21 CFR 172.892 - Food starch-modified.
Code of Federal Regulations, 2010 CFR
2010-04-01
... phosphorus. 1-Octenyl succinic anhydride, not to exceed 3 percent 1-Octenyl succinic anhydride, not to exceed... beverage bases as defined in § 170.3(n)(3) of this chapter. Phosphorus oxychloride, not to exceed 0.1 percent Phosphorus oxychloride, not to exceed 0.1 percent, followed by either acetic anhydride, not to...
21 CFR 172.892 - Food starch-modified.
Code of Federal Regulations, 2011 CFR
2011-04-01
... phosphorus. 1-Octenyl succinic anhydride, not to exceed 3 percent 1-Octenyl succinic anhydride, not to exceed... beverage bases as defined in § 170.3(n)(3) of this chapter. Phosphorus oxychloride, not to exceed 0.1 percent Phosphorus oxychloride, not to exceed 0.1 percent, followed by either acetic anhydride, not to...
USDA-ARS?s Scientific Manuscript database
Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...
Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch
USDA-ARS?s Scientific Manuscript database
Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate Coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil (RBO), and incorporated into an aqueous OSA-ST solution. High pressure homogenization (HPH) of the mixture was conducted at 170 MPa for 5-6 cycles. The resulting ...
Li, Yu-Ting; Wang, Ri-Si; Liang, Rui-Hong; Chen, Jun; He, Xiao-Hong; Chen, Rui-Yun; Liu, Wei; Liu, Cheng-Mei
2018-08-01
Octenyl succinic anhydride (OSA) modified starch is widely used in food industries. In this study, rice starch (RS) was pretreated by dynamic high-pressure microfluidization (DHPM) and subsequently modified by OSA. The influence of DHPM on OSA modification of rice starch was investigated. Results showed that DHPM pretreatment enhanced the degree of substitution by changing the morphology and crystallinity of rice starch. Compared with the rice starch modified by OSA without DHPM pretreatment (OSA-RS), the DHPM-pretreated OSA starch (DHPM-OSA-RS) presented higher peak viscosity and lower pasting temperature. DHPM-OSA-RS also exhibited better emulsifying activity and emulsion stability. This study suggested that DHPM will provide an opportunity to change the physicochemical properties of starch, with the resulting starch being more suitable for chemical modification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Dandan; Zhang, Xiwen; Tian, Yaoqi
2016-05-01
Biosynthesis of octenyl succinic anhydride (OSA) starch was investigated using ionic liquids (ILs) as reaction media. Waxy maize starch was pretreated in 1-butyl-3-methylimidazolium chlorine and then esterified with OSA in 1-octyl-3-methylimidazolium nitrate by using Novozyme 435 as catalyst. The degree of substitution of OSA starch reached 0.0130 with 5 wt% starch concentration and 1 wt% lipase dosage based on ILs weight at 50 °C for 3h. The formation of OSA starch was confirmed by fourier transform infrared spectroscopy. Scanning electron microscopy and X-ray diffraction revealed that the morphology and crystal structure of starch were significantly destroyed. Thermogravimetric analysis showed that esterification decreased the thermal stability of starch. The successful lipase-catalyzed synthesis of OSA starch in ILs suggests that ILs are potential replacement of traditional organic solvents for starch ester biosynthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Y.; Shi, Y; Wetzel, D
Fourier transform infrared (FT-IR) microspectroscopy was used to investigate reaction homogeneity of octenyl succinic anhydride modification on waxy maize starch and detect uniformity of blends of modified and native starches. For the first time, the level and uniformity of chemical substitution on individual starch granules were analyzed by FT-IR microspectroscopy. More than 100 starch granules of each sample were analyzed one by one by FT-IR microspectroscopy. In comparison to the native starch, modified starch had two additional bands at 1723 and 1563 cm{sup -1}, indicative of ester formation in the modified starch. For the 3% modification level, the degree ofmore » substitution (DS) was low (0.019) and the distribution of the ester group was not uniform among starch granules. For the modified starch with DS of 0.073, 99% of individual starch granules had a large carbonyl band area, indicating that most granules were modified to a sufficient extent that the presence of their carbonyl ester classified them individually as being modified. However, the octenyl succinate concentration varied between granules, suggesting that the reaction was not uniform. When modified starch (DS = 0.073) was blended with native starch (3:7, w/w) to achieve a mixture with an average DS of 0.019, FT-IR microspectroscopy was able to detect heterogeneity of octenyl succinate in the blend and determine the ratio of the modified starch to the native starch granules.« less
USDA-ARS?s Scientific Manuscript database
A comparative study of both the bulk and air/liquid interfacial rheological responses was carried out by using four kinds of high molecular weight and highly branched polysaccharide emulsifiers, (a) corn fiber gum (CFG), (b) octenyl succinate anhydride-modified starch (OSA-s), (c) gum arabic (GA) an...
Peng, Shanli; Xue, Lei; Leng, Xue; Yang, Ruobing; Zhang, Genyi; Hamaker, Bruce R
2015-03-18
The in vivo slow digestion property of octenyl succinic anhydride modified waxy corn starch (OSA-starch) in the presence of tea polyphenols (TPLs) was studied. Using a mouse model, the experimental results showed an extended and moderate postprandial glycemic response with a delayed and significantly decreased blood glucose peak of OSA-starch after cocooking with TPLs (5% starch weight base). Further studies revealed an increased hydrodynamic radius of OSA-starch molecules indicating an interaction between OSA-starch and TPLs. Additionally, decreased gelatinization temperature and enthalpy and reduced viscosity and emulsifiability of OSA-starch support their possible complexation to form a spherical OSA-starch-TPLs (OSAT) complex. The moderate and extended postprandial glycemic response is likely caused by decreased activity of mucosal α-glucosidase, which is noncompetitively inhibited by tea catechins released from the complex during digestion. Meanwhile, a significant decrease of malondialdehyde (MDA) and increased DPPH free radical scavenging activity in small intestine tissue demonstrated the antioxidative functional property of the OSAT complex. Thus, the complex of OSAT, acting as a functional carbohydrate material, not only leads to a flattened and prolonged glycemic response but also reduces the oxidative stress, which might be beneficial to health.
USDA-ARS?s Scientific Manuscript database
The interfacial rheology of polysaccharide adsorption layers of corn fiber gum (CFG), octenyl succinate anhydride-modified starch (OSA-s), gum arabic (GA) and soybean soluble polysaccharides (SSPS) at the oil/water interface and their emulsifying properties in oil-in-water (O/W) emulsions were compa...
García-Tejeda, Yunia Verónica; Salinas-Moreno, Yolanda; Barrera-Figueroa, Víctor; Martínez-Bustos, Fernando
2018-06-01
The encapsulation by spray drying of maize anthocyanins was evaluated using two types of wall materials, consisting of normal and waxy maize starch, which were esterified with octenyl succinic anhydride. The X-ray diffraction analysis revealed that SWMS possessed a completely amorphous, while SNMS had a crystalline structure. SNMS showed peaks at 2 θ = 13.1°, 19.8° and 22.4°. The results revealed that SNMS and SWMS had almost the same encapsulation productivity (EP); SNMS showed the best performance because its EP was higher (95%) than in SWMS (90%). The stability of microcapsules produced with SNMS showed the highest anthocyanin retention after storage in the water activity ( a w ) range of 0.11-0.94 at 40 °C.
He, Jinhua; Liu, Jie; Zhang, Genyi
2008-01-01
The mechanism and molecular structure of the slowly digestible waxy maize starch prepared by octenyl succinic anhydride (OSA) esterification and heat-moisture treatment were investigated. The in vitro Englyst test showed a proportion of 28.3% slowly digestible starch (SDS) when waxy maize starch was esterified with 3% OSA (starch weight based, and it is named OSA-starch), and a highest SDS content of 42.8% was obtained after OSA-starch (10% moisture) was further heated at 120 degrees C for 4 h (named HOSA-starch). The in vivo glycemic response of HOSA-starch, which showed a delayed appearance of blood glucose peak and a significant reduction (32.2%) of the peak glucose concentration, further confirmed its slow digestion property. Amylopectin debranching analysis revealed HOSA-starch had the highest resistance to debranching enzymes of isoamylase and pullulanase, and a simultaneous decrease of K m and V m (enzyme kinetics) was also shown when HOSA-starch was digested by either alpha-amylase or amyloglucosidase, indicating that the slow digestion of HOSA-starch resulted from an uncompetitive inhibition of enzyme activity during digestion. Size exclusion chromatography analysis of HOSA-starch showed fragmented amylopectin molecules with more nonreducing ends that are favorable for RS conversion to SDS by the action of amyloglucosidase in the Englyst test. Further solubility analysis indicates that the water-insolubility of HOSA-starch is caused by OSA-mediated cross-linking of amylopectin and the hydrophobic interaction between OSA-modified starch molecules. The water-insolubility of HOSA-starch would decrease its enzyme accessibility, and the digestion products with attached OSA molecules might also directly act as the uncompetitive inhibitor to reduce the enzyme activity leading to a slow digestion of HOSA-starch.
Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin
2013-03-01
Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.
NASA Astrophysics Data System (ADS)
Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine
2017-09-01
Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.
The interfacial, emulsification and encapsulation properties of hydrophobically modified inulin.
Kokubun, S; Ratcliffe, I; Williams, P A
2018-08-15
Octenyl- and dodecenyl succinic anhydride derivatives (OSA- and DDSA-) of inulin have been synthesised and their solution and interfacial properties have been determined and compared to a commercially available alkylated inulin, Inutec SP1. All samples formed micellar aggregates in solution above a critical concentration (critical aggregation concentration) and were able to 'dissolve' a hydrophobic dye. They were also able to form stable oil-in-water (O/W) emulsions as assessed by measurements of their droplet size as a function of time. DDSA-inulin with a high degree of substitution was found to be effective at encapsulating beta carotene using the solvent evaporation method which yielded a solid which dissolved readily in simulated gastric fluid. The results confirm the potential application of these materials in a number of areas including, drug delivery, pharmaceuticals, neutraceuticals, cosmetics and personal care. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Homogeneous modification of cellulose with succinic anhydride was performed in tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU) and TBAA dosage were investigated as paramete...
Bello-Pérez, Luis A; Bello-Flores, Christopher A; Nuñez-Santiago, María del Carmen; Coronel-Aguilera, Claudia P; Alvarez-Ramirez, J
2015-11-05
Banana starch was esterified with octenylsuccinic anhydride (OSA) at different degree substitution (DS) and used to stabilize emulsions. Morphology, emulsion stability, emulsification index, rheological properties and particle size distribution of the emulsions were tested. Emulsions dyed with Solvent Red 26 showed affinity for the oil phase. Backscattering light showed three regions in the emulsion where the emulsified region was present. Starch concentration had higher effect in the emulsification index (EI) than the DS used in the study because similar values were found with OSA-banana and native starches. However, OSA-banana presented greater stability of the emulsified region. Rheological tests in emulsions with OSA-banana showed G'>G" values and low dependence of G' with the frequency, indicating a dominant elastic response to shear. When emulsions were prepared under high-pressure conditions, the emulsions with OSA-banana starch with different DS showed a bimodal distribution of particle size. The emulsion with OSA-banana starch and the low DS showed similar mean droplet diameter than its native counterpart. In contrast, the highest DS led to the highest mean droplet diameter. It is concluded that OSA-banana starch with DS can be used to stabilize specific emulsion types. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ping-Ping Xin; Yao-Bing Huang; Chung-Yun Hse; Huai N. Cheng; Chaobo Huang; Hui Pan
2017-01-01
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Timothy J.; Ai, Yongfeng; Jones, Roger W.
Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fitmore » the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.« less
Structure of Hydrophobically Modified Phytoglycogen Nanoparticles
NASA Astrophysics Data System (ADS)
Atkinson, John; Nickels, Jonathan; Dutcher, John; Katsaras, John
Phytoglycogen is a highly branched, polysaccharide nanoparticle produced by some varieties of plants including sweet corn. These particles are attractive candidates for cosmetic, industrial and biomedical applications. Many of these applications result from phytoglycogen's unique interaction with water: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Neutron scattering measurements of native phytoglycogen revealed that the particles have uniform size, uniform radial particle density, and a high level of hydration. Hydrophobically modifying the outer surface of the hydrophilic nanoparticles opens up new applications in food and biomedicine, such as solubilizing and stabilizing bioactive compounds. One such modification is octenyl succinate anhydride (OSA), where the hydrophobicity can be tuned by adjusting the degree of substitution. I will present the results of small angle neutron scattering (SANS) measurements of aqueous dispersions of OSA-modified phytoglycogen with two different degrees of modification. Contrast series SANS measurements have yielded information about the radial density profile, providing insight into the nature of the chemical modification of the particles.
USDA-ARS?s Scientific Manuscript database
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with cellulose nanowhiskers. This glycerol-based polymer is thermally stable as...
Fontes, Gizele Cardoso; Calado, Verônica Maria Araújo; Rossi, Alexandre Malta; da Rocha-Leão, Maria Helena Miguez
2013-01-01
The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin. PMID:23862146
Hategekimana, Joseph; Masamba, Kingsley George; Ma, Jianguo; Zhong, Fang
2015-06-25
Spray drying technique was used to fabricate Vitamin E loaded nanocapsules using Octenyl Succinic Anhydride (OSA) modified starches as emulsifiers and wall materials. Several physicochemical properties of modified starches that are expected to influence emulsification capacity, retention and storage stability of Vitamin E in nanocapsules were investigated. High Degree of Substitution (DS), low Molecular Weight (Mw) and low interfacial tension improved emulsification properties while Oxygen Permeability (OP) and Water Vapor Permeability (WVP) affected the film forming properties. The degradation profile of Vitamin E fitted well with the Weibull model. Nanocapsules from OSA modified starches MS-A and MS-B retained around 50% of Vitamin E after a period of 60 days at 4-35°C. Reduced retention and short half-life (35 days) in nanocapsules fabricated using MS-C at 35°C were attributed to autoxidation reaction occurred due to poor film forming capacity. These results indicated that low molecular weights OSA modified starches were effective at forming stable Vitamin E nanocapsules that could be used in drug and beverage applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Starch Applications for Delivery Systems
NASA Astrophysics Data System (ADS)
Li, Jason
2013-03-01
Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion
Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun
2014-10-01
The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.
Structure and dynamics of succinic, methylsuccinic and itaconic anhydrides in the gas phase
NASA Astrophysics Data System (ADS)
McMahon, Timothy J.; Bailey, Josiah R.; Bird, Ryan G.
2018-05-01
The pure rotational spectra of succinic, itaconic, and methylsuccinic anhydrides were collected in the region of 7-18 GHz using Fourier transform microwave spectroscopy. Each molecule shows varying degrees of puckering, demonstrating the effects of substitution on torsional and bond angle strain. The spectra of all three molecules exhibit perturbations consistent with internal motion; succinic and itaconic anhydride display pseudorotational motion (ΔE = 0.1 cm-1 and 0.2 cm-1, respectively), while methylsuccinic anhydride shows two uncoupled vibrations (ΔE01 = 0.4 cm-1 and ΔE02 = 1.2 cm-1). Analyses of similar five-membered rings demonstrate the relationship between the planarity of the ring and the barrier to pseudorotation.
Nelson, Bridget; Cray, Nicole; Ai, Yongfeng; Fang, Yinan; Liu, Peng; Whitley, Elizabeth M; Birt, Diane
2016-01-01
Dietary fiber has been reported to prevent preneoplastic colon lesions. The aim of this study was to determine the effect of resistant starches, novel dietary fibers, on the development of colonic preneoplasia and Wnt signaling in azoxymethane (AOM)-treated rats and mice fed resistant starches at 55% of the diet after AOM treatment. Another objective was to determine the effect of resistant starches on the development of preneoplasia in rats treated with antibiotics (Ab), administered between AOM treatment and resistant starch feeding. Diets containing resistant starches, high-amylose (HA7), high-amylose-octenyl succinic anhydride (OS-HA7), or high-amylose-stearic acid (SA-HA7) were compared with control cornstarch (CS). The resistant starch content of the diets did not alter the yield of colonic lesions but animals treated with AOM and fed the diet with the highest resistant starch content, SA-HA7 developed the highest average aberrant crypt foci (ACF) per animal. Mice fed the OS-HA7 diet had decreased expression of some upstream Wnt genes in the colonic crypts. This study suggests that further research is needed to determine if resistant starch impacts colon carcinogenesis in rodents.
Quinoa starch granules as stabilizing particles for production of Pickering emulsions.
Rayner, Marilyn; Sjöö, Malin; Timgren, Anna; Dejmek, Petr
2012-01-01
Intact starch granules isolated from quinoa (Chenopodium quinoa Willd.) were used to stabilize emulsion drops in so-called Pickering emulsions. Miglyol 812 was used as dispersed phase and a phosphate buffer (pH7) with different salt (NaCl) concentrations was used as the continuous phase. The starch granules were hydrophobically modified to different degrees by octenyl succinic anhydride (OSA) or by dry heat treatment at 120 degrees C in order to study the effect on the resulting emulsion drop size. The degree of OSA-modification had a low to moderate impact on drop size. The highest level of modification (4.66%) showed the largest mean drop size, and lowest amount of free starch, which could be an effect of a higher degree of aggregation of the starch granules and, thereby, also the emulsion drops stabilized by them. The heat treated starch granules had a poor stabilizing ability and only the starch heated for the longest time (150 min at 120 degrees C) had a better emulsifying capacity than the un-modified native starch granules. The effect of salt concentration was rather limited. However, an increased concentration of salt slightly increased the mean drop size and the elastic modulus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, D.; Shi, Y; Reffner, J
This reports the first detection of chemical heterogeneity in octenyl succinic anhydride modified single starch granules using a Fourier transform infrared (FT-IR) microspectroscopical technique that combines diffraction-limited infrared microspectroscopy with a step size that is less than the mask projected spot size focused on the plane of the sample. The high spatial resolution was achieved with the combination of the application of a synchrotron infrared source and the confocal image plane masking system of the double-pass single-mask Continuum{reg_sign} infrared microscope. Starch from grains such as corn and wheat exists in granules. The size of the granules depends on the plantmore » producing the starch. Granules used in this study typically had a median size of 15 {micro}m. In the production of modified starch, an acid anhydride typically is reacted with OH groups of the starch polymer. The resulting esterification adds the ester carbonyl (1723 cm{sup -1}) organic functional group to the polymer and the hydrocarbon chain of the ester contributes to the CH{sub 2} stretching vibration to enhance the intensity of the 2927 cm{sup -1} band. Detection of the relative modifying population on a single granule was accomplished by ratioing the baseline adjusted peak area of the carbonyl functional group to that of a carbohydrate band. By stepping a confocally defined infrared beam as small as 5 {micro}m x 5 {micro}m across a starch granule 1 {micro}m at a time in both the x and y directions, the heterogeneity is detected with the highest possible spatial resolution.« less
Kuentz, Martin; Egloff, Peter; Röthlisberger, Dieter
2006-05-01
Many new drugs exhibit poor wetting behaviour and low aqueous solubility. This is particularly an issue for preclinical studies like toxicological trials, in which considerably higher doses and volumes are being administered compared to clinical studies. Preclinical vehicles typically contain high levels of surfactants that can exert biological effects. However, the biological inertness of vehicles is pivotal for the application in preclinical studies stressing the need in finding new excipients to solve formulation problems of today's drug discovery. The present study investigated the technical feasibility of surfactant-free suspensions using a new poorly soluble drug as model. It was shown that octenyl succinate-modified starches adequately wetted the drug and homogenous tasteless suspensions were obtained. The polymer xanthan gum was identified as macroscopically compatible gelling agent. Concentration effects of xanthan, drug and different modified starches were studied in a D-optimal design with respect to rheological properties. The suspensions were also tested in an analytical centrifuge using NIR transmission profiles to obtain a measure of sedimentation stability under accelerated conditions. The modified starches exhibited only little influence on the viscosity as well as on the yield point in contrast to the rheological effects of xanthan gum. This gelling agent was the main stabilising excipient as the modified starches hindered to a lesser extent sedimentation. The most stable suspensions displayed convenient flow properties. The viscosity at 100 s(-1) and 25 degrees C was in technically acceptable range of 120-140 mPa s in view of a application via gavage or a syringe in animal studies. The results demonstrated that surfactant-free drug suspensions with excellent technical performance can be obtained using octenyl succinate-modified starches. The vehicles were tasteless and based on the experience of modified starches in the food industry, the vehicles should exhibit good tolerability. The future use of such surfactant-free drug suspensions in toxicological, pharmacokinetic and pharmacodynamic studies will have to determine their advantage in terms of biological inertness.
Succinic anhydrides from epoxides
Coates, Geoffrey W.; Rowley, John M.
2013-07-09
Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.
Succinic anhydrides from epoxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Geoffrey W.; Rowley, John M.
2016-06-28
Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hailong; Li, Ji; Shi, Ke
The micelle structure of octenyl succinic anhydride modified {var_epsilon}-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide {var_epsilon}-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24-26 {angstrom} in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268-308 {angstrom}. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. Themore » results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities.« less
Bio-generated succinic acid esters in lubricant applications
USDA-ARS?s Scientific Manuscript database
Succinic acid is a biodegradable natural product mainly produced industrially from petroleum-based maleic anhydride. It is a platform material for many industrial chemicals. Recent work has generated succinic acid by fermentation of Physaria fendleri press cake, an otherwise waste agricultural bypro...
Chemical Modification of Kraft Lignin: Effect on Chemical and Thermal Properties
Yao Chen; Nicole M. Stark; Zhiyong Cai; Charles R. Frihart; Linda F. Lorenz; Rebecca E. Ibach
2014-01-01
Esterified kraft lignins (KL) were prepared by reaction with maleic anhydride (MA), succinic anhydride (SA), and phthalic anhydride (PA) in acetone solutions. The esterified lignins were characterized using ATR-FTIR, solid state CP-MAS 13C NMR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). PA...
MALEIC ANHYDRIDE HYDROGENATION OF PD/AL2O3 CATALYST UNDER SUPERCRITICAL CO2 MEDIUM
Hydrogenation of maleic anhydride (MA) to either y-butyrolactone of succinic anhydride over simple Pd/Al2O3 impregnated catalyst in supercritical CO2 medium has been studied at different temperatures and pressures. A comparison of the supercritical CO2 medium reaction with the c...
2010-01-01
This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation and assessment of intake of food additives. A summary follows of the Committee's evaluations of technical, toxicological and intake data for certain food additives: branching glycosyltransferase from Rhodothermus obamensis expressed in Bacillus subtilis, cassia gum, cyclamic acid and its salts (dietary exposure assessment), cyclotetraglucose and cyclotetraglucose syrup, ferrous ammonium phosphate, glycerol ester of gum rosin, glycerol ester of tall oil rosin, lycopene from all sources, lycopene extract from tomato, mineral oil (low and medium viscosity) class II and class III, octenyl succinic acid modified gum arabic, sodium hydrogen sulfate and sucrose oligoesters type I and type II. Specifications for the following food additives were revised: diacetyltartaric acid and fatty acid esters of glycerol, ethyl lauroyl arginate, glycerol ester of wood rosin, nisin preparation, nitrous oxide, pectins, starch sodium octenyl succinate, tannic acid, titanium dioxide and triethyl citrate. Annexed to the report are tables summarizing the Committee's recommendations for intakes and toxicological evaluations of the food additives considered.
Evaluation of certain food additives.
2015-01-01
This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, and to prepare specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives, including flavouring agents. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for eight food additives (Benzoe tonkinensis; carrageenan; citric and fatty acid esters of glycerol; gardenia yellow; lutein esters from Tagetes erecta; octenyl succinic acid-modified gum arabic; octenyl succinic acid-modified starch; paprika extract; and pectin) and eight groups of flavouring agents (aliphatic and alicyclic hydrocarbons; aliphatic and aromatic ethers; ionones and structurally related substances; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; phenol and phenol derivatives; phenyl-substituted aliphatic alcohols and related aldehydes and esters; and sulfur-containing heterocyclic compounds). Specifications for the following food additives were revised: citric acid; gellan gum; polyoxyethylene (20) sorbitan monostearate; potassium aluminium silicate; and Quillaia extract (Type 2). Annexed to the report are tables summarizing the Committee's recommendations for dietary exposures to and toxicological evaluations of all of the food additives and flavouring agents considered at this meeting.
Evaluation of certain food additives.
2017-01-01
This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to concluding as to safety concerns and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives, including flavouring agents. A summary follows of the Committee’s evaluations of technical, toxicological and dietary exposure data for 10 food additives (Allura Red AC; carob bean gum; lutein esters from Tagetes erecta; octenyl succinic acid (OSA)– modified gum arabic; pectin; Quinoline Yellow; rosemary extract; steviol glycosides; tartrazine; and xanthan gum) and five groups of flavouring agents (alicyclic, alicyclic-fused and aromatic-fused ring lactones; aliphatic and aromatic amines and amides; aliphatic secondary alcohols, ketones and related esters; cinnamyl alcohol and related substances; and tetrahydrofuran and furanone derivatives). Specifications for the following food additives were revised: aspartame; cassia gum; citric and fatty acid esters of glycerol (CITREM); modified starches; octanoic acid; starch sodium octenyl succinate; and total colouring matters. Annexed to the report are tables summarizing the Committee’s recommendations for dietary exposures to and toxicological evaluations of all of the food additives, including flavouring agents, considered at this meeting.
A selective hydrogenation of maleic anhydride to either y-butyrolactone or succinic anhydride over simple Pd/Al(2)O(3) catalyst under supercritical CO(2) medium is described for the first time which has considerable promise for obht lab-scale as well as industrial selective hydro...
Programmed emulsions for sodium reduction in emulsion based foods.
Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina
2015-05-01
In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods.
Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N.; Huang, Chaobo; Pan, Hui
2017-01-01
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13C NMR spectroscopy (CP/MAS 13C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu2+ and Cd2+, and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu2+ and Cd2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively. PMID:28772885
Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N; Huang, Chaobo; Pan, Hui
2017-05-12
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13 C NMR spectroscopy (CP/MAS 13 C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu 2+ and Cd 2+ , and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu 2+ and Cd 2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively.
Marefati, Ali; Gutiérrez, Gemma; Wahlgren, Marie; Rayner, Marilyn
2016-01-01
The emulsifying ability of OSA-modified and native starch in the granular form, in the dissolved state and a combination of both was compared. This study aims to understand mixed systems of particles and dissolved starch with respect to what species dominates at droplet interfaces and how stability is affected by addition of one of the species to already formed emulsions. It was possible to create emulsions with OSA-modified starch isolated from Quinoa as sole emulsifier. Similar droplet sizes were obtained with emulsions prepared at 7% (w/w) oil content using OSA-modified starch in the granular form or molecularly dissolved but large differences were observed regarding stability. Pickering emulsions kept their droplet size constant after one month while emulsions formulated with OSA-modified starch dissolved exhibited coalescence. All emulsions stabilized combining OSA-modified starch in granular form and in solution showed larger mean droplet sizes with no significant differences with respect to the order of addition. These emulsions were unstable due to coalescence regarding presence of free oil. Similar results were obtained when emulsions were prepared by combining OSA-modified granules with native starch in solution. The degree of surface coverage of starch granules was much lower in presence of starch in solution which indicates that OSA-starch is more surface active in the dissolved state than in granular form, although it led to unstable systems compared to starch granule stabilized Pickering emulsions, which demonstrated to be extremely stable. PMID:27479315
Chemical Modification of Soy Flour Protein and its Properties
Yuzhi Xu; Chunpeng Wang; Fuxiang Chu; Charles R. Frihart; Linda F. Lorenz; Nicole M. Stark
2012-01-01
This work is to examine ways to chemically modify soy proteins flours and analyze the results and determine the adhesive performance. Reaction with acetic anhydride converts amine and hydroxyl groups to amides and esters, respectively that are less polar and can make the adhesive more water resistant.The succinic anhydride reacts with these same groups but the products...
Yamamoto, Syutaro; Tomoda, Hideyuki; Watanabe, Shoji
2007-01-01
Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short article describes properties of new additives in water-soluble metal working fluids for aluminum alloy materials. Many half esters or diesters were prepared from the reactions of higher alcohols with acid anhydrides. Interestingly, diesters of PTMG (tetrahydrofuran oligomer, MW = 650 and 1000) and polybutylene oxide (MW = 650) with maleic anhydride and succinic anhydride showed both of an excellent anti-corrosion property for aluminum alloy and a good hard water tolerance. The industrial soluble type processing oils including these additives also showed anti-corrosion property and hard water tolerance.
2010-01-01
Background Succinate is produced petrochemically from maleic anhydride to satisfy a small specialty chemical market. If succinate could be produced fermentatively at a price competitive with that of maleic anhydride, though, it could replace maleic anhydride as the precursor of many bulk chemicals, transforming a multi-billion dollar petrochemical market into one based on renewable resources. Actinobacillus succinogenes naturally converts sugars and CO2 into high concentrations of succinic acid as part of a mixed-acid fermentation. Efforts are ongoing to maximize carbon flux to succinate to achieve an industrial process. Results Described here is the 2.3 Mb A. succinogenes genome sequence with emphasis on A. succinogenes's potential for genetic engineering, its metabolic attributes and capabilities, and its lack of pathogenicity. The genome sequence contains 1,690 DNA uptake signal sequence repeats and a nearly complete set of natural competence proteins, suggesting that A. succinogenes is capable of natural transformation. A. succinogenes lacks a complete tricarboxylic acid cycle as well as a glyoxylate pathway, and it appears to be able to transport and degrade about twenty different carbohydrates. The genomes of A. succinogenes and its closest known relative, Mannheimia succiniciproducens, were compared for the presence of known Pasteurellaceae virulence factors. Both species appear to lack the virulence traits of toxin production, sialic acid and choline incorporation into lipopolysaccharide, and utilization of hemoglobin and transferrin as iron sources. Perspectives are also given on the conservation of A. succinogenes genomic features in other sequenced Pasteurellaceae. Conclusions Both A. succinogenes and M. succiniciproducens genome sequences lack many of the virulence genes used by their pathogenic Pasteurellaceae relatives. The lack of pathogenicity of these two succinogens is an exciting prospect, because comparisons with pathogenic Pasteurellaceae could lead to a better understanding of Pasteurellaceae virulence. The fact that the A. succinogenes genome encodes uptake and degradation pathways for a variety of carbohydrates reflects the variety of carbohydrate substrates available in the rumen, A. succinogenes's natural habitat. It also suggests that many different carbon sources can be used as feedstock for succinate production by A. succinogenes. PMID:21118570
NASA Astrophysics Data System (ADS)
Ta, Thi Kieu Hanh; Tran, Thi Nhu Hoa; Tran, Quang Minh Nhat; Pham, Duy Phong; Pham, Kim Ngoc; Cao, Thi Thanh; Kim, Yong Soo; Tran, Dai Lam; Ju, Heongkyu; Phan, Bach Thang
2017-06-01
We report effects of oxygen plasma treatment on the surface functionalization of WO3 thin films with (3-aminopropyl)triethoxysilane (APTES) and succinic anhydride (SA). X-ray diffraction and x-ray photoelectron spectroscopy results indicate the existence of the WO3 phase. Fourier transform infrared spectroscopy measurement shows clear bands at 1040 cm-1 (Si-O-Si), 1556 cm-1 (N-H), 1655 cm-1 (C=O), 2937 cm-1 (C-H) and 3298 cm-1 (N-H), confirming the surface functionalization efficiency enhanced by prior treatment of oxygen plasma. It thus follows that the prior oxygen plasma treatment activates hydroxylation with more -OH groups on the WO3 surface, which can pave a highly efficient way to the surface functionalization by APTES and SA.
McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn
2018-01-01
Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551
Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Timothy J.
Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight weekmore » study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Timothy J.; Jones, Roger W.; Ai, Yongfeng
Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-weekmore » study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.« less
McNamee, Cathy E; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn
2018-01-01
Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.
NASA Astrophysics Data System (ADS)
McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn
2018-05-01
Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e. the natural particle found inside the plant, at air/aqueous interfaces and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.
Development of functionalized hydroxyapatite/poly(vinyl alcohol) composites
NASA Astrophysics Data System (ADS)
Stipniece, Liga; Salma-Ancane, Kristine; Rjabovs, Vitalijs; Juhnevica, Inna; Turks, Maris; Narkevica, Inga; Berzina-Cimdina, Liga
2016-06-01
Based on the well-known pharmaceutical excipient potential of poly(vinyl alcohol) (PVA) and clinical success of hydroxyapatite (HAp), the objective of this work was to fabricate functionalized composite microgranules. PVA was modified with succinic anhydride to introduce carboxyl groups (-COOH), respectively, by reaction between the -OH groups of PVA and succinic anhydride, for attachment of drug molecules. For the first time, the functionalized composite microgranules containing HAp/PVA in the ratio of 1:1 were prepared through in situ precipitation of HAp in modified PVA aqueous solutions followed by spray drying of obtained suspensions. The microgranules were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The presence of -COOH groups was verified by FT-IR, and the amount of functional groups added to PVA molecules (averaging 15 mol%) was determined by nuclear magnetic resonance spectroscopy (NMR). DSC results showed that modification with -COOH groups slightly decreased the thermal stability of PVA. FT-IR and XRD analysis confirmed that the resulting composites contain mainly nanocrystalline HAp and PVA. Moreover, the images taken by FE-SEM revealed that the microgranules consisted of nanosized HAp crystallites homogenously embedded in the PVA matrix. DSC measurements indicated that decomposition mechanism of the HAp/PVA differs from that of pure PVA and occurs at lower temperatures. However, the presence of HAp had minor influence on the thermal decomposition of the PVA modified with succinic anhydride. The investigation of composite microgranules confirmed interaction and integration between the HAp and PVA.
Fontanillo, Miriam; Angulo-Pachón, César A; Escuder, Beatriu; Miravet, Juan F
2013-12-15
The reaction between succinic anhydride and a diamine derived from L-valine should afford efficiently a molecular gelator. Based on this reaction, it should be feasible to prepare molecular gels at room temperature, avoiding the conventional thermal treatment required for the solubilization of the gelator, by in situ, simultaneous, synthesis and gelation. The gels prepared by in situ and conventional heating-cooling protocols could present important differences relevant for potential practical applications of these materials. The gelator was synthesized by reaction of succinic anhydride and a diamine derived from L-valine, affording two new amide bonds. The molecular gels were studied by IR, NMR, electron microscopy, X-ray diffraction and DSC. The results indicate that different polymorphic fibrillar networks are formed depending on the gel preparation method, highlighting how the properties of molecular gels can be tuned in this way. Significant differences between thermal and in situ gels were found in properties such as thermal stability, thixotropic behavior or release of an entrapped dye. In situ synthesis-gelation has also been shown to provide gels in media such as oleic acid which cannot be jellified by conventional heating-cooling procedures. Copyright © 2013 Elsevier Inc. All rights reserved.
Non-aqueous electrolyte for lithium-ion battery
Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil
2014-04-15
The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.
Microwave-Assisted Synthesis of "N"-Phenylsuccinimide
ERIC Educational Resources Information Center
Shell, Thomas A.; Shell, Jennifer R.; Poole, Kathleen A.; Guetzloff, Thomas F.
2011-01-01
A microwave-assisted synthesis of "N"-phenylsuccinimide has been developed for the second-semester organic teaching laboratory. Utilizing this procedure, "N"-phenylsuccinimide can be synthesized in moderate yields (40-60%) by heating a mixture of aniline and succinic anhydride in a domestic microwave oven for four minutes. This technique reduces…
Maleate/vinyl ether UV-cured coatings: Effects of composition on curing and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noren, G.K.
1996-10-01
The effect of the composition of the maleate polyester and the vinyl ether terminated compound on their UV-curing and properties has been investigated. Linear unsaturated polyester resins based on maleic anhydride and 1,5-pentane diol were synthesized. The molecular weight of the unsaturated polyesters was varied by changing the ratio of maleic anhydride to 1,5-pentane diol and the double bond equivalent weight was varied by replacing maleic anhydride with succinic anhydride. Coating formulations containing these unsaturated polyesters, triethylene glycol divinyl ether and a free radical photoinitiator were crosslinked in the presence of UV light. The coatings were very brittle, exhibiting tensilemore » strengths in the range of 1.5-4.0 MPa and elongations of only 3-7%. Diethyl maleate and isobutyl vinyl ether were effective diluents for reducing viscosity but reduced the cure speed. A vinyl ether urethane oligomer was synthesized and enhanced the flexibility and toughness of the coatings when substituted for triethylene glycol divinyl ether.« less
Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing
NASA Astrophysics Data System (ADS)
Davarpanah, Saideh; Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Bahrami, Hajir; Mazaheri, Firoozmehr
2009-01-01
In this paper, the surface modification of silk fiber using anhydrides to graft the polysaccharide chitosan and dyeing ability of the grafted silk were studied. Silk fiber was degummed and acylated with two anhydrides, succinic anhydride (SA) and phthalic anhydride (PA), in different solvents (dimethyl sulfoxide (DMSO) and N, N-dimethyl formamide (DMF)). The effects of anhydrides, solvents, anhydride concentration, liquor ratio (L:R) and reaction time on acylation of silk were studied. The polysaccharide chitosan was grafted to the acylated silk fiber and dyed by acid dye (Acid Black NB.B). The effects of pH, chitosan concentration, and reaction time on chitosan grafting of acylated silk were investigated. The physical properties show sensible changes regardless of weight gain. Scanning electron microscopy (SEM) analysis showed the presence of foreign materials firmly attached to the surface of silk. FTIR spectroscopy provided evidence that chitosan was grafted onto the acylated silk through the formation of new covalent bonds. The dyeing of the chitosan grafted-acylated silk fiber indicated the higher dye ability in comparison to the acylated and degummed silk samples. The mechanism of chitosan grafting over degummed silk through anhydride linkage was proposed. The findings of this research support the potential production of new environmentally friendly textile fibers. It is worthwhile to mention that the grafted samples have antibacterial potential due to the antibacterial property of chitosan molecules.
Moisture sorption properties of composite boards from esterified aspen fiber
C. Clemons; R. A. Young; R. M. Rowell
1992-01-01
One barrier to producing wood-plastic composites with wood fiber is the poor thermoplasticity of wood fiber. The objective of our study was to determine the plasticization of chemically modified wood fiber through tests on unmodified and esterified fiberboards. Attrition-milled aspen fiber was esterified with neat acetic, maleic, or succinic anhydride. Fourier...
