Sample records for octaethylene glycol monododecyl

  1. Modeling of multiple equilibria in the self-aggregation of di-n-decyldimethylammonium chloride/octaethylene glycol monododecyl ether/cyclodextrin ternary systems.

    PubMed

    Leclercq, Loïc; Lubart, Quentin; Aubry, Jean-Marie; Nardello-Rataj, Véronique

    2013-05-28

    The surface tension equations of binary surfactant mixtures (di-n-decyldimethylammonium chloride and octaethylene glycol monododecyl ether) are established by combining the Szyszkowski equation of surfactant solutions, the ideal or nonideal mixing theory, and the phase separation model. For surfactant mixtures, the surface tension at the air-water interface is calculated using nonideal theory due to synergism between the two adsorbed surfactant types. The incorporation of cyclodextrin complexation model to the surface tension equations gives a robust model for the description of the surface tension isotherms of binary, ternary, and more complex systems involving numerous inclusion complexes. The surface tension data obtained experimentally shows excellent agreement with the theoretical model below and above the formation of micelles. The strong synergistic effect observed between the two surfactants is disrupted by the presence of CDs, leading to ideal behavior of ternary systems. Indeed, depending on the nature of the cyclodextrin (i.e., α, β, or γ), which allows a tuning of the cavity size, the binding constants with the surfactants are modified as well as the surface properties due to strong modification of equilibria involved in the ternary mixture.

  2. Aqueous solutions of didecyldimethylammonium chloride and octaethylene glycol monododecyl ether: Toward synergistic formulations against enveloped viruses.

    PubMed

    Nardello-Rataj, Véronique; Leclercq, Loïc

    2016-09-10

    Micellization of di-n-decyldimethylammonium chloride, [DiC10][Cl], and octaethylene glycol monododecyl ether, C12E8, mixtures have been investigated by surface tension and conductivity measurements. From these results, various physicochemical and thermodynamic key parameters (e.g. micellar mole fraction of [DiC10][Cl], interaction parameter, free energy of micellization, etc.) have been evaluated and discussed in detail. The results prove high synergistic effect between the two surfactants. Based on these results, the virucidal activity of an equimolar mixture of [DiC10][Cl] and C12E8 has been investigated. A marked synergism was observed on lipid-containing deoxyribonucleic and ribonucleic acid viruses, such as herpes virus, respiratory syncytial virus, and vaccinia viruses. In contrast, Coxsackievirus (non-enveloped virus) was not inactivated. These results support that the mechanism is based on the extraction of lipids and/or proteins from the envelope inside the mixed micelles. This extraction creates "holes" the size of which increases with concentration up to a specific value which triggers the virus inactivation. Such a mixture could be used to extend the spectrum of virucidal activity of the amphiphiles virucides commonly employed in numerous disinfectant solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Thermal diffusion behavior of nonionic surfactants in water.

    PubMed

    Ning, Hui; Kita, Rio; Kriegs, Hartmut; Luettmer-Strathmann, Jutta; Wiegand, Simone

    2006-06-08

    We studied the thermal diffusion behavior of hexaethylene glycol monododecyl ether (C12E6) in water by means of thermal diffusion forced Rayleigh scattering (TDFRS) and determined Soret coefficients, thermal diffusion coefficients, and diffusion constants at different temperatures and concentrations. At low surfactant concentrations, the measured Soret coefficient is positive, which implies that surfactant micelles move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant concentration of w1 = 90 wt % and a temperature of T = 25 degrees C, however, a negative Soret coefficient S(T) was observed. Because the concentration part of the TDFRS diffraction signal for binary systems is expected to consist of a single mode, we were surprised to find a second, slow mode for C12E6/water system in a certain temperature and concentration range. To clarify the origin of this second mode, we investigated also, tetraethylene glycol monohexyl ether (C6E4), tetraethylene glycol monooctyl ether (C8E4), pentaethylene glycol monododecyl ether (C12E5), and octaethylene glycol monohexadecyl ether (C16E8) and compared the results with the previous results for octaethylene glycol monodecyl ether (C10E8). Except for C6E4 and C10E8, a second slow mode was observed in all systems usually for state points close to the phase boundary. The diffusion coefficient and Soret coefficient derived from the fast mode can be identified as the typical mutual diffusion and Soret coefficients of the micellar solutions and compare well with the independently determined diffusion coefficients in a dynamic light scattering experiment. Experiments with added salt show that the slow mode is suppressed by the addition of w(NaCl) = 0.02 mol/L sodium chloride. This suggests that the slow mode is related to the small amount of absorbing ionic dye, less than 10(-5) by weight, which is added in TDFRS experiments to create a temperature grating. The origin of the slow mode of the TDFRS signal will be tentatively interpreted in terms of a ternary mixture of neutral micelles, dye-charged micelles, and water.

  4. Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.

    PubMed

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-03-26

    The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.

  5. Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.

    PubMed

    Alonso, Hernan; Roujeinikova, Anna

    2012-11-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.

  6. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1

    PubMed Central

    Alonso, Hernan

    2012-01-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C12E8]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-d-maltopyranoside (DM), n-dodecyl-β-d-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism. PMID:22941083

  7. Oil-water interfaces with surfactants: A systematic approach to determine coarse-grained model parameters

    NASA Astrophysics Data System (ADS)

    Vu, Tuan V.; Papavassiliou, Dimitrios V.

    2018-05-01

    In order to investigate the interfacial region between oil and water with the presence of surfactants using coarse-grained computations, both the interaction between different components of the system and the number of surfactant molecules present at the interface play an important role. However, in many prior studies, the amount of surfactants used was chosen rather arbitrarily. In this work, a systematic approach to develop coarse-grained models for anionic surfactants (such as sodium dodecyl sulfate) and nonionic surfactants (such as octaethylene glycol monododecyl ether) in oil-water interfaces is presented. The key is to place the theoretically calculated number of surfactant molecules on the interface at the critical micelle concentration. Based on this approach, the molecular description of surfactants and the effects of various interaction parameters on the interfacial tension are investigated. The results indicate that the interfacial tension is affected mostly by the head-water and tail-oil interaction. Even though the procedure presented herein is used with dissipative particle dynamics models, it can be applied for other coarse-grained methods to obtain the appropriate set of parameters (or force fields) to describe the surfactant behavior on the oil-water interface.

  8. Finger-like pattern formation in dilute surfactant pentaethylene glycol monododecyl ether solutions.

    PubMed

    Kubo, Yoshihide; Yokoyama, Yasuhiro; Tanaka, Shinpei

    2013-04-07

    We report here peculiar finger-like patterns observed during the phase separation process of dilute micellar pentaethylene glycol monododecyl ether solutions. The patterns were composed of parallel and periodic threads of micelle-rich domains. Prior to this pattern formation, the phase separation always started with the appearance of water-rich domains rimmed by the micelle-rich domains. It was found that these rims played a significant role in the pattern formation. We explain this pattern formation using a simple simulation model with disconnectable springs. The simulation results suggested that the spatially inhomogeneous elasticity or connectivity of a transient gel of worm-like micelles was responsible for the rim formation. The rims thus formed lead rim-induced nucleation, growth, and elongation of the domains owing to their small mobility and the elastic frustration around them. These rim-induced processes eventually produce the observed finger-like patterns.

  9. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis.

    PubMed

    Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert

    2016-10-04

    The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.

  10. Characterization of detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase by high-performance liquid chromatography.

    PubMed

    Andersen, J P; Vilsen, B; Nielsen, H; Møller, J V

    1986-10-21

    Sarcoplasmic reticulum Ca2+-ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca2+-ATPase occurred within a few hours in the presence of less than or equal to 50 microM Ca2+. The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high Ca2+ concentration (500 microM), monomeric Ca2+-ATPase was stable for several hours. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca2+-ATPase was found to be 10(5)-10(6) M-1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca2+-ATPase, even above the critical micellar concentration of the detergent. Binding of Ca2+ and vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. These results suggest that formation of Ca2+-ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit.

  11. Refolding of SDS-Unfolded Proteins by Nonionic Surfactants.

    PubMed

    Kaspersen, Jørn Døvling; Søndergaard, Anne; Madsen, Daniel Jhaf; Otzen, Daniel E; Pedersen, Jan Skov

    2017-04-25

    The strong and usually denaturing interaction between anionic surfactants (AS) and proteins/enzymes has both benefits and drawbacks: for example, it is put to good use in electrophoretic mass determinations but limits enzyme efficiency in detergent formulations. Therefore, studies of the interactions between proteins and AS as well as nonionic surfactants (NIS) are of both basic and applied relevance. The AS sodium dodecyl sulfate (SDS) denatures and unfolds globular proteins under most conditions. In contrast, NIS such as octaethylene glycol monododecyl ether (C 12 E 8 ) and dodecyl maltoside (DDM) protect bovine serum albumin (BSA) from unfolding in SDS. Membrane proteins denatured in SDS can also be refolded by addition of NIS. Here, we investigate whether globular proteins unfolded by SDS can be refolded upon addition of C 12 E 8 and DDM. Four proteins, BSA, α-lactalbumin (αLA), lysozyme, and β-lactoglobulin (βLG), were studied by small-angle x-ray scattering and both near- and far-UV circular dichroism. All proteins and their complexes with SDS were attempted to be refolded by the addition of C 12 E 8 , while DDM was additionally added to SDS-denatured αLA and βLG. Except for αLA, the proteins did not interact with NIS alone. For all proteins, the addition of NIS to the protein-SDS samples resulted in extraction of the SDS from the protein-SDS complexes and refolding of βLG, BSA, and lysozyme, while αLA changed to its NIS-bound state instead of the native state. We conclude that NIS competes with globular proteins for association with SDS, making it possible to release and refold SDS-denatured proteins by adding sufficient amounts of NIS, unless the protein also interacts with NIS alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Effect of phospholipid, detergent and protein-protein interaction on stability and phosphoenzyme isomerization of soluble sarcoplasmic reticulum Ca-ATPase.

    PubMed

    Vilsen, B; Andersen, J P

    1987-12-30

    The purpose of the present study was to elucidate the separate roles of lipid, detergent and protein-protein interaction for stability and catalytic properties of sarcoplasmic reticulum Ca-ATPase solubilized in the non-ionic detergent octa(ethylene glycol) monododecyl ether (C12E8). The use of large-zone high-performance liquid chromatography permitted us to define the self-association state of Ca-ATPase peptide at various detergent, phospholipid and protein concentrations, and also during enzymatic turnover with ATP. Conditions were established for monomerization of Ca-ATPase in the presence of a high concentration of phospholipid relative to detergent. The lipid-saturated monomeric preparation was relatively resistant to inactivation in the absence of Ca2+, whereas delipidated enzyme in monomeric or in oligomeric form was prone to inactivation. Kinetics of phosphoenzyme turnover were examined in the presence and absence of Mg2+. Dephosphorylation rates were sensitive to Mg2+, irrespective of whether the peptide was present in soluble monomeric form or was membrane-bound. C12E8-solubilized monomer without added phospholipid was, however, characterized by a fast initial phase of dephosphorylation in the absence of Mg2+. This was not observed with monomer saturated with phospholipid or with monomer solubilized in myristoylglycerophosphocholine or deoxycholate. The mechanism underlying this difference was shown to be a C12E8-induced acceleration of conversion of ADP-sensitive phosphoenzyme (E1P) to ADP-insensitive phosphoenzyme (E2P). The phosphoenzyme isomerization rate was also found to be enhanced by low-affinity binding of ATP. This was demonstrated both in membrane-bound and in soluble monomeric Ca-ATPase. Our results indicate that a single peptide chain constitutes the target for modulation of phosphoenzyme turnover by Mg2+ and ATP, and that detergent effects, distinct from those arising from disruption of protein-protein contacts, are the major determinants of kinetic differences between C12E8-solubilized and membrane-bound enzyme preparations.

  13. Probing the amphiphile micellar to hexagonal phase transition using Positron Annihilation Lifetime Spectroscopy.

    PubMed

    Dong, Aurelia W; Fong, Celesta; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2013-07-15

    Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Liquid Chromatography-Tandem Mass Spectrometric Analysis of Octaethylene Glycol Monodecyl Ether in Rat Plasma and its Application to Pharmacokinetic Studies.

    PubMed

    Kim, Hyeon; Kim, Hyeong Jun; Choi, Min Sun; Kim, In Sook; Gye, Myung Chan; Yoo, Hye Hyun

    2017-05-01

    Alcohol ethoxylates (AEs) are a major class of non-ionic surfactants, which are widely used in household, institutional and industrial cleaners, and they are considered as an alternative of nonylphenol. In this study, a rapid, sensitive and reliable bioanalytical method was developed for the determination of octaethylene glycol monodecyl ether (C10E8, an AE) in rat plasma using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Chromatographic separation was performed on a reversed-phase C18 column (2.1 mm × 50 mm, 2.1 μm). The mobile phase consisted of 0.1% formic acid in distilled water and 0.1% formic acid in acetonitrile (40:60% v/v). The flow rate was 0.3 mL/min. For mass spectrometric detection, the multiple reaction monitoring (MRM) mode was used; the MRM transitions were m/z 511.5 → m/z 133.1 for C10E8 and m/z 423.3 → m/z 133.1 for hexaethylene glycol monodecyl ether (internal standard) in the positive ion mode. A calibration curve was constructed within the range of 2-2,000 ng/mL; the intra- (n = 5) and inter-day (n = 3) precision and accuracy were within 10%. The LC-MS-MS method was specific, accurate and reproducible, and this method was successfully applied in a pharmacokinetic study of C10E8 in rats. C10E8 was intravenously (1 mg/kg, n = 6) and orally (10 mg/kg, n = 7) administered to rats. The kinetic parameters were analyzed based on a noncompartmental statistical model using the pharmacokinetic modeling software (WinNonlin). The oral bioavailability of C10E8 was 34.4%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Kinetics of phase separation and coarsening in dilute surfactant pentaethylene glycol monododecyl ether solutions

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H.

    2011-12-01

    We investigated the phase separation phenomena in dilute surfactant pentaethylene glycol monodedecyl ether (C12E5) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-rich phase) nucleated as droplets and the minority phase (micelle-rich phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.

  16. Vapor pressures of a homologous series of polyethylene glycols as a reference data set for validating vapor pressure measurement techniques.

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Marcolli, Claudia; Siegrist, Franziska

    2015-04-01

    The production of secondary organic aerosol (SOA) by gas-to-particle partitioning is generally represented by an equilibrium partitioning model. A key physical parameter which governs gas-particle partitioning is the pure component vapor pressure, which is difficult to measure for low- and semivolatile compounds. For typical atmospheric compounds like e.g. citric acid or tartaric acid, vapor pressures have been reported in the literature which differ by up to six orders of magnitude [Huisman et al., 2013]. Here, we report vapor pressures of a homologous series of polyethylene glycols (triethylene glycol to octaethylene glycol) determined by measuring the evaporation rate of single, levitated aerosol particles in an electrodynamic balance. We propose to use those as a reference data set for validating different vapor pressure measurement techniques. With each addition of a (O-CH2-CH2)-group the vapor pressure is lowered by about one order of magnitude which makes it easy to detect the lower limit of vapor pressures accessible with a particular technique down to a pressure of 10-8 Pa at room temperature. Reference: Huisman, A. J., Krieger, U. K., Zuend, A., Marcolli, C., and Peter, T., Atmos. Chem. Phys., 13, 6647-6662, 2013.

  17. Wheat germ cell-free expression: Two detergents with a low critical micelle concentration allow for production of soluble HCV membrane proteins.

    PubMed

    Fogeron, Marie-Laure; Badillo, Aurélie; Jirasko, Vlastimil; Gouttenoire, Jérôme; Paul, David; Lancien, Loick; Moradpour, Darius; Bartenschlager, Ralf; Meier, Beat H; Penin, François; Böckmann, Anja

    2015-01-01

    Membrane proteins are notoriously difficult to express in a soluble form. Here, we use wheat germ cell-free expression in the presence of various detergents to produce the non-structural membrane proteins 2, 4B and 5A of the hepatitis C virus (HCV). We show that lauryl maltose neopentyl glycol (MNG-3) and dodecyl octaethylene glycol ether (C12E8) detergents can yield essentially soluble membrane proteins at detergent concentrations that do not inhibit the cell-free reaction. This finding can be explained by the low critical micelle concentration (CMC) of these detergents, which keeps the monomer concentrations low while at the same time providing the necessary excess of detergent concentration above CMC required for full target protein solubilization. We estimate that a tenfold excess of detergent micelles with respect to the protein concentration is sufficient for solubilization, a number that we propose as a guideline for detergent screening assays. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  19. Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants.

    PubMed

    Holmiere, Sébastien; Valentin, Romain; Maréchal, Philippe; Mouloungui, Zéphirin

    2017-02-01

    Glycerol carbonate is one of the most potentially multifunction glycerol-derived compounds. Glycerol is an important by-product of the oleochemical industry. The oligomerization of glycerol carbonate, assisted by the glycerol, results in the production of polyhydroxylated oligomers rich in linear carbonate groups. The polar moieties of these oligomers (M w <1000Da) were supplied by glycerol and glycerol carbonate rather than ethylene oxide as in most commercial surfactants. The insertion of linear carbonate groups into the glycerol-based skeleton rendered the oligomers amphiphilic, resulting in a decrease in air/water surface tension to 57mN/m. We improved the physical and chemical properties of the oligomers, by altering the type of acylation reaction and the nature of the acyl donor. The polar head is constituted of homo-oligomers and hetero-oligomers. Homo-oligomers are oligoglycerol and/or oligocarbonate, hetero-oligomers are oligo(glycerol-glycerol carbonate). Coprah oligoesters had the best surfactant properties (CMC<1mg/mL, π cmc <30mN/m), outperforming molecules of fossil origin, such as ethylene glycol monododecyl ether, glycol ethers and fatty acid esters of sorbitan polyethoxylates. The self-assembling properties of oligocarbonate esters were highlighted by their ability to stabilize inverse and multiple emulsions. The oligo-(glycerol carbonate-glycerol ether) with relatively low molecular weights showed properties of relatively high-molecular weight molecules, and constitute a viable "green" alternative to ethoxylated surfactants. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dependence of the product chain-length on detergents for long-chain E-polyprenyl diphosphate synthases

    PubMed Central

    Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C. Dale

    2013-01-01

    Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and non-ionic detergents, we discovered considerable variability. Examination of a series of non-ionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-β-glucopyranoside, or β-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain lengths. PMID:23802587

  1. Photoionization of N,N,N[prime],N[prime]-tetramethylbenzidine in a mixed micelle of ionic and nonionic surfactants: Electron spin-echo modulation and electron spin resonance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglioni, P.; Rivara-Minten, E.; Stenland, C.

    1991-11-28

    Electron spin-echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N[prime],N[prime]-tetramethylbenzidine (TMB) cation radical in frozen mixed micelles of sodium dodecyl sulfate (SDS) or dodecyltrimethylammonium chloride (DTAC) and hexakis(ethylene glycol) monododecyl ether (C[sub 12]E[sub 6]), selectively deuterated along the poly(ethylene glycol) group (C[sub 12]D[sub 6]) or along the alkyl chain ((CD)[sub 12]E[sub 6]), have been studied as a function of the mixed-micelle composition in H[sub 2]O and D[sub 2]O. ESEM effects due to TMB[sup +] interactions with deuterium in D[sub 2]O show a decrease of the TMB[sup +]-water interactions for the system DTAC/C[sub 12]E[sub 6] and anmore » increase for the system SDS/C[sub 12]E[sub 6] that depend on the composition of the mixed micelle. The location of TMB[sup +] in the mixed micelles, deduced by comparing the modulation effects due to interactions of the photocation with water deuteriums or deuteriums of deuterated surfactants, is reported for the SDS/C[sub 12]E[sub 6] and DTAC/C[sub 12]E[sub 6] mixed micelles. The efficiency of charge separation upon the photoionization of TMB to produce TMB[sup +] measured by ESR correlates with the surface charge and with the degree of water penetration into the mixed micelle.« less

  2. Characterization of a Biomimetic Mesophase Composed of Nonionic Surfactants and an Aqueous Solvent.

    PubMed

    Adrien, V; Rayan, G; Reffay, M; Porcar, L; Maldonado, A; Ducruix, A; Urbach, W; Taulier, N

    2016-10-11

    We have investigated the physical and biomimetic properties of a sponge (L 3 ) phase composed of pentaethylene glycol monododecyl ether (C 12 E 5 ), a nonionic surfactant, an aqueous solvent, and a cosurfactant. The following cosurfactants, commonly used for solubilizing membrane proteins, were incorporated: n-octyl-β-d-glucopyranoside (β-OG), n-dodecyl-β-d-maltopyranoside (DDM), 4-cyclohexyl-1-butyl-β-d-maltoside (CYMAL-4), and 5-cyclohexyl-1-pentyl-β-d-maltoside (CYMAL-5). Partial phase diagrams of these systems were created. The L 3 phase was characterized using crossed polarizers, diffusion of a fluorescent probe by fluorescence recovery after pattern photobleaching (FRAPP), and freeze fracture electron microscopy (FFEM). By varying the hydration of the phase, we were able to tune the distance between adjacent bilayers. The characteristic distance (d b ) of the phase was obtained from small angle scattering (SAXS/SANS) as well as from FFEM, which yielded complementary d b values. These d b values were neither affected by the nature of the cosurfactant nor by the addition of membrane proteins. These findings illustrate that a biomimetic surfactant sponge phase can be created in the presence of several common membrane protein-solubilizing detergents, thus making it a versatile medium for membrane protein studies.

  3. Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air-water interface.

    PubMed

    Onaizi, Sagheer A

    2018-03-01

    The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.

  4. Adenosinetriphosphatase site stoichiometry in sarcoplasmic reticulum vesicles and purified enzyme.

    PubMed

    Barrabin, H; Scofano, H M; Inesi, G

    1984-03-27

    The stoichiometry of phosphorylation (catalytic) sites in sarcoplasmic reticulum vesicles ( SRV ) and SR ATPase purified by differential solubilization with deoxycholate was found to be 4.77 +/- 0.4 and 6.05 +/- 0.18 nmol/mg of protein, respectively, when phosphorylation was carried out under conditions permitting 32P labeling of nearly all sites. Assuming that each site corresponds to a single 115K ATPase chain, the observed site stoichiometry accounts only for 55% and 70% of the total protein. Failure to obtain higher phosphorylation levels was due to the presence of nonspecific protein contaminants in SRV or to the presence of inactive aggregates in the ATPase purified with deoxycholate. This was demonstrated by dissolving SRV and purified ATPase with lithium dodecyl sulfate, subjecting them to molecular sieve HPLC, and collecting the elution fractions for determination of protein, measurement of 32P-labeled sites, and electrophoretic analysis. In fact, in the specific elution peak containing the 115K ATPase chains, phosphorylation levels were 6.62 +/- 0.33 and 7.03 +/- 0.18 in SRV and purified ATPase, corresponding to 68% and 86% of the protein in the specific elution peak. An alternate purification method was then developed, based on solubilization of SRV with dodecyl octaethylene glycol monoether ( C12E8 ), separation of delipidated ATPase by anion-exchange chromatography, and enzyme reactivation with phosphatidylcholine. This preparation yields 7.3 +/- 0.44 nmol of phosphorylation site/mg of protein of the SRV fraction before HPLC.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Synthesis and Characterization of Nano-Structure Metal Oxides and Peroxides Prepared by Laser Ablation in Liquids

    NASA Astrophysics Data System (ADS)

    Drmosh, Qasem Ahmed Qasem

    Pulsed laser ablation technique was applied for synthesize of ZnO, ZnO 2 and SnO2 nanostructure using metallic target in different liquids. For this purpose, a laser emitting pulsed UV radiations generated by the third harmonic of Nd:YAG (λ= 355 nm) was applied. For the synthesis of ZnO nanoparticles (NPs), a high-purity metallic plate of Zn was fixed at the bottom of a glass cell in the presence of deionized water and was irradiated at different laser energies (80- 100- 120) mJ per pulse. The average sizes and lattice parameters of ZnO produced by this method were estimated by X-ray diffraction (XRD). ZnO nanoparticles were also produced by ablation of zinc target in the presence of deionized water mixed with two types of surfactants: cetyltrimethyl ammonium bromide (CTAB) and octaethylene glycol monododecyl (OGM). The results showed that the average grain sizes decreased from 38 nm in the case of deionized water to 27 nm and 19 nm in CTAB and OGM respectively. The PL emission in CTAB and OGM showed two peaks: the sharp UV emission at 380 nm and a broad visible peak ranging from 450 nm to 600 nm. Zinc peroxide (ZnO2) nanoparticles having grain size less than 5 nm were also synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3 % hydrogen peroxide H2O2 for the first time. The effect of surfactants on the optical and structure of ZnO2 was studied by applying different spectroscopic techniques. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7 nm, 3.7 nm, 3.3 nm and 2.8 nm in pure H2O2; and H2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO2 nanoparticles prepared with and without surfactants showed characteristic peaks of ZnO2 absorption at 435-445 cm-1. FTIR spectrum also revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. Both FTIR and UV-Vis spectra showed a red shift in the presence of SDS and blue shift in presence of CTAB and OGM. The effect of post annealing temperature on dry ZnO2 nanoparticles prepared by PLA technique of solid zinc target in 3% H2O2 was studied by variation of the annealing temperatures from 100 to 600 °C for 8 hours under 1 atmospheric pressure. The XRD showed the phase transition from ZnO2 to ZnO at 200 °C. Based on XRD data, both the average grain size and lattice parameters of ZnO increased by post annealing of ZnO2 higher than 200 °C. In contrast, the band gap of ZnO nanoparticles decreased when the annealing temperature increased. The average sizes were 5, 6, 9, 15 and 19 nm at 200, 300, 400, 500 and 600 °C respectively. The PL emission spectra for ZnO showed strong UV emission peaks in all samples. In addition, the UV emission peaks were shifted to longer wavelength (red shifting) as the annealing temperature increase from 200 to 600 °C. From the above findings, we concluded that the grain size, lattice parameters, PL and band gap were size dependent as predicted by theoretical studies. (Abstract shortened by UMI.).

  6. Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography-mass spectrometry.

    PubMed

    Ganesh, Mani; Mohankumar, Murugan

    2017-09-01

    Sida cordata (Burm.f.) is a pineal tropical plant in the family Malvaceae that is found throughout India and used to treat various diseases and ailments in many complementary and alternative medicine systems. This study identified the bioactive components present in whole-plant ethanol extracts of S . cordata using gas chromatography-mass spectrometry (GC-MS). Based on their retention times (RT) and mass-to-charge ratios (m/z), 29 bioactive compounds were identified: nonanoic acid, vitamin D 3 , 3-trifluroacetoxypentadecane, α-d-glucopyranoside, O-α-d-glucopyranosyl-(1.fwdarw.3)-α-d-fructofuranosyl,3,7,11,15-tetramethyl-2-hexadecan-1-ol, octadecanoic acid, ethyl ester, phytol, 9,12-octadecadienoic acid, methyl ester (E,E), 9,12,15-octadecadienoic acid, methyl ester (Z,Z,Z), oleic acid, 1,2-15,16-diepoxyhexadecane, 3-hexadecyloxycarbonyl-5-(2-hydroxyethyl)-4-methylimidazolium ion, methoxyacetic acid, 4-tetradecyl ester, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-iodo-2-methylundecane, dodecane, 2,6,10-trimethyl-, 2-piperidinone-N-[4-bromo-n-butyl]-, squalene, octadecane-1-(ethenyloxy)-, Z,Z-2,5-pentadecadien-1-ol, 1-hexadecanol, 2-methyl-, spiro[androst-5ene-17,1'-cyclobutan]-2'-one-3-hydroxy-, (3a,17a)-, diethylene glycol monododecyl ether, vitamin E, cholestan-3-ol, 2-methylene-, (3a,5a)-, 2H-pyran, 2-(7-heptadecynyloxy)tetrahydro-, and cis -Z-α-bisabolene epoxide. The presence of various bioactive compounds justifies the use of this plant for treating various ailments by traditional practitioners.

  7. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system.

    PubMed

    Danielsen, E Michael; Hansen, Gert H

    2017-07-03

    Intestinal permeation enhancers (PEs) are agents aimed to improve oral delivery of therapeutic drugs with poor bioavailability. The main permeability barrier for oral delivery is the intestinal epithelium, and PEs act to increase the paracellular and/or transcellular passage of drugs. Transcellular passage can be achieved by cell membrane permeabilization and/or by endocytic uptake and subsequent transcytosis. One broad class of PEs is surfactants which act by inserting into the cell membrane, thereby perturbing its integrity, but little is known about how the dynamics of the membrane are affected. In the present work, the interaction of the surfactants lauroyl-L-carnitine, 1-decanoyl-rac-glycerol, and nonaethylene glycol monododecyl ether with the intestinal epithelium was studied in organ cultured pig jejunal mucosal explants. As expected, at 2 mM, these agents rapidly permeabilized the enterocytes for the fluorescent polar tracer lucifer yellow, but surprisingly, they all also blocked both constitutive -and receptor-mediated pathways of endocytosis from the brush border, indicating a complete arrest of apical membrane trafficking. At the ultrastructural level, the PEs caused longitudinal fusion of brush border microvilli. Such a membrane fusogenic activity could also explain the observed formation of vesicle-like structures and large vacuoles along the lateral cell membranes of the enterocytes induced by the PEs. We conclude that the surfactant action of the PEs selected in this study not only permeabilized the enterocytes, but profoundly changed the dynamic properties of their constituent cell membranes.

  8. Photolysis study of octyl p-methoxycinnamate loaded microemulsion by molecular fluorescence and chemometric approach

    NASA Astrophysics Data System (ADS)

    Nascimento, Danielle Silva; Insausti, Matías; Band, Beatriz Susana Fernández; Grünhut, Marcos

    2018-02-01

    Octyl p-methoxycinnamate (OMC) is one of the most widely used sunscreen agents. However, the efficiency of OMC as UV filter over time is affected due to the formation of the cis-isomer which presents a markedly lower extinction coefficient (εcis = 12,600 L mol- 1 cm- 1 at 291 nm) than the original trans-isomer (εtrans = 24,000 L mol- 1 cm- 1 at 310 nm). In this work, a novel carrier for OMC based on an oil-in-water microemulsion is proposed in order to improve the photostability of this sunscreen. The formulation was composed of 29.2% (w/w) of a 3:1 mixture of ethanol (co-surfactant) and decaethylene glycol mono-dodecyl ether (surfactant), 1.5% (w/w) of oleic acid (oil phase) and 69.2% (w/w) of water. This microemulsion was prepared in a simple way, under moderate stirring at 25 °C and using acceptable, biocompatible and accessible materials for topical use. OMC was incorporated in the vehicle at a final concentration of 5.0% (w/w), taking into account the maximum permitted levels established by international norms. Then, a photolysis study of the loaded formulation was performed using a continuous flow system. The direct photolysis was monitored over time by molecular fluorescence. The recorded spectra data between 370 y 490 nm were analyzed by multivariate curve resolution-alternating least squares algorithm. The kinetic rate constants corresponding to the photolysis of the trans-OMC were calculated from the concentration profiles, resulting in 0.0049 s- 1 for the trans-OMC loaded microemulsion and 0.0131 s- 1 for the trans-OMC in aqueous media. These results demonstrate a higher photostability of the trans-OMC when loaded in the proposed vehicle with respect to the free trans-OMC in aqueous media.

  9. Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.

    PubMed

    Nielsen, A D; Borch, K; Westh, P

    2000-06-15

    The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.

  10. Photolysis study of octyl p-methoxycinnamate loaded microemulsion by molecular fluorescence and chemometric approach.

    PubMed

    Nascimento, Danielle Silva; Insausti, Matías; Band, Beatriz Susana Fernández; Grünhut, Marcos

    2018-02-15

    Octyl p-methoxycinnamate (OMC) is one of the most widely used sunscreen agents. However, the efficiency of OMC as UV filter over time is affected due to the formation of the cis-isomer which presents a markedly lower extinction coefficient (ε cis =12,600L mol -1 cm -1 at 291nm) than the original trans-isomer (ε trans =24,000L mol -1 cm -1 at 310nm). In this work, a novel carrier for OMC based on an oil-in-water microemulsion is proposed in order to improve the photostability of this sunscreen. The formulation was composed of 29.2% (w/w) of a 3:1 mixture of ethanol (co-surfactant) and decaethylene glycol mono-dodecyl ether (surfactant), 1.5% (w/w) of oleic acid (oil phase) and 69.2% (w/w) of water. This microemulsion was prepared in a simple way, under moderate stirring at 25°C and using acceptable, biocompatible and accessible materials for topical use. OMC was incorporated in the vehicle at a final concentration of 5.0% (w/w), taking into account the maximum permitted levels established by international norms. Then, a photolysis study of the loaded formulation was performed using a continuous flow system. The direct photolysis was monitored over time by molecular fluorescence. The recorded spectra data between 370 y 490nm were analyzed by multivariate curve resolution-alternating least squares algorithm. The kinetic rate constants corresponding to the photolysis of the trans-OMC were calculated from the concentration profiles, resulting in 0.0049s -1 for the trans-OMC loaded microemulsion and 0.0131s -1 for the trans-OMC in aqueous media. These results demonstrate a higher photostability of the trans-OMC when loaded in the proposed vehicle with respect to the free trans-OMC in aqueous media. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Crystallization of mitochondrial rhodoquinol-fumarate reductase from the parasitic nematode Ascaris suum with the specific inhibitor flutolanil

    PubMed Central

    Osanai, Arihiro; Harada, Shigeharu; Sakamoto, Kimitoshi; Shimizu, Hironari; Inaoka, Daniel Ken; Kita, Kiyoshi

    2009-01-01

    In adult Ascaris suum (roundworm) mitochondrial membrane-bound complex II acts as a rhodoquinol-fumarate reductase, which is the reverse reaction to that of mammalian complex II (succinate-ubiquinone reductase). The adult A. suum rhodoquinol-fumarate reductase was crystallized in the presence of octaethyleneglycol monododecyl ether and n-dodecyl-β-d-maltopyranoside in a 3:2 weight ratio. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 123.75, b = 129.08, c = 221.12 Å, and diffracted to 2.8 Å resolution using synchrotron radiation. The presence of two molecules in the asymmetric unit (120 kDa × 2) gives a crystal volume per protein mass (V M) of 3.6 Å3 Da−1. PMID:19724139

  12. 40 CFR Table 6 to Subpart Jj of... - VHAP of Potential Concern

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... glycol butyl ether, ethylene glycol ethyl ether (2-ethoxy ethanol), ethylene glycol hexyl ether, ethylene..., ethylene glycol mono-2-ethylhexyl ether, diethylene glycol butyl ether, diethylene glycol ethyl ether... glycol propyl ether, triethylene glycol butyl ether, triethylene glycol ethyl ether, triethylene glycol...

  13. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights... and diethylene glycol content of polyethylene glycols having mean molecular weights below 450. Analytical Method ethylene glycol and diethylene glycol content of polyethylene glycols The analytical method...

  14. Oxidation of Ethylene Glycol by a Salt-Requiring Bacterium

    PubMed Central

    Caskey, William H.; Taber, Willard A.

    1981-01-01

    Bacterium T-52, cultured on ethylene glycol, readily oxidized glycolate and glyoxylate and exhibited elevated activities of ethylene glycol dehydrogenase and glycolate oxidase. Labeled glyoxylate was identified in reaction mixtures containing [14C]-ethylene glycol, but no glycolate was detected. The most likely pathway of ethylene glycol catabolism by bacterium T-52 is sequential oxidation to glycolate and glyoxylate. PMID:16345810

  15. The Causes of Blistering in Boat Building Materials

    DTIC Science & Technology

    1986-08-01

    acrylate units (MET) Ethylene glycol (MET) Propylene glycol (MET) Neopentyl glycol (NET) Maleic acid or anhydride (unsaturated) (NET) lumaric acid...PROPYLENE GLYCOL OPA ORTHOPHTHALIC ACID VINYL - URETHANE BASED POLYESTER IqPG NEOPENTYL GLYCOL RESIN EG - ETHYLENE GLYCOL TMPD - 22,, - TRiMETHY...IPA Isophthalic acid WSN Low molecular weight water soluble material NPG Neopentyl glycol OPA Orthophthalio acid PG Propylene glycol MEKP Hethyl

  16. Determination of glycols in air: development of sampling and analytical methodology and application to theatrical smokes.

    PubMed

    Pendergrass, S M

    1999-01-01

    Glycol-based fluids are used in the production of theatrical smokes in theaters, concerts, and other stage productions. The fluids are heated and dispersed in aerosol form to create the effect of a smoke, mist, or fog. There have been reports of adverse health effects such as respiratory irritation, chest tightness, shortness of breath, asthma, and skin rashes. Previous attempts to collect and quantify the aerosolized glycols used in fogging agents have been plagued by inconsistent results, both in the efficiency of collection and in the chromatographic analysis of the glycol components. The development of improved sampling and analytical methodology for aerosolized glycols was required to assess workplace exposures more effectively. An Occupational Safety and Health Administration versatile sampler tube was selected for the collection of ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol aerosols. Analytical methodology for the separation, identification, and quantitation of the six glycols using gas chromatography/flame ionization detection is described. Limits of detection of the glycol analytes ranged from 7 to 16 micrograms/sample. Desorption efficiencies for all glycol compounds were determined over the range of study and averaged greater than 90%. Storage stability results were acceptable after 28 days for all analytes except ethylene glycol, which was stable at ambient temperature for 14 days. Based on the results of this study, the new glycol method was published in the NIOSH Manual of Analytical Methods.

