions have been extensively employed in many areas of organic chemistry. Despite significant progress, the discovery of such enabling transformations remains challenging. Here, we present the development of a parallel, label-free reaction-discovery platform, which can be used for identification of new multi-component transformations. Our approach is based on the parallel mass spectrometric screening of interfacial chemical reactions on arrays of self-assembled monolayers. This strategy enabled the identification of a simple organic phosphine that can catalyze a previously unknown condensation of siloxy alkynes, aldehydes and amines to produce 3-hydroxy amides with high efficiency and diastereoselectivity. The reaction was further optimized using solution phase methods. PMID:22169871

  10. Preparation and wettability examinations of transparent SiO2 binder-added MgF2 nanoparticle coatings covered with fluoro-alkyl silane self-assembled monolayer.

    PubMed

    Murata, Tsuyoshi; Hieda, Junko; Saito, Nagahiro; Takai, Osamu

    2012-05-01

    SiO2-added MgF2 nanoparticle coatings with various surface roughness properties were formed on fused silica-glass substrates from autoclaved sols prepared at 100-180 °C. To give it hydrophobicity, we treated the samples with fluoro-alkyl silane (FAS) vapor to form self-assembled monolayers on the nanoparticle coating and we examined the wettability of the samples. The samples preserved good transparency even after the FAS treatment. The wettability examination revealed that higher autoclave temperatures produced a larger average MgF2 nanoparticle particle size, a larger surface roughness, and a higher contact angle and the roll-off angle.

  11. Guided molecular self-assembly: a review of recent efforts

    NASA Astrophysics Data System (ADS)

    Huie, Jiyun C.

    2003-04-01

    This paper serves as an introductory review of significant and novel successes achieved in the fields of nanotechnology, particularly in the formation of nanostructures using guided molecular self-assembly methods. Self-assembly is a spontaneous process by which molecules and nanophase entities may materialize into organized aggregates or networks. Through various interactive mechanisms of self-assembly, such as electrostatics, chemistry, surface properties, and via other mediating agents, the technique proves indispensable to recent functional materials and device realizations. The discussion will extend to spontaneous and Langmuir-Blodgett formation of self-assembled monolayers on various substrates, and a number of different categories of self-assembly techniques based on the type of interaction exploited. Combinatorial techniques, known as soft lithography, of micro-contact printing and dip-pen nanolithography, which can be effectively used to up-size nanostructured molecular assemblies to submicrometer and micrometer scale patterns, will also be mentioned.

  12. Synthesis, characterization, and relative stabilities of self-assembled monolayers on gold generated from bidentate n-alkyl xanthic acids.

    PubMed

    Moore, H Justin; Colorado, Ramon; Lee, Han Ju; Jamison, Andrew C; Lee, T Randall

    2013-08-27

    A series of self-assembled monolayers (SAMs) on gold were generated by the adsorption of n-alkyl xanthic acids (NAXAs) having the general formula CH3(CH2)nOCS2H (n = 12-15). The structural features of these SAMs were characterized by optical ellipsometry, contact angle goniometry, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). This series of xanthate SAMs were compared to SAMs generated from the corresponding n-alkanethiols and aliphatic dithiocarboxylic acids (ADTCAs). The collected data indicate that the NAXAs generate densely packed and well-ordered monolayers. The contact angles of hexadecane on the xanthate monolayers exhibited a large "odd-even" effect similar to that produced by the ADTCA SAMs. The relative stability of these bidentate xanthate SAMs was evaluated by monitoring the changes in ellipsometric thicknesses and wettability as a function of time under various conditions. The results demonstrate that SAMs formed from NAXAs are much less stable than analogous n-alkanethiolate and ADTCA SAMs.

  13. Thermodynamic balance of perylene self-assembly on Ag(110)

    NASA Astrophysics Data System (ADS)

    Bobrov, Kirill; Kalashnyk, Nataliya; Guillemot, Laurent

    2016-10-01

    We present a room temperature STM study of perylene adsorption on Ag(110) at the monolayer coverage regime. We found that structure and symmetry of the perylene monolayer are settled by thermodynamic balance of the three factors: (i) the ability of perylene molecules to recognize specific adsorption sites on the (110) lattice, (ii) the intermolecular interaction, and (iii) the accommodation of thermal motion of the molecules. The moderate strength of the site recognition and the intermolecular interaction, of the same order of magnitude as kT ˜ 25 meV, represents a key feature of the thermodynamic balance. It bestows to this system the unique quality to form the quasi-liquid monolayer of epitaxial as well as self-assembling character. The perylene monolayer accommodates the short-range motion of the molecules instead of quenching it. It precludes the formation of possible solid nuclei and maintains common registry of the included molecules. The surface registry of the quasi-liquid phase is provided by locking of a structure-related fraction of the perylene molecules into specific adsorption sites of the (110) lattice favorable in terms of intermolecular interaction.

  14. DNA biosensor for detection of Salmonella typhi from blood sample of typhoid fever patient using gold electrode modified by self-assembled monolayers of thiols

    NASA Astrophysics Data System (ADS)

    Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni

    2017-05-01

    Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.

  15. Automated scanning probe lithography with n-alkanethiol self assembled monolayers on Au(111): Application for teaching undergraduate laboratories

    PubMed Central

    Brown, Treva T.; LeJeune, Zorabel M.; Liu, Kai; Hardin, Sean; Li, Jie-Ren; Rupnik, Kresimir; Garno, Jayne C.

    2010-01-01

    Controllers for scanning probe instruments can be programmed for automated lithography to generate desired surface arrangements of nanopatterns of organic thin films, such as n-alkanethiol self-assembled monolayers (SAMs). In this report, atomic force microscopy (AFM) methods of lithography known as nanoshaving and nanografting are used to write nanopatterns within organic thin films. Commercial instruments provide software to control the length, direction, speed, and applied force of the scanning motion of the tip. For nanoshaving, higher forces are applied to an AFM tip to selectively remove regions of the matrix monolayer, exposing bare areas of the gold substrate. Nanografting is accomplished by force-induced displacement of molecules of a matrix SAM, followed immediately by the surface self-assembly of n-alkanethiol molecules from solution. Advancements in AFM automation enable rapid protocols for nanolithography, which can be accomplished within the tight time restraints of undergraduate laboratories. Example experiments with scanning probe lithography (SPL) will be described in this report that were accomplished by undergraduate students during laboratory course activities and research internships in the chemistry department of Louisiana State University. Students were introduced to principles of surface analysis and gained “hands-on” experience with nanoscale chemistry. PMID:21483651

  16. Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self-Assembled Alkanethiols

    DOE PAGES

    Avila, Jason R.; DeMarco, Erica J.; Emery, Jonathan D.; ...

    2014-07-21

    Through in-situ quartz crystal microbalance (QCM) monitoring we resolve the growth of a self-assembled monolayer (SAM) and subsequent metal oxide deposition with high resolution. Here, we introduce the fitting of mass deposited during each atomic layer deposition (ALD) cycle to an analytical island-growth model that enables quantification of growth inhibition, nucleation density, and the uninhibited ALD growth rate. A long-chain alkanethiol was self-assembled as a monolayer on gold-coated quartz crystals in order to investigate its effectiveness as a barrier to ALD. Compared to solution-loading, vapor-loading is observed to produce a SAM with equal or greater inhibition-ability in minutes vs. days.more » The metal oxide growth temperature and the choice of precursor also significantly affect the nucleation density, which ranges from 0.001 to 1 sites/nm 2. Finally, we observe a minimum 100 cycle inhibition of an oxide ALD process, ZnO, under moderately optimized conditions.« less

  17. A review of molecular phase separation in binary self-assembled monolayers of thiols on gold surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Quy; Nianias, Nikolaos; Stellacci, Francesco

    2017-09-01

    Binary self-assembled monolayers (SAMs) on gold surfaces have been known to undergo molecular phase separation to various degrees and have been subject to both experimental and theoretical studies. On gold nanoparticles in particular, binary SAMs ligand shells display intriguing morphologies. Consequently, unexpected behaviors of the nanoparticles with respect to their biological, chemical, and interfacial properties have been observed. It is critical that the phase separation of binary SAMs be understood at both molecular and macroscopic level to create, and then manipulate, the useful properties of the functionalized surfaces. We look into the current understanding of molecular phase separation of binary SAMs on gold surfaces, represented by Au(111) flat surfaces and Au nanoparticles, from both theoretical and experimental aspects. We point out shortcomings and describe several research strategies that will address them in the future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Pule Pileni.

  18. The Kinetics of the as Grown and Annealed Self-Assembled Monolayer Studied by Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Habib, Huma; Yasar, M.; Mehmood, S.; Rafique, Saima; Bhatti, A. S.; Naeem, Aisha

    The growth of biological systems like DNA, peptides and proteins are accredited to the self-assembly processes from the molecular level to the nanoscale. The flawless immobilization of DNA on any surface is quite an important step to the development of DNA-based biosensors. The present paper reports the use of atomic force microscopy to determine the mechanical properties of the as grown and annealed self-assembled monolayer (SAM) as well as the mutated DNA immobilized on the SAM. The SAM of alkane thiol (16-mercapto-1-hexadecanol) was developed on Au surface, which was then annealed and analyzed for its structural and mechanical properties. The surface coverage, height and monolayer’s order was studied as a function of incubation time and annealing time. Excessive annealing led to the defragmentation and desorption of SAM structures due to breaking of hydrocarbon bonds. AFM was employed to determine the detach separation, pull-off and work of adhesion of the as grown and annealed SAM.

  19. Spatially selective formation of hydrocarbon, fluorocarbon, and hydroxyl-terminated monolayers on a microelectrode array.

    PubMed

    Cook, Kevin M; Nissley, Daniel A; Ferguson, Gregory S

    2013-06-11

    A protection-deprotection strategy, using gold oxide as a passivating layer, was used to direct the self-assembly of monolayers (SAMs) selectively at individual gold microelectrodes in an array. This approach allowed the formation of hydroxyl-terminated monolayers, without side reactions, in addition to hydrocarbon and fluorocarbon SAMs. Fluorescence microscopy was used to visualize selective dewetting of hydrophobic monolayers by an aqueous dye solution, and spatially resolved X-ray photoelectron spectroscopy was used to demonstrate a lack of cross-contamination on neighboring microelectrodes in the array.

  20. Directed self-assembly of proteins into discrete radial patterns

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas

    2013-01-01

    Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678

  1. Antifouling Properties of a Self-Assembling Glutamic Acid-Lysine Zwitterionic Polymer Surface Coating.

    PubMed

    Ziemba, Christopher; Khavkin, Maria; Priftis, Dimitris; Acar, Handan; Mao, Jun; Benami, Maya; Gottlieb, Moshe; Tirrell, Matthew; Kaufman, Yair; Herzberg, Moshe

    2018-04-23

    There is a need for the development of antifouling materials to resist adsorption of biomacromolecules. Here we describe the preparation of a novel zwitterionic block copolymer with the potential to prevent or delay the formation of microbial biofilms. The block copolymer comprised a zwitterionic (hydrophilic) section of alternating glutamic acid (negatively charged) and lysine (positively charged) units and a hydrophobic polystyrene section. Cryo-TEM and dynamic-light-scattering (DLS) results showed that, on average, the block copolymer self-assembled into 7-nm-diameter micelles in aqueous solutions (0 to 100 mM NaCl, pH 6). Quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM), and contact angle measurements demonstrated that the block copolymer self-assembled into a brush-like monolayer on polystyrene surfaces. The brush-like monolayer produced from a 100 mg/L block copolymer solution exhibited an average distance, d, of approximately 4-8 nm between each block copolymer molecule (center to center). Once the brush-like monolayer self-assembled, it reduced EPS adsorption onto the polystyrene surface by ∼70% (mass), reduced the rate of bacterial attachment by >80%, and inhibited the development of thick biofilms. QCM-D results revealed that the EPS molecules penetrate between the chains of the brush and adsorb onto the polystyrene surface. Additionally, AFM analyses showed that the brush-like monolayer prevents the adhesion of large (> d) hydrophilic colloids onto the surface via hydration repulsion; however, molecules or colloids small enough to fit between the brush polymers (< d) were able to be adsorbed onto the surface via van der Waals interactions. Overall, we found that the penetration of extracellular organelles, as well as biopolymers through the brush, is critical for the failure of the antifouling coating, and likely could be prevented through tuning of the brush density. Stability and biofilm development testing on multiple surfaces (polypropylene, glass, and stainless steel) support practical applications of this novel block copolymer.

  2. Engineering spheroids potentiating cell-cell and cell-ECM interactions by self-assembly of stem cell microlayer.

    PubMed

    Lee, Yu Bin; Kim, Eun Mi; Byun, Hayeon; Chang, Hyung-Kwan; Jeong, Kwanghee; Aman, Zachary M; Choi, Yu Suk; Park, Jungyul; Shin, Heungsoo

    2018-05-01

    Numerous methods have been reported for the fabrication of 3D multi-cellular spheroids and their use in stem cell culture. Current methods typically relying on the self-assembly of trypsinized, suspended stem cells, however, show limitations with respect to cell viability, throughput, and accurate recapitulation of the natural microenvironment. In this study, we developed a new system for engineering cell spheroids by self-assembly of micro-scale monolayer of stem cells. We prepared synthetic hydrogels with the surface of chemically formed micropatterns (squares/circles with width/diameter of 200 μm) on which mesenchymal stem cells isolated from human nasal turbinate tissue (hTMSCs) were selectively attached and formed a monolayer. The hydrogel is capable of thermally controlled expansion. As the temperature was decreased from 37 to 4 °C, the cell layer detached rapidly (<10 min) and assembled to form spheroids with consistent size (∼100 μm) and high viability (>90%). Spheroidization was significantly delayed and occurred with reduced efficiency on circle patterns compared to square patterns. Multi-physics mapping supported that delamination of the micro-scale monolayer may be affected by stress concentrated at the corners of the square pattern. In contrast, stress was distributed symmetrically along the boundary of the circle pattern. In addition, treatment of the micro-scale monolayer with a ROCK inhibitor significantly retarded spheroidization, highlighting the importance of contraction mediated by actin stress fibers for the stable generation of spheroidal stem cell structures. Spheroids prepared from the assembly of monolayers showed higher expression, both on the mRNA and protein levels, of ECM proteins (fibronectin and laminin) and stemness markers (Oct4, Sox2, and Nanog) compared to spheroids prepared from low-attachment plates, in which trypsinized single cells are assembled. The hTMSC spheroids also presented enhanced expression levels of markers related to tri-lineage (osteogenic, chondrogenic and adipogenic) differentiation. The changes in microcellular environments and functionalities were double-confirmed by using adipose derived mesenchymal stem cells (ADSCs). This spheroid engineering technique may have versatile applications in regenerative medicine for functionally improved 3D culture and therapeutic cell delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    PubMed

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  4. Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers.

    PubMed

    Son, Yangsoo; Kim, Chongyoup; Yang, Doo Ho; Ahn, Dong June

    2008-03-18

    Even though the inkjet technology has been recognized as one of the most promising technologies for electronic and bio industries, the full understanding of the dynamics of an inkjet droplet at its operating conditions is still lacking. In this study, the normal impact of water droplets on solid substrates was investigated experimentally. The size of water droplets studied here was 46 microm and was much smaller than the most of the previous studies on drop impact. The Weber number (We) and Reynolds number (Re) were 0.05-2 and 10-100, respectively, and the Ohnesorge number was fixed at 0.017. The wettability of the solid substrate was varied by adsorbing a self-assembled monolayer of octadecyltrichlorosilane followed by the exposure to UV-ozone plasma. The impact scenarios for low We impacts were found to be qualitatively different from the high to moderate We impacts. Neither the development of a thin film and lamella under the traveling sphere nor the entrapment of small bubbles was observed. The dynamics of droplet impact at the conditions studied here is found to proceed under the combined influences of inertia, surface tension, and viscosity without being dominated by one specific mechanism. The maximum spreading factor (beta), the ratio of the diameter of the wetted surface and the drop diameter before impact, was correlated well with the relationship ln beta=0.090 ln We/(fs-cos theta)+0.151 for three decades of We/(fs-cos theta), where theta is the equilibrium contact angle, and fs is the ratio between the surface areas contacting the air and the solid substrate. The result implies that the final shape of the droplet is determined by the surface phenomenon rather than fluid mechanical effects.

  5. SPM Investigation of Thiolated Gold Nanoparticle Patterns Deposited on Different Self-Assembled Substrates

    NASA Astrophysics Data System (ADS)

    Sbrana, F.; Parodi, M. T.; Ricci, D.; Di Zitti, E.

    We present the results of a Scanning Probe Microscopy (SPM) investigation of ordered nanosized metallo-organic structures. Our aim is to investigate the organization and stability of thiolated gold nanoparticles in a compact pattern when deposited onto gold substrates functionalized with self-assembled monolayers made from two molecules that differ essentially in their terminating group: 1,4-benzenedimethanethiol and 4-methylbenzylthiol.

  6. Amperometric biosensor for Salmonella typhimurium detection in milk

    USDA-ARS?s Scientific Manuscript database

    This paper reports an amperometric biosensor for rapid and sensitive Salmonella Typhimurium detection in milk. The biosensor was assembled from the self-assembled monolayers technique on a gold surface. In this device, polyclonal antibodies were oriented by protein A. The biosensor structure was cha...

  7. Self-assembly patterning of organic molecules on a surface

    DOEpatents

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  8. Fabrication of Thickness-Controllable Micropatterned Polyelectrolyte-Film/Nanoparticle Surfaces by Using the Plasma Oxidation Method.

    PubMed

    Zhu, Chun-Tao; Ma, Sheng-Hua; Zhang, Ying; Wang, Xue-Jing; Lv, Peng; Han, Xiao-Jun

    2016-04-05

    We have demonstrated a novel way to form thickness-controllable polyelectrolyte-film/nanoparticle patterns by using a plasma etching technique to form, first, a patterned self-assembled monolayer surface, followed by layer-by-layer assembly of polyelectrolyte-films/nanoparticles. Octadecyltrimethoxysilane (ODS) and (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayers (SAMs) were used for polyelectrolyte-film and nanoparticle patterning, respectively. The resolution of the proposed patterning method can easily reach approximately 2.5 μm. The height of the groove structure was tunable from approximately 2.5 to 150 nm. The suspended lipid membrane across the grooves was fabricated by incubating the patterned polyelectrolyte groove arrays in solutions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs). The method demonstrated here reveals a new path to create patterned 2D or 3D structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Required Equipment for Photo-Switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    DTIC Science & Technology

    2014-01-24

    Interfacial Tuning via Electron-Blocking/Hole-Transport Layers and Indium Tin Oxide Surface Treatment in Bulk- Heterojunction Organic Photovoltaic Cells...devices Figure 3 shows the compounds we prepared to assemble on gold (Au) surfaces. Results of TPA-C60 dyads (1 and 2) self-assembled on Au electrodes...surface hydroxyl groups, respectively, we decided to prepare compounds 5-7 to attach as SAMs, see Figure 5. Difficulties and unexpected problems

  10. The water-hydrophobic interface: neutral and charged solute adsorption at fluorocarbon and hydrocarbon self-assembled monolayers (SAMs).

    PubMed

    Hopkins, Adam J; Richmond, Geraldine L

    2013-03-01

    Adsorption of small molecular solutes in an aqueous solution to a soft hydrophobic surface is a topic relevant to many fields. In biological and industrial systems, the interfacial environment is often complex, containing an array of salts and organic compounds in the solution phase. Additionally, the surface itself can have a complex structure that can interact in unpredictable ways with small solutes in its vicinity. In this work, we studied model adsorption processes on hydrocarbon and fluorocarbon self-assembled monolayers by using vibrational sum frequency spectroscopy, with methanol and butylammonium chloride as adsorbates. The results indicate that differences in surface functionality have a significant impact on the organization of adsorbed organic species at hydrophobic surfaces.

  11. Ultrasensitive Detection of Cu2+ Using a Microcantilever Sensor Modified with L-Cysteine Self-Assembled Monolayer.

    PubMed

    Xu, Xiaohe; Zhang, Na; Brown, Gilbert M; Thundat, Thomas G; Ji, Hai-Feng

    2017-10-01

    A microcantilever was modified with a self-assembled monolayer (SAM) of L-cysteine for the sensitively and selectively response to Cu(II) ions in aqueous solution. The microcantilever undergoes bending due to sorption of Cu(II) ions. The interaction of Cu(II) ions with the L-cysteine on the cantilever is diffusion controlled and does not follow a simple Langmuir adsorption model. A concentration of 10 -10  M Cu(II) was detected in a fluid cell using this technology. Other cations, such as Ni 2+ , Zn 2+ , Pb 2+ , Cd 2+ , Ca 2+ , K + , and Na + , did not respond with a significant deflection, indicating that this L-cysteine-modified cantilever responded selectively and sensitively to Cu(II).

  12. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit

    PubMed Central

    2011-01-01

    Self-assembled monolayer (SAM) with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry. PMID:21812994

  13. Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer

    PubMed Central

    2014-01-01

    A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5′-bis (mercaptomethyl)-2,2′-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing. PMID:24994952

  14. Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide.

    PubMed

    Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho

    2013-10-01

    The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.

  15. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism.

    PubMed

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S

    2014-01-01

    Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  16. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10-15 cm2 s-1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  17. Charge carrier transport and optical properties of SAM-induced conducting channel in organic semiconductors.

    NASA Astrophysics Data System (ADS)

    Podzorov, Vitaly

    2009-03-01

    Certain types of self-assembled monolayers (SAM) grown directly at the surface of organic semiconductors can induce a high surface conductivity in these materials [1]. For example, the conductivity induced by perfluorinated alkyl silanes in organic molecular crystals approaches 10 to -5 Siemens per square. The observed large electronic effect opens new opportunities for nanoscale surface functionalization of organic semiconductors and provides experimental access to the regime of high carrier density. Here, we will discuss temperature variable measurements of SAM-induced conductivity in several types of organic semiconductors. [1]. M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson and V. Podzorov, ``Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers'', Nature Mat. 7, 84 (2008).

  18. Structure and dynamics of water near the interface with oligo(ethylene oxide) self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed E.; Grest, Gary S.; Stevens, Mark J.

    2007-03-01

    Oligo(ethylene oxide) self-assembled monolayers (OEO SAM's) deposited on Au are the prototypical materials used to study protein resistance. Recently, protein resistance has been shown to vary as a function of surface coverage and to be maximal at about two-thirds coverage, not complete coverage. We use molecular dynamics simulations to study the nature of the interface between water and the OEO SAM for a range of SAM coverages. As SAM coverage decreases, the amount of water within the OEO monolayer increases monotonically; however, the penetration depth of the water shows a maximum near the experimentally-found maximal coverage. As the water content increases, the SAM-water mixture becomes harder to distinguish from bulk water. Since the oxygen atoms of OEO are hydrogen bond acceptors, a hydrogen bond network forms within the SAM-water mixture. The water molecules diffuse freely within the monolayer and exchange with the bulk water. Because the monolayer becomes increasingly like bulk water as the coverage decreases, proteins stay in their bulk soluble conformation and do not adsorb. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000.

  19. Chemisorbed monolayers of corannulene penta-thioethers on gold.

    PubMed

    Angelova, Polina; Solel, Ephrath; Parvari, Galit; Turchanin, Andrey; Botoshansky, Mark; Gölzhäuser, Armin; Keinan, Ehud

    2013-02-19

    Penta(tert-butylthio)corannulene and penta(4-dimethylaminophenylthio)corannulene form highly stable monolayers on gold surfaces, as indicated by X-ray photoelectron spectroscopy (XPS). Formation of these homogeneous monolayers involves multivalent coordination of the five sulfur atoms to gold with the peripheral alkyl or aryl substituents pointing away from the surface. No dissociation of C-S bonds upon binding could be observed at room temperature. Yet, the XPS experiments reveal strong chemical bonding between the thioether groups and gold. Temperature-dependent XPS study shows that the thermal stability of the monolayers is higher than the typical stability of self-assembled monolayers (SAMs) of thiolates on gold.

  20. Synthesis and characterization of self-assembled monolayers on gold generated from partially fluorinated alkanethiols and aliphatic dithiocarboxylic acids

    NASA Astrophysics Data System (ADS)

    Colorado, Ramon, Jr.

    The formation of novel self-assembled monolayers (SAMs) on gold from the adsorption of four distinct series of partially fluorinated alkanethiols (PFAs) and one series of chelating aliphatic dithiocarboxylic acids (ADTCAs) is reported. The SAMs were characterized by optical ellipsometry, contact angle goniometry, polarization modulation infrared absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The results for the PFA SAMs provided evidence for both the importance of oriented surface dipoles in influencing interfacial wettabilities and the significance of the degree of fluorination of the PFAs in determining the dispersive interfacial energies of the films. In addition, a series of PFA SAMs was used to demonstrate that the attenuation lengths of photoelectrons in fluorocarbon films are indistinguishable from those in hydrocarbon films. The results for the ADTCA SAMs demonstrated that the use of a chelating headgroup induces structural changes within the monolayers that influence the interfacial properties of the films.

  1. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  2. Tripod self-assembled monolayer on Au(111) prepared by reaction of hydroxyl-terminated alkylthiols with SiCl4.

    PubMed

    Ichimura, Andrew S; Lew, Wanda; Allara, David L

    2008-03-18

    Infrared reflection spectroscopy (IRS), single wavelength ellipsometry, and density functional theory were used to elucidate the structure of a molecular tripod self-assembled monolayer (SAM) on polycrystalline gold{111} substrates. The tripod SAM was formed by the reaction of SiCl4 with a densely packed monolayer of 2-mercaptoethanol, 6-mercaptohexanol, and 16-mercaptohexadecanol under inert atmosphere. After reaction with SiCl4, IRS spectra show an intense absorption at approximately 1112 cm(-1) that is attributed to Si-O-C asymmetric stretching vibration of a molecular tripod structure. Harmonic vibrational frequencies computed at the B3LYP/6-311+g** level of theory for the mercaptoethanol tripod SAM closely match the experimental IRS spectra, giving further support for the tripod structure. When rinsed with methanol or water, the Si-Cl-terminated SAM becomes capped with Si-OMe or Si-OH. The silanol-terminated tripod SAM is expected to find use in the preparation of thin zeolite and silica films on gold substrates.

  3. Extremely strong self-assembly of a bimetallic salen complex visualized at the single-molecule level.

    PubMed

    Salassa, Giovanni; Coenen, Michiel J J; Wezenberg, Sander J; Hendriksen, Bas L M; Speller, Sylvia; Elemans, Johannes A A W; Kleij, Arjan W

    2012-04-25

    A bis-Zn(salphen) structure shows extremely strong self-assembly both in solution as well as at the solid-liquid interface as evidenced by scanning tunneling microscopy, competitive UV-vis and fluorescence titrations, dynamic light scattering, and transmission electron microscopy. Density functional theory analysis on the Zn(2) complex rationalizes the very high stability of the self-assembled structures provoked by unusual oligomeric (Zn-O)(n) coordination motifs within the assembly. This coordination mode is strikingly different when compared with mononuclear Zn(salphen) analogues that form dimeric structures having a typical Zn(2)O(2) central unit. The high stability of the multinuclear structure therefore holds great promise for the development of stable self-assembled monolayers with potential for new opto-electronic materials.

  4. Monolayers of the lipid derivatives of isoniazid at the air/water interface and the formation of self-assembled nanostructures in water.

    PubMed

    Jin, Yiguang; Chen, Shufeng; Xin, Rui; Zhou, Yisheng

    2008-07-15

    Isoniazid (INH, isonicotinic acid hydrazide) is one of the most commonly used anti-tubercular drugs. However, resistance of Mycobacterium tuberculosis strains to anti-mycobacterial agents including INH is an increasing problem worldwide. Development of new anti-mycobacterial agents thus has attracted attention. Five lipid derivatives of INH were prepared in this study. They formed monolayers at the air/water interface, and some nanostructures with different morphologies were obtained through molecular self-assembly in water. The derivatives included one fatty acyl derivative containing a 12-C hydrocarbon-long chain (1), three fatty alcohol derivatives with a succinyl as spacer and an 8, 12 or 16-C hydrocarbon-long chain (2, 3 and 4), and one tetrahydro-2H-1,3,5-thiadiazine-2-thione (THTT) derivative containing a 12-C hydrocarbon-long chain (5). The surface pressure-area isotherms depended on the volume and configuration of heads and the length of tails of derivatives. Compound 2 had a relatively large head and a short tail, easily standing uprightly at the interface. Under a certain surface pressure, the linear polar head groups of 3 could be partly squeezed out and insert into subphase because the length of heads were comparable to the one of tails. The very long tails of 4 always maintained above the interface and led to a high collapse pressure. Compound 5 possessed an extended and large head consisting of the THTT and INH groups so that the relatively short tails tilted at the interface and difficultly contact with each other. The THTT rings might be partly squeezed out and enter into air under a certain surface pressure. The self-assembly behaviours of derivatives in water depended on the molecular configuration and agreed with the corresponding monolayer behaviours. The flexible and medium-long tails (1 and 3) led to the derivatives to form nanoscale vesicles, though the short or very long tails did not (2 and 4). Interestingly, intermolecular hydrogen bonding could occur between the molecules of 5, and improve the derivative forming helical nanofibres other than vesicles. The molecular self-assembly of INH's lipid derivatives was explored in details in this study. The formation mechanisms of self-assembled nanostructures were analyzed. Various types of self-assembled nanostructures were obtained and the formation mechanisms were analyzed. The relationship between the self-assembly and the molecular configuration of amphiphilic derivatives was also revealed. The lipid derivatives of INH show promising anti-Mycobacterium action because the amphiphilic prodrugs allow for better penetration of the bacterial cells. The self-assembled nanostructures may likely be the potential self-assembled drug delivery systems for tuberculosis therapy.

  5. High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure.

    PubMed

    Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng

    2018-05-09

    A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.

  6. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.

    PubMed

    Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E

    2006-12-28

    Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.

  7. Chemical and physical passivation of type II strained-layer superlattice devices by means of thiolated self-assembled monolayers and polymer encapsulates

    NASA Astrophysics Data System (ADS)

    Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith

    2015-05-01

    The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.

  8. Solvent polarity effect on quality of n-octadecanethiol self-assembled monolayers on copper and oxidized copper

    NASA Astrophysics Data System (ADS)

    Zhang, Yaozhong; Zhou, Jun; Zhang, Xiaoli; Hu, Jun; Gao, Han

    2014-11-01

    This article reports the effect of solvent polarity on the formation of n-octadecanethiol self-assembled monolayers (C18SH-SAMs) on pure copper surface and oxidized copper surface. The quality of SAMs prepared in different solvents (n-hexane, toluene, trichloroethylene, chloroform, acetone, acetonitrile, ethanol) was monitored by EIS, RAIRS and XPS. The results indicated that C18SH-SAMs formed in these solvents were in good barrier properties on pure copper surface and the structures of monolayers formed in high polarity solvents were more compact and orderly than that formed in low polarity solvents. For comparison, C18SH adsorbed on the surface of oxidized copper in these solvents were studied and the results indicated that C18SH could be adsorbed on oxidized copper surface after the reduction of copper oxide layer by thiols. Compared with high polarity solvents, a limited reduction process of oxidized copper by thiols led to the incompletely formation of monolayers in low polarity solvents. This can be interpreted that the generated water on solid-liquid interface and a smaller reaction force restrict the continuous reduction reaction in low polarity solvents

  9. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.

    PubMed

    Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C

    2011-04-06

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society

  10. Mixed carboranethiol self-assembled monolayers on gold surfaces

    NASA Astrophysics Data System (ADS)

    Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih

    2017-08-01

    Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  11. Analysis of nucleotides and oligonucleotides immobilized as self-assembled monolayers by static secondary ion mass spectrometry.

    PubMed

    Patrick, J S; Cooks, R G; Pachuta, S J

    1994-11-01

    Nucleic acid constituents can be bound to a metal surface in the form of self-assembled monolayers. Binding is achieved either through ionic interactions with a self-assembled 2-aminoethanethiol monolayer or by direct covalent binding of a dithiophosphate oligonucleotide to a metal surface through a sulfur-metal bond. Nucleotides, polynucleotides (both normal and a dithiophosphate analog) and double-stranded DNA have all been bound to surfaces. When the surfaces are interrogated using static secondary ion mass spectrometry (SIMS), the surface-bound nucleic acid constituents are observed in the form of the characteristic protonated nucleic acid base ions (BH2+). While a silver foil substrate was found to provide the highest absolute signal, vapor-deposited gold yields the best signal-to-noise ratio for ionically bound deoxyguanosine monophosphate. Under comparable conditions, a Cs+ projectile produces a 10-fold increase in the secondary ion signal relative to a Ga+ projectile. The experiment has been extended to a triple-quadrupole instrument where tandem mass spectrometric experiments on ionically immobilized dGMP showed the characteristic loss of ammonia from the released BH2+ ion. When a 'biomimetic' surface formed by ionically immobilizing double-stranded DNA is exposed to a solution containing ethidium bromide, ions corresponding to the non-covalent adduct are readily detectable using SIMS. This adduct and the nucleic acid constituents can be monitored at levels below 10 fmol.

  12. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    PubMed

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  13. Electronic Transport through Self Assembled Thiol Molecules: Effect of Monolayer Order, Dynamics and Temperature

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha; Fan, Wendy; Meyyappan, M.

    2005-01-01

    We present the charge transport and tunneling conductance of self assembled organic thiol molecules and discuss the influence of order and dynamics in the monolayer on the transport behavior and the effect of temperature. Conjugated thiol molecular wires and organometals such as terpyridine metal complexes provide a new platform for molecular electronic devices and we study their self assembly on Au(111) substrates by the scanning tunneling microscope. Determining the organization of the molecule and the ability to control the nature of its interface with the substrate is important for reliable performance of the molecular electronic devices. By concurrent scanning tunneling microscopy and spectroscopy studies on SAMs formed from oligo (phenelyne ethynelyne) monolayers with and without molecular order, we show that packing and order determine the response of a self assembled monolayer (SAM) to competing interactions. Molecular resolution STM imaging in vacuum shows that the OPES adopt an imcommensurate SAM structure on Au(111) with a rectangular unit cell. Tunneling spectroscopic measurements were performed on the SAM as a function of junction resistance. STS results show that the I-Vs are non linear and asymmetric due to the inherent asymmetry in the molecular structure, with larger currents at negative sample biases. The asymmetry increases with increasing junction resistance due to the asymmetry in the coupling to the leads. This is brought out clearly in the differential conductance, which also shows a gap at the Fermi level. We also studied the effect of order and dynamics in the monolayer on the charge transport and found that competing forces between the electric field, intermolecular interactions, tip-molecule physisorption and substrate-molecule chemisorption impact the transport measurements and its reliability and that the presence of molecular order is very important for reproducible transport measurements. Thus while developing new electronic platforms based on molecules, it is important to have a good control of the molecule-substrate interface, for the devices to perform reliably. While such a control would minimize fluctuations and dynamics in the ensemble, the real challenge is to develop device architectures that are tolerant to fluctuations, since they cannot be totally eliminated in these low dimensional soft systems. Results of temperature dependent STS measurements will also be discussed.

  14. Direct patterning of negative nanostructures on self-assembled monolayers of 16-mercaptohexadecanoic acid on Au(111) substrate via dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Zheng, Zhikun; Yang, Menglong; Liu, Yaqing; Zhang, Bailin

    2006-11-01

    Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.

  15. Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2015-06-01

    Plasmonic structures on graphene can tailor its optical properties, which is essential for sensing and optoelectronic applications, e.g. for the enhancement of photoresponsivity of graphene photodetectors. Control over their structural and, hence, spectral properties can be attained by using electron beam lithography, which is not a viable solution for the definition of patterns over large areas. For the fabrication of large-area plasmonic nanostructures, we propose to use self-assembled monolayers of nanospheres as a mask for metal evaporation and etching processes. An optimized approach based on self-assembly at air/water interface with a properly designed apparatus allows the attainment of monolayers of hexagonally closely packed patterns with high long-range order and large area coverage; special strategies are devised in order to protect graphene against damage resulting from surface treatment and further processing steps such as reactive ion etching, which could potentially impair graphene properties. Therefore we demonstrate that nanosphere lithography is a cost-effective solution to create plasmonic patterns on graphene. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts.