ORGANIC REACTIONS IN THE SOLID STATE AND IN SOLID SOLUTIONS.
on the reactions of phthalic acid and acetanilide , various acyl anilides, and ring-substituted acetanilides . Exploratory experiments were also...performed between ring-substituted acetanilides and succinic, glutaric, maleic and fumaric acids. The influence of imidazole as a catalyst of the...transacylation reaction of phthalic anhydride and acetanilide is also reported. (Author)
Yin, Shou-Wei; Tang, Chuan-He; Wen, Qi-Biao; Yang, Xiao-Quan
2009-01-01
The effects of succinylation and acetylation on some functional properties and the in vitro trypsin digestibility of kidney bean protein isolate (KPI) were investigated. The extent of succinylation or acetylation progressively increased from 0% to 96% to 97%, as the anhydride-to-protein ratio increased from 0 to 1 g/g. Polyacrylamide gel electrophoresis (PAGE) and zeta potential analyses indicated that acylation, especially succinylation, considerably increased the net charge and hydrodynamic radius of the proteins in KPI, especially vicilin. Acylation treatment at various anhydride-to-protein ratios (0.05 to 1 g/g) remarkably improved the protein solubility (PS) and emulsifying activity index (EAI) at neutral pH, but the improvement by succinylation was much better than that by acetylation. Succinylation resulted in a marked decrease in mechanical moduli of heat-induced gels of KPI, while the mechanical moduli were, on the contrary, increased by acetylation. Additionally, in vitro trypsin digestibility was improved by the acylation in an anhydride-type and level-dependent manner. The results suggest that the functional properties of KPI could be modulated by the chemical acylation treatment, using succinic or acetic anhydride at appropriate anhydride-to-protein ratios.
Sharma, Monika; Singh, Ashish K; Yadav, Deep N
2017-05-01
The octenyl succinyl anhydride (OSA) esterified pearl millet ( Pennisetum typhoides ) starch was evaluated as fat replacer in soft serve ice cream in comparison to other fat replacers viz. inulin, whey protein concentrate-70 and commercial starch. During temperature sweep test, the yield stress and flow behaviour index of un-pasteurized ice cream mixes increased as the temperature increased from 40 to 80 °C, while the consistency index decreased. Consistency index of aged ice cream mixes containing 2% fat replacer was higher as compared to mixes with 1% level. The aged ice cream mixes exhibited non-Newtonian behaviour as flow behaviour index values were less than one. Apparent viscosity (at 50 s -1 shear rate) of control as well as ice cream mix containing 1% OSA-esterified pearl millet starch samples was 417 and 415 mPas, respectively and did not differ significantly. The overrun of the ice cream (with 5 and 7.5% fat) containing 1 and 2% of above fat replacers ranged between 29.7 and 34.3% and was significantly lower than control (40.3%). The percent melted ice cream was also low for the ice creams containing 2% of above fat replacers at 5% fat content as compared to control. However, sensory acceptability and rheological characteristics of reduced fat ice creams containing 1.0 and 2.0% OSA-esterified pearl millet starch were at par with other fat replacers under the study. Thus, OSA-esterified pearl millet starch has potential to be used as fat replacer in reduced fat ice cream.
Kim, Ji Sun; Baek, Jae Ho; Ryu, Young Bok; Hong, Seong-Soo; Lee, Man Sig
2015-01-01
Succinic acid (SA) produced from hydrogenation of maleic anhydride (MAN) is used widely in manufacturing of pharmaceuticals, agrochemicals, surfactants and detergent, green solvent and biodegradable plastic. In this study, we performed that liquid hydrogenation of MAN to SA with 5 wt% Pd supported on activated carbon (Pd/C) at low pressure and temperature. The synthesis of SA was performed in aqueous solution while varying temperature, pressure, catalytic amount and agitation speed. We confirmed that the composition of the products consisting of SA, maleic acid (MA), fumaric acid (FA) and malic acid (MLA) depends on the process. The catalytic characteristics were analyzed by TGA, TEM.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d)(2)(ii). 4. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messori, M.; Vaccari, A.
1994-11-01
The catalytic reactivity of maleic anhydride (MA), succinic anhydride (SA) and their dimethyl esters (dimethyl maleate and dimethyl succinate) in the vapour phase hydrogenation to {gamma}-butyrolacetone (GBL) was investigated. In order to obtain general data, both a multicomponent catalyst (CAT 1: Cu/Zn/Mg/Cr = 40:5:5:50, atomic ratio %), obtained by reduction of a nonstoichiometric spinel-type precursor, and a commercial catalyst (CAT 2: Cu/Mn/Ba/Cr = 44:8:1:47, atomic ratio %) were used. The MA/GBL solution exhibited the highest GBL production, while the SA/GBL solution was converted only partially due to a competitive adsorption of GBL on the active sites, as evidenced by themore » similar reactivities observed with pure anhydrides. The best carbon balances were observed with the esters, probably the result of lowest light hydrocarbon synthesis and tar formation. With all the feedstocks, the activity of CAT 2 is higher than that of CAT 1, which, however, gives the best yield in GBL due its lower activity in the overhydrogenation and hydrogenolysis reaction. It was found that n-butanol (BuOH) and butyric acid (BuA) derived mainly from GBL. On this basis, the reactivities of the main products observed were investigated separately, confirming the stability of tetrahydrofuran (THF), which reacted only at high temperature with low conversions to ethanol. On the other hand, GBL gave rise to overhydrogenation and/or hydrogenolysis, with high conversion (mainly with CAT 2), confirming its key role in both reactions. Furthermore, the formation in the catalytic tests with BuA and BuOH of n-butanal, notwithstanding the high H{sub 2}/organic ratio, implies that it is the main intermediate in the hydrogenolysis reactions. A new reaction scheme is proposed, pointing out the key role of GBL as the {open_quotes}intersection{close_quotes} of two possible reaction pathways, giving rise to THF or overhydrogenation and hydrogenolysis products, respectively. 44 refs., 4 figs., 6 tabs.« less
Marchal, Frédéric; Nardello-Rataj, Véronique; Chailloux, Nelly; Aubry, Jean-Marie; Tiddy, Gordon J T
2008-05-01
Azelaic acid was used as a starting material for the preparation of new monoester surfactants based on fragrance alcohols. Sodium monocitronellyl azelate (citroC(9)Na) and sodium monomenthyl azelate (menC(9)Na) were synthesized and their aqueous phase behaviour was studied. For comparison, monoesters derived from succinic anhydride, i.e. sodium monocitronellyl succinate (citroC(4)Na) and sodium monomenthyl succinate (menC(4)Na), were also prepared as well as sodium monodecyl succinate (C(10)C(4)Na) and sodium monodecyl azelate (C(10)C(9)Na) in order to study the effect of the position of the ester function inside the hydrophobic tail and of branching and unsaturation respectively. Liquid crystal structures were examined by optical polarising microscopy and schematic partial binary phase diagrams (surfactant+water, 0-100 wt%, 10-90 degrees C) of the surfactants were established. Succinate surfactants behave as longer alkyl chain surfactants than their azelate counterparts, meaning that these last ones probably adopt a more folded conformation, with the ester function more frequently present at the micelle surface. This conformation would result in a rougher micelle surface, making it slightly less easy for micelles to pack in liquid crystalline phases. It was also shown that the tendency to adopt a more folded conformation and to form smaller micelles is ranked in this order: monomenthyl>monocitronellyl>monodecyl.
Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo
2015-10-01
Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.
Structure Formation in Solutions of Rigid Polymers Undergoing a Phase Transition
1987-04-01
cyclohexene dioxide (ERL-4206) - 10 g. nonenyl succinic anhydride (NSA) - 26 g. dimethyl amino ethanol ( DMAE ) - 0.4 g. After infiltration, short segments...existence of a significant number of defects within the individual microfibril. The presence of defects in the lateral packing of PBT chains is also suggested...of the D- and L- enantiomers yields a nematic phase. The ordered phases exhi- bit complex textures due to defects (disclinations) which depend on
Geng, Tong-Mou; Wang, Xie; Wang, Zhu-Qing; Chen, Tai-Jie; Zhu, Hai; Wang, Yu
2015-03-01
Two rhodamine derivatives, N-mono-maleic acid amide-N'-rhodamine B hydrazide (MRBH) and N-mono-succinic acid amide-N'-rhodamine 6G hydrazide (SR6GH), were synthesized by amidation with maleic anhydride (MAH), succinic anhydride (SAH) and rhodamine B hydrazide, rhodamine 6G hydrazide, which were identified by FTIR, (1)H NMR and elemental analysis. Two water-soluble fluorescent materials (PVA-MRBH and PVA-SR6GH) were prepared via esterification reaction with N-mono-maleic acyl chloride amide-N'-rhodamine B hydrazide (MRBHCl) or N-mono-maleic acyl chloride amide-N'-rhodamine 6G hydrazide (SR6GHCl) and poly(vinyl alcohol) (PVA) in DMSO solution. The sensing behaviors of PVA-MRBH and PVA-SR6GH were explored by recording the fluorescence spectra in completely aqueous solution. Upon the addition of Cu(2+) and Fe(3+) ions to the aqueous solution of PVA-MRBH, visual color change from rose pink to amaranth and orange for Cu(2+) and Fe(3+) ions, respectively, and fluorescence quenching were observed. Titration of Cu(2+), Fe(3+), Cr(3+) or Hg(2+) into the aqueous solution of PVA-SR6GH, although they induced fluorescence enhancement, only Fe(3+) made the color changing from colorless to yellow. Moreover, other metal ions did not induce obvious changes to color and the fluorescence spectra.
Impact of structure and functionality of core polyol in highly functional biobased epoxy resins.
Pan, Xiao; Webster, Dean C
2011-09-01
Highly functional biobased epoxy resins were prepared using dipentaerythritol (DPE), tripentaerythritol (TPE), and sucrose as core polyols that were substituted with epoxidized soybean oil fatty acids, and the impact of structure and functionality of the core polyol on the properties of the macromolecular resins and their epoxy-anhydride thermosets was explored. The chemical structures, functional groups, molecular weights, and compositions of epoxies were characterized using nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI MS). The epoxies were also studied for their bulk viscosity, intrinsic viscosity, and density. Crosslinked with dodecenyl succinic anhydride (DDSA), epoxy-anhydride thermosets were evaluated using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile tests, and tests of coating properties. Epoxidized soybean oil (ESO) was used as a control. Overall, the sucrose-based thermosets exhibited the highest moduli, having the most rigid and ductile performance while maintaining the highest biobased content. DPE/TPE-based thermosets showed modestly better thermosetting performance than the control ESO thermoset. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heavy-metal detectors based on modified ferrite nanoparticles
Klekotka, Urszula; Wińska, Ewelina; Zambrzycka-Szelewa, Elżbieta; Satuła, Dariusz
2018-01-01
In this work, we analyze artificial heavy-metal solutions with ferrite nanoparticles. Measurements of adsorption effectiveness of different kinds of particles, pure magnetite or magnetite doped with calcium, cobalt, manganese, or nickel ions, were carried out. A dependence of the adsorption efficiency on the composition of the inorganic core has been observed. Ferrites surfaces were modified by phthalic anhydride (PA), succinic anhydride (SA), acetic anhydride (AA), 3-phosphonopropionic acid (3-PPA), or 16-phosphohexadecanoic acid (16-PHDA) to compare the adsorption capability of the heavy metals Cd, Cu and Pb. The obtained nanoparticles were structurally characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Mössbauer spectroscopy. The amounts of Cd, Cu and Pb were measured out by atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) as comparative techniques. The performed study shows that SA linker appears to be the most effective in the adsorption of heavy metals. Moreover, regarding the influence of the composition of the inorganic core on the detection ability, the most effective ferrite Mn0.5Fe2.5O4 was selected for discussion. The highest heavy-metal adsorption capability and universality was observed for SA as a surface modifier. PMID:29600137
Heavy-metal detectors based on modified ferrite nanoparticles.
Klekotka, Urszula; Wińska, Ewelina; Zambrzycka-Szelewa, Elżbieta; Satuła, Dariusz; Kalska-Szostko, Beata
2018-01-01
In this work, we analyze artificial heavy-metal solutions with ferrite nanoparticles. Measurements of adsorption effectiveness of different kinds of particles, pure magnetite or magnetite doped with calcium, cobalt, manganese, or nickel ions, were carried out. A dependence of the adsorption efficiency on the composition of the inorganic core has been observed. Ferrites surfaces were modified by phthalic anhydride (PA), succinic anhydride (SA), acetic anhydride (AA), 3-phosphonopropionic acid (3-PPA), or 16-phosphohexadecanoic acid (16-PHDA) to compare the adsorption capability of the heavy metals Cd, Cu and Pb. The obtained nanoparticles were structurally characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Mössbauer spectroscopy. The amounts of Cd, Cu and Pb were measured out by atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) as comparative techniques. The performed study shows that SA linker appears to be the most effective in the adsorption of heavy metals. Moreover, regarding the influence of the composition of the inorganic core on the detection ability, the most effective ferrite Mn 0.5 Fe 2.5 O 4 was selected for discussion. The highest heavy-metal adsorption capability and universality was observed for SA as a surface modifier.
Karimzadeh, Mahmonir; Rashidi, Ladan; Ganji, Fariba
2017-04-01
Rivastigmine hydrogen tartrate (RT) is a molecule with both hydrophilic and hydrophobic properties used for the treatment of the Alzheimer's disease. In this work, the larger pore size of mesoporous silica nanoparticles (P1-MSN) was synthesized and then, P1-MSN were functionalized by succinic anhydride (S-P1-MSN) and 3-aminopropyltriethoxysilane (APTES) (AP-CO-P1-MSN) using the grafting and co-condensation methods, respectively. A new method was used for the functionalization of P1-MSN by succinic anhydride at room temperature. Nanoparticles were characterized by special instrumental analysis and loaded by RT. Maximum entrapment efficiency and RT loading percentage into P1-MSN, AP-CO-P1-MSN and S-P1-MSN were respectively obtained as 21.26 and 25.5%, 41.5 and 49.8%, and 11.9 and 14.28% for 24 h. In the simulated gastric and body fluids, the release rate of RT-loaded AP-CO-P1-MSN (AP-CO-P1-MSN-RT) was lower than that of other RT-loaded nanoparticles. In oral pathway, the sustained release of RT was observed in AP-CO-P1-MSN-RT. Moreover, no cytotoxicity effect was observed for P1-MSN, but the cells treated by AP-CO-P1-MSN showed a reduction in SY5Y cell viability due to easy entrance of these nanoparticles and their accumulation in different parts of the cell as observed by TEM.
Lacerda, Ellen Cristina Quirino; Calado, Verônica Maria de Araújo; Monteiro, Mariana; Finotelli, Priscilla Vanessa; Torres, Alexandre Guedes; Perrone, Daniel
2016-10-20
The influence of encapsulating carbohydrates (EC) with varying properties on the technological and functional properties of jussara pulp microparticles produced by spray drying were evaluated using experimental design. Microparticles produced with sodium octenyl succinate (OSA) starch at 0.5 core to EC ratio and with mixtures of inulin and maltodextrin at 1.0 and 2.0 core to EC ratio showed darker color, and higher anthocyanins contents and antioxidant activity. Seven microparticles showing high water solubility and desirable surface morphology. Hygroscopicity (10.7% and 11.5%) and wettability (41s and 43s) were improved when OSA starch and mixtures of inulin and maltodextrin were used. The anthocyanins contents and color of the microparticles did not change when exposed to light at 50°C for 38days. Finally, microparticles produced at 1.0 core to EC ratio with 2/3 OSA starch, 1/6 inulin and 1/6 maltodextrin were selected. These microparticles may be applied as colorant in numerous foods, whilst adding prebiotic fiber and anthocyanins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cirković, T; Gavrović-Jankulović, M; Prisić, S; Jankov, R M; Burazer, L; Vucković, O; Sporcić, Z; Paranos, S
2002-11-01
Reaction of epsilon-amino groups of lysine with potassium cyanate, maleic, or succinic anhydride leads to allergoids of low molecular weight. No study has been performed to compare their properties and investigate the influence of a residual group on allergenicity and human IgE- and IgG-binding of these derivatives. Allergoids of a pollen extract of Artemisia vulgaris were obtained by means of potassium cyanate, and succinic and maleic anhydride. Biochemical properties were investigated by determination of amino groups, enzyme activity, isoelectric focusing IEF and SDS-PAGE. IgE- and IgG-binding was determined using immunoblots and ELISA inhibition. Allergenicity was investigated by skin prick tests (SPT) on a group of 52 patients, of which 6 were control subjects, 30 were patients with no previous immunotherapy (IT), and 16 were patients undergoing immunotherapy. The same degree of amino-group modification (more than 85%), residual enzyme activity (less then 15%), IEF, and SDS-PAGE pattern were noted. In the immunoblots of IgE-binding, there was more pronounced reduction in the succinyl and maleyl derivatives than in the carbamyl one. IgG-binding was less affected by carbamylation than by acid anhydride modification. The SPT showed that the succinylated derivative had the most reduced allergenicity (98% showed a reduced wheal diameter when tested with the succinyl derivative, 87% with the maleyl allergoid, and 83% with the carbamyl allergoid). The most significant difference among allergoids could be seen in the group of patients with high skin reactivity (83% of patients showed no reaction to the succinyl derivative when compared to the value of 28% for the carbamyl derivative or 22% for the maleyl derivative). According to our results, all three modification procedures yielded allergoids with a similar extent of modification. No single biochemical parameter investigated in the study could predict the degree of reduced allergenicity in vivo. The most reduced allergenicity was seen in the succinyl derivative while the preservation of IgG binding epitopes was of the highest degree for the carbamyl derivative.
Cano, María Emilia; Varela, Oscar; García-Moreno, María Isabel; García Fernández, José Manuel; Kovensky, José; Uhrig, María Laura
2017-04-18
The synthesis of mono and divalent β-galactosylamides linked to a hydroxylated chain having a C2 symmetry axis derived from l-tartaric anhydride is reported. Reference compounds devoid of hydroxyl groups in the linker were also prepared from β-galactosylamine and succinic anhydride. After functionalization with an alkynyl residue, the resulting building blocks were grafted onto different azide-equipped scaffolds through the copper catalyzed azide-alkyne cycloaddition. Thus, a family of structurally related mono and divalent β-N-galactopyranosylamides was obtained and fully characterized. The binding affinities of the ligands towards the model lectin PNA were measured by the enzyme-linked lectin assay (ELLA). The IC 50 values were significantly higher than that of galactose but the presence of hydroxyl groups in the aglycone chain improved lectin recognition. Docking and molecular dynamics experiments were in accordance with the hypothesis that a hydroxyl group properly disposed in the linker could mimic the Glc O3 in the recognition process. On the other hand, divalent presentation of the ligands led to lectin affinity enhancements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis, stability and bioavailability of astaxanthin succinate diester.
Qiao, Xing; Yang, Lu; Zhang, Ting; Zhou, Qingxin; Wang, Yuming; Xu, Jie; Xue, Changhu
2018-06-01
We synthesized astaxanthin succinate diester (ASD), a novel astaxanthin (AST) derivate, with succinic anhydride and free AST. ASD was purified and characterized using silica gel column chromatography and spectrometry, respectively. The ASD final synthesis rate was 82.63%. A stability test revealed a high AST and ASD retention rate at pH 5.0-7.0. ASD showed better stability than did AST under acidic conditions. Both sample ions showed lower retention rates under Fe 2+ and Fe 3+ states. The ASD metabolic curve showed serum and liver area under the curve from 0 h to time t (AUC 0-t ) values of 45.05 ± 4.58 and 120.38 ± 23.66 µg h -1 mL -1 , respectively. The long-term accumulation was significantly higher in the ASD group than in the AST group, which showed higher accumulation in the heart, muscle and spleen than in other tissues in vivo. The thermal stability and bioavailability of ASD were higher than that of the non-esterified free AST and common free AST, respectively. Additionally, AST accumulation in different tissues of the ASD group was multifold higher than that of free AST. These results prove that ASD may serve as a better source of AST for human nutrition than does free AST. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Arfa, Afef Ben; Preziosi-Belloy, Laurence; Chalier, Pascale; Gontard, Nathalie
2007-03-21
Soy protein isolates (SPI) and octenyl-succinate (OSA) modified starch were used as paper coating and inclusion matrices of two antimicrobial compounds: cinnamaldehyde and carvacrol. Antimicrobial compound losses from the coated papers were evaluated after the coating and drying process, and the two matrices demonstrated retention ability that depended on the compound nature and concentration. Whereas carvacrol losses ranged between 12 and 45%, cinnamaldehyde losses varied from 43 to 76%. The losses were always higher from OSA-starch-coated papers than from SPI-coated papers. During storage in accelerated conditions, at 30 degrees C and 60% relative humidity, carvacrol retention from coated papers was found to be similar whatever the coating matrices and the carvacrol rate. In contrast, the retention from SPI-coated papers was particularly high for the cinnamaldehyde concentration of 30% (w/w) compared to the lowest (10% w/w) or highest concentration (60% w/w). Compared to carvacrol, faster release was observed, particurlarly when OSA-starch was used. The antimicrobial properties of the coated papers were shown against Escherichia coli and Botrytis cinerea and explained by favorable conditions of total release of the antimicrobial agents.
Development of Surface-Variable Polymeric Nanoparticles for Drug Delivery to Tumors.
Han, Ning; Pang, Liang; Xu, Jun; Hyun, Hyesun; Park, Jinho; Yeo, Yoon
2017-05-01
To develop nanoparticle drug carriers that interact with cells specifically in the mildly acidic tumor microenvironment, we produced polymeric nanoparticles modified with amidated TAT peptide via a simple surface modification method. Two types of core poly(lactic-co-glycolic acid) nanoparticles (NL and NP) were prepared with a phospholipid shell as an optional feature and covered with polydopamine that enabled the conjugation of TAT peptide on the surface. Subsequent treatment with acid anhydrides such as cis-aconitic anhydride (CA) and succinic anhydride (SA) converted amines of lysine residues in TAT peptide to β-carboxylic amides, introducing carboxylic groups that undergo pH-dependent protonation and deprotonation. The nanoparticles modified with amidated TAT peptide (NLpT-CA and NPpT-CA) avoided interactions with LS174T colon cancer cells and J774A.1 macrophages at pH 7.4 but restored the ability to interact with LS174T cells at pH 6.5, delivering paclitaxel efficiently to the cells following a brief contact time. In LS174T tumor-bearing nude mice, NPpT-CA showed less accumulation in the lung than NPpT, reflecting the shielding effect of amidation, but tumor accumulation of NPpT and NPpT-CA was equally minimal. Comparison of particle stability and protein corona formation in media containing sera from different species suggests that NPpT-CA has been activated and opsonized in mouse blood to a greater extent than those in bovine serum-containing medium, thus losing the benefits of pH-sensitivity expected from in vitro experiments.
Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua
2018-05-02
The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.
Evaluation of certain food additives and contaminants.
2013-01-01
This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives and a food contaminant with a view to concluding as to safety concerns and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for seven food additives (advantame; glucoamylase from Trichoderma reesei expressed in Trichoderma reesei; glycerol ester of gum rosin; glycerol ester of tall oil rosin; glycerol ester of wood rosin; nisin; and octenyl succinic acid modified gum arabic) and an assessment of dietary exposure to cadmium from cocoa and cocoa products. Specifications for the following food additives were revised: annatto extracts (solvent-extracted bixin and solvent-extracted norbixin); Benzoe tonkinensis; food additives containing aluminium and/or silicon; mineral oil (medium viscosity); modified starches; paprika extract; phosphates (analytical methods for the determination of phosphorus and revision of specifications); 3-phytase from Aspergillus niger expressed in Aspergillus niger; potassium aluminium silicate; and potassium aluminium silicate-based pearlescent pigments. Annexed to the report are tables summarizing the Committee's recommendations for dietary exposures to and toxicological evaluations of the food additives and contaminant considered.
Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rorrer, Nicholas A.; Vardon, Derek R.; Dorgan, John R.
Nearly all polymer resins used to manufacture critically important fiber reinforced polymer (FRP) composites are petroleum sourced. In particular, unsaturated polyesters (UPEs) are widely used as matrix materials and are often based on maleic anhydride, a four-carbon, unsaturated diacid. Typically, maleic anhydride is added as a reactant in a conventional step-growth polymerization to incorporate unsaturation throughout the backbone of the UPE, which is then dissolved in a reactive diluent (styrene is widely used) infused into a fiber mat and cross-linked. Despite widespread historical use, styrene has come under scrutiny due to environmental and health concerns; in addition, many conceivable UPEsmore » are not soluble in styrene. In this study, we demonstrate that renewably-sourced monomers offer the ability to overcome these issues and improve overall composite performance. The properties of poly(butylene succinate)-based UPEs incorporating maleic anhydride are used as a baseline for comparison against UPEs derived from fumaric acid, cis, cis-muconate, and trans, trans-muconate, all of which can be obtained biologically. The resulting biobased UPEs are combined with styrene, methacrylic acid, or a mixture of methacrylic acid and cinnaminic acid, infused into woven fiberglass and cross-linked with the addition of a free-radical initiator and heat. This process produces a series of partially or fully bio-derived composites. Overall, the muconate-containing UPE systems exhibit a more favorable property suite than the maleic anhydride and fumaric acid counterparts. In all cases at the same olefinic monomer loading, the trans, trans-muconate polymers exhibit the highest shear modulus, storage modulus, and glass transition temperature indicating stronger and more thermally resistant materials. They also exhibit the lowest loss modulus indicating a greater adhesion to the glass fibers. The use of a mixture of methacrylic and cinnaminic acid as the reactive diluent results in a FRP composite with properties that can be matched to reinforced composites prepared with styrene. Significantly, at one-third the monomer loading (corresponding to two-thirds the number of double bonds), trans, trans-muconate produces approximately the same storage modulus and glass transition temperature as maleic anhydride, while exhibiting a superior loss modulus. Altogether, this work demonstrates the novel synthesis of performance-differentiated FRP composites using renewably-sourced monomers.« less
Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites
Rorrer, Nicholas A.; Vardon, Derek R.; Dorgan, John R.; ...
2017-03-14
Nearly all polymer resins used to manufacture critically important fiber reinforced polymer (FRP) composites are petroleum sourced. In particular, unsaturated polyesters (UPEs) are widely used as matrix materials and are often based on maleic anhydride, a four-carbon, unsaturated diacid. Typically, maleic anhydride is added as a reactant in a conventional step-growth polymerization to incorporate unsaturation throughout the backbone of the UPE, which is then dissolved in a reactive diluent (styrene is widely used) infused into a fiber mat and cross-linked. Despite widespread historical use, styrene has come under scrutiny due to environmental and health concerns; in addition, many conceivable UPEsmore » are not soluble in styrene. In this study, we demonstrate that renewably-sourced monomers offer the ability to overcome these issues and improve overall composite performance. The properties of poly(butylene succinate)-based UPEs incorporating maleic anhydride are used as a baseline for comparison against UPEs derived from fumaric acid, cis, cis-muconate, and trans, trans-muconate, all of which can be obtained biologically. The resulting biobased UPEs are combined with styrene, methacrylic acid, or a mixture of methacrylic acid and cinnaminic acid, infused into woven fiberglass and cross-linked with the addition of a free-radical initiator and heat. This process produces a series of partially or fully bio-derived composites. Overall, the muconate-containing UPE systems exhibit a more favorable property suite than the maleic anhydride and fumaric acid counterparts. In all cases at the same olefinic monomer loading, the trans, trans-muconate polymers exhibit the highest shear modulus, storage modulus, and glass transition temperature indicating stronger and more thermally resistant materials. They also exhibit the lowest loss modulus indicating a greater adhesion to the glass fibers. The use of a mixture of methacrylic and cinnaminic acid as the reactive diluent results in a FRP composite with properties that can be matched to reinforced composites prepared with styrene. Significantly, at one-third the monomer loading (corresponding to two-thirds the number of double bonds), trans, trans-muconate produces approximately the same storage modulus and glass transition temperature as maleic anhydride, while exhibiting a superior loss modulus. Altogether, this work demonstrates the novel synthesis of performance-differentiated FRP composites using renewably-sourced monomers.« less
Kudriashova, E V; Belova, A B; Vinogradov, A A; Mozhaev, V V
1994-03-01
Catalytic activity of covalently modified alpha-chymotrypsin in water/cosolvent solutions was investigated. The stability of chymotrypsin increases upon modification with hydrophilic reagents, such as glyceraldehyde, pyrometallic and succinic anhydrides, and glucosamine. Correlation was observed between the protein's stability in organic solvents and the degree of hydrophilization of the protein's surface. The protein is the more stable, the higher are the modification degree and the hydrophilicity of the modifying residue. At a certain critical hydrophilization degree of chymotrypsin a limit of stability is achieved. The stabilization effect can be accounted for by the fact that the interaction between water molecules on the surface and protein's functional groups become stronger in the hydrophilized protein.
Fishman, William H.; Ghosh, Nimai K.
1967-01-01
1. Studies on the inactivation of rat intestinal alkaline phosphatase by several metal-binding agents, namely EDTA, 8-hydroxyquinoline, pyridine-2,6-dicarboxylic acid, αα′-bipyridyl, o-phenanthroline and sodium cyanide, indicated the functional role of a metal, probably zinc, in the catalysis. The metal ligands lowered stereospecific uncompetitive inhibition of the enzyme by l-phenylalanine by an extent that paralleled the decline in enzyme activity. 2. The thiol reagents p-hydroxymercuribenzoate, iodoacetamide and iodine inactivated rat intestinal phosphatase. The enzyme could be protected from inactivation by either cysteine or substrate. The l-phenylalanine inhibition remained unchanged only in the presence of moderately inactivating concentrations of the thiol reagents. 3. Inactivation of the enzyme by the amino-group-blocking reagent, O-methylisourea, provided ample evidence for the participation in the catalysis of the ∈-amino group of lysine. At the same time, l-phenylalanine inhibition remained unaltered even when the enzyme was strongly inactivated. This ∈-amino-group-blocked enzyme exhibited no change in migration in starch gel, in contrast with enzyme treated with acetic anhydride, formaldehyde or succinic anhydride. The Michaelis constant of the enzyme was enhanced by such modifications, but the optimum pH remained the same. 4. d-Phenylalanine acted as a competitive or `co-operative' activator for intestinal alkaline phosphatase after it had been modified by acetylation. PMID:16742542
Llana-Ruíz-Cabello, María; Pichardo, Silvia; Jiménez-Morillo, Nicasio T; Bermúdez, José M; Aucejo, Susana; González-Vila, Francisco J; Cameán, Ana M; González-Pérez, José A
2016-07-01
Environmental, economic and safety challenges motivate shift towards safer materials for food packaging. New bioactive packaging techniques, i.e. addition of essential plant oils (EOs), are gaining attention by creating barriers to protect products from spoilage. Analytical pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) was used to fingerprint a bioactive polylactic acid (PLA) with polybutylene succinate (PBS) (950 g kg(-1) :50 g kg(-1) ) film extruded with variable quantities (0, 20, 50 and 100 g kg(-1) ) of Origanum vulgare EO. Main PLA:PBS pyrolysis products were lactide enantiomers and monomer units from the major PLA fraction and succinic acid anhydride from the PBS fraction. Oregano EO pyrolysis released cymene, terpinene and thymol/carvacrol peaks as diagnostic peaks for EO. In fact, linear correlation coefficients better than 0.950R(2) value (P < 0.001) were found between the chromatographic area of the diagnostic peaks and the amount of oregano EO in the bioplastic. The pyrolytic behaviour of a bio-based active package polymer including EO is studied in detail. Identified diagnostic compounds provide a tool to monitor the quantity of EO incorporated into the PLA:PBS polymeric matrix. Analytical pyrolysis is proposed as a rapid technique for the identification and quantification of additives within bio-based plastic matrices. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Cirković, T D; Bukilica, M N; Gavrović, M D; Vujcić, Z M; Petrović, S; Jankov, R M
1999-02-01
Orchard grass (Dactylis glomerata) pollen proteins were chemically modified by means of acid anhydrides (maleic and succinic anhydride) to obtain low-molecular-weight allergoids. Chemical modification in both cases led to the replacement of one positive charge (epsilon amino group of Lys) by one negative charge, yielding proteins with changed physicochemical properties in comparison to the native orchard grass-pollen proteins. Physicochemical characterization of derivatives was done by gel chromatography, SDS-PAGE, and isoelectric focusing. To examine the IgE-binding properties of these derivatives, we carried out immunoblotting. To examine the ability of derivatives to induce IgG production, we immunized rabbits. Skin prick testing with the allergoids was performed on 15 individuals allergic to orchard grass pollens and on two healthy subjects. It was shown that the modified proteins retain their original molecular weights, but change pI to more acidic values. In the case of allergoids, a strong reduction in IgE binding was found. Immunization of rabbits with allergoids showed that the derivatives retain the ability to induce IgG production, and that the antisera obtained in such a way react to native (unmodified) extract. The ability of derivatives to induce allergic reaction was significantly reduced. The patients (86.6%) included in our study exhibited less than 50% of native extract response. Among them, 53.3% had no response to one or both allergoids. These modification procedures yield allergoids with a reduced allergenic activity and preserved immunogenic potential suitable for use in immunotherapy.
Evaluation of certain food additives and contaminants.
2011-01-01
This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The Committee also evaluated the risk posed by two food contaminants, with the aim of deriving tolerable intakes where appropriate and advising on risk management options for the purpose of public health protection. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives and contaminants. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for certain food additives (aluminium-containing food additives, Benzoe Tonkinensis, glycerol ester of gum rosin, glycerol ester of tall oil rosin, glycerol ester of wood rosin, octenyl succinic acid modified gum arabic, polydimethyl siloxane, Ponceau 4R, pullulan, pullulanase from Bacillus deromificans expressed in Bacillus licheniformis, Quinoline Yellow and Sunset Yellow FCF) and two food contaminants (cyanogenic glycosides and fumonisins). Specifications for the following food additives were revised: aluminium lakes of colouring matters; beta-apo-8'-carotenal; beta-apo-8'-carotenoic acid ethyl ester; beta-carotene, synthetic; hydroxypropyl methyl cellulose; magnesium silicate, synthetic; modified starches; nitrous oxide; sodium carboxymethyl cellulose; and sucrose monoesters of lauric, palmitic or stearic acid. Annexed to the report are tables summarizing the Committee's recommendations for dietary exposures to and toxicological evaluations of the food additives and contaminants considered.
NASA Astrophysics Data System (ADS)
Meyer, Jesse G.; D'Souza, Alexandria K.; Sorensen, Dylan J.; Rardin, Matthew J.; Wolfe, Alan J.; Gibson, Bradford W.; Schilling, Birgit
2016-11-01
Post-translational modification of lysine residues by NƐ-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods can overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy.
Mandracchia, Delia; Trapani, Adriana; Perteghella, Sara; Sorrenti, Milena; Catenacci, Laura; Torre, Maria Luisa; Trapani, Giuseppe; Tripodo, Giuseppe
2018-02-01
Aiming at a site-specific drug release in the lower intestinal tract, this paper deals with the synthesis and physicochemical/biological characterization of pH-sensitive nanomicelles from an inulin (INU) amphiphilic derivative. To allow an intestinal site specific release of the payload, INU-Vitamin E (INVITE) bioconjugates were functionalized with succinic anhydride to provide the system with pH-sensitive groups preventing a premature release of the payload into the stomach. The obtained INVITESA micelles resulted nanosized, with a low critical aggregation concentration and the release studies showed a marked pH-dependent release. The drug loading stabilized the micelles against the acidic hydrolysis. From transport studies on Caco-2 cells, resulted that INVITESA nanomicelles cross the cellular monolayer but are actively re-transported in the secretory (basolateral-apical) direction when loaded in apical side. It suggests that the entrapped drug could not be absorbed before the release from the micelles, enabling so a local release of the active. Copyright © 2017 Elsevier Ltd. All rights reserved.
Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Zhouyang; Runge, Troy
This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less
Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals
Xiang, Zhouyang; Runge, Troy
2015-07-21
This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less
Preparation of milk protein-vitamin A complexes and their evaluation for vitamin A binding ability.
Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva
2017-12-15
The recent trends for consumption of low fat and fat free foods have led to an increase in deficiencies of vitamin A. Vitamin A is susceptible to light and heat and thus require stabilization in aqueous medium. Stability can be improved by binding of vitamin A to milk protein. In the present research work, succinylated milk proteins were also prepared. 3.2 mol of succinic anhydride/mole of lysine content gave maximum degree of succinylation for both sodium caseinate and milk protein concentrate. Native, reassembled and succinylated milk proteins were used for the preparation of milk protein-Vitamin A (Vit A) complexes. These complexes were further evaluated for unbound vitamin A, ability of milk protein to bind vitamin A and solubility of protein and vitamin A as affected by complexation. Estimation of unbound vitamin A in milk protein-Vit A complexes was carried out using ammonium sulphate for precipitation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meyer, Jesse G.; D’Souza, Alexandria K.; Sorensen, Dylan J.; ...
2016-09-02
Post-translational modification of lysine residues by N ε-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods canmore » overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy.« less
NASA Astrophysics Data System (ADS)
Hayes, Heather J.
1999-11-01
Three distinct heterogeneous polymer modification reactions are explored in this work. The first is a bulk reaction commonly conducted on polyolefins---the free radical addition of maleic anhydride. This reaction was run using supercritical carbon dioxide (SC CO2) as the solvent. The second was the chemical surface modification of an amorphous fluorocopolymer of tetrafluoroethylene and a perfluorodioxole monomer (Teflon AF). Several reactions were explored to reduce the surface of the fluorocopolymer for the enhancement of wettability. The last modification was also on Teflon AF and involved the physical modification of the surface through the transport polymerization of xylylene in order to synthesize a novel bilayer membrane. The bulk maleation of poly-4-methyl-1-pentene (PMP) was the focus of the first project. SC CO2 was utilized as both solvent and swelling agent to promote this heterogeneous reaction and led to successful grafting of anhydride groups on both PMP and linear low density polyethylene. Varying the reaction conditions and reagent concentrations allowed optimization of the reaction. The grafted anhydride units were found to exist as single maleic and succinic grafts, and the PMP became crosslinked upon maleation. The surface of a fluoropolymer can be difficult to alter. An examination of three reactions was made to determine the reactivity of Teflon AF: sodium naphthalenide treatment (Na-Nap), aluminum metal modification through deposition and dissolution, and mercury/ammonia photosensitization. The fluorocopolymer with the lower perfluorodioxole percentage was found to be more reactive towards modification with the Na-Nap treatment. The other modification reactions appeared to be nearly equally reactive toward both fluorocopolymers. The functionality of the Na-Nap-treated surface was examined in detail with the use of several derivatization reactions. In the final project, an asymmetric gas separation membrane was synthesized using Teflon AF as the highly permeable support layer and chemical vapor deposited poly(p-xylylene) (PPX) as the thin selective layer. This bilayer membrane has oxygen and nitrogen permeability values close to those predicted by the series resistance model. To enhance the weak adhesive bond between Teflon AF and PPX, Na-Nap reduction was used to modify the Teflon AF surface prior to the vapor deposition polymerization of di-p-xylylene monomer.
NASA Technical Reports Server (NTRS)
Oskaja, V.; Rotberg, J.
1985-01-01
By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.