  17. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Diethylene glycol, polymer with... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... subject to reporting. (1) The chemical substance identified generically as diethylene glycol, polymer with...

  18. A rapid analysis of plasma/serum ethylene and propylene glycol by headspace gas chromatography.

    PubMed

    Ehlers, Alexandra; Morris, Cory; Krasowski, Matthew D

    2013-12-01

    A rapid headspace-gas chromatography (HS-GC) method was developed for the analysis of ethylene glycol and propylene glycol in plasma and serum specimens using 1,3-propanediol as the internal standard. The method employed a single-step derivitization using phenylboronic acid, was linear to 200 mg/dL and had a lower limit of quantitation of 1 mg/dL suitable for clinical analyses. The analytical method described allows for laboratories with HS-GC instrumentation to analyze ethanol, methanol, isopropanol, ethylene glycol, and propylene glycol on a single instrument with rapid switch-over from alcohols to glycols analysis. In addition to the novel HS-GC method, a retrospective analysis of patient specimens containing ethylene glycol and propylene glycol was also described. A total of 36 patients ingested ethylene glycol, including 3 patients who presented with two separate admissions for ethylene glycol toxicity. Laboratory studies on presentation to hospital for these patients showed both osmolal and anion gap in 13 patients, osmolal but not anion gap in 13 patients, anion but not osmolal gap in 8 patients, and 1 patient with neither an osmolal nor anion gap. Acidosis on arterial blood gas was present in 13 cases. Only one fatality was seen; this was a patient with initial serum ethylene glycol concentration of 1282 mg/dL who died on third day of hospitalization. Propylene glycol was common in patients being managed for toxic ingestions, and was often attributed to iatrogenic administration of propylene glycol-containing medications such as activated charcoal and intravenous lorazepam. In six patients, propylene glycol contributed to an abnormally high osmolal gap. The common presence of propylene glycol in hospitalized patients emphasizes the importance of being able to identify both ethylene glycol and propylene glycol by chromatographic methods.

  19. Crystallization of toxic glycol solvates of rifampin from glycerin and propylene glycol contaminated with ethylene glycol or diethylene glycol.

    PubMed

    de Villiers, Melgardt M; Caira, Mino R; Li, Jinjing; Strydom, Schalk J; Bourne, Susan A; Liebenberg, Wilna

    2011-06-06

    This study was initiated when it was suspected that syringe blockage experienced upon administration of a compounded rifampin suspension was caused by the recrystallization of toxic glycol solvates of the drug. Single crystal X-ray structure analysis, powder X-ray diffraction, thermal analysis and gas chromatography were used to identify the ethylene glycol in the solvate crystals recovered from the suspension. Controlled crystallization and solubility studies were used to determine the ease with which toxic glycol solvates crystallized from glycerin and propylene glycol contaminated with either ethylene or diethylene glycol. The single crystal structures of two distinct ethylene glycol solvates of rifampin were solved while thermal analysis, GC analysis and solubility studies confirmed that diethylene glycol solvates of the drug also crystallized. Controlled crystallization studies showed that crystallization of the rifampin solvates from glycerin and propylene glycol depended on the level of contamination and changes in the solubility of the drug in the contaminated solvents. Although the exact source of the ethylene glycol found in the compounded rifampin suspension is not known, the results of this study show how important it is to ensure that the drug and excipients comply with pharmacopeial or FDA standards.

  20. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Monomethyl Ether *Dimer Acids Dioxane Ethane Ethylene Glycol Monophenyl Ether *Ethoxylates, Misc. Ethylene Glycol Dimethyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monoethyl Ether Ethylene Glycol...

  1. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol alginate. 172.858 Section 172.858... Propylene glycol alginate. The food additive propylene glycol alginate (CAS Reg. No. 9005-37-2) may be used... the act: (1) The name of the additive, “propylene glycol alginate” or “propylene glycol ester of...

  2. 76 FR 38026 - Diethylene Glycol Mono Butyl Ether; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... chemicals. Immunotoxicity studies were available for ethylene glycol mono butyl ether, also a glycol ether... the glycol ether class of chemicals which include structurally similar chemicals ethylene glycol and... potential to cause cancer. Based on the lack of evidence of carcinogenicity potential for ethylene glycol...

  3. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.« less

  4. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.« less

  5. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    NASA Technical Reports Server (NTRS)

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  6. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  7. Five-year review of a UK 24 hour testing service for plasma ethylene glycol and diethylene glycol.

    PubMed

    Ford, Loretta T; Berg, Jonathan D

    2016-07-01

    We present a 5-year review of our UK service for plasma ethylene glycol and diethylene glycol determination in cases of acute poisoning. Ethylene glycol and diethylene glycol have been measured on all samples received for screening for toxicity by gas chromatography-flame ionization detection over a five-year period. A detailed audit of the results has been undertaken. In this period, we received 811 requests, 56% were for first-time screening and 44% repeat analysis where a positive sample has already been received. Of the first-time screen samples, 33.5% screened positive for glycol poisoning. The mean positive ethylene glycol concentration was 1204 mg/L (range 31 to 8666 mg/L). Diethylene glycol was present in 14% of ethylene glycol positive samples but never found alone. The data presented here suggest it is not essential to measure diethylene glycol since its inclusion is rarely likely to change patient management. © The Author(s) 2015.

  8. Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s.

    PubMed

    Zgoła-Grześkowiak, Agnieszka; Grześkowiak, Tomasz; Zembrzuska, Joanna; Łukaszewski, Zenon

    2006-07-01

    The biodegradation of poly(ethylene glycol)s (PEGs) and poly(propylene glycol)s (PPGs), both being major by-products of non-ionic surfactants biodegradation, was studied under the conditions of the River Water Die-Away Test. PEGs were isolated from a water matrix using solid-phase extraction with graphitized carbon black sorbent, then derivatized with phenyl isocyanate and determined by HPLC with UV detection. PPGs were isolated from a water matrix by liquid-liquid extraction with chloroform, then derivatized with naphthyl isocyanate and determined by HPLC with fluorescence detection. The primary biodegradation of both PEGs and PPGs reached approximately 99% during the test. The tests show different biodegradation pathways of PEG and PPG. During PEG biodegradation, their chains are shortened leading to the formation of ethylene glycol and diethylene glycol. During PPG biodegradation, no short-chained biodegradation products were found.

  9. Polymeric compositions incorporating polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  10. Propylene glycol accumulation in critically ill patients receiving continuous intravenous lorazepam infusions.

    PubMed

    Horinek, Erica L; Kiser, Tyree H; Fish, Douglas N; MacLaren, Robert

    2009-12-01

    Lorazepam is recommended by the Society of Critical Care Medicine as the preferred agent for sedation of critically ill patients. Intravenous lorazepam contains propylene glycol, which has been associated with toxicity when high doses of lorazepam are administered. To evaluate the accumulation of propylene glycol in critically ill patients receiving lorazepam by continuous infusion and determine factors associated with propylene glycol concentration. A 6-month, retrospective, safety assessment was conducted of adults admitted to the medical intensive care unit who were receiving lorazepam by continuous infusion for 12 hours or more. Propylene glycol serum concentrations were obtained 24-48 hours after continuous-infusion lorazepam was initiated and every 3-5 days thereafter. Propylene glycol accumulation was defined as concentrations of 25 mg/dL or more. Groups with and without propylene glycol accumulation were compared and factors associated with propylene glycol concentration were determined using multivariate correlation regression analyses. Forty-eight propylene glycol serum samples were obtained from 33 patients. Fourteen (42%) patients had propylene glycol accumulation, representing 23 (48%) serum samples. Univariate analyses showed the following factors were related to propylene glycol accumulation: baseline renal dysfunction, presence of alcohol withdrawal, sex, age, Acute Physiology and Chronic Health Evaluation (APACHE II) score, rate of lorazepam continuous infusion, and 24-hour lorazepam dose. Multivariate linear regression modeling demonstrated that propylene glycol concentration was strongly associated with the continuous infusion rate and 24-hour dose (adjusted r(2) > or = 0.77; p < 0.001). Independent correlation analyses showed that these 2 variables were so strongly associated with propylene glycol concentration (r(2) > or = 0.71; p < 0.001) that they alone predicted propylene glycol concentration. Seven (21%) patients developed renal dysfunction after continuous-infusion lorazepam was initiated, but associated causes were indeterminable. Other possible propylene glycol-associated adverse effects were not observed. The continuous infusion rate and cumulative 24-hour lorazepam dose are strongly associated with and independently predict propylene glycol concentrations. Despite the absence of confirmed propylene glycol-associated adverse effects, clinicians should be aware that propylene glycol accumulation may occur with continuous-infusion lorazepam.

  11. Impact of glycolate anion on aqueous corrosion in DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-12-15

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable tomore » SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion.« less

  12. Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia.

    PubMed Central

    Dwyer, D F; Tiedje, J M

    1983-01-01

    Methanogenic enrichments capable of degrading polyethylene glycol and ethylene glycol were obtained from sewage sludge. Ethanol, acetate, methane, and (in the case of polyethylene glycols) ethylene glycol were detected as products. The sequence of product formation suggested that the ethylene oxide unit [HO-(CH2-CH2-O-)xH] was dismutated to acetate and ethanol; ethanol was subsequently oxidized to acetate by a syntrophic association that produced methane. The rates of degradation for ethylene, diethylene, and polyethylene glycol with molecular weights of 400, 1,000, and 20,000, respectively, were inversely related to the number of ethylene oxide monomers per molecule and ranged from 0.84 to 0.13 mM ethylene oxide units degraded per h. The enrichments were shown to best metabolize glycols close to the molecular weight of the substrate on which they were enriched. The anaerobic degradation of polyethylene glycol (molecular weight, 20,000) may be important in the light of the general resistance of polyethylene glycols to aerobic degradation. PMID:6614903

  13. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... value. For estimating maximum potential emissions from glycol dehydration units, the glycol circulation... existing glycol dehydration unit specified in paragraphs (b)(1) through (3) of this section. (1) Each large glycol dehydration unit; (2) Each small glycol dehydration unit for which construction commenced on or...

  14. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... value. For estimating maximum potential emissions from glycol dehydration units, the glycol circulation... existing glycol dehydration unit specified in paragraphs (b)(1) through (3) of this section. (1) Each large glycol dehydration unit; (2) Each small glycol dehydration unit for which construction commenced on or...

  15. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... estimating maximum potential emissions from glycol dehydration units, the glycol circulation rate used in the...) Each glycol dehydration unit as specified in paragraphs (b)(1)(i)(A) through (C) of this section. (A) Each large glycol dehydration unit; (B) Each small glycol dehydration unit for which construction...

  16. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... estimating maximum potential emissions from glycol dehydration units, the glycol circulation rate used in the...) Each glycol dehydration unit as specified in paragraphs (b)(1)(i)(A) through (C) of this section. (A) Each large glycol dehydration unit; (B) Each small glycol dehydration unit for which construction...

  17. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or “propylene...

  18. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or “propylene...

  19. 40 CFR Table 1 to Subpart F of... - Synthetic Organic Chemical Manufacturing Industry Chemicals

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... III Ethylcellulose 9004573 V Ethylcyanoacetate 105566 V Ethylene carbonate 96491 I Ethylene dibromide (Dibromoethane) 106934 I Ethylene glycol 107211 I Ethylene glycol diacetate 111557 I Ethylene glycol dibutyl ether 112481 V Ethylene glycol diethyl ether 629141 I (1,2-diethoxyethane). Ethylene glycol 110714 I...

  20. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  1. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  2. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  3. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  4. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  5. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Skidmore, T. E.

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reportedmore » corrosion rates and degradation characteristics have shown the following for the materials of construction.« less

  6. Propylene glycol intoxication in a dog.

    PubMed

    Claus, Melissa A; Jandrey, Karl E; Poppenga, Robert H

    2011-12-01

    To describe the clinical course, treatment, and outcome of a dog with propylene glycol intoxication. An adult castrated male Australian cattle dog presented to an emergency clinic for an acute onset of ataxia and disorientation after roaming a construction site unsupervised. He tested positive for ethylene glycol using a point-of-care test kit. Treatment for ethylene glycol intoxication included intermittent intravenous boluses of 20% ethanol and hemodialysis. Predialysis and postdialysis blood samples were submitted to the toxicology lab to assess for both ethylene and propylene glycol. The patient tested negative for ethylene glycol and positive for propylene glycol at 1100 mg/dL predialysis and 23 mg/dL postdialysis. The dog made a full recovery. To the authors' knowledge, this is the first report of documented propylene glycol intoxication in a dog, as well as the first report to describe hemodialysis as treatment for propylene glycol intoxication in a dog. © Veterinary Emergency and Critical Care Society 2011.

  7. A positive chemical ionization GC/MS method for the determination of airborne ethylene glycol and propylene glycols in non-occupational environments.

    PubMed

    Zhu, Jiping; Feng, Yong-Lai; Aikawa, Bio

    2004-11-01

    An analytical method for ethylene glycol and propylene glycols has been developed for measuring airborne levels of these chemicals in non-occupational environments such as residences and office buildings. The analytes were collected on charcoal tubes, solvent extracted, and analyzed by gas chromatography-mass spectrometry using a positive chemical ionization technique. The method had a method detection limit of 0.07 microg m(-3) for ethylene glycol and 0.03 microg m(-3) for 1,2- and 1,3-propylene glycols, respectively, based on a 1.44 m3 sampling volume. Indoor air samples of several residential homes and other indoor environments have been analyzed. The median concentrations of ethylene glycol and 1,2-propylene glycol in nine residential indoor air samples were 53 microg m(-3) and 13 microg m(-3) respectively with maximum values of 223 microg m(-3) and 25 microg m(-3) detected for ethylene glycol and 1,2-propylene glycol respectively. The concentrations of these two chemicals in one office and two laboratories were at low microg m(-3) levels. The maximum concentration of 1,3-propylene glycol detected in indoor air was 0.1 microg m(-3).

  8. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning ofmore » glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.« less

  9. The effect of glycerol, propylene glycol and polyethylene glycol 400 on the partition coefficient of benzophenone-3 (oxybenzone).

    PubMed

    Mbah, C J

    2007-01-01

    Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin.

  10. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of glycerol and propylene glycol; exemption from the requirement of a tolerance. 180.1250 Section 180..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of... monocaprylate, glycerol monocaprate, and glycerol monolaurate) and propylene glycol (propylene glycol...

  11. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of glycerol and propylene glycol; exemption from the requirement of a tolerance. 180.1250 Section 180..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of... monocaprylate, glycerol monocaprate, and glycerol monolaurate) and propylene glycol (propylene glycol...

  12. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of glycerol and propylene glycol; exemption from the requirement of a tolerance. 180.1250 Section 180..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of... monocaprylate, glycerol monocaprate, and glycerol monolaurate) and propylene glycol (propylene glycol...

  13. Ethylene glycol blood test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  14. Safety assessment of propylene glycol, tripropylene glycol, and PPGs as used in cosmetics.

    PubMed

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2012-01-01

    Propylene glycol is an aliphatic alcohol that functions as a skin conditioning agent, viscosity decreasing agent, solvent, and fragrance ingredient in cosmetics. Tripropylene glycol functions as a humectant, antioxidant, and emulsion stabilizer. Polypropylene glycols (PPGs), including PPG-3, PPG-7, PPG-9, PPG-12, PPG-13, PPG-15, PPG-16, PPG-17, PPG-20, PPG-26, PPG-30, PPG-33, PPG-34, PPG-51, PPG-52, and PPG-69, function primarily as skin conditioning agents, with some solvent use. The majority of the safety and toxicity information presented is for propylene glycol (PG). Propylene glycol is generally nontoxic and is noncarcinogenic. Clinical studies demonstrated an absence of dermal sensitization at use concentrations, although concerns about irritation remained. The CIR Expert Panel determined that the available information support the safety of tripropylene glycol as well as all the PPGs. The Expert Panel concluded that PG, tripropylene glycol, and PPGs ≥3 are safe as used in cosmetic formulations when formulated to be nonirritating.

  15. Polyethylene glycol without electrolytes for children with constipation and encopresis.

    PubMed

    Loening-Baucke, Vera

    2002-04-01

    Children with functional constipation and encopresis benefit from behavior modification and from long-term laxative medication. Polyethylene glycol without electrolytes has become the first option for many pediatric gastroenterologists. Twenty-eight children treated with polyethylene glycol without electrolytes were compared with 21 children treated with milk of magnesia to evaluate the efficiency, acceptability, side effects, and treatment dosage of polyethylene glycol in long-term treatment of functional constipation and encopresis. Children were rated as "doing well," "improved," or "not doing well," depending on resolution of constipation and encopresis. At the 1-, 3-, 6-, and 12-month follow-ups, bowel movement frequency increased and soiling frequency decreased significantly in both groups. At the 1-month follow-up, children on polyethylene glycol were soiling more frequently (P < 0.01) and fewer were improved (P < 0.01). At the 3- and 6-month follow-ups, both groups had similarly improved. At the 12-month visit, 61% of children on polyethylene glycol and 67% of children on milk of magnesia were doing well. Children on polyethylene glycol soiled more frequently (P < 0.01). None refused polyethylene glycol, but 33% refused to take milk of magnesia. The mean initial treatment dosage of polyethylene glycol was 0.6 +/- 0.2 g/kg daily. Polyethylene glycol had no taste, and no loss of efficacy occurred. Polyethylene glycol did not cause clinically significant side effects. Polyethylene glycol without electrolytes is an alternative for long-term management of children with constipation and encopresis.

  16. Investigation of selected potential environmental contaminants: ethylene glycol, propylene glycols and butylene glycols. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, L.M.

    1979-05-01

    This report reviews aspects of production, use, environmental exposure and biological effects of ethylene glycol, two isomers of propylene glycol (1,2- and 1,3-propanediol) and four isomers of butylene glycol (1,3-, 1,4-, 2,3-, and 1,2- butanediol). Annual production of ethylene glycol is about 3.7 billion pounds for use primarily in antifreeze and polyester fiber. About 0.5 billion pounds of 1,2-propanediol are produced per year for use in polyester resins, food, pharmaceuticals, and cellophane. Annual domestic demand for 1,4-butanediol is about 0.2 billion pounds for use in the production of tetra-hydrofuran and acetylenic chemicals. The other title glycols are of less importancemore » commercially. The major source of environmental contamination by ethylene glycol and 1,2-propanediol is likely from the disposal of spent antifreeze and de-icing fluids. However, limited monitoring data make it difficult to adequately assess environmental exposure to the glycols. The glycols are capable of being degraded by a variety of acclimated and unacclimated soil, water, and sewage microorganisms. In humans, ethylene glycol intoxication, usually as a result of accidental ingestion of antifreeze, may result in nausea, hypertension, tachycardia, cardiopulmonary failure, renal impairment, coma and death. 1,2-Propanediol is a GRAS food additive of low toxicity. 1,3-Butanediol has been studied as a source of dietary energy. Few studies are available on 1,2-, 2,3- and 1,4-butanediol or on 1,3-propanediol.« less

  17. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in... determined that this use of propylene glycol is not prior sanctioned. [61 FR 19544, May 2, 1996] ...

  18. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in... determined that this use of propylene glycol is not prior sanctioned. [61 FR 19544, May 2, 1996] ...

  19. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in... determined that this use of propylene glycol is not prior sanctioned. [61 FR 19544, May 2, 1996] ...

  20. Influence of propylene glycol on aqueous silica dispersions and particle-stabilized emulsions.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Thompson, Michael A; Elliott, Russell P

    2013-05-14

    We have studied the influence of adding propylene glycol to both aqueous dispersions of fumed silica nanoparticles and emulsions of paraffin liquid and water stabilized by the same particles. In the absence of oil, aerating mixtures of aqueous propylene glycol and particles yields either stable dispersions, aqueous foams, climbing particle films, or liquid marbles depending on the glycol content and particle hydrophobicity. The presence of glycol in water promotes particles to behave as if they are more hydrophilic. Calculations of their contact angle at the air-aqueous propylene glycol surface are in agreement with these findings. In the presence of oil, particle-stabilized emulsions invert from water-in-oil to oil-in-water upon increasing either the inherent hydrophilicity of the particles or the glycol content in the aqueous phase. Stable multiple emulsions occur around phase inversion in systems of low glycol content, and completely stable, waterless oil-in-propylene glycol emulsions can also be prepared. Accounting for the surface energies at the respective interfaces allows estimation of the contact angle at the oil-polar phase interface; reasonable agreement between measured and calculated phase inversion conditions is found assuming no glycol adsorption on particle surfaces.

  1. Aphids preserved in propylene glycol can be used for reverse transcription-polymerase chain reaction detection of Potato virus Y.

    PubMed

    Nie, Xianzhou; Pelletier, Yvan; Mason, Nicola; Dilworth, Andrea; Giguère, Marie-Andrée

    2011-08-01

    The effectiveness of propylene glycol on the retention of RNA target of Potato virus Y (PVY), an aphid stylet-borne virus, in Myzus persicae was investigated in comparison to ethanol and liquid nitrogen/-80°C. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the PVY targets from the propylene glycol/ethanol/liquid nitrogen preserved single aphids after a 5min acquisition period from infected potato plants. In the liquid nitrogen/-80°C and 70% ethanol treatments, 55.6% and 38.8% aphids tested PVY-positive, respectively. In the 0-75% propylene glycol treatments, 12.2-44.7% aphids tested PVY-positive. The lowest detection rate was in the 0% (positive rate, 15.2%) and the 10% propylene glycol (positive rate, 12.2%). As the propylene glycol concentration increased to 25%, 29.8% aphids tested positive. A high PVY-positive rate was also found in 35-75% propylene glycol treatments at 44.7% (35% propylene glycol), 36.7% (50% propylene glycol) and 34.8% (75% propylene glycol), which is comparable to the rate shown in 70% ethanol. No significant difference in the positive detection rate was observed in aphids preserved in 50% propylene glycol at room temperature for 2, 4 and 10 days. These results demonstrate that propylene glycol at 25-75% can retain PVY targets effectively in aphids for an extended time period, and thus can be used in aphid traps to preserve viruliferous aphids for later RT-PCR detection of PVY. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  2. Bacterial Utilization of Ether Glycols

    PubMed Central

    Fincher, Edward L.; Payne, W. J.

    1962-01-01

    A soil bacterium capable of using oligo- and polyethylene glycols and ether alcohols as sole sources of carbon for aerobic growth was isolated. The effects of substituent groups added to the ether bonds on the acceptability of the compounds as substrates were studied. Mechanisms for the incorporation of two-carbon compounds were demonstrated by the observation that acetate, glyoxylate, ethylene glycol, and a number of the tricarboxylic acid cycle intermediates served as growth substrates in minimal media. The rate of oxidation of the short-chained ethylene glycols by adapted resting cells varied directly with increasing numbers of two-carbon units in the chains from one to four. The amount of oxygen consumed per carbon atom of oligo- and polyethylene glycols was 100% of theoretical, but only 67% of theoretical for ethylene glycol. Resting cells oxidized oligo- and polyethylene glycols with 2 to 600 two-carbon units in the chains. Longer chained polyethylene glycols (up to 6,000) were oxidized at a very slow rate by these cells. Dehydrogenation of triethylene glycol by adapted cells was observed, coupling the reaction with methylene blue reduction. PMID:13945208

  3. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  4. Haemoglobinuria caused by propylene glycol in sheep

    PubMed Central

    Potter, B. J.

    1958-01-01

    Haemoglobinuria occurred in sheep anaesthetized by an intravenous injection of pentobarbitone sodium containing propylene glycol: an equivalent dose failed to cause haemoglobinuria in rabbits. Intravenous injection of an aqueous solution of 20% propylene glycol caused haemoglobinaemia and haemoglobinuria in sheep. Neither distilled water nor 20% glycerol in water administered under identical conditions produced these effects. Haemoglobinuria occurred on some occasions when an aqueous 20% solution of propylene glycol was administered to sheep after an injection of saline: it never occurred when a solution of 20% propylene glycol prepared with physiological saline was injected. It is suggested that saline may protect against the haemolytic action of propylene glycol in sheep and that propylene glycol should be avoided as a menstruum for pharmaceutical preparations to be used for injection into the blood stream of these animals. PMID:13618540

  5. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.

  6. Engineering Pseudomonas putida KT2440 for Efficient Ethylene Glycol Utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T; Franden, Mary A; Thelhawadigedara, Lahiru Niroshan Jayakody

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylenemore » glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and biomass-derived wastewater streams.« less

  7. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    PubMed

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and biomass-derived wastewater streams. Copyright © 2018. Published by Elsevier Inc.

  8. Experimental Evidence for a Hydride Transfer Mechanism in Plant Glycolate Oxidase Catalysis*

    PubMed Central

    Dellero, Younès; Mauve, Caroline; Boex-Fontvieille, Edouard; Flesch, Valérie; Jossier, Mathieu; Tcherkez, Guillaume; Hodges, Michael

    2015-01-01

    In plants, glycolate oxidase is involved in the photorespiratory cycle, one of the major fluxes at the global scale. To clarify both the nature of the mechanism and possible differences in glycolate oxidase enzyme chemistry from C3 and C4 plant species, we analyzed kinetic parameters of purified recombinant C3 (Arabidopsis thaliana) and C4 (Zea mays) plant enzymes and compared isotope effects using natural and deuterated glycolate in either natural or deuterated solvent. The 12C/13C isotope effect was also investigated for each plant glycolate oxidase protein by measuring the 13C natural abundance in glycolate using natural or deuterated glycolate as a substrate. Our results suggest that several elemental steps were associated with an hydrogen/deuterium isotope effect and that glycolate α-deprotonation itself was only partially rate-limiting. Calculations of commitment factors from observed kinetic isotope effect values support a hydride transfer mechanism. No significant differences were seen between C3 and C4 enzymes. PMID:25416784

  9. 21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Succistearin (stearoyl propylene glycol hydrogen... Other Specific Usage Additives § 172.765 Succistearin (stearoyl propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen succinate) may be safely used in...

  10. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is generally...

  11. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is generally...

  12. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is generally...

  13. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is generally...

  15. Glycolic acid physical properties and impurities assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Pickenheim, B. R.; Bibler, N. E.

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment tomore » meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid solutions that are depleted of O2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. However, an irradiation test with a simulated SRAT product supernate containing glycolic acid in an oxygen depleted atmosphere found no evidence of polymerization.« less

  16. Processes and systems for the production of propylene glycol from glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G; Oberg, Aaron A; Zacher, Alan H

    2015-01-20

    Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.

  17. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Glycol dehydration unit process vent... Storage Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as...

  18. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Glycol dehydration unit process vent... Storage Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as...

  19. 21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Succistearin (stearoyl propylene glycol hydrogen succinate). 172.765 Section 172.765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen...

  20. 21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Succistearin (stearoyl propylene glycol hydrogen succinate). 172.765 Section 172.765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen...

  1. 21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Succistearin (stearoyl propylene glycol hydrogen succinate). 172.765 Section 172.765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen...

  2. Process for the production of low flammability electrolyte solvents

    DOEpatents

    Krumdick, Gregory K.; Pupek, Krzysztof; Dzwiniel, Trevor L.

    2016-02-16

    The invention provides a method for producing electrolyte solvent, the method comprising reacting a glycol with a disilazane in the presence of a catalyst for a time and at a temperature to silylate the glycol, separating the catalyst from the silylated glycol, removing unreacted silazane; and purifying the silylated glycol.

  3. 21 CFR 582.1666 - Propylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1666 Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance...

  4. 21 CFR 582.1666 - Propylene glycol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1666 Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance...

  5. 21 CFR 582.1666 - Propylene glycol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1666 Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance...

  6. Solubility of pioglitazone hydrochloride in binary mixtures of polyethylene glycol 400 with ethanol, propylene glycol, N-methyl-2-pyrrolidone, and water at 25 degrees C.

    PubMed

    Jouyban, Abolghasem; Soltanpour, Shahla

    2010-09-01

    The solubility of pioglitazone hydrochloride in binary mixtures of polyethylene glycol 400 with ethanol, N-methyl-2-pyrrolidone, propylene glycol, and water at 25 degrees C are reported. The generated data are fitted to the Jouyban-Acree model and the mean relative deviations are 2.6%, 1.5%, 5.8%, and 7.4%, respectively for ethanol, N-methyl-2-pyrrolidone, propylene glycol, and water.

  7. Propylene Glycol Poisoning From Excess Whiskey Ingestion: A Case of High Osmolal Gap Metabolic Acidosis.

    PubMed

    Cunningham, Courtney A; Ku, Kevin; Sue, Gloria R

    2015-01-01

    In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol.

  8. Propylene Glycol Poisoning From Excess Whiskey Ingestion

    PubMed Central

    Ku, Kevin; Sue, Gloria R.

    2015-01-01

    In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol. PMID:26904700

  9. Clean fuels from bioconversion of solar energy. Annual report, 21 January 1980-20 January 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feighner, S.D.; Sikka, H.C.

    1981-03-01

    The study seeks to enhance glycolic acid excretion by unicellular algae. The strains of algae selected to evaluate glycolic acid accumulation in culture medium were: Chlorella pyrenoidosa (UTEX 395), Chlamydomonas reinhardtii (UTEX 89), Scenedesmus obliquus (UTEX 393), and Ankistrodesmus braunii (UTEX 245). C. pyrenoidosa and C. reinhardtii, based on the amount of glycolic acid produced, were selected for further study. Initial experiments were conducted to measure the effect of different environmental growth conditions on the rate of glycolic accumulation in defined culture medium. The most pronounced effect on glycolic acid excretion was obtained by varying the concentration of carbon dioxidemore » in air. At 1% CO2 in air, C. pyrenoidosa accumulated 5.2 ppm glycolic acid in culture medium. Neither the pH of the culture medium nor the incubation temperature affected glycolic acid accumulation by growing C. pyrenoidosa cultures.« less

  10. Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment

    PubMed Central

    Kojio, Ken; Furukawa, Mutsuhisa; Nonaka, Yoshiteru; Nakamura, Sadaharu

    2010-01-01

    Mechanical properties of thermoplastic polyurethane elastomers based on either polyether or polycarbonate (PC)-glycols, 4,4’-dipheylmethane diisocyanate (1,1’-methylenebis(4-isocyanatobenzene)), 1,4-butanediol, were controlled by restriction of crystallization of polymer glycols. For the polyether glycol based-polyurethane elastomers (PUEs), poly(oxytetramethylene) glycol (PTMG), and PTMG incorporating dimethyl groups (PTG-X) and methyl side groups (PTG-L) were employed as a polymer glycol. For the PC-glycol, the randomly copolymerized PC-glycols with hexamethylene (C6) and tetramethylene (C4) units between carbonate groups with various composition ratios (C4/C6 = 0/100, 50/50, 70/30 and 90/10) were employed. The degree of microphase separation and mechanical properties of both the PUEs were investigated using differential scanning calorimetry, dynamic viscoelastic property measurements and tensile testing. Mechanical properties could be controlled by changing the molar ratio of two different monomer components. PMID:28883371

  11. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. II: APPENDICES

    EPA Science Inventory

    The report gives results of the collection of emissions test data st two triethylene glycol units to provide data for the comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. [NOTE: Glycol dehydrators are used in the natural gas i...

  12. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. I: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of the collection of emissions tests data at two triethylene glycol units to provide data for comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. (NOTE: Glycol dehydrators are used in the natural gas indu...

  13. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  14. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  15. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as specified in either...

  16. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  17. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as specified in either...

  18. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  19. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  20. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  1. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... propylene glycol. 172.850 Section 172.850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... CONSUMPTION Multipurpose Additives § 172.850 Lactylated fatty acid esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and propylene glycol may be safely used in...

  2. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... propylene glycol. 172.850 Section 172.850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and propylene glycol may be safely used in food in accordance with the following prescribed conditions: (a) The...

  3. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... propylene glycol. 172.850 Section 172.850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and propylene glycol may be safely used in food in accordance with the following prescribed conditions: (a) The...

  4. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ethylene oxide and water with a mean molecular weight of 200 to 9,500. (2) It contains no more than 0.2 percent total by weight of ethylene and diethylene glycols when tested by the analytical methods... the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights...

  5. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance when...

  6. Prediction and validation of the duration of hemodialysis sessions for the treatment of acute ethylene glycol poisoning.

    PubMed

    Iliuta, Ioan-Andrei; Lachance, Philippe; Ghannoum, Marc; Bégin, Yannick; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Agharazii, Mohsen

    2017-08-01

    The duration of hemodialysis (HD) sessions for the treatment of acute ethylene glycol poisoning is dependent on concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. Ethylene glycol assays are not readily available, potentially leading to undue extension or premature termination of HD. We report a prediction model for the duration of high-efficiency HD sessions based retrospectively on a cohort study of 26 cases of acute ethylene glycol poisoning in 24 individuals treated by alcohol dehydrogenase competitive inhibitors, cofactors and HD. Two patients required HD for more than 14 days, and two died. In 19 cases, the mean ethylene glycol elimination half-life during high-efficiency HD was 165 minutes (95% confidence interval of 151-180 minutes). In a training set of 12 patients with acute ethylene glycol poisoning, using the 90th percentile half-life (195 minutes) and a target ethylene glycol concentration of 2 mmol/l (12.4 mg/dl) allowed all cases to reach a safe ethylene glycol under 3 mmol/l (18.6 mg/dl). The prediction model was then validated in a set of seven acute ethylene glycol poisonings. Thus, the HD session time in hours can be estimated using 4.7 x (Ln [the initial ethylene glycol concentration (mmol/l)/2]), provided that metabolic acidosis is corrected. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Parallel determination of gut permeability in man with M(r) 400, M(r) 1500, M(r) 4000 and M(r) 10,000 polyethylene glycol.

    PubMed

    Parlesak, A; Bode, J C; Bode, C

    1994-11-01

    Polyethylene glycol has been in use for a number of years for the assessment of gut permeability. The methods so far employed are usually limited to polyethylene glycols in the low relative molecular mass range (up to M(r) 1300). We developed a method for the simultaneous determination of gut permeability to M(r) 400, M(r) 1500, M(r) 4000 and M(r) 10,000 polyethylene glycol, by applying a single oral dose of an appropriate mixture of these polyethylene glycols. After extraction from 24 h-urine, M(r) 1500, M(r) 4000 and M(r) 10,000 polyethylene glycol were quantified by size exclusion chromatography, while M(r) 400 polyethylene glycol was determined by reversed phase chromatography. The detection limit of polyethylene glycol in the relative molecular mass range between M(r) 1500 and M(r) 10,000 was found to be 0.2 mg/l urine, and the detection limit of M(r) 400 polyethylene glycol 5 mg/l urine. Recovery of the polyethylene glycols (N = 6) were 86.6% (CV: 4.8%) for M(r) 400, 94.1% (CV: 7.2%) for M(r) 1500, 97.1% (CV: 5.5%) for M(r) 4000 and 97.4% (CV: 5.6%) for M(r) 10,000. No significant difference was found between the excretion rates in 24 h-urine of M(r) 400 and M(r) 1500 polyethylene glycols in patients with Crohn's disease (M(r) 400: 34.4 +/- 5.5%; M(r) 1500: 5.22 +/- 2.27%; mean +/- SEM, N = 10) and healthy controls (M(r) 400: 33.6 +/- 3.2%, M(r) 1500: 1.09 +/- 0.26%; N = 21). The excretion rate of M(r) 4000 polyethylene glycol was markedly higher in patients with Crohn's disease (0.462 +/- 0.177%) than in healthy controls (0.049 +/- 0.012%, p < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Antifreeze poisoning

    MedlinePlus

    The poisonous ingredients in antifreeze are: Ethylene glycol Methanol Propylene glycol ... For ethylene glycol: Death may occur within the first 24 hours. If the patient survives, there may be little ...

  9. Inverse Gas Chromatography

    DTIC Science & Technology

    1990-09-01

    propellants in a number of Defense systems (1-3). These include: polyneopentyl glycol azelate (NPGA) in HAWK; hydroxy-terminated polybutadiene (HTPB) in VIPER...PATRIOT, MET ROCKET, GSRS, PERSHING, and HELLFIRE; polybutadiene acrylic acid (PBAA) in PERSHING and SPARTAN; and polyethylene glycol (PEG...mixtures of this with polybutadiene acrylic acid ; polyethylene glycol + polyethylene glycol adipate; etc.). Furthermore, yet to be explored in any detail

  10. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether (EGBE,2-Butoxyethanol...