    PubMed

    Xia, Zhenyuan; Leonardi, Francesca; Gobbi, Marco; Liu, Yi; Bellani, Vittorio; Liscio, Andrea; Kovtun, Alessandro; Li, Rongjin; Feng, Xinliang; Orgiu, Emanuele; Samorì, Paolo; Treossi, Emanuele; Palermo, Vincenzo

    2016-07-26

    We describe a fast and versatile method to functionalize high-quality graphene with organic molecules by exploiting the synergistic effect of supramolecular and covalent chemistry. With this goal, we designed and synthesized molecules comprising a long aliphatic chain and an aryl diazonium salt. Thanks to the long chain, these molecules physisorb from solution onto CVD graphene or bulk graphite, self-assembling in an ordered monolayer. The sample is successively transferred into an aqueous electrolyte, to block any reorganization or desorption of the monolayer. An electrochemical impulse is used to transform the diazonium group into a radical capable of grafting covalently to the substrate and transforming the physisorption into a covalent chemisorption. During covalent grafting in water, the molecules retain the ordered packing formed upon self-assembly. Our two-step approach is characterized by the independent control over the processes of immobilization of molecules on the substrate and their covalent tethering, enabling fast (t < 10 s) covalent functionalization of graphene. This strategy is highly versatile and works with many carbon-based materials including graphene deposited on silicon, plastic, and quartz as well as highly oriented pyrolytic graphite.

  17. Lipid dip-pen nanolithography on self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-02-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (~10-1 μm3 s-1), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ~20 times slower, nonlinear, and the obtained stable dots of ~1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats.

  18. Coordination-based gold nanoparticle layers.

    PubMed

    Wanunu, Meni; Popovitz-Biro, Ronit; Cohen, Hagai; Vaskevich, Alexander; Rubinstein, Israel

    2005-06-29

    Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.

  19. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    PubMed Central

    Yildirim, Oktay; Gang, Tian; Kinge, Sachin; Reinhoudt, David N.; Blank, Dave H.A.; van der Wiel, Wilfred G.; Rijnders, Guus; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices. PMID:20480007

  20. Self-Assembly of Trimer Colloids: Effect of Shape and Interaction Range†

    PubMed Central

    Hatch, Harold W.; Yang, Seung-Yeob; Mittal, Jeetain; Shen, Vincent K.

    2016-01-01

    Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer patchy colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-assembled structures for different shapes and interaction potentials. Extended corresponding states principle was successfully applied to self-assembling systems in order to approximately collapse the results for models with the same shape, but different interaction range. This helps us directly compare simulation results with previous experiment, and good agreement was found between the two. In addition, a variety of self-assembled structures were observed by varying the trimer geometry, including spherical clusters, elongated clusters, monolayers, and spherical shells. In conclusion, our results help to compare simulations and experiments, via extended corresponding states, and we predict the formation of self-assembled structures for trimer shapes that have not been experimentally synthesized. PMID:27087490

  1. The Rate of Charge Tunneling through Self-Assembled Monolayers is Insensitive to Many Functional Group Substitutions**

    PubMed Central

    Yoon, Hyo Jae; Shapiro, Nathan D.; Park, Kyeng Min; Thuo, Martin M.; Soh, Siowling

    2012-01-01

    This paper characterizes the rates of charge transport by tunneling across a series of molecules—arrayed in self-assembled monolayers—containing a common head group and body (HS(CH2)4CONH(CH2)2-) and structurally varied tail groups (-R). These molecules are assembled in junctions of the structure AgTS/SAM//Ga2O3/EGaIn. Over a range of common aliphatic, aromatic, and heteroaromatic organic tail groups, changing the structure of R does not significantly influence the rate of tunneling. PMID:22504880

  2. Crafting threads of diblock copolymer micelles via flow-enabled self-assembly.

    PubMed

    Li, Bo; Han, Wei; Jiang, Beibei; Lin, Zhiqun

    2014-03-25

    Hierarchically assembled amphiphilic diblock copolymer micelles were exquisitely crafted over large areas by capitalizing on two concurrent self-assembling processes at different length scales, namely, the periodic threads composed of a monolayer or a bilayer of diblock copolymer micelles precisely positioned by flow-enabled self-assembly (FESA) on the microscopic scale and the self-assembly of amphiphilic diblock copolymer micelles into ordered arrays within an individual thread on the nanometer scale. A minimum spacing between two adjacent threads λmin was observed. A model was proposed to rationalize the relationship between the thread width and λmin. Such FESA of diblock copolymer micelles is remarkably controllable and easy to implement. It opens up possibilities for lithography-free positioning and patterning of diblock copolymer micelles for various applications in template fabrication of periodic inorganic nanostructures, nanoelectronics, optoelectronics, magnetic devices, and biotechnology.

  3. Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi-level pinning at the molecule-metal interface.

    PubMed

    Lenfant, S; Guerin, D; Tran Van, F; Chevrot, C; Palacin, S; Bourgoin, J P; Bouloussa, O; Rondelez, F; Vuillaume, D

    2006-07-20

    We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices, and we examine the extent to which the nature of the pi end group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. Self-assembled monolayers of alkyl chains (different chain lengths from 6 to 15 methylene groups) functionalized by phenyl, anthracene, pyrene, ethylene dioxythiophene, ethylene dioxyphenyl, thiophene, terthiophene, and quaterthiophene were synthesized and characterized by contact angle measurements, ellipsometry, Fourier transform infrared spectroscopy, and atomic force microscopy. We demonstrate that reasonably well-packed monolayers are obtained in all cases. Their electrical properties were assessed by dc current-voltage characteristics and high-frequency (1-MHz) capacitance measurements. For all of the pi groups investigated here, we observed rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (Lenfant et al., Nano Lett. 2003, 3, 741). The experimental current-voltage curves were analyzed with a simple analytical model, from which we extracted the energy position of the molecular orbital of the pi group in resonance with the Fermi energy of the electrodes. We report experimental studies of the band lineup in these silicon/alkyl pi-conjugated molecule/metal junctions. We conclude that Fermi-level pinning at the pi group/metal interface is mainly responsible for the observed absence of a dependence of the rectification effect on the nature of the pi groups, even though the groups examined were selected to have significant variations in their electronic molecular orbitals.

  4. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  5. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE PAGES

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie; ...

    2017-10-06

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  6. Understanding Peptide Oligomeric State in Langmuir Monolayers of Amphiphilic 3-Helix Bundle-Forming Peptide-PEG Conjugates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, Reidar; Ang, JooChuan; Shu, Jessica Y.

    Coiled-coil peptide-polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here in this paper, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide-polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formedmore » at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide-polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation.« less

  7. Understanding Peptide Oligomeric State in Langmuir Monolayers of Amphiphilic 3-Helix Bundle-Forming Peptide-PEG Conjugates

    DOE PAGES

    Lund, Reidar; Ang, JooChuan; Shu, Jessica Y.; ...

    2016-10-26

    Coiled-coil peptide-polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here in this paper, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide-polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formedmore » at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide-polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation.« less

  8. Molecular-dynamics simulations of self-assembled monolayers (SAM) on parallel computers

    NASA Astrophysics Data System (ADS)

    Vemparala, Satyavani

    The purpose of this dissertation is to investigate the properties of self-assembled monolayers, particularly alkanethiols and Poly (ethylene glycol) terminated alkanethiols. These simulations are based on realistic interatomic potentials and require scalable and portable multiresolution algorithms implemented on parallel computers. Large-scale molecular dynamics simulations of self-assembled alkanethiol monolayer systems have been carried out using an all-atom model involving a million atoms to investigate their structural properties as a function of temperature, lattice spacing and molecular chain-length. Results show that the alkanethiol chains tilt from the surface normal by a collective angle of 25° along next-nearest neighbor direction at 300K. At 350K the system transforms to a disordered phase characterized by small tilt angle, flexible tilt direction, and random distribution of backbone planes. With increasing lattice spacing, a, the tilt angle increases rapidly from a nearly zero value at a = 4.7A to as high as 34° at a = 5.3A at 300K. We also studied the effect of end groups on the tilt structure of SAM films. We characterized the system with respect to temperature, the alkane chain length, lattice spacing, and the length of the end group. We found that the gauche defects were predominant only in the tails, and the gauche defects increased with the temperature and number of EG units. Effect of electric field on the structure of poly (ethylene glycol) (PEG) terminated alkanethiol self assembled monolayer (SAM) on gold has been studied using parallel molecular dynamics method. An applied electric field triggers a conformational transition from all-trans to a mostly gauche conformation. The polarity of the electric field has a significant effect on the surface structure of PEG leading to a profound effect on the hydrophilicity of the surface. The electric field applied anti-parallel to the surface normal causes a reversible transition to an ordered state in which the oxygen atoms are exposed. On the other hand, an electric field applied in a direction parallel to the surface normal introduces considerable disorder in the system and the oxygen atoms are buried inside.

  9. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    PubMed

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  10. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  11. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  12. Patterning of Functional Antibodies and Other Proteins by Photolithography of Silane Monolayers

    NASA Astrophysics Data System (ADS)

    Mooney, J. F.; Hunt, A. J.; McIntosh, J. R.; Liberko, C. A.; Walba, D. M.; Rogers, C. T.

    1996-10-01

    We have demonstrated the assembly of two-dimensional patterns of functional antibodies on a surface. In particular, we have selectively adsorbed micrometer-scale regions of biotinylated immunoglobulin that exhibit specific antigen binding after adsorption. The advantage of this technique is its potential adaptability to adsorbing arbitrary proteins in tightly packed monolayers while retaining functionality. The procedure begins with the formation of a self-assembled monolayer of n-octadecyltrimethoxysilane (OTMS) on a silicon dioxide surface. This monolayer can then be selectively removed by UV photolithography. Under appropriate solution conditions, the OTMS regions will adsorb a monolayer of bovine serum albumin (BSA), while the silicon dioxide regions where the OTMS has been removed by UV light will adsorb less than 2% of a monolayer, thus creating high contrast patterned adsorption of BSA. The attachment of the molecule biotin to the BSA allows the pattern to be replicated in a layer of streptavidin, which bonds to the biotinylated BSA and in turn will bond an additional layer of an arbitrary biotinylated protein. In our test case, functionality of the biotinylated goat antibodies raised against mouse immunoglobulin was demonstrated by the specific binding of fluorescently labeled mouse IgG.

  13. Floating assembly of diatom Coscinodiscus sp. microshells.

    PubMed

    Wang, Yu; Pan, Junfeng; Cai, Jun; Zhang, Deyuan

    2012-03-30

    Diatoms have silica frustules with transparent and delicate micro/nano scale structures, two dimensional pore arrays, and large surface areas. Although, the diatom cells of Coscinodiscus sp. live underwater, we found that their valves can float on water and assemble together. Experiments show that the convex shape and the 40 nm sieve pores of the valves allow them to float on water, and that the buoyancy and the micro-range attractive forces cause the valves to assemble together at the highest point of water. As measured by AFM calibrated glass needles fixed in manipulator, the buoyancy force on a single floating valve may reach up to 10 μN in water. Turning the valves over, enlarging the sieve pores, reducing the surface tension of water, or vacuum pumping may cause the floating valves to sink. After the water has evaporated, the floating valves remained in their assembled state and formed a monolayer film. The bonded diatom monolayer may be valuable in studies on diatom based optical devices, biosensors, solar cells, and batteries, to better use the optical and adsorption properties of frustules. The floating assembly phenomenon can also be used as a self-assembly method for fabricating monolayer of circular plates. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Infrared Focal Plane Arrays Based on Semiconductor Quantum Dots

    DTIC Science & Technology

    2002-01-01

    an ensemble of self -assembled InAs/GaAs or InAs/InP quantum dots (QDs) are typically in the range of 10-30 monolayers [1]. Here, we report on InAs...photoconductive properties of QDIPs based on self organized InAs quantum dots grown on In.52Al.48As/InP(100), using the MBE technique. Dr. Gendry grew the...composed of 10 layers of self assembled InAs dots, separated by 500 Å thick InAlAs (lattice matched to the semi-insulating InP substrate) barrier

  15. Self-assembled monolayers of alkyl-thiols on InAs: A Kelvin probe force microscopy study

    NASA Astrophysics Data System (ADS)

    Szwajca, A.; Wei, J.; Schukfeh, M. I.; Tornow, M.

    2015-03-01

    We report on the preparation and characterization of self-assembled monolayers from aliphatic thiols with different chain length and termination on InAs (100) planar surfaces. This included as first step the development and investigation of a thorough chemical InAs surface preparation step using a dedicated bromine/NH4OH-based etching process. Ellipsometry, contact angle measurements and atomic force microscopy (AFM) indicated the formation of smooth, surface conforming monolayers. The molecular tilt angles were obtained as 30 ± 10° with respect to the surface normal. Kelvin probe force microscopy (KPFM) measurements in hand with Parameterized Model number 5 (PM5) calculations of the involved molecular dipoles allowed for an estimation of the molecular packing densities on the surface. We obtained values of up to n = 1014 cm- 2 for the SAMs under study. These are close to what is predicted from a simple geometrical model that would calculate a maximum density of about n = 2.7 × 1014 cm- 2. We take this as additional conformation of the substrate smoothness and quality of our InAs-SAM hybrid layer systems.

  16. An Unusual Salt Effect in an Interfacial Nucleophilic Substitution Reaction.

    PubMed

    Li, Shuheng; Mrksich, Milan

    2018-06-12

    This paper reports a kinetic characterization of the interfacial reaction of N-methylpyrrolidine with a self-assembled monolayer presenting an iodoalkyl group. SAMDI (self-assembled monolayers for matrix-assisted laser desorption/ionization) mass spectrometry was used to determine the extent of reaction for monolayers that were treated with a range of concentrations of the nucleophile for a range of times. These data revealed a second-order rate constant for the reaction that was approximately 100-fold greater than that for the analogous solution-phase reaction. However, addition of sodium iodide to the reaction mixture resulted in a 7-fold decrease in the reaction rate. Addition of bromide and chloride salts also gave slower rate constants for the reaction, but only at 100- and 1000-fold higher concentrations than was observed with iodide, respectively. The corresponding solution-phase reactions, by contrast, had rate constants that were unaffected by the concentration of halide salts. This work provides a well-characterized example illustrating the extent to which the kinetics and properties of an interfacial reaction can depart substantially from their better-understood solution-phase counterparts.

  17. Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100)

    PubMed Central

    Dubey, Manish; Weidner, Tobias; Gamble, Lara J.; Castner, David G.

    2010-01-01

    Organophosphonic acid self-assembled monolayers (SAMs) on oxide surfaces have recently seen increased use in electrical and biological sensor applications. The reliability and reproducibility of these sensors require good molecular organization in these SAMs. In this regard, packing, order and alignment in the SAMs is important, as it influences the electron transport measurements. In this study, we examine the order of hydroxyl- and methyl- terminated phosphonate films deposited onto silicon oxide surfaces by the tethering by aggregation and growth method using complementary, state-of-art surface characterization tools. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy and in situ sum frequency generation (SFG) spectroscopy are used to study the order of the phosphonate SAMs in vacuum and under aqueous conditions, respectively. X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry results show that these samples form chemically intact monolayer phosphonate films. NEXAFS and SFG spectroscopy showed that molecular order exists in the octadecylphosphonic acid and 11-hydroxyundecylphosphonic acid SAMs. The chain tilt angles in these SAMs were approximately 37° and 45°, respectively. PMID:20735054

  18. Disc Antenna Enhanced Infrared Spectroscopy: From Self-Assembled Monolayers to Membrane Proteins.

    PubMed

    Pfitzner, Emanuel; Seki, Hirofumi; Schlesinger, Ramona; Ataka, Kenichi; Heberle, Joachim

    2018-05-25

    Plasmonic surfaces have emerged as a powerful platform for biomolecular sensing applications and can be designed to optimize the plasmonic resonance for probing molecular vibrations at utmost sensitivity. Here, we present a facile procedure to generate metallic microdisc antenna arrays that are employed in surface-enhanced infrared absorption (SEIRA) spectroscopy of biomolecules. Transmission electron microscopy (TEM) grids are used as shadow mask deployed during physical vapor deposition of gold. The resulting disc-shaped antennas exhibit enhancement factors of the vibrational bands of 4 × 10 4 giving rise to a detection limit <1 femtomol (10 -15 mol) of molecules. Surface-bound monolayers of 4-mercaptobenzoic acid show polyelectrolyte behavior when titrated with cations in the aqueous medium. Conformational rigidity of the self-assembled monolayer is validated by density functional theory calculations. The membrane protein sensory rhodopsin II is tethered to the disc antenna arrays and is fully functional as inferred from the light-induced SEIRA difference spectra. As an advance to previous studies, the accessible frequency range is improved and extended into the fingerprint region.

  19. Electric bistability induced by incorporating self-assembled monolayers/aggregated clusters of azobenzene derivatives in pentacene-based thin-film transistors.

    PubMed

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2012-10-24

    Composite films of pentacene and a series of azobenzene derivatives are prepared and used as the active channel material in top-contact, bottom-gate field-effect transistors. The transistors exhibit high field-effect mobility as well as large I-V hysteresis as a function of the gate bias history. The azobenzene moieties, incorporated either in the form of self-assembled monolayer or discrete multilayer clusters at the dielectric surface, result in electric bistability of the pentacene-based transistor either by photoexcitation or gate biasing. The direction of threshold voltage shifts, size of hysteresis, response time, and retention characteristics all strongly depend on the substituent on the benzene ring. The results show that introducing a monolayer of azobenzene moieties results in formation of charge carrier traps responsible for slower switching between the bistable states and longer retention time. With clusters of azobenzene moieties as the trap sites, the switching is faster but the retention is shorter. Detailed film structure analyses and correlation with the transistor/memory properties of these devices are provided.

  20. Tuning the Rectification Ratio by Changing the Electronic Nature (Open-Shell and Closed-Shell) in Donor-Acceptor Self-Assembled Monolayers.

    PubMed

    Souto, Manuel; Yuan, Li; Morales, Dayana C; Jiang, Li; Ratera, Imma; Nijhuis, Christian A; Veciana, Jaume

    2017-03-29

    This Communication describes the mechanism of charge transport across self-assembled monolayers (SAMs) of two donor-acceptor systems consisting of a polychlorotriphenylmethyl (PTM) electron-acceptor moiety linked to an electron-donor ferrocene (Fc) unit supported by ultraflat template-stripped Au and contacted by a eutectic alloy of gallium and indium top contacts. The electronic and supramolecular structures of these SAMs were well characterized. The PTM unit can be switched between the nonradical and radical forms, which influences the rectification behavior of the junction. Junctions with nonradical units rectify currents via the highest occupied molecular orbital (HOMO) with a rectification ratio R = 99, but junctions with radical units have a new accessible state, a single-unoccupied molecular orbital (SUMO), which turns rectification off and drops R to 6.

  1. Electrochemical deposition onto self-assembled monolayers: new insights into micro- and nanofabrication.

    PubMed

    Schilardi, Patricia L; Dip, Patricio; dos Santos Claro, Paula C; Benítez, Guillermo A; Fonticelli, Mariano H; Azzaroni, Omar; Salvarezza, Roberto C

    2005-12-16

    Pattern transfer with high resolution is a frontier topic in the emerging field of nanotechnologies. Electrochemical molding is a possible route for nanopatterning metal, alloys and oxide surfaces with high resolution in a simple and inexpensive way. This method involves electrodeposition onto a conducting master covered by a self-assembled alkanethiolate monolayer (SAMs). This molecular film enables direct surface-relief pattern transfer from the conducting master to the inner face of the electrodeposit, and also allows an easy release of the electrodeposited film due their excellent anti-adherent properties. Replicas of the original conductive master can be also obtained by a simple two-step procedure. SAM quality and stability under electrodeposition conditions combined with the formation of smooth electrodeposits are crucial to obtain high-quality pattern transfer with sub-50 nm resolution.

  2. Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki

    2016-02-01

    A structure's temperature can be determined from the Raman spectrum using the frequency and the ratio of the intensities of the anti-Stokes and Stokes signals (the Ias/Is ratio). In this study, we apply this approach and an equation relating the temperature, Raman frequency, and Ias/Is ratio to in-situ estimation of the phase change point of a (3-aminopropyl)triethoxysilane self-assembled monolayer (APTES SAM). Ag nanoparticles were deposited on APTES to enhance the Raman signals. A time-resolved measurement mode was used to monitor the variation in the Raman spectra in situ. Moreover, the structural change in APTES SAM (from ordered to disordered structure) under heating was discussed in detail, and the phase change point (around 118 °C) was calculated.

  3. Magnetic Tunnel Junctions Based On Alkanethiol Self Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Delprat, Sophie; Quinard, Benoit; Galbiati, Marta; Mattera, Michele; Manas-Valero, Samuel; Forment-Aliaga, Alicia; Tatay, Sergio; Deranlot, Cyrile; Collin, Sophie; Bouzehouane, Karim; Mattana, Richard; Seneor, Pierre; Petroff, Frederic

    Molecular spintronics has opened novel and exciting functionalities for spintronics devices. Among them, it was shown that spin dependent hybridization at metal/molecule interfaces could lead to radical tailoring of spintronics properties. In this direction Self-Assembled Monolayers (SAMs) appear to be a very promising candidate with their impressive molecular scale crafting properties. Despite all the promising possibilities, up to now less than a handful of experiments on SAMs as spin-dependent tunnel barriers have been reported at low temperatures, but already showing potential. Towards room temperature spin signal, we studied magnetic tunnel junctions based on alkanethiol and conventional ferromagnets such as Co,NiFe for which we developed a process to recover the ferromagnet from oxidiation. We will present NiFe/SAMs/Co molecular magnetic tunnel junctions with magnetoresistance effects up to 10% observed at 300K.

  4. Patterning of self-assembled monolayers based on differences in molecular conductance.

    PubMed

    Shen, Cai; Buck, Manfred

    2009-06-17

    Scanning tunneling microscopy (STM) is used for replacement patterning of self-assembled monolayers (SAMs) of thiols on a sub-10 nm scale. Contrasting other schemes of scanning probe patterning of SAMs, the exchange of molecules relies on differences in conductance and, thus, occurs under tunneling conditions where the resolution of the tip is maintained. Exchange takes place at the boundary between different thiols but only when the tip moves from areas of lower to higher conductance. In combination with SAMs which exhibit excellent structural quality, patterns with a contour definition of +/- 1 molecule, lines as thin as 2.5 nm and islands with an area of less than 20 nm2 are straightforwardly produced. It is suggested that the shear force exerted onto the molecules with the lower conductance triggers displacement of the one with higher conductance.

  5. Chemical resistivity of self-assembled monolayer covalently attached to silicon substrate to hydrofluoric acid and ammonium fluoride

    NASA Astrophysics Data System (ADS)

    Saito, N.; Youda, S.; Hayashi, K.; Sugimura, H.; Takai, O.

    2003-06-01

    Self-assembled monolayers (SAMs) were prepared on hydrogen-terminated silicon substrates through chemical vapor deposition using 1-hexadecene (HD) as a precursor. The HD-SAMs prepared in an atmosphere under a reduced pressure (≈50 Pa) showed better chemical resistivities to hydrofluoric acid and ammonium fluoride (NH 4F) solutions than that of an organosilane SAM formed on oxide-covered silicon substrates. The surface covered with the HD-SAM was micro-patterned by vacuum ultraviolet photolithography and consequently divided into two areas terminated with HD-SAM or silicon dioxide. This micro-patterned sample was immersed in a 40 vol.% NH 4F aqueous solution. Surface images obtained by an optical microscopy clearly show that the micro-patterns of HD-SAM/silicon dioxide were successfully transferred into the silicon substrate.

  6. TiO 2 -Assisted Photoisomerization of Azo Dyes Using Self-Assembled Monolayers: Case Study on para -Methyl Red Towards Solar-Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.

    2014-02-18

    The optical and electronic properties of a TiO2 nanoparticle-assisted photo-isomerizable surface, prepared by an azo dye/TiO2 nanocomposite film, are examined experimentally and computationally. The azo dye, para-methyl red, undergoes photoisomerization at room temperature, catalyzed by the TiO2 nanoparticle supports, while it exhibits negligible photoisomerization in solvents under otherwise identical conditions. Density functional theory and time-dependent density functional theory are employed to explain the origin of this photoisomerization in these dye…TiO2 nanoparticle self-assembled monolayers (SAMs). The device performance of these SAMs when embedded into dye-sensitized solar cells is used to further elucidate the nature of this azo dye photoisomerization and relatemore » it to the ensuing optoelectronic properties.« less

  7. Electrokinetic stringency control in self-assembled monolayer-based biosensors for multiplex urinary tract infection diagnosis.

    PubMed

    Liu, Tingting; Sin, Mandy L Y; Pyne, Jeff D; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2014-01-01

    Rapid detection of bacterial pathogens is critical toward judicious management of infectious diseases. Herein, we demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis. The in situ electrokinetic stringency control technique generates Joule heating induced temperature rise and electrothermal fluid motion directly on the sensor to improve its performance for detecting bacterial 16S rRNA, a phylogenetic biomarker. The dependence of the hybridization efficiency reveals that in situ electrokinetic stringency control is capable of discriminating single-base mismatches. With electrokinetic stringency control, the background noise due to the matrix effects of clinical urine samples can be reduced by 60%. The applicability of the system is demonstrated by multiplex detection of three uropathogenic clinical isolates with similar 16S rRNA sequences. The results demonstrate that electrokinetic stringency control can significantly improve the signal-to-noise ratio of the biosensor for multiplex urinary tract infection diagnosis. Urinary tract infections remain a significant cause of mortality and morbidity as secondary conditions often related to chronic diseases or to immunosuppression. Rapid and sensitive identification of the causative organisms is critical in the appropriate management of this condition. These investigators demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis, establishing that such an approach significantly improves the biosensor's signal-to-noise ratio. © 2013.

  8. Electrochemical Impedance Spectroscopy for Real-Time Detection of Lipid Membrane Damage Based on a Porous Self-Assembly Monolayer Support.

    PubMed

    Zhang, Meng; Zhai, Qingyu; Wan, Liping; Chen, Li; Peng, Yu; Deng, Chunyan; Xiang, Juan; Yan, Jiawei

    2018-06-19

    Layer-by-layer dissolution and permeable pore formation are two typical membrane damage pathways, which induce membrane function disorder and result in serious disease, such as Alzheimer's disease, Keshan disease, Sickle-cell disease, and so on. To effectively distinguish and sensitively monitor these two typical membrane damage pathways, a facile electrochemical impedance strategy was developed on a porous self-assembly monolayer (pSAM) supported bilayer lipid membrane (BLM). The pSAM was prepared by selectively electrochemical reductive desorption of the mercaptopropionic acid in a mixed mercaptopropionic acid/11-mercaptoundecanoic acid self-assembled monolayer, which created plenty of nanopores with tens of nanometers in diameter and several nanometers in height (defined as inner-pores). The ultralow aspect ratio of the inner-pores was advantageous to the mass transfer of electrochemical probe [Fe(CN) 6 ] 3-/4- , simplifying the equivalent electric circuit for electrochemical impedance spectroscopy analysis at the electrode/membrane interface. [Fe(CN) 6 ] 3-/4- transferring from the bulk solution into the inner-pore induce significant changes of the interfacial impedance properties, improving the detection sensitivity. Based on these, the different membrane damage pathways were effectively distinguished and sensitively monitored with the normalized resistance-capacitance changes of inner-pore-related parameters including the electrolyte resistance within the pore length ( R pore ) and the metal/inner-pore interfacial capacitance ( C pore ) and the charge-transfer resistance ( R ct-in ) at the metal/inner-pore interface.

  9. Self assembled monolayers on silicon for molecular electronics.

    PubMed

    Aswal, D K; Lenfant, S; Guerin, D; Yakhmi, J V; Vuillaume, D

    2006-05-24

    We present an overview of various aspects of the self-assembly of organic monolayers on silicon substrates for molecular electronics applications. Different chemical strategies employed for grafting the self-assembled monolayers (SAMs) of alkanes having different chain lengths on native oxide of Si or on bare Si have been reviewed. The utility of different characterization techniques in determination of the thickness, molecular ordering and orientation, surface coverage, growth kinetics and chemical composition of the SAMs has been discussed by choosing appropriate examples. The metal counterelectrodes are an integral part of SAMs for measuring their electrical properties as well as using them for molecular electronic devices. A brief discussion on the variety of options available for the deposition of metal counterelectrodes, that is, soft metal contacts, vapor deposition and soft lithography, has been presented. Various theoretical models, namely, tunneling (direct and Fowler-Nordheim), thermionic emission, Poole-Frenkel emission and hopping conduction, used for explaining the electronic transport in dielectric SAMs have been outlined and, some experimental data on alkane SAMs have been analyzed using these models. It has been found that short alkyl chains show excellent agreement with tunneling models; while more experimental data on long alkyl chains are required to understand their transport mechanism(s). Finally, the concepts and realization of various molecular electronic components, that is, diodes, resonant tunnel diodes, memories and transistors, based on appropriate architecture of SAMs comprising of alkyl chains (sigma- molecule) and conjugated molecules (pi-molecule) have been presented.

  10. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy.

    PubMed

    Li, Huan; Liu, Xiangsheng; Huang, Nan; Ren, Kefeng; Jin, Qiao; Ji, Jian

    2014-01-01

    The acidic microenvironment of tumor tissues has proven to be one of the major differences from other normal tissues. The near-infrared (NIR) light irradiation of aggregated gold nanoparticles in a tumor acidic pH-induced manner could then provide an effect approach to treat solid tumors with the advantage of minimizing the undesired damage to normal tissues. Although it is well-known the aggregation of larger nanoparticles will result in a better NIR photothermal effect, the preparation of pH-sensitive gold nanoparticles in large sizes remains a big challenge because of their worse dispersive stability. In this paper, we introduce a facile way to endow large gold nanoparticles with tunable pH-aggregation behaviors by modifying the nanoparticle surface with mixed-charge self-assembly monolayers compromising positively and negatively charged thiol ligands. Four different size nanoparticles were used to study the general principle of tailoring the pH-induced aggregation behaviors of mixed-charge gold nanoparticles (MC-GNPs) by adjusting the surface ligand composition. With proper surface ligand composition, the MC-GNPs in four different sizes that all exhibited aggregation at tumor acidic pH were obtained. The biggest MC-GNPs showed the most encouraging aggregation-enhanced photothermal efficacy in vitro when they formed aggregates. The mixed-charge self-assembled monolayers were then proved as a facile method to design pH-induced aggregation of large gold nanoparticles for better NIR photothermal cancer therapy.

  11. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    PubMed Central

    Ladnorg, Tatjana; Welle, Alexander; Heißler, Stefan; Wöll, Christof

    2013-01-01

    Summary Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE). The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy. PMID:24205458

  12. Fluctuation Effects on Propagating Waves of Self-Assembly in Organosilane Monolayers.

    NASA Astrophysics Data System (ADS)

    Douglas, Jack

    2008-03-01

    Wavefronts associated with reaction--diffusion and self-assembly processes are ubiquitous in the natural world. For example, propagating fronts arise in crystallization and diverse other thermodynamic ordering processes, in polymerization fronts involved in cell movement and division, as well as in the competitive social interactions and population dynamics of animals at much larger scales. Although it is often claimed that self-sustaining or autocatalytic front propagation is well described by mean-field ``reaction-- diffusion'' or ``phase field'' ordering models, it has recently become appreciated from simulations and theoretical arguments that fluctuation effects in lower spatial dimensions can lead to appreciable deviations from the classical mean-field theory (MFT) of this type of front propagation. The present work explores these fluctuation effects in a real physical system. In particular, we consider a high-resolution near-edge x-ray absorption fine structure spectroscopy (NEXAFS) study of the spontaneous frontal self-assembly of organosilane (OS) molecules into self-assembled monolayer (SAM) surface-energy gradients on oxidized silicon wafers. We find that these layers organize from the wafer edge as propagating wavefronts having well defined velocities. In accordance with two-dimensional simulations of this type of front propagation that take fluctuation effects into account, we find that the interfacial widths w(t) of these SAM self-assembly fronts exhibit a power-law broadening of in time w(t) ˜ t^β, rather than the constant width predicted by MFT. Moreover, the observed exponent values accord rather well with previous simulation and theoretical estimates. These observations have significant implications for diverse types of ordering fronts that occur under confinement conditions in biological or materials-processing contexts.

  13. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    PubMed

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  14. Self-assembly of large-scale crack-free gold nanoparticle films using a ‘drain-to-deposit’ strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Hallinan, Daniel T.

    2016-04-26

    Gold nanoparticles are widely studied due to the ease of controlled synthesis, facile surface modification, and interesting physical properties. However, a technique for depositing large-area, crack-free monolayers on solid substrates is lacking. Herein is presented a method for accomplishing this. Spherical gold nanoparticles were synthesized as an aqueous dispersion. Assembly into monolayers and ligand exchange occurred simultaneously at an organic/aqueous interface. Then the monolayer film was deposited onto arbitrary solid substrates by slowly pumping out the lower, aqueous phase. This allowed the monolayer film (and liquid–liquid interface) to descend without significant disturbance, eventually reaching substrates contained in the aqueous phase.more » The resulting macroscopic quality of the films was found to be superior to films transferred by Langmuir techniques. The surface plasmon resonance and Raman enhancement of the films were evaluated and found to be uniform across the surface of each film.« less

  15. Effects of different self-assembled monolayers on thin-film morphology: a combined DFT/MD simulation protocol.

    PubMed

    Alberga, Domenico; Mangiatordi, Giuseppe Felice; Motta, Alessandro; Nicolotti, Orazio; Lattanzi, Gianluca

    2015-10-06

    Organic thin film transistors (OTFTs) are multilayer field-effect transistors that employ an organic conjugated material as semiconductor. Several experimental groups have recently demonstrated that the insertion of an organic self-assembled monolayer (SAM) between the dielectric and the semiconductive layer is responsible for a sensible improvement of the OTFT performances in terms of an increased charge carrier mobility caused by a higher degree of order in the organic semiconductor layer. Here, we describe a combined periodic density functional theory (DFT) and classical molecular dynamics (MD) protocol applied to four different SAMs and a pentacene monolayer deposited onto their surfaces. In particular, we investigate the morphology and the surface of the four SAMs and the translational, orientational, and nematic order of the monolayer through the calculation of several distribution functions and order parameters pointing out the differences among the systems and relating them to known experimental results. Our calculations also suggest that small differences in the SAM molecular design will produce remarkable differences in the SAM surface and monolayer order. In particular, our simulations explain how a SAM with a bulky terminal group results in an irregular and rough surface that determines the deposition of a disordered semiconductive monolayer. On the contrary, SAMs with a small terminal group generate smooth surfaces with uninterrupted periodicity, thus favoring the formation of an ordered pentacene monolayer that increases the mobility of charge carriers and improves the overall performances of the OTFT devices. Our results clearly point out that the in silico procedure presented here might be of help in tuning the design of SAMs in order to improve the quality of OTFT devices.

  16. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solidsa)

    NASA Astrophysics Data System (ADS)

    Greene, J. E.

    2015-03-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (˜1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ˜78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese "floating-ink" art (suminagashi) developed ˜1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting, adhesion, electrochemistry, biocompatibility, molecular recognition, biosensing, cell biology, non-linear optics, molecular electronics, solar cells, read/write/erase memory, and magnetism.

  17. The characterization of organic monolayers at gold surfaces using scanning tunneling microscopy and atomic force microscopy correlation with macrostructural properties

    NASA Astrophysics Data System (ADS)

    Alves, C. A.