Rodriguez, A F R; Rocha, C O; Piazza, R D; Dos Santos, C C; Morales, M A; Faria, F S E D V; Iqbal, M Zubair; Barbosa, L; Chaves, Y O; Mariuba, L A; Jafelicci, M; Marques, R F C
2018-06-12
Magnetic nanoparticles (NPs) have attracted great attention owing to their applications in the biomedical field. In the present work, maghemite (γFe 2 O 3 ) NPs of 6.5 nm were prepared using a sonochemical method and used to prepare magnetic beads through silanization with 3-aminopropyltrimethoxysilane (APTS). Subsequently, amino groups in the resulting APTS-γFe 2 O 3 beads were converted to carboxylic acid (CARB-γFe 2 O 3 ) through the succinic anhydride reaction, as confirmed by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and dynamic light scattering (DLS) measurements. The size of these beads was measured as 12 nm and their hydrodynamic diameter as 490 nm, using TEM analysis and DLS, respectively. The CARB-γFe 2 O 3 beads were further functionalized by immobilizing rabbit antibodies on their surfaces; the immobilization was confirmed by flow cytometry and ionic strength. The samples were further characterized by Mössbauer spectroscopy and DC magnetization measurements. Studies on magnetic relaxivities showed that magnetic beads present great potential for application in MR imaging.
Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine
2010-04-12
Two-, four-, and six-armed branched copolymers with electroactive and biodegradable properties were synthesized by coupling reactions between poly(l-lactides) (PLLAs) with different architecture and carboxyl-capped aniline trimer (CCAT). The aniline oligomer CCAT was prepared from amino-capped aniline trimer and succinic anhydride. FT-IR, NMR, and SEC analyses confirmed the structure of the branched copolymers. UV-vis spectra and cyclic voltammetry of CCAT and copolymer solution showed good electroactive properties, similar to those of polyaniline. The water contact angle of the PLLAs was the highest, followed by the undoped copolymer and the doped copolymers. The values of doped four-armed copolymers were 54-63 degrees . Thermal properties of the polymers were studied by DSC and TGA. The copolymers had better thermal stability than the pure PLLAs, and the T(g) between 48-58 degrees C and T(m) between 146-177 degrees C of the copolymers were lower than those of the pure PLLA counterparts. This kind of electroactive and biodegradable copolymer has a great potential for applications in cardiovascular or neuronal tissue engineering.
Zhao, Yangyang; Dong, Xiaoyan; Yu, Linling; Liu, Yang; Sun, Yan
2018-05-18
Previously, we have studied protein adsorption and chromatographic behaviors on poly(ethylenimine) (PEI)-grafted Sepharose FF anion-exchange resins, and found that protein uptake rates increased greatly when PEI grafting density reached over a critical ionic capacity (cIC) due to the occurrence of the "chain delivery" effect. Moreover, by partial charge neutralization of starting resin FF-PEI-L740 (IC = 740 mmol/L, larger than the cIC) with sodium acetate to FF-PEI-R440, it exhibited a three-fold increase in uptake rate over FF-PEI-L740. In this work, to take the advantages of PEI and extend the applications of the PEI-grafted resins in cation-exchange chromatography, a series of cation exchangers of five different ICs were developed. First, the charged of FF-PEI-L740 was reversed from positive to negative by reaction with excess succinic anhydride, which created a cation-exchanger with an IC of 970 mmol/L (FF-FEI-C970). FF-PEI-C970 was further modified with ethanolamine for partial charge neutralizations, leading to the preparation of four charge-reduced cation exchangers with IC values (in mmol/L) of 780, 630, 560 and 430, which were denoted as FF-PEI-CR780, -CR630 -CR560 and -CR430, respectively. Protein adsorption and chromatographic behaviors were investigated using lysozyme (Lys) as the model protein. It was found that, the resins of high and moderate IC values (IC ≥ 560 mmol/L) afforded adsorption capacities up to over 230 mg/mL. Besides, the uptake rate, represented by the effective pore diffusivity (D e/ D 0 ), exhibited significant increase from 0.067 (FF-PEI-C970 and FF-PEI-CR780) to 0.343 (FF-PEI-CR630 and FF-PEI-CR560) and then to 1.035 (FF-PEI-CR430) with decreasing IC. It was considered that decreasing IC led to the decreased protein binding sites (binding strength), which encouraged the occurrence of the "chain delivery" effect. Moreover, the resins of high and moderate IC values, particularly, the resins of moderate IC values (FF-PEI-CR630 and FF-PEI-CR560), presented both high adsorption capacities and uptake kinetics at 0-100 mmol/L NaCl. Besides, dynamic binding capacity achieved 150 mg/mL for the resins of moderate IC values at 0 mmol/L NaCl concentration, and afforded >110 mg/mL for the resin of high IC values at 0-100 mmol/L NaCl concentration. The results proved the excellent IEC performance of the PEI-derived cation exchangers. Copyright © 2018 Elsevier B.V. All rights reserved.
Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian
2017-06-01
We demonstrate a reaction headspace gas chromatographic method for quantifying anhydride groups in anhydride-based epoxy hardeners. In this method, the conversion process of anhydride groups can be realized by two steps. In the first step, anhydride groups in anhydride-based epoxy hardeners completely reacted with water to form carboxyl groups. In the second step, the carboxyl groups reacted with sodium bicarbonate solution in a closed sample vial. After the complete reaction between the carboxyl groups and sodium bicarbonate, the CO 2 formed from this reaction was then measured by headspace gas chromatography. The data showed that the reaction in the closed headspace vial can be completed in 15 min at 55°C, the relative standard deviation of the reaction headspace gas chromatography method in the precision test was less than 3.94%, the relative differences between the new method and a reference method were no more than 9.38%. The present reaction method is automated, efficient and can be a reliable tool for quantifying the anhydride groups in anhydride-based epoxy hardeners and related research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...
Lv, Qing-Qing; Li, Gao-Yang; Xie, Qiu-Tao; Zhang, Bao; Li, Xiao-Min; Pan, Yi; Chen, Han-Qing
2018-08-01
In order to increase the degree of substitution (DS), a combination of heat-moisture treatment (HMT) and octenyl succinylation (OSA) was used to modify sweet potato starch (SPS). The content of OSA had significant influence on the DS of starch, and DS of HMT OSA-modified SPS (HOSA-SPS) was higher than that of OSA-modified SPS (OSA-SPS), indicating that prior HMT could enhance the reaction. HOSA-SPS showed higher contents of SDS and RS in comparison with OSA-SPS as OSA concentration was beyond 6%. HMT decreased swelling power of starch while OSA modification had a contrary role (p < 0.05). Scanning electron microscopy (SEM) showed starch was destroyed by OSA modification while HMT had slight effect on the structure. X-ray diffraction (XRD) indicated that crystal type of starch was transformed from C- to A-type resulted from HMT, and remained unchanged by OSA modification. The onset, peak, and conclusion gelatinization temperatures of starch increased by HMT and decreased by OSA modification (p < 0.05). Copyright © 2018 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN P-00...
Code of Federal Regulations, 2011 CFR
2011-07-01
... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN P-00...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...
NASA Technical Reports Server (NTRS)
Oshkaya, V. P.; Vanag, G. Y.
1985-01-01
Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.
Phenylethynyl Phthalic Anhydride
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)
1997-01-01
Controlled molecular weight PhenylEthynyl Terminated Imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with PhenylEthynyl Phthalic Anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2pyrrolidinone or N N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.
Imide Oligomers Endcapped with Phenylethynl Phthalic Anhydrides and Polymers Therefrom
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)
1998-01-01
Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N.N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or cheznicauy to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydxide(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.
Imide oligomers endcapped with phenylethynyl phthalic anhydrides and polymers therefrom
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)
1996-01-01
Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.
21 CFR 177.1820 - Styrene-maleic anhydride copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... maleic anhydride monomer content shall be determined by a gas chromatographic method titled “Determination of Residual Maleic Anhydride in Polymers by Gas Chromatography,” which is incorporated by...
21 CFR 177.1820 - Styrene-maleic anhydride copolymers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... maleic anhydride monomer content shall be determined by a gas chromatographic method titled “Determination of Residual Maleic Anhydride in Polymers by Gas Chromatography,” which is incorporated by...
NASA Astrophysics Data System (ADS)
Kahar, A. W. M.; Ann, L. Ju
2017-06-01
In this study, the influence of banana fibre (BF) loading using sodium hydroxide (NaOH) pre-treated and succinic anhydride-treated (SA) BF on the mechanical properties of linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) matrix is investigated. LLDPE/TPS/BF composites were developed under different BF conditions, with and without chemical modifications with the BF content ranging from 5% to 30% based on the total composite. The tensile strength showed an increase with an increase of fibre content up to 10%, thereby decreasing gradually beyond this level. NaOH pre-treated and SA treated BF added with LLDPE/TPS composite displays a higher tensile strength as compared to untreated BF in LLDPE/TPS composites. Thermal behaviour of the BF incorporated in LLDPE/TPS composite was characterised using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). This showed that SA treated BF exhibits better thermal stability, compared to other composites. This is because of the improvement in interfacial adhesion existing between both the fibre and matrix. In addition, a morphology study confirmed that pre-treated and treated BF had excellent interfacial adhesion with LLDPE/TPS matrix, leading to better mechanical properties of resultant composites.
Gopalan Nair, Kalaprasad; Dufresne, Alain; Gandini, Alessandro; Belgacem, Mohamed Naceur
2003-01-01
The purpose of this study was to chemically modify the surface of chitin whiskers and to investigate the effect of the incorporation of these modified whiskers into a natural rubber (NR) matrix on the properties of the ensuing nanocomposite. Different chemical coupling agents were tested, namely, phenyl isocyanate (PI), alkenyl succinic anhydride (ASA) (Accosize 18 from American Cyanamid), and 3-isopropenyl-alpha,alpha'-dimethylbenzyl isocyanate (TMI). The extent of chemical modification was evaluated by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and surface energy analysis. After chemical modification, nanocomposite films were obtained using a toluene natural rubber solution in which the whiskers were dispersed. Their mechanical properties were found to be inferior to those of unmodified chitin/NR composites presented in our previous study. In fact, even though there is an increase in filler-matrix interaction as a result of chemical modification of the chitin whiskers, this does not contribute to the improvement in the mechanical properties of the resulting nanocomposite. It is concluded that this loss of performance is due to the partial destruction of the three-dimensional network of chitin whiskers assumed to be present in the unmodified composites.
Organic photochromics for spatial light modulation
NASA Astrophysics Data System (ADS)
Kirkby, C. J. G.; Bennion, I.
1986-02-01
The feasibility of using fulgide derivatives (FD), a class of thermally stable, fatigue-free photochromic materials (PM), as optically addressed spatial light modulators (SLIM) is analyzed. Photochromism is the property of a material that changes from one physicochemical state to another due to the impingement of light. The PMs are low-resolution but exhibit no granularity as photographic films do, therefore permitting the use of PMs as data or image recording media with direct-read-after-write capability. It is known that the properties of the FDs (of dimethyl succinic anhydride), i.e., the fatigue, thermal stability and absorption band location, can be tailored by control of the location of two of the oxygen links at two locations on the molecule. Manipulating the absorption spectra also allows manipulation of the refractive index, ergo the SLIM capability of the FDs. Molecular substitutions have proven effective for adjustments of the wavelength sensitivities of the FDs. Film thicknesses of 3-10 microns have been shown capable of supporting a practical resolution limit of 100-200 line pairs/mm, a 30 dB dynamic range, a Fourier plane SNR of 50, and an image recycle time of 40 msec.
Vatansever, Fatma; Hamblin, Michael R.
2016-01-01
Core–shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original trioctylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48–53 nm. PMID:28360819
Soy protein polymers: Enhancing the water stability property
NASA Astrophysics Data System (ADS)
Srinivasan, Gowrishankar
Soy protein based plastics have been processed in the past by researchers for various short-term applications; however a common issue is the high water sensitivity of these plastics. This work concentrates on resolving this water sensitivity issue of soy protein polymers by employing chemical and mechanical interaction at the molecular level during extrusion. The primary chemical interactions employed were anhydride chemistries such as maleic anhydride (MA), phthalic anhydride (PTA), and butylated hydroxyanisole (BHA). These were respectively used in conjunction with glycerol as a plasticizer to produce relatively water stable soy protein based plastics. Formulations with varying additive levels of the chemistries were extruded and injection molded to form the samples for characterization. The additive levels of anhydrides were varied between 3-10% tw/tw (total mass). Results indicated that phthalic anhydride formulations resulted in highest water stability. Plastic formulations with concentration up to 10% phthalic anhydride were observed to have water absorption as low as 21.5% after 24 hrs of exposure to water with respect to 250% for the control formulation. Fourier transform infrared spectroscopy (FTIR) was utilized to characterize and confirm the fundamental mechanisms of water stability achieved by phthalic and maleic anhydride chemistries. In addition, the anhydride formulations were modified by inclusion of cotton fibers and pretreated cotton powder in order to improve mechanical properties. The incorporation of cotton fibers improved the dry strength by 18%, but did not significantly improve the wet state strength of the plastics. It was also observed that the butylated-hydroxy anisole (BHA) formulation exhibited high extension values in the dry state and had inferior water absorption properties in comparison with anhydride formulations.
Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.
Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu
2017-09-01
Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.
New polymer systems: Chain extension by dianhydrides
NASA Technical Reports Server (NTRS)
Rhein, R. A.; Ingham, J. D.
1974-01-01
Three anhydrides provide effective chain extension of hydroxy-terminated polyalkylene oxides and polybutadienes. Novel feature of these anhydride reactants is that they are difunctional as anhydrides, but they are tetrafunctional if conditions are selected that lead to total esterification or reaction of all carboxyl groups.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...
TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA
TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA. J F Regal, ME Mohrman, E Boykin and D Sailstad. Dept. of Pharmacology, University of Minnesota, Duluth, MN, USA and NHEERL, ORD, US EPA, RTP, NC, USA.
Trimellitic anhydride (TMA) is a small m...
She, Linlin; Xu, Dan; Wang, Zixia; Zhang, Yirui; Wei, Qingli; Aa, Jiye; Wang, Guangji; Liu, Baolin; Xie, Yuan
2018-05-07
Aberrant succinate accumulation emerges as a unifying mechanism for inflammation and oxidative stress. This study aims to investigate whether curcumin ameliorates hepatic fibrosis via blocking succinate signaling. We investigated the effects of curcumin on hepatic succinate accumulation and liver fibrosis in mice fed a high-fat diet (HFD). Meanwhile, we stimulated mouse primary hepatic stellate cells (HSCs) with succinate and observed the inhibitory effects of curcumin on succinate signaling. Oral administration of curcumin and metformin combated mitochondrial fatty acid oxidation and reduced hepatic succinate accumulation due to the inhibition of succinate dehydrogenase (SDH) activity and demonstrated inhibitory effect on hepatic fibrosis. In mouse primary HSCs, curcumin prevented succinate- and CoCl 2 -induced hypoxia-inducible transcription factor-1α (HIF-1α) induction via suppression of ROS production and effectively reduced gene expressions of Col1α, Col3α, fibronectin and TGF-β1 with inflammation inhibition. Knockdown of HIF-1α with small interfering RNA blocked the action of succinate to induce HSCs activation, indicative of the essential role of HIF-1α in succinate signaling. Hepatic succinate accumulation served as a metabolic signal to promote liver fibrosis through HIF-1α induction. Curcumin reduced succinate accumulation by combating fatty acid oxidation and prevented HSCs activation by blocking succinate/HIF-1α signaling pathway. Copyright © 2018. Published by Elsevier B.V.
Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides
Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles
1998-01-01
Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.
Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides
Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.
1998-01-20
Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.
Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid
NASA Technical Reports Server (NTRS)
Mullins, D. W., Jr.; Lacey, J. C., Jr.
1983-01-01
The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.
Demir, Hakan; Soygun, Koray; Dogan, Arife; Keskin, Selda; Dogan, Orhan Murat; Bolayir, Giray
2011-10-01
To determine the effect of resin surface treatment with dissolved maleic anhydride in butanone added into primer on the tensile bond strength between an acrylic denture base resin and a silicone soft liner. To test tensile bond strength, standard dumbbell-shaped acrylic specimens were prepared. Five experimental groups, including the control, were tested (n = 5). Maleic anhydride solutions prepared in butanone at concentrations of 1%, 5%, 10% or 20% were then mixed with 1 ml of Primo adhesive and the mixtures were applied onto the resin bonding surfaces. Silicone liner material was applied to resin surfaces in the conventional manner. Tensile bond strength of the specimens was measured in a universal testing machine. Fractured surfaces were observed under the scanning electron microscope, and resulting chemical changes with the solutions used were analyzed spectroscopically. The highest bond strength value was obtained for the group treated with 5% maleic anhydride (2.53 ± 0.48 MPa); the lowest value was for the group treated with 20% maleic anhydride (1.59 ± 0.29 MPa). Mixed failure was the dominant type seen in the experimental groups. Spectroscopic analysis showed the interaction of the anhydride carbonyl groups with the Primo primer. The treatment of resin surfaces with maleic anhydride added to Primo adhesive effectively increased bond strength between silicone soft liner and denture base resin.
Properties of styrene-maleic anhydride copolymers containing wood-based fillers
John Simonsen; Rodney Jacobson; Roger Rowell
1998-01-01
Recycled newsprint (ONP) and dry process aspen fiber were combined with styrene maleic anhydride (SMA) copolymers containing either 7 or 14 percent maleic anhydride. The fiber-filled SMA composites were equivalent or superior to unfilled SMA in strength, stiffness, and notched Izod impact strength. ONP performed surprisingly well as a filler. Unnotched Izod impact...
40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...
40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...
40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...
Shiina, Isamu; Ono, Keisuke; Nakahara, Takayoshi
2013-11-25
A practical protocol is developed to directly provide chiral α-acyloxyphosphonates and α-hydroxyphosphonates from (±)-α-hydroxyphosphonates utilizing the transacylation process to generate the mixed anhydrides from acid components and pivalic anhydride in the presence of organocatalysts (s-value = 33-518).
40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...
40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...
Enzyme immunoassay for tenuazonic acid in apple and tomato products.
Gross, Madeleine; Curtui, Valeriu; Ackermann, Yvonne; Latif, Hadri; Usleber, Ewald
2011-12-14
The Alternaria mycotoxin tenuazonic acid was derivatized with succinic anhydride and conjugated to keyhole limpet hemocyanin (KLH) and to horseradish peroxidase (HRP), respectively. The KLH conjugate was used to produce polyclonal antibodies in rabbits. A competitive direct enzyme immunoassay (EIA) for tenuazonic acid was established, which was moderately sensitive for tenuazonic acid [50% inhibition concentration (IC(50)): 320 ± 130 ng/mL] but strongly reacted with tenuazonic acid acetate (IC(50): 23.3 ± 7.5 ng/mL). Therefore, an optimized EIA protocol was established, which employed acetylation of standard and sample extract solutions. The mean standard curve detection limit (IC(30)) for tenuazonic acid acetate was 5.4 ± 2.0 ng/mL, enabling detection limits for tenuazonic acid in apple and tomato products of 25-50 ng/g (150 ng/g in tomato paste). Recoveries in a concentration range of 50-2000 ng/g were 60-130% in apple juice and tomato juice and 40-150% in other tomato products. Tenuazonic acid was detected in apple juice and tomato products from German retail shops at levels of 50-200 ng/g. In conclusion, this novel EIA for tenuazonic acid could be useful within a screening program for Alternaria mycotoxins in food.
Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R
2015-03-01
In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
D'Almeida, Mélanie; Amalric, Julien; Brunon, Céline; Grosgogeat, Brigitte; Toury, Bérangère
2015-02-01
Peri-implant bacterial infections are the main cause of complications in dentistry. Our group has previously proposed the attachment of chitosan on titanium implants via a covalent bond to improve its antibacterial properties while maintaining its biocompatibility. A better knowledge of the coating preparation process allows a better understanding of the bioactive coating in biological conditions. In this work, several relevant characterization techniques were used to assess an implant device during its production phase and its resistance in natural media at different pH. The titanium surface was functionalized with 3-aminopropyltriethoxysilane (APTES) followed by grafting of an organic coupling agent; succinic anhydride, able to form two covalent links, with the substrate through a Ti-O-Si bond and the biopolymer through a peptide bond. Each step of the coating synthesis as well as the presence confirmation of the biopolymer on titanium after saliva immersion was followed by FTIR-ATR, SEM, EDS, 3D profilometry, XPS and ToF-SIMS analyses. Results allowed to highlight the efficiency of each step of the process, and to propose a mechanism occurring during the chitosan coating degradation in saliva media at pH 5 and at pH 3.
Isomeric oxydiphthalic anhydride polyimides
NASA Technical Reports Server (NTRS)
Gerber, Margaret K.; Pratt, J. Richard; Stclair, Terry L.
1988-01-01
Much of the polyimide research at Langley Research Center has focused on isomeric modification of the diamine component; polyimides having considerably improved processability and adhesion have resulted. The present structure-property study was designed to investigate how isomeric attachment of the three oxydiphthalic anhydride (ODPA) polyimides affects their properties. Each dianhydride, 3,4,3',4'-oxydiphthalic anhydride (4,4'-OPDA,I), 2,3,2',3'-oxydiphthalic anhydride (3,3'-ODPA,II), and 2,3,3',4'-oxydiphthalic anhydride (3,4'-OPDA,III), was reacted with p-phenylenediamine, 4,4'-oxydianiline, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, and 4,4'-bis(3-aminophenoxy)benzophenone in DMAc. The inherent viscosities of the resulting poly(amic acids) were determined. Thermally imidized films were studied for their creasability and solubility, as well as by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide angle X-ray scattering (WAXS). A comparison of these properties will be made.
Ursuegui, S; Yougnia, R; Moutin, S; Burr, A; Fossey, C; Cailly, T; Laayoun, A; Laurent, A; Fabis, F
2015-03-28
Isatoic anhydride derivatives, including a biotin and a disulfide linker were specifically designed for nucleic acid separation. 2'-OH selective RNA acylation, capture of biotinylated RNA adducts by streptavidin-coated magnetic beads and disulfide chemical cleavage led to isolation of highly enriched RNA samples from an initial 9/1 DNA-RNA mixture. Starting from the parent compound N-methylisatoic anhydride A which was used at 65 °C, we improved the extraction process by designing a new generation of isatoic anhydrides that are able to react under smoother conditions. Among them, a pyridine-based isatoic anhydride derivative 15f was found to be reactive at room temperature, leading to enhance the efficiency and selectivity of the extraction process by significantly reducing DNA side extraction. The extracted and purified RNAs can then be detected by RT-PCR.
Strobel, H J; Russell, J B
1991-01-01
Washed cells of strain H18, a newly isolated ruminal selenomonad, decarboxylated succinate 25-fold faster than Selenomonas ruminantium HD4 (130 versus 5 nmol min-1 mg of protein-1, respectively). Batch cultures of strain H18 which were fermenting glucose did not utilize succinate, and glucose-limited continuous cultures were only able to decarboxylate significant amounts of succinate at slow (less than 0.1 h-1) dilution rates. Strain H18 grew more slowly on lactate than glucose (0.2 versus 0.4 h-1, respectively), and more than half of the lactate was initially converted to succinate. Succinate was only utilized after growth on lactate had ceased. Although nonenergized and glucose-energized cells had similar proton motive forces and ATP levels, glucose-energized cells were unable to transport succinate. Transport by nonenergized cells was decreased by small increases in osmotic strength, and it is possible that energy-dependent inhibition of succinate transport was related to changes in cell turgor. Since cells which were deenergized with 2-deoxyglucose or iodoacetate did not transport succinate, it appeared that glycogen metabolism was providing the driving force for succinate uptake. An artificial delta pH drove succinate transport in deenergized cells, but an artificial membrane potential (delta psi) could not serve as a driving force. Because succinate is nearly fully dissociated at pH 7.0 and the transport process was electroneutral, it appeared that succinate was taken up in symport with two protons. An Eadie-Hofstee plot indicated that the rate of uptake was unusually rapid at high substrate concentrations, but the low-velocity, high-affinity component could account for succinate utilization by stationary cultures.(ABSTRACT TRUNCATED AT 250 WORDS)
Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota.
Serena, Carolina; Ceperuelo-Mallafré, Victoria; Keiran, Noelia; Queipo-Ortuño, Maria Isabel; Bernal, Rosa; Gomez-Huelgas, Ricardo; Urpi-Sarda, Mireia; Sabater, Mónica; Pérez-Brocal, Vicente; Andrés-Lacueva, Cristina; Moya, Andres; Tinahones, Francisco J; Fernández-Real, Jose Manuel; Vendrell, Joan; Fernández-Veledo, Sonia
2018-02-12
Gut microbiota-related metabolites are potential clinical biomarkers for cardiovascular disease (CVD). Circulating succinate, a metabolite produced by both microbiota and the host, is increased in hypertension, ischemic heart disease, and type 2 diabetes. We aimed to analyze systemic levels of succinate in obesity, a major risk factor for CVD, and its relationship with gut microbiome. We explored the association of circulating succinate with specific metagenomic signatures in cross-sectional and prospective cohorts of Caucasian Spanish subjects. Obesity was associated with elevated levels of circulating succinate concomitant with impaired glucose metabolism. This increase was associated with specific changes in gut microbiota related to succinate metabolism: a higher relative abundance of succinate-producing Prevotellaceae (P) and Veillonellaceae (V), and a lower relative abundance of succinate-consuming Odoribacteraceae (O) and Clostridaceae (C) in obese individuals, with the (P + V/O + C) ratio being a main determinant of plasma succinate. Weight loss intervention decreased (P + V/O + C) ratio coincident with the reduction in circulating succinate. In the spontaneous evolution after good dietary advice, alterations in circulating succinate levels were linked to specific metagenomic signatures associated with carbohydrate metabolism and energy production with independence of body weight change. Our data support the importance of microbe-microbe interactions for the metabolite signature of gut microbiome and uncover succinate as a potential microbiota-derived metabolite related to CVD risk.
USDA-ARS?s Scientific Manuscript database
A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and could be cured with trace amounts of tertiary amine. This ad...
USDA-ARS?s Scientific Manuscript database
A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from Tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and can be cured with trace amounts of tertiary amine. This advan...
Serafin, Michelle C; Paulemon, Kasandra M; Fuller, Zachary J; Bronner, William E
2017-05-01
An existing GC-MS method for detecting benzoylecgonine (BZE) in urine was modified by changing derivatizing reagents. This method modification presents a cost-effective alternative derivatization procedure for the detection of BZE in urine by GC-MS. The combination of pentafluoropropanol and acetic anhydride was found to produce the same reaction product for BZE as pentafluoropropanol with pentafluoropropionic anhydride, while reducing reagent cost. With no anhydride present, derivatization of BZE by pentafluoropropanol did not occur. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Processable Polyimides Containing APB and Reactive End Caps
NASA Technical Reports Server (NTRS)
Jensen, Brian J.
2003-01-01
Imide copolymers that contain 1,3- bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and that are terminated with appropriate amounts of reactive end caps have been invented. The reactive end caps investigated thus far include 4-phenylethynyl phthalic anhydride (PEPA), 3- aminophenoxy-4-phenylethynylbenzop henone (3-APEB), maleic anhydride (MA), and 5-norbornene-2,3-dicarboxylic anhydride [also known as nadic anhydride (NA)]. The advantage of these copolyimides terminated with reactive groups, relative to other polyimides terminated with reactive groups, is a combination of (1) higher values of desired mechanical-property parameters and (2) greater ease of processing into useful parts.
Song, Hyohak; Huh, Yun Suk; Lee, Sang Yup; Hong, Won Hi; Hong, Yeon Ki
2007-12-01
There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.
Improvement of activity and stability of chloroperoxidase by chemical modification
Liu, Jian-Zhong; Wang, Min
2007-01-01
Background Enzymes show relative instability in solvents or at elevated temperature and lower activity in organic solvent than in water. These limit the industrial applications of enzymes. Results In order to improve the activity and stability of chloroperoxidase, chloroperoxidase was modified by citraconic anhydride, maleic anhydride or phthalic anhydride. The catalytic activities, thermostabilities and organic solvent tolerances of native and modified enzymes were compared. In aqueous buffer, modified chloroperoxidases showed similar Km values and greater catalytic efficiencies kcat/Km for both sulfoxidation and oxidation of phenol compared to native chloroperoxidase. Of these modified chloroperoxidases, citraconic anhydride-modified chloroperoxidase showed the greatest catalytic efficiency in aqueous buffer. These modifications of chloroperoxidase increased their catalytic efficiencies for sulfoxidation by 12%~26% and catalytic efficiencies for phenol oxidation by 7%~53% in aqueous buffer. However, in organic solvent (DMF), modified chloroperoxidases had lower Km values and higher catalytic efficiencies kcat/Km than native chloroperoxidase. These modifications also improved their thermostabilities by 1~2-fold and solvent tolerances of DMF. CD studies show that these modifications did not change the secondary structure of chloroperoxidase. Fluorescence spectra proved that these modifications changed the environment of tryptophan. Conclusion Chemical modification of epsilon-amino groups of lysine residues of chloroperoxidase using citraconic anhydride, maleic anhydride or phthalic anhydride is a simple and powerful method to enhance catalytic properties of enzyme. The improvements of the activity and stability of chloroperoxidase are related to side chain reorientations of aromatics upon both modifications. PMID:17511866
NASA Technical Reports Server (NTRS)
Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken
1990-01-01
The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.
The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates.
Knauf, Felix; Mohebbi, Nilufar; Teichert, Carsten; Herold, Diana; Rogina, Blanka; Helfand, Stephen; Gollasch, Maik; Luft, Friedrich C; Aronson, Peter S
2006-07-01
A longevity gene called Indy (for 'I'm not dead yet'), with similarity to mammalian genes encoding sodium-dicarboxylate cotransporters, was identified in Drosophila melanogaster. Functional studies in Xenopus oocytes showed that INDY mediates the flux of dicarboxylates and citrate across the plasma membrane, but the specific transport mechanism mediated by INDY was not identified. To test whether INDY functions as an anion exchanger, we examined whether substrate efflux is stimulated by transportable substrates added to the external medium. Efflux of [14C]citrate from INDY-expressing oocytes was greatly accelerated by the addition of succinate to the external medium, indicating citrate-succinate exchange. The succinate-stimulated [14C]citrate efflux was sensitive to inhibition by DIDS (4,4'-di-isothiocyano-2,2'-disulphonic stilbene), as demonstrated previously for INDY-mediated succinate uptake. INDY-mediated efflux of [14C]citrate was also stimulated by external citrate and oxaloacetate, indicating citrate-citrate and citrate-oxaloacetate exchange. Similarly, efflux of [14C]succinate from INDY-expressing oocytes was stimulated by external citrate, alpha-oxoglutarate and fumarate, indicating succinate-citrate, succinate-alpha-oxoglutarate and succinate-fumarate exchange respectively. Conversely, when INDY-expressing Xenopus oocytes were loaded with succinate and citrate, [14C]succinate uptake was markedly stimulated, confirming succinate-succinate and succinate-citrate exchange. Exchange of internal anion for external citrate was markedly pH(o)-dependent, consistent with the concept that citrate is co-transported with a proton. Anion exchange was sodium-independent. We conclude that INDY functions as an exchanger of dicarboxylate and tricarboxylate Krebs-cycle intermediates. The effect of decreasing INDY activity, as in the long-lived Indy mutants, may be to alter energy metabolism in a manner that favours lifespan extension.
New polymer systems: Chain extension by dianhydrides
NASA Technical Reports Server (NTRS)
Rhein, R. A.; Ingham, J. D.
1972-01-01
The results are presented for a systematic investigation on the use of anhydrides to prepare stable elastomeric materials for space use, under mild reaction conditions. The three anhydrides investigated were found to provide effective chain extension of hydroxy-terminated poly(alkylene oxides) and poly(butadienes). These were tetrahydrofuran tetracarboxylic dianhydride, pyromellitic dianhydride, and benzophenone tetracarboxylic diahydride. The most effective catalyst investigated was ferric acetylacetonate, which resulted in chain extension at 333 K (60 C). One feature of these anhydride reactants is that they are difunctional as anhydrides, but tetrafunctional if conditions are selected that lead to reaction of all carboxyl groups. Therefore, chain extension can be effected and then followed by crosslinking via the residual carboxyl groups.
Solubility and dissolution thermodynamics of phthalic anhydride in organic solvents at 283-313 K
NASA Astrophysics Data System (ADS)
Wang, Long; Zhang, Fang; Gao, Xiaoqiang; Luo, Tingliang; Xu, Li; Liu, Guoji
2017-08-01
The solubility of phthalic anhydride was measured at 283-313 K under atmospheric pressure in ethyl acetate, n-propyl acetate, methyl acetate, acetone, 1,4-dioxane, n-hexane, n-butyl acetate, cyclohexane, and dichloromethane. The solubility of phthalic anhydride in all solvents increased with the increasing temperature. The Van't Hoff equation, modified Apelblat equation, λ h equation, and Wilson model were used to correlate the experimental solubility data. The standard dissolution enthalpy, the standard entropy, and the standard Gibbs energy were evaluated based on the Van't Hoff analysis. The experimental data and model parameters would be useful for optimizing of the separation processes involving phthalic anhydride.
TREATMENT OF AMMONIUM NITRATE SOLUTIONS
Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.
1958-06-10
The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.
Tajima, Yoshinori; Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji
2015-06-11
Succinate is an important C4 building block chemical, and its production via fermentative processes in bacteria has many practical applications in the biotechnology field. One of the major goals of optimizing the bacterium-based succinate production process is to lower the culture pH from the current neutral conditions, as this would reduce total production costs. In our previous studies, we selected Enterobacter aerogenes, a rapid glucose assimilator at pH 5.0, in order to construct a metabolically engineered strain that could produce succinate under weakly acidic conditions. This engineered strain produced succinate from glucose with a 72.7% (g/g) yield at pH 5.7, with a volumetric productivity of 0.23 g/L/h. Although this demonstrates proof-of-concept that bacterium-based succinate fermentation can be improved under weakly acidic conditions, several parameters still required further optimization. In this study, we genetically modified an E. aerogenes strain previously developed in our laboratory in order to increase the production of ATP during succinate synthesis, as we inferred that this would positively impact succinate biosynthesis. This led to the development of the ES08ΔptsG strain, which contains the following modifications: chromosomally expressed Actinobacillus succinogenes phosphoenolpyruvate carboxykinase, enhanced fumarate reductase, inactivated pyruvate formate lyase, pyruvate oxidase, and glucose-phosphotransferase permease (enzyme IIBC(Glc)). This strain produced 55.4 g/L succinate from glucose, with 1.8 g/L acetate as the major byproduct at pH 5.7 and anaerobic conditions. The succinate yield and volumetric productivity of this strain were 86.8% and 0.92 g/L/h, respectively. Focusing on increasing net ATP production during succinate synthesis leads to increased succinate yield and volumetric productivity in E. aerogenes. We propose that the metabolically engineered E. aerogenes ES08ΔptsG strain, which effectively produces succinate under weakly acidic and anaerobic conditions, has potential utility for economical succinate production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D Bohle; E Dodd; A Kosar
Changing the vinyl groups of hematin anhydride to either ethyl or hydrogen groups results in increased solubility (Por=porphyrin). Determination of the weak binding constants of the antimalarial drug chloroquine to dimers of these hematin anhydride analogues suggests that solution-phase heme/drug interactions alone are unlikely to be the origin of the action of the drug.
Method for construction of bacterial strains with increased succinic acid production
Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini
2000-01-01
A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.
Systematic engineering of pentose phosphate pathway improves Escherichia coli succinate production.
Tan, Zaigao; Chen, Jing; Zhang, Xueli
2016-01-01
Succinate biosynthesis of Escherichia coli is reducing equivalent-dependent and the EMP pathway serves as the primary reducing equivalent source under anaerobic condition. Compared with EMP, pentose phosphate pathway (PPP) is reducing equivalent-conserving but suffers from low efficacy. In this study, the ribosome binding site library and modified multivariate modular metabolic engineering (MMME) approaches are employed to overcome the low efficacy of PPP and thus increase succinate production. Altering expression levels of different PPP enzymes have distinct effects on succinate production. Specifically, increased expression of five enzymes, i.e., Zwf, Pgl, Gnd, Tkt, and Tal, contributes to increased succinate production, while the increased expression of two enzymes, i.e., Rpe and Rpi, significantly decreases succinate production. Modular engineering strategy is employed to decompose PPP into three modules according to position and function. Engineering of Zwf/Pgl/Gnd and Tkt/Tal modules effectively increases succinate yield and production, while engineering of Rpe/Rpi module decreases. Imbalance of enzymatic reactions in PPP is alleviated using MMME approach. Finally, combinational utilization of engineered PPP and SthA transhydrogenase enables succinate yield up to 1.61 mol/mol glucose, which is 94% of theoretical maximum yield (1.71 mol/mol) and also the highest succinate yield in minimal medium to our knowledge. In summary, we systematically engineered the PPP for improving the supply of reducing equivalents and thus succinate production. Besides succinate, these PPP engineering strategies and conclusions can also be applicable to the production of other reducing equivalent-dependent biorenewables.
Zoccarato, Franco; Cavallini, Lucia; Bortolami, Silvia; Alexandre, Adolfo
2007-01-01
Complex I (NADH:ubiquinone oxidoreductase) is responsible for most of the mitochondrial H2O2 release, both during the oxidation of NAD-linked substrates and during succinate oxidation. The much faster succinate-dependent H2O2 production is ascribed to Complex I, being rotenone-sensitive. In the present paper, we report high-affinity succinate-supported H2O2 generation in the absence as well as in the presence of GM (glutamate/malate) (1 or 2 mM of each). In brain mitochondria, their only effect was to increase from 0.35 to 0.5 or to 0.65 mM the succinate concentration evoking the semi-maximal H2O2 release. GM are still oxidized in the presence of succinate, as indicated by the oxygen-consumption rates, which are intermediate between those of GM and of succinate alone when all substrates are present together. This effect is removed by rotenone, showing that it is not due to inhibition of succinate influx. Moreover, α-oxoglutarate production from GM, a measure of the activity of Complex I, is decreased, but not stopped, by succinate. It is concluded that succinate-induced H2O2 production occurs under conditions of regular downward electron flow in Complex I. Succinate concentration appears to modulate the rate of H2O2 release, probably by controlling the hydroquinone/quinone ratio. PMID:17477844
21 CFR 172.275 - Synthetic paraffin and succinic derivatives.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic paraffin and succinic derivatives. 172... succinic derivatives. Synthetic paraffin and succinic derivatives identified in this section may be safely... acid derivatives of isopropyl alcohol, polyethylene glycol, and polypropylene glycol. It consists of a...
21 CFR 172.275 - Synthetic paraffin and succinic derivatives.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Synthetic paraffin and succinic derivatives. 172... succinic derivatives. Synthetic paraffin and succinic derivatives identified in this section may be safely... acid derivatives of isopropyl alcohol, polyethylene glycol, and polypropylene glycol. It consists of a...
Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides.
Venables, K M
1989-01-01
The acid anhydrides are a group of reactive chemicals used widely in alkyd and epoxy resins. The major hazards to health are mucosal and skin irritation and sensitisation of the respiratory tract. Most occupational asthma caused by acid anhydrides appears to be immunologically mediated. Immunological mechanisms have been proposed to explain an influenza-like syndrome and pulmonary haemorrhage, but direct toxicity may also be important in the aetiology of these conditions. PMID:2653411
Exposure to cyclic anhydrides in welding: a new allergen-chlorendic anhydride.