  11. End-group characterisation of poly(propylene glycol)s by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS).

    PubMed

    Jackson, Anthony T; Slade, Susan E; Thalassinos, Konstantinos; Scrivens, James H

    2008-10-01

    The end-group functionalisation of a series of poly(propylene glycol)s has been characterised by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). A series of peaks with mass-to-charge ratios that are close to that of the precursor ion were used to generate information on the end-group functionalities of the poly(propylene glycol)s. Fragment ions resulting from losses of both of the end groups were noted from some of the samples. An example is presented of how software can be used to significantly reduce the length of time involved in data interpretation (which is typically the most time-consuming part of the analysis).

  12. Anaerobic treatability of wastewater contaminated with propylene glycol.

    PubMed

    Sezgin, Naim; Tonuk, Gulseven Ubay

    2013-09-01

    The purpose of this study was to investigate the biodegradability of propylene glycol in anaerobic conditions by using methanogenic culture. A master reactor was set up to develop a culture that would be acclimated to propylene glycol. After reaching steady-state, culture was transferred to serum bottles. Three reactors with same initial conditions were run for consistency. Propylene glycol was completely biodegradable under anaerobic methanogenic conditions. Semi-continuous reactors operated at a temperature of 35°C had consistently achieved a propylene glycol removal of higher than 95 % based on chemical oxygen demand (COD). It was found that in semi-continuous reactors, anaerobic treatment of propylene glycol at concentrations higher than 1,500 mg COD m(-3) day(-1) was not convenient due to instable effluent COD.

  13. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat food is not generally recognized as safe and is a food additive subject to section 409 of...

  14. 21 CFR 589.1001 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Propylene glycol in or on cat food. 589.1001... Listing of Specific Substances Prohibited From Use in Animal Food or Feed § 589.1001 Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat...

  15. 21 CFR 589.1001 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Propylene glycol in or on cat food. 589.1001... Listing of Specific Substances Prohibited From Use in Animal Food or Feed § 589.1001 Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat...

  16. 21 CFR 589.1001 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Propylene glycol in or on cat food. 589.1001... Listing of Specific Substances Prohibited From Use in Animal Food or Feed § 589.1001 Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat...

  17. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol mono- and diesters of fats and... CONSUMPTION Multipurpose Additives § 172.856 Propylene glycol mono- and diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely used in food, subject to the...

  18. The Verification of a Method for Detecting and Quantifying Diethylene Glycol, Triethylene Glycol, Tetraethylene Glycol, 2-Butoxyethanol and 2-Methoxyethanolin in Ground and Surface Waters

    EPA Science Inventory

    This verification study was a special project designed to determine the efficacy of a draft standard operating procedure (SOP) developed by US EPA Region 3 for the determination of selected glycols in drinking waters that may have been impacted by active unconventional oil and ga...

  19. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat food is not generally recognized as safe and is a food additive subject to section 409 of...

  20. Biodegradation of Ethylene Glycol by a Salt-Requiring Bacterium1

    PubMed Central

    Gonzalez, Carlos F.; Taber, Willard A.; Zeitoun, M. A.

    1972-01-01

    A gram-negative nonmotile rod which was capable of using 1,2-14C-ethylene glycol as a sole carbon source for growth was isolated from a brine pond, Great Salt Lake, Utah. The bacterium (ATCC 27042) required at least 0.85% NaCl for growth and, although the chloride ion was replaceable by sulfate ion, the sodium ion was not replaceable by potassium ion. The maximal concentration of salt tolerated for growth was approximately 12%. The bacterium was oxidase-negative when N,N-dimethyl-p-phenylenediamine was used and weakly positive when N,N,N′,N′-tetramethyl-p-phenylenediamine was used. It grows on many sugars but does not ferment them, it does not have an exogenous vitamin requirement, and it possesses a guanine plus cytosine ratio of 64.3%. Incorporation of ethylene glycol carbon into cell and respired CO2 was quantitated by use of radioactive ethylene glycol and a force-aerated fermentor. Glucose suppressed ethylene glycol metabolism. Cells grown on ethylene and propylene glycol respired ethylene glycol in a Warburg respirometer more rapidly than cells grown on glucose. Spectrophotometric evidence was obtained for oxidation of glycolate to glyoxylate by a dialyzed cell extract. PMID:4568254

  1. Glycolic acid physical properties and impurities assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Pickenheim, B. R.; Hay, M. S.

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However,more » these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.« less

  2. FERMENTATION OF ETHYLENE GLYCOL BY CLOSTRIDIUM GLYCOLICUM, SP. N1

    PubMed Central

    Gaston, Lamont W.; Stadtman, E. R.

    1963-01-01

    Gaston, Lamont W. (National Heart Institute, National Institutes of Health, Bethesda, Md.) and E. R. Stadtman. Fermentation of ethylene glycol by Clostridium glycolicum, sp. n. J. Bacteriol. 85:356–362. 1963.—An anaerobic organism which utilizes ethylene glycol as a source of energy and carbon has been isolated from mud. It is a long (5 μ), slender, motile, gram-positive, spore-forming rod, with peritrichous flagellae. It grows well from 22 to 37 C at pH 7.4 to 7.6, and ferments glucose, fructose, sorbitol, dulcitol, and cellulose. It does not reduce nitrates, form indole, or cause hemolysis or proteolysis except for a slight attack on coagulated egg albumin. Fifteen amino acids and the vitamins biotin and pantothenate are required for optimal growth on ethylene glycol. Analogues other than propylene glycol do not support growth. Ethylene glycol and propylene glycol are stoichiometrically converted to equal amounts of the respective acid and alcohol. PMID:13946772

  3. Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions

    NASA Astrophysics Data System (ADS)

    Yu, Tongxu; Zhao, Lishan; Wang, Qiang; Cao, Zexian

    2017-06-01

    Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions, in reference to that of the binary combinations, has been investigated towards a better understanding of their cryoprotective ability. In water-deficient solutions, the disaccharides, including trehalose, sucrose and maltose, can associate with more than 100 ethylene glycol molecules to form amorphous complex, one order of magnitude larger than the corresponding hydration numbers. In water-rich solutions, a second glass transition emerges with increasing molar fraction of ethylene glycol, indicating the possible synergy of disaccharides and ethylene glycol in vitrification of the ternary aqueous solution.

  4. Environmental Aspects of Aircraft and Airfield Deicing - An Air Force Perspective

    DTIC Science & Technology

    2010-11-01

    e l l e n c e COD of Aircraft Deicers ADF Kg O2/Kg compd Ethylene glycol 1.14 T Propylene glycol 1.47 T Isopropyl alcohol 2.11 T Neopentyl glycol ...showed that commercial airports use about 25 million gallons of Aircraft Deicing Fluid (ADF) annually, of which 22.1 M (88%) is Propylene Glycol (PG...S e r v i c e - E x c e l l e n c e AF Aircraft Deicing Overview 70% (107) of bases reported using aircraft deicers Propylene Glycol (PG), AMS 1424

  5. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extentmore » to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was independent of added glycolate concentration. The change in soluble plutonium content was dependent on the added glycolate concentration, with higher levels of glycolate (5 g/L and 10 g/L) appearing to suppress the plutonium solubility. The inclusion of glycolate did not change the dissolution of or sorption onto actual-waste 2H-evaporator pot scale to an extent that will impact Tank Farm storage and concentration. The effects that were noted involved dissolution of components from evaporator scale and precipitation of components onto evaporator scale that were independent of the level of added glycolate.« less

  6. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms

    PubMed Central

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.

    2015-01-01

    Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles exhibited bactericidal activity at 100% concentration. Conclusion: Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only. PMID:25992336

  7. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms.

    PubMed

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H P

    2015-01-01

    The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. All vehicles exhibited bactericidal activity at 100% concentration. Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only.

  8. 75 FR 53867 - Additions to Listing of Exempt Chemical Mixtures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...% acetonitrile), dimethylformamide, ethylene glycol, isopropanol, methanol, methanol/water (50:50), methanol..., acetonitrile, acetonitrile: water (>= 50% acetonitrile), dimethylformamide, ethylene glycol, isopropanol...% acetonitrile), dimethylformamide, ethylene glycol, isopropanol, methanol, methanol/water (50:50), methanol...

  9. Status Epilepticus due to Intraperitoneal Injection of Vehicle Containing Propylene Glycol in Sprague Dawley Rats

    PubMed Central

    Meade, Seth M.; Smith, Cara S.; Chen, Keying; Kleinman, Nanette; Capadona, Jeffrey R.

    2017-01-01

    Published reports of status epilepticus due to intraperitoneal injection containing propylene glycol in rats are sparse. In fact, there are no reports specifying a maximum safe dose of propylene glycol through intraperitoneal administration. We report here a case of unexpected seizures in Sprague Dawley rats after receiving an intraperitoneal injection containing propylene glycol. Nine-week-old, 225–250 gram male rats were reported to experience tremor progressing to seizures within minutes after given injections of resveratrol (30 mg/kg) dissolved in a 40 : 60 propylene glycol/corn oil vehicle solution by direct intraperitoneal (IP) slow bolus injection or via a preplaced intraperitoneal catheter. The World Health Organization suggests a maximum dose of 25 mg/kg/day of propylene glycol taken orally and no more than 25 mg/dL in blood serum, whereas the animals used in our study got a calculated maximum 0.52 g/kg (25 times lower dose). Blood tests from the seizing rat support a diagnosis of hemolysis and lactic acidosis which may have led to the seizures, all of which appeared to be a consequence of the propylene glycol administration. These findings are consistent with oral and intravenous administration of propylene glycol toxicity as previously reported in other species, including humans. To our knowledge, this report represents the first published case of status epilepticus due to an IP injection containing propylene glycol. PMID:28785508

  10. Stabilization of distearoylphosphatidylcholine lamellar phases in propylene glycol using cholesterol.

    PubMed

    Harvey, Richard D; Ara, Nargis; Heenan, Richard K; Barlow, David J; Quinn, Peter J; Lawrence, M Jayne

    2013-12-02

    Phospholipid vesicles (liposomes) formed in pharmaceutically acceptable nonaqueous polar solvents such as propylene glycol are of interest in drug delivery because of their ability to improve the bioavailability of drugs with poor aqueous solubility. We have demonstrated a stabilizing effect of cholesterol on lamellar phases formed by dispersion of distearoylphosphatidylcholine (DSPC) in water/propylene glycol (PG) solutions with glycol concentrations ranging from 0 to 100%. The stability of the dispersions was assessed by determining the effect of propylene glycol concentration on structural parameters of the lamellar phases using a complementary combination of X-ray and neutron scattering techniques at 25 °C and in the case of X-ray scattering at 65 °C. Significantly, although stable lamellar phases (and liposomes) were formed in all PG solutions at 25 °C, the association of the glycol with the liposomes' lamellar structures led to the formation of interdigitated phases, which were not thermostable at 65 °C. With the addition of equimolar quantities of cholesterol to the dispersions of DSPC, stable lamellar dispersions (and indeed liposomes) were formed in all propylene glycol solutions at 25 °C, with the significant lateral phase separation of the bilayer components only detectable in propylene glycol concentrations above 60% (w/w). We propose that the stability of lamellar phases of the cholesterol-containing liposomes formed in propylene glycol concentrations of up to 60% (w/w) represent potentially very valuable drug delivery vehicles for a variety of routes of administration.

  11. Status Epilepticus due to Intraperitoneal Injection of Vehicle Containing Propylene Glycol in Sprague Dawley Rats.

    PubMed

    Ereifej, Evon S; Meade, Seth M; Smith, Cara S; Chen, Keying; Kleinman, Nanette; Capadona, Jeffrey R

    2017-01-01

    Published reports of status epilepticus due to intraperitoneal injection containing propylene glycol in rats are sparse. In fact, there are no reports specifying a maximum safe dose of propylene glycol through intraperitoneal administration. We report here a case of unexpected seizures in Sprague Dawley rats after receiving an intraperitoneal injection containing propylene glycol. Nine-week-old, 225-250 gram male rats were reported to experience tremor progressing to seizures within minutes after given injections of resveratrol (30 mg/kg) dissolved in a 40 : 60 propylene glycol/corn oil vehicle solution by direct intraperitoneal (IP) slow bolus injection or via a preplaced intraperitoneal catheter. The World Health Organization suggests a maximum dose of 25 mg/kg/day of propylene glycol taken orally and no more than 25 mg/dL in blood serum, whereas the animals used in our study got a calculated maximum 0.52 g/kg (25 times lower dose). Blood tests from the seizing rat support a diagnosis of hemolysis and lactic acidosis which may have led to the seizures, all of which appeared to be a consequence of the propylene glycol administration. These findings are consistent with oral and intravenous administration of propylene glycol toxicity as previously reported in other species, including humans. To our knowledge, this report represents the first published case of status epilepticus due to an IP injection containing propylene glycol.

  12. A new low-volume isosmotic polyethylene glycol solution plus bisacodyl versus split-dose 4 L polyethylene glycol for bowel cleansing prior to colonoscopy: a randomised controlled trial.

    PubMed

    Cesaro, Paola; Hassan, Cesare; Spada, Cristiano; Petruzziello, Lucio; Vitale, Giovanna; Costamagna, Guido

    2013-01-01

    4-L polyethylene glycol preparations are effective for colon cleansing before colonoscopy. However, large volume and unpleasant taste reduce tolerability and acceptability limiting patient compliance. A new isosmotic low-volume polyethylene glycol preparation with citrates and simethicone plus bisacodyl has been developed to improve patient compliance and tolerability. To compare the efficacy of 2 different regimens of preparation vs a split-dose of polyethylene glycol solution. In this randomised, blinded, comparative study, 153 patients were allocated to 3 arms. Arm 1 (n=52) received bisacodyl and 2-L polyethylene glycol with citrates and simethicone the day before the procedure. Arm 2 (n=50) received bisacodyl the day before and 2-L polyethylene glycol with citrates and simethicone on the day of colonoscopy. Control group (n=51) received a split-dose of 4-L polyethylene glycol. Cleansing was evaluated according to Ottawa scale. The mean Ottawa score was not different in the 3 groups. Excellent cleansing was observed more frequently in arm 2 (70%) than in controls (49%) (p<0.05). No serious adverse events were observed in the 3 regimens. The willingness to repeat the same bowel preparation was superior in arms 1 and 2 than in controls (p<0.001). New low-volume preparations seem to be as effective as the split 4-L polyethylene glycol regimen, showing a better tolerability and acceptability. Copyright © 2012. Published by Elsevier Ltd.

  13. Evaluation in vitro and in vivo of dimethicone transdermal therapeutic systems. Influence of propylene glycol on drug release.

    PubMed

    Ritschel, W A; Nayak, P M

    1987-03-01

    Coumarin-containing transdermal drug delivery systems were studied in vitro for drug release and in vivo in rats for drug absorption. The matrix of the transdermal delivery system, dimethicone, was a commercially available silicone elastomer. The devices containing 1, 3 and 5% coumarin released in vitro 8.8 (87.4%), 23.4 (74.5%) and 31.6 mg (63.3%) of drug within 24 h. The device containing 5% coumarin was selected for further studies in which 5, 10, 20, 30, 50 and 70% propylene glycol was added. Up to 20% propylene glycol content did not change the amount released. The preparations with 30, 50 and 70% propylene glycol released 69.3, 73.6 and 87.9%, respectively. The 50 and 70% preparations were physically not acceptable. Only the preparations containing 5% coumarin without propylene glycol and 5% coumarin and 30% propylene glycol in the elastomer were evaluated in vivo. The area under the blood level-time curve of the propylene glycol-containing system was twice that of the device without propylene glycol. Blood levels were maintained between about 2 micrograms/ml and 5 micrograms/ml during the time the device was kept on the skin (24 h).

  14. Ethylene glycol emissions from on-road vehicles: implications for aqueous phase secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Wood, E. C.; Knighton, W. B.; Fortner, E.; Herndon, S. C.; Onasch, T. B.; Franklin, J.; Harley, R. A.; Gentner, D. R.; Goldstein, A. H.

    2012-12-01

    Ethylene glycol (HOCH2CH2OH), used as an engine coolant for most on-road vehicles, is an intermediate volatility organic compound (IVOC) with a high Henry's Law Coefficient (kH > 10,000 M atm-1) . Oxidation of ethylene glycol, especially in the atmospheric aqueous phase (clouds, fog, wet aerosol), can lead to the formation of glycolaldehyde, oxalic acid, and ultimately secondary organic aerosol. We present measurements of unexpectedly high ethylene glycol emissions in the Caldecott Tunnel near San Francisco (Summer 2010) and the Washburn Tunnel near Houston (Spring 2009). Ethylene glycol was detected using a proton-transfer reaction mass spectrometer (PTR-MS) at m/z = 45, which is usually interpreted as acetaldehyde. Although not necessarily a tailpipe emission, effective fuel-based emission factors are calculated using the carbon balance method and range from 50 to 400 mg ethylene glycol per kg fuel. Total US and global emissions are estimated using these emission factors and fuel consumption rates and are compared to previous model estimates of ethylene glycol emissions (e.g., the Regional Atmospheric Chemistry Model). Compared to biogenically emitted isoprene, ethylene glycol is likely a minor source of glycolaldehyde globally, but may contribute significantly to glycolaldehyde, oxalate and SOA formation in areas dominated by urban emissions.

  15. Influence of nanoparticle concentration on thermo-physical properties of CuO-propylene glycol nanofluids.

    PubMed

    Suganthi, Kuppusamy Swaminathan; Radhakrishnan, Anju K; Anusha, Natarajan; Rajan, Kalpoondi Sekar

    2014-06-01

    Experiments were performed on the preparation and characterization of CuO-propylene glycol nanofluids. The influence of nanoparticle concentration and temperature on nanofluid viscosity reveals existence of a range of nanoparticle concentration and temperature in which the viscosity of nanofluid is lower than that of propylene glycol, possibly due to interactions between nanoparticles and propylene glycol. A temperature-independent, thermal conductivity enhancement of 38% was obtained for nanoparticle concentration of 1.5 vol% over a temperature range of 10-60 degrees C. We believe that particle clustering contributes to the thermal conductivity enhancement in CuO-propylene glycol nanofluids.

  16. 40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfate 77781 6. Dinitrotoluene (2,4) 121142 7. Dioxane (1,4) 123911 8. Ethylene glycol dimethyl ether 110714 9. Ethylene glycol monobutyl ether acetate 112072 10. Ethylene glycol monomethyl ether acetate...

  17. Relative toxicities of formulated glycol aircraft deicers and pure glycol products to duckweed (Lemna minor)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuFresne, D.L.; Pillard, D.A.

    1995-12-31

    Ethylene and propylene glycol deicers are commonly used at airports in the US and other countries to both remove snow and ice from aircraft, and to retard the accumulation of those materials. Snow and ice often pile up at airports during the winter and are then flushed into the storm sewer system during warmer temperatures or rainfall. Some of this water containing deicers may enter waterbodies without prior treatment, While previous studies have investigated the effects of deicers on aquatic animals and algae, data are not available on the effects on aquatic macrophytes, Glycol deicers were obtained in the formulatedmore » mixtures used on aircraft; pure ethylene and propylene glycol were obtained from Sigma{reg_sign}. Duckweed (Lemna minor) fronds were exposed to various concentrations of pure and formulated glycol mixtures. The number of fronds at test termination and chlorophyll concentration (measured using a spectrophotometer) were the measured endpoints. Based upon glycol concentration, the formulated products were more toxic than the pure material. These results are consistent with results seen in other animal and plant studies.« less

  18. Difference of carboxybetaine and oligo(ethylene glycol) moieties in altering hydrophobic interactions: a molecular simulation study.

    PubMed

    Shao, Qing; White, Andrew D; Jiang, Shaoyi

    2014-01-09

    Polycarboxybetaine and poly(ethylene glycol) materials resist nonspecific protein adsorption but differ in influencing biological functions such as enzymatic activity. To investigate this difference, we studied the influence of carboxybetaine and oligo(ethylene glycol) moieties on hydrophobic interactions using molecular simulations. We employed a model system composed of two non-polar plates and studied the potential of mean force of plate-plate association in carboxybetaine, (ethylene glycol)4, and (ethylene glycol)2 solutions using well-tempered metadynamics simulations. Water, trimethylamine N-oxide, and urea solutions were used as reference systems. We analyzed the variation of the potential of mean force in various solutions to study how carboxybetaine and oligo(ethylene glycol) moieties influence the hydrophobic interactions. To study the origin of their influence, we analyzed the normalized distributions of moieties and water molecules using molecular dynamics simulations. The simulation results showed that oligo(ethylene glycol) moieties repel water molecules away from the non-polar plates and weaken the hydrophobic interactions. Carboxybetaine moieties do not repel water molecules away from the plates and therefore do not influence the hydrophobic interactions.

  19. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Dinitrotoluene (2,4) 121142 7. Dioxane (1,4) 123911 8. Ethylene glycol dimethyl ether 110714 9. Ethylene glycol monobutyl ether acetate 112072 10. Ethylene glycol monomethyl ether acetate 110496 11. Isophorone 78591 12...

  20. Sorption interactions between ethylene glycol and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butyrskaya, E. V.; Belyakova, N. V.; Nechaeva, L. S.; Shaposhnik, V. A.; Selemenev, V. F.

    2017-03-01

    The adsorption of ethylene glycol by carbon nanoparticles is studied. Carbon nanoparticles with the highest affinity to ethylene glycol are identified, and an adsorption isotherm is constructed. Based on quantum chemical calculations of the energies of interaction between the sorbate and nanotubes with (4,4) and (6,6) chirality, a change in mechanism is revealed upon the monomolecular adsorption of ethylene glycol on carbon nanotubes, and the adsorption isotherm is thus interpreted.

  1. Multidimensional chromatographic techniques for hydrophilic copolymers II. Analysis of poly(ethylene glycol)-poly(vinyl acetate) graft copolymers.

    PubMed

    Knecht, Daniela; Rittig, Frank; Lange, Ronald F M; Pasch, Harald

    2006-10-13

    A large variety of hydrophilic copolymers is applied in different fields of chemical industry including bio, pharma and pharmaceutical applications. For example, poly(ethylene glycol)-poly(vinyl alcohol) graft copolymers that are used as tablet coatings are responsible for the controlled release of the active compounds. These copolymers are produced by grafting of vinyl acetate onto polyethylene glycol (PEG) and subsequent hydrolysis of the poly(ethylene glycol)-poly(vinyl acetate) graft copolymers. The poly(ethylene glycol)-poly(vinyl acetate) copolymers are distributed with regard to molar mass and chemical composition. In addition, they frequently contain the homopolymers polyethylene glycol and polyvinyl acetate. The comprehensive analysis of such complex systems requires hyphenated analytical techniques, including two-dimensional liquid chromatography and combined LC and nuclear magnetic resonance spectroscopy. The development and application of these techniques are discussed in the present paper.

  2. Molecular Hydrogen Formation from Proximal Glycol Pairs on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Long; Li, Zhenjun; Smith, R. Scott

    2014-04-16

    Understanding hydrogen formation on TiO2 surfaces is of great importance as it could provide fundamental insight into water splitting for hydrogen production using solar energy. In this work, hydrogen formation from glycols having different numbers of methyl end-groups have been studied using temperature pro-grammed desorption on reduced, hydroxylated, and oxidized TiO2(110) surfaces. The results from OD-labeled glycols demon-strate that gas-phase molecular hydrogen originates exclusively from glycol hydroxyl groups. The yield is controlled by a combi-nation of glycol coverage, steric hindrance, TiO2(110) order and the amount of subsurface charge. Combined, these results show that proximal pairs of hydroxyl aligned glycol moleculesmore » and subsurface charge are required to maximize the yield of this redox reaction. These findings highlight the importance of geometric and electronic effects in hydrogen formation from adsorbates on TiO2(110).« less

  3. Molecular mechanism of gelation with ethylene glycol added to a solution of polyacrylonitrile in dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Machalaba, N. N.; Zharov, V. B.; Kulik, V. B.; Savitskii, A. V.

    2011-06-01

    The mechanism of solidifying a solution of polyacrylonitrile (PAN) in dimethylsulfoxide (DMSO) into which ethylene glycol is added is studied by the method of Raman spectroscopy. In the absence of ethylene glycol, DMSO molecules produce dipole-dipole bonds to PAN molecules. Upon adding ethylene glycol, DMSO molecules form hydrogen bonds with it and a line at 1000 cm-1 appears in the Raman spectrum, which is assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. After DMSO is removed, ethylene glycol molecules produce hydrogen bonds with two neighboring PAN molecules, giving rise to a band at 2264 cm-1, which is assigned to the valence vibrations of C≡N bonds involved in these hydrogen bonds. A high-viscosity gel consisting of PAN molecules arises in which these molecules are bonded to each other through ethylene glycol molecules.

  4. Glycols modulate terminator stem stability and ligand-dependency of a glycine riboswitch.

    PubMed

    Hamachi, Kokoro; Hayashi, Hikari; Shimamura, Miyuki; Yamaji, Yuiha; Kaneko, Ai; Fujisawa, Aruma; Umehara, Takuya; Tamura, Koji

    2013-08-01

    The Bacillus subtilis glycine riboswitch comprises tandem glycine-binding aptamers and a putative terminator stem followed by the gcvT operon. Gene expression is regulated via the sensing of glycine. However, we found that the riboswitch behaves in a "glycine-independent" manner in the presence of polyethylene glycol (PEG) and ethylene glycol. The effect is related to the formation of a terminator stem within the expression platform under such conditions. The results revealed that increasing PEG stabilized the structure of the terminator stem. By contrast, the addition of ethylene glycol destabilized the terminator stem. PEG and ethylene glycol have opposite effects on transcription as well as on stable terminator stem formation. The glycine-independency of the riboswitch and the effects of such glycols might shed light on the evolution of riboswitches. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Methods of producing compounds from plant material

    DOEpatents

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  6. Methods of producing compounds from plant materials

    DOEpatents

    Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  7. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporatormore » serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.« less

  8. Protective Effect of Propolis in Proteinuria, Crystaluria, Nephrotoxicity and Hepatotoxicity Induced by Ethylene Glycol Ingestion.

    PubMed

    El Menyiy, Nawal; Al Waili, Noori; Bakour, Meryem; Al-Waili, Hamza; Lyoussi, Badiaa

    2016-10-01

    Propolis is a natural honeybee product with wide biological activities and potential therapeutic properties. The aim of the study is to evaluate the protective effect of propolis extract on nephrotoxicity and hepatotoxicity induced by ethylene glycol in rats. Five groups of rats were used. Group 1 received drinking water, group 2 received 0.75% ethylene-glycol in drinking water, group 3 received 0.75% ethylene-glycol in drinking water along with cystone 500 mg/kg/body weight (bw) daily, group 4 received 0.75% ethylene-glycol in drinking water along with propolis extract at a dose of 100 mg/kg/bw daily, and group 5 received 0.75% ethylene-glycol in drinking water along with propolis extract at a dose of 250 mg/kg/bw daily. The treatment continued for a total of 30 d. Urinalyses for pH, crystals, protein, creatinine, uric acid and electrolytes, and renal and liver function tests were performed. Ethylene-glycol increased urinary pH, urinary volume, and urinary calcium, phosphorus, uric acid and protein excretion. It decreased creatinine clearance and magnesium and caused crystaluria. Treatment with propolis extract or cystone normalized the level of magnesium, creatinine, sodium, potassium and chloride. Propolis is more potent than cystone. Propolis extract alleviates urinary protein excretion and ameliorates the deterioration of liver and kidney function caused by ethylene glycol. Propolis extract has a potential protective effect against ethylene glycol induced hepatotoxicity and nephrotoxicity and has a potential to treat and prevent urinary calculus, crystaluria and proteinuria. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  9. 40 CFR 721.10661 - Methylenebis[isocyanatobenzene], polymer with alkanedoic acid, alkylene glycols, alkoxylated...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...], polymer with alkanedoic acid, alkylene glycols, alkoxylated alkanepolyol and substituted trialkoxysilane... Specific Chemical Substances § 721.10661 Methylenebis[isocyanatobenzene], polymer with alkanedoic acid... as methylenebis[isocyanatobenzene], polymer with alkanedoic acid, alkylene glycols, alkoxylated...

  10. Rate of Glycolate Formation During Photosynthesis at High pH 1

    PubMed Central

    Orth, Gertrude M.; Tolbert, N. E.; Jimenez, Eduardo

    1966-01-01

    The products of C14O2 fixation by Chlamydomonas and Chlorella were studied under conditions most favorable for glycolate synthesis. The highest percentage of the C14 was incorporated into glycolate in the pH range of 8 to 9. After 1 to 2 minutes as much as 40% of the C14 was found in glycolate products and only a trace of C14 was present as phosphoglycerate. Below pH 8 the rate of photosynthesis was much faster, but only a small percent of the C14 was incorporated into glycolate in 1 or 2 minutes, while a high percent of the C14 accumulated in phosphoglycerate. C14 labeling of glycolate even at pH 8 or above did not occur at times shorter than 10 seconds. During the first seconds of photosynthesis, nearly all of the C14 was found in phosphoglycerate and sugar phosphates. Thus glycolate appears to be formed after the phosphate esters of the photosynthetic carbon cycle. Washing Chlamydomonas with water 2 or 3 times resulted in the loss of most of their free phosphate. When a small aliquot of NaHC14O3 was added to washed algae in the absence of this buffering capacity, the pH of the algal medium became 8 or above and much of the fixed C14 accumulated in glycolate. PMID:16656223

  11. Concentration of Nicotine and Glycols in 27 Electronic Cigarette Formulations

    PubMed Central

    Peace, Michelle R.; Baird, Tyson R.; Smith, Nathaniel; Wolf, Carl E.; Poklis, Justin L.; Poklis, Alphonse

    2016-01-01

    Personal battery-powered vaporizers or electronic cigarettes were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. Electronic cigarettes and their e-cigarette liquid formulations are virtually unregulated. These formulations are typically composed of propylene glycol and/or glycerin, flavoring components and an active drug, such as nicotine. Twenty-seven e-cigarette liquid formulations that contain nicotine between 6 and 22 mg/L were acquired within the USA and analyzed by various methods to determine their contents. They were screened by Direct Analysis in Real Time™ Mass Spectrometry (DART-MS). Nicotine was confirmed and quantitated by high-performance liquid chromatography–tandem mass spectrometry, and the glycol composition was confirmed and quantitated by gas chromatography–mass spectrometry. The DART-MS screening method was able to consistently identify the exact mass peaks resulting from the protonated molecular ion of nicotine, glycol and a number of flavor additives within 5 mmu. Nicotine concentrations were determined to range from 45 to 131% of the stated label concentration, with 18 of the 27 have >10% variance. Glycol composition was generally accurate to the product description, with only one exception where the propylene glycol to glycerin percentage ratio was stated as 50:50 and the determined concentration of propylene glycol to glycerin was 81:19 (% v/v). No unlabeled glycols were detected in these formulations. PMID:27165804

  12. Bile Acid Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana[OPEN

    PubMed Central

    Badger, Murray

    2017-01-01

    Photorespiration is an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the Rubisco oxygenation reaction. The photorespiratory pathway is highly compartmentalized, involving the chloroplast, peroxisome, cytosol, and mitochondria. Though the soluble enzymes involved in photorespiration are well characterized, very few membrane transporters involved in photorespiration have been identified to date. In this work, Arabidopsis thaliana plants containing a T-DNA disruption of the bile acid sodium symporter BASS6 show decreased photosynthesis and slower growth under ambient, but not elevated CO2. Exogenous expression of BASS6 complemented this photorespiration mutant phenotype. In addition, metabolite analysis and genetic complementation of glycolate transport in yeast showed that BASS6 was capable of glycolate transport. This is consistent with its involvement in the photorespiratory export of glycolate from Arabidopsis chloroplasts. An Arabidopsis double knockout line of both BASS6 and the glycolate/glycerate transporter PLGG1 (bass6, plgg1) showed an additive growth defect, an increase in glycolate accumulation, and reductions in photosynthetic rates compared with either single mutant. Our data indicate that BASS6 and PLGG1 partner in glycolate export from the chloroplast, whereas PLGG1 alone accounts for the import of glycerate. BASS6 and PLGG1 therefore balance the export of two glycolate molecules with the import of one glycerate molecule during photorespiration. PMID:28351992

  13. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  14. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  15. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  16. 40 CFR Table 9 to Subpart Ggg of... - Default Biorates for Soluble HAP

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....178 Dinitrotoluene(2,4) 0.784 Dioxane(1,4) 0.393 Ethylene glycol dimethyl ether 0.364 Ethylene glycol monobutyl ether acetate 0.496 Ethylene glycol monomethyl ether acetate 0.159 Isophorone 0.598 Methanol a...

  17. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA formation.

  18. Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.

    PubMed

    Carnegie, D; Ramsay, J A

    2009-07-01

    Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l(-1) (120 g l(-1)) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO(2) produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l(-1) day(-1) in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need for "pump and treat" or an aerobic treatment would be eliminated, hence reducing the cost of treatment.

  19. Fast determination of ethylene glycol, 1,2-propylene glycol and glycolic acid in blood serum and urine for emergency and clinical toxicology by GC-FID.

    PubMed

    Hložek, Tomáš; Bursová, Miroslava; Čabalaa, Radomír

    2014-12-01

    A simple, cost effective, and fast gas chromatography method with flame ionization detection (GC-FID) for simultaneous measurement of ethylene glycol, 1,2-propylene glycol and glycolic acid was developed and validated for clinical toxicology purposes. This new method employs a relatively less used class of derivatization agents - alkyl chloroformates, allowing the efficient and rapid derivatization of carboxylic acids within seconds while glycols are simultaneously derivatized by phenylboronic acid. The entire sample preparation procedure is completed within 10 min. To avoid possible interference from naturally occurring endogenous acids and quantitation errors 3-(4-chlorophenyl) propionic acid was chosen as an internal standard. The significant parameters of the derivatization have been found using chemometric procedures and these parameters were optimized using the face-centered central composite design. The calibration dependence of the method was proved to be quadratic in the range of 50-5000 mg mL(-1), with adequate accuracy (92.4-108.7%) and precision (9.4%). The method was successfully applied to quantify the selected compounds in serum of patients from emergency units. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Production of thymine glycols in DNA by radiation and chemical carcinogens as detected by a monoclonal antibody.

    PubMed Central

    Leadon, S. A.

    1987-01-01

    In order to understand the role in carcinogenesis of damage indirectly induced by chemical carcinogens, it is important to identify the primary DNA lesions. We have measured the formation and repair of one type of DNA modification, 5,6-dihydroxydihydrothymine (thymine glycol), following exposure of cultured human cells to the carcinogens N-hydroxy-2-naphthylamine or benzo(a)pyrene. The efficiency of production of thymine glycols in DNA by these carcinogens was compared to that by ionizing radiation and ultraviolet light. Thymine glycols were detected using a monoclonal antibody against this product in a sensitive immunoassay. We found that thymine glycols were produced in DNA in a dose dependent manner after exposure to the carcinogens and that their production was reduced if either catalase or superoxide dismutase or both were present at the time of treatment. The efficiency of thymine glycol production following exposure to the chemical carcinogens was greater than that following equi-toxic doses of radiation. Thymine glycols were efficiently removed from the DNA of human cells following treatment with either the chemical carcinogens, ionizing radiation or ultraviolet light. PMID:3477281

  1. Fermentation of glycolate by a pure culture of a strictly anaerobic gram-positive bacterium belonging to the family Lachnospiraceae.

    PubMed

    Janssen, Peter H; Hugenholtz, Philip

    2003-05-01

    The component bacteria of a three-membered mixed culture able to ferment glycolate to acetate, propionate and CO(2) were isolated in pure culture. All three strains were strict anaerobes that, on the basis of comparative 16S rRNA gene sequence analysis, belonged to the order Clostridiales in the phylum Firmicutes (low G+C gram-positive bacteria). Two of the strains were not involved in glycolate metabolism. The third, the glycolate-fermenting strain 19gly4 (DSM 11261), was related to members of the family Lachnospiraceae. The cells of strain 19gly4 were oval- to lemon-shaped, 0.85 microm long and 0.65 microm in diameter, occurring singly, in pairs, or in chains of up to 30 cells. Strain 19gly4 fermented glycolate or fumarate to acetate, succinate, and CO(2). Hydrogen was not formed, and strain 19gly4 was able to grow on glycolate in pure culture without any syntrophic hydrogen transfer and without the use of an external electron acceptor. There was no evidence for homoacetogenic metabolism. This bacterium therefore differs in metabolism from previously reported glycolate-utilising anaerobes.

  2. 21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.765 Succistearin (stearoyl propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen...

  3. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dehydration unit baseline operations (as defined in § 63.1271). Records of glycol dehydration unit baseline... the Administrator's satisfaction, the conditions for which glycol dehydration unit baseline operations... emission reduction of 95.0 percent for the glycol dehydration unit process vent. Only modifications in...

  4. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dehydration unit baseline operations (as defined in § 63.1271). Records of glycol dehydration unit baseline... the Administrator's satisfaction, the conditions for which glycol dehydration unit baseline operations... emission reduction of 95.0 percent for the glycol dehydration unit process vent. Only modifications in...