    1992-09-01

    Monolayer films formed by self-assembly of organothiols at epitaxially grown Au(111) films at mica were examined in air using scanning tunneling (STM) and atomic force microscopies (AFM). n-Alkanethiolate monolayers exhibit a hexagonal packing arrangement with nearest-neighbor and next-nearest-neighbor spacings of 0.50 and 0.87 nm. This arrangement is consistent with (the square root of 3 x the square root of 3)R30 deg adlayer structure at Au(111). STM reveals the structure of the Au-bound sulfur, while AFM details the structure at the monolayer/air interface, revealing that the order at the Au-S interface is retained up to the monolayer/air interface. The investigation of the self-assembled (CF3CF2)7(CH2)2SH monolayer at Au(111) by AFM reveals a (2 x 2) adlayer structure, with nearest-neighbor and next-nearest-neighbor spacings of 0.58 plus or minus 0.02 nm and 1.0 plus or minus 0.02 nm, respectively. This is consistent with the larger van der Waals diameter of the fluorinated chain. Coverage of this fluorinated thiolate monolayer is (6.3 plus or minus 0.8) x 10(exp -10) mol/cm(sup 2), consistent with the expected 0.25 monolayer coverage of the (2 x 2) adlayer structure at Au(111). Infrared reflection spectroscopy also confirmed this. Upon prolonged exposure to air, the thiolate species is oxidized to elemental sulfur in the forms of cyclooctasulfur (cyclo-S8) and other allotropes. STM reveals square structures on aged thiolate monolayers. Dimensions of these squares (0.40-0.50 nm per side) are close to those of cyclo-S8. Electrochemical reductive desorption experiments also reveal a change in the surface species with time, with a second desorption wave.

  18. Craig L. Perkins, Ph.D. | NREL

    Science.gov Websites

    molecular beam epitaxy systems, two photoemission systems, a field-emission scanning Auger microprobe, a ;Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphonic Acid

  19. Pronounced Environmental Effects on Injection Currents in EGaIn Tunneling Junctions Comprising Self-Assembled Monolayers.

    PubMed

    Carlotti, Marco; Degen, Maarten; Zhang, Yanxi; Chiechi, Ryan C

    2016-09-15

    Large-area tunneling junctions using eutectic Ga-In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show that self-assembled monolayers of wire-like oligophenyleneethynylenes (OPEs), which are fully conjugated, only exhibit length-dependent tunneling behavior in a low-O 2 environment. We attribute this unexpected behavior to the sensitivity of injection current on environment. We conclude that, contrary to previous reports, the self-limiting layer of Ga 2 O 3 strongly influences transport properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the electrode-molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area molecular junctions.

  20. Pronounced Environmental Effects on Injection Currents in EGaIn Tunneling Junctions Comprising Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    Large-area tunneling junctions using eutectic Ga–In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show that self-assembled monolayers of wire-like oligophenyleneethynylenes (OPEs), which are fully conjugated, only exhibit length-dependent tunneling behavior in a low-O2 environment. We attribute this unexpected behavior to the sensitivity of injection current on environment. We conclude that, contrary to previous reports, the self-limiting layer of Ga2O3 strongly influences transport properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the electrode–molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area molecular junctions. PMID:27738488

  1. Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111).

    PubMed

    Li, Yan; Lu, Deyu; Galli, Giulia

    2009-04-14

    We present many-body perturbation theory calculations of the electronic properties of phenylene diisocyanide self-assembled monolayers (SAMs) on a gold surface. Using structural models obtained within density functional theory (DFT), we have investigated how the SAM molecular energies are modified by self-energy corrections and how they are affected by the presence of the surface. We have employed a combination of GW (G = Green's function; W = screened Coulomb interaction) calculations of the SAM quasi-particle energies and a semiclassical image potential model to account for surface polarization effects. We find that it is essential to include both quasi-particle corrections and surface screening in order to provide a reasonable estimate of the energy level alignment at a SAM-metal interface. In particular, our results show that within the GW approximation the energy distance between phenylene diisocyanide SAM energy levels and the gold surface Fermi level is much larger than that found within DFT, e.g., more than double in the case of low packing densities of the SAM.

  2. Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of β-Cyclodextrin Derivative

    PubMed Central

    Pan, Yong; Mu, Ning; Shao, Shengyu; Yang, Liu; Wang, Wen; Xie, Xiao; He, Shitang

    2015-01-01

    Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a β-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  3. Self-Assembled N-Heterocyclic Carbene-Based Carboxymethylated Dextran Monolayers on Gold as a Tunable Platform for Designing Affinity-Capture Biosensor Surfaces.

    PubMed

    Li, Zhijun; Munro, Kim; Narouz, Mina R; Lau, Andrew; Hao, Hongxia; Crudden, Cathleen M; Horton, J Hugh

    2018-05-30

    Sensor surfaces play a predominant role in the development of optical biosensor technologies for the analysis of biomolecular interactions. Thiol-based self-assembled monolayers (SAMs) on gold have been widely used as linker layers for sensor surfaces. However, the degradation of the thiol-gold bond can limit the performance and durability of such surfaces, directly impacting their performance and cost-effectiveness. To this end, a new family of materials based on N-heterocyclic carbenes (NHCs) has emerged as an alternative for surface modification, capable of self-assembling onto a gold surface with higher affinity and superior stability as compared to the thiol-based systems. Here we demonstrate three applications of NHC SAMs supporting a dextran layer as a tunable platform for developing various affinity-capture biosensor surfaces. We describe the development and testing of NHC-based dextran biosensor surfaces modified with each of streptavidin, nitrilotriacetic acid, and recombinant Protein A. These affinity-capture sensor surfaces enable oriented binding of ligands for optimal performance in biomolecular assays. Together, the intrinsic high stability and flexible design of the NHC biosensing platforms show great promise and open up exciting possibilities for future biosensing applications.

  4. Studying electron transfer through alkanethiol self-assembled monolayers on a hanging mercury drop electrode using potentiometric measurements.

    PubMed

    Cohen-Atiya, Meirav; Mandler, Daniel

    2006-10-14

    A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.

  5. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only aftermore » -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.« less

  6. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    PubMed Central

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-01-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557

  7. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    NASA Astrophysics Data System (ADS)

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-03-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.

  8. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    PubMed Central

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M.; Grainger, David W.; Castner, David G.; Gamble, Lara J.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s → π* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex milieu (i.e., serum) were characterized by surface plasmon resonance (SPR) and 32P-radiometric assays and reported in a related study PMID:16689533

  9. Structure and dynamics in self-organized C60 fullerenes.

    PubMed

    Patnaik, Archita

    2007-01-01

    This manuscript on 'structure and dynamics in self-organized C60 fullerenes' has three sections dealing with: (A) pristine C60 aggregate structure and geometry in solvents of varying dielectric constant. Here, using positronium (Ps) as a fundamental probe which maps changes in the local electron density of the microenvironment, the onset concentration for stable C60 aggregate formation and its phase behavior is deduced from the specific interactions of the Ps atom with the surrounding. (B) A novel methanofullerene dyad, based on a hydrophobic (acceptor C60 moiety)-hydrophilic (bridge with benzene and ester functionalities)-hydrophobic (donor didodecyloxybenzene) network is chosen for investigation of characteristic self-assembly it undergoes leading to supramolecular aggregates. The pi-electronic amphiphile, necessitating a critical dielectric constant epsilon > or = 30 in binary THF-water mixtures, dictated the formation of bilayer vesicles as precursors for spherical fractal aggregates upon complete dyad extraction into a more polar water phase. (C) While the molecular orientation is dependent on the packing density, the ordering of the molecular arrangement, indispensable for self-assembly depends on the balance between the structures demanded by inter-molecular and molecule-substrate interactions. The molecular orientation in a monolayer affects the orientation in a multilayer, formed on the monolayer, suggesting the possibility of the latter to act as a template for controlling the structure of the three dimensionally grown self-assembled molecular aggregation. A systematic study on the electronic structure and orientation associated with C60 functionalized aminothiol self-assembled monolayers on Au(111) surface is presented using surface sensitive Ultra-Violet Photoelectron Spectroscopy (UPS) and C-K edge Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The results revealed drastic modifications to d-band structure of Au(111) and the electronic structure was found sensitive towards the S-Au interface and the C60 end functional moiety with formation of localized sigma-(S-Au) and sigma(N-C) bonds, respectively. Upon binding C60 to the amine-terminated alkanethiol SAM, a drastically reduced HOMO-LUMO gap of 2.7 eV as compared to a large electronic gap of approximately 8 eV in alkanethiols enables the SAM to be a potential electron transport medium.

  10. The Structure of Self-Assembled Monolayers of Alkylsiloxanes on Silicon: A Comparison of Results from Ellipsometry and Low-Angle X-Ray Reflectivity

    DTIC Science & Technology

    1989-05-01

    Thicknesses measured by the two methods differ by 2.2 (rlms) for alkyl chains of 10 - 18 carbon atoms and have a maximum difference of 4.2 e Ellipsometry...the approximate area projected by each alkyl group in the plane of the monolayer is 0,, 1’ ) # . Preliminary studies indicate that the use of this...projected by each alkyl group in the plane of the monolayer is - 21 ± 3 A2 . Preliminary studies indicate that this technique can be used to follow the

  11. Methods of making functionalized nanorods

    DOEpatents

    Gur, Ilan [San Francisco, CA; Milliron, Delia [Berkeley, CA; Alivisatos, A Paul [Oakland, CA; Liu, Haitao [Berkeley, CA

    2012-01-10

    A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.

  12. Dendronization-induced phase-transfer, stabilization and self-assembly of large colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B.; Donnio, Bertrand

    2016-07-01

    The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates.The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. Electronic supplementary information (ESI) available: TEM microscope images. See DOI: 10.1039/c6nr03404g

  13. On the use of (3-trimethoxysilylpropyl)diethylenetriamine self-assembled monolayers as seed layers for the growth of Mn based copper diffusion barrier layers

    NASA Astrophysics Data System (ADS)

    Brady-Boyd, A.; O'Connor, R.; Armini, S.; Selvaraju, V.; Hughes, G.; Bogan, J.

    2018-01-01

    In this work x-ray photoelectron spectroscopy is used to investigate in-vacuo, the interaction of metallic manganese with a (3-trimethoxysilylpropyl)diethylenetriamine (DETA) self-assembled monolayer (SAM) on SiO2 and non-porous low-k dielectric materials. Subsequent deposition of a ∼0.5 nm thick Mn, followed by a 200 °C anneal results in the Mn diffusing through the SAM to interact with the underlying SiO2 layer to form a Mn-silicate layer. Furthermore, there is evidence that the Mn interacts with the carbon and nitrogen within the SAM to form Mn-carbide and Mn-nitride, respectively. When deposited on low-k materials the Mn is found to diffuse through to the SAM on deposition and interact both with the SAM and the underlying substrate in a similar fashion.

  14. Infrared spectroscopy of large scale single layer graphene on self assembled organic monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo Kim, Nak; Youn Kim, Joo; Lee, Chul

    2014-01-27

    We study the effect of self-assembled monolayer (SAM) organic molecule substrate on large scale single layer graphene using infrared transmission measurement on Graphene/SAM/SiO{sub 2}/Si composite samples. From the Drude weight of the chemically inert CH{sub 3}-SAM, the electron-donating NH{sub 2}-SAM, and the SAM-less graphene, we determine the carrier density doped into graphene by the three sources—the SiO{sub 2} substrate, the gas-adsorption, and the functional group of the SAM's—separately. The SAM-treatment leads to the low carrier density N ∼ 4 × 10{sup 11} cm{sup −2} by blocking the dominant SiO{sub 2}- driven doping. The carrier scattering increases by the SAM-treatment rather than decreases. However, the transportmore » mobility is nevertheless improved due to the reduced carrier doping.« less

  15. Effect of molecular desorption on the electronic properties of self-assembled polarizable molecular monolayers.

    PubMed

    Wang, Gunuk; Jeong, Hyunhak; Ku, Jamin; Na, Seok-In; Kang, Hungu; Ito, Eisuke; Jang, Yun Hee; Noh, Jaegeun; Lee, Takhee

    2014-04-01

    We investigated the interfacial electronic properties of self-assembled monolayers (SAM)-modified Au metal surface at elevated temperatures. We observed that the work functions of the Au metal surfaces modified with SAMs changed differently under elevated-temperature conditions based on the type of SAMs categorized by three different features based on chemical anchoring group, molecular backbone structure, and the direction of the dipole moment. The temperature-dependent work function of the SAM-modified Au metal could be explained in terms of the molecular binding energy and the thermal stability of the SAMs, which were investigated with thermal desorption spectroscopic measurements and were explained with molecular modeling. Our study will aid in understanding the electronic properties at the interface between SAMs and metals in organic electronic devices if an annealing treatment is applied. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Intermixed adatom and surface-bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111).

    PubMed

    Ouyang, Runhai; Yan, Jiawei; Jensen, Palle S; Ascic, Erhad; Gan, Shiyu; Tanner, David; Mao, Bingwei; Niu, Li; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Reimers, Jeffrey R; Ulstrup, Jens

    2015-04-07

    In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nanoporous Gold for Enzyme Immobilization.

    PubMed

    Stine, Keith J; Jefferson, Kenise; Shulga, Olga V

    2017-01-01

    Nanoporous gold (NPG) is a material of emerging interest for immobilization of biomolecules, especially enzymes. The material provides a high surface area form of gold that is suitable for physisorption or for covalent modification by self-assembled monolayers. The material can be used as a high surface area electrode and with immobilized enzymes can be used for amperometric detection schemes. NPG can be prepared in a variety of formats from alloys containing between 20 and 50 % atomic composition of gold and less noble element(s) by dealloying procedures. Materials resembling NPG can be prepared by hydrothermal and electrodeposition methods. Related high surface area gold structures have been prepared using templating approaches. Covalent enzyme immobilization can be achieved by first forming a self-assembled monolayer on NPG bearing a terminal reactive functional group followed by conjugation to the enzyme through amide linkages to lysine residues. Enzymes can also be entrapped by physisorption or immobilized by electrostatic interactions.

  18. A Dual-Responsive Self-Assembled Monolayer for Specific Capture and On-Demand Release of Live Cells.

    PubMed

    Gao, Xia; Li, Qiang; Wang, Fengchao; Liu, Xuehui; Liu, Dingbin

    2018-06-22

    We report a dual-responsive self-assembled monolayer (SAM) on a well-defined rough gold substrate for dynamic capture and release of live cells. By incorporating 5'-triphosphate (ATP) aptamer into a SAM, we can accurately isolate specific cell types and subsequently release captured cells at either population or desired-group (or even single-cell) levels. On one hand, the whole SAMs can be disassembled through addition of ATP solution, leading to the entire release of the captured cells from the supported substrate. On the other hand, desired cells can be selectively released by using near-infrared light (NIR) irradiation, with relatively high spatial and temporal precision. The proposed dual-responsive cell capture-and-release system is biologically friendly and is reusable with another round of modification, showing great usefulness in cancer diagnosis and molecular analysis.

  19. Tribological Effects on DNA Translocation in a Nanochannel Coated with a Self-Assembled Monolayer

    PubMed Central

    Luan, Binquan; Afzali, Ali; Harrer, Stefan; Peng, Hongbo; Waggoner, Philip; Polonsky, Stas; Stolovitzky, Gustavo; Martyna, Glenn

    2010-01-01

    A biomimetic nanochannel coated with a self-assembled monolayer (SAM) can be used for sensing and analyzing biomolecules. The interaction between a transported biomolecule and a SAM governs the mechanically or electrically driven motion of the molecule. To investigate the translocation dynamics of a biomolecule, we performed all-atom molecular dynamics simulations on a single-stranded DNA in a solid-state nanochannel coated with a SAM that consists of octane or octanol polymers. Simulation results demonstrate that the interaction between DNA and a hydrophobic or a hydrophilic SAM is effectively repulsive or adhesive, respectively, resulting in different translocation dynamics of DNA. Therefore, with proper designs of SAMs coated on a channel surface, it is possible to control the translocation dynamics of a biomolecule. This work also demonstrates that traditional tribology methods can be deployed to study a biological or bio-mimetic transport process. PMID:21128651

  20. Measurement of molecular length of self-assembled monolayer probed by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ito, Juri; Kajikawa, Kotaro

    2016-02-01

    We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.

  1. Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off.

    PubMed

    She, Zhe; Difalco, Andrea; Hähner, Georg; Buck, Manfred

    2012-01-01

    Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around -0.7 V versus Cu(2+)/Cu and a growth phase at around -0.35 V versus Cu(2+)/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off.

  2. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation

    NASA Astrophysics Data System (ADS)

    Schneider, Grégory F.; Xu, Qiang; Hage, Susanne; Luik, Stephanie; Spoor, Johannes N. H.; Malladi, Sairam; Zandbergen, Henny; Dekker, Cees

    2013-10-01

    Graphene nanopores are potential successors to biological and silicon-based nanopores. For sensing applications, it is however crucial to understand and block the strong nonspecific hydrophobic interactions between DNA and graphene. Here we demonstrate a novel scheme to prevent DNA-graphene interactions, based on a tailored self-assembled monolayer. For bare graphene, we encounter a paradox: whereas contaminated graphene nanopores facilitated DNA translocation well, clean crystalline graphene pores very quickly exhibit clogging of the pore. We attribute this to strong interactions between DNA nucleotides and graphene, yielding sticking and irreversible pore closure. We develop a general strategy to noncovalently tailor the hydrophobic surface of graphene by designing a dedicated self-assembled monolayer of pyrene ethylene glycol, which renders the surface hydrophilic. We demonstrate that this prevents DNA to adsorb on graphene and show that single-stranded DNA can now be detected in graphene nanopores with excellent nanopore durability and reproducibility.

  3. Interaction of bovine serum albumin protein with self assembled monolayer of mercaptoundecanoic acid

    NASA Astrophysics Data System (ADS)

    Poonia, Monika; Agarwal, Hitesh; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    Detection of proteins and other biomolecules in liquid phase is the essence for the design of a biosensor. The sensitivity of a sensor can be enhanced by the appropriate functionalization of the sensing area so as to establish the molecular specific interaction. In the present work, we have studied the interaction of bovine serum albumin (BSA) protein with a chemically functionalized surface using a quartz crystal microbalance (QCM). The gold-coated quartz crystals (AT-cut/5 MHz) were functionalized by forming self-assembled monolayer (SAM) of 11-Mercaptoundecanoic acid (MUA). The adsorption characteristics of BSA onto SAM of MUA on quartz crystal are reported. BSA showed the highest affinity for SAM of MUA as compared to pure gold surface. The SAM of MUA provides carboxylated surface which enhances not only the adsorption of the BSA protein but also a very stable BSA-MUA complex in the liquid phase.

  4. Biological Activation of Inert Ceramics: Recent Advances Using Tailored Self-Assembled Monolayers on Implant Ceramic Surfaces

    PubMed Central

    Böke, Frederik; Schickle, Karolina; Fischer, Horst

    2014-01-01

    High-strength ceramics as materials for medical implants have a long, research-intensive history. Yet, especially on applications where the ceramic components are in direct contact with the surrounding tissue, an unresolved issue is its inherent property of biological inertness. To combat this, several strategies have been investigated over the last couple of years. One promising approach investigates the technique of Self-Assembled Monolayers (SAM) and subsequent chemical functionalization to create a biologically active tissue-facing surface layer. Implementation of this would have a beneficial impact on several fields in modern implant medicine such as hip and knee arthroplasty, dental applications and related fields. This review aims to give a summarizing overview of the latest advances in this recently emerging field, along with thorough introductions of the underlying mechanism of SAMs and surface cell attachment mechanics on the cell side. PMID:28788687

  5. Controlled doping by self-assembled dendrimer-like macromolecules

    NASA Astrophysics Data System (ADS)

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-02-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm-3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.

  6. Molecular-like hierarchical self-assembly of monolayers of mixtures of particles

    PubMed Central

    Singh, P.; Hossain, M.; Gurupatham, S. K.; Shah, K.; Amah, E.; Ju, D.; Janjua, M.; Nudurupati, S.; Fischer, I.

    2014-01-01

    We present a technique that uses an externally applied electric field to self-assemble monolayers of mixtures of particles into molecular-like hierarchical arrangements on fluid-liquid interfaces. The arrangements consist of composite particles (analogous to molecules) which are arranged in a pattern. The structure of a composite particle depends on factors such as the relative sizes of the particles and their polarizabilities, and the electric field intensity. If the particles sizes differ by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles form a ring around it. The number of particles in the ring and the spacing between the composite particles depend on their polarizabilities and the electric field intensity. Approximately same sized particles form chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate. PMID:25510331

  7. Self-assembled Tunable Photonic Hyper-crystals

    DTIC Science & Technology

    2014-07-16

    a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to...monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. 2 Approved for public release...assembly of photonic hyper crystals has been achieved by application of external magnetic field to a cobalt nanoparticle based ferrofluid. Unique spectral

  8. Structure and property relations of macromolecular self-assemblies at interfaces

    NASA Astrophysics Data System (ADS)

    Yang, Zhihao

    Hydrophilic polymer chains, poly(ethylene glycol) (PEG), are attached to glass surfaces by silylation of the silanol groups on glass surfaces with the omega-(methoxyl terminated PEG) trimethoxysilanes. These tethered polymer chains resemble the self-assembled monolayers (SAMs) of PEG, which exhibit excellent biocompatibility and provide a model system for studying the interactions of proteins with polymer surfaces. The low molecular weight PEGs tend to extend, forming a brush-like monolayer, whereas the longer polymer chains tend to interpenetrate each other, forming a mushroom-like PEG monolayer at the interface. Interactions between a plasma protein, bovine serum albumin, and the PEG-SAMs are investigated in terms of protein adsorption and diffusion on the surfaces by the technique of fluorescence recovery after photobleaching (FRAP). The diffusion and aggregation behaviors of the protein on the two monolayers are found to be quite different despite the similarities in adsorption and desorption behaviors. The results are analyzed with a hypothesis of the hydrated surface dynamics. A method of covalently bonding phospholipid molecules to silica substrates followed by loading with free phospholipids is demonstrated to form well organized and stable phospholipid self-assembled monolayers. Surfaces of such SAMs structurally mimic the aqueous sides of phospholipid bilayer membranes. The dynamics of phospholipids and an adsorbed protein, lipase, in the SAMs are probed with FRAP, in terms of lateral diffusion of both phospholipids and protein molecules. The esterase activity of lipase on the SAM surfaces is confirmed by the hydrolysis reaction of a substrate, umbelliferone stearate, showing such lipid SAMs posess biomembrane functionality in terms of interfacial activation of the membranous enzymes. Dynamics of polyethylene oxide and polypropylene oxide tri-block copolymers, PEO-PPO-PEO and PPO-PEO-PPO, at the air/water interface upon thermal stimulation is studied by surface light scattering, in terms of the dynamic surface tension changes in response to a temperature jump. The characteristic of the surface tension relaxation is found to be highly related to the molecular structure and concentration of the copolymers at the interface.

  9. Highly Transparent and Self-Extinguishing Nanofibrillated Cellulose-Monolayer Clay Nanoplatelet Hybrid Films.

    PubMed

    Ming, Siyi; Chen, Gang; He, Jiahao; Kuang, Yudi; Liu, Yu; Tao, Ruiqiang; Ning, Honglong; Zhu, Penghui; Liu, Yingyao; Fang, Zhiqiang

    2017-08-29

    A viable solution toward "green" optoelectronics is rooted in our ability to fabricate optoelectronics on transparent nanofibrillated cellulose (NFC) film substrates. However, the flammability of transparent NFC film poses a severe fire hazard in optoelectronic devices. Despite many efforts toward enhancing the fire-retardant features of transparent NFC film, making NFC film fire-retardant while maintaining its high transparency (≥90%) remains an ambitious objective. Herein, we combine NFC with NFC-dispersed monolayer clay nanoplatelets as a fire retardant to prepare highly transparent NFC-monolayer clay nanoplatelet hybrid films with a superb self-extinguishing behavior. Homogeneous and stable monolayer clay nanoplatelet dispersion was initially obtained by using NFC as a green dispersing agent with the assistance of ultrasonication and then used to blend with NFC to prepare highly transparent and self-extinguishing hybrid films by a water evaporation-induced self-assembly process. As the content of monolayer clay nanoplatelets increased from 5 wt % to 50 wt %, the obtained hybrid films presented enhanced self-extinguishing behavior (limiting oxygen index sharply increased from 21% to 96.5%) while retaining a ∼90% transparency at 600 nm. More significantly, the underlying mechanisms for the high transparency and excellent self-extinguishing behavior of these hybrid films with a clay nanoplatelet content of over 30 wt % were unveiled by a series of characterizations such as SEM, XRD, TGA, and limiting oxygen index tester. This work offers an alternative environmentally friendly, self-extinguishing, and highly transparent substrate to next-generation optoelectronics, and is aimed at providing a viable solution to environmental concerns that are caused by ever-increasing electronic waste.

  10. Fullerene-derivative PC61BM forms three types of phase-pure monolayer on the surface of Au(111)

    NASA Astrophysics Data System (ADS)

    Li, Wen-Jie; Du, Ying-Ying; Zhang, Han-Jie; Chen, Guang-Hua; Sheng, Chun-Qi; Wu, Rui; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; He, Pi-Mo; Li, Hong-Nian

    2016-12-01

    We have studied the packing structures of C60-derivative PC61BM on the surface of Au(111) in ultrahigh vacuum using scanning tunneling microscopy. The Au(111) has a triangle-like reconstructed surface, which results in some packing structures different from those reported for low coverages. PC61BM can form three types of phase-pure monolayer, namely, the compact straight molecular double-row monolayer, the hexagonal-packing monolayer and the glassy monolayer. The different types of monolayer form for different molecular densities and different annealing temperatures. In addition to the already known inter-molecular interactions (Van de Waals interaction and hydrogen bond), the steric effect of the phenyl-butyric-acid-methyl-ester side tail plays conspicuous role in the molecular self-assembly at high coverages. The steric effect makes it difficult to prepare a hexagonal-packing monolayer at room temperature and decides the instability of the hexagonal-packing monolayer prepared by thermal annealing.

  11. Molecular architecture: construction of self-assembled organophosphonate duplexes and their electrochemical characterization.

    PubMed

    Cattani-Scholz, Anna; Liao, Kung-Ching; Bora, Achyut; Pathak, Anshuma; Hundschell, Christian; Nickel, Bert; Schwartz, Jeffrey; Abstreiter, Gerhard; Tornow, Marc

    2012-05-22

    Self-assembled monolayers of phosphonates (SAMPs) of 11-hydroxyundecylphosphonic acid, 2,6-diphosphonoanthracene, 9,10-diphenyl-2,6-diphosphonoanthracene, and 10,10'-diphosphono-9,9'-bianthracene and a novel self-assembled organophosphonate duplex ensemble were synthesized on nanometer-thick SiO(2)-coated, highly doped silicon electrodes. The duplex ensemble was synthesized by first treating the SAMP prepared from an aromatic diphosphonic acid to form a titanium complex-terminated one; this was followed by addition of a second equivalent of the aromatic diphosphonic acid. SAMP homogeneity, roughness, and thickness were evaluated by AFM; SAMP film thickness and the structural contributions of each unit in the duplex were measured by X-ray reflection (XRR). The duplex was compared with the aliphatic and aromatic monolayer SAMPs to determine the effect of stacking on electrochemical properties; these were measured by impedance spectroscopy using aqueous electrolytes in the frequency range 20 Hz to 100 kHz, and data were analyzed using resistance-capacitance network based equivalent circuits. For the 11-hydroxyundecylphosphonate SAMP, C(SAMP) = 2.6 ± 0.2 μF/cm(2), consistent with its measured layer thickness (ca. 1.1 nm). For the anthracene-based SAMPs, C(SAMP) = 6-10 μF/cm(2), which is attributed primarily to a higher effective dielectric constant for the aromatic moieties (ε = 5-10) compared to the aliphatic one; impedance spectroscopy measured the additional capacitance of the second aromatic monolayer in the duplex (2ndSAMP) to be C(Ti/2ndSAMP) = 6.8 ± 0.7 μF/cm(2), in series with the first.

  12. Method for fabricating hafnia films

    DOEpatents

    Hu, Michael Z [Knoxville, TN

    2007-08-21

    The present invention comprises a method for fabricating hafnia film comprising the steps of providing a substrate having a surface that allows formation of a self-assembled monolayer thereon via covalent bonding; providing an aqueous solution that provides homogeneous hafnium ionic complexes and hafnium nanoclusters wherein the aqueous solution is capable of undergoing homogeneous precipitation under controlled conditions for a desired period of time at a controlled temperature and controlled solution acidity for desired nanocluster nucleation and growth kinetics, desired nanocluster size, desired growth rate of film thickness and desired film surface characteristics. The method further comprising forming the self-assembled monolayer on the surface of the substrate wherein the self-assembled monolayer comprises a plurality of hydrocarbon chains cross-linked together along the surface of the substrate, the hydrocarbon chains being uniformly spaced from one another and wherein each of the hydrocarbon chains having a functional anchoring group at a first end of the chain covalently bonded with the surface of the substrate and each of the hydrocarbon chains having a functional terminating group projected away from the surface wherein the functional terminating group provides a bonding site for the hafnium film to grow; and exposing the substrate to the aqueous solution for a desired period of time at a controlled temperature wherein the hafnium ionic complexes and the hafnium nanoclusters are deposited on the bonding site of the functional terminating group thereby forming the hafnia film wherein the hafnium bonded to the hydrocarbons and to one another provide a uniform ordered arrangement defined by the uniform arrangement of the hydrocarbons.

  13. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers

    NASA Astrophysics Data System (ADS)

    Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.

    2018-05-01

    We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (<1 ), indicating that the monolayer underwent a stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.

  14. Characterization of Surface-Active Biofilm Protein BslA in Self-Assembling Langmuir Monolayer at the Air-Water Interface.

    PubMed

    Liu, Wei; Li, Shanghao; Wang, Zhuguang; Yan, Elsa C Y; Leblanc, Roger M

    2017-08-01

    Biofilm is an extracellular matrix of bacteria and serves as a protective shield of bacterial communities. It is crucial for microbial growth and one of the leading causes of human chronic infections as well. However, the structures and molecular mechanism of biofilm formation remain largely unknown. Here, we examined a protein, BslA, expressed in the biofilms of Bacillus subtilis. We characterized the Langmuir monolayers of BslA at the air/water interface. Using techniques in surface chemistry and spectroscopy, we found that BslA forms a stable and robust Langmuir monolayer at the air/water interface. Our results show that the BslA Langmuir monolayer underwent two-stage elasticity in the solid state phase upon mechanical compression: one is possibly due to the intermolecular interaction and the other is likely due to both the intermolecular compulsion and the intramolecular distortion. The Langmuir monolayer of BslA shows abrupt changes in rigidities and elasticities at ∼25 mN/m. This surface pressure is close to the one at which BlsA saturates the air/water interface as a self-assembled film without mechanical compression, corresponding to a mean molecular area of ∼700 Å 2 per molecule. Based on the results of surface UV-visible spectroscopy and infrared reflective-absorption spectroscopy, we propose that the BslA Langmuir monolayer carries intermolecular elasticity before ∼25 mN/m and both intermolecular and intramolecular elasticity after ∼25 mN/m. These results provide valuable insights into the understanding of biofilm-associated protein under high mechanical force, shedding light on further investigation of biofilm structure and functionalities.

  15. Thin Film Assembly of Spider Silk-like Block Copolymers

    DTIC Science & Technology

    2011-01-01

    Shipley, N. H.; Lewis, R. V. Int. J. Biol.Macromol. 1999, 24, 271. (c) Thiel, B. L.; Guess, K. B.; Viney, C. Biopolymers 1997, 41, 703. (13) Silk ...Film Assembly of Spider Silk -like Block Copolymers Sreevidhya T. Krishnaji,†,‡ Wenwen Huang,§ Olena Rabotyagova,†,‡ Eugenia Kharlampieva, ) Ikjun Choi...Received November 26, 2010 We report the self-assembly of monolayers of spider silk -like block copolymers. Langmuir isotherms were obtained for a series of

  16. X-ray photoelectron spectroscopy study of para-substituted benzoic acids chemisorbed to aluminum oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreil, Justin; Ellingsworth, Edward; Szulczewski, Greg

    A series of para-substituted, halogenated (F, Cl, Br, and I) benzoic acid monolayers were prepared on the native oxide of aluminum surfaces by solution self-assembly and spin-coating techniques. The monolayers were characterized by x-ray photoelectron spectroscopy (XPS) and water contact angles. Several general trends are apparent. First, the polarity of the solvent is critical to monolayer formation. Protic polar solvents produced low coverage monolayers; in contrast, nonpolar solvents produced higher coverage monolayers. Second, solution deposition yields a higher surface coverage than spin coating. Third, the thickness of the monolayers determined from XPS suggests the plane of the aromatic ring ismore » perpendicular to the surface with the carboxylate functional group most likely binding in a bidentate chelating geometry. Fourth, the saturation coverage (∼2.7 × 10{sup 14} molecules cm{sup −2}) is independent of the para-substituent.« less

  17. Characterization of a Self-Assembled Monolayer of 1-Thio-β-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode.

    PubMed

    Smith, Scott R; Seenath, Ryan; Kulak, Monika R; Lipkowski, Jacek

    2015-09-15

    Preparation of a nanoparticle modified gold substrate designed for characterization of hydrophilic self-assembled monolayers (SAMs) of 1-thio-β-D-glucose (TG) with electrochemical surface-enhanced Raman spectroscopy (EC-SERS) is presented. Citrate stabilized gold nanoparticles were deposited on a polycrystalline gold electrode and subjected to an electrochemical desorption procedure to completely remove all traces of adsorbed citrate. Complete desorption of citrate was confirmed by recording cyclic voltammetry curves and SERS spectra. The citrate-free nanoparticle modified gold electrode was then incubated in a 1 mg mL(-1) aqueous solution of TG for 16 h prior to being characterized by EC-SERS. The SERS spectra confirmed that at potentials more negative than -0.10 V vs SCE thioglucose forms a monolayer in which the majority of the molecules preserve their lactol ring structure and only a small fraction of molecules appear to be oxidized. At potentials more positive than -0.10 V, the oxidation of TG molecules becomes prominent, and at potentials more positive than 0.20 V vs SCE, the monolayer of TG consists chiefly of oxidized product. The SERS spectra collected in the double layer region suggest the SAM of TG is well hydrated and hence can be used for hydrophilic modifications of a gold surface.

  18. Electronic Structure of a Self-Assembled Monolayer with Two Surface Anchors: 6-Mercaptopurine on Au(111).

    PubMed

    Fernández, Cynthia C; Pensa, Evangelina; Carro, Pilar; Salvarezza, Roberto; Williams, Federico J

    2018-05-22

    The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied in relation to possible applications in molecular electronics. In this work, the effect on the electronic structure of an additional anchor to the S-Au bond using 6-mercaptopurine as a model system has been investigated. Results from X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory (DFT) confirm that this molecule adsorbs on Au(111) with S-Au and iminic N-Au bonds. Combined ultraviolet photoelectron spectroscopy and DFT data reveal that formation of the 6MP self-assembled monolayer generates a molecular dipole perpendicular to the surface, with negative charges residing at the metal/monolayer interface and positive charges at the monolayer/vacuum interface, which lowers the substrate work function. Scanning tunneling microscopy shows two surface molecular domains: a well-ordered rectangular lattice where molecules are tilted on average 30° with respect to the substrate and aligned 6MP islands where molecules are standing upright. Finally, we found a new electronic state located at -1.7 eV with respect to the Fermi level that corresponds to a localized π molecular state, while the state corresponding to the N-Au bond is hybridized with Au d electrons and stabilized at much lower energies (-3 eV).

  19. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  20. Metadynamics simulations of calcite crystallization on self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Quigley, D.; Rodger, P. M.; Freeman, C. L.; Harding, J. H.; Duffy, D. M.