Pfäffli, Pirkko; Hämeilä, Mervi; Keskinen, Helena; Wirmoila, Ritva
2002-11-01
Respiratory effects associated with welding fumes have been manifested in welders as occupational asthma. Previous studies have concerned mainly the effects of metal fume exposure, although it has also been suggested that asthma may develop as a result of exposure to contaminants generated from painted metals. To determine whether welding fumes contain irritating and sensitizing anhydrides, air samples were collected during the repair welding of forest harvesters, which were painted with chlorinated polyester paint. Samples were collected with an assembly of a spiral glass trap inserted between a filter holder with a Teflon filter and a Tenax sampling tube. Sample analyses were with GC-MS and GC-ECD. Sensitizing anhydrides released from the paint into the air were primarily chlorendic anhydride (<2-44 microg/m(3)) and phthalic anhydride (11-21 microg/m(3)). Hydrogen chloride (HCl) and hexachlorocyclopentadiene were also found. Airborne HCl was measured with Dräger tubes. Since paint films are electrical insulators, the film around the welding seam was removed before arc welding. Removal of paint with an abrasive wheel caused the least exposure to HCl (<0.5 ppm) in contrast to burning with a gas fuel torch, (HCl approximately 5 ppm). HCl exposure was the highest (<0.5-20 ppm) during welding. It is recommended that dry paint coating be removed from an area around the seam with an abrasive wheel, not by burning, before welding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, W; Brune, D; Vermaas, WFJ
2014-07-16
A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Delta sll1981, Delta slr0370, Delta slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in gamma-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as gamma-aminobutyrate aminotransferase, catalysing gamma-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact gamma-aminobutyrate shunt is present in Synechocystis. The Deltamore » sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Delta slr1022 and Delta slr0370 strains and the Delta sll1981/Delta slr1022 and Delta sll1981/Delta slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the gamma-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. C-13-stable isotope analysis indicated that the gamma-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the gamma-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.« less
21 CFR 520.784 - Doxylamine succinate tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Doxylamine succinate tablets. 520.784 Section 520.784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... succinate tablets. (a) Specifications. The drug is in tablet form and contains doxylamine succinate as the...
Method for epoxy foam production using a liquid anhydride
Celina, Mathias [Albuquerque, NM
2012-06-05
An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.
Shen, Naikun; Qin, Yan; Wang, Qingyan; Xie, Nengzhong; Mi, Huizhi; Zhu, Qixia; Liao, Siming; Huang, Ribo
2013-10-01
Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design. Subsequently, the highest production of succinic acid was approached by the path of steepest ascent. Then, the optimum values of the parameters were obtained by Box-Behnken design. The results show that the important parameters were glucose, yeast extract and MgCO3 concentrations. The optimum condition was as follows (g/L): glucose 70.00, yeast extract 9.20 and MgCO3 58.10. Succinic acid yield reached 47.64 g/L at the optimal condition. Succinic acid increased by 29.14% than that before the optimization (36.89 g/L). Response surface methodology was proven to be a powerful tool to optimize succinic acid production.
Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation.
Li, Jiaojiao; Li, Yikui; Cui, Zhiyong; Liang, Quanfeng; Qi, Qingsheng
2017-04-01
We previously engineered Escherichia coli YL104 to efficiently produce succinate from glucose. In this study, we investigated the relationships between the NADH/NAD + ratio, ATP level, and overall yield of succinate production by using glucose as the carbon source in YL104. First, the use of sole NADH dehydrogenases increased the overall yield of succinate by 7% and substantially decreased the NADH/NAD + ratio. Second, the soluble fumarate reductase from Saccharomyces cerevisiae was overexpressed to manipulate the anaerobic NADH/NAD + ratio and ATP level. Third, another strategy for reducing the ATP level was applied by introducing ATP futile cycling for improving succinate production. Finally, a combination of these methods exerted a synergistic effect on improving the overall yield of succinate, which was 39% higher than that of the previously engineered strain YL104. The study results indicated that regulation of the NADH/NAD + ratio and ATP level is an efficient strategy for succinate production.
The utilization of aconate and itaconate by Micrococcus sp
Cooper, R. A.; Itiaba, K.; Kornberg, H. L.
1965-01-01
1. An organism, identified as Micrococcus sp., was isolated by elective culture on aconate; it also grew on itaconate. 2. Washed suspensions of the aconate-grown organism readily oxidized intermediates of the tricarboxylic acid cycle, aconate and succinic semialdehyde, but not itaconate. Itaconate-grown cells oxidized tricarboxylic acid-cycle intermediates, succinic semialdehyde and itaconate, but not aconate. Succinate-grown cells oxidized neither itaconate nor aconate. 3. Extracts of aconate-grown cells catalysed the formation of succinic semialdehyde and carbon dioxide, in equimolar amounts, from aconate. In the presence of NAD or NADP, succinic semialdehyde was oxidized to succinate with concomitant reduction of the coenzyme. 4. Extracts of itaconate-grown cells catalysed the formation of pyruvate and acetyl-CoA from itaconyl-CoA. 5. Key enzymes involved in the formation of succinate from aconate, and of pyruvate and acetyl-CoA from itaconate, were distinct and inducible: their formation preceded growth on the appropriate substrate. PMID:14342240
1974-08-01
f. wt. U,4’ -dinitrocarbanilide 4 6700 Pyroglutamic acid , 3-peaty1-h-phenyl- 74 6345 Pyromellitic acid , diiznide, N 1 -bis(m-chlorophenyl)--4 6344...in the table. Compounds have not been renamed for cross-referencing. For example, the cyclic anhydrides of male:ic and phthalic acids are listed under...34 ACID ANHYDRIDES" as maleic and phthalic anhydrides. These names a ’e retained for placing them under "HETEROCYCLIC COMPOUINDS, Oxygen" and not
Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells.
Zhao, Yan; Cao, Weijia; Wang, Zhen; Zhang, Bowen; Chen, Kequan; Ouyang, Pingkai
2016-02-01
In this study, Actinobacillus succinogenes NJ113 microbial electrolysis cells (MECs) were used to enhance the reducing power responsible for succinic acid production from corncob hydrolysate. During corncob hydrolysate fermentation, electric MECs resulted in a 1.31-fold increase in succinic acid production and a 1.33-fold increase in the reducing power compared with those in non-electric MECs. When the hydrolysate was detoxified by combining Ca(OH)2, NaOH, and activated carbon, succinic acid production increased from 3.47 to 6.95 g/l. Using a constant potential of -1.8 V further increased succinic acid production to 7.18 g/l. A total of 18.09 g/l of succinic acid and a yield of 0.60 g/g total sugar were obtained after a 60-h fermentation when NaOH was used as a pH regulator. The improved succinic acid yield from corncob hydrolysate fermentation using A. succinogenes NJ113 in electric MECs demonstrates the great potential of using biomass as a feedstock to cost-effectively produce succinate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity.
Zhang, Jimmy; Wang, Yves T; Miller, James H; Day, Mary M; Munger, Joshua C; Brookes, Paul S
2018-05-29
Succinate accumulates during ischemia, and its oxidation at reperfusion drives injury. The mechanism of ischemic succinate accumulation is controversial and is proposed to involve reversal of mitochondrial complex II. Herein, using stable-isotope-resolved metabolomics, we demonstrate that complex II reversal is possible in hypoxic mitochondria but is not the primary succinate source in hypoxic cardiomyocytes or ischemic hearts. Rather, in these intact systems succinate primarily originates from canonical Krebs cycle activity, partly supported by aminotransferase anaplerosis and glycolysis from glycogen. Augmentation of canonical Krebs cycle activity with dimethyl-α-ketoglutarate both increases ischemic succinate accumulation and drives substrate-level phosphorylation by succinyl-CoA synthetase, improving ischemic energetics. Although two-thirds of ischemic succinate accumulation is extracellular, the remaining one-third is metabolized during early reperfusion, wherein acute complex II inhibition is protective. These results highlight a bifunctional role for succinate: its complex-II-independent accumulation being beneficial in ischemia and its complex-II-dependent oxidation being detrimental at reperfusion. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.
2018-01-01
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass—namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production. PMID:29381705
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes.
Nag, Ambarish; St John, Peter C; Crowley, Michael F; Bomble, Yannick J
2018-01-01
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass-namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.
Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.
Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji
2014-09-01
Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.
Succination is a chemical modification of cysteine in protein by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes. Increased succination of proteins is also detected in the kidney of a fumarase conditional knock-out mouse which develops renal tumors. Keap1, the gatekeeper of the antioxidant response, was identified as a major succinated protein in renal cancer cells, suggesting that succinationmore » may play a role in activation of the antioxidant response. A wide range of proteins is subject to succination, including enzymes, adipokines, cytoskeletal proteins and ER chaperones with functional cysteine residues. There is also significant overlap between succinated and glutathionylated proteins, and with proteins containing cysteine residues that are readily oxidized to the sulfenic (cysteic) acid. Succination of adipocyte proteins is inhibited by uncouplers, which discharge the mitochondrial membrane potential (Δψm) and by ER stress inhibitors. 2SC serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic post-translational modification of proteins by proteomics approaches.« less
Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Tokura, Mitsunori; Abe, Keietsu
2018-05-01
Enterobacter aerogenes, a gram-negative, rod-shaped bacterium, is an effective producer of succinate from glucose via the reductive tricarboxylic acid cycle under anaerobic conditions. However, to date, succinate-exporter genes have not been identified in E. aerogenes, although succinate exporters have a large impact on fermentative succinate production. Recently, we genetically identified yjjP and yjjB, as genes encoding a succinate transporter in Escherichia coli. Evaluation of the yjjPB homologs in E. aerogenes (EayjjPB genes) showed that succinate accumulation increased from 4.1 g L -1 to 9.1 g L -1 when the EayjjPB genes were expressed under aerobic conditions. Under anaerobic conditions, succinate yield increased from 53% to 60% by EayjjPB expression and decreased to 48% by deletion of EayjjPB. Furthermore, the production levels of fumarate and malate, which are intermediates of the succinate-biosynthesis pathway, were also increased by EayjjPB expression. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both EaYjjP and EaYjjB are required for the restoration of succinate production. Taken together, these results suggest that EaYjjPB function as a dicarboxylate transporter in E. aerogenes and that the products of both genes are required for dicarboxylate transport. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Chung, Soon-Chun; Park, Joon-Song; Yun, Jiae; Park, Jin Hwan
2017-03-01
Succinate is a renewable-based platform chemical that may be used to produce a wide range of chemicals including 1,4-butanediol, tetrahydrofurane, and γ-butyrolactone. However, industrial fermentation of organic acids is often subject to end-product inhibition, which significantly retards cell growth and limits metabolic activities and final productivity. In this study, we report the development of metabolically engineered Corynebacterium glutamicum for high production of succinate by release of end-product inhibition coupled with an increase of key metabolic flux. It was found that the rates of glucose consumption and succinate production were significantly reduced by extracellular succinate in an engineered strain, S003. To understand the mechanism underlying the inhibition by succinate, comparative transcriptome analysis was performed. Among the downregulated genes, overexpression of the NCgl0275 gene was found to suppress the inhibition of glucose consumption and succinate production, resulting in a 37.7% increase in succinate production up to 55.4g/L in fed-batch fermentation. Further improvement was achieved by increasing the metabolic flux from PEP to OAA. The final engineered strain was able to produce 152.2g/L succinate, the highest production reported to date, with a yield of 1.1g/g glucose under anaerobic condition. These results suggest that the release of end-product inhibition coupled with an increase in key metabolic flux is a promising strategy for enhancing production of succinate. Copyright © 2017. Published by Elsevier Inc.
Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.
Rouxhet, L; Dinguizli, M; Latere Dwan'isa, J P; Ould-Ouali, L; Twaddle, P; Nathan, A; Brewster, M E; Rosenblatt, J; Ariën, A; Préat, V
2009-12-01
To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing. They formed particles with a diameter of 10 nm although some aggregation was evident. The critical micellar concentration varied between 3x10(-4) and 4x10(-3) g/ml, depending on the polymer. The cloud point (> or = 66 degrees C) and flocculation point (> or = 0.89 M) increased with the PEG chain length. At a 1% concentration, the polymers increased the solubility of poorly water-soluble drug candidates up to 500-fold. Drug solubility increased as a function of the polymer concentration. HPMC capsules filled with these polymers disintegrated and released model drugs rapidly. Polymer with long PEG chains had a lower cytotoxicity (MTT test) on Caco-2 cells. All of these data suggest that the object polymers, in particular PEG1000/MOG/SA (45/5/50) might be potential candidates for improving the oral biopharmaceutical performance of poorly soluble drugs.
Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts
NASA Astrophysics Data System (ADS)
Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.
2012-11-01
The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.
Bagby, Taryn R.; Cai, Shuang; Duan, Shaofeng; Yang, Qiuhong; Thati, Sharadvi; Berkland, Cory; Aires, Daniel J.; Forrest, M. Laird
2015-01-01
Targeted lymphatic delivery of nanoparticles for drug delivery and imaging is primarily dependent on size and charge. Prior studies have observed increased lymphatic uptake and retentions of over 48 hrs for negatively charged particles compared to neutral and positively charged particles. We have developed new polymeric materials that extend retention over a more pharmaceutically relevant 7-day period. We used whole body fluorescence imaging to observe in mice the lymphatic trafficking of a series of anionic star poly-(6-O-methacryloyl-D-galactose) polymer-NIR dye (IR820) conjugates. The anionic charge of polymers was increased by modifying galactose moieties in the star polymers with succinic anhydride. Increasing anionic nature was associated with enhanced lymphatic uptake up to a zeta potential of ca. -40 mV; further negative charge did not affect lymphatic uptake. Compared to the 20% acid-conjugate, the 40 to 90% acid-star-polymer conjugates exhibited a 2.5- to 3.5-fold increase in lymphatic uptake in both the popliteal and iliac nodes. The polymer conjugates exhibited node half-lives of 2 to 20 hrs in the popliteal nodes and 19 to 114 hrs in the deeper iliac nodes. These polymer conjugates can deliver drugs or imaging agents with rapid lymphatic uptake and prolonged deep-nodal retention; thus they may provide a useful vehicle for sustained intralymphatic drug delivery with low toxicity. PMID:22546180
Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody
2015-01-01
Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741
Treuel, Lennart; Brandholt, Stefan; Maffre, Pauline; Wiegele, Sarah; Shang, Li; Nienhaus, G Ulrich
2014-01-28
Recent studies have firmly established that cellular uptake of nanoparticles is strongly affected by the presence and the physicochemical properties of a protein adsorption layer around these nanoparticles. Here, we have modified human serum albumin (HSA), a serum protein often used in model studies of protein adsorption onto nanoparticles, to alter its surface charge distribution and investigated the consequences for protein corona formation around small (radius ∼5 nm), dihydrolipoic acid-coated quantum dots (DHLA-QDs) by using fluorescence correlation spectroscopy. HSA modified by succinic anhydride (HSAsuc) to generate additional carboxyl groups on the protein surface showed a 3-fold decreased binding affinity toward the nanoparticles. A 1000-fold enhanced affinity was observed for HSA modified by ethylenediamine (HSAam) to increase the number of amino functions on the protein surface. Remarkably, HSAsuc formed a much thicker protein adsorption layer (8.1 nm) than native HSA (3.3 nm), indicating that it binds in a distinctly different orientation on the nanoparticle, whereas the HSAam corona (4.6 nm) is only slightly thicker. Notably, protein binding to DHLA-QDs was found to be entirely reversible, independent of the modification. We have also measured the extent and kinetics of internalization of these nanoparticles without and with adsorbed native and modified HSA by HeLa cells. Pronounced variations were observed, indicating that even small physicochemical changes of the protein corona may affect biological responses.
NASA Technical Reports Server (NTRS)
Mullins, D. W., Jr.; Senaratne, N.; Lacey, J. C., Jr.
1984-01-01
In the present paper, a report is presented on the effect of pH and carbonate on the hydrolysis rate constants of N-blocked and free aminoacyl adenylate anhydrides. Whereas the hydrolysis of free aminoacyl adenylates seems principally catalyzed by OH(-), the hydrolysis of the N-blocked species is also catalyzed by H(+), giving this compound a U-shaped hydrolysis vs. pH curve. Furthermore, at pH's less than 8, carbonate has an extreme catalytic effect on the hydrolysis of free aminoacyl-AMP anhydride, but essentially no effect on the hydrolysis of N-blocked aminoacyl-AMP anhydride. Furthermore, the N-blocked aminoacyl-AMP anhydride is a very efficient generator of peptides using free glycine as acceptor. The possible significance of the observations to prebiological peptide synthesis is discussed.
Chalcones from Angelica keiskei: Evaluation of Their Heat Shock Protein Inducing Activities.
Kil, Yun-Seo; Choi, Seul-Ki; Lee, Yun-Sil; Jafari, Mahtab; Seo, Eun-Kyoung
2015-10-23
Five new chalcones, 4,2',4'-trihydroxy-3'-[(2E,5E)-7-methoxy-3,7-dimethyl-2,5-octadienyl]chalcone (1), (±)-4,2',4'-trihydroxy-3'-[(2E)-6-hydroxy-7-methoxy-3,7-dimethyl-2-octenyl]chalcone (2), 4,2',4'-trihydroxy-3'-[(2E)-3-methyl-5-(1,3-dioxolan-2-yl)-2-pentenyl]chalcone (3), 2',3'-furano-4-hydroxy-4'-methoxychalcone (4), and (±)-4-hydroxy-2',3'-(2,3-dihydro-2-methoxyfurano)-4'-methoxychalcone (5), were isolated from the aerial parts of Angelica keiskei Koidzumi together with eight known chalcones, 6-13, which were identified as (±)-4,2',4'-trihydroxy-3'-[(6E)-2-hydroxy-7-methyl-3-methylene-6-octenyl]chalcone (6), xanthoangelol (7), xanthoangelol F (8), xanthoangelol G (9), 4-hydroxyderricin (10), xanthoangelol D (11), xanthoangelol E (12), and xanthoangelol H (13), respectively. Chalcones 1-13 were evaluated for their promoter activity on heat shock protein 25 (hsp25, murine form of human hsp27). Compounds 1 and 6 activated the hsp25 promoter by 21.9- and 29.2-fold of untreated control at 10 μM, respectively. Further protein expression patterns of heat shock factor 1 (HSF1), HSP70, and HSP27 by 1 and 6 were examined. Compound 6 increased the expression of HSF1, HSP70, and HSP27 by 4.3-, 1.5-, and 4.6-fold of untreated control, respectively, without any significant cellular cytotoxicities, whereas 1 did not induce any expression of these proteins. As a result, 6 seems to be a prospective HSP inducer.
Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling.
Zheng, Pu; Zhang, Kunkun; Yan, Qiang; Xu, Yan; Sun, Zhihao
2013-08-01
Succinic acid is an important platform chemical for synthesis of C4 compounds. We applied genome shuffling to improve fermentative production of succinic acid by A. succinogenes. Using a screening strategy composed of selection in fermentation broth, cultured in 96-deep-well plates, and condensed HPLC screening, a starting population of 11 mutants producing a higher succinic acid concentration was selected and subjected to recursive protoplasts fusion. After three rounds of genome shuffling, strain F3-II-3-F was obtained, producing succinic acid at 1.99 g/l/h with a yield of 95.6 g/l. The genome shuffled strain had about a 73 % improvement in succinic acid production compared to the parent strain after 48 h in fed-batch fermentation. The genomic variability of F3-II-3-F was confirmed by amplified fragment-length polymorphism. The activity levels of key enzymes involved in end-product formation from glucose and metabolic flux distribution during succinic acid production were compared between A. succinogenes CGMCC 1593 and F3-II-3-F. Increased activity of glucokinase, fructose-1,6-bisphosphate aldolase, PEP carboxykinase and fumarase, as well as decreased activity of pyruvate kinase, pyruvate formate-lyase, and acetate kinase explained the enhanced succinic acid production and decreased acetic acid formation. Metabolic flux analysis suggested that increased flux to NADH was the main reason for increased activity of the C4 pathway resulting in increased yields of succinic acid. The present work will be propitious to the development of a bio-succinic acid fermentation industry.
Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji
2014-01-01
Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production. PMID:25416770
NASA Astrophysics Data System (ADS)
Sütekin, S. Duygu; Atıcı, Ayşe Bakar; Güven, Olgun; Hoffman, Allan S.
2018-07-01
The presence of maleic anhydride moiety in styrene-maleic anhydride (SMA) copolymer makes it a versatile substrate for conjugation of drugs. In this study biocompatible styrene-maleic anhydride (SMA) copolymer with alternating structure was synthesized by gamma irradiation at room temperature in the presence of 2-phenyl-2-propyl benzodithioate (PPB). The poly(styrene-alt-maleic anhydride) (poly(St-alt-MA)) with narrow molecular weight distribution (Đ: 1.1-1.3) was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. The synthesized poly(St-alt-MA) structure was characterized by ATR-FTIR spectroscopy, elemental analysis and 1H NMR spectroscopy and molecular weight and dispersity were determined by size exclusion chromatography (SEC). SMA copolymers were further conjugated with acetaminophen via ester linkage and FT-IR, 1H NMR investigation indicated that the acetaminophen was attached to poly(St-alt-MA). Drug release profile of the polymer-drug conjugate was followed by high performance liquid chromatography (HPLC). The drug-conjugate system was found to follow first order release kinetics with Hixson-Crowell model while drug release mechanism was found as non-Fickian diffusion after testing various kinetic models.
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.; ...
2018-01-30
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less
Zhu, Xinna; Tan, Zaigao; Xu, Hongtao; Chen, Jing; Tang, Jinlei; Zhang, Xueli
2014-07-01
Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
21 CFR 184.1091 - Succinic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Succinic acid. 184.1091 Section 184.1091 Food and... Substances Affirmed as GRAS § 184.1091 Succinic acid. (a) Succinic acid (C4H6O4, CAS Reg. No. 110-15-6), also referred to as amber acid and ethylenesuccinic acid, is the chemical 1,4-butanedioic acid. It is...
Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z
NASA Astrophysics Data System (ADS)
Wan, Caixia; Li, Yebo; Shahbazi, Abolghasem; Xiu, Shuangning
Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h-1 L-1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h-1 L-1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.
Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.
Carvalho, Margarida; Roca, Christophe; Reis, Maria A M
2016-10-01
Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peruzzotti-Jametti, Luca; Bernstock, Joshua D; Vicario, Nunzio; Costa, Ana S H; Kwok, Chee Keong; Leonardi, Tommaso; Booty, Lee M; Bicci, Iacopo; Balzarotti, Beatrice; Volpe, Giulio; Mallucci, Giulia; Manferrari, Giulia; Donegà, Matteo; Iraci, Nunzio; Braga, Alice; Hallenbeck, John M; Murphy, Michael P; Edenhofer, Frank; Frezza, Christian; Pluchino, Stefano
2018-03-01
Neural stem cell (NSC) transplantation can influence immune responses and suppress inflammation in the CNS. Metabolites, such as succinate, modulate the phenotype and function of immune cells, but whether and how NSCs are also activated by such immunometabolites to control immunoreactivity and inflammatory responses is unclear. Here, we show that transplanted somatic and directly induced NSCs ameliorate chronic CNS inflammation by reducing succinate levels in the cerebrospinal fluid, thereby decreasing mononuclear phagocyte (MP) infiltration and secondary CNS damage. Inflammatory MPs release succinate, which activates succinate receptor 1 (SUCNR1)/GPR91 on NSCs, leading them to secrete prostaglandin E2 and scavenge extracellular succinate with consequential anti-inflammatory effects. Thus, our work reveals an unexpected role for the succinate-SUCNR1 axis in somatic and directly induced NSCs, which controls the response of stem cells to inflammatory metabolic signals released by type 1 MPs in the chronically inflamed brain. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Collins, Jack R.; Loew, Gilda H.; Luke, Brian T.; White, David H.
1988-01-01
Molecular orbital calculations are used to study amino acid activation by anhydride formation in neutral phosphates and in tetrahedral silicate and aluminate sites on clay edges. The results agree with previous ab initio studies of Luke et al. (1984) on the reactant species. Relative heats of formation of the anhydrides indicate the extent of anhydride formation to be the greatest for Al and the least for phosphate, which is the same order as the stability of hydrolysis.
Integrated Risk Information System (IRIS)
Maleic anhydride ; CASRN 108 - 31 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic
Integrated Risk Information System (IRIS)
Phthalic anhydride ; CASRN 85 - 44 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic
21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
... resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol followed by reaction of the resin thus produced with phosphoric acid anhydride to produce a resin having an...
Bien-Aime, Stephan; Yu, Weiling; Uhrich, Kathryn E
2016-07-01
Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride-ester) (PAE) backbone via melt-condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin-based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo-first order kinetic experiments on model compounds, butyric anhydride and 3-butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin-based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bacterial Chemotaxis to Naphthalene and Nitroarene Compounds
2008-07-31
Qualitative capillary assays showing chemotaxis of succinate-grown 17 (uninduced) and induced (succinate plus salicylate -grown) Acidovorax sp. JS42...succinate plus 2NT- or succinate plus salicylate -grown) wild-type Acidovorax sp. JS42 cells List of Tables Table 1. Summary of chemotaxis...mM salicylate , or naphthalene crystals. Noble agar (1.8%; Difco) was used to solidify MSB medium for plates. For plasmid selection and maintenance
Succinic acid production by Actinobacillus succinogenes from batch fermentation of mixed sugars.
Almqvist, Henrik; Pateraki, Chrysanthi; Alexandri, Maria; Koutinas, Apostolis; Lidén, Gunnar
2016-08-01
Succinic acid production from the monosaccharides xylose, arabinose, glucose, mannose and galactose was studied using the bacterium Actinobacillus succinogenes. In Duran bottle cultures, containing 10 g/L of each of sugar, succinic acid was produced from all sugars except for galactose. The highest succinate yield, 0.56 g/g, was obtained with glucose, whereas the succinate yield was 0.42, 0.38 and 0.44 g/g for xylose, mannose and arabinose, respectively. The specific succinate productivity was 0.7 g/g h for glucose, but below 0.2 g/g h for the other sugars. Batch bioreactor fermentations were carried out using a sugar mixture of the five sugars giving a total concentration of 50 g/L, mimicking the distribution of sugars in spent sulfite liquor (SSL) from Eucalyptus which is rich in xylose. In this mixture, an almost complete conversion of all sugars (except galactose) was achieved resulting in a final succinate concentration of 21.8-26.8 g/L and a total yield of 0.59-0.68 g/g. There was evidence of co-consumption of glucose and xylose, whereas mannose was consumed after glucose. The main by-products were acetate 0.14-0.20 g/g and formate 0.08-0.13 g/g. NADH balance calculations suggested that NADH required for succinate production was not met solely from formate and acetate production, but other means of NADH production was necessary. Results from mixed sugar fermentations were verified using SSL as substrate resulting in a succinate yield of 0.60 g/g. In addition, it was found that CO2 sparging could replace carbonate supply in the form of MgCO3 without affecting the succinate yield.
Hamel, David; Sanchez, Melanie; Duhamel, François; Roy, Olivier; Honoré, Jean-Claude; Noueihed, Baraa; Zhou, Tianwei; Nadeau-Vallée, Mathieu; Hou, Xin; Lavoie, Jean-Claude; Mitchell, Grant; Mamer, Orval A; Chemtob, Sylvain
2014-02-01
Prompt post-hypoxia-ischemia (HI) revascularization has been suggested to improve outcome in adults and newborn subjects. Other than hypoxia-inducible factor, sensors of metabolic demand remain largely unknown. During HI, anaerobic respiration is arrested resulting in accumulation of carbohydrate metabolic intermediates. As such succinate readily increases, exerting its biological effects via a specific receptor, G-protein-coupled receptor (GPR) 91. We postulate that succinate/GPR91 enhances post-HI vascularization and reduces infarct size in a model of newborn HI brain injury. The Rice-Vannucci model of neonatal HI was used. Succinate was measured by mass spectrometry, and microvascular density was evaluated by quantification of lectin-stained cryosection. Gene expression was evaluated by real-time polymerase chain reaction. Succinate levels rapidly increased in the penumbral region of brain infarcts. GPR91 was foremost localized not only in neurons but also in astrocytes. Microvascular density increased at 96 hours after injury in wild-type animals; it was diminished in GPR91-null mice leading to an increased infarct size. Stimulation with succinate led to an increase in growth factors implicated in angiogenesis only in wild-type mice. To explain the mode of action of succinate/GPR91, we investigated the role of prostaglandin E2-prostaglandin E receptor 4, previously proposed in neural angiogenesis. Succinate-induced vascular endothelial growth factor expression was abrogated by a cyclooxygenase inhibitor and a selective prostaglandin E receptor 4 antagonist. This antagonist also abolished succinate-induced neovascularization. We uncover a dominant metabolic sensor responsible for post-HI neurovascular adaptation, notably succinate/GPR91, acting via prostaglandin E2-prostaglandin E receptor 4 to govern expression of major angiogenic factors. We propose that pharmacological intervention targeting GPR91 could improve post-HI brain recovery.
Tajima, Yoshinori; Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji
2015-02-01
Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
[The working environment control of anhydride hardeners from an epoxy resin system].
Matsumoto, Naomi; Yokota, Kozo; Johyama, Yasushi; Takakura, Toshiyuki
2003-07-01
Epoxy resins are widely used in adhesives, coatings, materials for molds and composites, and encapsulation. Acid anhydrides such as methyltetrahydrophthalic anhydride are being used as curing agents for epoxy resins. The anhydride hardeners are well-known industrial inhalant allergens, inducing predominantly type I allergies. In the electronic components industry, these substances have been consumed in large quantities. Therefore, safe use in the industry demands control of the levels of exposure causing allergic diseases in the workshop. We conducted a prospective survey of two electronics plants to clarify how to control the atmospheric level of the anhydrides in the work environment. Measurements of the levels of the anhydrides in air started according to the Working Environment Measurement Standards (Ministry of Labour Notification No. 46, 1976) in April 2000, along with improvements in the work environment. A value of 40 micrograms/m3 was adopted as the administrative control level to judge the propriety of the working environment control. A total of 2 unit work areas in both plants belonged to Control Class III. The exposure originated from manual loading, casting, uncured hot resins, and leaks in an impregnating-machine or curing ovens. In order to achieve the working environment control, complete enclosure of the source, installation of local exhaust ventilation, and improvement or maintenance of the local exhaust ventilation system were performed on the basis of the results of the working environment measurement, with the result that the work environment was improved (Control Class I). It became evident that these measures were effective just like other noxious substances.
Identification of Protein Succination as a Novel Modification of Tubulin
Piroli, Gerardo G.; Manuel, Allison M.; Walla, Michael D.; Jepson, Matthew J.; Brock, Jonathan W.C.; Rajesh, Mathur P.; Tanis, Ross M.; Cotham, William E.; Frizzell, Norma
2015-01-01
Protein succination is a stable post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). We demonstrate that both alpha (α) and beta (β) tubulin are increasingly modified by succination in 3T3-L1 adipocytes and in the adipose tissue of db/db mice. Incubation of purified tubulin from porcine brain with fumarate (50 mM) or the pharmacological compound dimethylfumarate (DMF, 500 μM) inhibited polymerization up to 35% and 59%, respectively. Using mass spectrometry we identified Cys347α, Cys376α, Cys12β and Cys303β as sites of succination in porcine brain tubulin and the relative abundance of succination at these cysteines increased in association with fumarate concentration. The increase in succination after incubation with fumarate altered tubulin recognition by an anti-α-tubulin antibody. Succinated tubulin in adipocytes cultured in high glucose vs. normal glucose also had reduced reactivity with the anti-αtubulin antibody; suggesting that succination may interfere with tubulin:protein interactions. DMF reacted rapidly with 11 of the 20 cysteines in the αβ tubulin dimer, decreased the number of free sulfhydryls and inhibited the proliferation of 3T3-L1 fibroblasts. Our data suggests that inhibition of tubulin polymerization is an important, undocumented mechanism of action of DMF. Taken together, our results demonstrate that succination is a novel post-translational modification of tubulin and suggest that extensive modification by fumarate, either physiologically or pharmacologically, may alter microtubule dynamics. PMID:24909641
Li, Qiang; Siles, Jose A; Thompson, Ian P
2010-10-01
Succinic acid is a platform molecule that has recently generated considerable interests. Production of succinate from waste orange peel and wheat straw by consolidated bioprocessing that combines cellulose hydrolysis and sugar fermentation, using a cellulolytic bacterium, Fibrobacter succinogenes S85, was studied. Orange peel contains D-limonene, which is a well-known antibacterial agent. Its effects on batch cultures of F. succinogenes S85 were examined. The minimal concentrations of limonene found to inhibit succinate and acetate generation and bacterial growth were 0.01%, 0.1%, and 0.06% (v/v), respectively. Both pre-treated orange peel by steam distillation to remove D: -limonene and intact wheat straw were used as feedstocks. Increasing the substrate concentrations of both feedstocks, from 5 to 60 g/L, elevated succinate concentration and productivity but lowered the yield. In addition, pre-treated orange peel generated greater succinate productivities than wheat straw but had similar resultant titres. The greatest succinate titres were 1.9 and 2.0 g/L for pre-treated orange peel and wheat straw, respectively. This work demonstrated that agricultural waste such as wheat straw and orange peel can be biotransformed to succinic acid by a one-step consolidated bioprocessing. Measures to increase fermentation efficiency are also discussed.
Ferone, Mariateresa; Raganati, Francesca; Ercole, Alessia; Olivieri, Giuseppe; Salatino, Piero; Marzocchella, Antonio
2018-01-01
Succinic acid is one of the most interesting platform chemicals that can be produced in a biorefinery approach. In this study, continuous succinic acid production by Actinobacillus succinogenes fermentation in a packed-bed biofilm reactor (PBBR) was investigated. The effects of the operating conditions tested, dilution rate (D), and medium composition (mixture of glucose, xylose, and arabinose-that simulate the composition of a lignocellulosic hydrolysate)-on the PBBR performances were investigated. The maximum succinic acid productivity of 35.0 g L -1 h -1 and the maximum SA concentration were achieved at a D = 1.9 h -1 . The effect of HMF and furfural on succinic acid production was also investigated. HMF resulted to reduce succinic acid production by 22.6%, while furfural caused a reduction of 16% in SA production at the same dilution rate. Succinic acid production by A. succinogenes fermentation in a packed-bed reactor (PBBR) was successfully carried out for more than 5 months. The optimal results were obtained at the dilution rate 0.5 h -1 : 43.0 g L -1 of succinic acid were produced, glucose conversion was 88%; and the volumetric productivity was 22 g L -1 h -1 .
Corona-González, Rosa Isela; Miramontes-Murillo, Ricardo; Arriola-Guevara, Enrique; Guatemala-Morales, Guadalupe; Toriz, Guillermo; Pelayo-Ortiz, Carlos
2014-07-01
The production of succinic acid was studied with entrapped and adsorbed Actinobacillus succinogenes. The adsorption of fermentation products (organic acids in the concentration range of 1-20 g/L) on different supports was evaluated. It was found that succinic acid was adsorbed in small quantities on diatomite and zeolite (12.6 mg/g support). The highest production of succinic acid was achieved with A. succinogenes entrapped in agar beads. Batch fermentations with immobilized cells were carried out with glucose concentrations ranging from 20 to 80 g/L. Succinic acid (43.4 g/L) was obtained from 78.3g/L glucose, and a high productivity (2.83 g/Lh) was obtained with a glucose concentration of 37.6g/L. For repeated batch fermentations (5 cycles in 72 h) with immobilized cells in agar, the total glucose consumed was 147.55 g/L, while the production of succinic acid was 107 g/L. Immobilized cells reduced significantly the fermentation time, yield, productivity and final concentration of succinic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 180.1035 - Pine oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. Pine oil is... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. [74 FR 26534...
40 CFR 180.1035 - Pine oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. Pine oil is... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. [74 FR 26534...
40 CFR 180.1035 - Pine oil; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. Pine oil is... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. [74 FR 26534...
Process for epoxy foam production
Celina, Mathias C [Albuquerque, NM
2011-08-23
An epoxy resin mixture with at least one epoxy resin of between approximately 60 wt % and 90 wt %, a maleic anhydride of between approximately 1 wt % and approximately 30 wt %, and an imidazole catalyst of less than approximately 2 wt % where the resin mixture is formed from at least one epoxy resin with a 1-30 wt % maleic anhydride compound and an imidazole catalyst at a temperature sufficient to keep the maleic anhydride compound molten, the resin mixture reacting to form a foaming resin which can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.
Longo, Julie M; Sanford, Maria J; Coates, Geoffrey W
2016-12-28
Polyesters synthesized through the alternating copolymerization of epoxides and cyclic anhydrides compose a growing class of polymers that exhibit an impressive array of chemical and physical properties. Because they are synthesized through the chain-growth polymerization of two variable monomers, their syntheses can be controlled by discrete metal complexes, and the resulting materials vary widely in their functionality and physical properties. This polymer-focused review gives a perspective on the current state of the field of epoxide/anhydride copolymerization mediated by discrete catalysts and the relationships between the structures and properties of these polyesters.
NASA Astrophysics Data System (ADS)
Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert
2014-12-01
Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.
Akiyama, C; Kobayashi, S; Nonaka, I
1992-01-01
We compared the morphologic characteristics of muscle fiber necrosis and subsequent regeneration after injury induced by intramuscular injections of bupivacaine hydrochloride (BPVC) and a variety of solutions at acid and alkaline pH (acetic anhydride, citric acid buffer, and sodium carbonate buffer). After BPVC injection the necrotic muscle fibers were rapidly invaded by phagocytic cells, followed by active regeneration and very little fibrous scar formation. The regenerating muscle fibers increased rapidly in size and attained complete fiber type differentiation and regained their initial fiber diameter within 1 month. Both alkaline and acid solutions induced muscle fiber necrosis followed by regeneration. Fiber necrosis induced by alkaline buffers and acetic anhydride solutions above pH 5.0 produced changes quite similar to that induced by BPVC. However, injection with 0.1 M acetic anhydride at pH below 4.0 resulted in coagulative necrosis of the injured muscle with very little phagocytic infiltration with poor regenerative activity and dense fibrous tissue scarring. Thus, pH 4.0 appears to be the critical pH determining the type of muscle injury and subsequent poor phagocytic and regenerative activities. This model of acidic acetic anhydride injury may lead to the identification of factors which interfere with regeneration and cause fibrous tissue scarring in human muscular dystrophy.
Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels
NASA Technical Reports Server (NTRS)
Guo, Haiquan; Meador, Mary Ann B.
2015-01-01
With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.