  5. 40 CFR Table 37 to Subpart G of... - Default Biorates for List 1 Compounds

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DIMethyl sulfate 0.178 Dinitrophenol 2,4 0.620 Dinitrotoluene(2,4) 0.784 Dioxane(1,4) 0.393 Ethylene glycol dimethyl ether 0.364 Ethylene glycol monomethyl ether acetate 0.159 Ethylene glycol monobutyl ether acetate...

  6. Improving gas dehydrator efficiency; Glycol losses from dehydrator solved by mist eliminator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, S.; Neal, R.; Patel, K.

    1989-07-01

    Triethylene glycol losses from a natural gas dehydrator unit were costing Winnie Pipeline Co. well over $100/day. Several possible causes had been investigated, and a second, smaller unit had been added because insufficient capacity was thought to cause glycol carryover from the contactor. Eventually, glycol losses were virtually eliminated by replacing the standard mist eliminator pad in the top of the contactor tower with a higher-efficiency type. Use of this type of pad is discussed in this paper.

  7. Studies of Plasticized-Polymer Electrolytes Containing Mixed Zn(II) and Li(I)

    DTIC Science & Technology

    1992-06-12

    iIIIII1iIIII!I 14. SUBJECT TERMS 15. tdUMnnrri . 9 poly(ethylene glycol) ( PEG ), poly(ethylene glycol dimethyl ether) (PEGDME), 16. PRICE CODE...glycol) ( PEG ) and poly(ethylene glycol dimethyl ether) (PEGDME). The addition of salts to either PEO or plasticized-PEO strongly influences the...were found to depend on salt concentration. Td varied from 385 to 3350 C as the zinc content was increased from 0 to 100%. Thus the overall thermal

  8. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    PubMed

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  9. Single dose intratympanic mesna application inhibits propylene glycol induced cholesteatoma formation.

    PubMed

    Ismi, O; Karabulut, Y Y; Bal, K K; Vayisoglu, Y; Unal, M

    2017-03-01

    Mesna (i.e. sodium 2-mercaptoethanesulfonate; C2H5NaO3S2) has been used in otological surgery such as cholesteatoma dissection and tympanic membrane lateralisation in atelectatic ears. However, this study aimed to investigate its effect on cholesteatoma formation. A total of 20 Wistar rats were divided into two groups of 10 animals. The right and left ears of control animals were treated with saline (saline control group; n = 10 ears) and propylene glycol plus saline (propylene glycol control group; n = 10 ears), respectively. In the mesna group, both ears were treated with propylene glycol plus mesna (n = 20 ears). On days 1, 8 and 15, the saline control group had intratympanic injections of 0.2 ml saline and the propylene glycol control and mesna groups had intratympanic injections of 0.2 ml 100 per cent propylene glycol. On day 22, the propylene glycol control group had a single intratympanic injection of 0.2 ml saline and the mesna group had a single intratympanic injection of 10 per cent mesna. Animals were killed 12 weeks after the last injection and the temporal bones were sent for histopathological evaluation. The cholesteatoma formation rate was 88 per cent in the propylene glycol control group, but was significantly lower in the mesna group (p = 0.01). There were no significant differences in granulation tissue formation (p = 0.498), cyst formation in the bulla (p = 0.381), fibrosis (p = 0.072) and epithelial hyperplasia (p = 0.081) among experimental groups. Intratympanic propylene glycol administration is an effective method of promoting experimental cholesteatoma formation. Administration of a single dose of intratympanic mesna inhibited cholesteatoma formation in an animal model.

  10. Exposure of German residents to ethylene and propylene glycol ethers in general and after cleaning scenarios.

    PubMed

    Fromme, H; Nitschke, L; Boehmer, S; Kiranoglu, M; Göen, T

    2013-03-01

    Glycol ethers are a class of semi-volatile substances used as solvents in a variety of consumer products like cleaning agents, paints, cosmetics as well as chemical intermediates. We determined 11 metabolites of ethylene and propylene glycol ethers in 44 urine samples of German residents (background level study) and in urine samples of individuals after exposure to glycol ethers during cleaning activities (exposure study). In the study on the background exposure, methoxyacetic acid and phenoxyacetic acid (PhAA) could be detected in each urine sample with median (95th percentile) values of 0.11 mgL(-1) (0.30 mgL(-1)) and 0.80 mgL(-1) (23.6 mgL(-1)), respectively. The other metabolites were found in a limited number of samples or in none. In the exposure study, 5-8 rooms were cleaned with a cleaner containing ethylene glycol monobutyl ether (EGBE), propylene glycol monobutyl ether (PGBE), or ethylene glycol monopropyl ether (EGPE). During cleaning the mean levels in the indoor air were 7.5 mgm(-3) (EGBE), 3.0 mgm(-3) (PGBE), and 3.3 mgm(-3) (EGPE), respectively. The related metabolite levels analysed in the urine of the residents of the rooms at the day of cleaning were 2.4 mgL(-1) for butoxyacetic acid, 0.06 mgL(-1) for 2-butoxypropionic acid, and 2.3 mgL(-1) for n-propoxyacetic acid. Overall, our study indicates that the exposure of the population to glycol ethers is generally low, with the exception of PhAA. Moreover, the results of the cleaning scenarios demonstrate that the use of indoor cleaning agents containing glycol ethers can lead to a detectable internal exposure of residents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Studies on the reaction mechanism of lactate oxidase. Formation of two covalent flavin-substrate adducts on reaction with glycollate.

    PubMed

    Massey, V; Ghisla, S; Kieschke, K

    1980-04-10

    L-Lactate oxidase from Mycobacterium smegmatis catalyzes the oxidative decarboxylation of glycollate, with formate, CO2, and H2O as the major products. In addition, some "uncoupling" of the normal reaction occurs, with glyoxylate and H2O adition, some "uncoupling" of the normal reaction occurs, with glyoxylate and H2O2 as products. Glyoxylate is also a substrate (presumably as its hydrate); in this case, the reaction products are oxalate and H2O2. Evidence is presented that the enzyme recognizes glycollate as a prochiral substrate, differentiating between the Re- and Si-faces of the alpha carbon atom. Two highly fluorescent species are formed concomitantly from the reaction with glycollate; they are proposed to be covalent alpha-glycollyl adducts to the reduced flavin position N(5). One of these adducts is labile and in rapid equilibrium with oxidized enzyme and glycollate, and with the complex of reduced enzyme and glyoxylate; this adduct is a catalytically competent intermediate. The other adduct is comparatively stable (t 1/2 for decay = 20 min at 25 degrees C) and does not react with O2. It is formed at a rate approximately 1% that of the catalytic adduct, but because of its lack of reaction with O2 and its stability, it gradually accumulates during catalytic turnover, resulting in catalytically incompetent enzyme. An isotope effect of approximately 4 is found in the reduction of oxidized enzyme flavin and in the formation of the labile fluorescent adduct, when alpha-2H2-glycollate or (R)-glycollate-2-d is used, but not with the (S)-glycollate-2-d enantiomer. It is concluded that the catalytic adduct is formed by hydrogen abstraction from the Re-face of glycollate.

  12. Stability Conditions and Mechanism of Cream Soaps: Effect of Polyols.

    PubMed

    Sagitani, Hiromichi; Komoriya, Masumi

    2015-01-01

    Fatty acids, fatty acid potassium soaps, polyols and water are essential ingredients for producing stable cream soaps. The solution behavior of the above four components system has been studied to elucidate the effect of four sorts of polyols (glycerol, 1,3-butylene glycol, polyethylene glycol 400 and dipropylene glycol) on the stability of cream soaps. It has been revealed that the lamellar liquid crystalline one-phase converted to a two-phase of a lamellar phase and an isotropic aqueous solution by the addition of a few percent of 1,3-butylene glycol, polyethylene glycol 400 and dipropylene glycol, whereas the lamellar one-phase was remained by about 50 wt% of glycerol in the aqueous solution. The X-ray data at room temperature showed that the existence of 1:1 acid soap (1:1 mole ratio of potassium soap/fatty acid) crystals in the 1,3-butylene glycol, polyethylene glycol 400 and dipropylene glycol systems, whereas that the coexistence of 1:1 acid soap crystal and a lamellar gel phase (swelled lamellar gel structure) in the glycerol system. The phase transition peaks from coagel to gel (Tgel) and from gel to liquid state (Tc) were appeared in the above four polyol systems by DSC measurements. It was confirmed from the combined data of SAXS and DSC that the existence of anhydrous 1:1 acid soap gels (or with small amount of bound water) in the all polyol systems, whereas the coexistence of the anhydrate gel and the swelled gel with a lot of intermediate water in the only glycerol system. This swelled gel structure would be contributed to stabilize the dispersed anhydrate acid soap crystals in cream soaps.

  13. A study of ethylene glycol exposure and kidney function of aircraft de-icing workers.

    PubMed

    Gérin, M; Patrice, S; Bégin, D; Goldberg, M S; Vyskocil, A; Adib, G; Drolet, D; Viau, C

    1997-01-01

    Ethylene glycol levels were measured in 154 breathing zone air samples and in 117 urine samples of 33 aviation workers exposed to de-icing fluid (basket operators, de-icing truck drivers, leads and coordinators) studied during 42 worker-days over a winter period of 2 months at a Montreal airport. Ethylene glycol as vapour did not exceed 22 mg/m3 (mean duration of samples 50 min). Mist was quantified at higher levels in 3 samples concerning 1 coordinator and 2 basket operators (76-190 mg/m3, 45-118 min). In 16 cases workers' post-shift or next-morning urine contained quantities of ethylene glycol exceeding 5 mmol/mol creatinine (up to 129 mmol/mol creatinine), with most of these instances occurring in basket operators and coordinators, some of whom did not wear paper masks and/or were accidentally sprayed with de-icing fluid. Diethylene glycol was also found in a few air and urinary samples at levels around one tenth those of ethylene glycol. Urinary concentrations of albumin, beta-N-acetyl-glucosaminidase, beta-2-microglobulin and retinol-binding protein were measured and compared over various periods, according to subgroups based on exposure level and according to the frequency of extreme values. These analyses did not demonstrate acute or chronic kidney damage that could be attributed to working in the presence of ethylene glycol. In conclusion, this study does not suggest important health effects of exposure to de-icing fluid in this group of workers. Potential for overexposure exists, however, in certain work situations, and recommendations on preventive measures are given. In addition, these results suggest that other routes of absorption than inhalation, such as the percutaneous route, may be important and that urinary ethylene glycol may be a useful indicator of exposure to ethylene glycol.

  14. Measurement of diffusion coefficient of propylene glycol in skin tissue

    NASA Astrophysics Data System (ADS)

    Genin, Vadim D.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.

    2015-03-01

    Optical clearing of the rat skin under the action of propylene glycol was studied ex vivo. It was found that collimated transmittance of skin samples increased, whereas weight and thickness of the samples decreased during propylene glycol penetration in skin tissue. A mechanism of the optical clearing under the action of propylene glycol is discussed. Diffusion coefficient of propylene glycol in skin tissue ex vivo has been estimated as (1.35±0.95)×10-7 cm2/s with the taking into account of kinetics of both weight and thickness of skin samples. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.

  15. 40 CFR 721.10546 - Pentenylated polyethylene glycol sulfate salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfate salt (generic). 721.10546 Section 721.10546 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10546 Pentenylated polyethylene glycol sulfate salt... identified generically as pentenylated polyethylene glycol sulfate salt (PMN P-04-340) is subject to...

  16. 40 CFR 721.10546 - Pentenylated polyethylene glycol sulfate salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfate salt (generic). 721.10546 Section 721.10546 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10546 Pentenylated polyethylene glycol sulfate salt... identified generically as pentenylated polyethylene glycol sulfate salt (PMN P-04-340) is subject to...

  17. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for sources except small glycol dehydration units. Owners and operators of small glycol dehydration units shall comply with the control requirements in paragraph (f) of this section. (1) The control... or operator shall determine glycol dehydration unit baseline operations (as defined in § 63.1271...

  18. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for sources except small glycol dehydration units. Owners and operators of small glycol dehydration units shall comply with the control requirements in paragraph (f) of this section. (1) The control... or operator shall determine glycol dehydration unit baseline operations (as defined in § 63.1271...

  19. Analysis of the Properties of the Esters of Neopentyl Glycol,

    DTIC Science & Technology

    The esters of neopentyl glycol and monocarboxylic acids of normal and isomeric structure were synthesized. The esters are characterized by higher...indices of viscosity and solidification temperatures than the esters of the acids of isomeric structure. The esters of neopentyl glycol and industrial

  20. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  1. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  2. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  3. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  4. 40 CFR Table 36 to Subpart G of... - Compound Lists Used for Compliance Demonstrations for Enhanced Biological Treatment Processes...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Ethylene Glycol MonobutylEther Acetate Chloroprene. Ethylene Glycol MonomethylEther Acetate Cumene (isopropylbenzene). Ethylene Glycol Dimethyl Ether Dibromoethane 1,2. Hexachlorobenzene Dichlorobenzene 1,4.... Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...

  5. A cost effective method of meeting emission requirements from a 50 MMscfd glycol dehydrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, L.E.

    1998-12-31

    The removal of volatile organic compounds (VOC) and benzene, toluene, ethylbenzene, xylene (BTEX) from glycol dehydration systems does not require costly equipment or elaborate controls. This paper will describe the design and installation of a 10 equivalent try glycol dehydration unit for field gas dehydration. The absorber design minimizes the absorption of VOC and BTEX by requiring 1.0 to 1.5 gallons of glycol per pound of water removed. Glycol unit VOC emissions are effectively controlled without installing vent gas condensers which require disposal of the waste condensate. The emission control system on this unit is simple to operate, meets emissionmore » standards and the dehydrator design achieves pipeline sales gas specifications at a reasonable cost. The system reduces the VOC and BTEX by adding a stripper on the glycol going to the reboiler. A 50 MMscfd dehydrator was installed in December 1995 and the results of an emission test done in April 1997 are presented in this paper.« less

  6. Hemodiafiltration efficacy in treatment of methanol and ethylene glycol poisoning in a 2-year-old girl.

    PubMed

    Szmigielska, Agnieszka; Szymanik-Grzelak, Hanna; Kuźma-Mroczkowska, Elżbieta; Roszkowska-Blaim, Maria

    2015-01-01

    Every year about 2.4 million people in USA are exposed to toxic substances. Many of them are children below 6 years of age. Majority of poisonings in children are incidental and related to household products including for example drugs, cleaning products or antifreeze products. Antifreeze solutions contain ethylene glycol and methanol. Treatment of these toxic substances involves ethanol administration, fomepizole, hemodialysis and correction of metabolic acidosis. The aim of the study was to check the efficacy of continuous venovenous hemodiagiltration in intoxication with ethylene glycol and methanol. One year and 7 months old girl after intoxication with ethylene glycol and methanol was treated with continuous venovenous hemodiafiltration instead of hemodialysis because of technical problems (circulatory instability). Intravenous ethanol infusion with hemodialtration resulted in rapid elimination of methanol from the body and significantly reduced blood ethylene glycol level. Continuous venovenous hemodiafiltration can be helpful in treatment of ethylene glycol and methanol intoxication.

  7. Phenolic Polymer Solvation in Water and Ethylene Glycol, II: Ab Initio Computations.

    PubMed

    Bauschlicher, Charles W; Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Lawson, John W

    2017-04-06

    Ab initio techniques are used to study the interaction of ethylene glycol and water with a phenolic polymer. The water bonds more strongly with the phenolic OH than with the ring. The phenolic OH groups can form hydrogen bonds between themselves. For more than one water molecule, there is a competition between water-water and water-phenolic interactions. Ethylene glycol shows the same effects as those of water, but the potential energy surface is further complicated by CH 2 -phenolic interactions, different conformers of ethylene glycol, and two OH groups on each molecule. Thus, the ethylene glycol-phenolic potential is more complicated than the water-phenolic potential. The results of the ab initio calculations are compared to those obtained using a force field. These calibration studies show that the water system is easier to describe than the ethylene glycol system. The calibration studies confirm the reliability of force fields used in our companion molecular dynamics study of a phenolic polymer in water and ethylene solutions.

  8. Concentration of Nicotine and Glycols in 27 Electronic Cigarette Formulations.

    PubMed

    Peace, Michelle R; Baird, Tyson R; Smith, Nathaniel; Wolf, Carl E; Poklis, Justin L; Poklis, Alphonse

    2016-07-01

    Personal battery-powered vaporizers or electronic cigarettes were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. Electronic cigarettes and their e-cigarette liquid formulations are virtually unregulated. These formulations are typically composed of propylene glycol and/or glycerin, flavoring components and an active drug, such as nicotine. Twenty-seven e-cigarette liquid formulations that contain nicotine between 6 and 22 mg/L were acquired within the USA and analyzed by various methods to determine their contents. They were screened by Direct Analysis in Real Time™ Mass Spectrometry (DART-MS). Nicotine was confirmed and quantitated by high-performance liquid chromatography-tandem mass spectrometry, and the glycol composition was confirmed and quantitated by gas chromatography-mass spectrometry. The DART-MS screening method was able to consistently identify the exact mass peaks resulting from the protonated molecular ion of nicotine, glycol and a number of flavor additives within 5 mmu. Nicotine concentrations were determined to range from 45 to 131% of the stated label concentration, with 18 of the 27 have >10% variance. Glycol composition was generally accurate to the product description, with only one exception where the propylene glycol to glycerin percentage ratio was stated as 50:50 and the determined concentration of propylene glycol to glycerin was 81:19 (% v/v). No unlabeled glycols were detected in these formulations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  10. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  11. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  12. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  13. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  14. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  15. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  16. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  17. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  18. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  19. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10) Records... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  20. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) of this section, the owner or operator of an affected source (i.e., glycol dehydration unit) located... subpart as follows: (1) The control requirements for glycol dehydration unit process vents specified in... maintained as required in § 63.1284(d). (1) The actual annual average flow of gas to the glycol dehydration...

  1. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  2. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  3. 40 CFR 63.774 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., subpart V; or 40 CFR part 63, subpart H. (10) Records of glycol dehydration unit baseline operations... or operator of a glycol dehydration unit that meets the exemption criteria in § 63.764(e)(1)(i) or...) of this section, as appropriate, for that glycol dehydration unit. (i) The actual annual average...

  4. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  5. 40 CFR 63.774 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., subpart V; or 40 CFR part 63, subpart H. (10) Records of glycol dehydration unit baseline operations... or operator of a glycol dehydration unit that meets the exemption criteria in § 63.764(e)(1)(i) or...) of this section, as appropriate, for that glycol dehydration unit. (i) The actual annual average...

  6. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  7. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10) Records... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  8. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  9. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) of this section, the owner or operator of an affected source (i.e., glycol dehydration unit) located... subpart as follows: (1) The control requirements for glycol dehydration unit process vents specified in... maintained as required in § 63.1284(d). (1) The actual annual average flow of gas to the glycol dehydration...

  10. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  11. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of this section, the owner or operator of an affected source (i.e., glycol dehydration unit) located... subpart as follows: (1) The control requirements for glycol dehydration unit process vents specified in... maintained as required in § 63.1284(d). (1) The actual annual average flow of gas to the glycol dehydration...

  12. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  13. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  14. 40 CFR 721.10472 - 1,3-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1,3-Benzenedimethanamine, polymers...-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products. (a) Chemical substance and..., polymers with epichlorohydrin-polyethylene glycol reaction products (PMN P-03-645; CAS No. 652968-34-8) is...

  15. 40 CFR 721.10472 - 1,3-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1,3-Benzenedimethanamine, polymers...-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products. (a) Chemical substance and..., polymers with epichlorohydrin-polyethylene glycol reaction products (PMN P-03-645; CAS No. 652968-34-8) is...

  16. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (generic). 721.10189...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (PMN P-05-186, Chemical...

  17. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (generic). 721.10189...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (PMN P-05-186, Chemical...

  18. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (generic). 721.10189...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (PMN P-05-186, Chemical...

  19. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DDD, shall maintain an ethylene glycol concentration in the process contact cooling tower at or below... to the process contact cooling tower. (1) To determine the ethylene glycol concentration, owners or... procedures specified in 40 CFR 60.564(j)(1)(i). An average ethylene glycol concentration by weight shall be...

  20. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    EPA Science Inventory

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  1. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  2. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  3. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  4. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  5. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  6. FTIR studies on the effect of concentration of polyethylene glycol on polimerization of Shellac

    NASA Astrophysics Data System (ADS)

    Khairuddin; Pramono, E.; Utomo, S. B.; Wulandari, V.; Zahrotul W, A.; Clegg, F.

    2016-11-01

    In the present paper, it was reported the FTIR studies on the efect of polyethylene glycol on polimerization of shellac. The shellac was shellac waxfree, and the solvent was ethanol 96%. The shellac films were were prepared by solvent- evaporation method. The concentrations of polyethylene glycol having molecular weight of 400 were 10, 30, 60, and 90 w/w %. Three peak intensity bands of C= O stretching of ester at 1709 cm-1, O-H stretching of hydroxyl group at 3400 cm-1, and C-H stretching vibration at 2942 cm-1 were observed and related to polimerization of shellac. It was found that polymerization of shellac was slowed down by polyethyelene glycol, and the degree of polymerization of shellac decreased with increasing the concentration of polyethyelene glycol.

  7. Formation mechanism of glycolaldehyde and ethylene glycol in astrophysical ices from HCO• and •CH2OH recombination: an experimental study

    NASA Astrophysics Data System (ADS)

    Butscher, T.; Duvernay, F.; Theule, P.; Danger, G.; Carissan, Y.; Hagebaum-Reignier, D.; Chiavassa, T.

    2015-10-01

    Among all existing complex organic molecules, glycolaldehyde HOCH2CHO and ethylene glycol HOCH2CH2OH are two of the largest detected molecules in the interstellar medium. We investigate both experimentally and theoretically the low-temperature reaction pathways leading to glycolaldehyde and ethylene glycol in interstellar grains. Using infrared spectroscopy, mass spectroscopy and quantum calculations, we investigate formation pathways of glycolaldehyde and ethylene glycol based on HCO• and •CH2OH radical-radical recombinations. We also show that •CH2OH is the main intermediate radical species in the H2CO to CH3OH hydrogenation processes. We then discuss astrophysical implications of the chemical pathway we propose on the observed gas-phase ethylene glycol and glycolaldehyde.

  8. Ethylene Glycol-Induced Alteration of Conidial Germination in Neurospora crassa

    PubMed Central

    Bates, W. K.; Wilson, J. F.

    1974-01-01

    In nutrient medium containing 3.22 M ethylene glycol or glycerol, conidia of Neurospora crassa grow as single cells, without forming the germ tubes characteristic of normal morphological germination. Ethylene glycol is more effective than glycerol in producing this response. After growth in ethylene glycol medium for a suitable time, the cells are easily disrupted by an abrupt decrease in osmotic pressure. Osmotic disruption yields intact nuclei and mitochondria, although mitochondrial fractions obtained in this way show significantly reduced concentrations of cytochromes c + c1, as compared to those observed for comparable fractions obtained from vegetative hyphae. Cell cultures gradually adapted to lower concentrations of the glycol show a much higher degree of synchrony in the formation of germ tubes than do untreated conidia. Images PMID:4359649

  9. Role of Glycols and Tweens in the Production of Ergot Alkaloids by Claviceps paspali

    PubMed Central

    Mizrahi, A.; Miller, G.

    1969-01-01

    Several glycols and Tweens markedly stimulated the production of ergot alkaloids in submerged cultures of Claviceps paspali. The role of these compounds was investigated in shake flasks and bench-scale fermentors. 2,3-Butanediol was not utilized by the fungus, and 1,2-propanediol-1-14C was not incorporated into the alkaloids. Glycols and Tweens lowered the surface tension of the basal medium and promoted the utilization of metabolites. In the presence of glycols and Tweens, an increased uptake of labeled sorbitol and succinic acid took place, whereas the specific radioactivity of the alkaloids was not affected. These results indicated that glycols and Tweens are not involved directly in the biosynthetic process; they apparently acted as surface-active agents, facilitating transport of metabolites into the cells. PMID:5776521

  10. The beneficial effect of cynodon dactylon fractions on ethylene glycol-induced kidney calculi in rats.

    PubMed

    Khajavi Rad, Abolfazl; Hadjzadeh, Mousa-Al-Reza; Rajaei, Ziba; Mohammadian, Nema; Valiollahi, Saleh; Sonei, Mehdi

    2011-01-01

    To assess the beneficial effect of different fractions of Cynodon dactylon (C. dactylon) on ethylene glycol-induced kidney calculi in rats. Male Wistar rats were randomly divided into control, ethylene glycol, curative, and preventive groups. The control group received tap drinking water for 35 days. Ethylene glycol, curative, and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation. Preventive and curative subjects also received different fractions of C. dactylon extract in drinking water at 12.8 mg/kg, since day 0 and day 14, respectively. After 35 days, the kidneys were removed and examined for histopathological findings and counting the CaOx deposits in 50 microscopic fields. In curative protocol, treatment of rats with C. dactylon N-butanol fraction and N-butanol phase remnant significantly reduced the number of the kidney CaOx deposits compared to ethylene glycol group. In preventive protocol, treatment of rats with C. dactylon ethyl acetate fraction significantly decreased the number of CaOx deposits compared to ethylene glycol group. Fractions of C. dactylon showed a beneficial effect on preventing and eliminating CaOx deposition in the rat kidney. These results provide a scientific rational for preventive and treatment roles of C. dactylon in human kidney stone disease.

  11. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility.

    PubMed

    Xiang, Yiming; Li, Jun; Liu, Xiangmei; Cui, Zhenduo; Yang, Xianjin; Yeung, K W K; Pan, Haobo; Wu, Shuilin

    2017-10-01

    Poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating were successfully prepared on the surface of Ti metallic implants using a hydrothermal method and subsequent spin-coating of mixtures of poly(lactic-co-glycolic acid) and silver nanoparticles. The poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating exhibited excellent antibacterial efficacy of over 96% against both Staphylococcus aureus and Escherichia coli when the initial content of Ag nanoparticles was over 3wt%. In addition, the release of both silver and zinc could last for over a hundred days due to the enwrapping of poly(lactic-co-glycolic acid). Proliferation of mouse calvarial cells exhibited minimal cytotoxicity on the poly(lactic-co-glycolic acid)/Ag/ZnO coating with an initial content of Ag nanoparticles of 1wt% and 3wt%, while it inhibited cell proliferation once this value was increased to 6wt%. The results revealed that this poly(lactic-co-glycolic acid)/Ag/ZnO composite could provide a long-lasting antibacterial approach and good cytocompatibility, thus exhibiting considerable potential for biomedical application in orthopedic and dental implants with excellent self-antibacterial activity and good biocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of stimulation and hyperpolarization on non-electrolyte and sodium permeability in perfused axons of squid.

    PubMed

    Hidalgo, C; Latorre, R

    1970-11-01

    1. The permeability for micro-injected [(3)H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed.2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above.3. Experiments were done with the combined voltage clamp-perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant.4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled.

  13. Effect of stimulation and hyperpolarization on non-electrolyte and sodium permeability in perfused axons of squid

    PubMed Central

    Hidalgo, Cecilia; Latorre, Ramón

    1970-01-01

    1. The permeability for micro-injected [3H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed. 2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above. 3. Experiments were done with the combined voltage clamp—perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant. 4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled. PMID:5500991

  14. The effect of Centella asiatica, vitamins, glycolic acid and their mixtures preparations in stimulating collagen and fibronectin synthesis in cultured human skin fibroblast.

    PubMed

    Hashim, Puziah

    2014-03-01

    Centella asiatica (Linn.) Urban is well known in promoting wound healing and provides significant benefits in skin care and therapeutic products formulation. Glycolic acid and vitamins also play a role in the enhancement of collagen and fibronectin synthesis. Here, we evaluate the specific effect of Centella asiatica (CA), vitamins, glycolic acid and their mixture preparations to stimulate collagen and fibronectin synthesis in cultured human fibroblast cells. The fibroblast cells are incubated with CA, glycolic acid, vitamins and their mixture preparations for 48 h. The cell lysates were analyzed for protein content and collagen synthesis by direct binding enzyme immunoassay. The fibronectin of the cultured supernatant was measured by sandwich enzyme immunoassay. The results showed that CA, glycolic acid, vitamins A, E and C significantly stimulate collagen and fibronectin synthesis in the fibroblast. Addition of glycolic acid and vitamins to CA further increased the levels of collagen and fibronectin synthesis to 8.55 and 23.75 μg/100 μg, respectively. CA, glycolic acid, vitamins A, E, and C, and their mixtures demonstrated stimulatory effect on both extra-cellular matrix synthesis of collagen and fibronectin in in vitro studies on human foreskin fibroblasts, which is beneficial to skin care and therapeutic products formulation.

  15. Corrosion impact of reductant on DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels, components and piping were not impacted with the presence of glycolic acid or the impact is not expected to affect the service life. However, the presence of the glycolate anion was found to affect corrosion susceptibility of some materials of construction in the DWPF and downstream facilities, especially at elevated temperatures. The following table summarizes the results of the electrochemical and hot wall testing and indicates expected performance in service with the glycolate anion present.« less

  16. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants.

    PubMed

    Banno, Taisuke; Miura, Shingo; Kuroha, Rie; Toyota, Taro

    2013-06-25

    Micrometer-sized self-propelled oil droplets in nonequilibrium systems have attracted much attention, since they form stable emulsions composed of oil, water, and surfactant which represent a primitive type of inanimate chemical machinery. In this work, we examined means of controlling the movement of oil droplets by studying the dynamics of n-heptyloxybenzaldehyde droplets in phosphate buffers containing alkanediyl-α,ω-bis(N-dodecyl-N,N-dimethylammonium bromide) (nG12) with either tetramethylene (4G12), octaethylene (8G12), or dodecamethylene (12G12) chains in the linker moiety. Significant differences in droplet dynamics were observed to be induced by changes in the linker structure of these gemini cationic surfactants. In a phosphate buffer containing 30 mM 4G12, self-propelled motion of droplets concurrent with the formation of molecular aggregates on their surfaces was observed, whereas the fusion of oil droplets was evident in both 8G12 and 12G12 solutions. We also determined that the surface activities and the extent of molecular self-assembly of the surfactants in phosphate buffer were strongly influenced by the alkyl chain length in the linker moiety. We therefore conclude that the surface activities of the gemini cationic surfactant have important effects on the oil-water interfacial tension of oil droplets and the formation of molecular aggregates and that both of these factors induce the unique movement of the droplets.

  17. Isopycnic Phases and Structures in H2O/CO2/Ethoxylated Alcohol Surfactant Mixtures

    NASA Technical Reports Server (NTRS)

    Paulaitis, Michael E.; Zielinski, Richard G.; Kaler, Eric W.

    1996-01-01

    Ternary mixtures of H2O and CO2 with ethoxylated alcohol (C(i)E(j)) surfactants can form three coexisting liquid phases at conditions where two of the phases have the same density (isopycnic phases). Isopycnic phase behavior has been observed for mixtures containing the surfactants C8E5, C10E6, and C12E6, but not for those mixtures containing either C4E1 or CgE3. Pressure-temperature (PT) projections for this isopycnic three-phase equilibrium were determined for H2O/CO2/C8E5 and H2O/CO2/C10E6 mixtures at temperatures from approximately 25 to 33 C and pressures between 90 and 350 bar. As a preliminary to measuring the microstructure in isopycnic three component mixtures, phase behavior and small angle neutron scattering (SANS) experiments were performed on mixtures of D2O/CO2/ n-hexaethyleneglycol monododecyl ether (C12E6) as a function of temperature (25-31 C), pressure (63.1-90.7 bar), and CO2 composition (0-3.9 wt%). Parameters extracted from model fits of the SANS spectra indicate that, while micellar structure remains essentially unchanged, critical concentration fluctuations increase as the phase boundary and plait point are approached.

  18. Shear-induced morphology transition and microphase separation in a lamellar phase doped with clay particles.

    PubMed

    Nettesheim, Florian; Grillo, Isabelle; Lindner, Peter; Richtering, Walter

    2004-05-11

    We report on the influence of shear on a nonionic lamellar phase of tetraethyleneglycol monododecyl ether (C12E4) in D2O containing clay particles (Laponite RD). The system was studied by means of small-angle light scattering (SALS) and small-angle neutron scattering (SANS) under shear. The SANS experiments were conducted using a H2O/D2O mixture of the respective scattering length density to selectively match the clay scattering. The rheological properties show the familiar shear thickening regime associated with the formation of multilamellar vesicles (MLVs) and a shear thinning regime at higher stresses. The variation of viscosity is less pronounced as commonly observed. In the shear thinning regime, depolarized SALS reveals an unexpectedly strong variation of the MLV size. SANS experiments using the samples with lamellar contrast reveal a change in interlamellar spacing of up to 30% at stresses that lead to MLV formation. This change is much more pronounced than the change observed, when shear suppresses thermal bilayer undulations. Microphase separation occurs, and as a consequence, the lamellar spacing decreases drastically. The coincidence of the change in lamellar spacing and the onset of MLV formation is a strong indication for a morphology-driven microphase separation.

  19. Characterization of aircraft deicer and anti-icer components and toxicity in airport snowbanks and snowmelt runoff.

    PubMed

    Corsi, Steven R; Geis, Steven W; Loyo-Rosales, Jorge E; Rice, Clifford P; Sheesley, Rebecca I; Failey, Greg G; Cancilla, Devon A

    2006-05-15

    Snowbank samples were collected from snowbanks within a medium-sized airport for four years to characterize aircraft deicer and anti-icer (ADAF) components and toxicity. Concentrations of ADAF components varied with median glycol concentrations from individual sampling periods ranging from 65 to 5940 mg/L. Glycol content in snowbanks ranged from 0.17 to 11.4% of that applied to aircraft. Glycol, a freezing point depressant, was selectively removed during melt periods before snow and ice resulting in lower glycol concentrations after melt periods. Concentrations of ADAF components in airport runoff were similar during periods of snowmelt as compared to active ADAF application periods; however, due to the long duration of snowmelt events, greater masses of glycol were transported during snowmelt events. Alkylphenol ethoxylates (APEO), selected APEO degradation products, and 4- and 5-methyl-1H-benzotriazole were detected in snowbank samples and airport snowmelt. Concentrations of APEO parent products were greater in snowbank samples than in runoff samples. Relative abundance of APEO degradation products increased in the downstream direction from the snowbank to the outfalls and the receiving stream with respect to APEO parent compounds and glycol. Toxicity in Microtox assays remained in snowbanks after most glycol had been removed during melt periods. Increased toxicity in airport snowbanks as compared to other urban snowbanks was not explained by additional combustion or fuel contribution in airport snow. Organic markers suggest ADAF additives as a possible explanation for this increased toxicity. Results indicate that glycol cannot be used as a surrogate for fate and transport of other ADAF components.

  20. The influence of water mixtures on the dermal absorption of glycol ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-15

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a correspondingmore » increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.« less

  1. Assessment and management of aquatic impacts from airport de-icing activities -- The Canadian perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, R.A.; Andersen, D.; Simpson, A.