    2009-09-01

    We show that recent developments in the application of metadynamics methods to direct simulations of crystallization make it possible to predict the orientation of crystals grown on self-assembled monolayers. In contrast to previous studies, the method allows for dynamic treatment of the organic component and the inclusion of explicit surface water without the need for computationally intensive interfacial energy calculations or prior knowledge of the interfacial structure. The method is applied to calcite crystallization on carboxylate terminated alkanethiols arrayed on Au (111). We demonstrate that a dynamic treatment of the monolayer is sufficient to reproduce the experimental results without the need to impose epitaxial constraints on the system. We also observe an odd-even effect in the variation of selectivity with organic chain length, reproducing experimentally observed orientations in both cases. Analysis of the ordering process in our simulations suggests a cycle of mutual control in which both the organic and mineral components induce complementary local order across the interface, leading to the formation of a critical crystalline region. The influence of pH, together with some factors that might affect the range of applicability of our method, is discussed.

  1. Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate.

    PubMed

    Lei, Qun-Li; Ni, Ran; Ma, Yu-Qiang

    2018-06-20

    Chiral crystals consisting of microhelices have many optical properties, while presently available fabrication processes limit their large-scale applications in photonic devices. Here, by using a simplified simulation method, we investigate a bottom-up self-assembly route to build up helical crystals from the smectic monolayer of a colloidal helix racemate. With increasing the density, the system undergoes an entropy-driven cocrystallization by forming crystals of various symmetries with different helical shapes. In particular, we identify two crystals of helices arranged in binary honeycomb and square lattices, which are essentially composed of two sets of opposite-handed chiral crystals. Photonic calculations show that these chiral structures can have large complete photonic band gaps. In addition, in the self-assembled chiral square crystal, we also find dual polarization band gaps that selectively forbid the propagation of circularly polarized light of a specific handedness along the helical axis direction. The self-assembly process in our proposed system is robust, suggesting possibilities of using chiral colloids to assemble photonic metamaterials.

  2. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  3. Transmission X-ray scattering as a probe for complex liquid-surface structures

    DOE PAGES

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; ...

    2016-01-28

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibilitymore » of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.« less

  4. Chiral symmetry breaking during the self-assembly of monolayers from achiral purine molecules.

    PubMed

    Sowerby, S J; Heckl, W M; Petersen, G B

    1996-11-01

    Scanning tunneling microscopy was used to investigate the structure of the two-dimensional adsorbate formed by molecular self-assembly of the purine base, adenine, on the surfaces of the naturally occurring mineral molybdenite and the synthetic crystal highly oriented pyrolytic graphite. Although formed from adenine, which is achiral, the observed adsorbate surface structures were enantiomorphic on molybdenite. This phenomenon suggests a mechanism for the introduction of a localized chiral symmetry break by the spontaneous crystallization of these prebiotically available molecules on inorganic surfaces and may have some role in the origin of biomolecular optical asymmetry. The possibility that purine-pyrimidine arrays assembled on naturally occurring mineral surfaces might act as possible templates for biomolecular assembly is discussed.

  5. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Armini, Silvia; Zhang, Yu; Kakizaki, Takeaki; Krause-Rehberg, Reinhard; Anwand, Wolfgang; Wagner, Andreas

    2016-04-01

    Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C4F8 plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C4F8 plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

  6. In Situ Observations of UV-Induced Restructuring of Self-Assembled Porphyrin Monolayer on Liquid/Au(111) Interface at Molecular Level.

    PubMed

    Kim, Yongman; Doh, Won Hui; Kim, Jeongjin; Park, Jeong Young

    2018-05-29

    Porphyrin-derived molecules have received much attention for use in solar energy conversion devices, such as artificial leaves and dye-sensitized solar cells. Because of their technological importance, a molecular-level understanding of the mechanism for supramolecular structure formation in a liquid, as well as their stability under ultraviolet (UV) irradiation, is important. Here, we observed the self-assembled structure of free-base, copper(II), and nickel(II) octaethylporphyrin formed on Au(111) in a dodecane solution using scanning tunneling microscopy (STM). As evident in the STM images, the self-assembled monolayers (SAMs) of these three porphyrins on the Au(111) surface showed hexagonal close-packed structures when in dodecane solution. Under UV irradiation (λ = 365 nm), the porphyrin molecules in the SAM or the dodecane solution move extensively and form new porphyrin clusters on the Au sites that have a high degree of freedom. Consequently, the Au(111) surface was covered with disordered porphyrin clusters. However, we found that the porphyrin molecules decomposed under UV irradiation at 254 nm. Molecular-scale observation of the morphological evolution of the porphyrin SAM under UV irradiation can provide a fundamental understanding of the degradation processes of porphyrin-based energy conversion devices.

  7. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films.

    PubMed

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Kawazumi, Hirofumi; Yamada, Sunao

    2009-04-09

    The effect of localized electric fields on the photocurrent responses of phthalocyanine that was self-assembled on a gold nanoparticle film was investigated by comparing the conventional and the total internal reflection (TIR) experimental systems. In the case of photocurrent measurements, self-assembled monolayers (SAMs) of a thiol derivative of palladium phthalocyanine (PdPc) were prepared on the surface of gold-nanoparticle film that was fixed on the surface of indium-tin-oxide (ITO) substrate via a polyion (PdPc/AuP/polyion/ITO) or on the ITO surface (PdPc/ITO). Photocurrent action spectra from the two samples were compared by using the conventional spectrometer, and were found that PdPc/AuP/polyion/ITO gave considerably larger photocurrent signals than PdPc/ITO under the identical concentration of PdPc. In the case of the TIR experiments for the PdPc/AuP/polyion/ITO and the PdPc/AuP/Glass systems, incident-angle profiles of photocurrent and emission signals were correlated with each other, and they were different from that of the PdPc/ITO system. Accordingly, it was demonstrated that the photocurrent signals were certainly enhanced by the localized electric fields of the gold-nanoparticle film.

  8. Control of hydroxyapatite coating by self-assembled monolayers on titanium and improvement of osteoblast adhesion.

    PubMed

    Shen, Juan; Qi, Yongcheng; Jin, Bo; Wang, Xiaoyan; Hu, Yamin; Jiang, Qiying

    2017-01-01

    Self-assembly technique was applied to introduce functional groups and form hydroxyl-, amine-, and carboxyl-terminal self-assembled monolayers (SAMs). The SAMs were grafted onto titanium substrates to obtain a molecularly smooth functional surface. Subsequent hydrothermal crystal growth formed homogeneous and crack-free crystalline hydroxyapatite (HA) coatings on these substrates. AFM and XPS were used to characterize the SAM surfaces, and XRD, SEM, and TEM were used to characterize the HA coatings. Results show that highly crystalline, dense, and oriented HA coatings can be formed on the OH-, NH 2 -, and COOH-SAM surfaces. The SAM surface with -COOH exhibited stronger nucleating ability than that with -OH and -NH 2 . The nucleation and growth processes of HA coatings were effectively controlled by varying reaction time, pH, and temperature. By using this method, highly crystalline, dense, and adherent HA coatings were obtained. In addition, in vitro cell evaluation demonstrated that HA coatings improved cell adhesion as compared with pristine titanium substrate. The proposed method is considerably effective in introducing the HA coatings on titanium surfaces for various biomedical applications and further usage in other industries. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 124-135, 2017. © 2015 Wiley Periodicals, Inc.

  9. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, J. E.; Linköping University, 581 83 Linköping; National Taiwan University of Science and Technology, Taipei 10607, Taiwan

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development bymore » Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting, adhesion, electrochemistry, biocompatibility, molecular recognition, biosensing, cell biology, non-linear optics, molecular electronics, solar cells, read/write/erase memory, and magnetism.« less

  10. Diffusion and self-assembly of C60 molecules on monolayer graphyne sheets

    PubMed Central

    Ozmaian, Masoumeh; Fathizadeh, Arman; Jalalvand, Morteza; Ejtehadi, Mohammad Reza; Allaei, S. Mehdi Vaez

    2016-01-01

    The motion of a fullerene (C60) on 5 different types of graphyne is studied by all-atom molecular dynamics simulations and compared with former studies on the motion of C60 on graphene. The motion shows a diffusive behavior which consists of either a continuous motion or discrete movements between trapping sites depending on the type of the graphyne sheet. For graphyne-4 and graphyne-5, fullerenes could detach from the surface of the graphyne sheet at room temperature which was not reported for similar cases on graphene sheets. Collective motion of a group of fullerenes interacting with a graphyne studied and it is shown that fullerenes exhibit stable assemblies. Depending on the type of graphyne, these assemblies can have either single or double layers. The mobility of the assembled structures is also dependent on the type of the graphyne sheet. The observed properties of the motion suggests novel applications for the complexes of fullerene and monolayer graphynes. PMID:26912386

  11. EFFECTS OF POLYCYCLIC AROMATIC HYDROCARBON OF SAM-COATED ELECTRODES USING FERRYICYANIDE AS THE REDOX INDICATOR

    EPA Science Inventory

    Electrochemical responses on self-assembled monolayer (SAM)-coated polycrystalline gold electrodes were investigated using cyclic voltammetry and square wave voltammetry with a three electrode system. Experimental results show potential in the application of pyrene-imprinted SAM...

  12. Monolayers and multilayers of conjugated polymers as nanosized electronic components.

    PubMed

    Zotti, Gianni; Vercelli, Barbara; Berlin, Anna

    2008-09-01

    Conjugated polymers (CPs) are interesting materials for preparing devices based on nanoscopic molecular architectures because they exhibit electrical, electronic, magnetic, and optical properties similar to those of metals or semiconductors while maintaining the flexibility and ease of processing of polymers. The production of well-defined mono- and multilayers of CPs on electrodes with nanometer-scale, one-dimensional resolution remains, however, an important challenge. In this Account, we describe the preparation and conductive properties of nanometer-sized CP molecular structures formed on electrode surfaces--namely, self-assembled monolayer (SAM), brush-type, and self-assembled multilayer CPs--and in combination with gold nanoparticles (AuNPs). We have electrochemically polymerized SAMs of carboxyalkyl-functionalized terthiophenes aligned either perpendicular or parallel to the electrode surface. Anodic coupling of various pyrrole- and thiophene-based monomers in solution with the oligothiophene-based SAMs produced brush-like films. Microcontact printing of these SAMs produced patterns that, after heterocoupling, exhibited large height enhancements, as measured using atomic force microscopy (AFM). We have employed layer-by-layer self-assembly of water-soluble polythiophene-based polyelectrolytes to form self-assembled multilayers. The combination of isostructural polycationic and polyanionic polythiophenes produced layers of chains aligned parallel to the substrate plane. These stable, robust, and dense layers formed with high regularity on the preformed monolayers, with minimal interchain penetration. Infrared reflection/adsorption spectroscopy and X-ray diffraction analyses revealed unprecedented degrees of order. Deposition of soluble polypyrroles produced molecular layers that, when analyzed using a gold-coated AFM tip, formed gold-polymer-gold junctions that were either ohmic or rectifying, depending of the layer sequence. We also describe the electronic conduction of model alpha,omega-capped sexithiophenes featuring a range of electron donor/acceptor units and lengths of additional conjugation. The sexithiophene cores exhibit redox-type conductivity, developing at the neutral/cation and cation/dication levels with values depending the nature of the substitution and the redox system. Extending the conjugation beyond the sexithiophene frame introduces further oxidation processes displaying enhanced conductivity. Finally, we discuss the ability of CP-based monolayers to coordinate AuNPs. Although thiophene- and pyrrole-based oligomers aggregate toluene-soluble AuNPs, alkyl substitution inhibits the aggregation process through steric restraint. Consequently, we investigated the interactions between AuNPs and polypyrrole or polythiophene monolayers, including those formed from star-shaped molecules. The hindered aggregation provided by alkyl substituents allowed us to adsorb thiol-functionalized oligothiophenes and oligopyrroles directly onto preformed AuNPs. Novel materials incorporating AuNPs of the same size but bearing different conjugated ends or bridges have great promise for applications in electrocatalysis, electroanalysis, and organic electronics.

  13. Use of piezoelectric-excited millimeter-sized cantilever sensors to measure albumin interaction with self-assembled monolayers of alkanethiols having different functional headgroups.

    PubMed

    Campbell, Gossett A; Mutharasan, Raj

    2006-04-01

    In this paper, we describe a new modality of measuring human serum albumin (HSA) adsorption continuously on CH3-, COOH-, and OH-terminated self-assembled monolayers (SAMs) of C11-alkanethiols and the direct quantification of the adsorbed amount. A gold-coated piezoelectric-excited millimeter-sized cantilever (PEMC) sensor of 6-mm2 sensing area was fabricated, where resonant frequency decreases upon mass increase. The resonant frequency in air of the detection peak was 45.5 +/- 0.01 kHz. SAMs of C11-thiols (in absolute ethanol) with different end groups was prepared on the PEMC sensor and then exposed to buffer solution containing HSA at 10 microg/mL. The resonant frequency decreased exponentially and reached a steady-state value within 30 min. The decrease in resonant frequency indicates that the mass of the sensor increased due to HSA adsorption onto the SAM layer. The frequency change obtained for the HSA adsorption on CH3-, COOH-, and OH-terminated SAM were 520.8 +/- 8.6 (n = 3), 290.4 +/- 6.1 (n = 2), and 210.6 +/- 8.1 Hz (n = 3), respectively. These results confirm prior conclusions that albumin adsorption decreased in the order, CH(3) > COOH > OH. Observed binding rate constants were 0.163 +/- 0.003, 0.248 +/- 0.006, and 0.381 +/- 0.001 min(-1), for methyl, carboxylic, and hydroxyl end groups, respectively. The significance of the results reported here is that both the formation of self-assembled monolayers and adsorption of serum protein onto the formed layer can be measured continuously, and quantification of the adsorbed amount can be determined directly.

  14. Thermodynamics of Alkanethiol Self-Assembled Monolayer Assembly on Pd Surfaces.

    PubMed

    Kumar, Gaurav; Van Cleve, Timothy; Park, Jiyun; van Duin, Adri; Medlin, J Will; Janik, Michael J

    2018-06-05

    We investigate the structure and binding energy of alkanethiolate self-assembled monolayers (SAMs) on Pd (111), Pd (100), and Pd (110) facets at different coverages. Dispersion-corrected density functional theory calculations are used to correlate the binding energy of alkanethiolates with alkyl chain length and coverage. The equilibrium coverage of thiolate layers strongly prefers 1/3 monolayer (ML) on the Pd (111) surface. The coverage of thiolates varies with chemical potential on Pd (100) and Pd (110), increasing from 1/3 to 1/2 ML on (100) and from 1/4 to 1/2 ML on (110) as the thiol chemical potential is increased. Higher coverages are driven by attractive dispersion interactions between the extended alkyl chains, such that transitions to higher coverages occur at lower thiol chemical potentials for longer chain thiolates. Stronger adsorption to the Pd (100) surface causes the equilibrium Wulff construction of Pd particles to take on a cubic shape upon saturation with thiols. The binding of H, O, and CO adsorbates is weakened as the thiolate coverage is increased, with saturation coverages causing unfavorable binding of O and CO on Pd (100) and weakened binding on other facets. Temperature-dependent CO diffuse reflectance infrared Fourier transform spectroscopy experiments are used to corroborate the weakened binding of CO in the presence of thiolate SAMs of varying surface density. Preliminary results of multiscale modeling efforts on the Pd-thiol system using a reactive force field, ReaxFF, are also discussed.

  15. Thickness-dependence of block copolymer coarsening kinetics

    DOE PAGES

    Black, Charles T.; Forrey, Christopher; Yager, Kevin G.

    2017-03-31

    In spite of active research, many fundamental aspects of block copolymer ordering remain unresolved. We studied the thickness-dependence of block copolymer grain coarsening kinetics, and find that thinner films order more rapidly than thicker films. Bilayer films, or monolayers with partial layers of islands, order more slowly than monolayers because of the greater amount of material that must rearrange in a coordinated fashion. Sub-monolayer films order much more rapidly than monolayers, exhibiting considerably smaller activation energies, as well as larger exponents for the time-growth power-law. Furthermore, by using molecular dynamics simulations, we directly study the motion of defects in thesemore » film regimes. Here, we attribute the enhanced grain growth in sub-monolayers to the film boundaries, where defects can be spontaneously eliminated. The boundaries thus act as efficient sinks for morphological defects, pointing towards methods for engineering rapid ordering of self-assembling thin films.« less

  16. Thickness-dependence of block copolymer coarsening kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Charles T.; Forrey, Christopher; Yager, Kevin G.

    In spite of active research, many fundamental aspects of block copolymer ordering remain unresolved. We studied the thickness-dependence of block copolymer grain coarsening kinetics, and find that thinner films order more rapidly than thicker films. Bilayer films, or monolayers with partial layers of islands, order more slowly than monolayers because of the greater amount of material that must rearrange in a coordinated fashion. Sub-monolayer films order much more rapidly than monolayers, exhibiting considerably smaller activation energies, as well as larger exponents for the time-growth power-law. Furthermore, by using molecular dynamics simulations, we directly study the motion of defects in thesemore » film regimes. Here, we attribute the enhanced grain growth in sub-monolayers to the film boundaries, where defects can be spontaneously eliminated. The boundaries thus act as efficient sinks for morphological defects, pointing towards methods for engineering rapid ordering of self-assembling thin films.« less

  17. Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor

    PubMed Central

    Kisailus, David; Truong, Quyen; Amemiya, Yosuke; Weaver, James C.; Morse, Daniel E.

    2006-01-01

    The recent discovery and characterization of silicatein, a mineral-synthesizing enzyme that assembles to form the filamentous organic core of the glassy skeletal elements (spicules) of a marine sponge, has led to the development of new low-temperature synthetic routes to metastable semiconducting metal oxides. These protein filaments were shown in vitro to catalyze the hydrolysis and structurally direct the polycondensation of metal oxides at neutral pH and low temperature. Based on the confirmation of the catalytic mechanism and the essential participation of specific serine and histidine residues (presenting a nucleophilic hydroxyl and a nucleophilicity-enhancing hydrogen-bonding imidazole nitrogen) in silicatein’s catalytic active site, we therefore sought to develop a synthetic mimic that provides both catalysis and the surface determinants necessary to template and structurally direct heterogeneous nucleation through condensation. Using lithographically patterned poly(dimethylsiloxane) stamps, bifunctional self-assembled monolayer surfaces containing the essential catalytic and templating elements were fabricated by using alkane thiols microcontact-printed on gold substrates. The interface between chemically distinct self-assembled monolayer domains provided the necessary juxtaposition of nucleophilic (hydroxyl) and hydrogen-bonding (imidazole) agents to catalyze the hydrolysis of a gallium oxide precursor and template the condensed product to form gallium oxohydroxide (GaOOH) and the defect spinel, gamma-gallium oxide (γ-Ga2O3). Using this approach, the production of patterned substrates for catalytic synthesis and templating of semiconductors for device applications can be envisioned. PMID:16585518

  18. Hydration of Sulphobetaine (SB) and Tetra(ethylene glycol) (EG4)-Terminated Self-Assembled Monolayers Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy

    PubMed Central

    Stein, M. Jeanette; Weidner, Tobias; McCrea, Keith; Castner, David G.; Ratner, Buddy D.

    2010-01-01

    Sum frequency generation (SFG) vibrational spectroscopy is used to study the surface and the underlying substrate of both homogeneous and mixed self-assembled monolayers (SAMs) of 11-mercaptoundecyl-1-sulphobetainethiol (HS(CH2)11N+(CH3)2(CH2)3SO3−, SB) and 1-mercapto-11-undecyl tetra(ethylene glycol) (HS(CH2)11O(CH2CH2O)4OH, EG4) with an 11-mercapto-1-undecanol (HS(CH2)11OH, MCU) diluent. SFG results on the C–H region of the dry and hydrated SAMs gave an in situ look into the molecular orientation and suggested an approach to maximize signal-to-noise ratio on these difficult to analyze hydrophilic SAMs. Vibrational fingerprint studies in the 3000–3600 cm−1 spectral range for the SAMs exposed serially to air, water, and deuterated water revealed that a layer of tightly-bound structured water was associated with the surface of a non-fouling monolayer but was not present on a hydrophobic N-undecylmercaptan (HS(CH2)10CH3, UnD) control. The percentage of water retained upon submersion in D2O correlated well with the relative amount of protein that was previously shown to absorb onto the monolayers. These results provide evidence supporting the current theory regarding the role of a tightly-bound vicinal water layer in the protein resistance of a non-fouling group. PMID:19639981

  19. Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

    PubMed Central

    She, Zhe; DiFalco, Andrea; Hähner, Georg

    2012-01-01

    Summary Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around −0.7 V versus Cu2+/Cu and a growth phase at around −0.35 V versus Cu2+/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off. PMID:22428101

  20. Biomimetics with a self-assembled monolayer of catalytically active tethered isoalloxazine on Au.

    PubMed

    Calvo, Ernesto J; Rothacher, M Silvina; Bonazzola, Cecilia; Wheeldon, Ian R; Salvarezza, Roberto C; Vela, Maria Elena; Benitez, Guillermo

    2005-08-16

    A new biomimetic nanostructured electrocatalyst comprised of a self-assembled monolayer (SAM) of flavin covalently attached to Au by reaction of methylformylisoalloxazine with chemisorbed cysteamine is introduced. Examinations by Fourier transform infrared spectroscopy and scanning tunneling microscopy (STM) show that the flavin molecules are oriented perpendicular to the surface with a 2 nm separation between flavin molecules. As a result of the contrast observed in the STM profiles between areas only covered by unreacted cysteamine and those covered by flavin-cysteamine moieties, it can be seen that the flavin molecules rise 0.7 nm above the chemisorbed cysteamines. The SAM flavin electrocatalyst undergoes fast electron transfer with the underlying Au and shows activity toward the oxidation of enzymatically active beta-NADH at pH 7 and very low potential (-0.2 V vs Ag/AgCl), a requirement for use in an enzymatic biofuel cell, and a 100-fold increase in activity with respect to the collisional reaction in solution.

  1. Injection-modulated polarity conversion by charge carrier density control via a self-assembled monolayer for all-solution-processed organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Roh, Jeongkyun; Lee, Taesoo; Kang, Chan-Mo; Kwak, Jeonghun; Lang, Philippe; Horowitz, Gilles; Kim, Hyeok; Lee, Changhee

    2017-04-01

    We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of SAMs with different dipole direction, thiophenol (TP) and pentafluorobenzene thiol (PFBT) were employed, modifying the work function of the inkjet-printed Ag (4.9 eV) to 4.66 eV and 5.24 eV with TP and PFBT treatments, respectively. The charge carrier densities were controlled by the SAM treatment in both dominant and non-dominant carrier-channel regimes. This work demonstrates that control of the charge carrier densities can be efficiently achieved by modifying the injection property with SAM treatment; thus, this approach can achieve polarity conversion of the OFETs.

  2. Formation of a 1,8-octanedithiol self-assembled monolayer on Au(111) prepared in a lyotropic liquid-crystalline medium.

    PubMed

    García Raya, Daniel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2010-07-20

    A characterization of the 1,8-octanedithiol (ODT) self-assembled monolayer (SAM) formed from a Triton X-100 lyotropic medium has been conducted by electrochemical techniques. It is found that an ODT layer of standing-up molecules is obtained at short modification time without removing oxygen from the medium. The electrochemical study shows that the ODT layer formed after 15 min of modification time has similar electron-transfer blocking properties to the layers formed from organic solvents at much longer modification times. On the basis of XPS data, it is demonstrated that the inability to bind gold nanoparticles (AuNPs) is due to the presence of extra ODT molecules either interdigited or on top of the layer. Treatment consisting of an acid washing step following the formation of the ODT-Au(111) SAM produces a layer that is able to attach AuNPs as demonstrated by electrochemical techniques and atomic force microscopy (AFM) images.

  3. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers.

    PubMed

    Reimers, Jeffrey R; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J J; Hendriksen, Bas L M; Elemans, Johannes A A W; Hush, Noel S; Crossley, Maxwell J

    2015-11-10

    Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate-molecule interactions (e.g., -100 kcal mol(-1) to -150 kcal mol(-1) for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70-110 kcal mol(-1)) and entropy effects (25-40 kcal mol(-1) at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.

  4. Optical properties of azobenzene-functionalized self-assembled monolayers: Intermolecular coupling and many-body interactions

    NASA Astrophysics Data System (ADS)

    Cocchi, Caterina; Moldt, Thomas; Gahl, Cornelius; Weinelt, Martin; Draxl, Claudia

    2016-12-01

    In a joint theoretical and experimental work, the optical properties of azobenzene-functionalized self-assembled monolayers (SAMs) are studied at different molecular packing densities. Our results, based on density-functional and many-body perturbation theory, as well as on differential reflectance (DR) spectroscopy, shed light on the microscopic mechanisms ruling photo-absorption in these systems. While the optical excitations are intrinsically excitonic in nature, regardless of the molecular concentration, in densely packed SAMs intermolecular coupling and local-field effects are responsible for a sizable weakening of the exciton binding strength. Through a detailed analysis of the character of the electron-hole pairs, we show that distinct excitations involved in the photo-isomerization at low molecular concentrations are dramatically broadened by intermolecular interactions. Spectral shifts in the calculated DR spectra are in good agreement with the experimental results. Our findings represent an important step forward to rationalize the excited-state properties of these complex materials.

  5. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-07-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation.

  6. Probing Phase Evolutions of Au-Methyl-Propyl-Thiolate Self-Assembled Monolayers on Au(111) at the Molecular Level.

    PubMed

    Gao, Jianzhi; Lin, Haiping; Qin, Xuhui; Zhang, Xin; Ding, Haoxuan; Wang, Yitao; Rokni Fard, Mahroo; Kaya, Dogan; Zhu, Gangqiang; Li, Qing; Li, Youyong; Pan, Minghu; Guo, Quanmin

    2018-06-18

    A self-assembled monolayer (SAM) consisting of a mixture of CH 3 S-Au-SCH 3 , CH 3 S-Au-S(CH 2 ) 2 CH 3 , and CH 3 (CH 2 ) 2 S-Au-S(CH 2 ) 2 CH 3 was studied systematically using scanning tunneling microscopy and density functional calculations. We find that the SAM is subjected to frequent changes at the molecular level on the time scale of ∼minutes. The presence of CH 3 S or CH 3 S-Au as a dissociation product of CH 3 S-Au-SCH 3 plays a key role in the dynamical behavior of the mixed SAM. Slow phase separation takes place at room temperature over hours to days, leading to the formation of methyl-thiolate-rich and propyl-thiolate-rich phases. Our results provide new insights into the chemistry of the thiolate-Au interface, especially for ligand exchange reaction in the RS-Au-SR staple motif.

  7. Electrokinetic Stringency Control in Self-Assembled Monolayer-based Biosensors for Multiplex Urinary Tract Infection Diagnosis

    PubMed Central

    Liu, Tingting; Sin, Mandy L. Y.; Pyne, Jeff D.; Gau, Vincent; Liao, Joseph C.; Wong, Pak Kin

    2013-01-01

    Rapid detection of bacterial pathogens is critical toward judicious management of infectious diseases. Herein, we demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis. The in situ electrokinetic stringency control technique generates Joule heating induced temperature rise and electrothermal fluid motion directly on the sensor to improve its performance for detecting bacterial 16S rRNA, a phylogenetic biomarker. The dependence of the hybridization efficiency reveals that in situ electrokinetic stringency control is capable of discriminating single-base mismatches. With electrokinetic stringency control, the background noise due to the matrix effects of clinical urine samples can be reduced by 60%. The applicability of the system is demonstrated by multiplex detection of three uropathogenic clinical isolates with similar 16S rRNA sequences. The results demonstrate that electrokinetic stringency control can significantly improve the signal-to-noise ratio of the biosensor for multiplex urinary tract infection diagnosis. PMID:23891989

  8. Sub-2 nm Thick Fluoroalkylsilane Self-Assembled Monolayer-Coated High Voltage Spinel Crystals as Promising Cathode Materials for Lithium Ion Batteries

    PubMed Central

    Zettsu, Nobuyuki; Kida, Satoru; Uchida, Shuhei; Teshima, Katsuya

    2016-01-01

    We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4−δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4−δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissolution of Mn3+ from the spinel lattice via oxidative decomposition of the organic electrolyte. Capacity retention was improved to 97% on coating ultra-thin FAS17-SAM onto the LiNi0.5Mn1.5O4 cathode surface. Such surface protection with highly ordered fluoroalkyl chains insulated the cathode from direct contact with the organic electrolyte and led to increased tolerance to HF. PMID:27553901

  9. Direct organocatalytic enantioselective functionalization of SiOx surfaces.

    PubMed

    Parkin, John David; Chisholm, Ross; Frost, Aileen B; Bailey, Richard G; Smith, Andrew David; Hähner, Georg

    2018-06-05

    Traditional methods to prepare chiral surfaces involve either the adsorption of a chiral molecule onto an achiral surface, or adsorption of a species that forms a chiral template creating lattices with long range order. To date only limited alternative strategies to prepare chiral surfaces have been studied. In this manuscript a "bottom up" approach is developed that allows the preparation of chiral surfaces by direct enantioselective organocatalysis on a functionalized Si-oxide supported self-assembled monolayer (SAM). The efficient catalytic generation of enantiomerically enriched organic surfaces is achieved using a commercially available homogeneous isothiourea catalyst (HyperBTM) that promotes an enantioselective Michael-lactonization process upon a Si-oxide supported self-assembled monolayer functionalized with a reactive trifluoroenone group. Chiral atomic force microscopy (chi-AFM) is used to probe the enantiomeric enrichment of the organic films by measurement of the force distributions arising from interaction of D- or L-cysteine modified AFM tips and the organic films. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    PubMed Central

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-01-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation. PMID:27468811

  11. Characterization of nanostructured surfaces generated by reconstitution of the porin MspA from Mycobacterium smegmatis.

    PubMed

    Wörner, Michael; Lioubashevski, Oleg; Basel, Matthew T; Niebler, Sandra; Gogritchiani, Eliso; Egner, Nicole; Heinz, Christian; Hoferer, Jürgen; Cipolloni, Michela; Janik, Katharine; Katz, Evgeny; Braun, Andre M; Willner, Itamar; Niederweis, Michael; Bossmann, Stefan H

    2007-06-01

    Nanostructures with long-term stability at the surface of gold electrodes are generated by reconstituting the porin MspA from Mycobacterium smegmatis into a specially designed monolayer of long-chain lipid surfactant on gold. Tailored surface coverage of gold electrodes with long-chain surfactants is achieved by electrochemically assisted deposition of organic thiosulfates (Bunte salts). The subsequent reconstitution of the octameric-pore MspA is guided by its extraordinary self-assembling properties. Importantly, electrochemical reduction of copper(II) yields copper nanoparticles within the MspA nanopores. Electrochemical impedance spectroscopy, reflection electron microscopy, and atomic force microscopy (AFM) show that: 1) the MspA pores within the self-assembled monolayer (SAM) are monodisperse and electrochemically active, 2) MspA reconstitutes in SAMs and with a 10-nm thickness, 3) AFM is a suitable method to detect pores within SAMs, and 4) the electrochemical reduction of Cu2+ to Cu0 under overpotential conditions starts within the MspA pores.

  12. High photoreactivity in a non-fluorescent photocleavable ligands on gold

    NASA Astrophysics Data System (ADS)

    Robinson, Hans D.; Daengngam, Chalongrat; Stoianov, Stefan V.; Thorpe, Steven B.; Guo, Xi; Santos, Webster L.; Morris, John R.

    2014-03-01

    We report on the photo-patterning of a gold surface functionalized with a self-assembled monolayer of an o-nitrobenzyl-based photocleavable ligand bound to the gold surface with a thiol anchor. We find that the dose of UV light required to induce the photoreaction on gold is very similar to the dose in an alcohol solution, even though many optical phenomena are strongly suppressed on metal surfaces. We attribute this finding to a combination of the large skin depth in gold at UV wavelengths, the high speed of the photoreaction, and the spatially indirect nature of the lowest excited singlet. Any photoreactive compound where the quantum efficiency of fluorescence is sufficiently low, preferably no larger than about 10-5 in the case of gold surfaces, will show a similarly high photoreactivity in metal-surface monolayers. The implications of this result for optically driven self-assembly in plasmonic systems will be discussed. This work was supported by a grant from the National Science Foundation (DMR-106753).

  13. Conformation-driven quantum interference effects mediated by through-space conjugation in self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Carlotti, Marco; Kovalchuk, Andrii; Wächter, Tobias; Qiu, Xinkai; Zharnikov, Michael; Chiechi, Ryan C.

    2016-12-01

    Tunnelling currents through tunnelling junctions comprising molecules with cross-conjugation are markedly lower than for their linearly conjugated analogues. This effect has been shown experimentally and theoretically to arise from destructive quantum interference, which is understood to be an intrinsic, electronic property of molecules. Here we show experimental evidence of conformation-driven interference effects by examining through-space conjugation in which π-conjugated fragments are arranged face-on or edge-on in sufficiently close proximity to interact through space. Observing these effects in the latter requires trapping molecules in a non-equilibrium conformation closely resembling the X-ray crystal structure, which we accomplish using self-assembled monolayers to construct bottom-up, large-area tunnelling junctions. In contrast, interference effects are completely absent in zero-bias simulations on the equilibrium, gas-phase conformation, establishing through-space conjugation as both of fundamental interest and as a potential tool for tuning tunnelling charge-transport in large-area, solid-state molecular-electronic devices.

  14. Vapor-phase-processed fluorinated self-assembled monolayer for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Roh, Jeongkyun; Lee, Changhee; Kwak, Jeonghun; Jung, Byung Jun; Kim, Hyeok

    2015-09-01

    A vapor-phase-processed fluorinated silazane self-assembled monolayer (SAM), 1,3-bis(trifluoropropyl)-1,1,3,3-tetramethyldisilazane (FPDS), was introduced as a surface modifier for pentacene-based organic thin-film transistors (OTFTs). A remarkable improvement in the field effect mobility from 0.25 cm2/Vs (without SAM-treatment) to 0.42 cm2/Vs (with FPDS-treatment) was observed, which was attributed to the better pentacene growth on a hydrophobic surface. A significant reduction in the contact resistance was also observed by FPDS treatment due to the improved bulk conductivity and diminished charge trapping at the gate dielectric surface by the SAM treatment. In addition, FPDS treatment efficiently improved the bias stability of the OTFTs; the drain-to-source current degradation by the bias stress was greatly reduced from 80% to 50% by FPDS treatment, and the characteristic time for charge trapping of the FPDS treated OTFTs was approximately one order of magnitude larger than that of the OTFTs without SAM treatment.

  15. Understanding the effects of packing and chemical terminations on the optical excitations of azobenzene-functionalized self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Cocchi, Caterina; Draxl, Claudia

    2017-10-01

    In a first-principles study based on many-body perturbation theory, we analyze the optical excitations of azobenzene-functionalized self-assembled monolayers (SAMs) with increasing packing density and different terminations, considering for comparison the corresponding gas-phase molecules and dimers. Intermolecular coupling increases with the density of the chromophores independently of the functional groups. The intense π → π* resonance that triggers photo-isomerization is present in the spectra of isolated dimers and diluted SAMs, but it is almost completely washed out in tightly packed architectures. Intermolecular coupling is partially inhibited by mixing differently functionalized azobenzene derivatives, in particular when large groups are involved. In this way, the excitation band inducing the photo-isomerization process is partially preserved and the effects of dense packing partly counterbalanced. Our results suggest that a tailored design of azobenzene-functionalized SAMs which optimizes the interplay between the packing density of the chromophores and their termination can lead to significant improvements in the photo-switching efficiency of these systems.

  16. Switchable friction enabled by nanoscale self-assembly on graphene

    DOE PAGES

    Gallagher, Patrick; Lee, Menyoung; Amet, Francois; ...