Dasgupta, Queeny; Movva, Sahitya; Chatterjee, Kaushik; Madras, Giridhar
2017-08-07
This work reports the synthesis of a novel, aspirin-loaded, linear poly (anhydride ester) and provides mechanistic insights into the release of aspirin from this polymer for anti-inflammatory activity. As compared to conventional drug delivery systems that rely on diffusion based release, incorporation of bioactives in the polymer backbone is challenging and high loading is difficult to achieve. In the present study, we exploit the pentafunctional sugar alcohol (xylitol) to provide sites for drug (aspirin) attachment at its non-terminal OH groups. The terminal OH groups are polymerized with a diacid anhydride. The hydrolysis of the anhydride and ester bonds under physiological conditions release aspirin from the matrix. The resulting poly(anhydride ester) has high drug loading (53%) and displays controlled release kinetics of aspirin. The polymer releases 8.5 % and 20%, of the loaded drug in one and four weeks, respectively and has a release rate constant of 0.0035h -0.61 . The release rate is suitable for its use as an anti-inflammatory agent without being cytotoxic. The polymer exhibits good cytocompatibility and anti-inflammatory properties and may find applications as injectable or as an implantable bioactive material. The physical insights into the release mechanism can provide development of other drug loaded polymers. Copyright © 2017 Elsevier B.V. All rights reserved.
Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini
2015-04-01
The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.
Succination of Thiol Groups in Adipose Tissue Proteins in Diabetes
Frizzell, Norma; Rajesh, Mathur; Jepson, Matthew J.; Nagai, Ryoji; Carson, James A.; Thorpe, Suzanne R.; Baynes, John W.
2009-01-01
S-(2-Succinyl)cysteine (2SC) is formed by reaction of the Krebs cycle intermediate fumarate with cysteine residues in protein, a process termed succination of protein. Both fumarate and succination of proteins are increased in adipocytes cultured in high glucose medium (Nagai, R., Brock, J. W., Blatnik, M., Baatz, J. E., Bethard, J., Walla, M. D., Thorpe, S. R., Baynes, J. W., and Frizzell, N. (2007) J. Biol. Chem. 282, 34219–34228). We show here that succination of protein is also increased in epididymal, mesenteric, and subcutaneous adipose tissue of diabetic (db/db) mice and that adiponectin is a major target for succination in both adipocytes and adipose tissue. Cys-39, which is involved in cross-linking of adiponectin monomers to form trimers, was identified as a key site of succination of adiponectin in adipocytes. 2SC was detected on two of seven monomeric forms of adiponectin immunoprecipitated from adipocytes and epididymal adipose tissue. Based on densitometry, 2SC-adiponectin accounted for ∼7 and 8% of total intracellular adiponectin in cells and tissue, respectively. 2SC was found only in the intracellular, monomeric forms of adiponectin and was not detectable in polymeric forms of adiponectin in cell culture medium or plasma. We conclude that succination of adiponectin blocks its incorporation into trimeric and higher molecular weight, secreted forms of adiponectin. We propose that succination of proteins is a biomarker of mitochondrial stress and accumulation of Krebs cycle intermediates in adipose tissue in diabetes and that succination of adiponectin may contribute to the decrease in plasma adiponectin in diabetes. PMID:19592500
Succinic acid: technology development and commercialization
USDA-ARS?s Scientific Manuscript database
Succinic acid is a precursor of many important, large volume industrial chemicals and consumer products. It was common knowledge that many ruminant microorganisms accumulated succinic acid under anaerobic conditions. However, it was not until the discovery of Anaerobiospirillum succiniciproducens at...
Sánchez, Ailen M; Bennett, George N; San, Ka-Yiu
2006-05-01
This study presents an in-depth analysis of the anaerobic metabolic fluxes of various mutant strains of Escherichia coli overexpressing the Lactococcus lactis pyruvate carboxylase (PYC) for the production of succinate. Previously, a metabolic network design that includes an active glyoxylate pathway implemented in vivo increased succinate yield from glucose in an E. coli mutant to 1.6 mol/mol under fully anaerobic conditions. The design consists of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has a lower NADH requirement). Mutant strains previously constructed during the development of high-yield succinate-producing strains were selected for further characterization to understand their metabolic response as a result of several genetic manipulations and to determine the significance of the fermentative and the glyoxylate pathways in the production of succinate. Measured fluxes obtained under batch cultivation conditions were used to estimate intracellular fluxes and identify critical branch point flux split ratios. The comparison of changes in branch point flux split ratios to the glyoxylate pathway and the fermentative pathway at the oxaloacetate (OAA) node as a result of different mutations revealed the sensitivity of succinate yield to these manipulations. The most favorable split ratio to obtain the highest succinate yield was the fractional partition of OAA to glyoxylate of 0.32 and 0.68 to the fermentative pathway obtained in strains SBS550MG (pHL413) and SBS990MG (pHL413). The succinate yields achieved in these two strains were 1.6 and 1.7 mol/mol, respectively. In addition, an active glyoxylate pathway in an ldhA, adhE, ack-pta mutant strain is shown to be responsible for the high succinate yields achieved anaerobically. Furthermore, in vitro activity measurements of seven crucial enzymes involved in the pathways studied and intracellular measurements of key intermediate metabolite pools provided additional insights on the physiological perturbations caused by these mutations. The characterization of these recombinant mutant strains in terms of flux distribution pattern, in vitro enzyme activity and intracellular metabolite pools provides useful information for the rational modification of metabolic fluxes to improve succinate production.
Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang
2017-12-01
Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method to produce succinic acid from raw hydrolysates
Donnelly, Mark I.; Sanville-Millard, Cynthia Y.; Nghiem, Nhuan Phu
2004-06-01
A method for producing succinic acid from industrial-grade hydrolysates is provided, comprising supplying an organism that contains mutations for the genes ptsG, pflB, and ldhA, allowing said organism to accumulate biomass, and allowing said organism to metabolize the hydrolysate. Also provided is a bacteria mutant characterized in that it produces succinic acid from substrate contained in industrial-grade hydrolysate in a ratio of between 0.6:1 and 1.3:1 succinic acid to substrate.
Wee, Young-Jung; Yun, Jong-Sun; Kang, Kui-Hyun; Ryu, Hwa-Won
2002-01-01
Enterococcus faecalis RKY1, a fumarate-reducing bacterium, was immobilized in an asymmetric hollow-fiber bioreactor (HFBR) for the continuous production of succinic acid. The cells were inoculated into the shell side of the HFBR, which was operated in transverse mode. Since the pH values in the HFBR declined during continuous operation to about 5.7, it was necessary to change the feed pH from 7.0 to 8.0 after 24 h of operation in order to enhance production of succinic acid. During continuous operation with a medium containing fumarate and glycerol, the productivity of succinate was 3.0-10.9 g/(L x h) with an initial concentration of 30 g/L of fumarate, 4.9-14.9 g/(L x h) with 50 g/L of fumarate, and 7.2-17.1 g/(L x h) with 80 g/L of fumarate for dilution rates between 0.1 and 0.4 h(-1). The maximum productivity of succinate obtained by the HFBR (17.1 g of succinate/[L x h]) was 1.7 times higher than that of the batch bioconversions (9.9 g of succinate/ [L x h]) with 80 g/L of fumarate. Furthermore, the long-term stability of the HFBR was demonstrated with a continuously efficient production of succinate for more than 15 d (360 h).
Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains
Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo
1988-01-01
A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795
Production of succinic Acid from citric Acid and related acids by lactobacillus strains.
Kaneuchi, C; Seki, M; Komagata, K
1988-12-01
A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj
2010-06-22
Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH < pK{sub a2} was cooled from room temperature (RT), the freeze-concentrate pH first increased and then decreased. This was attributed to the sequential crystallization of succinic acid, monosodium succinate, and finally disodium succinate. When buffered to pH > pK{sub a2}, the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followedmore » by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na{sub 2}(CH{sub 2}COO){sub 2} {center_dot} 6H{sub 2}O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.« less
2011-01-01
Background Succinic acid is a building-block chemical which could be used as the precursor of many industrial products. The dissolved CO2 concentration in the fermentation broth could strongly regulate the metabolic flux of carbon and the activity of phosphoenolpyruvate (PEP) carboxykinase, which are the important committed steps for the biosynthesis of succinic acid by Actinobacillus succinogenes. Previous reports showed that succinic acid production could be promoted by regulating the supply of CO2 donor in the fermentation broth. Therefore, the effects of dissolved CO2 concentration and MgCO3 on the fermentation process should be investigated. In this article, we studied the impacts of gaseous CO2 partial pressure, dissolved CO2 concentration, and the addition amount of MgCO3 on succinic acid production by Actinobacillus succinogenes ATCC 55618. We also demonstrated that gaseous CO2 could be removed when MgCO3 was fully supplied. Results An effective CO2 quantitative mathematical model was developed to calculate the dissolved CO2 concentration in the fermentation broth. The highest succinic acid production of 61.92 g/L was obtained at 159.22 mM dissolved CO2 concentration, which was supplied by 40 g/L MgCO3 at the CO2 partial pressure of 101.33 kPa. When MgCO3 was used as the only CO2 donor, a maximal succinic acid production of 56.1 g/L was obtained, which was just decreased by 7.03% compared with that obtained under the supply of gaseous CO2 and MgCO3. Conclusions Besides the high dissolved CO2 concentration, the excessive addition of MgCO3 was beneficial to promote the succinic acid synthesis. This was the first report investigating the replaceable of gaseous CO2 in the fermentation of succinic acid. The results obtained in this study may be useful for reducing the cost of succinic acid fermentation process. PMID:22040346
TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILLA IN A MOUSE MODEL OF OCCUPATIONAL ASTHMA
Trimellitic anhydride (TMA) is a low molecular weight chemical known to cause occupational asthma. The present study was designed to determine if TMA could elicit eosinophil infiltration into the lung of a sensitized mouse similarly to previous studies with the protein allergen ...
Porous Cross-Linked Polyimide Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)
2015-01-01
Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.
Ji, Bolin; Tang, Peixin; Yan, Kelu; Sun, Gang
2015-11-05
1,2,3,4-Butanetetracarboxylic acid (BTCA) reacts with cellulose in two steps with catalysis of alkaline salts such as sodium hypophosphite: anhydride formation and esterification of anhydride with cellulose. The alkali metal ions were found effective in catalyzing formation of BTCA anhydride in a previous report. In this work, catalytic functions of the alkaline salts in the esterification reaction between BTCA anhydride and cellulose were investigated. Results revealed that acid anions play an important role in the esterification reaction by assisting removal of protons on intermediates and completion of the esterification between cellulose and BTCA. Besides, alkaline salts with lower pKa1 values of the corresponding acids are more effective ones for the reaction since addition of these salts could lead to lower pH values and higher acid anion concentrations in finishing baths. The mechanism explains the results of FTIR and wrinkle recovery angles of the fabrics cured under different temperatures and times. Copyright © 2015 Elsevier Ltd. All rights reserved.
Imide modified epoxy matrix resins
NASA Technical Reports Server (NTRS)
Scola, D. A.
1984-01-01
The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.
NASA Astrophysics Data System (ADS)
Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof
2013-11-01
Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.
Wang, Chen; Zhang, Hengli; Cai, Heng; Zhou, Zhihui; Chen, Yilu; Chen, Yali; Ouyang, Pingkai
2014-01-01
Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l(-1) xylose and 4 g l(-1) glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l(-1) with a yield of 0.69 g g(-1) total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum.
Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M
2015-07-02
Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.
Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films
NASA Astrophysics Data System (ADS)
Roma, N.; Morlens, S.; Ricart, S.; Zalamova, K.; Moreto, J. M.; Pomar, A.; Puig, T.; Obradors, X.
2006-06-01
The presence of impurities in the precursor metal carboxylate solutions for the preparation of epitaxial thin films by metal organic decomposition (MOD) is substantially avoided by the use of acid anhydrides. In particular, trifluoroacetic anhydride (TFAA) was used for the synthesis of the starting Y, Ba and Cu trifluoroacetates used in YBa2Cu3O7-x (YBCO) preparation by the MOD process. In this way, highly stable organometallic precursors and a short pyrolysis process could be used leading to YBCO films with high critical currents (Jc >=2-4 MA cm-2 at 77 K). Furthermore, the reproducibility of the results has been ascertained.
IDENTIFYING AIRWAY SENSITIZERS: MRNA CYTOKINE PROFILES INDUCED BY VARIOUS ANHYDRIDES
Abstract:
Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hyp...
21 CFR 172.828 - Acetylated monoglycerides.
Code of Federal Regulations, 2013 CFR
2013-04-01
... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has a...
21 CFR 172.828 - Acetylated monoglycerides.
Code of Federal Regulations, 2012 CFR
2012-04-01
... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has a...
40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dicyclopentadiene polymer with maleic... Significant New Uses for Specific Chemical Substances § 721.10316 Dicyclopentadiene polymer with maleic.... (1) The chemical substance identified generically as dicyclopentadiene polymer with maleic anhydride...
40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dicyclopentadiene polymer with maleic... Significant New Uses for Specific Chemical Substances § 721.10316 Dicyclopentadiene polymer with maleic.... (1) The chemical substance identified generically as dicyclopentadiene polymer with maleic anhydride...
40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dicyclopentadiene polymer with maleic... Significant New Uses for Specific Chemical Substances § 721.10316 Dicyclopentadiene polymer with maleic.... (1) The chemical substance identified generically as dicyclopentadiene polymer with maleic anhydride...
A Classroom Experiment on Phase Equilibria Involving Orientational Disordering in Crystals.
ERIC Educational Resources Information Center
Mjojo, C. C.
1985-01-01
Background information, procedures used, and results obtained are provided for an experiment in which a phase diagram is determined using a differential scanning calorimeter. Commercial samples of D-camphoric anhydride (Eastman Kodak) and D,L-camphoric anhydride (Aldrich) were used in the experiment. (JN)
Zhang, Yun-jian; Li, Qiang; Zhang, Yu-xiu; Wang, Dan; Xing, Jian-min
2012-01-01
Succinic acid is considered as an important platform chemical. Succinic acid fermentation with Actinobacillus succinogenes strain BE-1 was optimized by central composite design (CCD) using a response surface methodology (RSM). The optimized production of succinic acid was predicted and the interactive effects between glucose, yeast extract, and magnesium carbonate were investigated. As a result, a model for predicting the concentration of succinic acid production was developed. The accuracy of the model was confirmed by the analysis of variance (ANOVA), and the validity was further proved by verification experiments showing that percentage errors between actual and predicted values varied from 3.02% to 6.38%. In addition, it was observed that the interactive effect between yeast extract and magnesium carbonate was statistically significant. In conclusion, RSM is an effective and useful method for optimizing the medium components and investigating the interactive effects, and can provide valuable information for succinic acid scale-up fermentation using A. succinogenes strain BE-1. PMID:22302423
Orjuela, Alvaro; Orjuela, Andrea; Lira, Carl T; Miller, Dennis J
2013-07-01
Recovery and purification of organic acids produced in fermentation constitutes a significant fraction of total production cost. In this paper, the design and economic analysis of a process to recover succinic acid (SA) via dissolution and acidification of succinate salts in ethanol, followed by reactive distillation to form succinate esters, is presented. Process simulation was performed for a range of plant capacities (13-55 million kg/yr SA) and SA fermentation titers (50-100 kg/m(3)). Economics were evaluated for a recovery system installed within an existing fermentation facility producing succinate salts at a cost of $0.66/kg SA. For a SA processing capacity of 54.9 million kg/yr and a titer of 100 kg/m(3) SA, the model predicts a capital investment of $75 million and a net processing cost of $1.85 per kg SA. Required selling price of diethyl succinate for a 30% annual return on investment is $1.57 per kg. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pope, Eliza; Maltepe, Caroline; Koren, Gideon
2015-07-01
Nausea and vomiting of pregnancy (NVP) is a common gestational condition. This is the first study to compare the use of vitamin B6 (pyridoxine) versus Diclectin (doxylamine succinate-pyridoxine HCl) for NVP symptoms. Participants were pregnant women with NVP who used either pyridoxine or doxylamine succinate-pyridoxine HCl for ≥4 days prior to calling the Motherisk NVP Helpline. Women receiving pyridoxine only (n = 80) were matched to a woman taking doxylamine succinate-pyridoxine HCl only (n = 80), accounting for potential confounders and baseline level of NVP, measured by the Pregnancy Unique Quantification of Emesis (PUQE) score. Change in NVP severity after a week of therapy with either pyridoxine or doxylamine succinate-pyridoxine HCl was quantified using the PUQE-24 scale, which describes NVP symptoms 24 hours prior to their call. Doxylamine succinate-pyridoxine HCl use found a significant reduction in PUQE score, compared with pyridoxine (+0.5 versus -0.2, P < .05; negative denotes worsening). This association was especially prominent in women with more severe symptoms, where doxylamine succinate-pyridoxine HCl use saw a mean improvement of 2.6 versus 0.4 with pyridoxine (P < .05). As well, doxylamine succinate-pyridoxine HCl use was associated with fewer women experiencing moderate to severe scores after a week of treatment, compared with the pyridoxine group (7 versus 17, P < .05), despite similar baseline PUQE scores. © 2015, The American College of Clinical Pharmacology.
The immunomodulatory activities of pullulan and its derivatives in human pDC-like CAL-1 cell line.
Wang, Fang; Qiao, Linan; Chen, Liwei; Zhang, Cong; Wang, Yan; Wang, Yinsong; Liu, Yuanyuan; Zhang, Ning
2016-05-01
In this study, acidic and alkaline pullulan derivates were synthesized and their immunomodulatory activities compared to pullulan were investigated in human pDC-like CAL-1 cell line. Pullulan was reacted respectively with succinic anhydride and N-(-2-aminoethyl)-1,3-propanediamine/N,N-carbonyl diimidazole to form acidic pullulan monosuccinate (SUPL) and alkaline pullulan-g-N-(-2-aminoethyl)-1,3-propanediamine (AMPL). In CAL-1 cells, pullulan, SUPL and AMPL up-regulated the mRNA expressions of type I interferons (IFN), including IFN-α and IFN-β1, and some other proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-23 (IL-23), and also significantly enhanced the protein expressions of IFN-α and TNF-α. The activation of nuclear factor kappa B (NF-κB) and the nuclear translocations of interferon regulation factors (IRFs), including IRF-3 and IRF-5, exhibited pivotal roles in the immune responses induced by pullulan, SUPL and AMPL. By comparison, pullulan and SUPL displayed weak effects on the activation of CAL-1 cells, but AMPL showed remarkably enhanced immunomodulatory activities, which were comparable to that induced by R848, an agonist for Toll-like receptor (TLR) 7/8. Our results suggested that AMPL, as an alkaline pullulan derivative, could be used as a potent immunomodulatory agent in the food and pharmacological fields. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, E.A.; Zimmerman, L.R.; Bhullar, B.S.; Thurman, E.M.
2002-01-01
A novel, sensitive, linker-assisted enzyme-linked immunosorbent assay (L'ELISA) was compared to on-line solidphase extraction (SPE) with high-performance liquid chromatography/mass spectrometry (HPLC/MS) for the analysis of glyphosate in surface water and groundwater samples. The L'ELISA used succinic anhydride to derivatize glyphosate, which mimics the epitotic attachment of glyphosate to horseradish peroxidase hapten. Thus, L'ELISA recognized the derivatized glyphosate more effectively (detection limit of 0.1 μg/L) and with increased sensitivity (10-100 times) over conventional ELISA and showed the potential for other applications. The precision and accuracy of L'ELISA then was compared with on-line SPE/HPLC/MS, which detected glyphosate and its degradate derivatized with 9-fluorenylmethyl chloroformate using negative-ion electrospray (detection limit 0.1 μg/L, relative standard deviation ±15%). Derivatization efficiency and matrix effects were minimized by adding an isotope-labeled glyphosate (2-13C15N). The accuracy of L'ELISA gave a false positive rate of 18% between 0.1 and 1.0 μg/L and a false positive rate of only 1% above 1.0 μg/L. The relative standard deviation was ±20%. The correlation of L'ELISA and HPLC/MS for 66 surface water and groundwater samples was 0.97 with a slope of 1.28, with many detections of glyphosate and its degradate in surface water but not in groundwater.
Modulation of Cyclodextrin Particle Amphiphilic Properties to Stabilize Pickering Emulsion.
Xi, Yongkang; Luo, Zhigang; Lu, Xuanxuan; Peng, Xichun
2018-01-10
Cyclodextrins have been proven to form complexes with linear oil molecules and stabilize emulsions. Amphiphilic properties of cyclodextrin particles were modulated through esterification reaction between β-cyclodextrin (β-CD) and octadecenyl succinic anhydride (ODSA) under alkaline conditions. ODS-β-CD particles with degree of substitution (DS) of 0.003, 0.011, and 0.019 were obtained. The introduced hydrophobic long chain that was linked within β-CD cavity led to the change of ODS-β-CD in terms of morphological structure, surface charge density, size, and contact angle, upon which the properties and stability of the emulsions stabilized by ODS-β-CD were highly dependent. The average diameter of ODS-β-CD particles ranged from 449 to 1484 nm. With the DS increased from 0.003 to 0.019, the contact angle and absolute zeta potential value of these ODS-β-CD particles improved from 25.7° to 47.3° and 48.1 to 62.8 mV, respectively. The cage structure of β-CD crystals was transformed to channel structure, then further to amorphous structure after introduction of the octadecenyl succinylation chain. ODS-β-CD particles exhibited higher emulsifying ability compared to β-CD. The resulting Pickering emulsions formed by ODS-β-CD particles were more stable during storage. This study investigates the ability of these ODS-β-CD particles to stabilize oil-in-water emulsions with respect to their amphiphilic character and structural properties.
21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Succistearin (stearoyl propylene glycol hydrogen... Other Specific Usage Additives § 172.765 Succistearin (stearoyl propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen succinate) may be safely used in...
Effect of Phthalic Anhydride Modified Soy Protein on Viscoelastic Properties of Polymer Composites
USDA-ARS?s Scientific Manuscript database
Phthalic anhydride (PA) modified soy protein isolates (SPI), both hydrolyzed and un-hydrolyzed, are investigated as reinforcement fillers in styrene-butadiene (SB) composites. The modification of SPI by PA increases the number of carboxylic acid functional groups on the protein surface and therefor...
1982-05-01
34Synthesis of Monomers and Polymers for Evaluation." The 4-nitrobenzoin acetate was prepared by nitrating benzoin in acetic anhydride. Yields of 33...Reference 3). (1) 4-Nitrobenzoin acetate: A suspension of 250 g (1.18 moles) of benzoin in 930 ml of acetic anhydride was cooled to 15*C and 40 ml of
SELECTIVE HYDROGENATION OF ANHYDRIDES TO LACTONES UNDER SUPERCRITICAL CARBON DIOXIDE MEDIUM
Selective Hydrogenation of Anhydrides to Lactones Under Supercritical Carbon Dioxide Medium
Endalkachew Sahle-Demessie Unnikrishnan R Pillai
U.S. EPA , 26 W. Martin Luther King Dr. Cincinnati, OH 45268 Phone: 513-569-7739
Fax: 513-569-7677
Abstract:
Hydrogenat...
21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Succistearin (stearoyl propylene glycol hydrogen succinate). 172.765 Section 172.765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen...
21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Succistearin (stearoyl propylene glycol hydrogen succinate). 172.765 Section 172.765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen...
21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Succistearin (stearoyl propylene glycol hydrogen succinate). 172.765 Section 172.765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen...
Materials and methods for efficient succinate and malate production
Jantama, Kaemwich; Haupt, Mark John; Zhang, Xueli; Moore, Jonathan C; Shanmugam, Keelnatham T; Ingram, Lonnie O'Neal
2014-04-08
Genetically engineered microorganisms have been constructed to produce succinate and malate in mineral salt media in pH-controlled batch fermentations without the addition of plasmids or foreign genes. The subject invention also provides methods of producing succinate and malate comprising the culture of genetically modified microorganisms.
21 CFR 522.784 - Doxylamine succinate injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Doxylamine succinate injection. 522.784 Section 522.784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 522.784 Doxylamine succinate injection. (a) Specifications. Each milliliter of the drug contains 11.36...
21 CFR 522.784 - Doxylamine succinate injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Doxylamine succinate injection. 522.784 Section 522.784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 522.784 Doxylamine succinate injection. (a) Specifications. Each milliliter of the drug contains 11.36...
Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie
2011-01-01
The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Towards hyperpolarized 13C-succinate imaging of brain cancer
Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.
2009-01-01
We describe a novel 13C enriched precursor molecule, sodium 1-13C acetylenedicarboxylate, which after hydrogenation by PASADE-NA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1-13C-glutamate, 5-13C-glutamate, 1-13C-glutamine and 5-13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood–brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images. PMID:17303454
The Succinated Proteome of FH-Mutant Tumours
Yang, Ming; Ternette, Nicola; Su, Huizhong; Dabiri, Raliat; Kessler, Benedikt M.; Adam, Julie; Teh, Bin Tean; Pollard, Patrick J.
2014-01-01
Inherited mutations in the Krebs cycle enzyme fumarate hydratase (FH) predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). Loss of FH activity in HLRCC tumours causes accumulation of the Krebs cycle intermediate fumarate to high levels, which may act as an oncometabolite through various, but not necessarily mutually exclusive, mechanisms. One such mechanism, succination, is an irreversible non-enzymatic modification of cysteine residues by fumarate, to form S-(2-succino)cysteine (2SC). Previous studies have demonstrated that succination of proteins including glyceraldehyde 3-phosphate dehydrogenase (GAPDH), kelch-like ECH-associated protein 1 (KEAP1) and mitochondrial aconitase (ACO2) can have profound effects on cellular metabolism. Furthermore, immunostaining for 2SC is a sensitive and specific biomarker for HLRCC tumours. Here, we performed a proteomic screen on an FH-mutant tumour and two HLRCC-derived cancer cell lines and identified 60 proteins where one or more cysteine residues were succinated; 10 of which were succinated at cysteine residues either predicted, or experimentally proven, to be functionally significant. Bioinformatic enrichment analyses identified most succinated targets to be involved in redox signaling. To our knowledge, this is the first proteomic-based succination screen performed in human tumours and cancer-derived cells and has identified novel 2SC targets that may be relevant to the pathogenesis of HLRCC. PMID:25105836
Zhu, Li-Wen; Wang, Cheng-Cheng; Liu, Rui-Sang; Li, Hong-Mei; Wan, Duan-Ji; Tang, Ya-Jie
2012-01-01
As a potential intermediary feedstock, succinic acid takes an important place in bulk chemical productions. For the first time, a method combining Plackett-Burman design (PBD), steepest ascent method (SA), and Box-Behnken design (BBD) was developed to optimize Actinobacillus succinogenes ATCC 55618 fermentation medium. First, glucose, yeast extract, and MgCO3 were identified to be key medium components by PBD. Second, preliminary optimization was run by SA method to access the optimal region of the key medium components. Finally, the responses, that is, the production of succinic acid, were optimized simultaneously by using BBD, and the optimal concentration was located to be 84.6 g L−1 of glucose, 14.5 g L−1 of yeast extract, and 64.7 g L−1 of MgCO3. Verification experiment indicated that the maximal succinic acid production of 52.7 ± 0.8 g L−1 was obtained under the identified optimal conditions. The result agreed with the predicted value well. Compared with that of the basic medium, the production of succinic acid and yield of succinic acid against glucose were enhanced by 67.3% and 111.1%, respectively. The results obtained in this study may be useful for the industrial commercial production of succinic acid. PMID:23093852
Towards hyperpolarized 13C-succinate imaging of brain cancer
NASA Astrophysics Data System (ADS)
Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.
2007-05-01
We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.
Tough soluble aromatic thermoplastic copolyimides
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor)
2000-01-01
Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. Alternatively, these copolyimides may be prepared by reacting 4,4'-oxydiphthalic anhydride with 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydiisocyanate. Also, the copolyimide may be prepared by reacting the corresponding tetra acid and ester precursors of 4,4'-oxydiphthalic anhydride and 3,4,3',4'-biphenyltetracarboxylic dianhydride with 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.
Li, Ying Hui; Choi, Dae Hee; Lee, Eun Hye; Seo, Su Ryeon; Lee, Seungkoo
2016-01-01
Sirtuin 3 (SIRT3) is an NAD+-dependent protein deacetylase. Recent studies have shown that SIRT3 expression is decreased in nonalcoholic fatty liver disease (NAFLD). Moreover, SIRT3 is a key regulator of succinate dehydrogenase (SDH), which catalyzes the oxidation of succinate to fumarate. Increased succinate concentrations and the specific G protein-coupled receptor 91 (GPR91) are involved in the activation of hepatic stellate cells (HSCs). In this study, we aimed to establish whether SIRT3 regulated the SDH activity, succinate, and GPR91 expression in HSCs and an animal model of NAFLD. Our goal was also to determine whether succinate released from hepatocytes regulated HSC activation. Inhibiting SIRT3 using SIRT3 siRNA exacerbated HSC activation via the SDH-succinate-GPR91 pathway, and SIRT3 overexpression or honokiol treatment attenuated HSC activation in vitro. In isolated liver and HSCs from methionine- and choline-deficient (MCD) diet-induced NAFLD, the expression of SIRT3 and SDH activity was decreased, and the succinate concentrations and GPR91 expression were increased. Moreover, we found that GPR91 knockdown or resveratrol treatment improved the steatosis in MCD diet-fed mice. This investigation revealed a novel mechanism of the SIRT3-SDH-GPR91 cascade in MCD diet-induced HSC activation in NAFLD. These findings highlight the biological significance of novel strategies aimed at targeting SIRT3 and GPR91 in HSCs with the goal of improving NAFLD treatment. PMID:26912655
Li, Ying Hui; Choi, Dae Hee; Lee, Eun Hye; Seo, Su Ryeon; Lee, Seungkoo; Cho, Eun-Hee
2016-05-06
Sirtuin 3 (SIRT3) is an NAD(+)-dependent protein deacetylase. Recent studies have shown that SIRT3 expression is decreased in nonalcoholic fatty liver disease (NAFLD). Moreover, SIRT3 is a key regulator of succinate dehydrogenase (SDH), which catalyzes the oxidation of succinate to fumarate. Increased succinate concentrations and the specific G protein-coupled receptor 91 (GPR91) are involved in the activation of hepatic stellate cells (HSCs). In this study, we aimed to establish whether SIRT3 regulated the SDH activity, succinate, and GPR91 expression in HSCs and an animal model of NAFLD. Our goal was also to determine whether succinate released from hepatocytes regulated HSC activation. Inhibiting SIRT3 using SIRT3 siRNA exacerbated HSC activation via the SDH-succinate-GPR91 pathway, and SIRT3 overexpression or honokiol treatment attenuated HSC activation in vitro In isolated liver and HSCs from methionine- and choline-deficient (MCD) diet-induced NAFLD, the expression of SIRT3 and SDH activity was decreased, and the succinate concentrations and GPR91 expression were increased. Moreover, we found that GPR91 knockdown or resveratrol treatment improved the steatosis in MCD diet-fed mice. This investigation revealed a novel mechanism of the SIRT3-SDH-GPR91 cascade in MCD diet-induced HSC activation in NAFLD. These findings highlight the biological significance of novel strategies aimed at targeting SIRT3 and GPR91 in HSCs with the goal of improving NAFLD treatment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.
Code of Federal Regulations, 2012 CFR
2012-04-01
... resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol followed by reaction of the resin thus produced with phosphoric acid anhydride to produce a resin having an... conditions of time and temperature characterizing the conditions of its intended use, as determined from...
21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.
Code of Federal Regulations, 2013 CFR
2013-04-01
... resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol followed by reaction of the resin thus produced with phosphoric acid anhydride to produce a resin having an... conditions of time and temperature characterizing the conditions of its intended use, as determined from...
Final Rule on National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants.
21 CFR 175.300 - Resinous and polymeric coatings.
Code of Federal Regulations, 2014 CFR
2014-04-01
... triglycerides or fatty acids derived from the oils listed in paragraph (b)(3)(i) of this section to form esters.... Maleic anhydride adduct of butadiene styrene. Polybutadiene. (iv) Natural fossil resins, as the basic... with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes listed in paragraph (b)(3)(vi...
Hydrogenation of maleic anhydride to g-butyrolactone over Pd/Al2O3 catalyst under supercritical carbondioxide medium
Unnikrishnan R. Pillai and Endalkachew Sahle-Demessie
National Risk Management Research laboratory (NRMRL), Clean Processes Branch, MS 443, United States...
USDA-ARS?s Scientific Manuscript database
The aggregate structure of phthalic anhydride (PA) modified soy protein isolate (SPI) was investigated by estimating its fractal dimension from the equilibrated dynamic strain sweep experiments. The estimated fractal dimensions of the filler aggregates were less than 2, indicating that these partic...
USDA-ARS?s Scientific Manuscript database
Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...
Thuy, Nguyen Thi Huong; Kongkaew, Artit; Flood, Adrian; Boontawan, Apichat
2017-06-01
The fermentation of succinic acid from fresh cassava root using Actinobacillus succinogenes ATCC55618, and the recovery of the product using crystallization were investigated. Fresh cassava root is an ideal succinic acid feedstock due to its low price and high starch content. Saccharification was carried out using commercially available enzymes and diammonium phosphate was used as an inexpensive nitrogen source. Different fermentation modes were compared in terms of product yield and productivity. Results for fed-batch fermentations showed that a succinic acid titer of 151.44g/L, with yield and productivity of 1.51g SA /g glucose and 3.22g/L/h could be obtained. Seeded batch cooling crystallization was investigated after pre-treatment using nanofiltration. A succinic acid crystal purity of 99.35% with a relative crystallinity of 96.77% was obtained from high seeding experiments. These results indicated that fresh cassava roots could be an economically alternative feedstock for a high quality succinic acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhaojia; Ierapetritou, Marianthi; Nikolakis, Vladimiros
2015-07-14
The process synthesis, technoeconomic analysis, and life cycle assessment (LCA) of a novel route for phthalic anhydride (PAN) production from hemicellulose solutions are presented. The production contains six steps including dehydration of xylose to furfural, reductive decarbonylation of furfural to furan, oxidation of furfural to maleic anhydride (MA), Diels-Alder cycloaddition of furan, and MA to exo-4,10-dioxa-tricyclo[5.2.1.0]dec-8-ene-3,5-dione followed by dehydration to PAN in the presence of mixture of methanesulfonic acid and acetic anhydride (AAN) which is converted to acetyl methanesulfonate and acetic acid (AAD), and dehydration of AAD to AAN. The minimum selling price of PAN is determined to be $810/metricmore » ton about half of oil-based PAN. The coproduction of high-value products is essential to improve the economics. Biomass feedstock contributes to the majority of cost. LCA results shows that biomass-based PAN has advantages over oil-based PAN to reduce climate change and fossil depletion however requires more water usage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhaojia; Ierapetritou, Marianthi; Nikolakis, Vladimiros
The process synthesis, technoeconomic analysis, and life cycle assessment (LCA) of a novel route for phthalic anhydride (PAN) production from hemicellulose solutions are presented. The production contains six steps including dehydration of xylose to furfural, reductive decarbonylation of furfural to furan, oxidation of furfural to maleic anhydride (MA), Diels-Alder cycloaddition of furan, and MA to exo-4,10-dioxa-tricyclo[5.2.1.0]dec-8-ene-3,5-dione followed by dehydration to PAN in the presence of mixture of methanesulfonic acid and acetic anhydride (AAN) which is converted to acetyl methanesulfonate and acetic acid (AAD), and dehydration of AAD to AAN. The minimum selling price of PAN is determined to be $810/metricmore » ton about half of oil-based PAN. The coproduction of high-value products is essential to improve the economics. Biomass feedstock contributes to the majority of cost. LCA results shows that biomass-based PAN has advantages over oil-based PAN to reduce climate change and fossil depletion however requires more water usage.« less
NASA Astrophysics Data System (ADS)
Ruf, Mohd Farid Hakim Mohd; Ahmad, Sahrim; Chen, Ruey Shan; Shahdan, Dalila; Zailan, Farrah Diyana
2018-04-01
This research was carried out to investigate the addition of grafted copolymers of maleic anhydride grafted-polylactic acid(PLA-g-MA) and maleic anhydride grafted-natural rubber (NR-g-MA) on the tensile and morphology properties of polylactic acid/ liquid natural rubber (PLA/LNR) blends. Prior to blend preparation, the PLA-g-MA and NR-g-MA was first self-synthesized using maleic anhydride (MA) and dicumyl peroxide (DCP) as initiator together with the PLA and NR respectively. The PLA/LNR, PLA/LNR/PLA-g-MA and PLA/LNR/NR-g-MA blends were prepared via melt-blending method. The loading of PLA-g-MA and NR-g-MA was varied by 5, 10 and 15 wt% respectively. The addition of PLA-g-MA led to increment in tensile strength with 5 and 10 wt% while NR-g-MA gives lower than controlled sample (PLA/LNR blend). Scanning electron microscope (SEM) showed the interaction of the components in the blends. The PLA/LNR compatibilized with PLA-g-MA and NR-g-MA shows greater dispersion and adhesion.
NASA Astrophysics Data System (ADS)
Tukumova, N. V.; Dieu Thuan, Tran Thi; Usacheva, T. R.; Koryshev, N. E.; Sharnin, V. A.
2017-04-01
Stability constants of the coordination compounds of nickel(II) and cobalt(II) ions with succinic acid anion in water-ethanol solvents are determined via potentiometric titration at ionic strength of 0.1 and at T = 298.15 K. It is found that logβ values of monoligand complexes of these ions and succinic acid anions rise along with the content of ethanol in solution ( X EtOH = 0-0.7 mole fractions). Based on an analysis of the thermodynamic characteristics of the solvation of the reagents involved in complex formation, it is found that the increased stability of succinate complexes of nickel(II) and cobalt(II) ions in water-ethanol solvents is mainly determined by the weakening of the solvation of succinic acid anion (Y2-).