    1995-12-31

    Historically, aircraft deicing fluids have simply drained from aircraft and runway surfaces into airport drainage systems and invariably end up in surrounding receiving aquatic systems. This led to recent concerns over environmental impacts from glycol-based fluids typically used for deicing aircraft. Glycols from de-icing fluids have been detected at high levels at Canadian airports. Concern not only stems from the high volumes being used at relatively few point sources, but also to the higher toxicity of the formulated de-icing fluids, compared to pure glycols. As a result, significant environmental management efforts have been made at Canadian airports over the lastmore » 4 years, including extensive stormwater monitoring, glycol mitigation and pollution prevention plans. Site-specific mitigation plans have been implemented at 15 major Canadian airports which typically include glycol containment, collection and removal. While a reasonable dataset is available on the toxicity of pure glycols, much less information is available on the toxicity of formulated deicers. Furthermore, there have been very few field assessments of the aquatic impacts of de-icing. To date, management regimes developed to address the problem in Canada have focused almost exclusively on glycols and voluntary compliance to discharge limits and receiving water quality guidelines. This approach has resulted in reductions in the quantities of glycols which are released from Canadian airports into the surrounding environment. Currently, government and industry are refining this management system with an examination of new approaches and options such as more holistic airport wastewater quality assessments and toxicity-based guidelines.« less

  2. Developmental toxicity and structure/activity correlates of glycols and glycol ethers.

    PubMed Central

    Johnson, E M; Gabel, B E; Larson, J

    1984-01-01

    In recent years, the National Toxicology Program (NTP) has selected numerous glycol ethers for testing in routine laboratory mammals to ascertain the magnitude of their ability to injure the conceptus. From the lists available of ongoing and projected NTP test chemicals, a series of glycol ethers was selected for examination in vitro in the hydra assay. Also tested were additional chemicals of similar molecular configuration and/or composition. This short-term screening test placed the 14 glycols and glycol ethers tested into a rank order sequence according to their degree of hazard potential to developmental biology, i.e., their ability to interfere with the developmental events characteristic of all ontogenic systems. They were ranked according to the difference between the lowest dose or concentration overtly toxic to adults (A) and the lowest concentration interfering with development (D) of the artificial embryo of reaggregated adult hydra cells and the A/D ratio. Published data from mammalian studies were available for a few of the test chemicals, and in each instance the hydra assay was in direct agreement with the outcomes reported of the more elaborate and standard animal tests. Ethylene glycol and ethylene glycol monomethyl ether were shown by both standard evaluations in mammals, and by the hydra assay, to disrupt embryos only at or very near to their respective adult toxic doses, whereas the mono-ethyl ether perturbed development at approximately one-fifth of the lowest dose overtly toxic to adults.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. A FIGURE 1. B FIGURE 1. C PMID:6499797

  3. Glycol ethers and semen quality: a cross‐sectional study among male workers in the Paris Municipality

    PubMed Central

    Multigner, L; Brik, E Ben; Arnaud, I; Haguenoer, J M; Jouannet, P; Auger, J; Eustache, F

    2007-01-01

    Objectives Apparent increases in human male reproductive disorders, including low sperm production, may have occurred because of increased chemical exposure. Various glycol ether‐based solvents have pronounced adverse effects on sperm production and male fertility in laboratory animals. The authors investigated the effects of past and current exposure to glycol ether‐containing products on semen quality and reproductive hormones among men employed by the Paris Municipality. Methods Between 2000 and 2001 the authors recruited 109 men who gave semen, blood and urine samples and underwent an andrological examination. Information on lifestyle, occupation, exposure and medical history was obtained by interview. According to their job and chemical products used during the period 1990–2000, men were classified as either occupationally exposed or non‐exposed. Current exposure levels to glycol ethers at the time of the study were evaluated by biological monitoring of six urinary metabolites. Results Previous exposure to glycol ethers was associated with an increased risk for sperm concentration, for rapid progressive motility and for morphologically normal sperm below the World Health Organization semen reference values. No effect of previous glycol ether exposure on hormones levels was observed. By contrast, current glycol ether exposure levels were low and not correlated with either seminal quality or hormone levels. Conclusions This study suggests that most glycol ethers currently used do not impact on human semen characteristics. Those that were more prevalent from the 1960s until recently may have long lasting negative effects on human semen quality. PMID:17332140

  4. Characterization of aircraft deicer and anti-icer components and toxicity in airport snowbanks and snowmelt runoff

    USGS Publications Warehouse

    Corsi, S.R.; Geis, S.W.; Loyo-Rosales, J. E.; Rice, C.P.; Sheesley, R.J.; Failey, G.G.; Cancilla, Devon A.

    2006-01-01

    Snowbank samples were collected from snowbanks within a medium-sized airport for four years to characterize aircraft deicer and anti-icer (ADAF) components and toxicity. Concentrations of ADAF components varied with median glycol concentrations from individual sampling periods ranging from 65 to 5940 mg/L. Glycol content in snowbanks ranged from 0.17 to 11.4% of that applied to aircraft. Glycol, a freezing point depressant, was selectively removed during melt periods before snow and ice resulting in lower glycol concentrations after melt periods. Concentrations of ADAF components in airport runoff were similar during periods of snowmelt as compared to active ADAF application periods; however, due to the long duration of snowmelt events, greater masses of glycol were transported during snowmelt events. Alkylphenol ethoxylates (APEO), selected APEO degradation products, and 4- and 5-methyl-1H-benzotriazole were detected in snowbank samples and airport snowmelt. Concentrations of APEO parent products were greater in snowbank samples than in runoff samples. Relative abundance of APEO degradation products increased in the downstream direction from the snowbank to the outfalls and the receiving stream with respect to APEO parent compounds and glycol. Toxicity in Microtox assays remained in snowbanks after most glycol had been removed during melt periods. Increased toxicity in airport snowbanks as compared to other urban snowbanks was not explained by additional combustion or fuel contribution in airport snow. Organic markers suggest ADAF additives as a possible explanation for this increased toxicity. Results indicate that glycol cannot be used as a surrogate for fate and transport of other ADAF components. ?? 2006 American Chemical Society.

  5. The aqueous photolysis of ethylene glycol adsorbed on geothite

    USGS Publications Warehouse

    Cunningham, Kirkwood M.; Goldberg, Marvin C.; Weiner, E.R.

    1985-01-01

    Suspensions of goethite (α-FeOOH) were photolyzed in aerated ethylene glycol-water solutions at pH 6.5, with ultraviolet light in the wavelength range300–400 nm. Under these conditions, formaldehyde and glycolaldehyde were detected as photoproducts. Quantum yields of formaldehyde production ranged from 1.9 7times; 10-5 to 2.9 × 10-4 over the ethylene glycol concentration range of 0.002-2.0 mol/ℓ, and gave evidence that the reaction occurred at the goethite surface. Quantum yields of glycolaldehyde were 20% less than those of formaldehyde, and displayed a concentration-dependent relationship with ethylene glycol similar to that of formaldehyde. Immediately after photolysis, Fe2+ was measured to be 4.6 × 10-7 mol/ℓ in an aerated suspension containing 1.3 mol/ℓ ethylene glycol, and 8.5 × 10-6 mol/ℓ in the corresponding deoxygenated suspension. Glycolaldehyde was not generated in the deoxygenated suspensions. These results are consistent with a mechanism involving the transfer of an electron from an adsorbed ethylene glycol molecule to an excited state of Fe3+ (Iron[III]) in the goethite lattice, to produce Fe2+ and an organic cation. In a series of reactions involving O2, FeOOH, and Fe2+, the organic cation decomposes to form formaldehyde and the intermediate radicals “OH and” CH2OH. OH reacts further with ethylene glycol in the presence of O2to yield glycolaldehyde. Aqueous photolysis of ethylene glycol sorbed onto goethite is typical of reactions that can occur in the aquatic environment.

  6. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... demonstrations. (a) Determination of glycol dehydration unit flowrate or benzene emissions. The procedures of this paragraph shall be used by an owner or operator to determine glycol dehydration unit natural gas....1274(d). (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be...

  7. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrations. (a) Determination of glycol dehydration unit flowrate or benzene emissions. The procedures of this paragraph shall be used by an owner or operator to determine glycol dehydration unit natural gas....1274(d). (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be...

  8. 21 CFR 172.712 - 1,3-Butylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.712 1,3-Butylene glycol. The food additive 1,3-butylene glycol (CAS Reg. No. 107-88-0) may be safely... condensation of acetaldehyde followed by catalytic hydrogenation. (b) The food additive shall conform to the...

  9. Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Newell, J. D.; Crawford, C. L.

    An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

  10. 40 CFR 721.10185 - 1,2-Propanediol, 3-(diethylamino)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced Me esters of reduced polymd. oxidized...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...

  11. 40 CFR 721.10185 - 1,2-Propanediol, 3-(diethylamino)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced Me esters of reduced polymd. oxidized...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...

  12. 40 CFR 721.10185 - 1,2-Propanediol, 3-(diethylamino)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced Me esters of reduced polymd. oxidized...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...

  13. 40 CFR 721.10185 - 1,2-Propanediol, 3-(diethylamino)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced Me esters of reduced polymd. oxidized...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...

  14. 40 CFR Table 2 to Subpart F of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (N,N-) 121697 Diethyl sulfate 64675 Dimethylbenzidine (3,3″-) 119937 Dimethylformamide (N,N-) 68122... Hexachlorobenzene 118741 Hexachlorobutadiene 87683 Hexachloroethane 67721 Hexane 110543 Hydroquinone 123319... ethylene glycol, diethylene glycol, and triethylene glycol R-(OCH2 CH2n-OR where: n=1, 2, or 3; R=alkyl or...

  15. 40 CFR Table 2 to Subpart F of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (N,N-) 121697 Diethyl sulfate 64675 Dimethylbenzidine (3,3′-) 119937 Dimethylformamide (N,N-) 68122... Hexachlorobenzene 118741 Hexachlorobutadiene 87683 Hexachloroethane 67721 Hexane 110543 Hydroquinone 123319... ethylene glycol, diethylene glycol, and triethylene glycol R-(OCH2 CH2n-OR where: n=1, 2, or 3; R=alkyl or...

  16. An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether (An Interim Position Paper)

    EPA Science Inventory

    To determine the merit of a petition to remove ethylene glycol ether (EGBE) from the Agency's Hazardous Air Pollutant (HAP) list, EPA has developed an interim final position paper, called An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether, tha...

  17. A Fast, Accurate and Sensitive GC-FID Method for the Analyses of Glycols in Water and Urine

    NASA Technical Reports Server (NTRS)

    Kuo, C. Mike; Alverson, James T.; Gazda, Daniel B.

    2017-01-01

    Glycols, specifically ethylene glycol and 1,2-propanediol, are some of the major organic compounds found in the humidity condensate samples collected on the International Space Station. The current analytical method for glycols is a GC/MS method with direct sample injection. This method is simple and fast, but it is not very sensitive. Reporting limits for ethylene glycol and 1,2-propanediol are only 1 ppm. A much more sensitive GC/FID method was developed, in which glycols were derivatized with benzoyl chloride for 10 minutes before being extracted with hexane. Using 1,3-propanediol as an internal standard, the detection limits for the GC/FID method was determined to be 50 ppb and the analysis only takes 7 minutes. Data from the GC/MS and the new GC/FID methods shows excellent agreement with each other. Factors affecting the sensitivity, including sample volume, NaOH concentration and volume, volume of benzoyl chloride, reaction time and temperature, were investigated. Interferences during derivatization and possible method to reduce interferences were also investigated.

  18. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.

  19. Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube

    NASA Technical Reports Server (NTRS)

    Bernardo, Everett; Eian, Carroll S

    1945-01-01

    As part of an investigation of the cooling characteristics of liquid-cooled engines, tests were conducted with an electrically heated single-tube heat exchanger to determine the heat-transfer characteristics of an-e-2 ethylene glycol and other ethylene glycol-water mixtures. Similar tests were conducted with water and commercial butanol (n-butyl alcohol) for check purposes. The results of tests conducted at an approximately constant liquid-flow rate of 0.67 pound per second (Reynolds number, 14,500 to 112,500) indicate that at an average liquid temperature 200 degrees f, the heat-transfer coefficients obtained using water, nominal (by volume) 30 percent-70 percent and 70 percent-30 percent glycol-water mixtures are approximately 3.8, 2.8, and 1.4 times higher, respectively, than the heat-transfer coefficients obtained using an-e-2 ethylene glycol.

  20. Synthesis of Cu{sub 2}ZnSnS{sub 4} nanoparticles and controlling the morphology with polyethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Kusum; Department of Electronic Science, University of Delhi South Campus, Delhi 110021; Kim, Hee-Joon

    Highlights: • Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique. • First report on the effect of using polyethylene glycol as a structure directing agent on Cu{sub 2}ZnSnS{sub 4} nanoparticles. • The morphology of Cu{sub 2}ZnSnS{sub 4} nanoparticles changes into nanoflakes and nanorods structures with polyethylene glycol concentration. • Polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle film exhibits optical bandgap of 1.5 eV which is suitable for the application in solar cells. - Abstract: Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique using metal thiourea precursor at 250 °C. The structural and morphological properties of asmore » grown nanoparticles have been characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The influence of different concentration of polyethylene glycol as structure directing agent on the morphologies of Cu{sub 2}ZnSnS{sub 4} nanoparticles are investigated on thin films deposited by spin coating technique. The mean crystallite size of the Cu{sub 2}ZnSnS{sub 4} nanoparticles was found to improve with polyethylene glycol concentration. Scanning electron microscopy images of Cu{sub 2}ZnSnS{sub 4} revealed aggregated spherical shaped nanoparticles whereas the polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle films show nanoflakes and nanorods structures with increasing concentration of polyethylene glycol. Transmission electron microscopy analysis has also been performed to determine the size and structure of nanorods. UV–vis absorption spectroscopy shows the broad band absorption with optical bandgap of 1.50 eV for polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} films.« less

  1. Fast responses from slowly relaxing'' liquids: A comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.J.; Castner, E.W. Jr.

    1993-11-15

    We have measured the ultrafast solvent relaxation of liquid ethylene glycol, triacetin, and water by means of femtosecond polarization spectroscopy, using optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy. In the viscous liquids triacetin and ethylene glycol, femtosecond relaxation processes were resolved. Not surprisingly, the femtosecond nonlinear optical response of ethylene glycol is quite similar to that of water. Using the theory of Maroncelli, Kumar, and Papazyan, we transform the pure-nuclear solvent response into a dipolar-solvation correlation function for comparison with ultrafast electron-transfer reaction rates.

  2. Fast responses from ``slowly relaxing'' liquids: A comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water

    NASA Astrophysics Data System (ADS)

    Chang, Yong Joon; Castner, Edward W., Jr.

    1993-11-01

    We have measured the ultrafast solvent relaxation of liquid ethylene glycol, triacetin, and water by means of femtosecond polarization spectroscopy, using optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy. In the viscous liquids triacetin and ethylene glycol, femtosecond relaxation processes were resolved. Not surprisingly, the femtosecond nonlinear optical response of ethylene glycol is quite similar to that of water. Using the theory of Maroncelli, Kumar, and Papazyan, we transform the pure-nuclear solvent response into a dipolar-solvation correlation function for comparison with ultrafast electron-transfer reaction rates.

  3. A novel derivatization-free method of formaldehyde and propylene glycol determination in hydrogels by liquid chromatography with refractometric detection.

    PubMed

    Isakau, Henadz; Robert, Marielle; Shingel, Kirill I

    2009-04-05

    The paper describes the development and validation of a new derivatization-free liquid chromatography method for simultaneous determination of propylene glycol and formaldehyde in the formulations containing formaldehyde-releasing preservative. Highly swollen hydrogel made of poly(ethylene glycol)-protein conjugates was taken as a model formulation for integration of the propylene glycol and the diazolydinyl urea as formaldehyde releaser. The method is shown to be simple and selective and, more importantly, allows determining an existing level of formaldehyde at the moment of analysis instead of all available formaldehyde that might be released during chemical derivatization. After liquid extraction the propylene glycol (PG) and formaldehyde (FA) amounts are determined chromatographically on a Shodex SH 1011 ligand-exchange column using 0.01 M sulfuric acid mobile phase, a flow rate of 1.0 ml/min and RI detection. The assay is validated showing good linearity, precision, and accuracy. The limits of detection of formaldehyde and propylene glycol in the analyzed solutions were estimated to be 25 ng and 87 ng, respectively. This analytical assay is considered useful for product stability studies and in developing new formaldehyde releaser-containing formulations where the concentration of formaldehyde is a presumable subject of labeling requirements. This method can also provide a rapid and convenient alternative to gas chromatography method of propylene glycol quantification.

  4. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl...

  5. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl...

  6. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... are not applicable to polyethylene glycols used in food-packaging adhesives complying with § 175.105... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 178.3750 Section 178.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  7. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... are not applicable to polyethylene glycols used in food-packaging adhesives complying with § 175.105... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 178.3750 Section 178.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  8. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... are not applicable to polyethylene glycols used in food-packaging adhesives complying with § 175.105... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 178.3750 Section 178.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  9. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... percent. (2) Hydroxyethyl cellulose, 0.2 to 2.5 percent. (3) Hypromellose, 0.2 to 2.5 percent. (4...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  10. 21 CFR 349.12 - Ophthalmic demulcents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... percent. (2) Hydroxyethyl cellulose, 0.2 to 2.5 percent. (3) Hypromellose, 0.2 to 2.5 percent. (4...) Polyethylene glycol 300, 0.2 to 1 percent. (3) Polyethylene glycol 400, 0.2 to 1 percent. (4) Polysorbate 80, 0.2 to 1 percent. (5) Propylene glycol, 0.2 to 1 percent. (e) Polyvinyl alcohol, 0.1 to 4 percent. (f...

  11. Potentiation of aquatic pollution by ethylene glycol with regard to the aquatic angiosperm, Lemna gibba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.A.; Barber, J.T.; Yatsu, L.Y.

    1995-12-31

    Ethylene glycol is usually thought of as a benign component of urban runoff. Thus, its EC50 value, with regard to the vegetative growth of axenically grown Lemna gibba, is relatively high, viz. 164 mM. Ethylene glycol is not metabolized by Lemna but growth is demonstrably stimulated at concentrations below 75 mM. In the presence of ethylene glycol, the fronds of duckweed are dark green, translucent and the growth medium contains gas bubbles of carbon dioxide which result from an enhanced uptake of sucrose from the growth medium and its subsequent respiration. The uptake is a non-specific effect since the uptakemore » of various other compounds, including water, is enhanced when duckweed is grown in the presence of ethylene glycol. The increased uptake of water, sucrose, inorganic ions and organic compounds results from an increased permeability due to the creation of intercellular holes in the aerenchymatous tissues of the ethylene glycol-treated plants. The mechanism by which ethylene glycol causes the holes is unknown but may involve a disruption in lipid metabolism since the hydrophobicity of the fronds is altered and their lipid composition is changed. The significance of this phenomenon is that toxicants, just like innocuous substances, are taken up in increased amounts by treated plants and as a result their toxicities are increased with regard to duckweed as evidenced by a decrease in their effective concentrations, often of more than 3-fold. These results suggest that although ethylene glycol itself may be benign, its presence in polluted waters containing other toxicants may potentiate the effects of those pollutants.« less

  12. E-cigarette liquids: Constancy of content across batches and accuracy of labeling.

    PubMed

    Etter, Jean-François; Bugey, Aurélie

    2017-10-01

    To assess whether bottles of refill liquids for e-cigarettes were filled true to label, whether their content was constant across two production batches, and whether they contained impurities. In 2013, we purchased on the Internet 18 models from 11 brands of e-liquids. We purchased a second sample of the same models 4months later. We analyzed their content in nicotine, anabasine, propylene glycol, glycerol, ethylene glycol and diethylene glycol, and tested their pH. The median difference between the nicotine value on the labels and the nicotine content in the bottles was 0.3mg/mL (range -5.4 to +3.5mg/mL, i.e. -8% to +30%). For 82% of the samples, the actual nicotine content was within 10% of the value on the labels. All models contained glycerol (median 407mg/mL), and all but three models contained propylene glycol (median 650mg/mL). For all samples, levels of anabasine, ethylene glycol and diethylene glycol were below our limits of detection. The pH of all the e-liquids was alkaline (median pH=9.1; range 8.1 to 9.9). The measured content of two batches of the same model varied by a median of 0% across batches for propylene glycol, 1% for glycerol, 0% for pH, and 0.5% for nicotine (range -15% to +21%; 5th and 95th percentiles: -15% and +10%). The nicotine content of these e-liquids matched the labels on the bottles, and was relatively constant across production batches. The content of propylene glycol and glycerol was also stable across batches, as was the pH. Copyright © 2017. Published by Elsevier Ltd.

  13. Recommendation of ruthenium source for sludge batch flowsheet studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodham, W.

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate,more » conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.« less

  14. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    PubMed

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to free curcumin and curcumin-loaded poly( ε -caprolactone) nanoparticles. Georg Thieme Verlag KG Stuttgart · New York.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riande, E.; Guzman, J.; Roman, J.S.

    The dipole moments of poly (thiodiethylene glycol terephthalate) chains were determined as a function of temperature by means of dielectric constant measurements in dioxane. The experimental results were found to be in fair agreement with theoretical results based on a rotational isomeric state model in which the required conformational energies were obtained from previous configurational analysis on poly(ethylene terephthalate), poly(diethylene glycol terephthalate) and poly(thiodiethylene glycol). Since poly(thiodiethylene glycol terephthalate) can be considered an alternating copolymer of ethylene terephthalate and thioethylene units, its configuration-dependent properties were compared with those of poly(ethylene terephthalate) and poly(ethylene sulfide). It was found the flexibility ofmore » the copolymer, as expressed by the partition function, intermediate to that of its parent homopolymers. The theoretical results also indicate that the dimensions of poly(thiodiethylene glycol) are similar to those of poly(ethylene terephthalate) while its dipole moment ratio resembles that of poly(ethylene sulfide).« less

  16. Rapid Diagnosis of Ethylene Glycol Poisoning by Urine Microscopy.

    PubMed

    Sheta, Hussam Mahmoud; Al-Najami, Issam; Christensen, Heidi Dahl; Madsen, Jonna Skov

    2018-06-14

    BACKGROUND Ethylene glycol poisoning remains an important presentation to Emergency Departments. Quick diagnosis and treatment are essential to prevent renal failure and life-threating complications. CASE REPORT In this case report, we present a patient who was admitted unconscious to the hospital. Ethylene glycol poisoning was immediately suspected, because the patient had previously been hospitalized with similar symptoms after intake of antifreeze coolant. A urine sample was sent for microscopy and showed multiple calcium oxalate monohydrate (COM) crystals, which supported the clinical suspicion of ethylene glycol poisoning. The patient was treated with continuous intravenous ethyl alcohol infusion and hemodialysis. Two days after admission, the patient was awake and in clinical recovery. CONCLUSIONS Demonstration of COM crystals using microscopy of a urine sample adds valuable information supporting the clinical suspicion of ethylene glycol poisoning, and may serve as an easy, quick, and cheap method that can be performed in any emergency setting.

  17. Equations for obtaining melting points for the ternary system ethylene glycol/sodium chloride/water and their application to cryopreservation.

    PubMed

    Woods, E J; Zieger, M A; Gao, D Y; Critser, J K

    1999-06-01

    The present study describes the H(2)O-NaCl-ethylene glycol ternary system by using a differential scanning calorimeter to measure melting points (T(m)) of four different ratios (R) of ethylene glycol to NaCl and then devising equations to fit the experimental measurements. Ultimately an equation is derived which characterizes the liquidus surface above the eutectic for any R value in the system. This study focuses on ethylene glycol in part because of recent evidence indicating it may be less toxic to pancreatic islets than Me(2)SO, which is currently used routinely for islet cryopreservation. The resulting physical data and previously determined information regarding the osmotic characteristics of canine pancreatic islets are combined in a mathematical model to describe the volumetric response to equilibrium-rate freezing in varying initial concentrations of ethylene glycol. Copyright 1999 Academic Press.

  18. Highly conductive solid polymer electrolyte membranes based on polyethylene glycol-bis-carbamate dimethacrylate networks

    NASA Astrophysics Data System (ADS)

    Fu, Guopeng; Dempsey, Janel; Izaki, Kosuke; Adachi, Kaoru; Tsukahara, Yasuhisa; Kyu, Thein

    2017-08-01

    In an effort to fabricate highly conductive, stable solid-state polymer electrolyte membranes (PEM), polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction between polyethylene glycol diamine and ethylene carbonate. Subsequently, dimethacrylate groups were chemically attached to both ends of PEGBC to afford polyethylene glycol-bis-carbamate dimethacrylate (PEGBCDMA) precursor having crosslinking capability. The melt-mixed ternary mixtures consisting of PEGBCDMA, succinonitrile plasticizer, and lithium trifluorosulphonyl imide salt were completely miscible in a wide compositional range. Upon photo-crosslinking, the neat PEGBCDMA network was completely amorphous exhibiting higher tensile strength, modulus, and extensibility relative to polyethylene glycol diacrylate (PEGDA) counterpart. Likewise, the succinonitrile-plasticized PEM network containing PEGBCDMA remained completely amorphous and transparent upon photo-crosslinking, showing superionic conductivity, improved thermal stability, and superior tensile properties with improved capacity retention during charge/discharge cycling as compared to the PEGDA-based PEM.

  19. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels.

    PubMed

    Tarasevich, B J; Gutowska, A; Li, X S; Jeong, B-M

    2009-04-01

    Graft copolymers consisting of a poly(D,L-lactic acid-co-glycolic acid) backbone grafted with polyethylene glycol side chains were synthesized and formed thermoreversible gels in aqueous solutions that exhibited solution behavior at low temperature and sol-to-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid, glycolic acid, and ethylene glycol were varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15 to 34 degrees C by increasing the concentration of polyethylene glycol in the graft copolymer. The gelation temperature also depended on the polymer molecular weight and concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery. Copyright 2008 Wiley Periodicals, Inc.

  20. Effects of polyalkylene glycols and fatty acid soaps on properties of synthetic lubricating-cooling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stulii, A.A.

    1983-01-01

    The lack of any effect of the polyalkylene glycols on the series of properties of the fatty acid soaps was confirmed by replacing the PEG-35 in the synthetic lubricating-cooling fluid (LCF) by a polyethylene glycol with a molecular weight of 400 or 6000, a propylene oxide oligomer with a molecular weight of 700, or a copolymer of ethylene and propylene oxides (Pluronic 44, Pluriol PE-6400, Hydropol 200). Attempts to select surfactants and optimal concentrations in synthetic LCFs based on polyalkylene glycols. Indicates that of the studied soaps, those of the most interest are the triethanolamine soaps of individual C/sub 6/-C/submore » 10/ fatty acids and commercial mixed C/sub 7/-C/sub 9/ synthetic fatty acids. Finds that the polyalkylene glycols and the indicated soaps supplement each other, imparting the required set of properties to the LCF.« less

  1. Detection of poly(ethylene glycol) residues from nonionic surfactants in surface water by1h and13c nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, P.A.; Noyes, T.I.

    1991-01-01

    ??? Poly(ethylene glycol) (PEG) residues were detected in organic solute isolates from surface water by 1H nuclear magnetic resonance spectrometry (NMR), 13C NMR spectrometry, and colorimetric assay. PEG residues were separated from natural organic solutes in Clear Creek, CO, by a combination of methylation and chromatographic procedures. The isolated PEG residues, characterized by NMR spectrometry, were found to consist of neutral and acidic residues that also contained poly(propylene glycol) moieties. The 1H NMR and the colorimetric assays for poly(ethylene glycol) residues were done on samples collected in the lower Mississippi River and tributaries between St. Louis, MO, and New Orleans, LA, in July-August and November-December 1987. Aqueous concentrations for poly(ethylene glycol) residues based on colorimetric assay ranged from undetectable to ???28 ??g/L. Concentrations based on 1H NMR spectrometry ranged from undetectable to 145 ??g/L.

  2. 21 CFR 589.1001 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 589.1001... or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat... on cat food causes the feed to be adulterated and in violation of the Federal Food, Drug, and...

  3. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Propylene glycol mono- and diesters of fats and... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely used in food, subject to the following prescribed conditions: (a) They are produced from edible fats...

  4. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Propylene glycol mono- and diesters of fats and... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely used in food, subject to the following prescribed conditions: (a) They are produced from edible fats...

  5. 21 CFR 589.1001 - Propylene glycol in or on cat food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Propylene glycol in or on cat food. 589.1001... or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat... on cat food causes the feed to be adulterated and in violation of the Federal Food, Drug, and...

  6. Sequential episodes of ethylene glycol poisoning in the same person.

    PubMed

    Sugunaraj, Jaya Prakash; Thakur, Lokendra Kumar; Jha, Kunal Kishor; Bucaloiu, Ion Dan

    2017-05-27

    Ethylene glycol is a common alcohol found in many household products such as household hard surface cleaner, paints, varnish, auto glass cleaner and antifreeze. While extremely toxic and often fatal on ingestion, few cases with early presentation by the patient have resulted in death; thus, rapid diagnosis is paramount to effectively treating ethylene glycol poisoning. In this study, we compare two sequential cases of ethylene glycol poisoning in a single individual, which resulted in strikingly different outcomes. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David

    Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less

  8. [Secondary hyperoxaluria and nephrocalcinosis due to ethylene glycol poisoning].

    PubMed

    Monet, C; Richard, E; Missonnier, S; Rebouissoux, L; Llanas, B; Harambat, J

    2013-08-01

    We report the case of a 3-year-old boy admitted to the pediatric emergency department for ethylene glycol poisoning. During hospitalization, he presented dysuria associated with crystalluria. Blood tests showed metabolic acidosis with an elevated anion gap. A renal ultrasound performed a few weeks later revealed bilateral medullary hyperechogenicity. Urine microscopic analysis showed the presence of weddellite crystals. Secondary nephrocalcinosis due to ethylene glycol intoxication was diagnosed. Hyperhydration and crystallization inhibition by magnesium citrate were initiated. Despite this treatment, persistent weddellite crystals and nephrocalcinosis were seen more than 2years after the intoxication. Ethylene glycol is metabolized in the liver by successive oxidations leading to its final metabolite, oxalic acid. Therefore, metabolic acidosis with an elevated anion gap is usually found following ethylene glycol intoxication. Calcium oxalate crystal deposition may occur in several organs, including the kidneys. The precipitation of calcium oxalate in renal tubules can lead to nephrocalcinosis and acute kidney injury. The long-term renal prognosis is related to chronic tubulointerstitial injury caused by nephrocalcinosis. Treatment of ethylene glycol intoxication is based on specific inhibitors of alcohol dehydrogenase and hemodialysis in the most severe forms, and should be started promptly. Copyright © 2013. Published by Elsevier SAS.

  9. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.

    PubMed

    Giovannitti, Alexander; Maria, Iuliana P; Hanifi, David; Donahue, Mary J; Bryant, Daniel; Barth, Katrina J; Makdah, Beatrice E; Savva, Achilleas; Moia, Davide; Zetek, Matyáš; Barnes, Piers R F; Reid, Obadiah G; Inal, Sahika; Rumbles, Garry; Malliaras, George G; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain

    2018-05-08

    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

  10. Oligoethylene Glycol-substituted Aza-BODIPY Dyes As Red Emitting ER-Probes

    PubMed Central

    Kamkaew, Anyanee; Thavornpradit, Sopida; Puangsamlee, Thamon; Xin, Dongyue; Wanichacheva, Nantanit; Burgess, Kevin

    2015-01-01

    This study features aza-BODIPY (BF2-chelated azadipyrromethene) dyes with two aromatic substituents linked by oligoethylene glycol fragments to increase hydrophilicity of aza-BODIPY for applications in intracellular imaging. To prepare these, two chalcones were attached α,ω onto oligoethylene glycol fragments, then reacted with nitromethane anion. Conjugate addition products from this reaction were then subjected to typical conditions for synthesis of aza-BODIPY dyes (NH4OAc, nBuOH, 120 °C); formation of boracycles in this reaction was concomitant with creation of macrocycles containing the oligoethylene glycol fragments. Similar dyes with acyclic oligoelythene glycol substituents in the same position were used to compare the efficiencies of the intra- and inter-molecular aza-BODIPY forming reactions, and the characteristics of the products. All the fluors with oligoethylene glycol fragments, ie cyclic or acyclic, localized in the endoplasmic reticulum of a fibroblast cell line (WEHI-13VAR), the human pancreatic cancer cell line (PANC-1, rough ER predominates) and human liver cancer cell line (HepG2, smooth ER prevalent). These fluors are potentially useful for near IR (λmax emis at 730 nm) ER staining probes. PMID:26138325

  11. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    DOE PAGES

    Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; ...

    2018-04-24

    Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less

  12. Effect of Hygrophila spinosa in ethylene glycol induced nephrolithiasis in rats.

    PubMed

    Ingale, Kundan G; Thakurdesai, Prasad A; Vyawahare, Neeraj S

    2012-01-01

    Hygrophila spinosa (Acanthaceae) is traditionally used to treat urinary calculi. The present study aimed to evaluate the antiurolithiatic activity of methanolic extract of Hygrophila spinosa (Acanthaceae) in ethylene glycol induced nephrolithiasic rats. Methanolic extract of Hygrophila spinosa (HSME) (250 and 500 mg/ kg body weight) was administered orally to male Wistar albino rats. Ethylene glycol (EG) was used to induce nephrolithiasis. The parameters studied included water intake, urinary volume, urinary pH, urinary and kidney oxalate and calcium, urinary magnesium and serum uric acid. Ethylene glycol feeding resulted in hyperoxaluria as well as increased renal excretion of calcium and serum uric acid along with decreased excretion of urinary magnesium. Treatment with HSME significantly reduced the elevated urinary oxalate, urinary calcium and serum uric acid with increase in reduced urinary magnesium. Ethylene glycol feeding also resulted in increased levels of calcium and oxalate in kidney which was decreased after the treatment with HSME. The increased deposition of stone forming constituents in the kidneys of ethylene glycol treated rats was significantly lowered by treatment with HSME. The results indicate that the aerial parts of Hygrophila spinosa are endowed with antiurolithiatic activity, thereby justifying its traditional claim.

  13. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  14. Efficacy of combination of glycolic acid peeling with topical regimen in treatment of melasma.

    PubMed

    Chaudhary, Savita; Dayal, Surabhi

    2013-10-01

    Various treatment modalities are available for management of melasma, ranging from topical and oral to chemical peeling, but none is promising alone. Very few studies are available regarding efficacy of combination of topical treatment with chemical peeling. Combination of chemical peeling and topical regimen can be a good treatment modality in the management of this recalcitrant disorder. To assess the efficacy of combination of topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling in the treatment of melasma in Indian patients. Forty Indian patients of moderate to severe epidermal variety melasma were divided into two groups of 20 each. One Group i.e. peel group received topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling and other group i.e. control group received topical regimen (2% hydroquinone, 1% hydrocortisone, 0.05% tretinoin). There was an overall decrease in MASI from baseline in 24 weeks of therapy in both the groups (P value < 0.05). The group receiving the glycolic acid peel with topical regimen showed early and greater improvement than the group which was receiving topical regimen only. This study concluded that combining topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling significantly enhances the therapeutic efficacy of glycolic acid peeling. The combination of glycolic acid peeling with the topical regimen is a highly effective, safe and promising therapeutic option in treatment of melasma.

  15. A toxicological review of the propylene glycols.

    PubMed

    Fowles, Jeff R; Banton, Marcy I; Pottenger, Lynn H

    2013-04-01

    The toxicological profiles of monopropylene glycol (MPG), dipropylene glycol (DPG), tripropylene glycol (TPG) and polypropylene glycols (PPG; including tetra-rich oligomers) are collectively reviewed, and assessed considering regulatory toxicology endpoints. The review confirms a rich data set for these compounds, covering all of the major toxicological endpoints of interest. The metabolism of these compounds share common pathways, and a consistent profile of toxicity is observed. The common metabolism provides scientific justification for adopting a read-across approach to describing expected hazard potential from data gaps that may exist for specific oligomers. None of the glycols reviewed presented evidence of carcinogenic, mutagenic or reproductive/developmental toxicity potential to humans. The pathologies reported in some animal studies either occurred at doses that exceeded experimental guidelines, or involved mechanisms that are likely irrelevant to human physiology and therefore are not pertinent to the exposures experienced by consumers or workers. At very high chronic doses, MPG causes a transient, slight decrease in hemoglobin in dogs and at somewhat lower doses causes Heinz bodies to form in cats in the absence of any clinical signs of anemia. Some evidence for rare, idiosyncratic skin reactions exists for MPG. However, the larger data set indicates that these compounds have low sensitization potential in animal studies, and therefore are unlikely to represent human allergens. The existing safety evaluations of the FDA, USEPA, NTP and ATSDR for these compounds are consistent and point to the conclusion that the propylene glycols present a very low risk to human health.