    2016-02-23

    Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4–6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as onmore » exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. In conclusion, our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates.« less

  17. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    NASA Astrophysics Data System (ADS)

    Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos; Soler, Monica

    2017-01-01

    We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  18. Dynamic information for cardiotoxin protein desorption from a methyl-terminated self-assembled monolayer using steered molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hung, Shih-Wei; Hsiao, Pai-Yi; Chieng, Ching-Chang

    2011-05-01

    Dynamic information, such as force, structural change, interaction energy, and potential of mean force (PMF), about the desorption of a single cardiotoxin (CTX) protein from a methyl-terminated self-assembled monolayer (SAM) surface was investigated by means of steered molecular dynamics (SMD) simulations. The simulation results indicated that Loop I is the first loop to depart from the SAM surface, which is in good agreement with the results of the nuclear magnetic resonance spectroscopy experiment. The free energy landscape and the thermodynamic force of the CTX desorption process was represented by the PMF and by the derivative of PMF with respect to distance, respectively. By applying Jarzynski's equality, the PMF can be reconstructed from the SMD simulation. The PMFs, calculated by different estimators based upon Jarzynski's equality, were compared with the conventional umbrella sampling method. The best estimation was obtained by using the fluctuation-dissipation estimator with a pulling velocity of v = 0.25 nm/ns for the present study.

  19. Self-assembly of (perfluoroalkyl)alkanes on a substrate surface from solutions in supercritical carbon dioxide.

    PubMed

    Gallyamov, Marat O; Mourran, Ahmed; Tartsch, Bernd; Vinokur, Rostislav A; Nikitin, Lev N; Khokhlov, Alexei R; Schaumburg, Kjeld; Möller, Martin

    2006-06-14

    Toroidal self-assembled structures of perfluorododecylnonadecane and perfluorotetradecyloctadecane have been deposited on mica and highly oriented pyrolytic graphite surfaces by exposure of the substrates to solutions of the (pefluoroalkyl)alkanes in supercritical carbon dioxide. Scanning force microscopy (SFM) images have displayed a high degree of regularity of these self-assembled nanoobjects regarding size, shape, and packing in a monolayer. Analysis of SFM images allowed us to estimate that each toroidal domain has an outer diameter of about 50 nm and consists of several thousands of molecules. We propose a simple model explaining the clustering of the molecules to objects with a finite size. The model based on the close-packing principles predicts formation of toroids, whose size is determined by the molecular geometry. Here, we consider the amphiphilic nature of the (perfluoroalkyl)alkane molecules in combination with incommensurable packing parameters of the alkyl- and the perfluoralkyl-segments to be a key factor for such a self-assembly.

  20. Protein adsorption and cell adhesion controlled by the surface chemistry of binary perfluoroalkyl/oligo(ethylene glycol) self-assembled monolayers.

    PubMed

    Li, Shanshan; Yang, Dingyun; Tu, Haiyang; Deng, Hongtao; Du, Dan; Zhang, Aidong

    2013-07-15

    This work reports a study of protein adsorption and cell adhesion on binary self-assembled monolayers (SAMs) of alkanethiols with terminal perfluoroalkyl (PFA) and oligo(ethylene glycol) (OEG) chains in varying ratios. The surface chemistry of the SAMs was characterized by contact angle measurement, grazing angle infrared spectroscopy (GIR), X-ray photoelectron spectroscopy, and the effect on protein adsorption was investigated by surface plasmon resonance, GIR, and immunosorbent assay. Hela cell adhesion on these surfaces was also studied by fluorescence microscopy. Results reveal that, compared to OEG, PFA tended to be a higher fraction of the composition in SAM than in the assembly solution. More interestingly, the nearly 38% PFA SAM had a strong antifouling property whereas the 74% PFA SAM showed a high adsorption capacity to protein and cell. The binary PFA/OEG SAMs were favorable for maintaining the fibrinogen conformation, hence its high activity. The findings may have important implications for constructing PFA-containing surfaces with the distinct properties that is highly resistant or highly favorable toward protein adsorption and cell adhesion. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7.

    PubMed

    Su, Xiao-Li; Li, Yanbin

    2004-01-15

    A piezoelectric immunosensor was developed for rapid detection of Escherichia coli O157:H7. It was based on the immobilization of affinity-purified antibodies onto a monolayer of 16-mercaptohexadecanoic acid (MHDA), a long-chain carboxylic acid-terminating alkanethiol, self-assembled on an AT-cut quartz crystal's Au electrode surface with N-hydroxysuccinimide (NHS) ester as a reactive intermediate. The binding of target bacteria onto the immobilized antibodies decreased the sensor's resonant frequency, and the frequency shift was correlated to the bacterial concentration. The stepwise assembly of the immunosensor was characterized by means of both quartz crystal microbalance (QCM) and cyclic voltammetry techniques. Three analytical procedures, namely immersion, dip-and-dry and flow-through methods, were investigated. The immunosensor could detect the target bacteria in a range of 10(3)-10(8)CFU/ml within 30-50 min, and the sensor-to-sensor reproducibility obtained at 10(3) and 10(5) colony-forming units (CFU)/ml was 18 and 11% R.S.D., respectively. The proposed sensor was comparable to Protein A-based piezoelectric immunosensor in terms of the amount of immobilized antibodies and detection sensitivity.

  2. Electrochromic Behavior of Ionically Self-Assembled Thin Films

    NASA Astrophysics Data System (ADS)

    Janik, J. A.; Heflin, J. R.; Marciu, D.; Miller, M. B.; Davis, R. M.

    2001-03-01

    Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).

  3. Topography and transport properties of oligo(phenylene ethynylene) molecular wires studied by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha R.; Fan, Wendy; Koehne, Jessica; Han, Jie; Meyyappan, M.

    2003-01-01

    Conjugated phenylene(ethynylene) molecular wires are of interest as potential candidates for molecular electronic devices. Scanning tunneling microscopic study of the topography and current-voltage (I-V) characteristics of self-assembled monolayers of two types of molecular wires are presented here. The study shows that the topography and I-Vs, for small scan voltages, of the two wires are quite similar and that the electronic and structural changes introduced by the substitution of an electronegative N atom in the central phenyl ring of these wires does not significantly alter the self-assembly or the transport properties.

  4. Phosphorus ionization in silicon doped by self-assembled macromolecular monolayers

    NASA Astrophysics Data System (ADS)

    Wu, Haigang; Li, Ke; Gao, Xuejiao; Dan, Yaping

    2017-10-01

    Individual dopant atoms can be potentially controlled at large scale by the self-assembly of macromolecular dopant carriers. However, low concentration phosphorus dopants often suffer from a low ionization rate due to defects and impurities introduced by the carrier molecules. In this work, we demonstrated a nitrogen-free macromolecule doping technique and investigated the phosphorus ionization process by low temperature Hall effect measurements. It was found that the phosphorus dopants diffused into the silicon bulk are in nearly full ionization. However, the electrons ionized from the phosphorus dopants are mostly trapped by deep level defects that are likely carbon interstitials.

  5. Effect of functional end groups of silane self assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function

    PubMed Central

    Toworfe, G.K.; Bhattacharyya, S.; Composto, R.J.; Adams, C.S.; Shapiro, I.M.; Ducheyne, P.

    2008-01-01

    Bioactive glass (BG) can directly bond to living bone without fibrous tissue encapsulation. Key mechanistic steps of BG’s activity are attributed to calcium phosphate formation, surface hydroxylation and fibronectin (FN) adsorption. In the present study, self-assembled monolayers (SAMs) of alkanesilanes with different surface chemistry (OH, NH2, and COOH) were used as a model system to mimic BG’s surface activity. Calcium phosphate (Ca-P) was formed on SAMs by immersion in a solution which simulates the electrolyte content of physiological fluids. FN adsorption kinetics and monolayer coverage was determined on SAMs with or without Ca-P coating. The surface roughness was also examined on these substrates before and after FN adsorption. The effects of FN-adsorbed, Ca-P coated SAMs on the function of MC3T3-E1 were evaluated by cell growth, expression of alkaline phosphatase activity, and actin cytoskeleton formation. We demonstrate that, although the FN monolayer coverage and the rms roughness are similar on −OH and −COOH terminated SAMs with or without Ca-P coating, higher levels of ALP activity, more actin cytoskeleton formation and more cell growth are obtained on −OH and −COOH terminated SAMs with Ca-P coating. In addition, although the FN monolayer coverage is higher on Ca-P coated −NH2 terminated SAMs and SiOx surfaces, higher levels of ALP activity and more cell growth are obtained on Ca-P coated −OH and −COOH terminated SAMs. Thus with same Ca-P coatings, different surface functional groups have different effects on the function of osteoblastic cells. These findings represent new insights into the mechanism of bioactivity of BG and, thereby, may lead to designing superior constructs for bone grafting. PMID:19012271

  6. Sparse-coding denoising applied to reversible conformational switching of a porphyrin self-assembled monolayer induced by scanning tunnelling microscopy.

    PubMed

    Oliveira, J; Bragança, A M; Alcácer, L; Morgado, J; Figueiredo, M; Bioucas-Dias, J; Ferreira, Q

    2018-04-14

    Scanning tunnelling microscopy (STM) was used to induce conformational molecular switching on a self-assembled monolayer of zinc-octaethylporphyrin on a graphite/tetradecane interface at room temperature. A reversible conformational change controlled by applying a tip voltage was observed. Consecutive STM images acquired at alternating tip voltages showed that at 0.4 V the porphyrin monolayer presents a molecular arrangement formed by alternate rows with two different types of structural conformations and when the potential is increased to 0.7 V the monolayer presents only one type of conformation. In this paper, we characterize these porphyrin conformational dynamics by analyzing the STM images, which were improved for better quality and interpretation by means of a denoising algorithm, adapted to process STM images from state of the art image processing and analysis methods. STM remains the best technique to 'see' and to manipulate the matter at atomic scale. A very sharp tip a few angstroms of the surface can provide images of molecules and atoms with a powerful resolution. However, these images are strongly affected by noise which is necessary to correct and eliminate. This paper is about new computational tools specifically developed to denoise the images acquired with STM. The new algorithms were tested in STM images, obtained at room temperature, of porphyrin monolayer which presents reversible conformational change in function of the tip bias voltage. Images with high resolution, acquired in real time, show that the porphyrins have different molecular arrangements whether the tip voltage is 0.4 V or 0.7 V. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  7. Molecular beam studies of the growth and kinetics of self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Schwartz, Peter Vincent

    Low energy helium diffraction, a quantitative structural characterization tool, has been used to measure the growth kinetics of self-assembled monolayers (SAMs). Special attention was given to the growth of decanethiol monolayers deposited from a molecular beam onto the (111) face of gold single crystals especially at the initial stages of growth. The influence of changing impingement rate, substrate temperature, and annealing treatments was investigated. We also studied the structure and dynamics of physisorbed adlayers on top of the monolayers and structural variations in monolayers caused by changes in chemical composition such as the addition of phenyl groups, and hydroxyl groups. Experimental work involved renovations to the existing diffractometer. The apparatus was improved with respect to its signal to noise ratio; efficiency in sample preparation and data collection; and the reproducibility of obtaining clean crystal surfaces. The renovations greatly extended the range of experiments of which the diffraction machine is capable. The growth of n-decanethiol SAMs by gas deposition was identified as a multi-stage process where the initial "lying down" layer grows on the bare gold surface with a near unity sticking coefficient, while the subsequent, "standing-up" phase grows with a sticking coefficient of about 10sp{-3}. The ordering and chemisorption of a single "lying down" layer of decanethiol was investigated by annealing a single layer physisorbed on a 130 K Au(111) surface to incrementally higher temperatures. The molecules first align themselves with the underlying gold substrate, then orient themselves in the "head to head" two molecule unit mesh, then chemisorb at still higher temperatures. Overlayers of long chain molecules grown on top of monolayers on Au(111) are found to be more ordered than the underlying monolayers themselves. The energy of adsorption to the organic surface is found to be very close to that of the bulk value, even for a gold-adlayer separation distance of about 4 A. Debye-Waller experiments were done to measure the stiffness of monolayers of different chain lengths, coverages and functional groups as well as overlayers.

  8. Formation and dissolution processes of the 6-thioguanine (6TG) self-assembled monolayer. A kinetic study.

    PubMed

    Madueño, Rafael; Pineda, Teresa; Sevilla, José Manuel; Blázquez, Manuel

    2005-02-03

    This is a report on the kinetics of the destruction and formation processes of the 6-thioguanine self-assembled monolayer (6TG SAM) on a mercury electrode from acid solutions by chronoamperometry. The destruction of the 6TG SAM that has been previously formed under open circuit potential conditions is carried out by stepping the potential from an initial value where the chemisorbed layer is stable up to potentials where the molecules are no longer chemisorbed. The destruction of the SAM has been described by a model that involves three types of contributions: (i) a Langmuir-type adsorption process, (ii) a 2D nucleation mechanism followed by a growth controlled by surface diffusion, and (iii) a 2D nucleation mechanism followed by a growth at a constant rate. The nonlinear fit of the experimental transients by using this procedure allows the quantitative determination of the individual contributions to the overall process. The kinetics of the formation process is studied under electrochemical conditions. The chronoamperometric experiment allows us to monitor the early stages of 6TG SAM formation. The implications of the physisorbed state at low potentials in the type of monolayer formation and destruction processes as well as the influence of temperature are also discussed.

  9. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.

    2009-04-01

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ˜1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly( p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays.

  10. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers.

    PubMed

    Rodrigues, Sofia N; Gonçalves, Inês C; Martins, M C L; Barbosa, Mário A; Ratner, Buddy D

    2006-11-01

    The effect of surface wettability on fibrinogen adsorption, platelet adhesion and platelet activation was investigated using self-assembled monolayers (SAMs) containing different ratios of longer chain methyl- and shorter chain hydroxyl-terminated alkanethiols (C15CH3 vs. C11OH) on gold. Protein adsorption studies were performed using radiolabeled human fibrinogen (HFG). Platelet adhesion and activation studies with and without pre-adsorbed fibrinogen, albumin and plasma were assessed using scanning electron microscopy (SEM) and a glutaraldehyde-induced fluorescence technique (GIFT). Results demonstrated a linear decrease of HFG adsorption with the increase of OH groups on the monolayer (increase of the hydrophilicity). Platelet adhesion and activation also decrease with increase of hydrophilicity of surface. Concerning SAMs pre-immersed in proteins, fibrinogen adsorption was related with high platelet adhesion and activation. The passivant effect of albumin on platelet adhesion and activation was only demonstrated on SAMs contained C11OH. When all the blood proteins are present (plasma) platelet adhesion was almost absent on SAMs with 65% and 100% C11OH. This could be explained by the higher albumin affinity of the SAMs with 65% C11OH and the lower total protein adsorption associated with SAMs with 100% C11OH.

  11. High coverage fluid-phase floating lipid bilayers supported by ω-thiolipid self-assembled monolayers

    PubMed Central

    Hughes, Arwel V.; Holt, Stephen A.; Daulton, Emma; Soliakov, Andrei; Charlton, Timothy R.; Roser, Steven J.; Lakey, Jeremy H.

    2014-01-01

    Large area lipid bilayers, on solid surfaces, are useful in physical studies of biological membranes. It is advantageous to minimize the interactions of these bilayers with the substrate and this can be achieved via the formation of a floating supported bilayer (FSB) upon either a surface bound phospholipid bilayer or monolayer. The FSB's independence is enabled by the continuous water layer (greater than 15 Å) that remains between the two. However, previous FSBs have had limited stability and low density. Here, we demonstrate by surface plasmon resonance and neutron reflectivity, the formation of a complete self-assembled monolayer (SAM) on gold surfaces by a synthetic phosphatidylcholine bearing a thiol group at the end of one fatty acyl chain. Furthermore, a very dense FSB (more than 96%) of saturated phosphatidylcholine can be formed on this SAM by sequential Langmuir–Blodgett and Langmuir–Schaefer procedures. Neutron reflectivity used both isotopic and magnetic contrast to enhance the accuracy of the data fits. This system offers the means to study transmembrane proteins, membrane potential effects (using the gold as an electrode) and even model bacterial outer membranes. Using unsaturated phosphatidylcholines, which have previously failed to form stable FSBs, we achieved a coverage of 73%. PMID:25030385

  12. Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers

    PubMed Central

    Ishikawa, Atsushi; Tanaka, Takuo

    2015-01-01

    The emerging field of plasmonic metamaterials has introduced new degree of freedom to manipulate optical field from nano to macroscopic scale, offering an attractive platform for sensing applications. So far, metamaterial sensor concepts, however, have focused on hot-spot engineering to improve the near-field enhancement, rather than fully exploiting tailored material properties. Here, we present a novel spectroscopic technique based on the metamaterial infrared (IR) absorber allowing for a low-background detection scheme as well as significant plasmonic enhancement. Specifically, we experimentally demonstrate the resonant coupling of plasmonic modes of a metamaterial absorber and IR vibrational modes of a molecular self-assembled monolayer. The metamaterial consisting of an array of Au/MgF2/Au structures exhibits an anomalous absorption at ~3000 cm−1, which spectrally overlaps with C-H stretching vibrational modes. Symmetric/asymmetric C-H stretching modes of a 16-Mercaptohexadecanoic acid monolayer are clearly observed as Fano-like anti-resonance peaks within a broad plasmonic absorption of the metamaterial. Spectral analysis using Fano line-shape fitting reveals the underlying resonant interference in plasmon-molecular coupled systems. Our metamaterial approach achieves the attomole sensitivity with a large signal-to-noise ratio in the far-field measurement, thus may open up new avenues for realizing ultrasensitive IR inspection technologies. PMID:26229011

  13. Photoresponse of supramolecular self-assembled networks on graphene-diamond interfaces.

    PubMed

    Wieghold, Sarah; Li, Juan; Simon, Patrick; Krause, Maximilian; Avlasevich, Yuri; Li, Chen; Garrido, Jose A; Heiz, Ueli; Samorì, Paolo; Müllen, Klaus; Esch, Friedrich; Barth, Johannes V; Palma, Carlos-Andres

    2016-02-25

    Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm(-2) irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 10(2) μm(2), an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution.

  14. Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces

    PubMed Central

    Wieghold, Sarah; Li, Juan; Simon, Patrick; Krause, Maximilian; Avlasevich, Yuri; Li, Chen; Garrido, Jose A.; Heiz, Ueli; Samorì, Paolo; Müllen, Klaus; Esch, Friedrich; Barth, Johannes V.; Palma, Carlos-Andres

    2016-01-01

    Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm−2 irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 102 μm2, an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution. PMID:26911248

  15. Developments in Molecular Recognition and Sensing at Interfaces

    PubMed Central

    Ariga, Katsuhiko; Hill, Jonathan P.; Endo, Hiroshi

    2007-01-01

    In biological systems, molecular recognition events occur mostly within interfacial environments such as at membrane surfaces, enzyme reaction sites, or at the interior of the DNA double helix. Investigation of molecular recognition at model interfaces provides great insights into biological phenomena. Molecular recognition at interfaces not only has relevance to biological systems but is also important for modern applications such as high sensitivity sensors. Selective binding of guest molecules in solution to host molecules located at solid surfaces is crucial for electronic or photonic detection of analyte substances. In response to these demands, molecular recognition at interfaces has been investigated extensively during the past two decades using Langmuir monolayers, self-assembled monolayers, and lipid assemblies as recognition media. In this review, advances of molecular recognition at interfaces are briefly summarized.

  16. Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.

    PubMed

    Noguchi, Hiroshi

    2013-01-14

    Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.

  17. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifan; Chan, Henry; Narayanan, Badri

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligandmore » coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.« less

  18. Charge injection and transport in a single organic monolayer island

    NASA Astrophysics Data System (ADS)

    Vuillaume, Dominique

    2005-03-01

    We report how electrons and holes, that are locally injected in a single organic monolayer island (where organic monolayers are made from sublimated oligomers (pentacene and other oligoacenes), or made from chemisorption in solution (self-assembled monolayers) of pi-conjugated moieties), stay localized or are able to delocalize over the island as a function of the molecular conformation (order vs. disorder) of this island. Charge carriers were locally injected by the apex of an atomic force microscope tip, and the resulting two-dimensional distribution and concentration of injected charges were measured by electrical force microscopy (EFM) experiments. We show that in crystalline monolayer islands, both electrons and holes can be equally injected, at a similar charge concentration for symmetric injection bias conditions, and that both charge carriers are delocalized over the whole island. On the contrary, charges injected into a more disordered monolayer stay localized at their injection point. These different results are discussed in relation with the electrical performances of molecular devices made from these monolayers (OFET, SAMFET). These results provide insight into the electronic properties, at the nanometer scale, of these molecular devices.

  19. Investigation of gas surface interactions at self-assembled silicon surfaces acting as gas sensors

    NASA Astrophysics Data System (ADS)

    Narducci, Dario; Bernardinello, Patrizia; Oldani, Matteo

    2003-05-01

    This paper reports the results of an investigation aimed at using self-assembled monolayers to modify the supramolecular interactions between Si surfaces and gaseous molecules. The specific goal is that of employing molecularly imprinted silicon surfaces to develop a new class of chemical sensors capable to detect species with enhanced selectivity. Single-crystal p-type (0 0 1) silicon has been modified by grafting organic molecules onto its surface by using wet chemistry synthetic methods. Silicon has been activated toward nucleophilic attack by brominating its surface using a modified version of the purple etch, and aromatic fragments have been bonded through the formation of direct Si-C bonds onto it using Grignard reagents or lithium aryl species. Formation of self-assembled monolayers (SAMs) was verified by using vibrational spectroscopy. Porous metal-SAM-Si diodes have been successfully tested as resistive chemical sensors toward NO x, SO x, CO, NH 3 and methane. Current-voltage characteristics measured at different gas compositions showed that the mechanism of surface electron density modulation involves a modification of the junction barrier height upon gas adsorption. Quantum-mechanical simulations of the interaction mechanism were carried out using different computational methods to support such an interaction mechanism. The results obtained appear to open up new relevant applications of the SAM techniques in the area of gas sensing.

  20. Neuron-like PC12 cell patterning on a photoactive self-assembled monolayer.

    PubMed

    Cheng, Nan; Cao, Xudong

    2013-11-01

    A new approach to pattern cells using photochemistry and self-assembled monolayer (SAM) was described in this study. Photocleavable 4,5-dimethoxy-2-nitrobenzyl chloroformate (NVOC) protected amine on an alkanethiol-gold SAM was developed for cell patterning. The cleavage of NVOC and the deprotection of amines on the SAM were controlled spatially by two sequential UV exposures with a photomask. Biomolecule patterning was achieved by introducing cell nonadhesive poly(ethylene glycol) after the first exposure and subsequently cell adhesive protein laminin after the second exposure to create surface cell adhesiveness differential for cell patterning. UV-Vis spectrophotometry was used to determine the photolysis of caged self-assembled molecules; in addition, water contact angle, atomic force microscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy were used to characterize properties of different surfaces. To test the efficacy of resulting surfaces in patterning cells, a neuron-like cell line, PC12 cell line, was used. The in vitro cell studies showed successful PC12 cell patterns on the photoactive SAM surfaces. This patterning technique is unique in that it does not rely on cell adhesive or nonadhesive properties of the starting base material as both cell adhesive and cell nonadhesive molecules were individually introduced onto the base material surface through photo-uncaging at preselected regions for the ultimate cell patterning. Copyright © 2013 Wiley Periodicals, Inc.

  1. Elucidating the role of methyl viologen as a scavenger of photoactivated electrons from photosystem I under aerobic and anaerobic conditions.

    PubMed

    Bennett, Tyler; Niroomand, Hanieh; Pamu, Ravi; Ivanov, Ilia; Mukherjee, Dibyendu; Khomami, Bamin

    2016-03-28

    We present detailed electrochemical investigations into the role of dissolved O2 in electrolyte solutions in scavenging photoactivated electrons from a uniform photosystem I (PS I) monolayer assembled on alkanethiolate SAM (self-assembled monolayer)/Au surfaces while using methyl viologen (MV(2+)) as the redox mediator. To this end, we report results for direct measurements of light induced photocurrent from uniform monolayer assemblies of PS I on C9 alkanethiolate SAM/Au surfaces. These measurements, apart from demonstrating the ability of dissolved O2 in the electrolyte medium to act as an electron scavenger, also reveal its essential role in driving the solution-phase methyl viologen to initiate light-induced directional electron transfer from an electron donor surface (Au) via surface assembled PS I trimers. Specifically, our systematic electrochemical measurements have revealed that the dissolved O2 in aqueous electrolyte solutions form a complex intermediate species with MV that plays the essential role in mediating redox pathways for unidirectional electron transfer processes. This critical insight into the redox-mediated electron transfer pathways allows for rational design of electron scavengers through systematic tuning of mediator combinations that promote such intermediate formation. Our current findings facilitate the incorporation of PS I-based bio-hybrid constructs as photo-anodes in future photoelectrochemical cells and bio-electronic devices.

  2. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    PubMed

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  3. Nanoporous Gold as a Solid Support for Protein Immobilization for the Development of Immunoassays, and for Biomolecular Interaction Studies

    NASA Astrophysics Data System (ADS)

    Pandey, Binod Prasad

    Nanoporous gold (NPG) is a versatile material of high surface area to volume ratio that can be readily modified with self-assembled monolayers of alkanethiols to which biomolecules can be linked. NPG presents new opportunities for the development of immunoassays, and for the development of carbohydrate based assays. This thesis explores the use of NPG as a support for self-assembled monolayers, their linkage to antibody-enzyme conjugates for immunoassay development, and for the study and application of carbohydrate-protein interactions. Direct kinetic electrochemical immunoassays were developed on NPG for prostate specific antigen (PSA) and carcinoembryonic antigen (CEA). The decrease in enzymatic conversion of p-aminophenylphosphate to p-aminophenol, by alkaline phosphatase conjugated to an antibody, due to steric hindrance caused by the presence of antigen on antibody, was observed as a drop in peak current in square-wave voltammetry. Detection limit of these assays was 0.075 ng mL -1 and 0.015 ng mL-1 for PSA and CEA, respectively. Similarly, the linear range of determination of these biomarkers extended up to 30 ng mL-1 and 10 ng mL-1 for PSA and CEA, respectively. Minimal interference was observed using newborn calf serum as a substitute for the human serum matrix. A rapid and sensitive enzyme linked lectinsorbant assay was also developed for the study of glycoprotein-lectin interactions on the NPG surface. Self-assembled monolayers of alkanethiols on NPG were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Similarly, the applicability of this surface for the formation of carbohydrate monolayers and its application for lectin carbohydrate interactions was also studied. Pure and mixed SAMs of 8-mercaptooctyl β-D-mannopyranoside (αMan-C8-SH) and α-D-Gal-(1→4)-β-D-Gal-(1α)-D-Glc-1-O-mercaptooctane (Gb3-C8-SH) with alkanethiols having varying tail groups were prepared. Binding affinity and binding kinetics of concanavalin A to mannoside and soybean agglutinin to galactose in these SAMs were found to be different on NPG than on flat polycrystalline gold, and was also sensitive to the chemical composition of the modified surfaces.

  4. Particle self-assembly at ionic liquid-based interfaces.

    PubMed

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil or water is incorporated. © 2013.

  5. Surface pK(sub a) of Self-Assembled Monolayers

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.

    2005-01-01

    The difference between solution and surface properties such as pK(sub a) is illustrated enabling students to understand the differences between nanoscale and macroscopic systems. Details regarding the usage of electrochemical instrumentation, such as a potentiostat, and of the technique such as cyclic voltammetry are given.

  6. Characterization and kinetics of surface functionalization and binding of biologically and chemically significant molecules

    NASA Astrophysics Data System (ADS)

    Steiner, Rachel

    The purpose of this project is to investigate intermolecular interactions of organic molecular assemblies. By understanding the structure and physical interactions in these assemblies, we gain insights into practical applications for nanoscale systems built upon these surface structures. It is possible for organic chemists to create many forms of modified organic molecules, functionalizing them with specific reactive end groups. Through surface functionalization, enabling covalent or highly associative binding, it is possible to create ordered molecular assemblies of these molecules. Scientists can study the nature of this structure and the intermolecular interactions through spectroscopic, optical, and scattering experiments. To understand the self-assembly process in molecular systems, we preliminarily created monolayer films on silica substrates with a variety of organic molecules. In particular, we functionalized silica substrates with hydroxyl groups and covalently bound acid chloride functionalized aromatic compounds, with and without an underlying adhesion layer of 3-aminopropyltriethoxysilane. We characterized the monolayer assemblies with ellipsometry, UV-vis absorption spectroscopy, FTIR spectroscopy, and fluorescence/photoemission spectroscopy, obtaining a quantitative measure of the molecular surface coverage. In order to understand the nature of these molecular assemblies, we also pursued an in-depth kinetic study to control and optimize the monolayer formation process. Through use of UV-vis spectroscopy, we determined that the monolayer formation can best be modeled with diffusion-limited Langmuir kinetics. Specifically, we concluded that for anthracene acid chloride in dichloromethane the average diffusion coefficient was 1.6x10-7 cm2/sec. Additionally, we find we are able to achieve surface coverages of approximately 2x1014 molecules/cm2. Having established the ability to create ordered molecular assemblies, through surface functionalization, enabling covalent or highly associative binding, we continued to explore the field of molecular assemblies by studying the binding and structure of molecules to carbon nanostructures. Previous studies have shown that alkyl side chains and aromatic compounds, such as pyrene, will bind non-covalently to the sidewalls of carbon nanotubes through pi-pi interactions. We explored functionalization of carbon nanotubes and graphene by using microscopy to examine the adsorption of biomolecules onto nanotube sidewalls and graphene.

  7. A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces.

    PubMed

    Lai, Yu-Hsuan; Yang, Jing-Tang; Shieh, Dar-Bin

    2010-02-21

    A wettability gradient to transport a droplet across superhydrophobic to hydrophilic surfaces is fabricated on combining a structure gradient and a self-assembled-monolayer (SAM) gradient. The combination of these two gradients is realized with a simple but versatile SAM technique, in which the textured silicon wafer strip is placed vertically in a bottle that contains a decyltrichlorosilane solution to form concurrently a saturated SAM below the liquid surface and a wettability gradient above. The platform fabricated in this way has a water-contact angle from 151.2 degrees to 39.7 degrees; the self-transport distance is hence increased significantly to about 9 mm. A theoretical model that approximates the shape of a moving drop to a spheroidal cap is developed to predict the self-transport behavior. Satisfactory agreement is shown for most regions except where the hysteresis effect is unmeasurable and an unsymmetrical deformation occurs. A double-directional gradient surface to alter the direction of movement of a droplet is also realized. The platforms we developed serve not only to transport a fluid over a long distance but also for a broad spectrum of biomedical applications such as protein adsorption, cell adhesion and DNA-based biosensors.

  8. Incorporating Bacteria as a Living Component in Supramolecular Self-Assembled Monolayers through Dynamic Nanoscale Interactions.

    PubMed

    Sankaran, Shrikrishnan; Kiren, Mustafa Can; Jonkheijm, Pascal

    2015-01-01

    Supramolecular assemblies, formed through noncovalent interactions, has become particularly attractive to develop dynamic and responsive architectures to address living systems at the nanoscale. Cucurbit[8]uril (CB[8]), a pumpkin shaped macrocylic host molecule, has been successfully used to construct various self-assembled architectures for biomedical applications since it can simultaneously bind two aromatic guest molecules within its cavity. Such architectures can also be designed to respond to external stimuli. Integrating living organisms as an active component into such supramolecular architectures would add a new dimension to the capabilities of such systems. To achieve this, we have incorporated supramolecular functionality at the bacterial surface by genetically modifying a transmembrane protein to display a CB[8]-binding motif as part of a cystine-stabilized miniprotein. We were able to confirm that this supramolecular motif on the bacterial surface specifically binds CB[8] and forms multiple intercellular ternary complexes leading to aggregation of the bacterial solution. We performed various aggregation experiments to understand how CB[8] interacts with this bacterial strain and also demonstrate that it can be chemically reversed using a competitor. To confirm that this strain can be incorporated with a CB[8] based architecture, we show that the bacterial cells were able to adhere to CB[8] self-assembled monolayers (SAMs) on gold and still retain considerable motility for several hours, indicating that the system can potentially be used to develop supramolecular bacterial biomotors. The bacterial strain also has the potential to be combined with other CB[8] based architectures like nanoparticles, vesicles and hydrogels.

  9. Chemically modified electrodes by nucleophilic substitution of chlorosilylated platinum oxide surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Hsien; Hutchison, James H.; Postlethwaite, Timothy A.; Richardson, John N.; Murray, R. W.

    1994-07-01

    Chlorosilylated platinum oxide electrode surfaces can be generated by reaction of SiCl4 vapor with an electrochemically prepared monolayer of platinum oxide. A variety of nucleophilic agents (such as alcohols, amines, thiols, and Grignard reagents) can be used to displace chloride and thereby functionalize the metal surface. Electroactive surfaces prepared with ferrocene methanol as the nucleophile show that derivatization by small molecules can achieve coverages on the order of a full monolayer. Surfaces modified with long-chain alkyl groups efficiently block electrode reactions of redox probes dissolved in the contacting solution, but other electrochemical (double layer capacitance and surface coverage) and contact angle measurements suggest that these molecule films are not highly ordered, self-assembled monolayers.

  10. A chiral self-assembled monolayer derived from a resolving agent and its performance as a crystallization template for an organic compound from organic solvents.

    PubMed

    Bejarano-Villafuerte, Ángela; van der Meijden, Maarten W; Lingenfelder, Magalí; Wurst, Klaus; Kellogg, Richard M; Amabilino, David B

    2012-12-07

    A new chiral nonracemic thiol derived from a popular acidic resolving agent that incorporates a cyclic disubstituted phosphate group (phencyphos) has been prepared in enantiomerically pure form. The stereochemistry and absolute configuration were established by performing a single-crystal X-ray structural analysis of a synthetic intermediate. The thiol compound was used for the preparation of self-assembled monolayers (SAMs) on both monocrystalline and polycrystalline metallic gold, which have very different surface roughness. The monolayers were used to promote the nucleation and growth of crystals from nonaqueous solutions of an organic molecule (the parent phencyphos) of similar structure to the compound present in the monolayer. The template layers influence the nucleation and growth of the phencyphos crystals despite the lack of two-dimensional order in the surfaces. Heterogeneous nucleation of phencyphos takes place upon evaporation of either CHCl(3) or isopropanol solutions of the compound on the SAM surfaces, where the evaporation rate merely influences the size and homogeneity of the crystals. The roughness of the surface also plays an important role; the polycrystalline gold produces more homogeneous samples because of the greater number of nucleation sites. Clear evidence for nucleation and growth on the surfaces is shown by scanning electron microscopy. The variation in crystal form achieved by using different surfaces and solvents suggests that the layers are applicable for the preparation of organic crystals from organic solutions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Self Assembly and Interface Engineering of Organic Functional Materials for High Performance Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Jen, Alex

    2010-03-01

    The performance of polymer solar cells are strongly dependent on the efficiency of light harvesting, exciton dissociation, charge transport, and charge collection at the metal/organic, metal/metal oxide, and organic/metal oxide interfaces. To improve the device performance, two parallel approaches were used: 1) developing novel low band gap conjugated polymers with good charge-transporting properties and 2) modifying the interfaces between the organic/metal oxide and organic/metal layers with functional self-assembling monolayers to tune their energy barriers. Moreover, the molecule engineering approach was also used to tune the energy level, charge mobility, and morphology of organic semiconductors.

  12. Integrated circuits based on conjugated polymer monolayer

    DOE PAGES

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; ...

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less

  13. Integrated circuits based on conjugated polymer monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less

  14. Integrated circuits based on conjugated polymer monolayer.

    PubMed

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  15. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Ling -Hao; Wu, Rong -Ting; Bao, De -Liang

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H 2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H 2Nc molecules and formed Fe-H 2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H 2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform sizemore » and adsorbed dispersively at the interstitial positions of Fe-H 2Nc complex monolayer. Furthermore, the H 2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.« less

  16. Self-assembly of smallest magnetic particles

    PubMed Central

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M.; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-01-01

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained. PMID:26554000

  17. Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus-Based Nanocoating.