Piroli, Gerardo G.; Manuel, Allison M.; Clapper, Anna C.; Walla, Michael D.; Baatz, John E.; Palmiter, Richard D.; Quintana, Albert; Frizzell, Norma
2016-01-01
Elevated fumarate concentrations as a result of Krebs cycle inhibition lead to increases in protein succination, an irreversible post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). Metabolic events that reduce NADH re-oxidation can block Krebs cycle activity; therefore we hypothesized that oxidative phosphorylation deficiencies, such as those observed in some mitochondrial diseases, would also lead to increased protein succination. Using the Ndufs4 knockout (Ndufs4 KO) mouse, a model of Leigh syndrome, we demonstrate for the first time that protein succination is increased in the brainstem (BS), particularly in the vestibular nucleus. Importantly, the brainstem is the most affected region exhibiting neurodegeneration and astrocyte and microglial proliferation, and these mice typically die of respiratory failure attributed to vestibular nucleus pathology. In contrast, no increases in protein succination were observed in the skeletal muscle, corresponding with the lack of muscle pathology observed in this model. 2D SDS-PAGE followed by immunoblotting for succinated proteins and MS/MS analysis of BS proteins allowed us to identify the voltage-dependent anion channels 1 and 2 as specific targets of succination in the Ndufs4 knockout. Using targeted mass spectrometry, Cys77 and Cys48 were identified as endogenous sites of succination in voltage-dependent anion channels 2. Given the important role of voltage-dependent anion channels isoforms in the exchange of ADP/ATP between the cytosol and the mitochondria, and the already decreased capacity for ATP synthesis in the Ndufs4 KO mice, we propose that the increased protein succination observed in the BS of these animals would further decrease the already compromised mitochondrial function. These data suggest that fumarate is a novel biochemical link that may contribute to the progression of the neuropathology in this mitochondrial disease model. PMID:26450614
Piroli, Gerardo G; Manuel, Allison M; Clapper, Anna C; Walla, Michael D; Baatz, John E; Palmiter, Richard D; Quintana, Albert; Frizzell, Norma
2016-02-01
Elevated fumarate concentrations as a result of Krebs cycle inhibition lead to increases in protein succination, an irreversible post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). Metabolic events that reduce NADH re-oxidation can block Krebs cycle activity; therefore we hypothesized that oxidative phosphorylation deficiencies, such as those observed in some mitochondrial diseases, would also lead to increased protein succination. Using the Ndufs4 knockout (Ndufs4 KO) mouse, a model of Leigh syndrome, we demonstrate for the first time that protein succination is increased in the brainstem (BS), particularly in the vestibular nucleus. Importantly, the brainstem is the most affected region exhibiting neurodegeneration and astrocyte and microglial proliferation, and these mice typically die of respiratory failure attributed to vestibular nucleus pathology. In contrast, no increases in protein succination were observed in the skeletal muscle, corresponding with the lack of muscle pathology observed in this model. 2D SDS-PAGE followed by immunoblotting for succinated proteins and MS/MS analysis of BS proteins allowed us to identify the voltage-dependent anion channels 1 and 2 as specific targets of succination in the Ndufs4 knockout. Using targeted mass spectrometry, Cys(77) and Cys(48) were identified as endogenous sites of succination in voltage-dependent anion channels 2. Given the important role of voltage-dependent anion channels isoforms in the exchange of ADP/ATP between the cytosol and the mitochondria, and the already decreased capacity for ATP synthesis in the Ndufs4 KO mice, we propose that the increased protein succination observed in the BS of these animals would further decrease the already compromised mitochondrial function. These data suggest that fumarate is a novel biochemical link that may contribute to the progression of the neuropathology in this mitochondrial disease model. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Luthfi, Abdullah Amru Indera; Manaf, Shareena Fairuz Abdul; Illias, Rosli Md; Harun, Shuhaida; Mohammad, Abdul Wahab; Jahim, Jamaliah Md
2017-04-01
Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.
Renewable unsaturated polyesters from muconic acid
Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; ...
2016-09-27
cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a monomer suitable for direct use in commercial composites.« less
Renewable unsaturated polyesters from muconic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.
cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a monomer suitable for direct use in commercial composites.« less
Bio-oil based biorefinery strategy for the production of succinic acid.
Wang, Caixia; Thygesen, Anders; Liu, Yilan; Li, Qiang; Yang, Maohua; Dang, Dan; Wang, Ze; Wan, Yinhua; Lin, Weigang; Xing, Jianmin
2013-01-01
Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production.
Bio-oil based biorefinery strategy for the production of succinic acid
2013-01-01
Background Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. Results The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. Conclusions The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production. PMID:23657107
Hasunuma, Tomohisa; Matsuda, Mami; Kato, Yuichi; Vavricka, Christopher John; Kondo, Akihiko
2018-05-27
Succinate is a versatile petrochemical compound that can be produced by microorganisms, often from carbohydrate based carbon sources. Phototrophic cyanobacteria including Synechocystis sp. PCC 6803 can more efficiently produce organic acids such as succinate without sugar supplementation, via photosynthetic production of glycogen followed by glycogen utilization, typically under dark conditions. In this study, Synechocystis 6803 bioproduction of organic acids under dark anoxic conditions was found to increase with elevation of temperature from 30 °C to 37 °C. The further enhancement of succinate bioproduction by overexpression of the rate limiting enzyme phosphoenolpyruvate carboxylase resulted in improved glycogen utilization. To gain more insight into the mechanisms underlying the increased organic acid output, a novel temperature dependent metabolomics analysis was performed. Adenylate energy charge was found to decrease along with elevating temperature, while central metabolites glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, glycerol 3-phosphate, malate, fumarate and succinate increased. Temperature dependent 13 C-labeling metabolomics analysis further revealed a glycolysis to TCA bottleneck, which could be overcome by addition of CO 2 , leading to even higher organic acid production. Optimization of initial cell concentration to 25 g-dry cell weight/L, in combination with 100 mM NaHCO 3 supplementation, afforded a succinate titer of over 1.8 g/L, the highest reported autotrophic succinate titer. Succinate titers remained high after additional knockout of ackA, resulting in the highest reported autotrophic D-lactate titer as well. The optimization of Synechocystis 6803 organic acid production therefore holds significant promise for CO 2 capture and utilization. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Litsanov, Boris; Brocker, Melanie
2012-01-01
Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Δcat Δpqo Δpta-ackA ΔldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pycP458S into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD+-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose). PMID:22389371
ERIC Educational Resources Information Center
Haji, Shaker; Erkey, Can
2005-01-01
A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…
USDA-ARS?s Scientific Manuscript database
Maleic anhydride (MA) grafted polylactic acid (PLA) acting as reactive compatibilizer for PLA blends and composites has been reported. However, melt free-radical grafting of MA on PLA is often subject to steric and electron effects of the substituents in the monomer and low initiation efficiency, yi...
Enterobacter sp. LU1 as a novel succinic acid producer - co-utilization of glycerol and lactose.
Podleśny, Marcin; Jarocki, Piotr; Wyrostek, Jakub; Czernecki, Tomasz; Kucharska, Jagoda; Nowak, Anna; Targoński, Zdzisław
2017-03-01
Succinic acid is an important C4-building chemical platform for many applications. A novel succinic acid-producing bacterial strain was isolated from goat rumen. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the genus Enterobacter. This is the first report of a wild bacterial strain from the genus Enterobacter that is capable of efficient succinic acid production. Co-fermentation of glycerol and lactose significantly improved glycerol utilization under anaerobic conditions, debottlenecking the utilization pathway of this valuable biodiesel waste product. Succinic acid production reached 35 g l -1 when Enterobacter sp. LU1 was cultured in medium containing 50 g l -1 of glycerol and 25 g l -1 of lactose as carbon sources. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Succinic acid production from cellobiose by Actinobacillus succinogenes.
Jiang, Min; Xu, Rong; Xi, Yong-Lan; Zhang, Jiu-Hua; Dai, Wen-Yu; Wan, Yue-Jia; Chen, Ke-Quan; Wei, Ping
2013-05-01
In this study, cellobiose, a reducing disaccharide was used to produce succinic acid by Actinobacillus succinogenes NJ113. A final succinic acid concentration of 30.3g/l with a yield of 67.8% was achieved from an initial cellobiose concentration of 50 g/l via batch fermentation in anaerobic bottles. The cellobiose uptake mechanism was investigated and the results of enzyme assays revealed that the phosphoenolpyruvate phosphotransferase system (PEP-PTS) played an important role in the cellobiose uptake process. In batch fermentation with 18 g/l of cellobiose and 17 g/l of other sugars from sugarcane bagasse cellulose hydrolysates, a succinic acid concentration of 20.0 g/l was obtained, with a corresponding yield of 64.7%. This study found that cellobiose from incomplete hydrolysis of cellulose could be a potential carbon source for economical and efficient succinic acid production by A. succinogenes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Khunderyakova, N V; Zakharchenko, A V; Zakharchenko, M V; Muller, H; Fedotcheva, I; Kondrashova, M N
2015-01-01
Biological effects of light near infrared radiation (850 nm), with modulation acoustic frequency of 101 Hz, was studied. The study was conducted on rats, the effect was recorded by succinate dehydrogenase activity in lymphocytes on the blood smear after administration of the activating dose of adrenaline, which simulates the state of the organism in the early stages of the pathogenic effects (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals activated by adrenaline was shown. Infrared radiation has a normalizing effect reducing the degree of inhibition or activation of the enzyme induced by adrenaline and had no effect on the control animals. Thus, by modulating the activity of succinate dehydrogenase infrared radiation regulates energy production in the mitochondria supported by the most powerful oxidation substrate--succinic acid, which is especially pronounced under stress.
NASA Astrophysics Data System (ADS)
Halim Başkan, M.; Kartal, Zeki; Aydın, Murat
2015-12-01
Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).
Copolyimides prepared from ODPA, BTDA and 3,4'-ODA
NASA Technical Reports Server (NTRS)
Chang, Alice C. (Inventor); St. Clair, Terry L. (Inventor)
1996-01-01
A copolyimide was prepared by reacting 3,4'-oxydianiline (3,4'-ODA) with a dianhydride blend comprising, based on the total amount of the dianhydride blend, about 67 to 80 mole percent of 4,4'-oxydiphthalic anhydride (ODPA) and about 20 to 33 mole percent of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA). The copolyimide may be endcapped with up to about 10 mole percent of a monofunctional aromatic anhydride and has unbalanced stoichiometry such that a molar deficit in the dianhydride blend is compensated with twice the molar amount of the monofunctional aromatic anhydride. The copolyimide was used to prepare composites, films and adhesives. The film and adhesive properties were significantly better than those of LaRC.TM.-IA.
Integration of succinic acid and ethanol production within a corn or barley biorefinery
USDA-ARS?s Scientific Manuscript database
Production of succinic acid from glucose by Escherichia coli strain AFP184 was studied in a batch fermentor. The bases used for pH control included NaOH, KOH, NH4OH, and Na2CO3. The yield of succinic acid without and with carbon dioxide supplied by an adjacent ethanol fermentor using either corn or ...
Ingredient Consistency of Commercially Available Polyphenol and Tocopherol Nutraceuticals
Remsberg, Connie M.; Good, Renee L.; Davies, Neal M.
2010-01-01
Label claims of vitamin E succinate and polyphenolic nutraceuticals are assessed. A validated HPLC method was utilized to assess vitamin E succinate products. Three novel LC/MS methods were used to assess the polyphenols, pterostilbene, phloretin, and myricetin, in dietary supplements. The amount of vitamin E succinate varied from 0-130% of the stated label content with two products containing vitamin E acetate rather than vitamin E succinate. Expected polyphenols were found in 7 of the 8 supplement products. None of the polyphenol supplements contained content within 100-120% of label claims. The present study indicates a lack of uniformity in nutraceutical products. PMID:27721342
NASA Astrophysics Data System (ADS)
Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.
2016-06-01
Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.
Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin
2009-08-10
A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.
Respiratory glycerol metabolism of Actinobacillus succinogenes 130Z for succinate production.
Schindler, Bryan D; Joshi, Rajasi V; Vieille, Claire
2014-09-01
Actinobacillus succinogenes 130Z naturally produces among the highest levels of succinate from a variety of inexpensive carbon substrates. A few studies have demonstrated that A. succinogenes can anaerobically metabolize glycerol, a waste product of biodiesel manufacture and an inexpensive feedstock, to produce high yields of succinate. However, all these studies were performed in the presence of yeast extract, which largely removes the redox constraints associated with fermenting glycerol, a highly reduced molecule. We demonstrated that A. succinogenes cannot ferment glycerol in minimal medium, but that it can metabolize glycerol by aerobic or anaerobic respiration. These results were expected based on the A. succinogenes genome, which encodes respiratory enzymes, but no pathway for 1,3-propanediol production. We investigated A. succinogenes's glycerol metabolism in minimal medium in a variety of respiratory conditions by comparing growth, metabolite production, and in vitro activity of terminal oxidoreductases. Nitrate inhibited succinate production by inhibiting fumarate reductase expression. In contrast, growth in the presence of dimethylsulfoxide and in microaerobic conditions allowed high succinate yields. The highest succinate yield was 0.75 mol/mol glycerol (75 % of the maximum theoretical yield) in continuous microaerobic cultures. A. succinogenes could also grow and produce succinate on partially refined glycerols obtained directly from biodiesel manufacture. Finally, by expressing a heterologous 1,3-propanediol synthesis pathway in A. succinogenes, we provide the first proof of concept that A. succinogenes can be engineered to grow fermentatively on glycerol.
Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization.
Ober, Courtney A; Gupta, Ram B
2012-12-01
Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO(2) to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO(2), which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole-succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole-succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO(2) antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole-succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO(2) to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.
Rustin, P; Lance, C
1991-01-01
The effects of rotenone on the succinate-driven reduction of matrix nicotinamide nucleotides were investigated in Percoll-purified mitochondria from potato (Solanum tuberosum) tubers. Depending on the presence of ADP or ATP, rotenone caused an increase or a decrease in the level of reduction of the matrix nicotinamide nucleotides. The increase in the reduction induced by rotenone in the presence of ADP was linked to the oxidation of the malate resulting from the oxidation of succinate. Depending on the experimental conditions, malic enzyme (at pH 6.6 or in the presence of added CoA) or malate dehydrogenase (at pH 7.9) were involved in this oxidation. At pH 7.9, the oxaloacetate produced progressively inhibited the succinate dehydrogenase. In the presence of ATP the production of oxaloacetate was stopped, and succinate dehydrogenase was protected from inhibition by oxaloacetate. However, previously accumulated oxaloacetate transitorily decreased the level of the reduction of the NAD+ driven by succinate, by causing the reversal of the malate dehydrogenase reaction. Under these conditions (i.e. presence of ATP), rotenone strongly inhibited the reduction of NAD+ by succinate-driven reverse electron flow. No evidence for an active reverse electron transport through a rotenone-insensitive path could be obtained. The inhibitory effect of rotenone was masked if malate had previously accumulated, owing to the malate-oxidizing enzymes which reduced part or all of the matrix NAD+. PMID:2001241
Davydova, A A; Stotskaia, L L; Berezina, L K; Osipova, L V; Barinskiĭ, I F
1986-01-01
The virus-inhibiting and immunostimulating activity of Soviet preparations, maleic anhydride copolymers, was demonstrated in alpha-, flavi-, and bunyavirus infections. Positive results were obtained in subcutaneous and intraperitoneal inoculations of the preparations used in prophylactic and therapeutic-prophylactic schedules. Stimulation of vaccination immunity was observed after combined use of copolymers and the vaccine against Eastern equine encephalomyelitis.
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor)
2000-01-01
Polyimide copolymers were obtained containing 1,3-bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and terminating with the appropriate amount of reactive endcapper. The reactive endcappers studied include but should not be limited to 4-phenylethynyl phthalic anhydride (PEPA ), 3-aminophenoxy- 4'-phenylethynylbenzophenone (3-APEB), maleic anhydride (MA) and nadic anhydride (5-norbomene-2,3-dicarboxylic anhydride, NA). Homopolymers containing only other diamines and dianhydrides which are not processable under conditions described previously can be made processable by incorporating various amounts of APB, depending on the chemical structures of the diamines and dianhydrides used. By simply changing the ratio of APB to the other diamine in the polyimide backbone, a material with a unique combination of solubility, Tg, Tm, melt viscosity, toughness and elevated temperature mechanical properties can be prepared. The copolymers that result from using APB to enhance processability have a unique combination of properties that include low pressure processing (200 psi and below), long term melt stability (several hours at 300 C. for the phenylethynyl terminated polymers), high toughness, improved solvent resistance, improved adhesive properties, and improved composite mechanical properties. These copolyimides are eminently suitable as adhesives, composite matrices, moldings, films and coatings.
Measurements of PANs during the New England Air Quality Study 2002
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Marchewka, M.; Bertman, S. B.; Sommariva, R.; Warneke, C.; de Gouw, J.; Kuster, W.; Goldan, P.; Williams, E.; Lerner, B. M.; Murphy, P.; Fehsenfeld, F. C.
2007-10-01
Measurements of peroxycarboxylic nitric anhydrides (PANs) were made during the New England Air Quality Study 2002 cruise of the NOAA RV Ronald H Brown. The four compounds observed, PAN, peroxypropionic nitric anhydride (PPN), peroxymethacrylic nitric anhydride (MPAN), and peroxyisobutyric nitric anhydride (PiBN) were compared with results from other continental and Gulf of Maine sites. Systematic changes in PPN/PAN ratio, due to differential thermal decomposition rates, were related quantitatively to air mass aging. At least one early morning period was observed when O3 seemed to have been lost probably due to NO3 and N2O5 chemistry. The highest O3 episode was observed in the combined plume of isoprene sources and anthropogenic volatile organic compounds (VOCs) and NOx sources from the greater Boston area. A simple linear combination model showed that the organic precursors leading to elevated O3 were roughly half from the biogenic and half from anthropogenic VOC regimes. An explicit chemical box model confirmed that the chemistry in the Boston plume is well represented by the simple linear combination model. This degree of biogenic hydrocarbon involvement in the production of photochemical ozone has significant implications for air quality control strategies in this region.
NASA Astrophysics Data System (ADS)
Roberts, James M.; Marchewka, Mathew; Bertman, Steven B.; Goldan, Paul; Kuster, William; de Gouw, Joost; Warneke, Carsten; Williams, Eric; Lerner, Brian; Murphy, Paul; Apel, Eric; Fehsenfeld, Fred C.
2006-12-01
Isoprene and its first and second generation photochemical products, methyl vinyl ketone (MVK), methacrolein (MACR), and peroxymethacrylic nitric anhydride (MPAN), were measured off the coast of New England during the 2002 New England Air Quality Study (NEAQS) on board the NOAA Research Vessel Ronald H. Brown. The results of these measurements were analyzed using a simple sequential reaction model that has been used previously to examine regional oxidant chemistry. The highest isoprene impact was observed in air masses that had passed over an area of high isoprene emission WSW of Boston. The relative concentrations of isoprene and its first generation products show that the photochemistry is consistently "older" than the isoprene photochemistry observed at continental sites. The sequential reaction model was also applied to the aldehyde-PANs (Peroxycarboxylic nitric anhydride) system, and the resulting PPN (peroxypropionic nitric anhydride)/propanal and PAN (peroxyacetic nitric anhydride)/acetaldehyde relationships were consistent with additional sources of PAN in this environment, e.g., isoprene photochemistry. This isoprene source was estimated to result in approximately 1.6 to 4 times more PAN in this environment relative to that produced from anthropogenic VOCs (volatile organic compounds) alone.
Church, Kara M; Henalt, Robert; Baker, Errol; Smith, Gary L; Brennan, Michael T; Joseph, Jacob
2015-12-01
To determine if metoprolol succinate or carvedilol is more effective in delaying the time to first cardiovascular disease hospital admission in systolic heart failure patients. As a secondary objective, to determine the most effective dose of each agent in delaying first cardiovascular disease hospital admission, including but not limited to heart failure exacerbation, myocardial infarction, ischemic heart disease, cardiac arrhythmias, or death. This study was a retrospective chart review of 272 veterans at the VA Boston Healthcare System newly started on metoprolol succinate (n = 157) or carvedilol (n = 115) between January 2000 and December 2008. After an 8-week study medication titration period, subjects were subcategorized into low-, medium-, and high-dose ranging groups and followed until the first cardiovascular disease hospitalization, death, or 365 days. The main outcome measure was time to first cardiovascular hospitalization or death. The mean age (69.9 years vs. 67.9 years) and ejection fraction (26% vs. 25%) were comparable between study arms at baseline. Mean time to first cardiovascular disease hospitalization was significantly different (p = 0.001) between study groups with 330.6 days with in metoprolol succinate group vs. 282.6 days in the carvedilol groups. High-dose carvedilol significantly delayed time to first hospitalization in comparison to medium or low carvedilol doses (p = 0.015, p = 0.005). Low- and high-dose metoprolol succinate were not significantly different (p = 0.509) in time to first event, and both dosing groups fared better compared to medium dose metoprolol succinate (p = 0.046). In this veteran patient population in need of additional heart failure treatments, metoprolol succinate use resulted in a delayed time to first cardiovascular disease hospitalization or death compared to carvedilol. Both low and high doses of metoprolol succinate showed a significant delay of time to first cardiovascular hospitalization compared to medium doses of metoprolol succinate. Higher doses of carvedilol showed a significant delay of time to cardiovascular hospitalization than lower carvedilol doses. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Brink, Hendrik Gideon; Nicol, Willie
2014-08-19
Succinic acid is well established as bio-based platform chemical with production quantities expecting to increase exponentially within the next decade. Actinobacillus succinogenes is by far the most studied wild organism for producing succinic acid and is known for high yield and titre during production on various sugars in batch culture. At low shear conditions continuous fermentation with A. succinogenes results in biofilm formation. In this study, a novel shear controlled fermenter was developed that enabled: 1) chemostat operation where self-immobilisation was opposed by high shear rates and, 2) in-situ removal of biofilm by increasing shear rates and subsequent analysis thereof. The volumetric productivity of the biofilm fermentations were an order of magnitude more than the chemostat runs. In addition the biofilm runs obtained substantially higher yields. Succinic acid to acetic acid ratios for chemostat runs were 1.28±0.2 g.g(-1), while the ratios for biofilm runs started at 2.4 g.g(-1) and increased up to 3.3 g.g(-1) as glucose consumption increased. This corresponded to an overall yield on glucose of 0.48±0.05 g.g(-1) for chemostat runs, while the yields varied between 0.63 g.g(-1) and 0.74 g.g(-1) for biofilm runs. Specific growth rates (μ) were shown to be severely inhibited by the formation of organic acids, with μ only 12% of μ(max) at a succinic acid titre of 7 g.L(-1). Maintenance production of succinic acid was shown to be dominant for the biofilm runs with cell based production rates (extracellular polymeric substance removed) decreasing as SA titre increases. The novel fermenter allowed for an in-depth bioreaction analysis of A. succinogenes. Biofilm cells achieve higher SA yields than suspended cells and allow for operation at higher succinic acid titre. Both growth and maintenance rates were shown to drastically decrease with succinic acid titre. The A. succinogenes biofilm process has vast potential, where self-induced high cell densities result in higher succinic acid productivity and yield.
NASA Technical Reports Server (NTRS)
Sugg, E.; Mason, J. G.
1983-01-01
Work has revealed that diamine derivatives of diphenylmethane (IV), diphenyl ether (V), benzophenone (IV), fluorene (VII), and fluorenone (VIII) polymerizations with pyromellitic dianhydride in DMA were dependent on the basicity of the amine compound. The correlation between the basicity of the amine and its reactivity with phthalic anhydride was determined. Basicity measurements were made by potentiometric titration of each amine in an acetonitrile-water solvent system, from which the pKa of the amine could be determined. Reactivity was defined in terms of the second order rate constant derived form spectrophotometric examination of the reaction between each amine and phthalic anhydride in DMA. This reaction was expected to proceed in either one (for a monoamine) or two (for a diamine) stages.
NASA Astrophysics Data System (ADS)
Fajrin, A.; Sari, L. A.; Rahmawati, N.; Saputra, O. A.; Suryanti, V.
2017-02-01
The research aims to develop biodegradable composites as bio-based plastics from chitosan. The composites were prepared via solution casting method by introducing the maleic anhydride (MAH) as grafting agent and montmorillonite (MMt) as reinforcement. The grafting process of chitosan was conducted by varying concentrations of MAH which were 10, 20, and 30% w/w. It was observed that the chitosan-graft-maleic anhydride (Cs-g-MAH) containing 10% w/w of MAH increased its tensile strength by 70%. Reinforcement material was added to the Cs-g-MAH by varying MMt concentrations, e.g. 3, 6, 9 and 12% w/w. It was noted that the presence of 9% w/w of MMt in the Cs-g-MAH gave the best mechanical properties of the Cs-g-MAH/MMt composite.
Mills, Evanna L; Kelly, Beth; Logan, Angela; Costa, Ana S H; Varma, Mukund; Bryant, Clare E; Tourlomousis, Panagiotis; Däbritz, J Henry M; Gottlieb, Eyal; Latorre, Isabel; Corr, Sinéad C; McManus, Gavin; Ryan, Dylan; Jacobs, Howard T; Szibor, Marten; Xavier, Ramnik J; Braun, Thomas; Frezza, Christian; Murphy, Michael P; O'Neill, Luke A
2016-10-06
Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Nilsson, Robert; Bauer, Fredric; Mesfun, Sennai; Hulteberg, Christian; Lundgren, Joakim; Wännström, Sune; Rova, Ulrika; Berglund, Kris Arvid
2014-06-01
This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7g/g substrate. Additionally, a carbon dioxide fixation of up to 13ktonnes could be achieved at a plant with an annual butanol production of 10ktonnes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Logan, A; Costa, A. S. H.; Varma, M.; Bryant, C. E.; Tourlomousis, P.; Däbritz, J. H. M.; Gottlieb, E.; Latorre, I.; Corr, S.C.; McManus, G.; Ryan, D.; Jacobs, H.T.; Szibor, M.; Xavier, R. J.; Braun, T.; Frezza, C.; Murphy, M. P.; O’Neill, L. A.
2018-01-01
Activated macrophages undergo metabolic reprogramming which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here we demonstrate that upon lipopolysaccharide (LPS) stimulation macrophages shift from producing ATP by oxidative phosphorylation to glycolysis, while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial ROS production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone, by uncoupling mitochondria, or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state. PMID:27667687
Helman, Guy; Caldovic, Ljubica; Whitehead, Matthew T; Simons, Cas; Brockmann, Knut; Edvardson, Simon; Bai, Renkui; Moroni, Isabella; Taylor, J Michael; Van Haren, Keith; Taft, Ryan J; Vanderver, Adeline; van der Knaap, Marjo S
2016-03-01
Succinate dehydrogenase-deficient leukoencephalopathy is a complex II-related mitochondrial disorder for which the clinical phenotype, neuroimaging pattern, and genetic findings have not been comprehensively reviewed. Nineteen individuals with succinate dehydrogenase deficiency-related leukoencephalopathy were reviewed for neuroradiological, clinical, and genetic findings as part of institutional review board-approved studies at Children's National Health System (Washington, DC) and VU University Medical Center (Amsterdam, the Netherlands). All individuals had signal abnormalities in the central corticospinal tracts and spinal cord where imaging was available. Other typical findings were involvement of the cerebral hemispheric white matter with sparing of the U fibers, the corpus callosum with sparing of the outer blades, the basis pontis, middle cerebellar peduncles, and cerebellar white matter, and elevated succinate on magnetic resonance spectroscopy (MRS). The thalamus was involved in most studies, with a predilection for the anterior nucleus, pulvinar, and geniculate bodies. Clinically, infantile onset neurological regression with partial recovery and subsequent stabilization was typical. All individuals had mutations in SDHA, SDHB, or SDHAF1, or proven biochemical defect. Succinate dehydrogenase deficiency is a rare leukoencephalopathy, for which improved recognition by magnetic resonance imaging (MRI) in combination with advanced sequencing technologies allows noninvasive diagnostic confirmation. The MRI pattern is characterized by cerebral hemispheric white matter abnormalities with sparing of the U fibers, corpus callosum involvement with sparing of the outer blades, and involvement of corticospinal tracts, thalami, and spinal cord. In individuals with infantile regression and this pattern of MRI abnormalities, the differential diagnosis should include succinate dehydrogenase deficiency, in particular if MRS shows elevated succinate. © 2016 American Neurological Association.
George C. Chen
2008-01-01
The aim of the present study was to combat wood decay based on the approach controlled-release biocides from polymers. The possibility of introducing polymer-bonded fungicides into the cell lumens was investigated. The synthesis of ethylene maleic anhydride copolymer containing pentachlorophenol (penta) and 8-hydroxy quinoline (8HQ) in N, N dimethyl formamide is...
Latest advancements in the acetylation of wood fibers to improve performance of wood composites
R. M. Rowell; R. Simonson
2004-01-01
A new procedure has been developed for the rapid continuous acetylation of lignocellulosic fiber. A limited amount of acetic anhydride is applied to the fiber before the fiber goes through a reactor at high temperature. The acetylated fiber is then stripped in a first step with superheated vapor of anhydride/acetic acid and, optionally, in a second step with...
The Role Culture Plays in China’s Illicit Drug/Chemical Foreign Policy
2008-03-20
trafficking of these chemicals that include acetic anhydride, ephedrine/ pseudoephedrine , and steroids. To better understand China’s lack of cooperation...ACKNOWLEDGEMENTS v INTRODUCTION 1 CHlNA AND THE INTERNATIONAL DRUG TRADE 2 ACETIC ANHYDRIDE PRODUCTION 3 CHlNESE EPHEDRINE AND PSEUDOEPHEDRINE EXPORTS... pseudoephedrine . Both drugs are used as precursors to manufacture methamphetamine. In addition to exported ephedrine/ pseudoephedrine , Chinese chemical companies
Production of monoclonal antibody to acaricide dicofol and its derivatives.
Hongsibsong, Surat; Prapamontol, Tippawan; Suphavilai, Chaisuree; Wipasa, Jiraprapa; Pattarawarapan, Mookda; Kasinrerk, Watchara
2010-12-01
In Thailand detection of acaricide dicofol residues has been sporadically performed due to the limitation of analytical techniques. Conventional analytical methods for detecting dicofol residues most often use chromatographic-based techniques. Our ultimate aim is to develop an alternative method for rapidly analyzing dicofol residues in vegetables and fruit samples. Here we report the production of monoclonal antibodies specific to dicofol and its derivatives. Hapten-protein carriers were prepared by linking succinic anhydride to dichlorobenzhydrol (DCBH), which was then conjugated to bovine serum albumin (BSA) and oval albumin (OVA). DCBH-BSA conjugate was used as immunogen while DCBH-OVA conjugate was used as capture antigen for competitive inhibition assay. Female BALB/c mice were immunized with DCBH-BSA conjugate subcutaneously, and antibody (Ab) level was determined 2 weeks after the last immunization. Spleen cells producing high titer antibody were isolated and fused with myeloma cells of P3.X6.Ag8.653. After limiting dilutions, antibody produced by one clone had high affinity, which was found to be of IgG1 with κ light chain. Specificity and inhibition concentrations of the monoclonal antibody (MAb) were determined by competitive indirect ELISA with dicofol, and its 50% (IC(50)) was 0.28 μg/mL. Working ranges of the developed immunoassay were from 0.07 to 25 μg/mL. Hence, the prepared MAb will be able to be applied for immunoassay development for detecting dicofol residue in vegetables and fruits far below the maximum residue limit such that 5 g of fruits and berries can be detected below 0.1 mg/kg.
Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid
NASA Technical Reports Server (NTRS)
Chiba, K.; Tomura, S.; Mizuno, T.
1986-01-01
The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.
Effect of impurities in polybutene on the quality of alkenylsuccinic anhydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarmolyuk, B.M.; Pustovit, V.E.; Bereza, L.I.
1984-03-01
Synthesis of alkenylsuccini anhydrides (ASAs) was carried out in thermostable ampules at 230/sup 0/C in the course of 12 hours at an MA:PB molar ratio of 1.3:1 in a medium of prepurified petroleum xylene (30%). Freshly distilled maleic anhydride and industrial specimens of polybutene were used in the experiments. It was established that the main impurities which are formed in the production of polybutene and in its processing are ions of sodium, peroxide compounds and products of decomposition of the polymerization catalyst. The concentration of sodium ion was determined by an atomic adsorption method on an A-3000 instrument, the concentrationmore » of peroxides was determined by iodometry (3), and the concentration of catalyst decomposition products was determined from the amount of mechanical impurities.« less
Shou, Qing-Yao; Fu, Run-Zhong; Tan, Qing; Shen, Zheng-Wu
2009-08-12
In an effort to identify new immunosuppressive agents from natural sources, 12 new geranylated flavonoids, 5,7,4'-trihydroxy-3'-[7-hydroxy-3,7-dimethyl-2(E)-octenyl]isoflavone (1), a racemate of 5,7,2',4'-tetrahydroxy-3'-[7-hydroxy-3,7-dimethyl-2(E)-octenyl]isoflavanone (2), 2''(S)-5,7-dihydroxy-[2''-methyl-2''-(4-methyl-3-pentenyl)pyrano]-5'',6'':3',4'-isoflavone (3), (2''S,3''R,4''S)-5,7,3'',4''-tetrahydroxy[2''-methyl-2''-(4-methyl-3-pentenyl)pyrano]-5'',6'':3',4'-isoflavone (4), a racemate of 3'-geranyl-5,7,2',4'-tetrahydroxyisoflavanone (5), a racemate of 3'-geranyl-4'-methoxy-5,7,2'-trihydroxyisoflavanone (6), 3'-geranyl-5,7,4',5'-tetrahydroxyisoflavone (8), 3'-geranyl-5,7,2',5'-tetrahydroxyisoflavone (9), 3'-geranyl-4'-methoxy-5,7,2'-trihydroxyisoflavone (10), 2(R),3(R)-3'-geranyl-2,3-trans-5,7,4'-trihydroxyflavonol (12), (2R,3R)-6-methyl-3'-geranyl-2,3-trans-5,7,4'-trihydroxyflavonol (13), and 5,7-dihydroxy-4'-O-geranylisoflavone (14), were isolated from the roots of Campylotropis hirtella (Franch.) Schindl. together with three previously described flavonoids. Their structures were elucidated by spectroscopic measurements, including two-dimensional nuclear magnetic resonance (NMR) techniques. The immunosuppressive effects of these compounds were assessed using mitogen-induced splenocyte proliferation, and the cytotoxicity of the compounds was also examined. The IC50 values of the compounds were found to be in the range of 1.49-61.23 microM for T lymphocyte suppression and 1.16-73.07 microM for B lymphocyte suppression. An analysis of their structure-activity relationships revealed that an isoflavonoid carbon skeleton with a C10 substituent at the C3' position was necessary for the activity. As many of the compounds exhibited good immunosuppressive activities, they may be promising as novel immunosuppressive agents.
Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking
Rave, Terence W.
1979-01-01
Hydrophilic fibers may be prepared by discharging a heated and pressurized dispersion of a styrene-maleic anhydride copolymer into a zone of reduced temperature and pressure, and then modifying the fibers so produced by treatment with an aqueous admixture of selected cationic and anionic water-soluble, nitrogen-containing polymers. Blends of the hydrophilic fibers with wood pulp provide paper products having improved physical properties.
Phosphorus-containing imide resins
NASA Technical Reports Server (NTRS)
Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)
1984-01-01
Flame-resistant reinforced bodies are disclosed which are composed of reinforcing fibers, filaments or fabrics in a cured body of bis- and tris-imide resins derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, or of addition polymers of such imides, including a variant in which a mono-imide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride.
21 CFR 177.1820 - Styrene-maleic anhydride copolymers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... will pass through a U.S. standard sieve No. 10 and will be held on a U.S. standard sieve No. 20 0.02... sieve No. 10 and will be held on a U.S. standard sieve No. 20. 2. Styrene-maleic anhydride copolymer... particles of a size that will pass through a U.S. standard sieve No. 10 and will be held on a U.S. standard...
21 CFR 177.1820 - Styrene-maleic anhydride copolymers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... will pass through a U.S. standard sieve No. 10 and will be held on a U.S. standard sieve No. 20 0.02... sieve No. 10 and will be held on a U.S. standard sieve No. 20. 2. Styrene-maleic anhydride copolymer... particles of a size that will pass through a U.S. standard sieve No. 10 and will be held on a U.S. standard...
NASA Technical Reports Server (NTRS)
Frimer, Aryeh A.; Gilinsky-Sharon, Pessia; Gottlieb, Hugo E.; Meador, Mary Ann B.; Johnston, J. Christopher
2005-01-01
In depth NMR studies confirm that heating a 1:2 mixture of cis, cis, cis 3,6-diphenyltetrahydrophthalic anhydride (end cap 9c) with methylenedianiline at 316 C initially yields the corresponding highly congested cis, cis, cis 3,6-diphenyltetrahydrophthalic bisimide 11, which is converted at this temperature to the observed product, the less hindered trans, cis, trans isomer 12.
Chen, Xiaofei; Xiong, Fangjun; Chen, Wenxue; He, Qiuqin; Chen, Fener
2014-03-21
An efficient asymmetric synthesis of atorvastatin calcium has been achieved from commercially available diethyl 3-hydroxyglutarate through a novel approach that involves an organocatalytic enantioselective cyclic anhydride desymmetrization to establish C(3) stereogenicity and cyanide-free assembly of C7 amino type side chain via C5+C2 strategy as the key transformations.
Li, Xiukai; Ko, Jogie; Zhang, Yugen
2018-02-09
Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (<2 vol %) reported for other catalytic systems. The catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemicals from coal - The Eastman experience. [Anhydride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkins, T.H.
1986-03-01
Tennessee Eastman Company is a major producer of chemicals, fibers and plastics. It is located in Kingsport, Tennessee, headquarters for the Eastman Chemicals Division of Eastman Kodak Company. Eastman Companies employ a total of 12,250 people in Kingsport. Other domestic Eastman Chemicals Division plants are located in Texas, South Carolina, Arkansas and New York. The authors began to witness a flow of products from one of the most highly technical and sophisticated chemical processes in operation in the world. The Eastman ''Chemicals-from-Coal'' facility is not a sunfuel plant. To be sure, we are producing syngas from coal, but the syngasmore » is used to produce acetic anhydride. Acetic anhydride is very important to Eastman. This chemical intermediate eventually finds its way into such diverse products as aspirin, cigarette filters, tool handles, and photographic film. It also is used to make other chemical intermediates such as cellulose esters, anhydrides, triacetin, and acetate ester solvents, all of which have a variety of end uses. The chemicals-from-coal project had its inception in the late 1960's when Eastman stepped up its program of energy conservation and began a search for lower cost chemical feedstocks. Our concern started before the national concern caused by a ten-fold increase in petroleum prices during the past decade.« less
Degradable poly(anhydride ester) implants: effects of localized salicylic acid release on bone.
Erdmann, L; Macedo, B; Uhrich, K E
2000-12-01
Degradable poly(anhydride ester) implants in which the polymer backbone breaks down into salicylic acid (SA) were investigated. In this preliminary work, local release of SA from the poly(anhydride esters), thus classified as 'active polymers', on healthy bone and tissue was evaluated in vivo using a mouse model. Degradable polyanhydrides that break down into inactive by-products were used as control membranes because of their chemical similarity to the active polymers. Small polymer squares were inserted over the exposed palatal bone adjacent to the maxillary first molars. Active polymer membranes were placed on one side of the mouth, control polymers placed on the contra lateral side. Intraoral clinical examination showed that active polymer sites were less swollen and inflamed than control polymer sites. Histopathological examination at day 1 showed essentially no difference between control and active polymers. After 4 days, active polymer sites showed epithelial proliferation to a greater extent than the polyanhydride controls. After 20 days, active polymer sites showed greater thickness of new palatal bone and no resorptive areas, while control polymer sites showed less bone thickness as well as resorption including lacunae involving cementum and dentine. From these preliminary studies, we conclude that active polymers, namely poly(anhydride esters), stimulated new bone formation.