  16. Final report on the safety assessment of Triethylene Glycol and PEG-4.

    PubMed

    2006-01-01

    Triethylene Glycol and PEG-4 (polyethylene glycol) are polymers of ethylene oxide alcohol. Triethylene Glycol is a specific three-unit chain, whereas PEG-4 is a polymer with an average of four units, but may contain polymers ranging from two to eight ethylene oxide units. In the same manner, other PEG compounds, e.g., PEG-6, are mixtures and likely contain some Triethylene Glycol and PEG-4. Triethylene Glycol is a fragrance ingredient and viscosity decreasing agent in cosmetic formulations, with a maximum concentration of use of 0.08% in skin-cleansing products. Following oral doses, Triethylene Glycol and its metabolites are excreted primarily in urine, with small amounts released in feces and expired air. With oral LD50 values in rodents from 15 to 22 g/kg, this compound has little acute toxicity. Rats given short term oral doses of 3% in water showed no signs of toxicity, whereas all rats given 10% died by the 12th day of exposure. At levels up to 1 g/m3, rats exposed to aerosolized Triethylene Glycol for 6 h per day for 9 days showed no signs of toxicity. Rats fed a diet containing 4% Triethylene Glycol for 2 years showed no signs of toxicity. There were no treatment-related effects on rats exposed to supersaturated Triethylene Glycol vapor for 13 months nor in rats that consumed 0.533 cc Triethylene Glycol per day in drinking water for 13 months. Triethylene Glycol was not irritating to the skin of rabbits and produced only minimal injury to the eye. In reproductive and developmental toxicity studies in rats and mice, Triethylene Glycol did not produce biologically significant embryotoxicity or teratogenicity. However, some maternal toxicity was seen in dams given 10 ml/kg/day during gestation. Triethylene Glycol was not mutagenic or genotoxic in Ames-type assays, the Chinese hamster ovary mutation assay, and the sister chromatid exchange assays. PEG-4 is a humectant and solvent in cosmetic products, with a maximum concentration of use of 20% in the "other manicuring preparations" product category. This ingredient, with an oral LD50 in rats of 32.77 g/kg, has low acute toxicity. Rats given up to 50,000 ppm PEG-4 in drinking water for 5 days showed no permanent signs of toxicity. Rats given daily oral doses up to 2 g/kg/day of PEG-4 for 33 days showed no signs of toxicity. Undiluted PEG-4 produced only minimal injury to the rabbit eye. PEG-4 was not mutagenic in Ames-type assays, did not induce chromosome aberration in an in vivo bone marrow assay, and was negative for genotoxicity in a dominant lethal assay using rats. Other PEG compounds, which have previously been reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel, e.g., PEG-6, are mixtures that likely include Triethylene Glycol and PEG-4, so these data were also considered. PEG-6 and PEG-8 were not dermal irritants in several rabbit studies. PEG-2 Stearate had a potential for slight irritation in rabbits but was not a sensitizer in guinea pigs. PEG-2 Cocamine was a moderate irritant in rabbits, producing severe erythema. In one dermal study, PEG-2 Cocamine was determined to be corrosive to rabbit skin, causing eschar and necrosis. PEG-6 and PEG-8 caused little to no ocular irritation. PEG-8 was not mutagenic or genotoxic in a Chinese hamster ovary assay, a sister-chromatid exchange assay, and in an unscheduled DNA synthesis assay. In clinical studies on normal skin, PEG-6 and PEG-8 caused mild cases of immediate hypersensitivity; PEG-8 was not a sensitizer; PEG-2 Stearate was not an irritant, a sensitizer, or a photosensitizer; and PEG-6 Stearate was not an irritant or sensitizer. In damaged skin, cases of systemic toxicity and contact dermatitis in burn patients were attributed to a PEG-based topical ointment. The CIR Expert Panel acknowledged the lack of dermal sensitization data for Triethylene Glycol and dermal irritation and sensitization data for PEG-4. That PEG-6, PEG-8, and PEG-2 Stearate were not irritants or sensitizers suggested that Triethylene Glycol and PEG-4 also would not be irritants or sensitizers, and the absence of any reported reactions in the case literature and the professional experience of the Expert Panel further supported the absence of any significant sensitization potential. The need for additional data to demonstrate the safety of PEGs Cocamine was related to the Cocamine moiety and is not relevant here. The Panel reminded formulators of cosmetic products that, as with other PEG compounds, Triethylene Glycol and PEG-4 should not be used on damaged skin because of cases of systemic toxicity and contact dermatitis in burn patients have been attributed to a PEG-based topical ointment. Based on its consideration of the available information, the CIR Expert Panel concluded that Triethylene Glycol and PEG-4 are safe as cosmetic ingredients in the present practices and concentrations of use as described in this safety assessment.

  17. Use of Edible Laminate Layers in Intermediate Moisture Food Rations to Inhibit Moisture Migration

    DTIC Science & Technology

    2016-04-29

    methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on one side Watson, Inc. Dual-sided HPMC moisture...barrier film Hydroxypropyl methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on both sides...Moisture Barrier (BWMB) film #1 Pullulan*, beeswax, glycerin, propylene glycol, starch , polysorbate 80 Water soluble Watson, Inc. Pullulan BWMB film

  18. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed mono- and... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono...

  19. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, mixed mono- and... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono...

  20. Waterborne Polymeric Films.

    DTIC Science & Technology

    1981-02-01

    polymer of neopentyl glycol (NPC) and isophoronediisocyanate (IPDI) as an example: CH 3 0 CH3 0 CH- HO !Ch,,C h OCNH CH.NHCO, HCCH.OH CIF CH- Groun...copolymer of isophoronediisocyanate with neopentyl glycol and dimethylolpropionic acid. And the solibilitv parameter calculations must include this...copolymer of isophoronediiisocyanate with a diol mixture of 85 inol percent neopentyl glycol and 15 inol percent dimethyl- olpropionic acid. 0 0 0 it 0

  1. Cytochemical Localization of Glycolate Dehydrogenase in Mitochondria of Chlamydomonas1

    PubMed Central

    Beezley, Belinda B.; Gruber, Peter J.; Frederick, Sue Ellen

    1976-01-01

    Mildly disrupted cells of Chlamydomonas reinhardi Dangeard were incubated in a reaction medium containing glycolate, ferricyanide, and cupric ions, and then processed for electron microscopy. As a result of the cytochemical treatment, an electron opaque product was deposited specifically in the outer compartment of mitochondria; other cellular components, including microbodies, did not accumulate stain. Incubation with d-lactate yielded similar results, while treatment with l-lactate produced only a weak reaction. Oxamate, which inhibits glycolate dehydrogenase activity in cell-free extracts, also inhibited the cytochemical reaction. These findings demonstrate in situ that glycolate dehydrogenase is localized in mitochondria, and thus corroborate similar conclusions reached on the basis of enzymic studies of isolated algal organelles. Images PMID:16659670

  2. Molecular interactions and structures in ethylene glycol-ethanol and ethylene glycol-water solutions at 303 K on densities, viscosities, and refractive indices data

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Ghatbandhe, A. S.

    2014-01-01

    Molecular interactions and structural fittings in binary ethylene glycol + ethanol (EGE, x EG = 0.4111-0.0418) and ethylene glycol + water (EGW, x EG = 0.1771-0.0133) mixtures were studied through the measurement of densities (ρ), viscosities (η), and refractive indices ( n D ) at 303.15 K. Excess viscosities (η E ), molar volumes ( V m ), excess molar volumes ( V {/m E }), and molar retractions ( R M ) of the both binary systems were computed from measured properties. The measured and computed properties have been used to understand the molecular interactions in unlike solvents and structural fittings in these binary mixtures.

  3. Gas chromatographic determination of 1,4-dioxane at low parts-per-million levels in glycols.

    PubMed

    Pundlik, M D; Sitharaman, B; Kaur, I

    2001-02-01

    1,4-Dioxane is a flammable liquid and tends to form explosive peroxides. Its formation in glycols (low parts-per-million levels), which are used as dehumidifying agents in refineries, may take place by condensation. 1,4-Dioxane thus formed gets distilled over with benzene in the refinery process. Therefore, it is necessary to identify and determine the levels of 1,4-dioxane in glycols as well as benzene. Gas chromatography (GC) is probably the best technique for this purpose. GC analysis may be carried out using a flame ionization detector. Results show that 1,4-dioxane can be comfortably determined down to 2 ppm in glycols and benzene.

  4. The effects of certain glycols, substituted glycols and related organic solvents on the thermal stability of soluble collagen

    PubMed Central

    Hart, G. J.; Russell, A. E.; Cooper, D. R.

    1971-01-01

    The effects of a number of related diols, substituted diols and glycerol on the thermal stability of acid-soluble calf skin collagen were investigated. Thermal transition temperatures were determined by optical rotation measurement. Short-chain diols with terminal hydroxyl groups, i.e. ethylene glycol and propane-1,3-diol, stabilized the protein at all accessible concentrations. Stabilization was also observed with glycerol and diethylene glycol. Higher homologues in the diol series produced various effects, as did hydroxyl-group positional isomerism. Monoalkyl substitution of diols progressively lowered the denaturation temperature of collagen. Results are discussed in relation to possible mechanisms of perturbant action. PMID:5169191

  5. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Yang, Lily; Miller, Stanley L.; Oró, J.

    1987-09-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde and ammonia. The products were identified by TLC, HPLC, and LC-MS by comparison with authentic samples. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, 6.8% respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  6. Geometrical flexibility of platinum nanoclusters: impacts on catalytic decomposition of ethylene glycol.

    PubMed

    Mahmoodinia, Mehdi; Trinh, Thuat T; Åstrand, Per-Olof; Tran, Khanh-Quang

    2017-11-01

    Catalytic decomposition of ethylene glycol on the Pt 13 cluster was studied as a model system for hydrogen production from a lignocellulosic material. Ethylene glycol was chosen as a starting material because of two reasons, it is the smallest oxygenate with a 1 : 1 carbon to oxygen ratio and it contains the C-H, O-H, C-C, and C-O bonds also present in biomass. Density functional theory calculations were employed for predictions of reaction pathways for C-H, O-H, C-C and C-O cleavages, and Brønsted-Evans-Polanyi relationships were established between the final state and the transition state for all mechanisms. The results show that Pt 13 catalyzes the cleavage reactions of ethylene glycol more favourably than a Pt surface. The flexibility of Pt 13 clusters during the reactions is the key factor in reducing the activation barrier. Overall, the results demonstrate that ethylene glycol and thus biomass can be efficiently converted into hydrogen using platinum nanoclusters as catalysts.

  7. Mechanisms of propylene glycol and triacetin pyrolysis.

    PubMed

    Laino, Teodoro; Tuma, Christian; Moor, Philippe; Martin, Elyette; Stolz, Steffen; Curioni, Alessandro

    2012-05-10

    Propylene glycol and triacetin are chemical compounds, commonly used as food additives. Though the usage of the pure chemicals is not considered harmful when used as dietary supplements, little is known about the nature of their thermal degradation products and the impact they may have on human health. For these reasons, in this manuscript we investigate the thermal decomposition mechanisms of both neutral propylene glycol and triacetin in the gas phase by a novel simulation framework. This is based on a free energy sampling methodology followed by an accurate energy refinement. Structures, Gibbs free energy barriers, and rate constants at 800 K were computed for the different steps involved in the two pyrolytic processes. The thermal decomposition mechanisms found theoretically for propylene glycol and triacetin were validated by a qualitative experimental investigation using gas-phase chromatography-mass spectroscopy, with excellent agreement. The results provide a validation of the novel simulation framework and shed light on the potential hazard to the health that propylene glycol and triacetin may have when exposed to high temperatures.

  8. Severe propylene glycol toxicity secondary to use of anti-epileptics.

    PubMed

    Pillai, Unnikrishnan; Hothi, Jatinder C; Bhat, Zeenat Y

    2014-01-01

    Propylene glycol toxicity presenting as high anion gap metabolic acidosis and osmolar gap has been extensively reported in literature, and most of them are secondary to intravenous lorazepam infusion. However, propylene glycol is used as a solvent in a number of medications that are frequently utilized in critical care setting, and hence one should be aware that the toxicity is possible from a variety of medication. Phenobarbital and phenytoin are one of those, and we hereby report a novel case of propylene glycol toxicity secondary to phenobarbital and phenytoin infusion in a patient with refractory status epilepticus. Furthermore, our patient had end-stage renal disease, which we think could have been an important precipitating factor for the toxicity. Because most of the symptoms from propylene glycol toxicity can mimic sepsis-which is very common in critical care unit patients-this life threatening scenario could be easily missed. Regular monitoring of osmolar gap is an easily available intervention in the at risk patients.

  9. Lubricant Foaming and Aeration Study. Part 2.

    DTIC Science & Technology

    1985-12-01

    phosphate. The blend 0-77-10, composed of tmp-heptanoate plus neopentyl glycol esters, tested in the same way and with the same combination of solutes at...the same concentrations, showed about half the foaminess of the unblended tmp-heptanoate. The neopentyl glycol esters are, therefore, less...substituent methyl groups in a solute confer profoaming activity in these neopentyl glycol esters as solvents. Also, not forgotten, is that the

  10. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams.

    PubMed

    Corsi, S R; Booth, N L; Hall, D W

    2001-07-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  11. New Force Field Model for Propylene Glycol: Insight to Local Structure and Dynamics.

    PubMed

    Ferreira, Elisabete S C; Voroshylova, Iuliia V; Koverga, Volodymyr A; Pereira, Carlos M; Cordeiro, M Natália D S

    2017-12-07

    In this work we developed a new force field model (FFM) for propylene glycol (PG) based on the OPLS all-atom potential. The OPLS potential was refined using quantum chemical calculations, taking into account the densities and self-diffusion coefficients. The validation of this new FFM was carried out based on a wide range of physicochemical properties, such as density, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. The molecular dynamics (MD) simulations were performed over a large range of temperatures (293.15-373.15 K). The comparison with other force field models, such as OPLS, CHARMM27, and GAFF, revealed a large improvement of the results, allowing a better agreement with experimental data. Specific structural properties (radial distribution functions, hydrogen bonding and spatial distribution functions) were then analyzed in order to support the adequacy of the proposed FFM. Pure propylene glycol forms a continuous phase, displaying no microstructures. It is shown that the developed FFM gives rise to suitable results not only for pure propylene glycol but also for mixtures by testing its behavior for a 50 mol % aqueous propylene glycol solution. Furthermore, it is demonstrated that the addition of water to the PG phase produces a homogeneous solution and that the hydration interactions prevail over the propylene glycol self-association interactions.

  12. Preparative crystallization of a single chain antibody using an aqueous two-phase system.

    PubMed

    Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois

    2014-11-01

    A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration. © 2014 Wiley Periodicals, Inc.

  13. Comparative toxicity of pristine graphene oxide and its carboxyl, imidazole or polyethylene glycol functionalized products to Daphnia magna: A two generation study.

    PubMed

    Liu, Yingying; Han, Wenli; Xu, Zhizhen; Fan, Wenhong; Peng, Weihua; Luo, Shenglian

    2018-06-01

    To investigate the chronic toxicity of graphene oxide (GO) and its functionalized products (GO-carboxyl, GO-imidazole and GO-polyethylene glycol), a two-generation study was conducted using the aquatic model species Daphnia magna. Each generation of daphnids were exposed for 21 days to 1.0 mg L -1 graphene material, with body length, neonate number, time of first brood and the intrinsic rate of natural increase (r) assessed as endpoints. Chronic exposure to GO, GO-carboxyl, and GO-imidazole had no adverse effect on body length or offspring number in the daphnid F0 generation, however, this exposure paradigm led to significant growth or reproduction inhibition in the following generation. Meanwhile, GO was found to show the strongest inhibitory effect, sequentially followed by GO-carboxyl and GO-imidazole. With exposure to GO-polyethylene glycol, no significant effects on growth or reproduction were observed for both F0 and F1 generation daphnids. These results reveal that carboxyl, imidazole and polyethylene glycol functional attachments alleviate the bio-toxicity of GO, especially polyethylene glycol. The increased C/O atomic ratio present in GO-carboxyl, GO-imidazole and GO-polyethylene glycol due to functionalization may mainly explain the reduced toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  15. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams

    USGS Publications Warehouse

    Corsi, S.R.; Booth, N.L.; Hall, D.W.

    2001-01-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  16. Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats.

    PubMed

    Aslan, Zeyneb; Aksoy, Laçine

    2015-01-01

    In this study, anti-inflammatory effects of Royal Jelly were investigated by inducing renal inflammation in rats with the use of ethylene glycol. For this purpose, the calcium oxalate urolithiasis model was obtained by feeding rats with ethylene glycol in drinking water. The rats were divided in five study groups. The 1st group was determined as the control group. The rats in the 2nd group received ethylene glycol (1%) in drinking water. The rats in the 3rd group were daily fed with Royal Jelly by using oral gavage. The 4th group was determined as the preventive group and the rats were fed with ethylene glycol (1%) in drinking water while receiving Royal Jelly via oral gavage. The 5th group was determined as the therapeutic group and received ethylene glycol in drinking water during the first 2 weeks of the study and Royal Jelly via oral gavage during the last 2 weeks of the study. At the end of the study, proinflammatory/anti-inflammatory cytokines, TNF-a, IL-1ß and IL-18 levels in blood and renal tissue samples from the rats used in the application were measured. The results have shown that ethylene glycol does induce inflammation and renal damage. This can cause the formation of reactive oxygen species. Royal Jelly is also considered to have anti-inflammatory effects due to its possible antiradical and antioxidative effects. It can have positive effects on both the prevention of urolithiasis and possible inflammation during the existing urolithiasis and support the medical treatment.

  17. Impact of the propylene glycol-water-borax coolant on material recovery operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duerksen, W.K.; Taylor, P.A.

    1983-05-01

    The reaction of the propylene glycol-water-borax coolant with nitric acid has now been studied in some detail. This document is intended to provide a summary of the results. Findings are summarized under nine headings. Tests have also been conducted to determine if the new coolant would have any adverse effects on the uranium recycle systems. Experiments were scientifically designed after observation of the production operations so that accurate response to the immediate production concerns could be provided. Conclusions from these studies are: formation of glycol nitrates is very improbable; the reaction of concentrated (70%) nitric acid with pure propylene glycolmore » is very violent and hazardous; dilution of the nitric acid-glycol mixture causes a drastic decrease in the rate and intensity of the reaction; the mechanism of the nitric acid propylene glycol reaction is autocatalytic in nitrous acid; no reaction is observed between coolant and 30% nitric acid unless the solution is heated; the coolant reacts fairly vigorously with 55% nitric acid after a concentration-dependent induction time; experiments showed that the dissolution of uranium chips that had been soaked in coolant proceeded at about the same rate as if the chips had not previously contacted glycol; thermodynamic calculations show that the enthalpy change (heat liberated) by the reaction of nitric acid (30%) with propylene glycol is smaller than if the same amount of nitric acid reacted with uranium. Each of these conclusions is briefly discussed. The effect of new coolant on uranium recycle operations is then briefly discussed.« less

  18. THE STIMULATING EFFECT OF GLYCOLS AND THEIR POLYMERS ON THE TARSAL RECEPTORS OF BLOWFLIES

    PubMed Central

    Dethier, V. G.; Chadwick, L. E.

    1948-01-01

    The rejection thresholds of Phormia regina Meigen for twenty-four glycols have been determined. A definite relationship between the concentration of the test material and the distribution of thresholds has been noted regularly in samples of flies selected at random from a population of known age which had been reared under standard conditions. The scattering of thresholds is normal with respect to the logarithm of concentration. Recalculation of the data of other workers reveals the same sort of relationship with other species of insects and the minnow Phoxinus. The underlying reason for the phenomenon is not known. The glycols in common with other series of homologous alipbatic compounds are rejected at logarithmically decreasing concentrations as the chain length is increased. In general the straight chain diols are more stimulating than the corresponding polyethylene and polypropylene glycols. This difference is related in some manner to the presence of ether linkages in the latter. Polypropylene glycols, with chains of three carbon atoms between the ether linkages are more stimulating than polyethylene glycols, where the spacing is —O—C—C—O—. Unipolymers are more stimulating than mixtures of homologues with the same average molecular weights. Polyethylene glycol 1540 is the largest molecule of measured molecular weight known to stimulate chemoreceptors. The introduction of a second terminal hydroxyl group into the straight hydrocarbon chain reduces the stimulating effect. Alcohols corresponding to the first three diols average about four times as stimulating as the latter while those corresponding to the higher diols average more than one hundred times as stimulating. PMID:18891141

  19. Alcea rosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats

    PubMed Central

    Ahmadi, Marzieh; Rad, Abolfazl Khajavi; Rajaei, Ziba; Hadjzadeh, Mousa-Al-Reza; Mohammadian, Nema; Tabasi, Nafiseh Sadat

    2012-01-01

    Introduction: Alcea rosea L. is used in Asian folk medicine as a remedy for a wide range of ailments. The aim of the present study was to investigate the effect of hydroalcoholic extract of Alcea rosea roots on ethylene glycol-induced kidney calculi in rats. Materials and Methods: Male Wistar rats were randomly divided into control, ethylene glycol (EG), curative and preventive groups. Control group received tap drinking water for 28 days. Ethylene glycol (EG), curative and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation; preventive and curative subjects also received the hydroalcoholic extract of Alcea rosea roots in drinking water at dose of 170 mg/kg, since day 0 or day 14, respectively. Urinary oxalate concentration was measured by spectrophotometer on days 0, 14 and 28. On day 28, the kidneys were removed and examined histopathologically under light microscopy for counting the calcium oxalate deposits in 50 microscopic fields. Results: In both preventive and curative protocols, treatment of rats with hydroalcoholic extract of Alcea rosea roots significantly reduced the number of kidney calcium oxalate deposits compared to ethylene glycol group. Administration of Alcea rosea extract also reduced the elevated urinary oxalate due to ethylene glycol. Conclusion: Alcea rosea showed a beneficial effect in preventing and eliminating calcium oxalate deposition in the rat kidney. This effect is possibly due to diuretic and anti-inflammatory effects or presence of mucilaginous polysaccharides in the plant. It may also be related to lowering of urinary concentration of stone-forming constituents. PMID:22701236

  20. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma.

  1. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    PubMed

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials in future. © The Author(s) 2015.

  2. Solubility of lysozyme in polyethylene glycol-electrolyte mixtures: the depletion interaction and ion-specific effects.

    PubMed

    Boncina, Matjaz; Rescic, Jurij; Vlachy, Vojko

    2008-08-01

    The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br(-), Cl(-), F(-), and H(2)PO(4)(-) (all in combination with Na(+)), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs(+), K(+), and Na(+) (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order F(-) < H(2)PO(4)(-) < Cl(-) < Br(-) (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs(+) < K(+) < Na(+)) in this situation.

  3. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar

    Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA filmmore » and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.« less

  4. Low-Cost and High-Impact Environmental Solutions for Military Composite Structures

    DTIC Science & Technology

    2005-12-15

    moduli of UPE polymers are considerably increased when neopentyl glycol is used as the polyol instead of ethylene glycol in the formulations [56...general purpose unsaturated polyester based on phthalic anhydride, ethylene glycol , and maleic anhydride. The VIAPAL 570G was a colorless solid in the...modulus. In this case, the neopentyl center of the Bisphenol A backbone of the VE 828 polymer may be responsible for increased modulus values. The

  5. Coherent source interaction, third-order nonlinear response of synthesized PEG coated magnetite nanoparticles in polyethylene glycol and its application

    NASA Astrophysics Data System (ADS)

    Gopal, S. Veena; Chitrambalam, S.; Joe, I. Hubert

    2018-01-01

    Third-order nonlinear response of synthesized polyethylene glycol coated Fe3O4 nanoparticles dispersed in a suitable solvent, polyethylene glycol has been studied. The structural characterization of the synthesized magnetite nanoparticles were carried out. The linear optical property of the synthesized magnetite nanoparticles was investigated using UV-visible technique. Both closed and open aperture Z-scan techniques have been performed at 532 nm with pulse width 5 ns and repetition rate 10 Hz. It was found that polyethylene glycol coated magnetite exhibits reverse saturable absorption, with significant nonlinear absorption coefficient. Two-photon absorption intensity dependent positive nonlinear refraction coefficients indicate self focusing phenomena. Results show that higher concentration gives better nonlinear and optical limiting properties.

  6. Preparation and Thermo-Physical Properties of Fe2O3-Propylene Glycol Nanofluids.

    PubMed

    Shylaja, A; Manikandan, S; Suganthi, K S; Rajan, K S

    2015-02-01

    Iron oxide (Fe2O3) nanoparticles were prepared from ferric chloride and ferrous sulphate by precipitation reaction. Fe2O3-propylene glycol nanofluid was prepared by dispersing Fe2O3 nanoparticles in propylene glycol through stirred bead milling, shear homogenization and probe ultrasonication. The nanofluid was characterized through measurement of viscosity, particle size distribution and thermal conductivity. The interactions between Fe2O3 nanoparticles and propylene glycol on the nanoparticle surfaces lead to reduction in viscosity, the magnitude of which increases with nanoparticle concentration (0-2 vol%) at room temperature. The thermal conductivity enhancement for 2 vol% nanofluid was about 21% at room temperature, with liquid layering being the major contributor for thermal conductivity enhancement.

  7. Occupational exposure to glycol ethers: implications for occupational health nurses.

    PubMed

    Snow, J E

    1994-09-01

    1. Evaluation of workplace exposure to reproductive hazards is difficult and is often confounded by occupational exposure to multiple agents and exposure to non-occupational factors. 2. A growing body of evidence from animal and human study data supports a causal association between occupational exposure to certain glycol ethers and adverse reproductive outcomes. 3. Occupational health nurses providing services to employees exposed to glycol ethers should remain knowledgeable about the results of epidemiologic studies and current trends in the regulation of glycol ethers in industry. 4. Occupational health nurses are in a key position to reduce exposure to reproductive hazards by monitoring trends in group data and by implementing training and education programs to employees exposed to reproductive hazards.

  8. Antibacterial characteristics of newly developed amphiphilic lipids and DNA-lipid complexes against bacteria.

    PubMed

    Inoue, Y; Fukushima, T; Hayakawa, T; Takeuchi, H; Kaminishi, H; Miyazaki, K; Okahata, Y

    2003-05-01

    The purpose of this study was to investigate the antibacterial activity of newly developed amphiphilic lipids and DNA/lipid complexes against two types of oral bacteria and two types of hospital infection bacteria. Nine amphiphilic lipids were quantitatively prepared from the reaction of n-alkyl alcohol, alpha-amino acids, and p-toluenesulfonic acid. Nine DNA-lipid complexes were prepared by the simple mixing of DNA and amphiphilic lipids. The DNA-lipid complexes were insoluble in water. The antibacterial activity of lipids and DNA-lipid complexes against Porphyromonas gingivalis, Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa were evaluated by the disk-diffusion method. Seven artificial lipids showed antibacterial behavior; in particular, the lipids prepared from n-decyl alcohol and glycine and from n-decyl alcohol and L-alanine showed antibacterial activity against the four bacterial strains used in this study. On the other hand, the lipids of glutamic acid derivatives did not show any antibacterial activity against the four bacteria strains except for the lipid with an n-octyl group. Five DNA-lipid complexes also had an antibacterial effect. The complex prepared from DNA and glycine decyl ester p-toluenesulfonic acid salt exhibited antibacterial activity against the four types of bacteria strains. In this study it was found that lipids and DNA-lipid complexes with a mono-decyl group or a mono-dodecyl group have more favorable antibacterial activity. Copyright 2003 Wiley Periodicals, Inc.

  9. Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design.

    PubMed

    Murray, Michael S; Holmes, Ross P; Lowther, W Todd

    2008-02-26

    Human glycolate oxidase (GO) catalyzes the FMN-dependent oxidation of glycolate to glyoxylate and glyoxylate to oxalate, a key metabolite in kidney stone formation. We report herein the structures of recombinant GO complexed with sulfate, glyoxylate, and an inhibitor, 4-carboxy-5-dodecylsulfanyl-1,2,3-triazole (CDST), determined by X-ray crystallography. In contrast to most alpha-hydroxy acid oxidases including spinach glycolate oxidase, a loop region, known as loop 4, is completely visible when the GO active site contains a small ligand. The lack of electron density for this loop in the GO-CDST complex, which mimics a large substrate, suggests that a disordered to ordered transition may occur with the binding of substrates. The conformational flexibility of Trp110 appears to be responsible for enabling GO to react with alpha-hydroxy acids of various chain lengths. Moreover, the movement of Trp110 disrupts a hydrogen-bonding network between Trp110, Leu191, Tyr134, and Tyr208. This loss of interactions is the first indication that active site movements are directly linked to changes in the conformation of loop 4. The kinetic parameters for the oxidation of glycolate, glyoxylate, and 2-hydroxy octanoate indicate that the oxidation of glycolate to glyoxylate is the primary reaction catalyzed by GO, while the oxidation of glyoxylate to oxalate is most likely not relevant under normal conditions. However, drugs that exploit the unique structural features of GO may ultimately prove to be useful for decreasing glycolate and glyoxylate levels in primary hyperoxaluria type 1 patients who have the inability to convert peroxisomal glyoxylate to glycine.

  10. Problems and solutions of polyethylene glycol co-injection method in multiresidue pesticide analysis by gas chromatography-mass spectrometry: evaluation of instability phenomenon in type II pyrethroids and its suppression by novel analyte protectants.

    PubMed

    Akutsu, Kazuhiko; Kitagawa, Yoko; Yoshimitsu, Masato; Takatori, Satoshi; Fukui, Naoki; Osakada, Masakazu; Uchida, Kotaro; Azuma, Emiko; Kajimura, Keiji

    2018-05-01

    Polyethylene glycol 300 is commonly used as a base material for "analyte protection" in multiresidue pesticide analysis via gas chromatography-mass spectrometry. However, the disadvantage of the co-injection method using polyethylene glycol 300 is that it causes peak instability in α-cyano pyrethroids (type II pyrethroids) such as fluvalinate. In this study, we confirmed the instability phenomenon in type II pyrethroids and developed novel analyte protectants for acetone/n-hexane mixture solution to suppress the phenomenon. Our findings revealed that among the examined additive compounds, three lipophilic ascorbic acid derivatives, 3-O-ethyl-L-ascorbic acid, 6-O-palmitoyl-L-ascorbic acid, and 6-O-stearoyl-L-ascorbic acid, could effectively stabilize the type II pyrethroids in the presence of polyethylene glycol 300. A mixture of the three ascorbic acid derivatives and polyethylene glycol 300 proved to be an effective analyte protectant for multiresidue pesticide analysis. Further, we designed and evaluated a new combination of analyte protectant compounds without using polyethylene glycol or the troublesome hydrophilic compounds. Consequently, we obtained a set of 10 medium- and long-chain saturated fatty acids as an effective analyte protectant suitable for acetone/n-hexane solution that did not cause peak instability in type II pyrethroids. These analyte protectants will be useful in multiresidue pesticide analysis by gas chromatography-mass spectrometry in terms of ruggedness and reliable quantitativeness. Graphical abstract Comparison of effectiveness of the addition of lipophilic derivatives of ascorbic acid in controlling the instability phenomenon of fluvalinate with polyethylene glycol 300.

  11. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo.

    PubMed

    Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E

    2016-07-01

    Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Liquid for absorption of solar heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T.; Iwamoto, Y.; Kadotani, K.

    A liquid for the absorption of solar heat, useful as an heat-absorbing medium in water heaters and heat collectors comprises: a dispersing medium selected from the group consisting of propylene glycol, mixture of propylene glycol with water, mixture of propylene glycol with water and glycerin, and mixture of glycerin with water, a dispersant selected from the group consisting of polyvinylpyrrolidone, caramel, and mixture of polyvinylpyrrolidone with caramel, and a powdered activated carbon as a black coloring material.

  13. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  14. Ethylene glycol, but not DMSO, could replace glycerol inclusion in soybean lecithin-based extenders in ram sperm cryopreservation.

    PubMed

    Najafi, Abouzar; Daghigh-Kia, Hossein; Dodaran, Hossein Vaseghi; Mehdipour, Mahdieh; Alvarez-Rodriguez, Manuel

    2017-02-01

    The aim of this study was to evaluate the effects of glycerol, ethylene glycol or DMSO in a soybean lecithin extender for freezing ram semen. In this study, 20 ejaculates were collected from four Ghezel rams and diluted with soybean lecithin extender with glycerol (7%), ethylene glycol (3%, 5% and 7%) or DMSO (3%, 5% and 7%). Sperm motility (CASA), membrane integrity (HOS test), viability, total abnormality, mitochondrial activity (Rhodamine 123) and apoptotic features (Annexin V/Propidium iodide) were assessed after thawing. There was no significant difference between glycerol and ethylene glycol at different concentrations (3% and 5%) regarding sperm total and progressive motility, viability, and membrane integrity. The least percentages of mitochondrial functionality were observed in samples frozen with all different DMSO concentrations tested (P<0.05). Moreover, the percentage of post-thawed dead sperm was the greatest for all the DMSO concentrations compared with other groups (P<0.05). Thus, DMSO had an adverse effect on the post thaw ram sperm parameters. In contrast, ethylene glycol could be a desirable substitute of glycerol in the freezing extender, in view of similar results obtained in post-thaw quality of ram semen cryopreserved in a soybean lecithin extender. We propose that glycerol in a soybean lecithin based extender could be replaced by ethylene glycol at 3% or 5% concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Optimization of reactive simulated moving bed systems with modulation of feed concentration for production of glycol ether ester.

    PubMed

    Agrawal, Gaurav; Oh, Jungmin; Sreedhar, Balamurali; Tie, Shan; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2014-09-19

    In this article, we extend the simulated moving bed reactor (SMBR) mode of operation to the production of propylene glycol methyl ether acetate (DOWANOL™ PMA glycol ether) through the esterification of 1-methoxy-2-propanol (DOWANOL™ PM glycol ether) and acetic acid using AMBERLYST™ 15 as a catalyst and adsorbent. In addition, for the first time, we integrate the concept of modulation of the feed concentration (ModiCon) to SMBR operation. The performance of the conventional (constant feed) and ModiCon operation modes of SMBR are analyzed and compared. The SMBR processes are designed using a model based on a multi-objective optimization approach, where a transport dispersive model with a linear driving force for the adsorption rate has been used for modeling the SMBR system. The adsorption equilibrium and kinetics parameters are estimated from the batch and single column injection experiments by the inverse method. The multiple objectives are to maximize the production rate of DOWANOL™ PMA glycol ether, maximize the conversion of the esterification reaction and minimize the consumption of DOWANOL™ PM glycol ether which also acts as the desorbent in the chromatographic separation. It is shown that ModiCon achieves a higher productivity by 12-36% over the conventional operation with higher product purity and recovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients

    PubMed Central

    Boles, Erin E.; Gaines, Cameryn L.

    2015-01-01

    OBJECTIVES: The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. METHODS: A retrospective, observational, institutional review board–approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. RESULTS: Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p < 0.01). CONCLUSIONS: Theses results suggest that PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects. PMID:26170773

  17. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients.

    PubMed

    Boles, Erin E; Gaines, Cameryn L; Tillman, Emma M

    2015-01-01

    The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. A retrospective, observational, institutional review board-approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p < 0.01). Theses results suggest that PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects.

  18. Tabun

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  19. Sarin

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  20. Arsine

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  1. Strychnine

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  2. Solder poisoning

    MedlinePlus

    ... can be harmful are: Antimony Bismuth Cadmium Copper Ethylene glycol Lead Mild acids Silver Tin Zinc ... INTESTINES Diarrhea Vomiting SKIN Yellow skin Symptoms for ethylene glycol: Disturbance in the acid balance of the ...

  3. Phosgene

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  4. Abrin

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  5. Soman

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  6. Ricin

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  7. Relative toxicities of pure propylene and ethylene glycol and formulated deicers on plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuFresne, D.L.; Pillard, D.A.

    1994-12-31

    Propylene and ethylene glycol deicers are commonly used at airports in the US and other countries to remove and retard the accumulation of snow and ice on aircraft. Deicers may not only enter water bodies without treatment, due to excessive storm-related flow, but also may expose terrestrial organisms to high concentrations through surface runoff. Most available toxicity data are for aquatic vertebrates and invertebrate species; this study examined effects on terrestrial and aquatic plants. Terrestrial plant species included both a monocot (rye grass, Lolium perenne) and a dicot (lettuce, Lactuca saliva). Aquatic species included a single cell alga (Selenastrum capricomutum),more » and an aquatic macrophyte (duckweed, Lemna minor). Glycol deicers were obtained in the formulated mixtures used on aircraft. Pure ethylene and propylene glycol were obtained from Sigma{reg_sign}. Parameters measured included germination, root and shoot length, survival, and growth. Formulated deicers, like those used at airports, were generally more toxic than pure chemicals, based on glycol concentration. This greater toxicity of formulated deicers is consistent with results of tests using animal species.« less

  8. In-vitro permeation of the insect repellent N,N-diethyl-m-toluamide (DEET) and the sunscreen oxybenzone.

    PubMed

    Gu, Xiaochen; Kasichayanula, Sreeneeranj; Fediuk, Daryl J; Burczynski, Frank J

    2004-05-01

    The permeation behaviours of the insect repellent N,N-diethyl-m-toluamide (DEET) and the sunscreen oxybenzone were assessed in a series of in-vitro diffusion studies, using piglet skin and poly (dimethylsiloxane) (PDMS) membrane. The transmembrane permeability of DEET and oxybenzone across piglet skin and PDMS membrane was dependent on dissolving vehicles and test concentrations. An enhanced permeation increase across piglet skin was found for DEET and oxybenzone when both compounds were present in the same medium (DEET: 289% in propylene glycol, 243% in ethanol and 112% in poly(ethylene glycol) (PEG-400); oxybenzone: 139% in PEG-400, 120% in propylene glycol and 112% in ethanol). Permeation enhancement was also observed in PDMS membrane (DEET: 207% in ethanol, 124% in PEG-400 and 107% in propylene glycol; oxybenzone: 254% in PEG-400, 154% in ethanol and 105% in propylene glycol). PDMS membrane was found to be a suitable candidate for in-vitro diffusion evaluations. This study shows that the permeations of the insect repellent DEET and the sunscreen oxybenzone were synergistically enhanced when they were applied simultaneously.

  9. Enzymatic remediated biodegradation of propylene glycol 1,2-dinitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, M.; Geelhaar, L.; Speedie, M.K.