    PubMed

    Valbuena, Alejandro; Mateu, Mauricio G

    2017-02-28

    Self-assembling protein layers provide a "bottom-up" approach for precisely organizing functional elements at the nanoscale over a large solid surface area. The design of protein sheets with architecture and physical properties suitable for nanotechnological applications may be greatly facilitated by a thorough understanding of the principles that underlie their self-assembly and disassembly. In a previous study, the hexagonal lattice formed by the capsid protein (CA) of human immunodeficiency virus (HIV) was self-assembled as a monomolecular layer directly onto a solid substrate, and its mechanical properties and dynamics at equilibrium were analyzed by atomic force microscopy. Here, we use atomic force microscopy to analyze the kinetics of self-assembly of the planar CA lattice on a substrate and of its disassembly, either spontaneous or induced by materials fatigue. Both self-assembly and disassembly of the CA layer are cooperative reactions that proceed until a phase equilibrium is reached. Self-assembly requires a critical protein concentration and is initiated by formation of nucleation points on the substrate, followed by lattice growth and eventual merging of CA patches into a continuous monolayer. Disassembly of the CA layer showed hysteresis and appears to proceed only after large enough defects (nucleation points) are formed in the lattice, whose number is largely increased by inducing materials fatigue that depends on mechanical load and its frequency. Implications of the kinetic results obtained for a better understanding of self-assembly and disassembly of the HIV capsid and protein-based two-dimensional nanomaterials and the design of anti-HIV drugs targeting (dis)assembly and biocompatible nanocoatings are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer

    PubMed Central

    Zhang, Yintang; Xu, Maotian; Wang, Yanju; Toledo, Freddy; Zhou, Feimeng

    2007-01-01

    The use of a flow-injection surface plasmon resonance (FI-SPR) spectrometer equipped with a bicell detector or a position-sensitive device for determining coordination of heavy metal ions (Cd2+ and Hg2+) by surface-confined apo-metallothionein (apo-MT) molecules is described. To facilitate the formation of a compact MT adsorbate layer with a uniform surface orientation, MT molecules were attached onto a preformed alkanethiol self-assembled monolayer. The method resorts to the generation of apo-MT at the surface by treating the MT-covered sensor chip with glycine–HCl and the measurement of the apo-MT conformation changes upon metal ion incorporation. Domain-specific metal ion binding processes by the apo-MT molecules were observed. Competitive replacement of one metal ion by another can be monitored in real time by FI-SPR. The tandem use of an immobilization scheme for forming a sub-monolayer of MT molecules at the sensor surface and the highly sensitive FI-SPR instrument affords a low concentration detection level. The detection level for Cd2+ (0.1 μM or 15 ppb) compares favorably with similar studies and the methodology complements to other well-established sensitive analytical techniques. The extent of metal incorporation by apo-MT molecules was also determined. PMID:18493298

  19. Interactions between self-assembled monolayers and an organophosphonate: A detailed study using surface acoustic wave-based mass analysis, polarization modulation-FTIR spectroscopy, and ellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooks, R.M.; Yang, H.C.; McEllistrem, L.J.

    Self-assembled monolayers (SAMs) having surfaces terminated in the following functional groups: -CH{sub 3}, -OH, -COOH, and (COO{sup -}){sub 2}Cu{sup 2+} (MUA-Cu{sup 2+}) have been prepared and examined as potential chemically sensitive interfaces. Mass measurements made using surface acoustic wave (SAW) devices indicate that these surfaces display different degrees of selectivity and sensitivity to a range of analytes. The response of the MUA-Cu{sup 2+} SAM to the nerve-agent simulant diisopropyl methylphosphonate (DIMP) is particularly intriguing. Exposure of this surface to 50%-of-saturation DIMP yields a surface concentration equivalent to about 20 DIMP monolayers. Such a high surface concentration in equilibrium with amore » much lower-than-saturation vapor pressure has not previously been observed. Newly developed analytical tools have made it possible to measure the infrared spectrum of the chemically receptive surface during analyte dosing. Coupled with in-situ SAW/ellipsometry measurements, which permit simultaneous measurement of mass and thickness with nanogram and Angstrom resolution, respectively, it has been possibly to develop a model for the surface chemistry leading to the unusual behavior of this system. The results indicate that DIMP interacts strongly with surface-confined Cu{sup 2+} adduct that nucleates growth of semi-ordered crystallites having substantially lower vapor pressure than the liquid.« less

  20. An Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold Electrode.

    PubMed

    Braiek, Mohamed; Rokbani, Karima Bekir; Chrouda, Amani; Mrabet, Béchir; Bakhrouf, Amina; Maaref, Abderrazak; Jaffrezic-Renault, Nicole

    2012-10-16

    The detection of pathogenic bacteria remains a challenge for the struggle against biological weapons, nosocomial diseases, and for food safety. In this research, our aim was to develop an easy-to-use electrochemical immunosensor for the detection of pathogenic Staphylococcus aureus ATCC25923. The biosensor was elaborated by the immobilization of anti-S. aureus antibodies using a self-assembled monolayer (SAMs) of 3-Mercaptopropionic acid (MPA). These molecular assemblies were spontaneously formed by the immersion of the substrate in an organic solvent containing the SAMs that can covalently bond to the gold surface. The functionalization of the immunosensor was characterized using two electrochemical techniques: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Here, the analysis was performed in phosphate buffer with ferro/ferricyanide as the redox probe. The EIS technique was used for affinity assays: antibody-cell binding. A linear relationship between the increment in the electron transfer resistance (RCT) and the logarithmic value of S. aureus concentration was observed between 10 and 106 CFU/mL. The limit of detection (LOD) was observed at 10 CFU/mL, and the reproducibility was calculated to 8%. Finally, a good selectivity versus E. coli and S. epidermidis was obtained for our developed immunosensor demonstrating its specificity towards only S. aureus.

  1. Nanofabrication and Electrochemical Characterization of Self- Assembled Monolayers Sandwiched between Metal Nanoparticles and Electrode Surfaces

    ERIC Educational Resources Information Center

    Cea, Pilar; Martín, Santiago; Gonza´lez-Orive, Alejandro; Osorio, Henrry M.; Quintín, Pablo; Herrer, Lucía

    2016-01-01

    Nanoscience and nanotechnology have reached the syllabi of many upper-division undergraduate and master level courses all over the world. There is therefore a growing need for practical exercises that illustrate the fabrication, characterization, properties, and applications of nanomaterials. Here we describe an advanced-level laboratory…

  2. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    PubMed

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  3. Self-assembled Monolayer Mediated Surface Environment Modification of Poly(vinylpyrrolidone)-Coated Hollow Au-Ag Nanoshells for Enhanced Loading of Hydrophobic Drug and Efficient Multimodal Therapy.

    PubMed

    Jang, Hongje; Kim, Dong-Eun; Min, Dal-Hee

    2015-06-17

    Hollow Au-Ag bimetallic nanoshell possessing hydrophobic interior space and hydrophilic exterior surface was prepared and its application as a chemo-thermo-gene therapeutic agent based on its high payload of multiple drugs having different water solubility was demonstrated. The multifunctional drug delivery system is based on the hydrophobic interior created by the self-assembled monolayer (SAM) of hexanethiol onto the inner surface of the hollow metallic nanoshells whereas the outer surface was mostly coated by hydrophilic biocompatible polymer. The nanoshells having surface environment modified by hexanethiol SAMs provided high capacity both for hydrophilic DNAzyme (Dz) to induce gene silencing and for hydrophobic SN38 (7-ethyl-10-hydroxycamptothecin), anticancer drug. The release of the loaded Dz and SN38 was independently triggered by an acidic environment and by photothermal temperature elevation upon irradiation, respectively. The chemo-thermo-gene multitherapy based on the present nanoshells having modified surface environment showed high efficacy in quantitative cell-based assays using Huh7 human liver cell containing hepatitis C viral NS3 gene replicon RNA.

  4. Morphological Behavior of Printed Silver Electrodes with Protective Self-Assembled Monolayers for Electrochemical Migration.

    PubMed

    Sekine, Tomohito; Sato, Jun; Takeda, Yasunori; Kumaki, Daisuke; Tokito, Shizuo

    2018-05-09

    We evaluated the electrochemical behaviors and reliability of printed silver (Ag) electrodes prepared from nanoparticle inks with the use of protective self-assembled monolayers (SAMs) under electronic bias conditions. The printed Ag electrodes were fabricated by inkjet printing on a hydrophobic substrate. The SAMs, which acted as barriers to moisture, were prepared by immersing the substrate in a pentafluorobenzenethiol solution at ambient temperature (25 °C). We investigated the electrochemical migration phenomenon using the water drop method, and the results showed that the formation of dendrites connecting the cathode and the anode, which can affect the electrochemical reliability of an electric device, was suppressed in the presence of the SAMs. The time before short circuit occurred was found to depend on the spacing between the electrodes, i.e., 130 s, when the distance between the electrodes was 200 μm in the presence of an SAM. We demonstrated that Ag electrodes treated using the procedure described in this work suppress the occurrence of electrical short circuits caused by Ag dendrite formation and thus their electrochemical properties are substantially improved.

  5. Application of Self-Assembled Monolayers to the Electroless Metallization of High Aspect Ratio Vias for Microelectronics

    NASA Astrophysics Data System (ADS)

    Bernasconi, R.; Molazemhosseini, A.; Cervati, M.; Armini, S.; Magagnin, L.

    2016-10-01

    All-wet electroless metallization of through-silicon vias (TSVs) with a width of 5 μm and a 1:10 aspect ratio was carried out. Immersion in a n-(2-aminoethyl) 3-aminopropyl-trimethoxysilane (AEAPTMS) self-assembled monolayer (SAM) was used to enhance the adhesion between the metal film and substrate. Contact angle variation and atomic force microscopy were used to verify the formation of a SAM layer. A PdCl2 solution was later used to activate the silanized substrates, exploiting the affinity of the -NH3 functional group of AEAPTMS to palladium. A nickel-phosphorus-boron electroless bath was employed to deposit the first barrier layer onto silicon. The NiPB growth rate was evaluated on flat silicon wafers, while the structure of the coating obtained was investigated via glow discharge optical emission spectroscopy. Cross-sectional scanning electron microscope observations were carried out on metallized TSVs to characterize the NiPB seed, the Cu seed layer deposited with a second electroless step, and the Cu superfilling obtained with a commercial solution. Complete filling of TSV was achieved.

  6. Room-temperature isolation of V(benzene)2 sandwich clusters via soft-landing into n-alkanethiol self-assembled monolayers.

    PubMed

    Nagaoka, Shuhei; Matsumoto, Takeshi; Okada, Eiji; Mitsui, Masaaki; Nakajima, Atsushi

    2006-08-17

    The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.

  7. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on au(111).

    PubMed

    Yan, Jiawei; Ouyang, Runhai; Jensen, Palle S; Ascic, Erhad; Tanner, David; Mao, Bingwei; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Ulstrup, Jens; Reimers, Jeffrey R

    2014-12-10

    The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstituted chiral alkanethiol), followed by in situ scanning tunneling microscopy (STM) imaging combined with density functional theory molecular dynamics STM image simulations. Even though butanethiol SAMs manifest strong headgroup interactions, steric interactions are shown to dominate SAM structure and chirality. Indeed, steric interactions are shown to dictate the nature of the headgroup itself, whether it takes on the adatom-bound motif RS(•)Au(0)S(•)R or involves direct binding of RS(•) to face-centered-cubic or hexagonal-close-packed sites. Binding as RS(•) produces large, organizationally chiral domains even when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS(•) also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs.

  8. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers

    PubMed Central

    Reimers, Jeffrey R.; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J.; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J. J.; Hendriksen, Bas L. M.; Elemans, Johannes A. A. W.; Hush, Noel S.; Crossley, Maxwell J.

    2015-01-01

    Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate−molecule interactions (e.g., −100 kcal mol−1 to −150 kcal mol−1 for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70–110 kcal mol−1) and entropy effects (25–40 kcal mol−1 at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations. PMID:26512115

  9. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

    PubMed Central

    Hentschel, Carsten; Fontein, Florian; Stegemann, Linda; Hoeppener, Christiane; Fuchs, Harald; Hoeppener, Stefanie

    2014-01-01

    Summary A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern. PMID:25247126

  10. Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water.

    PubMed

    Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta

    2018-04-14

    Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).

  11. Study of polymorphism using patterned self-assembled monolayers approach on metal substrates

    NASA Astrophysics Data System (ADS)

    Quiñones, Rosalynn; Brown, Ryanne T.; Searls, Noah; Richards-Waugh, Lauren

    2018-01-01

    Polymorphism is a molecule's ability to possess altered physical crystalline structures and has become an active interest in pharmaceuticals due to its ability to influence a drug's physical and chemical properties. Crystal stability and solubility are crucial in determining a drug's pharmacokinetics and pharmacodynamics. Changes in these properties due to polymorphisms have contributed to recalls and modifications in industrial production. For this study, the effects of surface interactions with pharmaceuticals were examined through surface modification methodology using organic phosphonic and sulfonic acid self-assembled monolayers (SAMs) developed on a nickel or zinc oxide metal substrate. Drugs analyzed included carbamazepine, cimetidine, tolfenamic acid, and flufenamic acid. All drugs were thermodynamically applied to the reformed surface to aid in recrystallization. It was hypothesized and confirmed that intermolecular bonds, especially hydrogen bonds between the SAMs and pharmaceutical drugs, were the force that assisted in polymorph development. The study was successful in revealing multiple forms for each drug, including their commercial form and at least one additional form using micro FT-IR, Raman spectroscopy, and PXRD. Visual comparisons of crystal polymorphisms were performed with IR microscopy.

  12. Toward control of the metal-organic interfacial electronic structure in molecular electronics: a first-principles study on self-assembled monolayers of pi-conjugated molecules on noble metals.

    PubMed

    Heimel, Georg; Romaner, Lorenz; Zojer, Egbert; Brédas, Jean-Luc

    2007-04-01

    Self-assembled monolayers (SAMs) of organic molecules provide an important tool to tune the work function of electrodes in plastic electronics and significantly improve device performance. Also, the energetic alignment of the frontier molecular orbitals in the SAM with the Fermi energy of a metal electrode dominates charge transport in single-molecule devices. On the basis of first-principles calculations on SAMs of pi-conjugated molecules on noble metals, we provide a detailed description of the mechanisms that give rise to and intrinsically link these interfacial phenomena at the atomic level. The docking chemistry on the metal side of the SAM determines the level alignment, while chemical modifications on the far side provide an additional, independent handle to modify the substrate work function; both aspects can be tuned over several eV. The comprehensive picture established in this work provides valuable guidelines for controlling charge-carrier injection in organic electronics and current-voltage characteristics in single-molecule devices.

  13. Use of Self-Assembled Monolayers of Different Wettabilities To Study Surface Selection and Primary Adhesion Processes of Green Algal (Enteromorpha) Zoospores

    PubMed Central

    Callow, Maureen E.; Callow, J. A.; Ista, Linnea K.; Coleman, Sarah E.; Nolasco, Aleece C.; López, Gabriel P.

    2000-01-01

    We investigated surface selection and adhesion of motile zoospores of a green, macrofouling alga (Enteromorpha) to self-assembled monolayers (SAMs) having a range of wettabilities. The SAMs were formed from alkyl thiols terminated with methyl (CH3) or hydroxyl (OH) groups or mixtures of CH3- and OH-terminated alkyl thiols and were characterized by measuring the advancing contact angles and by X-ray photoelectron spectroscopy. There was a positive correlation between the number of spores that attached to the SAMs and increasing contact angle (hydrophobicity). Moreover, the sizes of the spore groups (adjacent spores touching) were larger on the hydrophobic SAMs. Video microscopy of a patterned arrangement of SAMs showed that more zoospores were engaged in swimming and “searching” above the hydrophobic sectors than above the hydrophilic sectors, suggesting that the cells were able to “sense” that the hydrophobic surfaces were more favorable for settlement. The results are discussed in relation to the attachment of microorganisms to substrata having different wettabilities. PMID:10919777

  14. Controlling destructive quantum interference in tunneling junctions comprising self-assembled monolayers via bond topology and functional groups† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc00165k

    PubMed Central

    Zhang, Yanxi; Ye, Gang; Soni, Saurabh; Qiu, Xinkai; Krijger, Theodorus L.; Jonkman, Harry T.; Carlotti, Marco; Sauter, Eric; Zharnikov, Michael

    2018-01-01

    Quantum interference effects (QI) are of interest in nano-scale devices based on molecular tunneling junctions because they can affect conductance exponentially through minor structural changes. However, their utilization requires the prediction and deterministic control over the position and magnitude of QI features, which remains a significant challenge. In this context, we designed and synthesized three benzodithiophenes based molecular wires; one linearly-conjugated, one cross-conjugated and one cross-conjugated quinone. Using eutectic Ga–In (EGaIn) and CP-AFM, we compared them to a well-known anthraquinone in molecular junctions comprising self-assembled monolayers (SAMs). By combining density functional theory and transition voltage spectroscopy, we show that the presence of an interference feature and its position can be controlled independently by manipulating bond topology and electronegativity. This is the first study to separate these two parameters experimentally, demonstrating that the conductance of a tunneling junction depends on the position and depth of a QI feature, both of which can be controlled synthetically. PMID:29896382

  15. Self Assembled Dipole Monolayers on CNTs: Effect on Transport and Charge Collection

    NASA Astrophysics Data System (ADS)

    Cook, Alexander; Lee, Bumsu; Kuznetsov, Alexander; Podzorov, Vitaly; Zakhidov, Anvar

    2010-03-01

    We propose a method of quickly and dramatically increasing the conductivity of carbon nanotubes via growth of a self assembled monolayer (SAM) of fluoroalkyl trichlorosilane dipoles following the method demonstrated with organic semiconductors in [1,2]. Growth of a SAM on carbon nanotubes results in a strong p-type doping which improves the conductivity by a factor of two or more. Additionally, this doping is nonvolatile and persists in high vacuum and inert atmospheres. Improvements to conductivity are most dramatic in the case of predominantly semi-conducting, single walled carbon nanotubes (SWCNT) due to the remarkable introduction of about 1.2e14 holes/sq. cm, but this method is also an effective means to improve metallic, multi-walled carbon nanotubes (MWCNT). We will demonstrate improvement of transport and charge collection properties of both SWCNTs and MWCNTs by these SAM coatings in FETs and also in organic photovoltaic solar cells and in OLEDs. [1] M. F. Calhoun et al. Nature Materials 7, 84 - 89 (2008). [2] C. Y. Kao et al. Adv. Func. Mater. 19, 1 (2009).

  16. Utilizing self-assembled-monolayer-based gate dielectrics to fabricate molybdenum disulfide field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawanago, Takamasa, E-mail: kawanago.t.ab@m.titech.ac.jp; Oda, Shunri

    In this study, we apply self-assembled-monolayer (SAM)-based gate dielectrics to the fabrication of molybdenum disulfide (MoS{sub 2}) field-effect transistors. A simple fabrication process involving the selective formation of a SAM on metal oxides in conjunction with the dry transfer of MoS{sub 2} flakes was established. A subthreshold slope (SS) of 69 mV/dec and no hysteresis were demonstrated with the ultrathin SAM-based gate dielectrics accompanied by a low gate leakage current. The small SS and no hysteresis indicate the superior interfacial properties of the MoS{sub 2}/SAM structure. Cross-sectional transmission electron microscopy revealed a sharp and abrupt interface of the MoS{sub 2}/SAM structure.more » The SAM-based gate dielectrics are found to be applicable to the fabrication of low-voltage MoS{sub 2} field-effect transistors and can also be extended to various layered semiconductor materials. This study opens up intriguing possibilities of SAM-based gate dielectrics in functional electronic devices.« less

  17. Frictional response of fatty acids on steel.

    PubMed

    Sahoo, Rashmi R; Biswas, S K

    2009-05-15

    Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the surface as carboxylate in a bidentate manner. To explore the effect of saturation in the carbon backbone on friction in sliding tribology, we study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. It is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.

  18. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor.

    PubMed

    Costa, Maurilia P; Andrade, Cesar A S; Montenegro, Rosana A; Melo, Fabio L; Oliveira, Maria D L

    2014-11-01

    In this work, a genosensor for the electrochemical detection of genomic DNA from Mycobacterium tuberculosis was developed. The biosensor is based on self-assembled monolayers of mercaptobenzoic acid (MBA) and magnetite nanoparticles (Fe3O4Nps) on bare gold electrode for immobilization of DNA probe. The aim of this work was the development of a platform based on cysteine-coated magnetic Fe3O4Nps linked via the carboxylate group from MBA to the work electrode surface and subsequently to the DNA probe. The probe-genome interaction was evaluated using a [Fe(CN)6](4-)/[Fe(CN)6](3-) redox pair. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to evaluate the bioelectrochemical behavior of the sensor. Atomic force microscopy images showed Fe3O4Nps immobilized across the electrode surface. The interaction of the sensor with different genome DNA concentrations resulted in changes in the charge transfer resistance, indicating a possible use for tuberculosis detection at low concentrations (detection limit of 6ngμL(-1)). Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic.

    PubMed

    Zhou, Ye; Han, Su-Ting; Huang, Long-Biao; Huang, Jing; Yan, Yan; Zhou, Li; Roy, V A L

    2013-05-24

    A programmable low voltage unipolar inverter with saturated-load configuration has been demonstrated on a plastic substrate. A self-assembled monolayer of gold (Au) nanoparticles was inserted into the dielectric layer acting as a charge trapping layer. The inverter operated well with supply voltages of < - 5 V and the switching voltage was tuned in a wide range under low program/erase bias. The retention and endurance test at ambient conditions confirmed the reliability of the inverter. Furthermore, the programmable behavior was maintained well at various bending states, demonstrating the adequate flexibility of our devices.

  20. Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control.

    PubMed

    Jiang, Tao; Vail, Owen A; Jiang, Zhigang; Zuo, Xiaobing; Conticello, Vincent P

    2015-06-24

    Two collagen-mimetic peptides, CP(+) and CP(-), are reported in which the sequences comprise a multiblock architecture having positively charged N-terminal (Pro-Arg-Gly)3 and negatively charged C-terminal (Glu-Hyp-Gly)3 triad extensions, respectively. CP(+) rapidly self-associates into positively charged nanosheets based on a monolayer structure. In contrast, CP(-) self-assembles to form negatively charged monolayer nanosheets at a much slower rate, which can be accelerated in the presence of calcium(II) ion. A 2:1 mixture of unassociated CP(-) peptide with preformed CP(+) nanosheets generates structurally defined triple-layer nanosheets in which two CP(-) monolayers have formed on the identical surfaces of the CP(+) nanosheet template. Experimental data from electrostatic force microscopy (EFM) image analysis, zeta potential measurements, and charged nanoparticle binding assays support a negative surface charge state for the triple-layer nanosheets, which is the reverse of the positive surface charge state observed for the CP(+) monolayer nanosheets. The electrostatic complementarity between the CP(+) and CP(-) triple helical cohesive ends at the layer interfaces promotes a (CP(-)/CP(+)/CP(-)) compositional gradient along the z-direction of the nanosheet. This structurally informed approach represents an attractive strategy for the fabrication of two-dimensional nanostructures with compositional control.

  1. Investigating the Modification of Spontaneous Emission using Layer-by-Layer Self-Assembly

    NASA Astrophysics Data System (ADS)

    Ashry, Islam Ahmed Ibrahim Youssef

    The process of spontaneous emission can be dramatically modified by optical micro- and nanostructures. We studied the modification of fluorescence dynamics using a polymer spacer layer fabricated through layer-by-layer (LbL) self-assembly. The advantages of this method are numerous: The self-assembled spacers can possess exceptional smooth surface morphology; The thickness of the spacer can be controlled with nanometer accuracy; And depending on fabrication conditions, the spacer layer is stimuli responsive and its thickness can be dynamically tuned. This thesis contains three interlinked components. First, we vary LbL spacer layer thickness and explore the change in fluorescence lifetime induced by the modified photonic density of states (PDOS), i.e., Purcell effects. Our experimental results agree well with theoretical predictions based on a classical dipole model, which also yields consistent values for the fluorophores' intrinsic fluorescence lifetime and quantum yield near a dielectric as well as a plasmonic interface. Based on this observation, we further demonstrate that self-assembled fluorophores can be used to probe the modified PDOS near optical micro- and nano-structures. These results naturally lead to the second component of our research. In particularly, based on the PDOS-induced changes in fluorescent lifetime, we develop a non-contact method that can measure morphological changes with nanoscale resolution. Our method relies on quantitatively linking fluorophore position with PDOS, and is validated through direct comparison with ellipsometry and atomic force microscopy (AFM) measurements. To demonstrate the potential application of this method, we investigated the swelling/deswelling of LbL films induced by pH changes. Our results indicate significant difference between a LbL film composed of a single polymer monolayer and a LbL film with 3 monolayers. Such stimuli-responsive polymers can be used to construct active and tunable plasmonic nano-devices. As a proof-of-principle demonstration, we experimentally confirm that it is possible to utilize the swelling/deswelling behavior of stimuli-responsive films to dynamically control the separation between Au nanoparticles and Texas Red (TR) dyes. This result is based on the strong correlation of TR fluorescence lifetime and nanoparticles-TR separation. Finally, we investigate the impact of different lithography processes on the fluorescence properties of self-assembled fluorophores. We consider three methods: direct fluorophore patterning through ultraviolet (UV) ablation, focused ion beam (FIB) milling of self-assembled fluorophores, and self-assembly of fluorescent materials over plasmonic nano-patterns.

  2. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions.

    PubMed

    Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C

    2017-03-01

    This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.

  3. Melting of the Dipalmitoylphosphatidylcholine Monolayer.

    PubMed

    Xu, Lu; Bosiljevac, Gordon; Yu, Kyle; Zuo, Yi Y

    2018-04-17

    Langmuir monolayer self-assembled at the air-water interface represents an excellent model for studying phase transition and lipid polymorphism in two dimensions. Compared with numerous studies of phospholipid phase transitions induced by isothermal compression, there are very scarce reports on two-dimensional phase transitions induced by isobaric heating. This is mainly due to technical difficulties of continuously regulating temperature variations while maintaining a constant surface pressure in a classical Langmuir-type film balance. Here, with technological advances in constrained drop surfactometry and closed-loop axisymmetric drop shape analysis, we studied the isobaric heating process of the dipalmitoylphosphatidylcholine (DPPC) monolayer. It is found that temperature and surface pressure are two equally important intensive properties that jointly determine the phase behavior of the phospholipid monolayer. We have determined a critical point of the DPPC monolayer at a temperature of 44 °C and a surface pressure of 57 mN/m. Beyond this critical point, no phase transition can exist in the DPPC monolayer, either by isothermal compression or by isobaric heating. The melting process of the DPPC monolayer studied here provides novel insights into the understanding of a wide range of physicochemical and biophysical phenomena, such as surface thermodynamics, critical phenomena, and biophysical study of pulmonary surfactants.

  4. Efficiency improvement of InGaN light emitting diodes with embedded self-assembled SiO2 nanosphere arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghui; Wei, Tongbo; Wang, Junxi; Fan, Chao; Chen, Yu; Hu, Qiang; Li, Jinmin

    2014-05-01

    In this study, the periodic SiO2 nanosphere nanopatterned sapphire substrate (SiO2-NPSS) was made using self-assembled SiO2 nanosphere monolayer template and inductively coupled plasma (ICP) etching. And the self-assembled SiO2 nanosphere monolayer was directly embedded into the GaN/sapphire interface by nanoscale epitaxial lateral overgrowth (NELOG). For comparison, a common nanopatterned sapphire substrate (C-NPSS) was also made through dry etching with the SiO2 nanospheres used as the mask. Compared with LEDs grown on C-NPSS and flat sapphire substrate (FSS), the external quantum efficiency of LEDs with SiO2 nanopheres (SiO2-NPSS) was increased by 30.7% and 81.9% under a driving current 350 mA. The SiO2-NPSS not only improved the crystalline quality of GaN but also enhanced the light extraction efficiency (LEE) of LED. And the SiO2-NPSS LED also showed more light in vertical direction and more uniform light distribution. By finite-difference time-domain (FDTD) simulation, we confirmed that more light could be reflected from the GaN/SiO2 interface than the GaN/sapphire interface because the refractive index of SiO2 was lower than that of sapphire. Therefore, LED grown on the SiO2-NPSS showed superior light extraction efficiency compared to that on C-NPSS.

  5. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic preformed SAMs are surmounted. The patterned substrates presenting neurotransmitter precursors selectively capture membrane-associated receptors. These advances provide new avenues for fabricating small-molecule arrays. Furthermore, a novel strategy based on a conventional microcontact printing, called chemical lift-off lithography, was invented to overcome the micrometer-scale resolution limits of molecular ink diffusion in soft lithography. Self-assembled monolayers of hydroxyl-terminated alkanethiols, preformed on gold substrates, were selectively removed by oxygen-plasma-treated polymeric stamps in a subtractive stamping process with high pattern fidelity. The covalent interactions formed at the stamp-substrate interface are believed to be responsible for removing not only alkanethiol molecules but also a monolayer of gold atoms from the substrates. A variety of high-resolution patterned features were fabricated, and stamps were cleaned and reused many times without feature deterioration. The remaining SAMs acted as resists for etching exposed gold features. Monolayer backfilling into lifted-off areas enabled patterned protein capture, and 40-nanometer chemical patterns were achieved.

  6. Homeotropic alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2014-07-01

    A 1:3 molar complex of the fluoroalkyl side chain-substituted 2,6,10-tris-carboxymethoxy-3,7,11-tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)triphenylene (TPF4) with the second generation dendron 3,5-bis(3,4-bis-dodecyloxybenzyloxy)-N-pyridin-4-yl-benzamide (DN) assembled through complementary hydrogen bonding to form a supramolecular columnar liquid crystal, which exhibited homeotropic alignment when sandwiched between octadecyltrichlorosilane (OTS)-coated or indium tin oxide (ITO)-coated glass plates due to specific interactions between the fluoroalkyl side chains and the substrates.

  7. Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2017-08-01

    Self-assembly of quasi-spherical colloidal particles in two-dimensional (2D) arrangements is essential for a wide range of applications from optoelectronics to surface engineering, from chemical and biological sensing to light harvesting and environmental remediation. Several self-assembly approaches have flourished throughout the years, with specific features in terms of complexity of the implementation, sensitivity to process parameters, characteristics of the final colloidal assembly. Selecting the proper method for a given application amidst the vast literature in this field can be a challenging task. In this review, we present an extensive classification and comparison of the different techniques adopted for 2D self-assembly in order to provide useful guidelines for scientists approaching this field. After an overview of the main applications of 2D colloidal assemblies, we describe the main mechanisms underlying their formation and introduce the mathematical tools commonly used to analyse their final morphology. Subsequently, we examine in detail each class of self-assembly techniques, with an explanation of the physical processes intervening in crystallization and a thorough investigation of the technical peculiarities of the different practical implementations. We point out the specific characteristics of the set-ups and apparatuses developed for self-assembly in terms of complexity, requirements, reproducibility, robustness, sensitivity to process parameters and morphology of the final colloidal pattern. Such an analysis will help the reader to individuate more easily the approach more suitable for a given application and will draw the attention towards the importance of the details of each implementation for the final results. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. UV/vis and NIR light-responsive spiropyran self-assembled monolayers.

    PubMed

    Ivashenko, Oleksii; van Herpt, Jochem T; Feringa, Ben L; Rudolf, Petra; Browne, Wesley R

    2013-04-02

    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopies (XPS). The SAMs obtained are composed of the ring-closed form (i.e., spiropyran) only. Irradiation with UV light results in conversion of the monolayer to the merocyanine form (MC), manifested in the appearance of an N(+) contribution in the N 1s region of the XPS spectrum of the SAMs, the characteristic absorption band of the MC form in the visible region at 555 nm, and the C-O stretching band in the SERS spectrum. Recovery of the initial state of the monolayer was observed both thermally and after irradiation with visible light. Several switching cycles were performed and monitored by SERS spectroscopy, demonstrating the stability of the SAMs during repeated switching between SP and MC states. A key finding in the present study is that ring-opening of the surface-immobilized spiropyrans can be induced by irradiation with continuous wave NIR (785 nm) light as well as by irradiation with UV light. We demonstrate that ring-opening by irradiation at 785 nm proceeds by a two-photon absorption pathway both in the SAMs and in the solid state. Hence, spiropyran SAMs on gold can undergo reversible photochemical switching from the SP to the MC form with both UV and NIR and the reverse reaction induced by irradiation with visible light or heating. Furthermore, the observation of NIR-induced switching with a continuous wave source holds important consequences in the study of photochromic switches on surfaces using SERS and emphasizes the importance of the use of multiple complementary techniques in characterizing photoresponsive SAMs.

  9. Self-assembly of organic monolayers as protective and conductive bridges for nanometric surface-mount applications.

    PubMed

    Platzman, Ilia; Haick, Hossam; Tannenbaum, Rina

    2010-09-01

    In this work, we present a novel surface-mount placement process that could potentially overcome the inadequacies of the currently used stencil-printing technology, when applied to devices in which either their lateral and/or their horizontal dimensions approach the nanometric scale. Our novel process is based on the "bottom-up" design of an adhesive layer, operative in the molecular/nanoscale level, through the use of self-assembled monolayers (SAMs) that could form protective and conductive bridges between pads and components. On the basis of previous results, 1,4-phenylene diisocyanide (PDI) and terephthalic acid (TPA) were chosen to serve as the best candidates for the achievement of this goal. The quality and stability of these SAMs on annealed Cu surfaces (Rrms=0.15-1.1 nm) were examined in detail. Measurements showed that the SAMs of TPA and PDI molecules formed on top of Cu substrates created thermally stable organic monolayers with high surface coverage (∼90%), in which the molecules were closely packed and well-ordered. Moreover, the molecules assumed a standing-up phase conformation, in which the molecules bonded to the Cu substrate through one terminal functional group, with the other terminal group residing away from the substrate. To examine the ability of these monolayers to serve as "molecular wires," i.e., the capability to provide electrical conductivity, we developed a novel fabrication method of a parallel plate junction (PPJ) in order to create symmetric Cu-SAM-Cu electrical junctions. The current-bias measurements of these junctions indicated high tunneling efficiency. These achievements imply that the SAMs used in this study can serve as conductive molecular bridges that can potentially bind circuital pads/components.

  10. Self-assembled InAs quantum dot formation on GaAs ring-like nanostructure templates

    PubMed Central

    Strom, NW; Wang, Zh M; AbuWaar, ZY; Mazur, Yu I; Salamo, GJ

    2007-01-01

    The evolution of InAs quantum dot (QD) formation is studied on GaAs ring-like nanostructures fabricated by droplet homo-epitaxy. This growth mode, exclusively performed by a hybrid approach of droplet homo-epitaxy and Stransky-Krastanor (S-K) based QD self-assembly, enables one to form new QD morphologies that may find use in optoelectronic applications. Increased deposition of InAs on the GaAs ring first produced a QD in the hole followed by QDs around the GaAs ring and on the GaAs (100) surface. This behavior indicates that the QDs prefer to nucleate at locations of high monolayer (ML) step density.

  11. Wettability of graphene-laminated micropillar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun, E-mail: jrahn@skku.edu, E-mail: shju@kgu.ac.kr

    2014-12-21

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.

  12. Nanocylindrical confinement imparts highest structural order in molecular self-assembly of organophosphonates on aluminum oxide.