Lussey-Lepoutre, Charlotte; Bellucci, Alexandre; Morin, Aurélie; Buffet, Alexandre; Amar, Laurence; Janin, Maxime; Ottolenghi, Chris; Zinzindohoué, Franck; Autret, Gwennhael; Burnichon, Nelly; Robidel, Estelle; Banting, Benjamin; Fontaine, Sébastien; Cuenod, Charles-André; Benit, Paule; Rustin, Pierre; Halimi, Philippe; Fournier, Laure; Gimenez-Roqueplo, Anne-Paule; Favier, Judith; Tavitian, Bertrand
2016-03-01
Germline mutations in genes encoding mitochondrial succinate dehydrogenase (SDH) are found in patients with paragangliomas, pheochromocytomas, gastrointestinal stromal tumors, and renal cancers. SDH inactivation leads to a massive accumulation of succinate, acting as an oncometabolite and which levels, assessed on surgically resected tissue are a highly specific biomarker of SDHx-mutated tumors. The aim of this study was to address the feasibility of detecting succinate in vivo by magnetic resonance spectroscopy. A pulsed proton magnetic resonance spectroscopy ((1)H-MRS) sequence was developed, optimized, and applied to image nude mice grafted with Sdhb(-/-) or wild-type chromaffin cells. The method was then applied to patients with paraganglioma carrying (n = 5) or not (n = 4) an SDHx gene mutation. Following surgery, succinate was measured using gas chromatography/mass spectrometry, and SDH protein expression was assessed by immunohistochemistry in resected tumors. A succinate peak was observed at 2.44 ppm by (1)H-MRS in all Sdhb(-/-)-derived tumors in mice and in all paragangliomas of patients carrying an SDHx gene mutation, but neither in wild-type mouse tumors nor in patients exempt of SDHx mutation. In one patient, (1)H-MRS results led to the identification of an unsuspected SDHA gene mutation. In another case, it helped define the pathogenicity of a variant of unknown significance in the SDHB gene. Detection of succinate by (1)H-MRS is a highly specific and sensitive hallmark of SDHx mutations. This noninvasive approach is a simple and robust method allowing in vivo detection of the major biomarker of SDHx-mutated tumors. ©2015 American Association for Cancer Research.
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
Gaude, Edoardo; Aksentijević, Dunja; Sundier, Stephanie Y.; Robb, Ellen L.; Logan, Angela; Nadtochiy, Sergiy M.; Ord, Emily N. J.; Smith, Anthony C.; Eyassu, Filmon; Shirley, Rachel; Hu, Chou-Hui; Dare, Anna J.; James, Andrew M.; Rogatti, Sebastian; Hartley, Richard C.; Eaton, Simon; Costa, Ana S.H.; Brookes, Paul S.; Davidson, Sean M.; Duchen, Michael R.; Saeb-Parsy, Kourosh; Shattock, Michael J.; Robinson, Alan J.; Work, Lorraine M.; Frezza, Christian; Krieg, Thomas; Murphy, Michael P.
2014-01-01
Ischaemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death, and aberrant immune responses through generation of mitochondrial reactive oxygen species (ROS)1-5. Although mitochondrial ROS production in IR is established, it has generally been considered a non-specific response to reperfusion1,3. Here, we developed a comparative in vivo metabolomic analysis and unexpectedly identified widely conserved metabolic pathways responsible for mitochondrial ROS production during IR. We showed that selective accumulation of the citric acid cycle (CAC) intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase (SDH), which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. Upon reperfusion, the accumulated succinate is rapidly re-oxidised by SDH, driving extensive ROS generation by reverse electron transport (RET) at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo IR injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of IR injury. Furthermore, these findings reveal a novel pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation upon subsequent reperfusion is a potential therapeutic target to decrease IR injury in a range of pathologies. PMID:25383517
Interconversion of biologically important carboxylic acids by radiation
NASA Technical Reports Server (NTRS)
Negron-Mendoza, A.; Ponnamperuma, C.
1978-01-01
The interconversion of a group of biologically important polycarboxylic acids (acetic, fumaric, malic, malonic, succinic, citric, isocitric, tricarballylic) under gamma-ray or ultraviolet radiation was investigated. The formation of high molecular weight compounds was observed in all cases. Succinic acid was formed in almost all radiolysis experiments. Citric, malonic, and succinic acids appeared to be relatively insensitive to radiation. Interconversion of the polycarboxylic acids studied may have occurred under the effect of radiation in the prebiotic earth.
Chen, Kequan; Zhang, Han; Miao, Yelian; Wei, Ping; Chen, Jieyu
2011-04-07
Rapeseed meal was evaluated for succinic acid production by simultaneous saccharification and fermentation using Actinobacillus succinogenes ATCC 55618. Diluted sulfuric acid pretreatment and subsequent hydrolysis with pectinase was used to release sugars from rapeseed meal. The effects of culture pH, pectinase loading and yeast extract concentration on succinic acid production were investigated. When simultaneous saccharification and fermentation of diluted acid pretreated rapeseed meal with a dry matter content of 12.5% (w/v) was performed at pH 6.4 and a pectinase loading of 2% (w/w, on dry matter) without supplementation of yeast extract, a succinic acid concentration of 15.5 g/L was obtained at a yield of 12.4 g/100g dry matter. Fed-batch simultaneous saccharification and fermentation was carried out with supplementation of concentrated pretreated rapeseed meal and pectinase at 18 and 28 h to yield a final dry matter content of 20.5% and pectinase loading of 2%, with the succinic acid concentration enhanced to 23.4 g/L at a yield of 11.5 g/100g dry matter and a productivity of 0.33 g/(Lh). This study suggests that rapeseed meal may be an alternative substrate for the efficient production of succinic acid by A. succinogenes without requiring nitrogen source supplementation. Copyright © 2011 Elsevier Inc. All rights reserved.
Sahni, Prateek V.; Zhang, Jimmy; Sosunov, Sergey; Galkin, Alexander; Niatsetskaya, Zoya; Starkov, Anatoly; Brookes, Paul S.; Ten, Vadim S.
2017-01-01
Background Reverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate. Methods Neonatal mice were subjected to Rice-Vannucci model of hypoxicischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H2O2 generation rate in the ischemic brain. Results While brain mitochondria from control mice exhibited a rotenonesensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H2O2 emission rate in HI-mice compared to controls. At sixty minutes of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls. Conclusion These data are the first ex-vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion. PMID:29211056
Sahni, Prateek V; Zhang, Jimmy; Sosunov, Sergey; Galkin, Alexander; Niatsetskaya, Zoya; Starkov, Anatoly; Brookes, Paul S; Ten, Vadim S
2018-02-01
BackgroundReverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate.MethodsNeonatal mice were subjected to Rice-Vannucci model of hypoxic-ischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H 2 O 2 generation rate in the ischemic brain.ResultsWhile brain mitochondria from control mice exhibited a rotenone-sensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H 2 O 2 emission rate in HI-mice compared to controls. At 60 min of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls.ConclusionThese data are the first ex vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion.
Ivnitsky, Jury Ju; Rejniuk, Vladimir L; Schäfer, Timur V; Malakhovsky, Vladimir N
2006-01-20
Under modeling of thiopental coma influence of sodium succinate and (or) external warming for the support of normal body temperature (isothermal regimen) on the gas exchange, blood gas content, acid-base status and survival rate was studied in rats. In the absence of therapy hypothermia was developed (-9.4 degrees C), O(2) consumption decreased by a factor 5, oxygenation of arterial blood (pO(2)) did not change while that of venous blood increased, where with arteriovenous oxygen tension gradient decreased by half. Blood tension of carbon dioxide (pCO(2)) increased twice, respiratory and metabolic acidosis was developed. Survival rate under absence of a therapy was 42%, with isolated use of isothermal regimen or succinate therapy alike-50%; with their use in combination drastically increased up to 92%. Succinate increased arteriovenous gradient of pO(2), decreased deficit of buffer bases, increased bicarbonate concentration. At isothermal regimen accumulation of CO(2) in the blood was diminished, its excretion was increased, pH of blood approached normal values. Combined use of both therapy agents increased O(2) consumption and potentiated their positive influence on acid-base status. The implication is that hypothermia restrains effect of succinate in barbiturate coma; prevention of hypothermia in combination with succinate administration is highly effective method of experimental therapy of barbiturate intoxication.
NASA Technical Reports Server (NTRS)
Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.
1994-01-01
The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.
Vanlerberghe, G C; Feil, R; Turpin, D H
1990-11-01
The onset of anaerobiosis in darkened, N-limited cells of the green alga Selenastrum minutum (Naeg.) Collins elicited the following metabolic responses. There was a rapid decrease in energy charge from 0.85 to a stable lower value of 0.6 accompanied by rapid increases in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kinase and 6-phosphofructokinase, respectively. There was also a large increase in fructose-2,6-bisphosphate, which, since this alga lacks pyrophosphate dependent 6-phosphofructokinase, can be inferred to inhibit gluconeogenic fructose-1,6-bisphosphatase activity. These changes resulted in an approximately twofold increase in the rate of starch breakdown indicating a Pasteur effect. The Pasteur effect was accompanied by accumulation of d-lactate, ethanol and succinate as fermentation end-products, but not malate. Accumulation of succinate was facilitated by reductive carbon metabolism by a partial TCA cycle (GC Vanlerberghe, AK Horsey, HG Weger, DH Turpin [1989] Plant Physiol 91: 1551-1557). An initial stoichiometric decline in aspartate and increases in succinate and alanine suggests that aspartate catabolism provides an initial source of carbon for reduction to succinate under anoxic conditions. These observations allow us to develop a model for the regulation of anaerobic carbon metabolism and a model for short-term and long-term strategies for succinate accumulation in a green alga.
Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete
2013-01-01
Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.
Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna; Angelidaki, Irini
2018-05-29
The aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2. Significantly higher amounts of succinic acid were produced after fermentation of pretreatment liquor (48 kg/Mg of rapeseed straw, succinic acid yield: 60%) compared to fermentation of xylose-rich residue after ethanol production (35-37 kg/Mg of rapeseed straw, succinic yield: 68-71%). Results obtained in this study clearly proved the biorefinery potential of rapeseed straw. Copyright © 2018 Elsevier Ltd. All rights reserved.
2013-01-01
Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221
Succinic acid functionalized silver nanoparticles (Suc-Ag NPs) for colorimetric sensing of melamine
NASA Astrophysics Data System (ADS)
Rajar, Kausar; Sirajuddin; Balouch, Aamna; Bhanger, M. I.; Shah, Muhammad Tariq; Shaikh, Tayyaba; Siddiqui, Samia
2018-03-01
In this study, a quantitative colorimetric sensing strategy is developed for the rapid, sensitive and selective determination of melamine. The sensing system relies on the application of succinic acid as a selective recognition probe functionalized over Ag NPs. The synthesized Ag NPs were modified with cysteamine to induce positively charged atmosphere which allowed easy and favorable functionalization of succinic acid. The di-carboxyl nature of succinic acid enabled its binding to both cysteamine and melamine. The strong and favorable linkage between succinic acids carbonyl and amine moieties of melamine triggered aggregation of silver NPs producing a significant shift in the measured absorption excitation. This change in the excitation along with the colorimetric response was found linearly proportional to the melamine concentration in the range of 0.1-1.2 μM. The developed sensor system is simple and unlike electrostatic attraction based sensor system utilize selective linkage for the recognition of melamine. In addition to this, the developed optical probe can efficiently be used for the determination of melamine in milk samples.
Shi, Xinchi; Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Zhao, Nan; Ying, Hanjie
2014-12-01
An immobilized fermentation system, using cassava bagasse hydrolysate (CBH) and mixed alkalis, was developed to achieve economical succinic acid production by Corynebacterium glutamicum. The C. glutamicum strains were immobilized in porous polyurethane filler (PPF). CBH was used efficiently as a carbon source instead of more expensive glucose. Moreover, as a novel method for regulating pH, the easily decomposing NaHCO3 was replaced by mixed alkalis (NaOH and Mg(OH)2) for succinic acid production by C. glutamicum. Using CBH and mixed alkalis in the immobilized batch fermentation system, succinic acid productivity of 0.42gL(-1)h(-1) was obtained from 35gL(-1) glucose of CBH, which is similar to that obtained with conventional free-cell fermentation with glucose and NaHCO3. In repeated batch fermentation, an average of 22.5gL(-1) succinic acid could be obtained from each batch, which demonstrated the enhanced stability of the immobilized C. glutamicum cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hybertson, Brooks M.
2010-01-01
The solubility of the vitamin E-related compound α-tocopheryl succinate in supercritical carbon dioxide was measured at pressures ranging from (15.0 to 30.0) MPa and temperatures of (40 and 50) °C using a simple microsampling type apparatus with a 100.5 μL sample loop to remove aliquots and collect them in ethanol for off line analysis. α-Tocopheryl succinate concentrations in the collected samples were measured using HPLC-MS/MS analysis. The solubility of α-tocopheryl succinate in supercritical carbon dioxide ranged from mole fractions of 0.28 × 10−5 at 15.0 MPa and 50 °C to 2.56 × 10−5 at 30.0 MPa and 50 °C. PMID:20953319
Low-Cost and High-Impact Environmental Solutions for Military Composite Structures
2005-12-15
moduli of UPE polymers are considerably increased when neopentyl glycol is used as the polyol instead of ethylene glycol in the formulations [56...general purpose unsaturated polyester based on phthalic anhydride, ethylene glycol , and maleic anhydride. The VIAPAL 570G was a colorless solid in the...modulus. In this case, the neopentyl center of the Bisphenol A backbone of the VE 828 polymer may be responsible for increased modulus values. The
Rota, Paola; Allevi, Pietro; Mattina, Roberto; Anastasia, Mario
2010-08-21
An efficient short protocol for the preparation of N-perfluoroacylated glycals of neuraminic acid, by simple short treatment of differently protected N-acetylneuraminic acid with perfluorinated anhydrides in acetonitrile at 135 degrees C, is reported, together with a rationalitazion of the reaction that allows the alternative formation of N-perfluoroacylated 1,7-lactones to be previewed under the same reaction conditions.
Biomaterial properties evaluation of poly(vinyl acetate- alt-maleic anhydride)/chitosan nanocapsules
NASA Astrophysics Data System (ADS)
Raţă, Delia Mihaela; Popa, Marcel; Chailan, Jean-François; Zamfir, Carmen Lăcrămioara; Peptu, Cătălina Anişoara
2014-08-01
Nanocapsules with diameter around 100 nm based on a natural polymer (chitosan) and a synthetic polymer poly(vinyl acetate- alt-maleic anhydride) [poly(MAVA)] by interfacial condensation method were prepared. The present study proposes a new type of biocompatible nanocapsules based on poly(vinyl acetate- alt-maleic anhydride-chitosan) (MCS) able to become a reliable support for inclusion and release of drugs. The spherical shape of the nanocapsules was evidenced by scanning electron microscopy. Nanocapsules presented a good Norfloxacin loading and release capacity. Haemocompatibility tests have demonstrated that the nanocapsules present a low toxicity and a good compatibility with sanguine medium. The biocompatibility properties of the nanocapsules after their intraperitoneal administration in rats were evidenced by histopathological examination of different organs (brain, liver, kidney, and lung). The results are encouraging and the nanocapsules can be used as controlled drug delivery systems.
Santos, C A; Freedman, B D; Leach, K J; Press, D L; Scarpulla, M; Mathiowitz, E
1999-06-28
The degradation of three poly(fumaric-co-sebacic anhydride) [P(FA:SA)] copolymers is examined in a composition of microspheres made by the hot melt encapsulation process. The emergence of low molecular weight oligomers occurs during degradation of the copolymer microspheres, as evidenced by a variety of characterization methods. Characterization was conducted to determine the extent of degradation of the polyanhydride microspheres using Fourier-transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and X-ray diffraction. It is demonstrated that degradation of P(FA:SA) is greatly accelerated at basic pH, yet there is little difference between degradation in neutral and acidic buffers. A good correlation exists between the results of each characterization method, which allows a better understanding of the degradation process and the resulting formation of low molecular weight oligomers in poly(fumaric-co-sebacic anhydride).
Polyimides Derived from Novel Asymmetric Dianhydrides
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua (Inventor)
2012-01-01
This invention relates to the compositions and processes for preparing thermoset and thermoplastic polyimides derived from novel asymmetrical dianhydrides: specifically 2,3,3',4' benzophenone dianhydride (a-BTDA), and 3,4'-(hexafluoroisopropylidene)diphthalic anhydride (a-6FDA). The a-BTDA anhydride is prepared by Suzuki coupling with catalysts from a mixed anhydride of 3,4-dimethylbenzoic acid or 2,3-dimethylbenzoic acid with 2,3-dimethylphenylboronic acid or 3,4-dimethylphenylboronic acid respectively, to form 2,3,3',4'-tetramethylbenzophenone which is oxidized to form 2,3,3',4'-benzophenonetetracarboxylic acid followed by cyclodehydration to obtain a-BTDA. The a-6FDA is prepared by nucleophilic triflouoromethylation of 2,3,3',4'-tetramethylbenzophenone with trifluoromethyltrimethylsilane to form 3,4'-(trifluoromethylmethanol)-bis(o-xylene) which is converted to 3,4'-(hexafluoroisopropylidene-bis(o-xylene). The 3,4'-(hexafluoroisopropylidene)-bis(o-xylene) is oxidized to the corresponding tetraacid followed by cyclodehydration to yield a-6FDA.
Hydration of AN Acid Anhydride: the Water Complex of Acetic Sulfuric Anhydride
NASA Astrophysics Data System (ADS)
Smith, CJ; Huff, Anna; Mackenzie, Becca; Leopold, Ken
2017-06-01
The water complex of acetic sulfuric anhydride (ASA, CH_{3}COOSO_{2}OH) has been observed by pulsed nozzle Fourier transform microwave spectroscopy. ASA is formed in situ in the supersonic jet via the reaction of SO_{3} and acetic acid and subsequently forms a complex with water during the expansion. Spectra of the parent and fully deuterated form, as well as those of the species derived from CH_{3}^{13}COOH, have been observed. The fitted internal rotation barrier of the methyl group is 219.599(21), \\wn indicating the complexation with water lowers the internal rotation barrier of the methyl group by 9% relative to that of free ASA. The observed species is one of several isomers identified theoretically in which the water inserts into the intramolecular hydrogen bond of the ASA. Aspects of the intermolecular potential energy surface are discussed.
Mutant E. coli strain with increased succinic acid production
Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy
1998-01-01
A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.
Mutant E. coli strain with increased succinic acid production
Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy
2001-09-25
A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.
Mutant E. coli strain with increased succinic acid production
Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy
2002-01-01
A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Jiayi; Vasiliadou, Efterpi S.; Goulas, Konstantinos A.
A novel one-step process for the selective production of succinic acid from tartaric acid is developed. High succinic yield is achieved in an efficient catalytic system comprised of MoO x/BC, HBr and acetic acid under hydrogen atmosphere.
Veselova, O M; Ogneva, I V; Larina, I M
2011-07-01
Cell respiration of the m. soleus fibers was studied in Wistar rats treated with succinic acid and exposed to microgravitation for 35 days. The results indicated that respiration rates during utilization of endogenous and exogenous substrates and the maximum respiration rate decreased in animals subjected to microgravitation without succinate treatment. The respiration rate during utilization of exogenous substrate did not increase in comparison with that on endogenous substrates. Succinic acid prevented the decrease in respiration rate on endogenous substrates and the maximum respiration rate. On the other hand, the respiration rate on exogenous substrates was reduced in vivarium control rats receiving succinate in comparison with intact control group. That could indicate changed efficiency of complex I of the respiratory chain due to reciprocal regulation of the tricarbonic acid cycle.
Novel Synthesis of Phytosterol Ester from Soybean Sterol and Acetic Anhydride.
Yang, Fuming; Oyeyinka, Samson A; Ma, Ying
2016-07-01
Phytosterols are important bioactive compounds which have several health benefits including reduction of serum cholesterol and preventing cardiovascular diseases. The most widely used method in the synthesis of its ester analogous form is the use of catalysts and solvents. These methods have been found to present some safety and health concern. In this paper, an alternative method of synthesizing phytosterol ester from soybean sterol and acetic anhydride was investigated. Process parameters such as mole ratio, temperature and time were optimized. The structure and physicochemical properties of phytosterol acetic ester were analyzed. By the use of gas chromatography, the mole ratio of soybean sterol and acetic anhydride needed for optimum esterification rate of 99.4% was 1:1 at 135 °C for 1.5 h. FTIR spectra confirmed the formation of phytosterol ester with strong absorption peaks at 1732 and 1250 cm(-1) , which corresponds to the stretching vibration of C=O and C-O-C, respectively. These peaks could be attributed to the formation of ester links which resulted from the reaction between the hydroxyl group of soybean sterol and the carbonyl group of acetic anhydride. This paper provides a better alternative to the synthesis of phytosterol ester without catalyst and solvent residues, which may have potential application in the food, health-care food, and pharmaceutical industries. © 2016 Institute of Food Technologists®
Kumar, Krishan; Dhawan, Neha; Sharma, Harshita; Patwal, Pramod S; Vaidya, Shubha; Vaidya, Bhuvaneshwar
2015-01-01
Metoprolol succinate is a very potent drug for the treatment of hypertension but suffers from poor bioavailability due to its erratic absorption in lower GI tract. Therefore, in the present study, it was hypothesized that by formulating mucoadhesive particles, the residence time in the GIT and release of drug may be prolonged that will enhance the bioavailability of metoprolol succinate. Metoprolol succinate loaded chitosan microparticles were prepared by ionic gelation method. The optimized microparticles were coated with sodium alginate to form a layer over chitosan microparticles to increase the mucoadhesive strength and to release the drug in controlled manner. Coated and uncoated microparticles were evaluated for particle size, zeta potential, morphology, entrapment efficiency, drug loading and in vitro drug release. The coated microparticles showed comparatively less drug release in the 0.1 N HCl while sustained release in PBS (pH 6.8) as compared to uncoated microparticles. The in vivo study on albino rats demonstrated an increase in bioavailability of the coated microparticles as compared to marketed formulation. From the study it can be concluded that alginate coated chitosan microparticles could be a useful carrier for the oral delivery of metoprolol succinate.
NASA Technical Reports Server (NTRS)
Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.
1997-01-01
The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.
Genetics Home Reference: succinic semialdehyde dehydrogenase deficiency
... Salomons GS, Maropoulos GD, Jakobs C, Grompe M, Gibson KM. Mutational spectrum of the succinate semialdehyde dehydrogenase ( ... Dec;22(6):442-50. Citation on PubMed Gibson KM, Gupta M, Pearl PL, Tuchman M, Vezina ...
Mutant E. coli strain with increased succinic acid production
Donnelly, M.; Millard, C.S.; Stols, L.
1998-06-23
A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.
Nature of the Carrier State of Bacteriophage SP-10 in Bacillus subtilis1
Kawakami, Masaya; Landman, Otto E.
1968-01-01
Although the association of phage SP-10 with Bacillus subtilis W-23-Sr persists in heat- and antiserum-resistant form through the spore stage, it is unstable in vegetative cells and frequently terminates in loss of the carried phage or in lysis. On low-tonicity media, the plating efficiency of carrier cells is low. However, high concentrations of succinate or sucrose or a slowed growth rate preserve viability: on 0.48 m succinate-agar, the viable count per optical density unit is the same as that of a noncarrier control culture. Carrier clones retain phage on 0.48 m succinate-agar. At higher succinate levels, many colonies emerge free of phage; at 1 m succinate, all are cured, probably because high succinate inhibits reinfection. Growth of carrier cells in liquid medium with antiphage serum results in rapid curing; events in such cultures with and without succinate were studied quantitatively by tracing the emergence of sensitive cells, the multiplication and induction of carrier cells, and the sensitivity of carrier cells to superinfection with virulent phage. During log phase, 40 to 70% of the carrier cells became sensitive to virulent phage, although the same cells were insensitive during lag and stationary phase. Apparently, fluctuations in repressor levels are responsible. Spontaneous induction of carrier cells followed a qualitatively similar pattern, perhaps in response to changes in level of the same repressor. Production of sensitive segregants by carrier followed a different course, presumably because the repressor does not affect segregation. Many sensitive cells were found two to three divisions after inoculation in antiserum medium. This suggests that each inoculum cell contained one or only a few phage replicons. The data are compatible with the idea that the carrier state in media without antisera is maintained entirely by reinfection and without replication of phage in the latent state. Alternative models which involve replication of latent phage are not ruled out, however. PMID:4967775
Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium tuberculosis
Watanabe, Shinya; Zimmermann, Michael; Goodwin, Michael B.; Sauer, Uwe; Barry, Clifton E.; Boshoff, Helena I.
2011-01-01
Oxygen depletion of Mycobacterium tuberculosis engages the DosR regulon that coordinates an overall down-regulation of metabolism while up-regulating specific genes involved in respiration and central metabolism. We have developed a chemostat model of M. tuberculosis where growth rate was a function of dissolved oxygen concentration to analyze metabolic adaptation to hypoxia. A drop in dissolved oxygen concentration from 50 mmHg to 0.42 mmHg led to a 2.3 fold decrease in intracellular ATP levels with an almost 70-fold increase in the ratio of NADH/NAD+. This suggests that re-oxidation of this co-factor becomes limiting in the absence of a terminal electron acceptor. Upon oxygen limitation genes involved in the reverse TCA cycle were upregulated and this upregulation was associated with a significant accumulation of succinate in the extracellular milieu. We confirmed that this succinate was produced by a reversal of the TCA cycle towards the non-oxidative direction with net CO2 incorporation by analysis of the isotopomers of secreted succinate after feeding stable isotope (13C) labeled precursors. This showed that the resulting succinate retained both carbons lost during oxidative operation of the TCA cycle. Metabolomic analyses of all glycolytic and TCA cycle intermediates from 13C-glucose fed cells under aerobic and anaerobic conditions showed a clear reversal of isotope labeling patterns accompanying the switch from normoxic to anoxic conditions. M. tuberculosis encodes three potential succinate-producing enzymes including a canonical fumarate reductase which was highly upregulated under hypoxia. Knockout of frd, however, failed to reduce succinate accumulation and gene expression studies revealed a compensatory upregulation of two homologous enzymes. These major realignments of central metabolism are consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. This fermentative process may offer unique targets for the treatment of latent tuberculosis. PMID:21998585
Xi, Yong-lan; Chen, Ke-quan; Dai, Wen-yu; Ma, Jiang-feng; Zhang, Min; Jiang, Min; Wei, Ping; Ouyang, Ping-Kai
2013-05-01
In this study, corn steep liquor powder (CSL) was used as nitrogen source to replace the relatively costly yeast extract typically used for the production of succinic acid with Actinobacillus succinogenes NJ113. Moreover, when heme was added to the fermentation medium and the culture was agitated at a low speed, a maximum succinic acid concentration of 37.9 g/l was obtained from a glucose concentration of 50 g/l, and a productivity of 0.75 g/l/h was achieved. These yields are almost as high as for fermentation with glucose and yeast extract. These results suggest that heme-supplemented CSL may be a suitable alternative nitrogen source for a cost-effective method of producing succinic acid with A. succinogenes NJ113 while consuming less energy than previous methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Succinic acid production from sucrose by Actinobacillus succinogenes NJ113.
Jiang, Min; Dai, Wenyu; Xi, Yonglan; Wu, Mingke; Kong, Xiangping; Ma, Jiangfeng; Zhang, Min; Chen, Kequan; Wei, Ping
2014-02-01
In this study, sucrose, a reproducible disaccharide extracted from plants, was used as the carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. During serum bottle fermentation, the succinic acid concentration reached 57.1g/L with a yield of 71.5%. Further analysis of the sucrose utilization pathways revealed that sucrose was transported and utilized via a sucrose phosphotransferase system, sucrose-6-phosphate hydrolase, and a fructose PTS. Compared to glucose utilization in single pathway, more pathways of A. succinogenes NJ113 are dependent on sucrose utilization. By changing the control strategy in a fed-batch culture to alleviate sucrose inhibition, 60.5g/L of succinic acid was accumulated with a yield of 82.9%, and the productivity increased by 35.2%, reaching 2.16g/L/h. Thus utilization of sucrose has considerable potential economics and environmental meaning. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sangkota, V. D. A.; Lusiana, R. A.; Astuti, Y.
2018-04-01
Crosslinking and grafting reactions are required to modify the functional groups on chitosan to increase the number of its active groups. In this study, crosslinking reaction of succinic acid and grafting reaction of heparin on chitosan were conducted to produce a membrane as a candidate of a hemodialysis membrane. The mole ratio between chitosan and succinate acids was varied to obtain the best composition of modified materials. By blending all the material composition with PVA-PEG, the blend was transformed into a membrane. The resulted membrane was then characterized by various test methods such as tests of thickness, weight, water uptake, pH resistance, tensile strength and membrane hydrophilicity. The results showed that the best composition of the membrane reached in the addition of 0.011 gram of succinic acid proved by its highest mechanical strength compared to the other membranes.
Nitrogen Metabolism in Plant Cell Suspension Cultures
Behrend, Josef; Mateles, Richard I.
1976-01-01
Tobacco cells (Nicotiana tabacum) are capable of growth on ammonia as a sole nitrogen source only when succinate, malate, fumarate, citrate, α-ketoglutarate, glutamate, or pyruvate is added to the growth medium. A ratio between the molar concentrations of ammonia to succinate (as a complementary organic acid) in the growth medium of 1.5 was optimal. Succinate had no effect on the rate of uptake of ammonia from the medium into the cells although it did affect the intracellular concentration of ammonia. However, the changes were not sufficient to explain inhibition of growth as being due to ammonia toxicity. The radioactivity from 14C-succinate was incorporated into malate, glutamate, and aspartate within 2 minutes. It appears that the role of organic acids is neither connected to ammonium transport nor to relief of ammonia toxicity, but may be related to the need for additional carbon skeletons for synthesis of amino acids. PMID:16659706
Characterization of the Membrane-Bound Succinic Dehydrogenase of Micrococcus lysodeikticus
Pollock, Jerry J.; Linder, Regina; Salton, Milton R. J.
1971-01-01
The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 × g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca2+ and Mg2+ exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents. Images PMID:4327510
Characterization of the membrane-bound succinic dehydrogenase of Micrococcus lysodeikticus.
Pollock, J J; Linder, R; Salton, M R
1971-07-01
The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 x g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca(2+) and Mg(2+) exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents.
Maleimido substituted aromatic cyclotriphosphazenes
NASA Technical Reports Server (NTRS)
Kumar, D.; Fohlen, G. M.; Parker, J. A. (Inventor)
1985-01-01
4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy-trisphenoxy-cyclo-triphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.
2013-12-01
kg cocaine, 337.412 synthetic drugs and amphetamines, 26.190 Lt acetic anhydride and two drug laboratories.80 This statistic shows how deeply... synthetics like acetic anhydride at these laboratories.81 Heroin produced in Afghanistan moves to the international market through various routes: • To...smuggling of marijuana and cigarettes are other issues. Because of all these reasons, after 9/11, protecting the northern border—like the one in the
NASA Astrophysics Data System (ADS)
Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.
2017-03-01
The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.
Regenerable solid imine sorbents
Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric
2013-09-10
Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.
NASA Technical Reports Server (NTRS)
Kamar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)
1988-01-01
Four-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy trisphenoxy cyclotrisphosphazenes), selection of molar porportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.
A novel bifunctional metabolizable linker for the conjugation of antibodies with radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arano, Y.; Matsushima, H.; Tagawa, M.
1991-03-01
A novel heterogeneous bifunctional reagent containing an ester bond, N-((4-(2-maleimidoethoxy)-succinyl)oxy)succinimide (MESS), was designed and synthesized for the conjugation of antibodies with the gallium-67 (67Ga) chelate of succinyldeferoxamine (SDF) via the ester bond. MESS was synthesized by the acylation of N-(2-hydroxyethyl)maleimide with succinic anhydride, followed by the activation of the resulting carboxylic acid to a succinimido ester. MESS possesses a maleimide group for protein conjugation and an active ester group for deferoxamine (DFO) coupling, and the two functional groups are linked via ester bonding. Conjugation of 67Ga-SDF with nonspecific human IgG was performed by reacting freshly thiolated IgG with the reactionmore » product of MESS and DFO, followed by 67Ga labeling of the resulting conjugate using GaCl3 (67Ga-DFO-MESS-IgG). For comparison, 67Ga-DFO conjugated nonspecific human IgG with a nonmetabolizable linkage was synthesized under the same conjugation conditions as those for 67Ga-DFO-MESS-IgG, using a nonmetabolizable heterogenous bifunctional reagent (N-((6-maleimidocaproyl)oxy)succinimide, EMCS) instead of MESS (67Ga-DFO-EMCS-IgG). HPLC size-exclusion chromatography of both preparations showed a single radioactivity and UV peak corresponding to the intact IgG. Generation of 67Ga-SDF from the 67Ga-DFO-MESS-IgG was demonstrated by reverse-phase HPLC analysis and cellulose acetate electrophoresis after the incubation of 67Ga-DFO-MESS-IgG in a buffered solution containing carboxyesterase. After injection of 67Ga-DFO-MESS-IgG into mice, faster radioactivity clearance from the blood and less radioactivity accumulation in the liver, kidney, and spleen was noted than when 67Ga-DFO-EMCS-IgG was injected.« less
Siyamak, Samira; Ibrahim, Nor Azowa; Abdolmohammadi, Sanaz; Yunus, Wan Md Zin Wan; Rahman, Mohamad Zaki AB
2012-01-01
A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites’ thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens. PMID:22408394
Levine, L; Gjika, H B; Van Vunakis, H
1989-11-30
For antibody production, the O-phosphorylated derivative of tyrosine, threonine, or serine was covalently linked to succinylated bovine albumin via the carbodiimide reaction. Each conjugate was then complexed with methylated bovine albumin for immunization of rabbits. To determine binding, the corresponding O-phosphorylated [3H]amino acids were chemically synthesized. In addition, these 3H-phosphorylated derivatives were acylated (with succinic or acetic anhydride) to obtain ligands whose structures resemble those present in the immunogen. The acylated ligands bound to their respective antibodies more effectively: in some cases binding was about three orders of magnitude greater than their non-acylated counterparts. Radioimmunoassays were therefore developed using the N-succinyl-[3H]phosphoamino acids. When the unlabeled N-succinyl-phosphorylated amino acids were used as inhibitors in the homologous immune systems, 50% displacement of the labeled ligand was found with 0.06, 0.27 or 0.8 pmol of the tyrosine, threonine, or serine derivative, respectively. The antibodies were highly specific for the homologous hapten; the requirement for the phosphate group on the acylated amino acid was essentially absolute. Antibody content (expressed as mg/ml serum) and apparent binding constants for the N-succinyl derivatives in individual bleedings of immune sera were 1.9 and 1 X 10(10) M-1 for phosphotyrosine, 0.825 and 6 X 10(8) M-1 for phosphothreonine, and 0.150 and 2 X 10(8) M-1 for phosphoserine. The radioimmunoassays were used to quantitate the phosphoamino acids in cytoplasmic fractions of rat tissue extracts. The production of antibodies to phosphorylated O-tyrosine has been reported previously, but to our knowledge, this represents the first report of antibodies specific for O-phosphorylated serine and threonine residues.
Sustainable steric stabilization of colloidal titania nanoparticles
NASA Astrophysics Data System (ADS)
Elbasuney, Sherif
2017-07-01
A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.
Redox-silent tocotrienol esters as breast cancer proliferation and migration inhibitors.
Behery, Fathy A; Elnagar, Ahmed Y; Akl, Mohamed R; Wali, Vikram B; Abuasal, Bilal; Kaddoumi, Amal; Sylvester, Paul W; El Sayed, Khalid A
2010-11-15
Tocotrienols are vitamin E members with potent antiproliferative activity against preneoplastic and neoplastic mammary epithelial cells with little or no effect on normal cell growth or functions. However, physicochemical and pharmacokinetic properties greatly limit their use as therapeutic agents. Tocotrienols' chemical instability, poor water solubility, NPC1L1-mediated transport, and rapid metabolism are examples of such obstacles which hinder the therapeutic use of these valuable natural products. Vitamin E esters like α-tocopheryl succinate were prepared to significantly improve chemical and metabolic stability, water solubility, and potency. Thus, 12 semisynthetic tocotrienol ester analogues 4-15 were prepared by direct esterification of natural tocotrienol isomers with various acid anhydrides or chlorides. Esters 4-15 were evaluated for their ability to inhibit the proliferation and migration of the mammary tumor cells +SA and MDA-MB-231, respectively. Esters 5, 9, and 11 effectively inhibited the proliferation of the highly metastatic +SA rodent mammary epithelial cells with IC(50) values of 0.62, 0.51, and 0.86μM, respectively, at doses that had no effect on immortalized normal mouse CL-S1 mammary epithelial cells. Esters 4, 6, 8-10, and 13 inhibited 50% of the migration of the human metastatic MDA-MB-231 breast cancer cells at a single 5μM dose in wound-healing assay. The most active ester 9 was 1000-fold more water-soluble and chemically stable versus its parent α-tocotrienol (1). These findings strongly suggest that redox-silent tocotrienol esters may provide superior therapeutic forms of tocotrienols for the control of metastatic breast cancer. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kudryashova, E V; Gladilin, A K; Vakurov, A V; Heitz, F; Levashov, A V; Mozhaev, V V
1997-07-20
Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.
Stability of Hydrocortisone Preservative-Free Oral Solutions.
Chappe, Julie; Osman, Névine; Cisternino, Salvatore; Fontan, Jean-Eudes; Schlatter, Joël
2015-01-01
The physical and chemical stability of a preservative-free oral solution of hydrocortisone succinate was studied at different pH values and storage temperatures. Oral solutions of hydrocortisone 1 mg/mL were prepared by dissolving hydrocortisone succinate powder in citrate buffers at pH 4.0, 5.5, and 6.5, or with sterile water (pH 7.4) stored in amber glass vials. Three identical samples of the formulations were prepared and stored under refrigeration (3-7°C), ambient temperature (20-22°C) and high temperature (29-31°C). A 200-μL sample was withdrawn from each of the 3 samples immediately after preparation and at 1, 7, 14, 21, and 35 days. Samples were assayed in duplicate using stability-indicating liquid chromatography. Stability was determined by evaluating the percentage of the initial concentration remaining at each time point; stability was defined as the retention of at least 90% of the initial concentration of hydrocortisone succinate. At least 92% of the initial hydrocortisone succinate concentration in solutions pH 5.5, 6.5, and 7.4 remained throughout the 14-day study period under refrigeration. There were no detectable changes in color, odor, or pH and no visible microbial growth in these samples. In other storage conditions, hydrocortisone succinate was rapidly degraded. The hydrocortisone succinate preservative-free oral solutions at pH 5.5, 6.5, or 7.4 are chemically stable when stored under refrigeration for at least 14 days. They provide flexible and convenient dosage forms without any preservatives for pediatric patients.