    1995-12-31

    Two bacterial species, Enterobacter agglomerans and Bacillus thuringiensis/cereus, which were selected from nitroglycerin (GTN) contaminated soil, have previously been shown to have denitrating ability on nitroglycerin. This abstract presents the investigation of the cell free extracts from both microorganisms for the degradation of another nitrate ester contaminant; propylene glycol 1,2-dinitrate (PGDN). This compound has been previously considered resistant to the biodegradation. In order to probe the pathway, the whole process was monitored by using [1-{sup 14}C]-PGDN as substrate and the intermediates were identified by HPLC and TLC chromatography. Long term biodegradation experiments have shown that the enzymes in the cytoplasmmore » fraction of Bacillus thuringiensis/cereus and the membrane fraction of Enterobacter agglomerans convert PGDN successively into propylene glycol 1-mononitrate (1-PGMN) and propylene glycol 2-mononitrate (2-PGMN), and finally, propylene glycol. The capacity to achieve sequential and complete degradation of PGDN implies that it follows a similar mechanism to that observed in the GTN degradation. Cofactor requirements for PGDN breakdown have been studied, it was found that no dissociable, dialyzable cofactors are required.« less

  10. Nitrogen Mustards

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  11. Sodium Azide

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  12. Sulfur Mustard

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  13. Pneumonic Plague

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  14. Comparative study of 15% TCA peel versus 35% glycolic acid peel for the treatment of melasma

    PubMed Central

    Puri, Neerja

    2012-01-01

    Background: Chemical peels are the mainstay of a cosmetic practitioner's armamentarium because they can be used to treat some skin disorders and can provide aesthetic benefit. Objectives: To compare 15% TCA peel and 35% glycolic acid peel for the treatment of melasma. Material and Methods: We selected 30 participants of melasma aged between 20 and 50 years from the dermatology outpatient department and treated equal numbers with 15% TCA and 35% glycolic acid. Results: Subjective response as graded by the patient showed good or very good response in 70% participants in the glycolic acid group and 64% in the TCA group. Conclusions: There was statistically insignificant difference in the efficacy between the two groups for the treatment of melasma. PMID:23130283

  15. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process

    NASA Astrophysics Data System (ADS)

    Feng, Bingmei; Wang, Huixin; Wang, Dongniu; Yu, Huilong; Chu, Yi; Fang, Hai-Tao

    2014-11-01

    After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter.After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter. Electronic supplementary information (ESI) available. See DOI: 10.1039/C4NR04254A

  16. Bioterrorism Agents/Diseases

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  17. Presidential Green Chemistry Challenge: 2006 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2006 award winner, Professor Galen J. Suppes, developed a process to convert waste glycerin from biodiesel production into propylene glycol to replace ethylene glycol in antifreeze.

  18. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins.

    PubMed

    Mascitti, Andrea; Lupacchini, Massimiliano; Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d'Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean; Colacino, Evelina

    2017-01-01

    The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures.

  19. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins

    PubMed Central

    Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d’Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean

    2017-01-01

    The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures. PMID:28179944

  20. Interactions between F-111 Fuselage Fuel Tank Sealants. Part 2. Variation in Performance Properties of Polysulfides after Contact with Polyester Degradation Products,

    DTIC Science & Technology

    1984-08-01

    principally from sebacic acid and neopentyl glycol and that the most significant difference between the sealants was the greater proportion of trihydric...exhaustive hydrolysis of the polyesters would generate sebacic acid and neopentyl glycol , in practice ester units such as (1) which are terminated with both...slight to moderate swelling and softening of the polysulfides with PR-1422 being the most susceptible. Neopentyl glycol suppressed the swelling due to

  1. Mineral induced phosphorylation of glycolate ion--a metaphor in chemical evolution

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Zhang, S.; Xu, Y.; Arrhenius, G.

    1997-01-01

    Bilateral surface-active minerals with excess positive charge concentrate glycolate and trimetaphosphate ion from l0(-3) m aqueous solution to half-saturation of the internal surface sites, and induce phosphorylation of glycolate ion in the mineral with trimetaphosphate, sorbed from l0(-2) m solution. By utilizing reactants from dilute solution at near-neutral pH, and eliminating the need for participating organic nitrogen compounds, the reaction comprises several elements considered necessary for geochemical realism in models for molecular evolution.

  2. Potential Replacements for Solvents that are Ozone Depleting Substances

    DTIC Science & Technology

    1994-09-01

    18.4 d-Lumonene 17.8 Glidsafe-LUI54B 18.2 Turpentine 16.5 isobutyl acetate 17.2 Diisobutyl phthalate 18.3 Dipropylene glycol monomethyl ether 19.0...Diethylene glycol monomethyl ether 22.3 N- Methyl pyrrolidone 23.0 Water 47.8 1. Barton (1983): 2. Gallagher (date unknown). 9 TI DSTO-TR-0046 For blends...parameters. For example, Glidsafe UTS-4B which is a mixture of terpenes and dipropylene glycol monomethyl ether has a Hildebrand solubility of 18.2 MPal/ 2

  3. Polyethylene glycol 3350 without electrolytes for treatment of childhood constipation

    PubMed Central

    Chung, Seen; Cheng, Adam; Goldman, Ran D.

    2009-01-01

    ABSTRACT QUESTION I have come across many pediatric patients with functional constipation. Is polyethylene glycol 3350 without electrolytes a safe and effective long-term treatment option for these patients? ANSWER Functional constipation is a common and often difficult problem for parents and families to deal with. Polyethylene glycol 3350 is a safe and effective long-term laxative in pediatric populations, but there are limited studies for its use in children younger than 2 years of age. PMID:19439699

  4. Toxic Amblyopia (Nutritional Amblyopia)

    MedlinePlus

    ... ethambutol , and digoxin ) or toxins such as lead, ethylene glycol (antifreeze), or methanol (wood alcohol or methyl ... a nutritional deficiency, both eyes are usually affected. Ethylene glycol and particularly methanol poisoning can cause sudden, ...

  5. Severe lactic acidosis after an iatrogenic propylene glycol overdose.

    PubMed

    Zosel, Amy; Egelhoff, Elizabeth; Heard, Kennon

    2010-02-01

    Propylene glycol is a diluent found in many intravenous and oral drugs, including phenytoin, diazepam, and lorazepam. Propylene glycol is eliminated from the body by oxidation through alcohol dehydrogenase to form lactic acid. Under normal conditions, the body converts lactate to pyruvate and metabolizes pyruvate through the Krebs cycle. Lactic acidosis has occurred in patients, often those with renal dysfunction, who were receiving prolonged infusions of drugs that contain propylene glycol as a diluent. We describe a 50-year-old man who experienced severe lactic acidosis after receiving an accidental overdose of lorazepam, which contains propylene glycol. The patient was acutely intoxicated, with a serum ethanol concentration of 406 mg/dl. He had choked on a large piece of meat and subsequently experienced pulseless electrical activity with ventricular fibrillation cardiac arrest. He was brought to the emergency department; within 2 hours, he was admitted to the intensive care unit for initiation of the hypothermia protocol. The patient began to experience generalized tonic-clonic seizures 12 hours later, which resolved after several boluses of lorazepam. A lorazepam infusion was started; however, it was inadvertently administered at a rate of 2 mg/minute instead of the standard rate of 2 mg/hour. Ten hours later, the administration error was recognized and the infusion stopped. The patient's peak propylene glycol level was 659 mg/dl, pH 6.9, serum bicarbonate level 5 mEq/L, and lactate level 18.6 mmol/L. Fomepizole was started the next day and was continued until hospital day 3. Continuous renal replacement therapy was started and then replaced with continuous venovenous hemofiltration (CVVH) for the remainder of the hospital stay. The patient's acidosis resolved by day 3, when his propylene glycol level had decreased to 45 mg/dl. Fomepizole was discontinued, but the patient's prognosis was poor (anoxic brain injury); thus care was withdrawn and the patient died. Although the patient's outcome was death, his lactic acidosis was treated successfully with fomepizole and CVVH. Clinicians should be aware that an iatrogenic overdose of lorazepam may result in severe propylene glycol toxicity, which may be treated with fomepizole and CVVH.

  6. Spectroscopic characterization of PET glycolysis and surface molecular orientation of polymers

    NASA Astrophysics Data System (ADS)

    Weir, Michael David

    This dissertation seeks to develop novel polymer characterization techniques using UV and fluorescence spectroscopy. The first portion of the dissertation consists of monitoring the glycolytic depolymerization of poly(ethylene terephthalate), PET, using UV and fluorescence spectroscopy. The primary product of the glycolysis of PET is bis(hydroxyethyl) tereplithalate (BHET), along with other low molecular weight oligomers (degree of polymerization = 1--3). The UV absorption of the glycolized products occurs at 287 nm and is associated with the pi → pi* transition of the tereplithalate moiety. This absorption band shows a linear increase with reaction time that corresponds to an increase in the concentration of glycolized products. BHET was selected as a model compound to represent the glycolized products and was used to calculate the concentration of glycolized products. When using excitation wavelengths of 300 nm and 340 nm, fluorescence emission spectra of the glycolized products were observed at 350 nm and 380 nm respectively. These emission bands also showed an increase in intensity corresponding to the concentration increase. Again, BHET was used as a model compound to simulate and calculate the concentration of the glycolized products. We determined the overall reaction to be second order and that the reaction rate is strongly dependent on the glycol concentration; an increase in the glycol concentration results in an increase in the reaction rate. The second portion of this dissertation consists of the characterization of surface molecular orientation of poly(ethylene terephthalate) (PET) and Kaptono films by UV reflection dichroism using a specular reflection accessory and a bifurcated fiber optic. The UV reflection peaks for PET and Kapton RTM occur at 257 nm and 310 nm respectively. The orientation function and dichroic ratio calculated using both specular reflection and the fiber optic agreed well with each other. Additionally, correct placement of the polarizer is essential in producing good results. When placed at either the source or detector side of the fiber, there was no evidence of orientation seen. However, placement at the common end shows good agreement with the results from the specular reflection accessory. These different results are a manifestation of the polarization/depolarization characteristics of the fiber optic.

  7. 40 CFR 63.1285 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Report specified in paragraph (e) of this section. (7) Each owner or operator of a glycol dehydration unit subject to this subpart that is exempt from the control requirements for glycol dehydration unit...

  8. 40 CFR 63.1285 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Report specified in paragraph (e) of this section. (7) Each owner or operator of a glycol dehydration unit subject to this subpart that is exempt from the control requirements for glycol dehydration unit...

  9. 40 CFR 63.1285 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Report specified in paragraph (e) of this section. (7) Each owner or operator of a glycol dehydration unit subject to this subpart that is exempt from the control requirements for glycol dehydration unit...

  10. 21 CFR 184.1666 - Propylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... chlorinated water to form the chlorohydrin which is converted to the glycol by treatment with sodium carbonate solution. It is also prepared by heating glyercol with sodium hydroxide. (b) The ingredient meets the...

  11. Ethylene glycol poisoning

    MedlinePlus

    ... Cosmetics Note: This list may not be all-inclusive Symptoms The first symptom of ethylene glycol ingestion ... Toxicology . 3rd ed. New York, NY: McGraw-Hill Education; 2015:chap 33. White SR. Toxic alcohols. In: ...

  12. PNNL Provides Catalyst for Sustainable Propylene Glycol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, Alison L.; Lund, Eric C.

    2012-02-28

    Submission for annual FLC magazine publication, Technology for Today, featuring technologies transferred by federal labs. Subject: PNNL transfer of Propylene Glycol from Renewable Sources catalytic process to Archer Daniels Midland Company.

  13. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) of this section. (i) Each glycol dehydration unit; (ii) Each storage vessel with the potential for... affected source includes each triethylene glycol (TEG) dehydration unit located at a facility that meets...

  14. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of an affected source (i.e., glycol dehydration unit) located at an existing or new major source of... requirements for glycol dehydration unit process vents specified in § 63.1275; (2) The monitoring requirements...

  15. 40 CFR 63.1283 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following types of control devices: (i) Except for control devices for small glycol dehydration... used as the primary fuel; (ii) Except for control devices for small glycol dehydration units, a boiler...

  16. 40 CFR 63.1283 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the following types of control devices: (i) Except for control devices for small glycol dehydration... used as the primary fuel; (ii) Except for control devices for small glycol dehydration units, a boiler...

  17. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of this section. (i) Each glycol dehydration unit; (ii) Each storage vessel with the potential for... affected source includes each triethylene glycol (TEG) dehydration unit located at a facility that meets...

  18. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of an affected source (i.e., glycol dehydration unit) located at an existing or new major source of... requirements for glycol dehydration unit process vents specified in § 63.1275; (2) The monitoring requirements...

  19. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) of this section. (i) Each glycol dehydration unit; (ii) Each storage vessel with the potential for... affected source includes each triethylene glycol (TEG) dehydration unit located at a facility that meets...

  20. Modeling of aircraft deicing fluids deposition

    DOT National Transportation Integrated Search

    2000-06-18

    Glycol deposition near aircraft during deicing operations has become an important consideration at major airports. A sampling process was used to quantify glycol deposition from deicing operations at a major international airport. The resulting data ...

  1. 21 CFR 184.1666 - Propylene glycol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... glycol by treatment with sodium carbonate solution. It is also prepared by heating glyercol with sodium hydroxide. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 255...

  2. 21 CFR 184.1666 - Propylene glycol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... glycol by treatment with sodium carbonate solution. It is also prepared by heating glyercol with sodium hydroxide. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 255...

  3. Topical Acne Treatments and Pregnancy

    MedlinePlus

    ... are benzoyl peroxide, azelaic acid, glycolic acid, and salicylic acid. Prescription acne medications include tretinoin, adapalene, dapsone, and ... ACOG) recommends topical benzoyl peroxide, azelaic acid, topical salicylic acid and glycolic acid for treatment of acne in ...

  4. Frequently Asked Questions (FAQ) about Plague

    MedlinePlus

    ... Cyanogen chloride (CK) Digitalis Case Definition: Digitalis Poisoning Ethylene glycol Fentanyls and other opioids Case Definition: Opioids ( ... Thallium Toxic alcohols Case Definition: Toxic Alcohol Poisoning Ethylene glycol Trichothecene Case Definition: Trichothecene Mycotoxin Poisoning Unidentified ...

  5. Molecular dynamics study on glycolic acid in the physiological salt solution

    NASA Astrophysics Data System (ADS)

    Matsunaga, S.

    2018-05-01

    Molecular dynamics (MD) study on glycolic acid in the physiological salt solution has been performed, which is a model of a biofuel cell. The structure and charge distribution of glycolic acid in aqueous solution used in MD is beforehand optimized by Gaussian09 utilizing the density functional theory. MD is performed in the NTV constant condition, i.e. the number of particles, temperature, and volume of MD cell are definite. The structure difference of the glycolic acid and oxalic acid is detected by the water distribution around the molecules using the pair distribution functions, gij(r), and the frequency dependent diffusion coefficients, Di(ν). The anomalous dielectric constant of the solution, i.e. about 12 times larger than that of water, has been obtained, which may be attributed to the ion pair formation in the solution.

  6. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Newell, J. D.; Williams, M. S.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorablemore » with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.« less

  7. Hydrogenolysis of Glycerol to Propylene Glycol on Nanosized Cu-Zn-Al Catalysts Prepared Using Microwave Process.

    PubMed

    Kim, Dong Won; Ha, Sang Ho; Moon, Myung Jun; Lim, Kwon Taek; Ryu, Young Bok; Lee, Sun Do; Lee, Man Sig; Hong, Seong-Soo

    2015-01-01

    Cu-Zn-Al catalysts were prepared using microwave-assisted process and co-precipitation methods. The prepared catalysts were characterized by XRD, BET, XPS and TPD of ammonia and their catalytic activity for the hydrogenolysis of glycerol to propylene glycol was also examined. The XRD patterns of Cu/Zn/Al mixed catalysts show CuO and ZnO crystalline phase regardless of preparation method. The highest glycerol hydrogenolysis conversion is obtained with the catalyst having a Cu/Zn/Al ratio of 2:2:1. Hydrogen pre-reduction of catalysts significantly enhanced both glycerol conversions and selectivity to propylene glycol. The glycerol conversion increased with an increase of reaction temperature. However, the selectivity to propylene glycol increased with an increase of temperature, and then declined to 30.5% at 523 K.

  8. Effects of pitfall trap preservative on collections of carabid beetles (Coleoptera: Carabidae)

    USGS Publications Warehouse

    McCravy, K.W.; Willand, J.E.

    2007-01-01

    Effects of six pitfall trap preservatives (5% acetic acid solution, distilled water, 70% ethanol, 50% ethylene glycol solution, 50% propylene glycol solution, and 10% saline solution) on collections of carabid beetles (Coleoptera: Carabidae) were studied in a west-central Illinois deciduous forest from May to October 2005. A total of 819 carabids, representing 33 species and 19 genera, were collected. Saline produced significantly fewer captures than did acetic acid, ethanol, ethylene glycol, and propylene glycol, while distilled water produced significantly fewer captures than did acetic acid. Significant associations between numbers of captures and treatment were seen in four species: Amphasia interstitialis (Say), Calathus opaculus LeConte, Chlaenius nemoralis Say, and Cyclotrachelus sodalis (LeConte). Results of this study suggest that type of preservative used can have substantial effects on abundance and species composition of carabids collected in pitfall traps.

  9. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes

    PubMed Central

    Chen, Yipei; Li, Yuzhuo; Shen, Wenjia; Li, Kun; Yu, Lin; Chen, Qinghua; Ding, Jiandong

    2016-01-01

    In treatment of diabetes, it is much desired in clinics and challenging in pharmaceutics and material science to set up a long-acting drug delivery system. This study was aimed at constructing a new delivery system using thermogelling PEG/polyester copolymers. Liraglutide, a fatty acid-modified antidiabetic polypeptide, was selected as the model drug. The thermogelling polymers were presented by poly(ε-caprolactone-co-glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolic acid) (PCGA-PEG-PCGA) and poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA). Both the copolymers were soluble in water, and their concentrated solutions underwent temperature-induced sol-gel transitions. The drug-loaded polymer solutions were injectable at room temperature and gelled in situ at body temperature. Particularly, the liraglutide-loaded PCGA-PEG-PCGA thermogel formulation exhibited a sustained drug release manner over one week in both in vitro and in vivo tests. This feature was attributed to the combined effects of an appropriate drug/polymer interaction and a high chain mobility of the carrier polymer, which facilitated the sustained diffusion of drug out of the thermogel. Finally, a single subcutaneous injection of this formulation showed a remarkably improved glucose tolerance of mice for one week. Hence, the present study not only developed a promising long-acting antidiabetic formulation, but also put forward a combined strategy for controlled delivery of polypeptide. PMID:27531588

  10. Cyanobacterial Lactate Oxidases Serve as Essential Partners in N2 Fixation and Evolved into Photorespiratory Glycolate Oxidases in Plants[w

    PubMed Central

    Hackenberg, Claudia; Kern, Ramona; Hüge, Jan; Stal, Lucas J.; Tsuji, Yoshinori; Kopka, Joachim; Shiraiwa, Yoshihiro; Bauwe, Hermann; Hagemann, Martin

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to harbor genes for both GlcD and GOX proteins. The GOX-like proteins from Nostoc (No-LOX) and from Chlamydomonas reinhardtii showed high l-lactate oxidase (LOX) and low GOX activities, whereas glycolate was the preferred substrate of the phylogenetically related At-GOX2 from Arabidopsis thaliana. Changing the active site of No-LOX to that of At-GOX2 by site-specific mutagenesis reversed the LOX/GOX activity ratio of No-LOX. Despite its low GOX activity, No-LOX overexpression decreased the accumulation of toxic glycolate in a cyanobacterial photorespiratory mutant and restored its ability to grow in air. A LOX-deficient Nostoc mutant grew normally in nitrate-containing medium but died under N2-fixing conditions. Cultivation under low oxygen rescued this lethal phenotype, indicating that N2 fixation was more sensitive to O2 in the Δlox Nostoc mutant than in the wild type. We propose that LOX primarily serves as an O2-scavenging enzyme to protect nitrogenase in extant N2-fixing cyanobacteria, whereas in plants it has evolved into GOX, responsible for glycolate oxidation during photorespiration. PMID:21828292

  11. Diagnosis of toxic alcohols: limitations of present methods.

    PubMed

    Kraut, Jeffrey A

    2015-01-01

    Methanol, ethylene glycol, diethylene glycol, and propylene glycol intoxications are associated with cellular dysfunction and an increased risk of death. Adverse effects can develop quickly; thus, there is a need for methods for rapidly detecting their presence. To examine the value and limitations of present methods to diagnose patients with possible toxic alcohol exposure. I searched MEDLINE for articles published between 1969 and 2014 using the terms: toxic alcohols, serum osmolality, serum osmol gap, serum anion gap, metabolic acidosis, methanol, ethylene glycol, diethylene glycol, propylene glycol, and fomepizole. Each article was reviewed for additional references. The diagnosis of toxic alcohol exposure is often made on the basis of this history and physical findings along with an increase in the serum osmol and anion gaps. However, an increase in the osmol and/or anion gaps is not always present. Definitive detection in blood requires gas or liquid chromatography, laborious and expensive procedures which are not always available. Newer methods including a qualitative colorimetric test for detection of all alcohols or enzymatic tests for a specific alcohol might allow for more rapid diagnosis. Exposure to toxic alcohols is associated with cellular dysfunction and increased risk of death. Treatment, if initiated early, can markedly improve outcome, but present methods of diagnosis including changes in serum osmol and anion gap, and use of gas or liquid chromatography have important limitations. Development of more rapid and effective tests for detection of these intoxications is essential for optimal care of patients.

  12. Crystallization Kinetics of Indomethacin/Polyethylene Glycol Dispersions Containing High Drug Loadings.

    PubMed

    Duong, Tu Van; Van Humbeeck, Jan; Van den Mooter, Guy

    2015-07-06

    The reproducibility and consistency of physicochemical properties and pharmaceutical performance are major concerns during preparation of solid dispersions. The crystallization kinetics of drug/polyethylene glycol solid dispersions, an important factor that is governed by the properties of both drug and polymer has not been adequately explored, especially in systems containing high drug loadings. In this paper, by using standard and modulated differential scanning calorimetry and X-ray powder diffraction, we describe the influence of drug loading on crystallization behavior of dispersions made up of indomethacin and polyethylene glycol 6000. Higher drug loading increases the amorphicity of the polymer and inhibits the crystallization of PEG. At 52% drug loading, polyethylene glycol was completely transformed to the amorphous state. To the best of our knowledge, this is the first detailed investigation of the solubilization effect of a low molecular weight drug on a semicrystalline polymer in their dispersions. In mixtures containing up to 55% indomethacin, the dispersions exhibited distinct glass transition events resulting from amorphous-amorphous phase separation which generates polymer-rich and drug-rich domains upon the solidification of supercooled polyethylene glycol, whereas samples containing at least 60% drug showed a single amorphous phase during the period in which crystallization normally occurs. The current study demonstrates a wide range in physicochemical properties of drug/polyethylene glycol solid dispersions as a result of the complex nature in crystallization of this system, which should be taken into account during preparation and storage.

  13. Hyperosmolar metabolic acidosis in burn patients exposed to glycol based topical antimicrobials-A systematic review.

    PubMed

    Leibson, Tom; Davies, Paige; Nickel, Cheri; Koren, Gideon

    2018-06-01

    The well documented susceptibility of burn patients to acquired infections via damaged skin mandates application of antimicrobial agents. These agents are dissolved in various vehicles that augment skin absorption thus allowing greater efficacy. Polyethylene glycol (PEG) and Propylene glycol (PropG) are among the most commonly used vehicles, and both have been used in numerous medications and cosmetic products over the past few decades. Rarely, burn patients treated with agents containing these glycols present with a life threatening systemic toxidrome of hyperosmolar metabolic acidosis. We present a systematic review of outcomes in burn patients treated with similar agents. Relevant studies were identified through systematic searches conducted in MEDLINE (Ovid), Embase (Ovid), CENTRAL (Ovid), and Web of Science (Thomson Reuters), from database inception to August 4th, 2016. All publications of clinical burn patient studies included at least one arm receiving a glycol based topical therapy. A total of 61 studies involving 10,282 patients and 4 different antimicrobial medications fulfilled the inclusion criteria. Nine burn patients (0.09%) were documented to present with hyperosmolar metabolic acidosis during topical silver sulfadiazine treatment. Propylene glycol isolated from their blood accounted for the high osmole gap. This first systematic review found very few cases of documented hyperosmolar metabolic acidosis, all within one study that had set to specifically explore this toxidrome. High index of suspicion with frequent osmolar gap monitoring may help identify future toxicities in a timely manner. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  14. Biocidal Properties of Anti-Icing Additives for Aircraft Fuels

    PubMed Central

    Neihof, R. A.; Bailey, C. A.

    1978-01-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol. PMID:646356

  15. Effects of polyphenols from grape seeds on renal lithiasis.

    PubMed

    Grases, Felix; Prieto, Rafel M; Fernandez-Cabot, Rafel A; Costa-Bauzá, Antonia; Tur, Fernando; Torres, Jose Juan

    2015-01-01

    Nephrolithiasis is a complex disease that results from a combination of factors related to both urine composition and kidney morphoanatomy. Development of calcium oxalate monohydrate papillary calculi is linked to initial subepithelial calcification of renal papilla. Progressive tissue calcification depends on preexisting injury and involves reactive oxygen species. Many plant extracts that protect against oxidative stress manifest antilithiasic activity. Our study focused on determining the effects of polyphenols on a lithiasis rat model. Rats were pretreated with polyphenols and grape seed extracts, followed by posterior induction of hyperoxalosis via treatment with ethylene glycol plus NH4Cl. The concentrations of calcium and other elements in kidney were determined, along with histological examination of kidney and 24 h urine analysis. Significant differences were observed in the renal calcium content between the control plus ethylene glycol-treated group and the epicatechin plus ethylene glycol-treated, red grape seed extract plus ethylene glycol-treated, and white grape seed extract plus ethylene glycol-treated groups, with reductions of about 50%. The antioxidant activity of polyphenols extracted from red and white grape seeds may be critical in the prevention of calcium oxalate monohydrate papillary calculus formation, particularly if calculi are induced by lesions caused by cytotoxic compounds with oxidative capacity.

  16. Broadband terahertz dynamics of propylene glycol monomer and oligomers

    NASA Astrophysics Data System (ADS)

    Koda, Shota; Mori, Tatsuya; Kojima, Seiji

    2016-12-01

    We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.

  17. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: comparison with conventional liposomes.

    PubMed

    Elmoslemany, Riham M; Abdallah, Ossama Y; El-Khordagui, Labiba K; Khalafallah, Nawal M

    2012-06-01

    Propylene glycol (PG)-phospholipid vesicles have been advocated as flexible lipid vesicles for enhanced skin delivery of drugs. To further characterize the performance of these vesicles and to address some relevant pharmaceutical issues, miconazole nitrate(MN)-loaded PG nanoliposomes were prepared and characterized for vesicle size, entrapment efficiency, in vitro release, and vesicle stability. An issue of pharmaceutical importance is the time-dependent, dilution-driven diffusion of propylene glycol out of the vesicles. This was addressed by assessing propylene glycol using gas chromatography in the separated vesicles and monitoring its buildup in the medium after repeated dispersion of separated vesicles in fresh medium. Further, the antifungal activity of liposomal formulations under study was assessed using Candida albicans, and their in vitro skin permeation and retention were studied using human skin. At all instances, blank and drug-loaded conventional liposomes were included for comparison. The results provided evidence of controlled MN delivery, constant percent PG uptake in the vesicles (≈45.5%) in the PG concentration range 2.5 to 10%, improved vesicle stability, and enhanced skin deposition of MN with minimum skin permeation. These are key issues for different formulation and performance aspects of propylene glycol-phospholipid vesicles.

  18. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers.

    PubMed

    Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P

    2010-05-01

    Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.

  19. 40 CFR 63.773 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... devices: (i) Except for control devices for small glycol dehydration units, a boiler or process heater in...) Except for control devices for small glycol dehydration units, a boiler or process heater with a design...

  20. 40 CFR 63.773 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... devices: (i) Except for control devices for small glycol dehydration units, a boiler or process heater in...) Except for control devices for small glycol dehydration units, a boiler or process heater with a design...

  1. Photorespiration.

    ERIC Educational Resources Information Center

    Rao, K. K.; Hall, D. O.

    1982-01-01

    Topics in this discussion of photorespiration (light-dependent oxygen consumption and carbon dioxide evolution from leaves) include: (1) the biochemistry of photorespiration; (2) ribulose biphosphate carboxylase and glycollate synthesis; (3) metabolism of glycollate; (4) plants lacking photorespiratory systems; and (5) advantages of…

  2. Case Report of a Fatal Antifreeze Ingestion with a Record High Level and Impressive Renal Crystal Deposition.

    PubMed

    Erickson, Heidi L

    2016-01-01

    Ethylene glycol, methanol, and diethylene glycol are readily available in many household and commercially available products. While these alcohols are relatively nontoxic themselves, their acidic metabolites are toxic and can result in significant morbidity and mortality. Herein we report a lethal case of massive ethylene glycol ingestion in a suicide with a record high level (1254 mg/dL) and images of the histologic examination of the kidneys revealing impressive calcium oxalate crystal deposition. Autopsy findings also showed evidence of mild cerebral edema.

  3. Solvothermal synthesis of fusiform hexagonal prism SrCO{sub 3} microrods via ethylene glycol solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Liange; Du Fanglin

    2007-08-07

    Fusiform hexagonal prism SrCO{sub 3} microrods were prepared by a simple solvothermal route at 120 deg. C, and characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. By controlling the content of ethylene glycol (EG), it was found that ethylene glycol (EG) played an important role in the formation of such SrCO{sub 3} microrods. Finally, effects of other solvents on the products, including 1,2-propanediol and glycerin, were also investigated.

  4. Nanofluids and a method of making nanofluids for ground source heat pumps and other applications

    DOEpatents

    Olson, John Melvin

    2013-11-12

    This invention covers nanofluids. Nanofluids are a combination of particles between 1 and 100 nanometers, a surfactant and the base fluid. The nanoparticles for this invention are either pyrogenic nanoparticles or carbon nanotubes. These nanofluids improve the heat transfer of the base fluids. The base fluid can be ethylene glycol, or propylene glycol, or an aliphatic-hydrocarbon based heat transfer fluid. This invention also includes a method of making nanofluids. No surfactant is used to suspend the pyrogenic nanoparticles in glycols.

  5. Management of poisoning with ethylene glycol and methanol in the UK: a prospective study conducted by the National Poisons Information Service (NPIS).

    PubMed

    Thanacoody, Ruben H K; Gilfillan, Claire; Bradberry, Sally M; Davies, Jeremy; Jackson, Gill; Vale, Allister J; Thompson, John P; Eddleston, Michael; Thomas, Simon H L

    2016-01-01

    Poisoning with methanol and ethylene glycol can cause serious morbidity and mortality. Specific treatment involves the use of antidotes (fomepizole or ethanol) with or without extracorporeal elimination techniques. A prospective audit of patients with methanol or ethylene glycol poisoning reported by telephone to the National Poisons Information Service (NPIS) in the UK was conducted during the 2010 calendar year and repeated during the 2012 calendar year. The study was conducted to determine the frequency of clinically significant systemic toxicity and requirement for antidote use and to compare outcomes and rates of adverse reaction and other problems in use between ethanol and fomepizole. The NPIS received 1315 enquiries involving methanol or ethylene glycol, relating to 1070 individual exposures over the 2-year period. Of the 548 enquiries originating from hospitals, 329 involved systemic exposures (enteral or parenteral as opposed to topical exposure), of which 216 (66%) received an antidote (204 for ethylene glycol and 12 for methanol), and 90 (27%) extracorporeal treatment (86 for ethylene glycol and 4 for methanol). Comparing ethanol with fomepizole, adverse reactions (16/131 vs. 2/125, p < 0.001) and administration errors, lack of monitoring, or inappropriate use (45/131 vs. 6/125, p < 0.0001) were reported more commonly, whereas non-availability and inadequate stocks were reported less commonly (6/125 vs. 33/131, p < 0.0001). Eight fatalities and complications or sequelae occurred in 21 patients. Poor outcome (death, complications, or sequelae) was significantly associated with older age, higher poisoning severity scores, and lower pH on admission (p < 0.001). Systemic poisoning with ethylene glycol or methanol results in hospitalisation at least 2-3 times per week on average in the UK. No difference in outcome was detected between ethanol and fomepizole-treated patients, but ethanol was associated with more frequent adverse reactions.

  6. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    NASA Astrophysics Data System (ADS)

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and similar artificial protein-graft-poly(ethylene glycol) materials with varying protein elements for improved wound healing might serve as biosynthetic implant materials or wound dressings that degrade in synchrony with the formation of a variety of target tissues.

  7. Orange juice intake reduces patient discomfort and is effective for bowel cleansing with polyethylene glycol during bowel preparation.

    PubMed

    Choi, Hong Seok; Shim, Chan Sup; Kim, Gyu Won; Kim, Jung Seok; Lee, Sun-Young; Sung, In-Kyung; Park, Hyung Seok; Kim, Jeong Hwan

    2014-10-01

    Many patients report discomfort because of the unpleasant taste of bowel preparation solutions. This study aimed to determine whether adding orange juice to 2 L of polyethylene glycol plus ascorbic acid is effective for reducing patient discomfort and improving palatability during bowel preparation. This was a single-blinded, randomized controlled trial. The study was conducted at a tertiary referral hospital and a generalized hospital. Consecutive outpatients and inpatients were randomly allocated to drink 2 L of polyethylene glycol-ascorbic acid or 2 L of polyethylene glycol-ascorbic acid with orange juice in a single dose or a split dose. Tolerability, palatability score, willingness, and related adverse events were investigated by questionnaires. Bowel cleansing was rated using the Aronchick scale. Each score was graded on a 5-point scale. A total of 107 patients, 53 in the orange juice group and 54 in the polyethylene glycol-ascorbic acid group who underwent elective colonoscopy were enrolled. The palatability score (mean ± SD) was higher in the orange juice group than in the control group (2.36 ± 0.76 vs 1.78 ± 0.88; p = 0.005). Nausea was less frequent in the orange juice group (26.4% vs 59.3%; p = 0.001). Total amount of bowel preparation ingested was not significantly different between the groups (p = 0.44). The bowel preparation score (mean ± SD) was not significantly different (1.49 ± 0.80 vs 1.43 ± 0.77; p = 0.94). Willingness to repeat the same process was higher in the orange juice group (90.4% vs 66.7%; p = 0.003). This study is limited because only ambulatory patients were enrolled. Orange juice intake before drinking 2 L of polyethylene glycol-ascorbic acid for colonoscopy can reduce patient discomfort, resulting in improved acceptability and patient compliance. This method is as effective for bowel cleansing as polyethylene glycol.

  8. Triethylene Glycol Monomethyl Ether; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule under section 4 of the Toxic Substances Control Act (TSCA) requiring manufacturers and processors of triethylene glycol monomethyl ether (TGME, CAS No. 112-35-6) to perform developmental neurotoxicity tasting.

  9. Inert Reassessment Document for Ethylene Glycol

    EPA Pesticide Factsheets

    Ethylene Glycol has many uses and are also used as antifreeze and deicers, as solvents, humectants, as chemical intermediates in the synthesis of other chemicals, and as components of many products such as brake fluids, lubricants, inks,and lacquers.

  10. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... [2,2-dinitropropyl acrylate]. DNPD [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol.... Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives. Nitronium perchlorate propellant...

  11. Photodynamic therapy of tumors with pyropheophorbide-a-loaded polyethylene glycol-poly(lactic-co-glycolic acid) nanoparticles.

    PubMed

    Liu, Hui; Zhao, Mei; Wang, Jin; Pang, Mingpei; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan; Hong, Zhangyong

    Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide- a -loaded polyethylene glycol-poly(lactic- co -glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm 2 , 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide- a has the potential to be used in tumor-targeted PDT.

  12. Enhancement of convective heat transfer coefficient of ethylene glycol base cuprous oxide (Cu2O) nanofluids

    NASA Astrophysics Data System (ADS)

    Hassan, Ali; Ramzan, Naveed; Umer, Asim; Ahmad, Ayyaz; Muryam, Hina

    2018-02-01

    The enhancement in the convective heat transfer coefficient of the ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids were investigated. The nanofluids of different volume concentrations i-e 1%, 2.5% and 4.5% were prepared by the two step method. Cuprous oxide (Cu2O) nanoparticles were ultrasonically stirred for four hours in the ethylene glycol (EG). The experimental study has been performed through circular tube geometry in laminar flow regime at average Reynolds numbers 36, 71 and 116. The constant heat flux Q = 4000 (W/m2) was maintained during this work. Substantial enhancement was observed in the convective heat transfer coefficient of ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids than the base fluid. The maximum 74% enhancement was observed in convective heat transfer coefficient at 4.5 vol% concentration and Re = 116.

  13. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R

    2012-06-01

    The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Preparation and characterization of PVDF separators for lithium ion cells using hydroxyl-terminated polybutadiene grafted methoxyl polyethylene glycol (HTPB-g-MPEG) as additive

    NASA Astrophysics Data System (ADS)

    Li, Hao; Niu, Dong-Hui; Zhou, Hui; Chao, Chun-Ying; Wu, Li-Jun; Han, Pei-Lin

    2018-05-01

    Hydroxyl-terminated polybutadiene grafted methoxyl polyethylene glycol (HTPB-g-MPEG) with different arm length were synthesized by grafting methoxyl poly(ethylene glycol)s (MPEGs, Mn = 350, 750, 1900 and 5000, respectively) to the hydroxyl-terminated polybutadiene (HTPB) molecule using isophorone diisocyanate (IPDI) as the coupling agent, and blended with PVDF to fabricate porous separators via phase inversion process. By measuring the composition, morphology and ion conductivity etc., the influence of HTPB-g-MPEG on structure and property of blend separators were discussed. Compared with pure PVDF separator with comparable porous structure, the adoption of HTPB-g-MPEG could not only decrease the crystallinity, but also enhance the stability of entrapped liquid electrolyte and corresponding ion conductivity. The cells assembled with such separators showed good initial discharge capacity and cyclic stability.