    PubMed

    Pathak, Anshuma; Bora, Achyut; Braunschweig, Björn; Meltzer, Christian; Yan, Hongdan; Lemmens, Peter; Daum, Winfried; Schwartz, Jeffrey; Tornow, Marc

    2017-05-18

    We report the impact of geometrical constraint on intramolecular interactions in self-assembled monolayers (SAMs) of alkylphosphonates grown on anodically oxidized aluminum (AAO). Molecular order in these films was determined by sum frequency generation (SFG) spectroscopy, a more sensitive measure of order than infrared absorption spectroscopy. Using SFG we show that films grown on AAO are, within detection limits, nearly perfectly ordered in an all-trans alkyl chain configuration. In marked contrast, films formed on planar, plasma-oxidized aluminum oxide or α-Al 2 O 3 (0001) are replete with gauche defects. We attribute these differences to the nanocylindrical structure of AAO, which enforces molecular confinement.

  13. Size quantization patterns in self-assembled InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Colocci, M.; Bogani, F.; Carraresi, L.; Mattolini, R.; Bosacchi, A.; Franchi, S.; Frigeri, P.; Taddei, S.; Rosa-Clot, M.

    1997-07-01

    Molecular beam epitaxy has been used for growing self-assembled InAs quantum dots. A continuous variation of the InAs average coverage across the sample has been obtained by properly aligning the (001) GaAs substrate with respect to the molecular beam. Excitation of a large number of dots (laser spot diameter ≈ 100 μm) results in structured photoluminescence spectra; a clear quantization of the dot sizes is deduced from the distinct luminescence bands separated in energy by an average spacing of 20-30 meV. We ascribe the individual bands of the photoluminescence spectrum after low excitation to families of dots with roughly the same diameter and heights differing by one monolayer.

  14. Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces.

    PubMed

    Ciesielski, Artur; Samorì, Paolo

    2011-04-01

    Among the many significant advances within the field of supramolecular chemistry over the past decades, the development of the so-called "dynamers" features a direct relevance to materials science. Defined as "combinatorial dynamic polymers", dynamers are constitutional dynamic systems and materials resulting from the application of the principles of supramolecular chemistry to polymer science. Like supramolecular materials in general, dynamers are reversible dynamic multifunctional architectures, capable of modifying their constitution by exchanging, recombining, incorporating components. They may exhibit a variety of novel properties and behave as adaptive materials. In this review we focus on the design of responsive switchable monolayers, i.e. monolayers capable to undergo significant changes in their physical or chemical properties as a result of external stimuli. Scanning tunneling microscopy studies provide direct evidence with a sub-nanometre resolution, on the formation and dynamic response of these self-assembled systems featuring controlled geometries and properties.

  15. The effect of self-assembled monolayers on graphene conductivity and morphology

    NASA Astrophysics Data System (ADS)

    Moore, T. L.; Chen, J. H.; Riddick, B.; Williams, E. D.

    2009-03-01

    Graphene transport properties are limited by charge defects in SiO2, and by large charge density due to strong interaction with SiC. To modify these effects we have treated 300 nm SiO2 with tricholosilanes with different termination groups including pure and fluoro and amino-terminated hydrocarbons for use as substrates for mechanical exfoliation of graphene. XPS measurements verify the presence of the expected termination groups. AFM measurements reveal modified monolayer roughness and correlation lengths; for a fluorinated carbon chain the RMS roughness is 0.266 ± 0.017 nm and the correlation length is 10.2 ± 0.7 nm compared to 0.187 ± 0.011 nm and 19.8 ± 2.5 nm for SiO2. Surface free energies of the monolayers and the SiO2 blank have been computed from static contact angle measurements and all decrease the SiO2 surface free energy; for the fluorinated carbon chain monolayer a decrease of 20 mJ/m^2 from SiO2. We will discuss the ease of exfoliation, and the morphology and conductivity of graphene on these monolayers.

  16. Aryl diazonium for biomolecules immobilization onto SPRi chips.

    PubMed

    Mandon, Céline A; Blum, Loïc J; Marquette, Christophe A

    2009-12-21

    A method for the immobilization of proteins at the surface of surface plasmon resonance imaging (SPRi) chips is presented. The technology, based on the electro-deposition of a 4-carboxymethyl aryl diazonium (CMA) monolayer is compared to a classical thioctic acid self-assembled monolayer. SPRi live recording experiments followed by the quantification of the diazonium surface coverage demonstrate the presence of a monolayer of electro-deposited molecules (11*10(12) molecules mm(-2)). This monolayer, when activated through a classical carbodiimide route, generates a surface suitable for the protein immobilization. In the present study, protein A and BSA are immobilized as specific and control spots (150 microm id), respectively. The AFM characterization of the spots deposited onto CMA or thioctic acid modified chips prove the presence of 4.7 nm protein monolayers. Finally, the SPRi detection capabilities of the two surface chemistries are compared according to specific signal, non-specific interaction and regeneration possibilities. Advantages are given to the CMA surface modification since no measurable non-specific signal is obtained while reaching a higher specific signal.

  17. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, David E.; Herdt, Gregory C.; Czanderna, Alvin W.

    1997-01-01

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.

  18. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, D.E.; Herdt, G.C.; Czanderna, A.W.

    1997-01-07

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.

  19. Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications.

    PubMed

    Guo, Yi; Li, Mengyan; Mylonakis, Andreas; Han, Jingjia; MacDiarmid, Alan G; Chen, Xuesi; Lelkes, Peter I; Wei, Yen

    2007-10-01

    A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-N'-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was approximately 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces. Importantly, electroactive surfaces stimulated spontaneous neuritogenesis in PC12 cells, in the absence of neurotrophic growth factors, such as nerve growth factor (NGF). As expected, NGF significantly enhanced neurite extension on both control and electroactive surfaces. Taken together, our results suggest that the newly electroactive SAMs grafted with bioactive peptides, such as RGD, could be promising biomaterials for tissue engineering.

  20. Stability of Phosphonic Self Assembled Monolayers (SAMs) on Cobalt Chromium (Co-Cr) Alloy under Oxidative conditions

    PubMed Central

    Bhure, Rahul; Abdel-Fattah, Tarek M.; Bonner, Carl; Hall, Felicia; Mahapatro, Anil

    2011-01-01

    Cobalt Chromium (Co-Cr) alloys has been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Contact Angle Measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration PMID:21603056

  1. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids.

    PubMed

    Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng

    2011-09-20

    A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates. © 2011 American Chemical Society

  2. Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides

    PubMed Central

    Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet

    2012-01-01

    The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620

  3. Electron Processing at 50 eV of Terphenylthiol Self-Assembled Monolayers: Contributions of Primary and Secondary Electrons.

    PubMed

    Houplin, Justine; Dablemont, Céline; Sala, Leo; Lafosse, Anne; Amiaud, Lionel

    2015-12-22

    Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution.

  4. M13 bacteriophage-activated superparamagnetic beads for affinity separation.

    PubMed

    Muzard, Julien; Platt, Mark; Lee, Gil U

    2012-08-06

    The growth of the biopharmaceutical industry has created a demand for new technologies for the purification of genetically engineered proteins.The efficiency of large-scale, high-gradient magnetic fishing could be improved if magnetic particles offering higher binding capacity and magnetization were available. This article describes several strategies for synthesizing microbeads that are composed of a M13 bacteriophage layer assembled on a superparamagnetic core. Chemical cross-linking of the pVIII proteins to a carboxyl-functionalized bead produces highly responsive superparamagnetic particles (SPM) with a side-on oriented, adherent virus monolayer. Also, the genetic manipulation of the pIII proteins with a His(6) peptide sequence allows reversible assembly of the bacteriophage on a nitrilotriacetic-acid-functionalized core in an end-on configuration. These phage-magnetic particles are successfully used to separate antibodies from high-protein concentration solutions in a single step with a >90% purity. The dense magnetic core of these particles makes them five times more responsive to magnetic fields than commercial materials composed of polymer-(iron oxide) composites and a monolayer of phage could produce a 1000 fold higher antibody binding capacity. These new bionanomaterials appear to be well-suited to large-scale high-gradient magnetic fishing separation and promise to be cost effective as a result of the self-assembling and self-replicating properties of genetically engineered M13 bacteriophage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold Electrode

    PubMed Central

    Braiek, Mohamed; Rokbani, Karima Bekir; Chrouda, Amani; Mrabet, Béchir; Bakhrouf, Amina; Maaref, Abderrazak; Jaffrezic-Renault, Nicole

    2012-01-01

    The detection of pathogenic bacteria remains a challenge for the struggle against biological weapons, nosocomial diseases, and for food safety. In this research, our aim was to develop an easy-to-use electrochemical immunosensor for the detection of pathogenic Staphylococcus aureus ATCC25923. The biosensor was elaborated by the immobilization of anti-S. aureus antibodies using a self-assembled monolayer (SAMs) of 3-Mercaptopropionic acid (MPA). These molecular assemblies were spontaneously formed by the immersion of the substrate in an organic solvent containing the SAMs that can covalently bond to the gold surface. The functionalization of the immunosensor was characterized using two electrochemical techniques: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Here, the analysis was performed in phosphate buffer with ferro/ferricyanide as the redox probe. The EIS technique was used for affinity assays: antibody-cell binding. A linear relationship between the increment in the electron transfer resistance (RCT) and the logarithmic value of S. aureus concentration was observed between 10 and 106 CFU/mL. The limit of detection (LOD) was observed at 10 CFU/mL, and the reproducibility was calculated to 8%. Finally, a good selectivity versus E. coli and S. epidermidis was obtained for our developed immunosensor demonstrating its specificity towards only S. aureus. PMID:25586032

  6. Ternary Surface Monolayers for Ultrasensitive (Zeptomole) Amperometric Detection of Nucleic-Acid Hybridization without Signal Amplification

    PubMed Central

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A.; Wang, Joseph

    2010-01-01

    A ternary surface monolayer, consisting of co-assembled thiolated capture probe (SHCP) mercaptohexanol (MCH) and dithiothreitol (DTT), is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers (SAMs). Remarkably low detection limits down to 40 zmole (in 4 μL samples) as well as only 1 CFU E. coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3′,5,5′-tetramethylbenzidine (HRP/TMB) system. Such dramatic improvements in the detection limits (compared to common binary alkanethiol interfaces and to most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to non-specific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration ‘backfillers’ that leads to a remarkably low background noise even in the presence of complex sample matrices. A wide range of surface compositions have been investigated and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety and forensic analysis. PMID:20883023

  7. Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers

    NASA Astrophysics Data System (ADS)

    Jeong, Inho; Song, Hyunwook

    2017-11-01

    In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.

  8. Reactive Capture of Gold Nanoparticles by Strongly Physisorbed Monolayers on Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiaoliang; Tong, Wenjun; Fidler, Vlastimil

    2012-12-01

    Anthracene Diels Alder adducts (DAa) bearing two long side chains (H-(CH2)22O(CH2)6OCH2-) at the 1- and 5-positions form self-assembled monolayers (SAMs) at the phenyloctane - highly oriented pyrolytic graphite (HOPG) interface. The long DAa side chains promote strong physisorption of the monolayer to HOPG and maintain the monolayer morphology upon rinsing or incubation in ethanol and air-drying of the substrate. Incorporating a carboxylic acid group on the DAa core enables capture of 1 - 4 nm diameter gold nanoparticles (AuNP) provided (i) the monolayer containing DAa-carboxylic acids is treated with Cu2+ ions and (ii) the organic coating on the AuNP containsmore » carboxylic acids (11-mercaptoundecanoic acid, MUA-AuNP). AuNP capture by the monolayer proceeds with formation of Cu2+ - carboxylate coordination complexes. The captured AuNP appear as mono- and multi-layered clusters at high coverage on HOPG. The surface density of the captured AuNPs can be adjusted from AuNP multi-layers to isolated AuNPs by varying incubation times, MUA-AuNP concentration, the number density of carboxylic acids in the monolayer, the number of MUA per AuNP, and the post-incubation treatments.« less

  9. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ido, Shinichiro; Kimiya, Hirokazu; Kobayashi, Kei; Kominami, Hiroaki; Matsushige, Kazumi; Yamada, Hirofumi

    2014-03-01

    The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy and X-ray crystallography, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody-antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays.

  10. Chemistry of anthracene-acetylene oligomers XXV: on-surface chirality of a self-assembled molecular network of a fan-blade-shaped anthracene-acetylene macrocycle with a long alkyl chain.

    PubMed

    Tsuya, Takuya; Iritani, Kohei; Tahara, Kazukuni; Tobe, Yoshito; Iwanaga, Tetsuo; Toyota, Shinji

    2015-03-27

    An anthracene cyclic dimer with two different linkers and a dodecyl group was synthesized by means of coupling reactions. The calculated structure had a planar macrocyclic π core and a linear alkyl chain. Scanning tunneling microscopy observations at the 1-phenyloctane/graphite interface revealed that the molecules formed a self-assembled monolayer that consisted of linear striped bright and dark bands. In each domain, the molecular network consisted of either Re or Si molecules that differed in the two-dimensional chirality about the macrocyclic faces, which led to a unique conglomerate-type self-assembly. The molecular packing mode and the conformation of the alkyl chains are discussed in terms of the intermolecular interactions and the interactions between the molecules and the graphite surface with the aid of MM3 simulations of a model system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Signal enhancement in ligand-receptor interactions using dynamic polymers at quartz crystal microbalance sensors.

    PubMed

    Dunér, Gunnar; Anderson, Henrik; Pei, Zhichao; Ingemarsson, Björn; Aastrup, Teodor; Ramström, Olof

    2016-06-20

    The signal enhancement properties of QCM sensors based on dynamic, biotinylated poly(acrylic acid) brushes has been studied in interaction studies with an anti-biotin Fab fragment. The poly(acrylic acid) sensors showed a dramatic increase in signal response with more than ten times higher signal than the carboxyl-terminated self-assembled monolayer surface.

  12. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers.

    PubMed

    Lee, Inyoung; Loew, Noya; Tsugawa, Wakako; Lin, Chi-En; Probst, David; La Belle, Jeffrey T; Sode, Koji

    2018-06-01

    Continuous glucose monitoring (CGM) is a vital technology for diabetes patients by providing tight glycemic control. Currently, many commercially available CGM sensors use glucose oxidase (GOD) as sensor element, but this enzyme is not able to transfer electrons directly to the electrode without oxygen or an electronic mediator. We previously reported a mutated FAD dependent glucose dehydrogenase complex (FADGDH) capable of direct electron transfer (DET) via an electron transfer subunit without involving oxygen or a mediator. In this study, we investigated the electrochemical response of DET by controlling the immobilization of DET-FADGDH using 3 types of self-assembled monolayers (SAMs) with varying lengths. With the employment of DET-FADGDH and SAM, high current densities were achieved without being affected by interfering substances such as acetaminophen and ascorbic acid. Additionally, the current generated from DET-FADGDH electrodes decreased with increasing length of SAM, suggesting that the DET ability can be affected by the distance between the enzyme and the electrode. These results indicate the feasibility of controlling the immobilization state of the enzymes on the electrode surface. Copyright © 2017. Published by Elsevier B.V.

  13. Oriented antibody immobilization on self-assembled monolayers applied as impedance biosensors

    NASA Astrophysics Data System (ADS)

    Tsugimura, Kaiki; Ohnuki, Hitoshi; Wu, Haiyun; Endo, Hideaki; Tsuya, Daiju; Izumi, Mitsuru

    2017-11-01

    Oriented immobilization of antibodies on a sensor chip is crucial for enhancing both the sensitivity and antigen-binding capacity of immunosensors. Here, we report a comparative study of the effect of oriented and random antibody immobilization on the binding efficiency by electrochemical impedance spectroscopy (EIS). Oriented immobilization of anti-myoglobin immunoglobulin G (anti-Myo IgG) was achieved by bonding to an Fc receptor of protein G (PrG) on a self-assembled monolayer (SAM), which results in the myoglobin (Myo) binding sites being exposed outside the sensing surface. Random immobilization of anti-Myo IgG was achieved by direct covalent attachment to the SAM surface. Both immobilizations were applied to interdigitated electrodes to enhance the electrochemical signal, and the Myo biosensor performance was then evaluated by a series of EIS measurements. We found that (i) the rate of the normalized charge transfer resistance for the oriented sample was 3 times higher than that for the random sample and (ii) the detection limit was 0.001 ng/mL, which is the lowest recorded detection limit among Myo immunosensors based on EIS. These findings indicate that oriented antibody immobilization is crucial for preparing highly sensitive EIS-based biosensors.

  14. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    NASA Astrophysics Data System (ADS)

    Alonso, Jose Maria; Bielen, Abraham A. M.; Olthuis, Wouter; Kengen, Servé W. M.; Zuilhof, Han; Franssen, Maurice C. R.

    2016-10-01

    Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  15. Self-Assembled Monolayers for Dental Implants

    PubMed Central

    Correa-Uribe, Alejandra

    2018-01-01

    Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs) for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available), combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials. PMID:29552036

  16. Analysis of charge injection and contact resistance as a function of electrode surface treatment in ambipolar polymer transistors

    NASA Astrophysics Data System (ADS)

    Lee, Seon Jeng; Kim, Chaewon; Jung, Seok-Heon; Di Pietro, Riccardo; Lee, Jin-Kyun; Kim, Jiyoung; Kim, Miso; Lee, Mi Jung

    2018-01-01

    Ambipolar organic field-effect transistors (OFETs) have both of hole and electron enhancements in charge transport. The characteristics of conjugated diketopyrrolopyrrole ambipolar OFETs depend on the metal-contact surface treatment for charge injection. To investigate the charge-injection characteristics of ambipolar transistors, these devices are processed via various types of self-assembled monolayer treatments and annealing. We conclude that treatment by the self-assembled monolayer 1-decanethiol gives the best enhancement of electron charge injection at both 100 and 300 °C annealing temperature. In addition, the contact resistance is calculated by using two methods: One is the gated four-point probe (gFPP) method that gives the voltage drop between channels, and the other is the simultaneous contact resistance extraction method, which extracts the contact resistance from the general transfer curve. We confirm that the gFPP method and the simultaneous extraction method give similar contact resistance, which means that we can extract contact resistance from the general transfer curve without any special contact pattern. Based on these characteristics of ambipolar p- and n-type transistors, we fabricate inverter devices with only one active layer. [Figure not available: see fulltext.

  17. Nanoscale patterning of a self-assembled monolayer by modification of the molecule-substrate bond.

    PubMed

    Shen, Cai; Buck, Manfred

    2014-01-01

    The intercalation of Cu at the interface of a self-assembled monolayer (SAM) and a Au(111)/mica substrate by underpotential deposition (UPD) is studied as a means of high resolution patterning. A SAM of 2-(4'-methylbiphenyl-4-yl)ethanethiol (BP2) prepared in a structural phase that renders the Au substrate completely passive against Cu-UPD, is patterned by modification with the tip of a scanning tunneling microscope. The tip-induced defects act as nucleation sites for Cu-UPD. The lateral diffusion of the metal at the SAM-substrate interface and, thus, the pattern dimensions are controlled by the deposition time. Patterning down to the sub-20 nm range is demonstrated. The difference in strength between the S-Au and S-Cu bond is harnessed to develop the latent Cu-UPD image into a patterned binary SAM. Demonstrated by the exchange of BP2 by adamantanethiol (AdSH) this is accomplished by a sequence of reductive desorption of BP2 in Cu free areas followed by adsorption of AdSH. The appearance of Au adatom islands upon the thiol exchange suggests that the interfacial structures of BP2 and AdSH SAMs are different.

  18. Fabrication and Characterization of a Stabilized Thin Film Ag/AgCl Reference Electrode Modified with Self-Assembled Monolayer of Alkane Thiol Chains for Rapid Biosensing Applications.

    PubMed

    Rahman, Tanzilur; Ichiki, Takanori

    2017-10-13

    The fabrication of miniaturized electrical biosensing devices can enable the rapid on-chip detection of biomarkers such as miRNA molecules, which is highly important in early-stage cancer detection. The challenge in realizing such devices remains in the miniaturization of the reference electrodes, which is an integral part of electrical detection. Here, we report on a novel thin film Ag/AgCl reference electrode (RE) that has been fabricated on top of a Au-sputtered glass surface, which was coated with a self-assembled monolayer (SAM) of 6-mercepto-1-hexanol (MCH). The electrode showed very little measurement deviation (-1.5 mv) from a commercial Ag/AgCl reference electrode and exhibited a potential drift of only ± 0.2 mV/h. In addition, the integration of this SAM-modified microfabricated thin film RE enabled the rapid detection (<30 min) of miRNA (let-7a). The electrode can be integrated seamlessly into a microfluidic device, allowing the highly stable and fast measurement of surface potential and is expected to be very useful for the development of miniature electrical biosensors.

  19. Functional group selective STM Imaging in self-assembled monolayers: Benzeneselenol on Au(111)

    NASA Astrophysics Data System (ADS)

    Azzam, Waleed; Zharnikov, Michael; Rohwerde, Michael; Bashir, Asif

    2018-01-01

    Benzeneselenol (PSe) self-assembled monolayers (SAMs) formed on Au(111) substrate by the immersion procedure with an immersion time of 24 h and 4 weeks were studied by high-resolution scanning tunneling microscopy (STM). The short molecular rows, which have been previously attributed to irregular translational domains, were found to be regularly repeated within a single domain in the SAMs fabricated upon the immersion for 4 weeks, forming adlayer structure with a very large unit cell. This structure could be assigned as a (27 × 5) superlattice (α phase) containing 36 molecules in the oblique unit cell. This phase coexisted with a different phase having a commensurate (8√{ 3 } × 4) superstructure (β phase) containing 28 protrusions per rectangular unit cell. Analysis of the STM images suggested that each PSe molecule in the β phase was imaged not as one but as a pair of protrusions, which were attributed to the benzene ring and the selenium headgroup of the PSe molecule. At the given molecular length, the spacing between the protrusions defined the molecular tilt, allowing us to derive the orientation of the SAM constituents directly from the STM image.

  20. Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects.

    PubMed

    Aghamohammadi, Mahdieh; Rödel, Reinhold; Zschieschang, Ute; Ocal, Carmen; Boschker, Hans; Weitz, R Thomas; Barrena, Esther; Klauk, Hagen

    2015-10-21

    The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor.

  1. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    PubMed

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  2. Full membrane spanning self-assembled monolayers as model systems for UHV-based studies of cell-penetrating peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, Johannes; Graham, Daniel J.; Schmüser, Lars

    2015-03-01

    Biophysical studies of the interaction of peptides with model membranes provide a simple yet effective approach to understand the transport of peptides and peptide based drug carriers across the cell membrane. Therein, the authors discuss the use of self-assembled monolayers fabricated from the full membrane-spanning thiol (FMST) 3-((14-((4'-((5-methyl-1-phenyl-35-(phytanyl)oxy-6,9,12,15,18,21,24,27,30,33,37-undecaoxa-2,3-dithiahenpentacontan-51-yl)oxy)-[1,1'-biphenyl]-4-yl)oxy)tetradecyl)oxy)-2-(phytanyl)oxy glycerol for ultrahigh vacuum (UHV) based experiments. UHV-based methods such as electron spectroscopy and mass spectrometry can provide important information about how peptides bind and interact with membranes, especially with the hydrophobic core of a lipid bilayer. Moreover, near-edge x-ray absorption fine structure spectra and x-ray photoelectron spectroscopy (XPS) data showed thatmore » FMST forms UHV-stable and ordered films on gold. XPS and time of flight secondary ion mass spectrometry depth profiles indicated that a proline-rich amphipathic cell-penetrating peptide, known as sweet arrow peptide is located at the outer perimeter of the model membrane.« less

  3. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes.

    PubMed

    Malkhandi, Souradip; Yang, Bo; Manohar, Aswin K; Prakash, G K Surya; Narayanan, S R

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  4. Conjugating folate on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles using click chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xiaofang, E-mail: xfshen@jiangnan.edu.cn; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-15

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe{sub 3}O{sub 4}@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenousmore » leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe{sub 3}O{sub 4}@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe{sub 3}O{sub 4}@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry.« less

  5. Electron transfer of quinone self-assembled monolayers on a gold electrode.

    PubMed

    Nagata, Morio; Kondo, Masaharu; Suemori, Yoshiharu; Ochiai, Tsuyoshi; Dewa, Takehisa; Ohtsuka, Toshiaki; Nango, Mamoru

    2008-06-15

    Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n=2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were -0.48 and -0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E 1/2 (mV)=E'-59pH for 2H+/2e(-) process in the pH range 3-11. In the range higher than pH 11, the value was estimated with E 1/2 (mV)=E'-30pH , which may correspond to H+/2e(-) process. The tunneling barrier coefficients (beta) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.

  6. Development and analysis of a novel cytokine biosensor concept for astronaut immune system monitoring

    NASA Astrophysics Data System (ADS)

    Aponte, Vanessa M.

    The dynamics of how astronauts' immune systems respond to space flight have been studied extensively, but the complex process has not to date been thoroughly characterized, nor have the underlying principles of what causes the immune system to change in microgravity been fully determined. To obtain statistically significant results regarding overall immunological effects in space, collecting in vivo data during flight is desirable, but no sensor is currently capable of performing such function in this environment. The aims of this research were to establish appropriate markers for in-flight monitoring of the immune system and develop a novel approach for a benchtop sensor to measure them. Quartz Crystal Microbalances (QCMs) were used as platforms to study a surface biochemistry process selective towards cytokines, which are used as stress-related immune markers in space and ground medicine. Pilot studies elucidated that a thiolated streptavidin-biotinylated antibody surface assembly did not form the protein monolayer necessary for stable cytokine sensing. Improved experiments incorporated self-assembled monolayers (SAMs) by using di-thiol tethers at the base of a dual antibody sandwich and fluorophore assembly. The goals of the improved experiments were to achieve a stable monolayer of covalently bound tethers, to enhance sensitivity by the addition of a second monoclonal antibody, and to have a fluorescence tether attached to the last antibody layer as a way to corroborate the amount of proteins attached to the surface by using confocal fluorescence microscopy (CFM). Atomic Force Microscopy (AFM) results confirmed the formation of an even protein monolayer at the surface of the QCM, while CFM corroborated that the entire sandwich assembly had been achieved. Frequency changes increased directly proportional to concentration of cytokines, adhering to non-linear behavior explained by viscoelastic fluid models. Results point to the promising use of this surface chemistry within an optical platform such as Surface Plasmon Resonance (SPR), rather than a piezoelectric device. Consideration is given to the potential application of this concept to MEMS/NEMS devices.

  7. Tribology of monolayer films: comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon.

    PubMed

    Booth, Brandon D; Vilt, Steven G; McCabe, Clare; Jennings, G Kane

    2009-09-01

    This Article presents a quantitative comparison of the frictional performance for monolayers derived from n-alkanethiolates on gold and n-alkyl trichlorosilanes on silicon. Monolayers were characterized by pin-on-disk tribometry, contact angle analysis, ellipsometry, and electrochemical impedance spectroscopy (EIS). Pin-on-disk microtribometry provided frictional analysis at applied normal loads from 10 to 1000 mN at a speed of 0.1 mm/s. At low loads (10 mN), methyl-terminated n-alkanethiolate self-assembled monolayers (SAMs) exhibited a 3-fold improvement in coefficient of friction over SAMs with hydroxyl- or carboxylic-acid-terminated surfaces. For monolayers prepared from both n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon, a critical chain length of at least eight carbons is required for beneficial tribological performance at an applied load of 9.8 mN. Evidence for disruption of chemisorbed alkanethiolate SAMs with chain lengths n

  8. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene: both in stacking and sliding assembly pathways

    NASA Astrophysics Data System (ADS)

    Lv, Wenping; Wu, Ren'an

    2013-03-01

    A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions.A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions. Electronic supplementary information (ESI) available: The evolution of interaction energy for two graphene nanosheets assembly in stacking (a) and sliding (b) pathway was plotted in Fig. S1. The time evolution of three dimension distance for stacking assembly of two graphene nanosheets with the edge-edge orientation of 45° was plotted in Fig. S2. The initial orientations of graphene nanosheets in three simulations (edge-edge distance in x-direction (dx) was 0.3 nm, but in z-direction (dz) was 0.0 nm, 0.4 nm and 0.7 nm, respectively) were shown in Fig. S3. The snapshots of the evolution of hydration shells during the sliding assembly of nanographene were shown in Fig. S4, with the separation of two graphene nanosheets in z-direction is (a) 0 nm and (b) 0.7 nm, respectively. The process of two graphene nanosheets assembly in stacking pathway was shown in Movie S1 as video. The process of two graphene nanosheets (with a separation of 0.7 nm in normal direction) assembly in sliding pathway was shown in Movie S2 as video. The dynamical evolution of interfacial water during the sliding assembly of nanographene was shown in Movie S3 as video. The process of extruding the monolayer water film (MWF) out of the interplate of two graphene nanosheets was shown in Movie S4 as video. Movie S5 displays that the graphene-water-graphene sandwiched structure was successfully maintained during a 10 ns MD simulation. See DOI: 10.1039/c3nr33447c

  9. Electrochromic switching in ionically self-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Janik, Jerzy A.; Heflin, James R.; Marciu, Daniela; Miller, Michael B.; Wang, Hong; Gibson, Harry W.; Davis, Rick M.

    2001-11-01

    Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub- nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS). Due to the precise nanometer scale control of thickness and composition of the electrochromic composite system, switching times faster than 50 ms have been demonstrated.

  10. Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes

    NASA Astrophysics Data System (ADS)

    Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.

    2004-08-01

    We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.

  11. Growth patterns of self-assembled InAs quantum dots near the two-dimensional to three-dimensional transition

    NASA Astrophysics Data System (ADS)

    Colocci, M.; Bogani, F.; Carraresi, L.; Mattolini, R.; Bosacchi, A.; Franchi, S.; Frigeri, P.; Rosa-Clot, M.; Taddei, S.

    1997-06-01

    Self-assembled InAs quantum dots have been grown by molecular beam epitaxy in such a way as to obtain a continuous variation of InAs coverages across the wafer. Structured photoluminescence spectra are observed after excitation of a large number of dots; deconvolution into Gaussian components yields narrow emission bands (full width at half-maximum 20-30 meV) separated in energy by an average spacing of 30-40 meV. We ascribe the individual bands of the photoluminescence spectra after low excitation to families of dots with similar shapes and with heights differing by one monolayer, as strongly supported by numerical calculations of the fundamental electronic transitions in quantum dot structures.

  12. Nanotransforming Assemblies

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2005-03-01

    Degradable polymeric materials with hydrolysable backbones have attracted much attention because they break down to non-toxic metabolites. They are the key solutions to many environmental problems, and are particularly useful for various biomedical applications. Much work has been focused on degradable polymers and their co-polymers as bulk, or films and monolayers.^2 Only limited work has explored the degradable amphiphilic copolymer self-assemblies (spherical micelles, worm micelles and vesicles) in solutions, which are quite important for soft-material engineering. Mostly spherical micelles, and in rare cases, vesicles, have been reported made from copolymers with degradable polyester, typically polylactide or polycaprolactone, as the hydrophobic block, connected to biocompatible, stealthy poly (ethylene oxide) as hydrophilic block. Morphological change of such spherical micelles induced by degradation is subtle, and the degradation kinetics and mechanism in assemblies, which can be quite different from that in bulk or film, are not well understood. Here we will describe the phase transformations of worm micelles and vesicles as they degrade and also highlight how these polymeric self-assemblies interact with lipid membranes.

  13. Nanopatched Graphene with Molecular Self-Assembly Toward Graphene-Organic Hybrid Soft Electronics.

    PubMed

    Kang, Boseok; Lee, Seong Kyu; Jung, Jaehyuck; Joe, Minwoong; Lee, Seon Baek; Kim, Jinsung; Lee, Changgu; Cho, Kilwon

    2018-06-01

    Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparative Study of Protein Immobilization Properties on Calixarene Monolayers

    PubMed Central

    Chen, Hongxia; Lee, Minsu; Choi, Sungwook; Kim, Jae-Ho; Choi, Heung-Jin; Kim, Sung-Hoon; Lee, Jeabeom; Koh, Kwangnak

    2007-01-01

    Three calix[4]arene (Cal-4) derivatives of which contain ethylester (1), carboxylic acid (2), and crownether (3) at the lower rim with a common reactive thiol at the upper rim were synthesized and constructed to self-assembled monolayers (SAMs) on Au films. After spectroscopic characterization of monolayers, the interaction between Cal-4 and surface confined bovine serum albumin (BSA) in the SAMs was analyzed by surface plasmon resonance (SPR). The estimated surface concentration of BSA on the Cal-4 SAM with crownether group was the highest among the three Cal-4 derivatives. Anti-hIgG and hIgG pair was employed for the investigation of protein-protein interaction. Molecular interaction between anti-hIgG and hIgG can be detected in a concentration range of 10 pg/mL to 200 pg/mL on the Cal-4 derivative 3 SAM modified SPR chip.

  15. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    PubMed

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  16. Ordering of Air-Oxidized Decanethiols on Au(111).

    PubMed

    Sotthewes, Kai; Kap, Özlem; Wu, Hairong; Thompson, Damien; Huskens, Jurriaan; Zandvliet, Harold J W

    2018-04-19

    Self-assembled monolayers (SAMs) of alkanethiols on gold are a commonly used platform for nanotechnology owing to their ease of preparation and high surface coverage. Unfortunately, the gold-sulfur bond is oxidized at ambient conditions which alters the stability and structure of the monolayer. We show using scanning tunneling microscopy and X-ray photoelectron spectroscopy that decanethiolate molecules oxidize into decanesulfonates that organize into a hitherto unknown striped phase. Air-exposed SAMs oxidize, as can be determined by a shift of the S 2p peak and the appearance of O 1s photoelectrons as part of the decanethiol monolayer transforms into a lamellae-like decanesulfonate structure when exposed to air. The herringbone structure of the Au(111) surface is preserved, indicating that the interaction between the molecules and the surface is rather weak as these findings are substantiated by density functional theory calculations.

  17. UV-mediated tuning of surface biorepulsivity in aqueous environment.

    PubMed

    Weber, Theresa; Meyerbröker, Nikolaus; Hira, Nuruzzaman Khan; Zharnikov, Michael; Terfort, Andreas

    2014-04-28

    While it is well-known that oligoethylene glycol (OEG) terminated self-assembled monolayers (SAMs) can be deteriorated by UV irradiation in air, we now report that the analogous modification can also be performed in water, opening the opportunity for in situ tuning of biorepulsive properties. Surprisingly, this deterioration also takes place even in the absence of molecular oxygen, resulting in a very selective process.

  18. Low-dislocation-density epitatial layers grown by defect filtering by self-assembled layers of spheres

    DOEpatents

    Wang, George T.; Li, Qiming

    2013-04-23

    A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.

  19. Construction and Operation of Three-Dimensional Memory and Logic Molecular Devices and Circuits

    DTIC Science & Technology

    2013-07-01

    higher currents and less leakage. We also constructed a ferrocene -based self-assembling monolayer attached to gold nanoparticles, exhibiting a...charging transistor utilizing Ferrocene -based SAM attached to gold nano-particle. Our experiments are, to our knowledge, the first to exhibit an...The molecular layer includes a ferrocene SAM attached to Au Distribution A: Approved for public release; distribution is unlimited

  20. Reactions Between Contaminants and Functionalized Organic Self-Assembled Monolayers in Aqueous Solutions

    DTIC Science & Technology

    2006-05-16

    Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The interaction of...Introduction The subject of microbiological contamination in water has long been a major public concern, where microorganisms such as coliform bacteria

  1. Correction: Assembly and relaxation behaviours of phosphatidylethanolamine monolayers investigated by polarization and frequency resolved SFG-VS.

    PubMed

    Wei, Feng; Xiong, Wei; Li, Wenhui; Lu, Wangting; Allen, Heather C; Zheng, Wanquan

    2016-06-14

    Correction for 'Assembly and relaxation behaviours of phosphatidylethanolamine monolayers investigated by polarization and frequency resolved SFG-VS' by Feng Wei et al., Phys. Chem. Chem. Phys., 2015, 17, 25114-25122.