  15. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    PubMed Central

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  16. Analysis of eight glycols in serum using LC-ESI-MS-MS.

    PubMed

    Imbert, Laurent; Saussereau, Elodie; Lacroix, Christian

    2014-01-01

    A liquid chromatography coupled with electrospray tandem mass spectrometry method was developed for the analysis of ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, 1,2-butanediol, 2,3-butanediol, 1,2-propanediol and 1,3-propanediol, in serum after a Schotten-Baumann derivatization by benzoyl chloride. Usual validation parameters were tested: linearity, repeatability and intermediate precision, limits of detection and quantification, carry over and ion suppression. Limits of detection were between 0.18 and 1.1 mg/L, and limits of quantification were between 0.4 and 2.3 mg/L. Separation of isomers was possible either chromatographically or by selecting specific multiple reaction monitoring transitions. This method could be a useful tool in case of suspected intoxication with antifreeze agents, solvents, dietary supplements or some medical drug compounds. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Synthesis and characterization of amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) for drug delivery.

    PubMed

    Li, Hongchun; Niu, Yongsheng

    2018-08-01

    A novel amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) (PEG-PPC-PEG) was synthesized via the dicyclohexylcarbodiimide condensation reaction of double PEG-bis-amine and HOOC-PPC-COOH. The obtained copolymer was characterized by NMR to determine its structure. Using the PEG-PPC-PEG as the carrier and using doxorubicin (DOX) as a model drug, DOX-loaded nanoparticles with core shell structure were synthesized by self-assembly in water. The nanoparticles properties such as particle size, drug loading, encapsulation efficiency (EE) and drug release behavior were investigated as a function of the hydrophobic block length of PPC segments and compared with each other. The results showed that the EE was up to 88.8%. Nanoparticles were found to have a certain effect on the controlled release of DOX. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Early, patient-initiated treatment of herpes labialis with topical 10% acyclovir.

    PubMed Central

    Spruance, S L; Crumpacker, C S; Schnipper, L E; Kern, E R; Marlowe, S; Arndt, K A; Overall, J C

    1984-01-01

    To determine whether topical acyclovir in polyethylene glycol could reduce the severity of herpes simplex labialis if applied immediately after onset of a recurrence, 10% acyclovir in polyethylene glycol ointment or polyethylene glycol alone was prospectively dispensed to 352 patients in a double-blind, randomized trial. Sixty-nine subjects initiated treatment in the prodrome (57%) or erythema (43%) stage and were followed by clinical and virological criteria. The healing time (6.0 days), maximum lesion area (42 mm2), vesicle or ulcer formation (91%), and maximum lesion virus titer (4.8 log10 PFU) in the drug recipients were not reduced in comparison with those who received the vehicle (5.2 days, 30 mm2, 75%, and 4.5 log10 PFU, respectively). Topical acyclovir in polyethylene glycol was ineffective for the treatment of herpes labialis despite an optimum therapeutic opportunity. PMID:6732224

  19. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  20. Microscopic Fuel Particles Produced by Self-Assembly of Actinide Nanoclusters on Carbon Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Chongzheng

    2016-10-17

    Many consider further development of nuclear power to be essential for sustained development of society; however, the fuel forms currently used are expensive to recycle. In this project, we sought to create the knowledge and knowhow that are needed to produce nanocomposite materials by directly depositing uranium nanoclusters on networks of carbon-­ based nanomaterials. The objectives of the proposed work were to (1) determine the control of uranium nanocluster surface chemistry on nanocomposite formation, (2) determine the control of carbon nanomaterial surface chemistry on nanocomposite formation, and (3) develop protocols for synthesizing uranium-­carbon nanomaterials. After examining a wide variety ofmore » synthetic methods, we show that synthesizing graphene-­supported UO 2 nanocrystals in polar ethylene glycol compounds by polyol reduction under boiling reflux can enable the use of an inexpensive graphene precursor graphene oxide in the production of uranium-carbon nanocomposites in a one-­pot process. We further show that triethylene glycol is the most suitable solvent for producing nanometer-­sized UO 2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-­supported UO 2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO 2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, preventing oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO nanocrystals for further investigation and development under ambient conditions.« less

  1. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process.

    PubMed

    Feng, Bingmei; Wang, Huixin; Wang, Dongniu; Yu, Huilong; Chu, Yi; Fang, Hai-Tao

    2014-11-06

    After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO₂ coated-carbon nanotube (CNT), SnO₂ coated-CNT, Cu₂O/CuO coated-CNT and TiO₂ coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO₂-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO₂ coated-carboxylated CNTs and TiO₂-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO₂ coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO₂ of the former reaches 85 mA h g(-1), twice as high as that of the latter.

  2. Diethylene glycol dinitrate (DEGDN)

    Integrated Risk Information System (IRIS)

    Diethylene glycol dinitrate ( DEGDN ) ; CASRN 693 - 21 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments

  3. Ethylene glycol

    Integrated Risk Information System (IRIS)

    Ethylene glycol ; CASRN 107 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  4. Propylene glycol

    Integrated Risk Information System (IRIS)

    Propylene glycol ; CASRN 57 - 55 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  5. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... is each glycol dehydration unit. (c) The owner or operator of a facility that does not contain an... meters per day, where glycol dehydration units are the only HAP emission source, is not subject to the...

  6. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is each glycol dehydration unit. (c) The owner or operator of a facility that does not contain an... meters per day, where glycol dehydration units are the only HAP emission source, is not subject to the...

  7. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... is each glycol dehydration unit. (c) The owner or operator of a facility that does not contain an... meters per day, where glycol dehydration units are the only HAP emission source, is not subject to the...

  8. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol dinitrate]. Erythritol tetranitrate explosives..., trinitroglycerine]. Nitroglycide. Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives...

  9. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol dinitrate]. Erythritol tetranitrate explosives..., RNG, nitro, glyceryl trinitrate, trinitroglycerine]. Nitroglycide. Nitroglycol [ethylene glycol...

  10. Propylene glycol monomethyl ether (PGME)

    Integrated Risk Information System (IRIS)

    Propylene glycol monomethyl ether ( PGME ) ; CASRN 107 - 98 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assess

  11. Triethylene glycol monobutyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monobutyl ether ; CASRN 143 - 22 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  12. Triethylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monoethyl ether ; CASRN 112 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  13. Propylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Propylene glycol monoethyl ether ; CASRN 52125 - 53 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  14. New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.

    PubMed

    Barouti, Ghislaine; Liow, Sing Shy; Dou, Qingqing; Ye, Hongye; Orione, Clément; Guillaume, Sophie M; Loh, Xian Jun

    2016-07-18

    The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)

  15. Inert Reassessment Document for Propylene glycol alginate - CAS No. 9005-37-2

    EPA Pesticide Factsheets

    As an inert pesticide ingredient, propylene glycol alginate is exempt from the requirement for a tolerance when used as a deforming agent in pesticide formulations applies to growing crops, or to raw agricultural commodities after harvest.

  16. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... [2,2-dinitropropyl acrylate]. DNPD [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol.... Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives. Nitronium perchlorate propellant...

  17. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... [2,2-dinitropropyl acrylate]. DNPD [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol.... Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives. Nitronium perchlorate propellant...

  18. Fate of ethylene glycol in the environment : final report.

    DOT National Transportation Integrated Search

    1990-01-01

    The Louisiana Department of Transportation and Development uses ethylene glycol (EG) as a deicing agent on bridges. This study was undertaken to assess the impact of EG on workers and the environment after spraying. The objectives of the project were...

  19. 78 FR 19021 - Petitions for Modification of Application of Existing Mandatory Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... exclusively for this purpose. The oil will be further checked for water and ethylene glycol in shop storage tanks prior to blending with diesel fuel. If either is observed, the water and or ethylene glycol will...

  20. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (External Review Draft)

    EPA Science Inventory

    EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene glycol monobutyl ether that will appear on the Integrated Risk Information System (IRIS) database.

  1. Molecularly uniform poly(ethylene glycol) certified reference material

    NASA Astrophysics Data System (ADS)

    Takahashi, Kayori; Matsuyama, Shigetomo; Kinugasa, Shinichi; Ehara, Kensei; Sakurai, Hiromu; Horikawa, Yoshiteru; Kitazawa, Hideaki; Bounoshita, Masao

    2015-02-01

    A certified reference material (CRM) for poly(ethylene glycol) with no distribution in the degree of polymerization was developed. The degree of polymerization of the CRM was accurately determined to be 23. Supercritical fluid chromatography (SFC) was used to separate the molecularly uniform polymer from a standard commercial sample with wide polydispersity in its degree of polymerization. Through the use of a specific fractionation system coupled with SFC, we are able to obtain samples of poly(ethylene glycol) oligomer with exact degrees of polymerization, as required for a CRM produced by the National Metrology Institute of Japan.

  2. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.; King, W. D.

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H 2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  3. Physicochemical properties of valsartan and the effect of ethyl alcohol, propylene glycol and pH on its solubility.

    PubMed

    Mbah, C J

    2005-11-01

    The aqueous solubility and partition coefficient of valsartan were determined at room temperature. The effect of ethyl alcohol, propylene glycol and pH on its solubility was also investigated. It was found that both solvents increased the solubility of the drug in water. The solubilizing power of ethyl alcohol was found to be higher than that of propylene glycol. Valsartan solubility was also observed to increase at high pH values and its lipophilicity wasdemonstrated by the high positive value of the logarithm of partition coefficient.

  4. Oxidized starch solutions for environmentally friendly aircraft deicers.

    PubMed

    Plahuta, Joseph M; Teel, Amy L; Ahmad, Mushtaque; Beutel, Mark W; Rentz, Jeremy A; Watts, Richard J

    2011-09-01

    Deicers currently used for aircraft deicing, including ethylene glycol and propylene glycol, pose significant threats to surface waters, as a result of high biochemical oxygen demand (BOD) and toxicity to aquatic organisms. Oxidized starch may provide a less toxic deicer with lower BOD. The freezing point depression of starch formulations oxidized using hydrogen peroxide and catalysts (i.e., catalyzed hydrogen peroxide [H2O2] propagations-CHP) was 28 degrees C, and viscosities similar to those of commercial deicers were achieved after post-treatment with granular activated carbon. The most effective oxidized starch formulation exerted a 5-day BOD up to 6 times lower than glycol deicers (103 versus 400 to 800 g O2/L). Toxicity to Ceriodaphnia dubia for this formulation (48-hour lethal concentration, 50% [LC50] of 2.73 g/L) was greater than pure propylene glycol (13.1 g/ L), but lower than propylene glycol deicer formulations (1.02 g/L). Organic acids were identified by gas chromatography/mass spectrometry as the primary constituents in the oxidized starch solution. The proposed deicing system would provide effective deicing while exerting minimal environmental effects (e.g., lower toxicity to aquatic organisms and lower BOD). Furthermore, these deicers could be made from waste starch, promoting sustainability.

  5. Electrodeposition of Fe{sub 3}O{sub 4} layer from solution of Fe{sub 2}(SO{sub 4}){sub 3} with addition ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlan, Dahyunir, E-mail: dahyunir@yahoo.com; Asrar, Allan

    2016-03-11

    The electrodeposition of Fe{sub 3}O{sub 4} layer from the solution Fe{sub 2}(SO{sub 4}){sub 3} with the addition of ethylene glycol on Indium Tin Oxide (ITO) substrate has been performed. The electrodeposition was carried out using a voltage of 5 volts for 120 seconds, with and without the addition of 2% wt ethylene glycol. Significant effects of temperature on the resulting the samples is observed when they are heated at 400 °C. Structural characterization using X-ray diffraction (XRD) shows that all samples produce a layer of Fe{sub 3}O{sub 4} with particle size less than 50 nanometers. The addition of ethylene glycolmore » and the heating of the sample causes a shrinkage in particle size. The scanning electron microscopy (SEM) characterization shows that Fe{sub 3}O{sub 4} layer resulting from the process of electrodeposition of Fe{sub 2}(SO{sub 4}){sub 3} without ethylene glycol, independent of whether the sample is heated or not, is uneven and buildup. Layer produced by the addition of ethylene glycol without heating produces spherical particles. On contrary, when the layer is heated the spherical particles transform to irregularly-shaped particles with smaller size.« less

  6. Effects of Polyphenols from Grape Seeds on Renal Lithiasis

    PubMed Central

    Grases, Felix; Prieto, Rafel M.; Fernandez-Cabot, Rafel A.; Costa-Bauzá, Antonia; Tur, Fernando; Torres, Jose Juan

    2015-01-01

    Nephrolithiasis is a complex disease that results from a combination of factors related to both urine composition and kidney morphoanatomy. Development of calcium oxalate monohydrate papillary calculi is linked to initial subepithelial calcification of renal papilla. Progressive tissue calcification depends on preexisting injury and involves reactive oxygen species. Many plant extracts that protect against oxidative stress manifest antilithiasic activity. Our study focused on determining the effects of polyphenols on a lithiasis rat model. Rats were pretreated with polyphenols and grape seed extracts, followed by posterior induction of hyperoxalosis via treatment with ethylene glycol plus NH4Cl. The concentrations of calcium and other elements in kidney were determined, along with histological examination of kidney and 24 h urine analysis. Significant differences were observed in the renal calcium content between the control plus ethylene glycol-treated group and the epicatechin plus ethylene glycol-treated, red grape seed extract plus ethylene glycol-treated, and white grape seed extract plus ethylene glycol-treated groups, with reductions of about 50%. The antioxidant activity of polyphenols extracted from red and white grape seeds may be critical in the prevention of calcium oxalate monohydrate papillary calculus formation, particularly if calculi are induced by lesions caused by cytotoxic compounds with oxidative capacity. PMID:25883748

  7. Characterization of Propylene Glycol-Mitigated Freeze/Thaw Agglomeration of a Frozen Liquid nOMV Vaccine Formulation by Static Light Scattering and Micro-Flow Imaging.

    PubMed

    Mensch, Christopher D; Davis, Harrison B; Blue, Jeffrey T

    2015-01-01

    The purpose of this work was to investigate the susceptibility of an aluminum adjuvant and an aluminum-adjuvanted native outer membrane vesicle (nOMV) vaccine formulation to freeze/thaw-induced agglomeration using static light scattering and micro-flow Imaging analysis; and to evaluate the use of propylene glycol as a vaccine formulation excipient by which freeze/thaw-induced agglomeration of a nOMV vaccine formulation could be mitigated. Our results indicate that including 7% v/v propylene glycol in an nOMV containing aluminum adjuvanted vaccine formulation, mitigates freeze/thaw-induced agglomeration. We evaluated the effect of freeze-thawing on an aluminum adjuvant and an aluminum adjuvanted native outer membrane vesicle (nOMV) vaccine formulation. Specifically, we characterized the freeze/thaw-induced agglomeration through the use of static light scattering, micro-flow imaging, and cryo-electron microscopy analysis. Further, we evaluated the use of 0-9% v/v propylene glycol as an excipient which could be included in the formulation for the purpose of mitigating the agglomeration induced by freeze/thaw. The results indicate that using 7% v/v propylene glycol as a formulation excipient is effective at mitigating agglomeration of the nOMV vaccine formulation, otherwise induced by freeze-thawing. © PDA, Inc. 2015.

  8. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Chen, Tsung-Liang

    2011-01-01

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  9. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  10. Preparation of Hybrid Nanoparticle Nucleating Agents and Their Effects on the Crystallization Behavior of Poly(ethylene terephthalate)

    PubMed Central

    Han, Zhenzhen; Wang, Yao; Wang, Jiuxing; Wang, Shichao; Zhuang, Hongwei; Liu, Jixian; Huang, Linjun; Wang, Yanxin; Wang, Wei; Belfiore, Laurence A.; Tang, Jianguo

    2018-01-01

    In this research contribution, the primary objective was to enhance the crystallization behavior of poly(ethylene terephthalate) (PET). To accomplish this tack, three kinds of new nucleating agents SiO2-diethylene glycol-LMPET (PET-3), SiO2-triethylene glycol–LMPET(PET-4) and SiO2-tetraethylene glycol-LMPET (PET-5) nucleating agents were prepared via grafting different oligomers (diethylene glycol; triethylene glycol and tetraethylene glycol) to the surface of nano-SiO2 and then linking to the low molecular weight poly(ethylene terephthalate) (LMPET). These nano-particle nucleating agents facilitated the crystallization of PET. Differential scanning calorimetry (DSC) studies of the composites that pure PET blended with PET-3, PET-4 and PET-5 indicated that the longer ethoxy segment in the nucleating agents exhibited (i) higher degrees of crystallinity; (ii) faster rates of crystallization; and (iii) higher crystallization temperatures. The Jeziorny method was employed to analyze the non-isothermal crystallization kinetics of the composites. These works demonstrated that the PET-3, PET-4 and PET-5 were attractive nucleating agents for poly(ethylene terephthalate), and the longer the chain length of the ethoxy segment in the nucleating agents, the more efficient the nucleation effect. PMID:29641456

  11. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    PubMed Central

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  12. Analysis of glycols, glycol ethers, and other volatile organic compounds present in household water-based hand pump sprays.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Tanaka-Kagawa, Toshiko; Jinnno, Hideto

    2017-11-10

    The aim of this investigation is to clarify the types and concentrations of VOCs present in various commercial household water-based hand pump spray products used in Japan, and to estimate their average concentrations in indoor air when the spray product is used. We selected glycol and glycol ethers as the main target compounds, as these chemicals were detected at high frequencies and concentrations in a national survey of Japanese indoor air pollution. The extraction of these chemicals using graphite carbon cartridges was examined, with good recoveries and reproducibilities being obtained. Eighteen chemicals were analyzed in 54 commercial products and 8 chemicals were detected. More specifically, dipropylene glycol (DPG) was present in 44 samples (1.1 × 10 1 -1.8 × 10 4 μg/mL); propylene glycol (PG) was present in 22 samples (1.5 × 10 1 -2.9 × 10 4 μg/mL); diethylene glycol monoethyl ether (DGMEE) was found in 15 samples (trace amount-1.9 × 10 3 μg/mL); diethylene glycol (DEG) was present in 9 samples (1.0 × 10 1 -2.4 × 10 3 μg/mL); 1,3-butandiol (13BG) was found in 5 samples (trace amount-7.4 × 10 3 μg/mL); 2-ethyl-1-hexanol (2E1H) was detected in 5 samples (3.2 × 10 -1 -4.4 × 10 1 μg/mL); diethylene glycol monobutyl ether (DGMBE) was present in 4 samples (2.1 × 10 1 -7.1 × 10 1 μg/mL); and 3-methoxy-3-methylbutanol (MMB) was found in 2 samples (2.4 × 10 1 -4.7 × 10 2 μg/mL). In addition, the average concentrations of these chemicals in indoor air were estimated using their maximum concentrations observed in the spray product. The estimated average concentrations of the chemicals in indoor air were determined to range between 1.0 × 10 -2 and 1.0 mg/m 3 , with the exception of 2E1H and DGMBE. Furthermore, the estimated average concentrations of PG, 13BG, and DGMEE in indoor air were comparable to or higher than those reported in a national survey of Japanese indoor air pollution. It therefore appeared that household water-based hand pump sprays may contribute to the presence of these chemicals in indoor air. In contrast, estimated average concentrations of 2E1H in indoor air were low, its concentrations observed in a national survey of Japanese indoor air pollution are likely due to the use of plasticizers and paints.

  13. Ethylene glycol monobutyl ether (EGBE) (2-Butoxyethanol)

    Integrated Risk Information System (IRIS)

    Ethylene glycol monobutyl ether ( EGBE ) ( 2 - Butoxyethanol ) ; CASRN 111 - 76 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I (

  14. EVALUATION OF SINK EFFECTS ON VOCS FROM A LATEX PAINT

    EPA Science Inventory

    The sink strength of two common indoor materials, a carpet and a gypsum board, was evaluated by environmental chamber tests with four volatile organic compounds (VOCs): propylene glycol, ethylene glycol, 2-(2-butoxyethoxy)ethanol (BEE), and texanol. These oxygenated compounds rep...

  15. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.7255 Polyethyleneamine crosslinked with substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to...

  16. 78 FR 78748 - 2,5-Furandione, polymer With ethenylbenzene, Reaction Products With polyethylene-polypropylene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ..., polymer With ethenylbenzene, Reaction Products With polyethylene-polypropylene glycol 2-aminopropyl Me...-furandione, polymer with ethenylbenzene, reaction products with polyethylene-polypropylene glycol 2... residues of 2,5-furandione, polymer with ethenylbenzene, reaction products with polyethylene-polypropylene...

  17. 40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...

  18. 40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...

  19. 40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...

  20. 40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...

  1. 40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...

  2. 16 CFR 1500.231 - Guidance for hazardous liquid chemicals in children's products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hazardous chemicals, such as mercury, ethylene glycol, diethylene glycol, methanol, methylene chloride... purchasing products for resale, importers, distributors, and retailers obtain assurances from manufacturers... retailers obtain assurances from the manufacturers that liquid-filled children's products do not contain...

  3. Effects of glycolic acid on light-induced skin pigmentation in Asian and caucasian subjects.

    PubMed

    Tsai, T F; Bowman, P H; Jee, S H; Maibach, H I; Paul, B H

    2000-08-01

    Topical use of alpha-hydroxy acid (AHA) may increase skin photosensitivity, as demonstrated by increased numbers of sunburst cells. However, effects of AHA on tanning have not been studied. Our purpose was to study whether short-term use of glycolic acid hastens resolution of pre-existing light-induced pigmentation and whether the skin becomes tan more easily in Asian and Caucasian subjects after such treatment. Six Asian and six Caucasian volunteers received separate irradiations of UVB and UVA to both sides of the lower back. In a double-blind fashion, patients then applied a 10% glycolic acid gel, pH 3.52, to one side of the back, including the irradiated area, and the contralateral extensor forearms once daily for 7 days and then twice daily for 2 weeks. A placebo gel, pH 5.75, was applied to the opposite sides. The subjects returned for measurement of residual tanning with a colorimeter and received additional irradiation to forearms and a second site on the back. Resulting pigmentation was measured immediately after irradiation, at 2 hours, and at 1 week. Increased UVB-induced skin tanning occurred on the forearm and the lower back in both races in areas pretreated with glycolic acid. UVA also caused increased tanning, but only on the extensor forearms in Asian subjects. Treatment with glycolic acid for 3 weeks had no effect on pre-existing light-induced pigmentation. Short-term topical treatment of glycolic acid caused an increase in UVB tanning as well as in UVA tanning in some subjects, even in the absence of overt irritation. The inclusion of UVB, and even UVA, sunscreen in AHA products may be warranted.

  4. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma

    PubMed Central

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Background: Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. Materials and Methods: This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Results: Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups (P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels (P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Conclusion: Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel. PMID:28299301

  5. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    PubMed

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Glycol Methacrylate Embedding for the Histochemical Study of the Gastrointestinal Tract of Dogs Naturally Infected with Leishmania Infantum

    PubMed Central

    Pinto, A.J.W.; de Amorim, I.F.G.; Pinheiro, L.J.; Madeira, I.M.V.M.; Souza, C.C.; Chiarini-Garcia, H.; Caliari, M.V.

    2015-01-01

    In canine visceral leishmaniasis a diffuse chronic inflammatory exudate and an intense parasite load throughout the gastrointestinal tract (GIT) has been previously reported. However, these studies did not allow a properly description of canine cellular morphology details. The aim of our study was to better characterize these cells in carrying out a qualitative and quantitative histological study in the gastrointestinal tract of dogs naturally infected with Leishmania infantum by examining gut tissues embedded in glycol methacrylate. Twelve infected adult dogs were classified in asymptomatic and symptomatic. Five uninfected dogs were used as controls. After necropsy, three samples of each gut segment, including oesophagus, stomach, duodenum, jejunum, ileum, cecum, colon, and rectum were collected and fixed in Carnoy’s solution for glycol methacrylate protocols. Sections were stained with hematoxylin-eosin, toluidine blue borate, and periodic acid-Schiff stain. Leishmania amastigotes were detected by immunohistochemistry employed in both glycol methacrylate and paraffin embedded tissues. The quantitative histological analysis showed higher numbers of plasma cells, lymphocytes and macrophages in lamina propria of all segments of GIT of infected dogs compared with controls. The parasite load was more intense and cecum and colon, independently of the clinical status of these dogs. Importantly, glycol methacrylate embedded tissue stained with toluidine blue borate clearly revealed mast cell morphology, even after mast cell degranulation. Infected dogs showed lower numbers of mast cells in all gut segments than controls. Despite the glycol methacrylate (GMA) protocol requires more attention and care than the conventional paraffin processing, this embedding procedure proved to be especially suitable for the present histological study, where it allowed to preserve and observe cell morphology in fine detail. PMID:26708180

  7. Solution stability of Captisol-stabilized melphalan (Evomela) versus Propylene glycol-based melphalan hydrochloride injection.

    PubMed

    Singh, Ramsharan; Chen, Jin; Miller, Teresa; Bergren, Michael; Mallik, Rangan

    2016-12-14

    The objective of this study was to compare the stability of recently approved Captisol-stabilized propylene glycol-free melphalan injection (Evomela™) against currently marketed propylene glycol-based melphalan injection. The products were compared as reconstituted solutions in vials as well as admixture solutions prepared from normal saline in infusion bags. Evomela and propylene glycol-based melphalan injection were reconstituted in normal saline and organic custom diluent, respectively, according to their package insert instructions. The reconstituted solutions were diluted in normal saline to obtain drug admixture solutions at specific drug concentrations. Stability of the solutions was studied at room temperature by assay of melphalan and determination of melphalan-related impurities. Results show that based on the increase in total impurities in propylene glycol-based melphalan injection at 0.45 mg/mL, Evomela admixture solutions are about 5, 9, 15 and 29 times more stable at concentrations of 0.45, 1.0, 2.0 and 5.0 mg/mL, respectively. Results confirmed that reconstituted Evomela solution can be stored in the vial for up to 1 h at RT or for up to 24 h at refrigerated temperature (2-8 °C) with no significant degradation. After storage in the vial, it remains stable for an additional 3-29 h after preparation of admixture solution in infusion bags at concentrations of 0.25-5.0 mg/mL, respectively. In addition, Evomela solution in saline, at concentration of 5.0 mg/mL melphalan was bacteriostatic through 72 h storage at 2-8 °C. Formulation of melphalan with Captisol technology significantly improved stability compared to melphalan hydrochloride reconstituted with propylene-glycol based diluents.

  8. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma.

    PubMed

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups ( P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels ( P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel.

  9. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    USGS Publications Warehouse

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  10. Design of enzyme-mediated controlled release systems based on silica mesoporous supports capped with ester-glycol groups.

    PubMed

    Agostini, Alessandro; Mondragón, Laura; Pascual, Lluis; Aznar, Elena; Coll, Carmen; Martínez-Máñez, Ramón; Sancenón, Félix; Soto, Juan; Marcos, M Dolores; Amorós, Pedro; Costero, Ana M; Parra, Margarita; Gil, Salvador

    2012-10-16

    An ethylene glycol-capped hybrid material for the controlled release of molecules in the presence of esterase enzyme has been prepared. The final organic-inorganic hybrid solid S1 was synthesized by a two-step procedure. In the first step, the pores of an inorganic MCM-41 support (in the form of nanoparticles) were loaded with [Ru(bipy)(3)]Cl(2) complex, and then, in the second step, the pore outlets were functionalized with ester glycol moieties that acted as molecular caps. In the absence of an enzyme, release of the complex from aqueous suspensions of S1 at pH 8.0 is inhibited due to the steric hindrance imposed by the bulky ester glycol moieties. Upon addition of esterase enzyme, delivery of the ruthenium complex was observed due to enzymatic hydrolysis of the ester bond in the anchored ester glycol derivative, inducing the release of oligo(ethylene glycol) fragments. Hydrolysis of the ester bond results in size reduction of the appended group, therefore allowing delivery of the entrapped cargo. The S1 nanoparticles were not toxic for cells, as demonstrated by cell viability assays with HeLa and MCF-7 cell lines, and were found to be associated with lysosomes, as shown by confocal microscopy. However, when S1 nanoparticles were filled with the cytotoxic drug camptothecin (S1-CPT), S1-CPT-treated cells undergo cell death as a result of S1-CPT cell internalization and subsequent cellular enzyme-mediated hydrolysis and aperture of the molecular gate that induced the release of the camptothecin cargo. These findings point to a possible therapeutic application of these nanoparticles.

  11. Mixed Micelle System Produced by Interaction Between Transglycosylated Stevia and an Ionic Surfactant Improves Dissolution Profile of Mefenamic Acid.

    PubMed

    Fujimori, Miki; Kadota, Kazunori; Tozuka, Yuichi

    2017-04-01

    Transglycosylated stevia (stevia-G) can effectively improve the dissolution and bioavailability of poorly water-soluble drugs. Furthermore, addition of an ionic surfactant to stevia-G solution has been shown to enhance the dissolution effect of stevia-G on flurbiprofen. Herein, 4 surfactants, namely sodium dodecyl sulfate, sodium N-dodecanoylsarcosinate, sodium monododecyl phosphate, and lauryltrimethylammonium chloride (LTAC) were screened to investigate their synergistic effect with stevia-G in enhancing the solubility of mefenamic acid (MFA). The ternary formulation containing LTAC produced the highest increase in solubility, whereas the binary MFA/LTAC formulation did not increase the solubility of MFA. Surface tension was evaluated to analyze the interaction between stevia-G and each ionic surfactant, wherein the Rubingh model was applied to predict mixed micelle formation between stevia-G and LTAC. Interaction parameters calculated by the Rubingh model reflected mixed micelle formation between stevia-G and LTAC relative to the self-interactions of the 2 individual surfactants. All interaction parameters in this system showed negative values, indicating a favorable interaction (e.g., hydrogen bond or electrostatic and dipole) between binary components in the mixed micelles. Spray-dried particles of ternary formulations (MFA/stevia-G/LTAC) were prepared to evaluate the dissolution profile and physicochemical properties. Dissolution profiling showed that the concentration of MFA released from spray-dried particles was significantly higher than untreated MFA. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. IRIS Toxicological Review of Ethylene Glycol Mono Butyl ...

    EPA Pesticide Factsheets

    EPA has finalized the Toxicological Review of Ethylene Glycol Mono Butyl Ether: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. N/A

  13. 40 CFR 63.361 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... glycol concentration means any concentration of ethylene glycol in the scrubber liquor of an acid-water scrubber control device established during a performance test when the scrubber achieves at least 99-percent control of ethylene oxide emissions. Maximum liquor tank level means any level of scrubber liquor...

  14. Comparison of retention models for polymers 1. Poly(ethylene glycol)s.

    PubMed

    Bashir, Mubasher A; Radke, Wolfgang

    2006-10-27

    The suitability of three different retention models to predict the retention times of poly(ethylene glycol)s (PEGs) in gradient and isocratic chromatography was investigated. The models investigated were the linear (LSSM) and the quadratic solvent strength model (QSSM). In addition, a model describing the retention behaviour of polymers was extended to account for gradient elution (PM). It was found that all models are suited to properly predict gradient retention volumes provided the extraction of the analyte specific parameters is performed from gradient experiments as well. The LSSM and QSSM on principle cannot describe retention behaviour under critical or SEC conditions. Since the PM is designed to cover all three modes of polymer chromatography, it is therefore superior to the other models. However, the determination of the analyte specific parameters, which are needed to calibrate the retention behaviour, strongly depend on the suitable selection of initial experiments. A useful strategy for a purposeful selection of these calibration experiments is proposed.

  15. A freeze-stable formulation for DTwP and DTaP vaccines.

    PubMed

    Xue, Honggang; Yang, Bangling; Kristensen, Debra D; Chen, Dexiang

    2014-01-01

    Inadvertent vaccine freezing often occurs in the cold chain and may cause damage to freeze‑sensitive vaccines. Liquid vaccines that contain aluminum salt adjuvants are particularly vulnerable. Polyol cryoprotective excipients have been shown to prevent freeze damage to hepatitis B vaccine. In this study, we examined the freeze-protective effect of propylene glycol on diphtheria-tetanus-pertussis-whole-cell (DTwP) and acellular (DTaP) vaccines. Pilot lots of DTwP and DTaP formulated with 7.5% propylene glycol underwent 3 freeze-thaw treatments. The addition of propylene glycol had no impact on pH, particle size distribution, or potency of the vaccines prior to freeze-thaw treatment; the only change noted was an increase in osmolality. The potencies and the physical properties of the vaccines containing cryoprotectant were maintained after freeze-thawing and for 3 months in accelerated stability studies. The results from this study indicate that formulating vaccines with propylene glycol can protect diphtheria-tetanus-pertussis vaccines against freeze damages.

  16. Ketoprofen suppository dosage forms: in vitro release and in vivo absorption studies in rabbits.

    PubMed

    Babar, A; Bellete, T; Plakogiannis, F M

    1999-02-01

    In vitro release of ketoprofen from suppository bases and in vivo absorption in rabbits were studied. Suppositories containing 50 mg of ketoprofen were prepared using theobroma oil, esterified (c10-c18) fatty acids, and polyethylene glycol 1000 bases. The displacement values of the drug were determined and found to be of the order of theobroma oil > esterified (c10-c18) fatty acids and polyethylene glycol 1000 bases. The suppository hardness data revealed that the theobroma oil base produced relatively brittle suppositories. Using the USP dissolution method, the release of ketoprofen was observed to be greatest from polyethylene glycol 1000 suppositories. With the dialysis technique, the maximum release of drug was obtained from theobroma oil suppository containing polysorbate 40 at a 6% level. Selected suppository formulations were evaluated for rectal absorption studies in rabbits. The in vivo data showed that the optimum drug absorption took place from the polyethylene glycol 1000 base and theobroma oil formulation containing 6% polysorbate 40.

  17. Analysis of refill liquids for electronic cigarettes.

    PubMed

    Etter, Jean-François; Zäther, Eva; Svensson, Sofie

    2013-09-01

    To assess levels of nicotine, nicotine degradation products and some specific impurities in commercial refill liquids for electronic cigarettes. We analyzed 20 models of 10 of the most popular brands of refill liquids, using gas and liquid chromatography. We assessed nicotine content, content of the known nicotine degradation products and impurities, and presence of ethylene glycol and diethylene glycol. The nicotine content in the bottles corresponded closely to the labels on the bottles. The levels of nicotine degradation products represented 0-4.4% of those for nicotine, but for most samples the level was 1-2%. Cis-N-oxide, trans-N-oxide, myosmine, anatabine and anabasine were the most common additional compounds found. Neither ethylene glycol nor diethylene glycol were detected. The nicotine content of electronic cigarette refill bottles is close to what is stated on the label. Impurities are detectable in several brands above the level set for nicotine products in the European Pharmacopoeia, but below the level where they would be likely to cause harm. © 2013 Society for the Study of Addiction.

  18. Evaluation of the matrix effect on gas chromatography--mass spectrometry with carrier gas containing ethylene glycol as an analyte protectant.

    PubMed

    Fujiyoshi, Tomoharu; Ikami, Takahito; Sato, Takashi; Kikukawa, Koji; Kobayashi, Masato; Ito, Hiroshi; Yamamoto, Atsushi

    2016-02-19

    The consequences of matrix effects in GC are a major issue of concern in pesticide residue analysis. The aim of this study was to evaluate the applicability of an analyte protectant generator in pesticide residue analysis using a GC-MS system. The technique is based on continuous introduction of ethylene glycol into the carrier gas. Ethylene glycol as an analyte protectant effectively compensated the matrix effects in agricultural product extracts. All peak intensities were increased by this technique without affecting the GC-MS performance. Calibration curves for ethylene glycol in the GC-MS system with various degrees of pollution were compared and similar response enhancements were observed. This result suggests a convenient multi-residue GC-MS method using an analyte protectant generator instead of the conventional compensation method for matrix-induced response enhancement adding the mixture of analyte protectants into both neat and sample solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Simultaneous heat and mass transfer inside a vertical channel in evaporating a heated falling glycols liquid film

    NASA Astrophysics Data System (ADS)

    Nait Alla, Abderrahman; Feddaoui, M'barek; Meftah, Hicham

    2015-12-01

    The interactive effects of heat and mass transfer in the evaporation of ethylene and propylene glycol flowing as falling films on vertical channel was investigated. The liquid film falls along a left plate which is externally subjected to a uniform heat flux while the right plate is the dry wall and is kept thermally insulated. The model solves the coupled governing equations in both phases together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by Tridiagonal Matrix Algorithm. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied glycols and water in the same conditions is made. The results indicate that water evaporates in more intense way in comparison to glycols and the increase of gas flow rate tends to improve slightly the evaporation.

  20. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamecnik, J.; Edwards, T.

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) statemore » of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.« less

Top