  2. Biomimetics in thin film design: Niche-like wrinkles designed for i-cell progenitor cell differentiation.

    PubMed

    Major, Roman; Lackner, Juergen M; Sanak, Marek; Major, Boguslaw

    2017-11-01

    The future and development of science are in interdisciplinary areas, such as biomedical engineering. Self-assembled structures, similar to stem cell niches, inhibit rapid cellular division processes and enable the capture of stem cells from blood flow. By modifying the surface topography and stiffness properties, progenitor cells were differentiated towards the formation of endothelial cell monolayers to effectively inhibit the coagulation cascade. Wrinkled material layers in the form of thin polymeric coatings were prepared. An optimized surface topography led to proper cell differentiation and influenced the appropriate formation of endothelial cell monolayers. Blood activation was decelerated by the formed endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of oscillation dynamics on long-range electron transfer in a helical peptide monolayer.

    PubMed

    Matsushita, Daisuke; Uji, Hirotaka; Kimura, Shunsaku

    2018-06-06

    Electron transfer (ET) reactions via helical peptides composed of -(Aib-Pro)n- were studied in self-assembled monolayers and compared with -(Ala-Aib)n- peptides. Short Aib-Pro peptides showed slightly higher ET rates due to the better electronic coupling of the Pro residue. But, the 24mer Aib-Pro peptide showed a smaller ET rate than the corresponding Ala-Aib peptide. On the basis of DFT calculations, the deceleration of the ET rate of the longer Aib-Pro peptide is considered to be due to the smaller number of active modes of accordion-like oscillations than the Ala-Aib peptide, which has a strong influence on a long-range ET reaction.

  4. Stabilization of Ag nanostructures by tuning their Fermi levels

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Kan, Ryota; Yamano, Yuka; Uchida, Takayuki

    2018-05-01

    The oxidation of Ag nanostructures has been studied as a key step for their degradation under the guiding principle in the previous paper that they are stable when their Fermi level is lower than those of their surroundings. The drop of the Fermi level of a thin Ag layer was caused by the formation of self-assembled monolayers (SAMs) of certain organic compounds including those of photographic interest and a monolayer of AgI, and attributed to the formation of dielectric layers, whose positive charges were closer to the Ag layer than negative charges. A consideration is given on further examinations needed to realize the above guiding principle in individual devices.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Nana; Cheng, Lu; Wang, Jianpu, E-mail: iamjpwang@njtech.edu.cn

    Amino acid self-assembled monolayers are used in the fabrication of light-emitting diodes based on organic-inorganic halide perovskites. The monolayers of amino acids provide modified interfaces by anchoring to the surfaces of ZnO charge-transporting layers using carboxyl groups, leaving the amino groups to facilitate the nucleation of MAPbBr{sub 3} perovskite films. This surface-modification strategy, together with chlorobenzene-assisted fast crystallization method, results in good surface coverage and reduced defect density of the perovskite films. These efforts lead to green perovskite light emitting diodes with a low turn-on voltage of 2 V and an external quantum efficiency of 0.43% at a brightness of ∼5000 cdmore » m{sup −2}.« less

  6. Comparative Study of the Binding of Concanavalin A to Self-Assembled Monolayers Containing a Thiolated α-Mannoside on Flat Gold and on Nanoporous Gold

    PubMed Central

    Pandey, Binod; Tan, Yih Horng; Fujikawa, Kohki; Demchenko, Alexei V.

    2013-01-01

    We have prepared SAMs containing 8-mercaptooctyl α-D-mannopyranoside, either as a single component or in mixed SAMs with n-octanethiol on flat gold surfaces and on nanoporous gold. Electrochemical impedance spectroscopy showed that the mixed SAMs on flat gold surfaces showed the highest Con A binding near 1:9 solution molar ratio of thiolatedα-mannoside to n-octanethiol whereas those on NPG showed the highest response at 1:19 solution molar ratio of thiolated α-mannoside to n-octanethiol. Atomic force microscopy was employed to image the monolayers, and also to image the bound Con A protein. PMID:23519474

  7. Adsorption behavior of Zn porphyrins on a (1 0 1) face of anatase TiO2

    NASA Astrophysics Data System (ADS)

    Zajac, Lukasz; Bodek, Lukasz; Such, Bartosz

    2018-06-01

    The adsorption behavior of porphyrin molecules on anatase TiO2(1 0 1) has been investigated with scanning tunneling microscopy (STM) in ultra-high vacuum (UHV) at room temperature. At low coverage, the ZnTPP molecules have a tendency to adsorb on the one type of step edges forming molecular chains. Due to relatively high mobility of molecules stable assemblies appear only close to a monolayer coverage. Zn porphyrins in self-assembled molecular domains form a commensurate structure. In-plane rotation of the molecules leads to formation of two domains of different chirality.

  8. LEGO Materials.

    PubMed

    Talapin, Dmitri V

    2008-06-01

    Two papers in this issue report important developments in the field of inorganic nanomaterials. Chen and O'Brien discuss self-assembly of semiconductor nanocrystals into binary nanoparticle superlattices (BNSLs). They show that simple geometrical principles based on maximizing the packing density can determine BNSL symmetry in the absence of cohesive electrostatic interactions. This finding highlights the role of entropy as the driving force for ordering nanoparticles. The other paper, by Weller and co-workers, addresses an important problem related to device integration of nanoparticle assemblies. They employ the Langmuir-Blodgett technique to prepare long-range ordered monolayers of close-packed nanocrystals and transfer them to different substrates.

  9. Ultrafast dynamics of self-assembled monolayers under shock compression: effects of molecular and substrate structure.

    PubMed

    Lagutchev, Alexei S; Patterson, James E; Huang, Wentao; Dlott, Dana D

    2005-03-24

    Laser-driven approximately 1 GPa shock waves are used to dynamically compress self-assembled monolayers (SAMs) consisting of octadecanethiol (ODT) on Au and Ag, and pentanedecanethiol (PDT) and benzyl mercaptan (BMT) on Au. The SAM response to <4 ps shock loading and approximately 25 ps shock unloading is monitored by vibrational sum-frequency generation spectroscopy (SFG), which is sensitive to the instantaneous tilt angle of the SAM terminal group relative to the surface normal. Arrival of the shock front causes SFG signal loss in all SAMs with a material time constant <3.5 ps. Thermal desorption and shock recovery experiments show that SAMs remain adsorbed on the substrate, so signal loss is attributed to shock tilting of the methyl or phenyl groups to angles near 90 degrees. When the shock unloads, PDT/Au returns elastically to its native structure whereas ODT/Au does not. ODT evidences a complicated viscoelastic response that arises from at least two conformers, one that remains kinetically trapped in a large-tilt-angle conformation for times >250 ps and one that relaxes in approximately 30 ps to a nearly upright conformation. Although the shock responses of PDT/Au, ODT/Ag, and BMT/Au are primarily elastic, a small portion of the molecules, 10-20%, evidence viscoelastic response, either becoming kinetically trapped in large-tilt states or by relaxing in approximately 30 ps back to the native structure. The implications of the observed large-amplitude monolayer dynamics for lubrication under extreme conditions of high strain rates are discussed briefly.

  10. In situ Observation of Direct Electron Transfer Reaction of Cytochrome c Immobilized on ITO Electrode Modified with 11-{2-[2-(2-Methoxyethoxy)ethoxy]ethoxy}undecylphosphonic Acid Self-assembled Monolayer Film by Electrochemical Slab Optical Waveguide Spectroscopy.

    PubMed

    Matsuda, Naoki; Okabe, Hirotaka; Omura, Ayako; Nakano, Miki; Miyake, Koji

    2017-01-01

    To immobilize cytochrome c (cyt.c) on an ITO electrode while keeping its direct electron transfer (DET) functionality, the ITO electrode surface was modified with 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid (CH 3 O (CH 2 CH 2 O) 3 C 11 H 22 PO(OH) 2 , M-EG 3 -UPA) self-assembled monolayer (SAM) film. After a 100-times washing process to exchange a phosphate buffer saline solution surrounding cyt.c and ITO electrode to a fresh one, an in situ observation of visible absorption spectral change with slab optical waveguide (SOWG) spectroscopy showed that 87.7% of the cyt.c adsorbed on the M-EG 3 -UPA modified ITO electrode remained on the ITO electrode. The SOWG absorption spectra corresponding to oxidized and reduced cyt.c were observed with setting the ITO electrode potential at 0.3 and -0.3 V vs. Ag/AgCl, respectively, while probing the DET reaction between cyt.c and ITO electrode occurred. The amount of cyt.c was evaluated to be about 19.4% of a monolayer coverage based on the coulomb amount in oxidation and reduction peaks on cyclic voltammetry (CV) data. The CV peak current maintained to be 83.4% compared with the initial value for a M-EG 3 -UPA modified ITO electrode after 60 min continuous scan with 0.1 V/s between 0.3 and -0.3 V vs. Ag/AgCl.

  11. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics.

    PubMed

    Hutchins, Daniel O; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E; Castner, David G; Ma, Hong; Jen, Alex K-Y

    2012-11-15

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlO x (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10 -8 A cm -2 and capacitance density of 0.62 µF cm -2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm 2 V -1 s -1 .

  12. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics

    PubMed Central

    Hutchins, Daniel O.; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E.; Castner, David G.; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10−8 A cm−2 and capacitance density of 0.62 µF cm−2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V−1 s−1. PMID:24288423

  13. Gold nanoparticles protected by mixed hydrogenated/fluorinated monolayers: controlling and exploring the surface features

    NASA Astrophysics Data System (ADS)

    Şologan, Maria; Gentilini, Cristina; Bidoggia, Silvia; Boccalon, Mariangela; Pace, Alice; Pengo, Paolo; Pasquato, Lucia

    2018-06-01

    Harnessing the reciprocal phobicity of hydrogenated and fluorinated thiolates proved to be a valuable strategy in preparing gold nanoparticles displaying mixed monolayers with a well-defined and pre-determined morphology. Our studies display that the organisation of the fluorinated ligands in phase-separated domains takes place even when these represent a small fraction of the ligands grafted on the gold surface. Using simple model ligands and by combining 19F NMR or ESR spectroscopies, and multiscale molecular simulations, we could demonstrate how the monolayer morphology responds in a predictable manner to structural differences between the thiolates. This enables a straightforward preparation of gold nanoparticles with monolayers displaying stripe-like, Janus, patchy, and random morphologies. Additionally, solubility properties may be tuned as function of the nature of the ligands and of the monolayer morphology obtaining gold nanoparticles soluble in organic solvents or in aqueous solutions. Most importantly, this rich diversity can be achieved not by resorting to ad hoc developed fabrication techniques, but rather relying on the spontaneous self-sorting of the ligands upon assembly on the nanoparticle surface. Besides enabling control over the monolayer morphology, fluorinated ligands endow the nanoparticles with several properties that can be exploited in the development of novel materials with applications, for instance in drug delivery and diagnostic imaging.

  14. Influence of the foundation layer on the layer-by-layer assembly of poly-L-lysine and poly(styrenesulfonate) and its usage in the fabrication of 3D microscale features.

    PubMed

    Zhou, Dejian; Bruckbauer, Andreas; Batchelor, Matthew; Kang, Dae-Joon; Abell, Chris; Klenerman, David

    2004-10-12

    The layer-by-layer (LBL) assembly of a polypeptide, poly-L-lysine (PLL), with poly(styrenesulfonate) sodium salt (PSS) on flat template-stripped gold (TSG) surfaces precoated with a self-assembled monolayer of alkanethiols terminated with positive (pyridinium), negative (carboxylic acid), and neutral [hexa(ethylene glycol)] groups is investigated. Both the topography and the rate of film thickness growth are found to be strongly dependent on the initial surface foundation layer. LBL assembly of PLL and PSS on patterned TSG surfaces produced by micro contact printing leads to structurally distinct microscale features, including pillars, ridges, and wells, whose height can be controlled with nanometer precision. Copyright 2004 American Chemical Society

  15. Self-assembled biomimetic superhydrophobic CaCO3 coating inspired from fouling mineralization in geothermal water.

    PubMed

    Wang, Gong G; Zhu, Li Q; Liu, Hui C; Li, Wei P

    2011-10-18

    Inspired from fouling self-mineralization in geothermal water, a novel biomimetic cactuslike CaCO(3) coating with superhydrophobic features is reported in this letter. The structure, morphologies, and phases of the CaCO(3) coating were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, and infrared spectrophotometry. After prenucleation treatment, a continuous cactuslike CaCO(3) coating with hierarchical nano- and microstructures was self-assembled on stainless steel surfaces after immersion in simulated geothermal water at 50 °C for 48 h. After being modified with a low-surface-energy monolayer of sodium stearate, the as-prepared coating exhibited superhydrophobic properties with a water contact angle of 158.9° and a sliding angle of 2°. Therefore, this work might open up a new application field of geothermal resources and provide insight into designing multidimensional structures with functional applications, including superhydrophobic surfaces. © 2011 American Chemical Society

  16. Physical properties and application in the confined geometrical systems

    NASA Astrophysics Data System (ADS)

    Pak, Hunkyun

    Surface viscoelasticity of a vitamin E modified polyethylene glycol (vitamin E-TPGS) monolayers at the air/water interface is deduced by the surface light scattering method and Wilhelmy plate method. It was found that the viscoelasticity of vitamin E-TPGS monolayer is similar to that of PEO monolayer at the surface pressure lower than the collapse pressure of the polyethylene oxide (PEO). However, at higher surface pressure than the collapse pressure of PEO, it deviates from the viscoelastic behavior of PEO. Lateral diffusion constants of a probe lipid (NBD-PC) in a binary monolayer of L-a-dilauroylphosphatidylcholine (DLPC) and poly-(di-isobutylene-alt-maleic acid) (PDIBMA) were determined by the fluorescence recovery after photobleaching (FRAP) method at the air/pH 7 buffer interface as a function of composition. The diffusion constant is found to retard down to less than one hundredth to that at pure DLPC monolayers as the mole fraction of PDIBMA increased. The free area model was used to interpret the probe diffusion retardation. Translational diffusion constants of a probe molecule, 4-octadecylamino-7-nitrobenzo-2-oxa-1,3-diazole (C18-NBD), in thin polyisoprene (PI) and polydimethyl siloxane (PDMS) films, spin coated on methylated and propylyaminated silicon wafers, are studied by the FRAP method as a function of film thickness. Reduction of the diffusion constant is observed as thickness of the films is decreased. Two empirical models, the two-layer model and the continuous layer model are proposed to account for the diffusion constant dependence on the film thickness vs. thickness. It was observed that the diffusion profiles in the films are dependet on the nature of the substrate surfaces. Self-assembled patterns of magnetic particles were made and fixed by applying magnetic field on the particles dispersed at the air/liquid interface, followed by gelling of the liquid subphase. With this method, the large patterns with controllable lattice constant can be made. The fixation of the subphase enhances the stability of the patterns. Further, three-dimensional self-assembled patterns can be made by this method when the fixation process is incorporated.

  17. Self-assembled monolayers from biphenyldithiol derivatives: optimization of the deprotection procedure and effect of the molecular conformation.

    PubMed

    Shaporenko, Andrey; Elbing, Mark; Błaszczyk, Alfred; von Hänisch, Carsten; Mayor, Marcel; Zharnikov, Michael

    2006-03-09

    A series of biphenyl-derived dithiol (BDDT) compounds with terminal acetyl-protected sulfur groups and different structural arrangements of both phenyl rings have been synthesized and fully characterized. The different arrangements were achieved by introducing hydrocarbon substituents in the 2 and 2' positions of the biphenyl backbone. The presented model compounds enable the investigation of the correlation between the intramolecular conformation and other physical properties of interest, like, e.g., molecular assembly or electronic transport properties. Here, the ability of these model compounds to form self-assembled monolayers (SAMs) on Au(111) and Ag(111) is investigated in details. The deprotection of the target molecules was performed in situ using either NH4OH or triethylamine (TEA) deprotection agent. The fabricated films were characterized by synchrotron-based high-resolution photoelectron spectroscopy and near-edge absorption fine structure spectroscopy. Whereas the deprotection by NH4OH was found to result in the formation of multilayer films, the deprotection by TEA allowed the preparation of densely packed BDDT SAMs with a noticeably higher orientational order and smaller molecular inclination on Ag than on Au. Introduction of the alkyl bridge between the individual rings of the biphenyl backbone did not lead to a noticeable change in the structure and packing density of the BDDT SAMs as long as the molecule had a planar conformation in the respective SAM. The deviation from this conformation resulted in the deterioration of the film quality and a decrease of the orientational order.

  18. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    NASA Astrophysics Data System (ADS)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  19. STM imaging ortho- and para-fluorothiophenol self-assembled monolayers on Au(111).

    PubMed

    Jiang, Peng; Deng, Ke; Fichou, Denis; Xie, Si-Shen; Nion, Aymeric; Wang, Chen

    2009-05-05

    Self-assembled monolayers (SAMs) of para- and ortho-fluorothiophenol (p- and o-FTP) spontaneously formed on Au(111) substrate have been contrasted through investigation by a scanning tunneling microscope (STM) at room temperature. High-resolution STM imaging reveals that p-FTP adopts a 6 x radical3R30 degrees molecule arrangement containing six molecules. Two different kinds of p-FTP molecule dimer line structures have been formed on Au(111) by intermolecular pi-pi stacking along 112 substrate directions, besides a single p-FTP molecule line. In contrast, o-FTP molecules self-assemble into a much looser wave-like SAM, which can be described as a 5 x 3 radical3R30 degrees structure containing two molecules. Periodic density functional theory (DFT) calculations for the two systems suggest that these kinds of FTP molecules preferentially take the asymmetrical positions between 3-fold face-centered cubic (fcc) hollow and bridge sites on Au(111), tilting from the substrate surface. Theoretical simulation gives apparent average tilted angles of 58 degrees and 68 degrees for p-FTP and o-FTP with respect to the surface normal, respectively. This simulation shows that o-FTP is more inclined to lie down toward the Au(111) surface compared to p-FTP. The difference between p-FTP and o-FTP SAM structures can be qualitatively understood in terms of the variation of intermolecular dipole-dipole orientation. This suggests that, besides well-known Au-S and pi-pi interactions, electrostatic interactions including dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions might also play an important role in influencing the SAM structures formed by aromatic thiols with a permanent dipole moment.

  20. Optimization of Methods for Articular Cartilage Surface Tissue Engineering: Cell Density and Transforming Growth Factor Beta Are Critical for Self-Assembly and Lubricin Secretion.

    PubMed

    Iwasa, Kenjiro; Reddi, A Hari

    2017-07-01

    Lubricin/superficial zone protein (SZP)/proteoglycan4 (PRG4) plays an important role in boundary lubrication in articular cartilage. Lubricin is secreted by superficial zone chondrocytes and synoviocytes of the synovium. The specific objective of this investigation is to optimize the methods for tissue engineering of articular cartilage surface. The aim of this study is to investigate the effect of cell density on the self-assembly of superficial zone chondrocytes and lubricin secretion as a functional assessment. Superficial zone chondrocytes were cultivated as a monolayer at low, medium, and high densities. Chondrocytes at the three different densities were treated with transforming growth factor beta (TGF-β)1 twice a week or daily, and the accumulated lubricin in the culture medium was analyzed by immunoblots and quantitated by enzyme-linked immunosorbent assay (ELISA). Cell numbers in low and medium densities were increased by TGF-β1; whereas cell numbers in high-density cell cultures were decreased by twice-a-week treatment of TGF-β1. On the other hand, the cell numbers were maintained by daily TGF-β treatment. Immunoblots and quantitation of lubricin by ELISA analysis indicated that TGF-β1 stimulated lubricin secretion by superficial zone chondrocytes at all densities with twice-a-week TGF-β treatment. It is noteworthy that the daily treatment of TGF-β1 increased lubricin much higher compared with twice-a-week treatment. These data demonstrate that daily treatment is optimal for the TGF-β1 response in a higher density of monolayer cultures. These findings have implications for self-assembly of surface zone chondrocytes of articular cartilage for application in tissue engineering of articular cartilage surface.

  1. Self-similar assemblies of globular whey proteins at the air-water interface: effect of the structure.

    PubMed

    Mahmoudi, Najet; Gaillard, Cédric; Boué, François; Axelos, Monique A V; Riaublanc, Alain

    2010-05-01

    We investigated the structure of heat-induced assemblies of whey globular proteins using small angle neutron scattering (SANS), static and dynamic light scattering (SLS and DLS), and cryogenic transmission electron microscopy (Cryo-TEM). Whey protein molecules self-assemble in fractal aggregates with a structure density depending on the electrostatic interactions. We determined the static and dynamic properties of interfacial layer formed by the protein assemblies, upon adsorption and spreading at the air-water interface using surface film balance and interfacial dilatational rheology. Upon spreading, all whey protein systems show a power-law scaling behavior of the surface pressure versus concentration in the semi-dilute surface concentration regime, with an exponent ranging from 5.5 to 9 depending on the electrostatic interactions and the aggregation state. The dilatational modulus derived from surface pressure isotherms shows a main peak at 6-8 mN/m, generally considered to be the onset of a conformational change in the monolayer, and a second peak or a shoulder at 15 mN/m. Long-time adsorption kinetics give similar results for both the native whey proteins and the corresponding self-similar assemblies, with a systematic effect of the ionic strength. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Optical and electronic properties of self-assembled nanoparticle-ligand metasurfaces

    NASA Astrophysics Data System (ADS)

    Fontana, Jake; Livenere, John; Caldwell, Joshua; Spillmann, Christopher; Naciri, Jawad; Rendell, Ronald; Ratna, Banahalli

    2013-03-01

    The optical and electronic properties of inorganic nanoparticles organized into two-dimensional lattices sensitively depend on the properties of the organic ligand shell coating the nanoparticles. We study the optical and electronic properties of these two-dimensional metasurfaces consisting of gold nanoparticles functionalized with ligands and self-assembled into macroscopic monolayers on non-templated substrates. Using these metasurfaces we demonstrate an average surface-enhanced Raman scattering (SERS) enhancement factor on the order of 108 for benzenethiol ligands and study the mechanisms that influence the enhancement. These metasurfaces may provide a platform for the development of low-power, low-cost next-generation chem/bio-sensors and new insights into the organic-inorganic interface at the nanoscale. This work was supported with funding provided from the Office of Naval Research

  3. Self-assembled tunable photonic hyper-crystals

    PubMed Central

    Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.

    2014-01-01

    We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  4. Self-assembled tunable photonic hyper-crystals.

    PubMed

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  5. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  6. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    PubMed

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

  7. Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers.

    PubMed

    Huang, Cheng; Moosmann, Markus; Jin, Jiehong; Heiler, Tobias; Walheim, Stefan; Schimmel, Thomas

    2012-01-01

    A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix) can be reproducibly induced. Either of the formed phases (PS or PMMA) can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This "monolayer copy" of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity) at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and (3-aminopropyl)triethoxysilane (APTES), and at the same time featuring regions of bare SiO(x). The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures [1].

  8. Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound.

    PubMed

    Vaithilingam, Jayasheelan; Kilsby, Samuel; Goodridge, Ruth D; Christie, Steven D R; Edmondson, Steve; Hague, Richard J M

    2015-01-01

    Surface modification of an implant with a biomolecule is used to improve its biocompatibility and to reduce post-implant complications. In this study, a novel approach has been used to functionalise phosphonic acid monolayers with a drug. Ti6Al4V components fabricated using selective laser melting (SLM) were functionalised with Paracetamol (a pharmaceutically relevant biomolecule) using phosphonic acid based self-assembled monolayers (SAMs). The attachment, stability of the monolayers on the SLM fabricated surface and functionalisation of SAMs with Paracetamol were studied using X-ray photoelectron spectroscopy (XPS) and surface wettability measurements. The obtained results confirmed that SAMs were stable on the Ti6Al4V surface for over four weeks and then began to desorb from the surface. The reaction used to functionalise the phosphonic acid monolayers with Paracetamol was noted to be successful. Thus, the proposed method has the potential to immobilise drugs/proteins to SAM coated surfaces and improve their biocompatibility and reduce post-implant complications. Copyright © 2014. Published by Elsevier B.V.

  9. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions.

    PubMed

    Wen, Jin; Li, Wei; Chen, Shuang; Ma, Jing

    2016-08-17

    Surfaces modified with a functional molecular monolayer are essential for the fabrication of nano-scale electronics or machines with novel physical, chemical, and/or biological properties. Theoretical simulation based on advanced quantum chemical and classical models is at present a necessary tool in the development, design, and understanding of the interfacial nanostructure. The nanoscale surface morphology, growth processes, and functions are controlled by not only the electronic structures (molecular energy levels, dipole moments, polarizabilities, and optical properties) of building units but also the subtle balance between intermolecular and interfacial interactions. The switchable surfaces are also constructed by introducing stimuli-responsive units like azobenzene derivatives. To bridge the gap between experiments and theoretical models, opportunities and challenges for future development of modelling of ferroelectricity, entropy, and chemical reactions of surface-supported monolayers are also addressed. Theoretical simulations will allow us to obtain important and detailed information about the structure and dynamics of monolayer modified interfaces, which will guide the rational design and optimization of dynamic interfaces to meet challenges of controlling optical, electrical, and biological functions.

  10. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  11. Photoinduced electron transfer through peptide-based self-assembled monolayers chemisorbed on gold electrodes: directing the flow-in and flow-out of electrons through peptide helices.

    PubMed

    Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2014-08-21

    Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.

  12. Square Wave Voltammetry of TNT at Gold Electrodes Modified with Self-Assembled Monolayers Containing Aromatic Structures

    PubMed Central

    Trammell, Scott A.; Zabetakis, Dan; Moore, Martin; Verbarg, Jasenka; Stenger, David A.

    2014-01-01

    Square wave voltammetry for the reduction of 2,4,6-trinitrotoluene (TNT) was measured in 100 mM potassium phosphate buffer (pH 8) at gold electrodes modified with self-assembled monolayers (SAMs) containing either an alkane thiol or aromatic ring thiol structures. At 15 Hz, the electrochemical sensitivity (µA/ppm) was similar for all SAMs tested. However, at 60 Hz, the SAMs containing aromatic structures had a greater sensitivity than the alkane thiol SAM. In fact, the alkane thiol SAM had a decrease in sensitivity at the higher frequency. When comparing the electrochemical response between simulations and experimental data, a general trend was observed in which most of the SAMs had similar heterogeneous rate constants within experimental error for the reduction of TNT. This most likely describes a rate limiting step for the reduction of TNT. However, in the case of the alkane SAM at higher frequency, the decrease in sensitivity suggests that the rate limiting step in this case may be electron tunneling through the SAM. Our results show that SAMs containing aromatic rings increased the sensitivity for the reduction of TNT when higher frequencies were employed and at the same time suppressed the electrochemical reduction of dissolved oxygen. PMID:25549081

  13. Neuronal growth on L- and D-cysteine self-assembled monolayers reveals neuronal chiral sensitivity.

    PubMed

    Baranes, Koby; Moshe, Hagay; Alon, Noa; Schwartz, Shmulik; Shefi, Orit

    2014-05-21

    Studying the interaction between neuronal cells and chiral molecules is fundamental for the design of novel biomaterials and drugs. Chirality influences all biological processes that involve intermolecular interaction. One common method used to study cellular interactions with different enantiomeric targets is the use of chiral surfaces. Based on previous studies that demonstrated the importance of cysteine in the nervous system, we studied the effect of L- and D-cysteine on single neuronal growth. L-Cysteine, which normally functions as a neuromodulator or a neuroprotective antioxidant, causes damage at elevated levels, which may occur post trauma. In this study, we grew adult neurons in culture enriched with L- and D-cysteine as free compounds or as self-assembled monolayers of chiral surfaces and examined the effect on the neuronal morphology and adhesion. Notably, we have found that exposure to the L-cysteine enantiomer inhibited, and even prevented, neuronal attachment more severely than exposure to the D-cysteine enantiomer. Atop the L-cysteine surfaces, neuronal growth was reduced and degenerated. Since the cysteine molecules were attached to the surface via the thiol groups, the neuronal membrane was exposed to the molecular chiral site. Thus, our results have demonstrated high neuronal chiral sensitivity, revealing chiral surfaces as indirect regulators of neuronal cells and providing a reference for studying chiral drugs.

  14. Patterned self-assembled monolayers of alkanethiols on copper nanomembranes by submerged laser ablation

    NASA Astrophysics Data System (ADS)

    Rhinow, Daniel; Hampp, Norbert A.

    2012-06-01

    Self-assembled monolayers (SAMs) of alkanethiols are major building blocks for nanotechnology. SAMs provide a functional interface between electrodes and biomolecules, which makes them attractive for biochip fabrication. Although gold has emerged as a standard, copper has several advantages, such as compatibility with semiconductors. However, as copper is easily oxidized in air, patterning SAMs on copper is a challenging task. In this work we demonstrate that submerged laser ablation (SLAB) is well-suited for this purpose, as thiols are exchanged in-situ, avoiding air exposition. Using different types of ω-substituted alkanethiols we show that alkanethiol SAMs on copper surfaces can be patterned using SLAB. The resulting patterns were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Both methods indicate that the intense laser beam promotes the exchange of thiols at the copper surface. Furthermore, we present a procedure for the production of free-standing copper nanomembranes, oxidation-protected by alkanethiol SAMs. Incubation of copper-coated mica in alkanethiol solutions leads to SAM formation on both surfaces of the copper film due to intercalation of the organic molecules. Corrosion-protected copper nanomembranes were floated onto water, transferred to electron microscopy grids, and subsequently analyzed by electron energy loss spectroscopy (EELS).

  15. Ultraflat Au nanoplates as a new building block for molecular electronics.

    PubMed

    Jeong, Wooseok; Lee, Miyeon; Lee, Hyunsoo; Lee, Hyoban; Kim, Bongsoo; Park, Jeong Young

    2016-05-27

    We demonstrate the charge transport properties of a self-assembled organic monolayer on Au nanoplates with conductive probe atomic force microscopy (CP-AFM). Atomically flat Au nanoplates, a few hundred micrometers on each side, that have only (111) surfaces, were synthesized using the chemical vapor transport method; these nanoplates were employed as the substrates for hexadecanethiol (HDT) self-assembled monolayers (SAMs). Atomic-scale high-resolution images show (√3 x √3) R30° molecular periodicity, indicating a well-ordered structure of the HDT on the Au nanoplates. We observed reduced friction and adhesion forces on the HDT SAMs on Au nanoplates, compared with Si substrates, which is consistent with the lubricating nature of HDT SAMs. The electrical properties, such as I-V characteristics and current as a function of load, were measured using CP-AFM. We obtained a tunneling decay constant (β) of 0.57 Å(-1), including through-bond (βtb = 0.99 Å(-1)) and through-space (βts = 1.36 Å(-1)) decay constants for the two-pathway model. This indicates that the charge transport properties of HDT SAMs on Au nanoplates are consistent with those on a Au (111) film, suggesting that SAMs on nanoplates can provide a new building block for molecular electronics.

  16. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers.

    PubMed

    Liu, Junpeng; Janjua, Zaid A; Roe, Martin; Xu, Fang; Turnbull, Barbara; Choi, Kwing-So; Hou, Xianghui

    2016-12-02

    A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1 H ,1 H ,2 H ,2 H -perfluorooctyltriethoxysilane (POTS) using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.

  17. Microwave-Accelerated Surface Modification of Plasmonic Gold Thin Films with Self-Assembled Monolayers of Alkanethiols

    PubMed Central

    Grell, Tsehai A.J.; Alabanza, Anginelle M.; Gaskell, Karen; Aslan, Kadir

    2013-01-01

    A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in less than 10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in 1) a semi-continuous and 2) a continuous fashion and at room temperature (24 hours, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET were confirmed by contact angle measurements, Fourier–transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 hours) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structure of SAMs prepared using both microwave heating and at room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process was carried out using both microwave heating and at room temperature. PMID:24083414

  18. Investigation of the heparin-thrombin interaction by dynamic force spectroscopy.

    PubMed

    Wang, Congzhou; Jin, Yingzi; Desai, Umesh R; Yadavalli, Vamsi K

    2015-06-01

    The interaction between heparin and thrombin is a vital step in the blood (anti)coagulation process. Unraveling the molecular basis of the interactions is therefore extremely important in understanding the mechanisms of this complex biological process. In this study, we use a combination of an efficient thiolation chemistry of heparin, a self-assembled monolayer-based single molecule platform, and a dynamic force spectroscopy to provide new insights into the heparin-thrombin interaction from an energy viewpoint at the molecular scale. Well-separated single molecules of heparin covalently attached to mixed self-assembled monolayers are demonstrated, whereby interaction forces with thrombin can be measured via atomic force microscopy-based spectroscopy. Further these interactions are studied at different loading rates and salt concentrations to directly obtain kinetic parameters. An increase in the loading rate shows a higher interaction force between the heparin and thrombin, which can be directly linked to the kinetic dissociation rate constant (koff). The stability of the heparin/thrombin complex decreased with increasing NaCl concentration such that the off-rate was found to be driven primarily by non-ionic forces. These results contribute to understanding the role of specific and nonspecific forces that drive heparin-thrombin interactions under applied force or flow conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An Investigation of the Effects of Self-Assembled Monolayers on Protein Crystallisation

    PubMed Central

    Zhang, Chen-Yan; Shen, He-Fang; Wang, Qian-Jin; Guo, Yun-Zhu; He, Jin; Cao, Hui-Ling; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2013-01-01

    Most protein crystallisation begins from heterogeneous nucleation; in practice, crystallisation typically occurs in the presence of a solid surface in the solution. The solid surface provides a nucleation site such that the energy barrier for nucleation is lower on the surface than in the bulk solution. Different types of solid surfaces exhibit different surface energies, and the nucleation barriers depend on the characteristics of the solid surfaces. Therefore, treatment of the solid surface may alter the surface properties to increase the chance to obtain protein crystals. In this paper, we propose a method to modify the glass cover slip using a self-assembled monolayer (SAM) of functional groups (methyl, sulfydryl and amino), and we investigated the effect of each SAM on protein crystallisation. The results indicated that both crystallisation success rate in a reproducibility study, and crystallisation hits in a crystallisation screening study, were increased using the SAMs, among which, the methyl-modified SAM demonstrated the most significant improvement. These results illustrated that directly modifying the crystallisation plates or glass cover slips to create surfaces that favour heterogeneous nucleation can be potentially useful in practical protein crystallisation, and the utilisation of a SAM containing a functional group can be considered a promising technique for the treatment of the surfaces that will directly contact the crystallisation solution. PMID:23749116

  20. Covalent Binding of BMP-2 on Surfaces Using a Self-assembled Monolayer Approach

    PubMed Central

    Pohl, Theresa L. M.; Schwab, Elisabeth H.; Cavalcanti-Adam, Elisabetta A.

    2013-01-01

    Bone morphogenetic protein 2 (BMP-2) is a growth factor embedded in the extracellular matrix of bone tissue. BMP-2 acts as trigger of mesenchymal cell differentiation into osteoblasts, thus stimulating healing and de novo bone formation. The clinical use of recombinant human BMP-2 (rhBMP-2) in conjunction with scaffolds has raised recent controversies, based on the mode of presentation and the amount to be delivered. The protocol presented here provides a simple and efficient way to deliver BMP-2 for in vitro studies on cells. We describe how to form a self-assembled monolayer consisting of a heterobifunctional linker, and show the subsequent binding step to obtain covalent immobilization of rhBMP-2. With this approach it is possible to achieve a sustained presentation of BMP-2 while maintaining the biological activity of the protein. In fact, the surface immobilization of BMP-2 allows targeted investigations by preventing unspecific adsorption, while reducing the amount of growth factor and, most notably, hindering uncontrolled release from the surface. Both short- and long-term signaling events triggered by BMP-2 are taking place when cells are exposed to surfaces presenting covalently immobilized rhBMP-2, making this approach suitable for in vitro studies on cell responses to BMP-2 stimulation. PMID:24021994

Top