Turkoglu, Ali Riza; Yener, Neslihan Parmak; Coban, Soner; Guzelsoy, Muhammet; Demirbas, Murat; Demirci, Hakan
2017-05-01
To investigate the effect of solifenacin succinate on intraocular pressure (IOP) and dry eye in patients with overactive bladder (OAB). The study was conducted prospectively between October 2014 and November 2015. A total of 93 female OAB patients with a mean age of 48.59 ± 11.28 years (range 19-75 years) were evaluated. A full ophthalmic examination, including the Schirmer I test and IOP measurements, was conducted. Solifenacin succinate (5 mg/day) was started orally. All procedures were repeated at the 4- and 12-week follow-up, and the effects and side effects were documented. No statistically significant difference was observed in IOP (p = 0.282, p = 0.189) and tear secretion (p = 0.122, p = 0.071) values from the baseline (day 0) to the 12th week in OAB patients using solifenacin succinate. Solifenacin succinate treatment was terminated in 3 patients owing to dry eye in 1 patient, increased IOP in 1 patient, and systemic side effects in 1 patient. Constipation and dry mouth at various rates were the most common systemic side effects observed. Solifenacin succinate is useful in eliminating OAB symptoms in female patients, but can cause systemic side effects. It had no significant side effects on tear secretion (Schirmer I) and IOP. We concluded that solifenacin succinate could be reliably used in pure OAB patients without comorbidity in terms of dry eye and IOP. We believe that prospective studies with larger series are still needed to reach a definite conclusion.
Ivnitsky, Jury Ju; Schäfer, Timur V; Malakhovsky, Vladimir N; Rejniuk, Vladimir L
2004-10-01
Rats poisoned with one LD50 of thiopental or amytal are shown to increase oxygen consumption when intraperitoneally given sucinate, malate, citrate, alpha-ketoglutarate, dimethylsuccinate or glutamate (the Krebs cycle intermediates or their precursors) but not when given glucose, pyruvate, acetate, benzoate or nicotinate (energy substrates of other metabolic stages etc). Survival was increased with succinate or malate from control groups, which ranged from 30-83% to 87-100%. These effects were unrelated to respiratory depression or hypoxia as judged by little or no effect of succinate on ventilation indices and by the lack of effect of oxygen administration. Body cooling of comatose rats at ambient temperature approximately 19 degrees C became slower with succinate, the rate of cooling correlated well with oxygen consumption decrease. Succinate had no potency to modify oxygen consumption and body temperature in intact rats. A condition for antidote effect of the Krebs intermediate was sufficiently high dosage (5 mmol/kg), further dose increase made no odds. Repeated dosing of succinate had more marked protective effect, than a single one, to oxygen consumption and tended to promote the attenuation of lethal effect of barbiturates. These data suggest that suppression of whole body oxygen consumption with barbiturate overdose could be an important contributor to both body cooling and mortality. Intermediates of Krebs cycle, not only succinate, may have a pronounced therapeutic effect under the proper treatment regimen. Availability of Krebs cycle intermediates may be a limiting factor for the whole body oxygen consumption in barbiturate coma, its role in brain needs further elucidation.
Solvent isotope-induced equilibrium perturbation for isocitrate lyase.
Quartararo, Christine E; Hadi, Timin; Cahill, Sean M; Blanchard, John S
2013-12-23
Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacterium's life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage ((D₂O)V = 2.0 ± 0.1, and (D₂O)[V/K(isocitrate)] = 2.2 ± 0.3) arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of the succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate, and succinate prepared in D₂O would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by ¹H NMR spectroscopy shows a clear equilibrium perturbation in D₂O. The final equilibrium isotopic composition of reactants in D₂O revealed dideuterated succinate, protiated glyoxylate, and monodeuterated isocitrate, with the transient appearance and disappearance of monodeuterated succinate. A model for the equilibrium perturbation of substrate species and their time-dependent isotopic composition is presented.
Mary, Y Sheena; Raju, K; Panicker, C Yohannan; Al-Saadi, Abdulaziz A; Thiemann, Thies
2014-10-15
The conformational behavior and structural stability of (2E)-3-(3-chlorophenyl)prop-2-enoic anhydride were investigated by using density functional theory. The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of (2E)-3-(3-chlorophenyl)prop-2-enoic anhydride have been investigated experimentally and theoretically. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. The stability of the molecule arising from hyperconjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of the title compound is 15.8×10(-30)esu, and is 121.54 times that of the standard NLO material urea and the title compound is an attractive object for future studies of nonlinear optical properties. MEP was performed by the DFT method and the predicted infrared intensities and Raman activities have also been reported. Copyright © 2014 Elsevier B.V. All rights reserved.
LARC-IA: A flexible backbone polyimide
NASA Technical Reports Server (NTRS)
Progar, Donald J.; Stclair, Terry L.
1990-01-01
A new linear, aromatic, thermoplastic polyimide, prepared from oxydiphthalic anhydride (ODPA) and 3,4'-oxydianiline (ODA) in diglyme and identified as LARC-IA, was synthesized and evaluated. The monomers are relatively inexpensive and physiologically safe. Molecular weight was controlled by use of a monofunctional anhydride, phthalic anhydride (PA), in order to promote controlled flow and wetting properties. The polymer is considered a safe alternative to commercially available LARC-TPI which is prepared with an expensive diamine of uncertain carcinogenicity. The evaluation was based primarily on the polymer's adhesive properties as determined by thermal and water boil exposure of lap shear specimens. Strengths were determined at room temperature, 177, 204 and 232 C before and after exposure to determine the adhesive system's durability to adverse environments over a period of time. Other properties (FWT, G(1c), film and composite properties) were examined which were determined to be typical of a high temperature polyimide. Results of the study show a favorable comparison to LARC-TPI, a commercially available polyimide.
Porous Cross-Linked Polyimide-Urea Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)
2015-01-01
Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.
Czakler, Matthias; Artner, Christine; Schubert, Ulrich
2012-07-01
Reaction of titanium(IV) isopropoxide, Ti(O i Pr) 4 , with an equimolar amount of phthalic anhydride resulted in the transfer of an isopropoxido group from the metal atom to one carbonyl group of the anhydride and coordination of the thus formed monoester to the titanium atom. One monoester ligand in Ti 2 (O i Pr) 6 (μ 2 -OOC-C 6 H 4 -COO i Pr)(η 1 -OOC-C 6 H 4 -COO i Pr)( i PrOH) is bridging and the other is η 1 -coordinated. When the reaction is performed in the presence of 1 mol-equiv. of acetic acid, the oxido cluster Ti 6 (μ 3 -O) 6 (O i Pr) 6 (μ 2 -OOC-C 6 H 4 -COO i Pr) 6 was instead obtained. The μ 3 -oxygen groups in the latter compound are due to esterification of acetic acid by the cleaved isopropyl alcohol.
Chan, Cheng-Kuang; Chu, I-Ming
2003-01-01
A novel biomaterial: poly(sebacic anhydride-co-ethylene glycol) was synthesized by introducing poly(ethylene glycol) (PEG) into a polyanhydride system. This copolymer was synthesized using sebacic acid and PEG via melt-condensation polymerization. The crystalline behavior of these synthesized products was studied, and compared to that of polymer blends of poly(sebacic anhydride) (PSA) and PEG. The crystallinity of PSA chain segments can be significantly enhanced by increasing chain mobility via the introduction of PEG. The crystallinity of the PSA component in copolymers was substantially greater than that of blends. However, the crystalline growth of the PEG segments was totally hindered by the presence of PSA chain segments, such that no crystal for PEG component was found in these copolymers. Besides, a dynamic mechanical analysis of these materials was also performed to provide additional information concerning visco-elastic behavior for other biomedical applications, where it was found that the viscous behavior in copolymers was more significant than in neat PSA and PEG. Copyright 2002 Elsevier Science Ltd.
Light-Induced C-H Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides.
Cantillo, David; Mateos, Carlos; Rincon, Juan A; de Frutos, Oscar; Kappe, C Oliver
2015-09-07
Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Wickramasinghe, Nalinie S. M. D.; Lacey, James C., Jr.
1992-01-01
Procedure for the formation of aminoacyl esters of monoribonucleotides with aminoacyl imidazolides were first reported by Gottikh et al. (1970) and summarized in 1970. This reaction has been widely used by us and numbers of other workers as a convenient means of preparing aminoacyl esters of nucleotides. We have previously reported that, under conditions of excess imidazolide, large amounts of bis 2', 3' esters are formed in addition to the monoesters. However, to our knowledge, no one has reported that in addition to the esters, relatively large amounts of the mixed anhydride, with the amino acid carboxyl attached to the phosphate, are also formed at short reaction times. We report here on the relative amounts of anhydride and esters formed in this reaction of racemic mixtures of eleven N-acetyl amino acid imidazolides with 5'-AMP and discuss the relevance of the findings to the origin of protein synthesis.
NASA Astrophysics Data System (ADS)
Tukumova, N. V.; Usacheva, T. R.; Thuan, Tran Thi Dieu; Sharnin, V. A.
2014-10-01
The composition and stability of coordination compounds of the anions of maleic (H2L) and succinic (H2Y) acids with copper(II) ions in water-ethanol solutions is studied by means of potentiometric titration at a sodium perchlorate ionic strength of 0.1 and a temperature of 298.15 K. The composition of the water-ethanol solvent was varied from 0 to 0.7 molar parts of ethanol for maleic acid and from 0 to 0.4 molar parts for succinic acid. The stability of monoligand complexes of copper ions with the anions of maleic and succinic acids grows with increase of ethanol concentration from 3.86 to 6.62 for logβCuL and from 2.98 to 6.01 for logβCuY. It is shown that a monotonic rise in stability upon an increase in the content of ethanol in solution is observed, while the values of logβCuL change more sharply. The succinic acid anion forms a stronger complex with copper ions than maleic acid anions do at an ethanol content of 0.4 molar parts. The possibility of the formation of a protonated CuHY+ particle is established.
Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.
Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina
2017-11-28
Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.
Genuino, Homer C.; Thiyagarajan, Shanmugam; van der Waal, Jan C.; van Haveren, Jacco; Weckhuysen, Bert M.
2016-01-01
Abstract Bio‐based furanics can be aromatized efficiently by sequential Diels–Alder (DA) addition and hydrogenation steps followed by tandem catalytic aromatization. With a combination of zeolite H‐Y and Pd/C, the hydrogenated DA adduct of 2‐methylfuran and maleic anhydride can thus be aromatized in the liquid phase and, to a certain extent, decarboxylated to give high yields of the aromatic products 3‐methylphthalic anhydride and o‐ and m‐toluic acid. Here, it is shown that a variation in the acidity and textural properties of the solid acid as well as bifunctionality offers a handle on selectivity toward aromatic products. The zeolite component was found to dominate selectivity. Indeed, a linear correlation is found between 3‐methylphthalic anhydride yield and the product of (strong acid/total acidity) and mesopore volume of H‐Y, highlighting the need for balanced catalyst acidity and porosity. The efficient coupling of the dehydration and dehydrogenation steps by varying the zeolite‐to‐Pd/C ratio allowed the competitive decarboxylation reaction to be effectively suppressed, which led to an improved 3‐methylphthalic anhydride/total aromatics selectivity ratio of 80 % (89 % total aromatics yield). The incorporation of Pd nanoparticles in close proximity to the acid sites in bifunctional Pd/H‐Y catalysts also afforded a flexible means to control aromatic products selectivity, as further demonstrated in the aromatization of hydrogenated DA adducts from other diene/dienophile combinations. PMID:27557889
Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit
2018-05-01
A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.
21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.765 Succistearin (stearoyl propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen...
2011-01-01
Background Carvedilol has been shown to be superior to metoprolol tartrate to improve clinical outcomes in patients with heart failure (HF), yet the mechanisms responsible for these differences remain unclear. We examined if there were differences in endothelial function, insulin stimulated endothelial function, 24 hour ambulatory blood pressure and heart rate during treatment with carvedilol, metoprolol tartrate and metoprolol succinate in patients with HF. Methods Twenty-seven patients with mild HF, all initially treated with carvedilol, were randomized to a two-month treatment with carvedilol, metoprolol tartrate or metoprolol succinate. Venous occlusion plethysmography, 24-hour blood pressure and heart rate measurements were done before and after a two-month treatment period. Results Endothelium-dependent vasodilatation was not affected by changing from carvedilol to either metoprolol tartrate or metoprolol succinate. The relative forearm blood flow at the highest dose of serotonin was 2.42 ± 0.33 in the carvedilol group at baseline and 2.14 ± 0.24 after two months continuation of carvedilol (P = 0.34); 2.57 ± 0.33 before metoprolol tartrate treatment and 2.42 ± 0.55 after treatment (p = 0.74) and in the metoprolol succinate group 1.82 ± 0.29 and 2.10 ± 0.37 before and after treatment, respectively (p = 0.27). Diurnal blood pressures as well as heart rate were also unchanged by changing from carvedilol to metoprolol tartrate or metoprolol succinate. Conclusion Endothelial function remained unchanged when switching the beta blocker treatment from carvedilol to either metoprolol tartrate or metoprolol succinate in this study, where blood pressure and heart rate also remained unchanged in patients with mild HF. Trial registration Current Controlled Trials NCT00497003 PMID:21999413
Kopečná, Martina; Vigouroux, Armelle; Vilím, Jan; Končitíková, Radka; Briozzo, Pierre; Hájková, Eva; Jašková, Lenka; von Schwartzenberg, Klaus; Šebela, Marek; Moréra, Solange; Kopečný, David
2017-10-01
Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP + -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD + is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP + binding induces a conformational change of the loop carrying Arg-228, which seals the NADP + in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Radoš, Dušica; Turner, David L; Fonseca, Luís L; Carvalho, Ana Lúcia; Blombach, Bastian; Eikmanns, Bernhard J; Neves, Ana Rute; Santos, Helena
2014-05-01
Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using (13)C-labeled glucose and (13)C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (~5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H(+):organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation.
Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase
Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.
2014-01-01
Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638
Singh, Vijay K; Wise, Stephen Y; Fatanmi, Oluseyi O; Beattie, Lindsay A; Seed, Thomas M
2014-06-01
The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised individuals exposed to acute, high-dose ionizing irradiation to recover and to survive. CD2F1 mice were irradiated acutely with high doses causing severe, potentially fatal hematopoietic or gastrointestinal injuries and then transfused intravenously with progenitor-enriched, whole blood, or peripheral blood mononuclear cells from mice injected with tocopherol succinate- and AMD3100- (a chemokine receptor anatogonist used to improve the yield of mobilized progenitors). Survival of these mice over a 30-d period was used as the primary measured endpoint of therapeutic effectiveness. The authors demonstrate that tocopherol succinate and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor enriched blood or mononuclear cells acts as a bridging therapy for lymphohematopoietic system recovery in mice exposed to whole-body ionizing irradiation. The results demonstrate that infusion of whole blood or blood mononuclear cells from tocopherol succinate (TS)- and AMD3100-injected mice improved the survival of mice receiving high radiation doses significantly. The efficacy of TS-injected donor mice blood or mononuclear cells was comparable to that of blood or cells obtained from mice injected with granulocyte colony-stimulating factor. Donor origin-mobilized progenitors were found to localize in various tissues. The authors suggest that tocopherol succinate is an optimal agent for mobilizing progenitors with significant therapeutic potential. The extent of progenitor mobilization that tocopherol succinate elicits in experimental mice is comparable quantitatively to clinically used drugs such as granulocyte-colony stimulating factor and AMD3100. Therefore, it is proposed that tocopherol succinate be considered for further translational development and ultimately for use in humans.
NASA Technical Reports Server (NTRS)
Kumar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)
1987-01-01
4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy trisphenoxy cyclotriphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.
Thermoplastic adhesives based on 4,4'-isophthaloyldiphthalic anhydride (IDPA)
NASA Technical Reports Server (NTRS)
Progar, Donald J.; Stclair, Terry L.; Pratt, J. Richard
1988-01-01
Thermoplastic polyimides were prepared and evaluated as adhesives. These materials are based on 4,4'-isophthaloyldiphathalic anhydride (IDAP) and either metaphenylene diamine (MPD) or 3,3'-diaminobenzophenone (DBAP). Both polymers exhibit excellent adhesive properties; however, the IDPA-MPD is the more attractive system because of a combination of high mechanical and physical properties as well as being made from commercially attractive monomers. The IDPA-MPD is an isomeric form of the commercially available adhesive and matrix resin, LARC-TPI and both systems have the same glass transition temperature and exhibit similar adhesive properties.
Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A
2013-11-01
Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures. Copyright © 2013 Elsevier Inc. All rights reserved.
Modification of microneedles using inkjet printing
NASA Astrophysics Data System (ADS)
Boehm, R. D.; Miller, P. R.; Hayes, S. L.; Monteiro-Riviere, N. A.; Narayan, R. J.
2011-06-01
In this study, biodegradable acid anhydride copolymer microneedles containing quantum dots were fabricated by means of visible light dynamic mask micro-stereolithography-micromolding and inkjet printing. Nanoindentation was performed to obtain the hardness and the Young's modulus of the biodegradable acid anhydride copolymer. Imaging of quantum dots within porcine skin was accomplished by means of multiphoton microscopy. Our results suggest that the combination of visible light dynamic mask micro-stereolithography-micromolding and inkjet printing enables fabrication of solid biodegradable microneedles with a wide range of geometries as well as a wide range of pharmacologic agent compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Bertron, Alexandra; Larreur-Cayol, Steeves
2015-03-15
Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelatingmore » effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.« less
Efficient production of succinic acid from herbal extraction residue hydrolysate.
Wang, Caixia; Su, Xinyao; Sun, Wei; Zhou, Sijing; Zheng, Junyu; Zhang, Mengting; Sun, Mengchu; Xue, Jianping; Liu, Xia; Xing, Jianmin; Chen, Shilin
2018-06-15
In this study, six different herbal-extraction residues were evaluated for succinic acid production in terms of chemical composition before and after dilute acid pretreatment (DAP) and sugar release performance. Chemical composition showed that pretreated residues of Glycyrrhiza uralensis Fisch (GUR) and Morus alba L. (MAR) had the highest cellulose content, 50% and 52%, respectively. Higher concentrations of free sugars (71.6 g/L total sugar) and higher hydrolysis yield (92%) were both obtained under 40 FPU/g DM at 10% solid loading for GUR. Using scanning electron microscopy (SEM), GUR was found to show a less compact structure due to process of extraction. Specifically, the fibers in pretreated GUR were coarse and disordered compared with that of GUR indicated by SEM. Finally, 65 g/L succinic acid was produced with a higher yield of 0.89 g/g total sugar or 0.49 g/g GUR. Our results illustrate the potential of GUR for succinic acid production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.
Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao
2010-01-01
Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.
Co-Consumption of Methanol and Succinate by Methylobacterium extorquens AM1
Peyraud, Rémi; Kiefer, Patrick; Christen, Philipp; Portais, Jean-Charles; Vorholt, Julia A.
2012-01-01
Methylobacterium extorquens AM1 is a facultative methylotrophic Alphaproteobacterium and has been subject to intense study under pure methylotrophic as well as pure heterotrophic growth conditions in the past. Here, we investigated the metabolism of M. extorquens AM1 under mixed substrate conditions, i.e., in the presence of methanol plus succinate. We found that both substrates were co-consumed, and the carbon conversion was two-thirds from succinate and one-third from methanol relative to mol carbon. 13C-methanol labeling and liquid chromatography mass spectrometry analyses revealed the different fates of the carbon from the two substrates. Methanol was primarily oxidized to CO2 for energy generation. However, a portion of the methanol entered biosynthetic reactions via reactions specific to the one-carbon carrier tetrahydrofolate. In contrast, succinate was primarily used to provide precursor metabolites for bulk biomass production. This work opens new perspectives on the role of methylotrophy when substrates are simultaneously available, a situation prevailing under environmental conditions. PMID:23133625
Faustov, L A; Nedel'ko, N A; Morozova, M V
2001-01-01
Morphological reactions in tissue adjacent to mandibular angular fracture were studied in guinea pigs treated with sodium succinate and laser magnetotherapy. Due to succinate therapy the exudative component of inflammation was less expressed in comparison with the control, macrophagal reaction and neoangiogenesis were activated, the volume of damaged muscle tissue and the incidence of suppurations decreased. The number of osteoblasts increased and new bone structures acquired a lamellar pattern earlier than in the control. Sodium succinate therapy in combination with laser magnetotherapy had a more pronounced positive effect as regards activation of macrophagal reaction and neoangiogenesis and a decrease in the area of fibrosclerotic changes in the zone of damaged muscles, where newly formed myosymplasts differentiated into myotubes and even in muscle fibers. Suppuration of the wound was prevented. Bone tissue in the fracture zone formed without preliminary formation of cartilaginous tissue, which resulted in more rapid osteogenesis (lamellar bone growth in the fracture zone).
Reverse electron transport effects on NADH formation and metmyoglobin reduction.
Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A
2015-07-01
The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Choudhary, Alpa; Modak, Arnab; Apte, Shree K.
2017-01-01
ABSTRACT The effective elimination of xenobiotic pollutants from the environment can be achieved by efficient degradation by microorganisms even in the presence of sugars or organic acids. Soil isolate Pseudomonas putida CSV86 displays a unique ability to utilize aromatic compounds prior to glucose. The draft genome and transcription analyses revealed that glucose uptake and benzoate transport and metabolism genes are clustered at the glc and ben loci, respectively, as two distinct operons. When grown on glucose plus benzoate, CSV86 displayed significantly higher expression of the ben locus in the first log phase and of the glc locus in the second log phase. Kinetics of substrate uptake and metabolism matched the transcription profiles. The inability of succinate to suppress benzoate transport and metabolism resulted in coutilization of succinate and benzoate. When challenged with succinate or benzoate, glucose-grown cells showed rapid reduction in glc locus transcription, glucose transport, and metabolic activity, with succinate being more effective at the functional level. Benzoate and succinate failed to interact with or inhibit the activities of glucose transport components or metabolic enzymes. The data suggest that succinate and benzoate suppress glucose transport and metabolism at the transcription level, enabling P. putida CSV86 to preferentially metabolize benzoate. This strain thus has the potential to be an ideal host to engineer diverse metabolic pathways for efficient bioremediation. IMPORTANCE Pseudomonas strains play an important role in carbon cycling in the environment and display a hierarchy in carbon utilization: organic acids first, followed by glucose, and aromatic substrates last. This limits their exploitation for bioremediation. This study demonstrates the substrate-dependent modulation of ben and glc operons in Pseudomonas putida CSV86, wherein benzoate suppresses glucose transport and metabolism at the transcription level, leading to preferential utilization of benzoate over glucose. Interestingly, succinate and benzoate are cometabolized. These properties are unique to this strain compared to other pseudomonads and open up avenues to unravel novel regulatory processes. Strain CSV86 can serve as an ideal host to engineer and facilitate efficient removal of recalcitrant pollutants even in the presence of simpler carbon sources. PMID:28733285
Davoudi, Zahra; Rabiee, Mohammad; Houshmand, Behzad; Eslahi, Niloofar; Khoshroo, Kimia; Rasoulianboroujeni, Morteza; Tahriri, Mohammadreza; Tayebi, Lobat
2018-01-01
The aim of this research was to develop chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis, which was fabricated through an environmental friendly process. Mucoadhesive films increase the advantage of higher efficiency and drug localization in the affected region. In this research, mucoadhesive films, for the release of hydrocortisone sodium succinate, were prepared using different ratios of chitosan, gelatin and keratin. In the first step, chitosan and gelatin proportions were optimized after evaluating the mechanical properties, swelling capacity, water uptake, stability, and biodegradation of the films. Then, keratin was added at different percentages to the optimum composite of chitosan and gelatin together with the drug. The results of surface pH showed that none of the samples were harmful to the buccal cavity. FTIR analysis confirmed the influence of keratin on the structure of the composite. The presence of a higher amount of keratin in the composite films resulted in high mechanical, mucoadhesive properties and stability, low water uptake and biodegradation in phosphate buffer saline (pH = 7.4) containing 10 4 U/ml lysozyme. The release profile of the films ascertained that keratin is a rate controller in the release of the hydrocortisone sodium succinate. Finally, chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate can be employed in dental applications.
Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki
2014-04-01
Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.
Cao, Hailong; Yue, Min; Li, Shuguang; Bai, Xuefang; Zhao, Xiaoming; Du, Yuguang
2011-02-01
The zinc finger proteins Mig1 and Mig2 play important roles in glucose repression of Saccharomyces cerevisiae. To investigate whether the alleviation of glucose effect would result in an increase in aerobic succinate production, MIG1 and/or MIG2 were disrupted in a succinate dehydrogenase (SDH)-negative S. cerevisiae strain. Moreover, their impacts on physiology of the SDH-negative S. cerevisiae strain were studied under fully aerobic conditions when glucose was the sole carbon source. Our results showed that the succinate production for the SDH-negative S. cerevisiae was very low even under fully aerobic conditions. Furthermore, deletion of MIG1 and/or MIG2 did not result in an increase in succinate production in the SDH-negative S. cerevisiae strain. However, the synthesis of acetate was significantly affected by MIG1 deletion or in combination with MIG2 deletion. The acetate production for the mig1/mig2 double mutant BS2M was reduced by 69.72% compared to the parent strain B2S. In addition, the amount of ethanol produced by BS2M was slightly decreased. With the mig2 mutant BSM2, the concentrations of pyruvate and glycerol were increased by 26.23% and 15.28%, respectively, compared to the parent strain B2S.
Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum1
Vanlerberghe, Greg C.; Feil, Regina; Turpin, David H.
1990-01-01
The onset of anaerobiosis in darkened, N-limited cells of the green alga Selenastrum minutum (Naeg.) Collins elicited the following metabolic responses. There was a rapid decrease in energy charge from 0.85 to a stable lower value of 0.6 accompanied by rapid increases in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kinase and 6-phosphofructokinase, respectively. There was also a large increase in fructose-2,6-bisphosphate, which, since this alga lacks pyrophosphate dependent 6-phosphofructokinase, can be inferred to inhibit gluconeogenic fructose-1,6-bisphosphatase activity. These changes resulted in an approximately twofold increase in the rate of starch breakdown indicating a Pasteur effect. The Pasteur effect was accompanied by accumulation of d-lactate, ethanol and succinate as fermentation end-products, but not malate. Accumulation of succinate was facilitated by reductive carbon metabolism by a partial TCA cycle (GC Vanlerberghe, AK Horsey, HG Weger, DH Turpin [1989] Plant Physiol 91: 1551-1557). An initial stoichiometric decline in aspartate and increases in succinate and alanine suggests that aspartate catabolism provides an initial source of carbon for reduction to succinate under anoxic conditions. These observations allow us to develop a model for the regulation of anaerobic carbon metabolism and a model for short-term and long-term strategies for succinate accumulation in a green alga. PMID:16667805
Ibim, S E; Uhrich, K E; Attawia, M; Shastri, V R; El-Amin, S F; Bronson, R; Langer, R; Laurencin, C T
1998-01-01
A novel class of polymers with mechanical properties similar to cancellous bone are being investigated for their ability to be used in weight-bearing areas for orthopedic applications. The poly(anhydride-co-imide) polymers based on poly[trimellitylimidoglycine-co-1,6-bis(carboxyphenoxy)hexan e] (TMA-Gly:CPH) and poly[pyromellitylimidoalanine-co-1,6-bis(carboxyphenoxy)hexa ne] (PMA-Ala:CPH) in molar ratios of 30:70 were investigated for osteocompatibility, with effects on the healing of unicortical 3-mm defects in rat tibias examined over a 30-day period. Defects were made with surgical drill bits (3-mm diameter) and sites were filled with poly(anhydride-co-imide) matrices and compared to the control poly(lactic acid-glycolic acid) (PLAGA) (50:50), a well-characterized matrix frequently used in bone regeneration studies, and defects without polymeric implants. At predetermined time intervals (3, 6, 9, 12, 20, and 30 days), animals were sacrificed and tissue histology was examined for bone formation, polymer-tissue interaction, and local tissue response by light microscopy. The studies revealed that matrices of TMA-Gly:CPH and PMA-Ala:CPH produced responses similar to the control PLAGA with tissue compatibility characterized by a mild response involving neutrophils, macrophages, and giant cells throughout the experiment for all matrices studied. Matrices of PLAGA were nearly completely degraded by 21 days in contrast to matrices of TMA-Gly:CPH and PMA-Ala:CPH that displayed slow erosion characteristics and maintenance of shape. Defects in control rats without polymer healed by day 12, defects containing PLAGA healed after 20 days, and defects containing poly(anhydride-co-imide) matrices produced endosteal bone growth as early as day 3 and formed bridges of cortical bone around matrices by 30 days. In addition, there was marrow reconstitution at the defect site for all matrices studied along with matured bone-forming cells. This study suggests that novel poly(anhydride-co-imides) are promising polymers that may be suitable for use as implants in bone surgery, especially in weight-bearing areas.
Beta Blockers for the Prevention of Acute Exacerbations of COPD
2017-10-01
beta blockers , cardiovascular disease , COPD, exacerbation , metoprolol succinate, placebo- controlled, randomized 16. SECURITY CLASSIFICATION OF...basis. KEYWORDS: beta blockers cardiovascular disease COPD exacerbation metoprolol succinate placebo-controlled randomized...pulmonary disease (COPD)-related morbidity, mortality and healthcare costs are due to acute exacerbations, but existing medications have only a
21 CFR 520.784 - Doxylamine succinate tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Doxylamine succinate tablets. 520.784 Section 520.784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.784 Doxylamine...
21 CFR 520.784 - Doxylamine succinate tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Doxylamine succinate tablets. 520.784 Section 520.784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.784 Doxylamine...
21 CFR 184.1091 - Succinic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Succinic acid. 184.1091 Section 184.1091 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...
Cherepova, N; Spasova, D; Radoevska, S
2001-01-01
The localization of succinate dehydrogenase in some gram-negative and gram-positive bacteria (Salmonella typhimurium, Pseudomonas pseudomallei, Pseudomonas aeruginosa and Listeria monocytogenes) treated with the surface membrane active agent, Lubrol W1, was studied by a cytochemical method combined with electron microscopy.
He, Wenni; Li, Yao; Qin, Yuejie; Tong, Xiaomei; Song, Zhijun; Zhao, Yu; Wei, Ran; Li, Li; Dai, Huanqin; Wang, Wenzhao; Luo, Houwei; Ye, Xin; Zhang, Lixin; Liu, Xueting
2017-08-01
This paper provides an efficient platform to diversify the structure and pharmaceutical potentials of known natural products. Seven metabolites were obtained via the biotransformation of cryptotanshinone by the fungus Mucor rouxii AS 3.3447, and assigned as 13R-14R-hydroxy-anhydride of 16R-cryptotanshinone (1), 1S-hydroxy-anhydride of 16R-cryptotanshinone (2), 1R-hydroxy-anhydride of 16R-cryptotanshinone (3), 3S-hydroxy-epicryptoacetalide (4), 3S-hydroxy-cryptoacetalide (5), epicryptoacetalide (6), and cryptoacetalide (7). Among these compounds, 1-5 are novel. The ortho-naphthoquinone chromophore of cryptotanshinone was degraded and rearranged by M. rouxii. 1 and 3 showed good anti-influenza A virus activities with the reduced cytotoxic activities compared to the parent substrate cryptotanshinone (8). The structures of all the new compounds were determined on the basis of HRESIMS (high-resolution electrospray ionization mass spectroscopy) spectrometry, NMR (nuclear magnetic resonance) spectroscopy, ECD (electronic circular dichroism) calculations, and the CD (circular dichroism) of "in situ" method with [Rh 2 (OCOCF 3 ) 4 ].
Risk factors for sensitisation to methyltetrahydrophthalic anhydride.
Yokota, K; Johyama, Y; Yamaguchi, K; Fujiki, Y; Takeshita, T; Morimoto, K
1997-09-01
To examine an association between specific IgE to methyltetrahydrophthalic anhydride (MTHPA) and exposure time, atopic history, smoking habits, and total IgE concentrations. A cross sectional survey was carried out on a population of 148 workers from two condenser plants using epoxy resin with MTHPA, an acid anhydride curing agent known to cause allergy. Using a Pharmacia CAP system with a MTHPA human serum albumin conjugate, specific IgE antibody was detected in serum from 97 (66%) out of the 148 workers exposed to MTHPA. Stepwise multiple linear regression analysis showed a striking relation between log concentrations of specific and total IgE (P < 0.0001). Furthermore, when the workers were divided into two groups according to a cut-off point (100 IU/ml) between low and high total IgE, current smoking was significantly (P = 0.025) associated with specific IgE production only in the group with low total IgE (< 100 IU/ml). Smoking is the most significant risk factor for raising specific IgE to MTHPA in the group with low total IgE concentrations.
Safer one-pot synthesis of the ‘SHAPE’ reagent 1-methyl-7-nitroisatoic anhydride (1m7)
Turner, Rushia; Shefer, Kinneret; Ares, Manuel
2013-01-01
Estimating the reactivity of 2′-hydroxyl groups along an RNA chain of interest aids in the modeling of the folded RNA structure; flexible loops tend to be reactive, whereas duplex regions are generally not. Among the most useful reagents for probing 2′-hydroxyl reactivity is 1-methyl-7-nitroisatoic anhydride (1m7), but the absence of a reliable, inexpensive source has prevented widespread adoption. An existing protocol for the conversion of an inexpensive precursor 4-nitroisatoic anhydride (4NIA) recommends the use of NaH in dimethylformamide (DMF), a reagent combination that most molecular biology labs are not equipped to handle, and that does not scale safely in any case. Here we describe a safer, one-pot method for bulk conversion of 4NIA to 1m7 that reduces costs and bypasses the use of NaH. We show that 1m7 produced by this method is free of side products and can be used to probe RNA structure in vitro. PMID:24141619
Teeraphatpornchai, T; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nakayama, M; Nomura, N; Nakahara, T; Uchiyama, H
2003-01-01
Microorganisms isolated from soil samples were screened for their ability to degrade various biodegradable polyester-based plastics. The most active strain, designated as strain TB-13, was selected as the best strain for degrading these plastics. From its phenotypic and genetic characteristics, strain TB-13 was closely related to Paenibacillus amyloyticus. It could degrade poly(lactic acid), poly(butylene succinate), poly(butylene succinate-co-adipate), poly(caprolactone) and poly(ethylene succinate) but not poly(hydroxybutylate-co-valerate). However, it could not utilize these plastics as sole carbon sources. Both protease and esterase activities, which may be involved in the degradation of plastic, were constitutively detected in the culture broth.
Temporal Variations of Organic Acids in Sumac Fruit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, C.; Mulcahy, F.; Somayajula, K.
2006-10-01
Extracts from staghorn sumac (Rhus typhina) fruits were obtained from fresh fruits obtained from June to October in two successive years. Total acidity, pH, and concentrations of malic and succinic acids determined using liquid chromatography were measured for each extract. Acidity and acid concentrations reached their maxima in late July, and declined slowly thereafter. Malic and succinic acid concentrations in the extracts reached maxima of about 4 and 0.2% (expressed per unit weight of fruit), respectively. Malic and succinic acids were the only organic acids observed in the extracts, and mass balance determinations indicate that these acids are most likelymore » the only ones present in appreciable amounts.« less
Engineering microbes for efficient production of chemicals
Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers
2015-04-28
This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.
Bringaud, F; Ebikeme, C; Boshart, M
2010-08-01
Parasites that often grow anaerobically in their hosts have adopted a fermentative strategy relying on the production of partially oxidized end products, including lactate, glycerol, ethanol, succinate and acetate. This review focuses on recent progress in understanding acetate production in protist parasites, such as amoebae, diplomonads, trichomonads, trypanosomatids and in the metazoan parasites helminths, as well as the succinate production pathway(s) present in some of them. We also describe the unconventional organisation of the tricarboxylic acid cycle associated with the fermentative strategy adopted by the procyclic trypanosomes, which may resemble the probable structure of the primordial TCA cycle in prokaryotes.
Pinard, J M; Marsac, C; Barkaoui, E; Desguerre, I; Birch-Machin, M; Reinert, P; Ponsot, G
1999-04-01
Succinate dehydrogenase (SDH) deficiency is rare. Clinical manifestations can appear in infancy with a marked impairment of psychomotor development with pyramidal signs and extrapyramidal rigidity. A 10-month-old boy developed severe neurological features, evoking a Leigh syndrome; magnetic resonance imaging showed features of leukodystrophy. A deficiency in the complex II respiratory chain (succinate dehydrogenase [SDH]) was shown. The course was remarkable by the regression of neurological impairment under treatment by riboflavin. The delay of psychomotor development, mainly involving language, was moderate at the age of 5 years. The relatively good prognosis of this patient, despite severe initial neurological impairment, may be due to the partial enzyme deficiency and/or riboflavin administration.
Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase.
Selak, Mary A; Armour, Sean M; MacKenzie, Elaine D; Boulahbel, Houda; Watson, David G; Mansfield, Kyle D; Pan, Yi; Simon, M Celeste; Thompson, Craig B; Gottlieb, Eyal
2005-01-01
Several mitochondrial proteins are tumor suppressors. These include succinate dehydrogenase (SDH) and fumarate hydratase, both enzymes of the tricarboxylic acid (TCA) cycle. However, to date, the mechanisms by which defects in the TCA cycle contribute to tumor formation have not been elucidated. Here we describe a mitochondrion-to-cytosol signaling pathway that links mitochondrial dysfunction to oncogenic events: succinate, which accumulates as a result of SDH inhibition, inhibits HIF-alpha prolyl hydroxylases in the cytosol, leading to stabilization and activation of HIF-1alpha. These results suggest a mechanistic link between SDH mutations and HIF-1alpha induction, providing an explanation for the highly vascular tumors that develop in the absence of VHL mutations.
Phosphorus-containing imide resins
NASA Technical Reports Server (NTRS)
Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)
1985-01-01
Cured polymers of bis and tris-imides derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, and addition polymers of such imides, including a variant in which a monoimide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride prior to curing are disclosed and claimed. Such polymers are flame resistant. Also disclosed are an improved method of producing tris(m-aminophenyl) phosphine oxides from the nitro analogues by reduction with hydrazine hydrate using palladized charcoal or Raney nickel as the catalyst and fiber reinforced cured resin composites.
Vajgand, V J; Gaál, F F
1967-03-01
A new method of determination of tertiary amines and salts of organic adds in acetic acid solution, to which about 2 % of water and 8% acetic anhydride are added, is described. After the equivalence point, the excess of perchloric acid catalyses the exothermic reaction of water with acetic anhydride. The end-point is determined from the graph of temperature against volume of added titrant. If a slightly soluble compound is produced during the titration, the precision of the new method is superior to that of the potentiometric method.
Occupational asthma due to tetrachlorophthalic anhydride.
Schlueter, D P; Banaszak, E F; Fink, J N; Barboriak, J
1978-03-01
The plastics industry utilizes a number of organic chemicals which have the potential of producing pulmonary reactions, particularly in susceptible individuals. Five workers are reported who were involved in the production of epoxy resins and developed recurrent respiratory symptoms and physiologic abnormalities following exposure to tetrachlorophthalic anhydride (TCPA). Inhalation challenge with TCPA reproduced their symptoms and demonstrated both an immediate and late (4-6 hours) physiologic response. Although the clinical picture strongly suggested a hypersensitivity reaction, immunologic studies failed to demonstrate precipitating or specific IgE antibody. Avoidance of exposure resulted in resolution of symptoms; however, three of the five individuals had residual functional impairment.
A Modified Synthesis of the Insect Repellent DEET
NASA Astrophysics Data System (ADS)
Knoess, Peter H.; Neeland, Edward G.
1998-10-01
In the preparation of the insect repellent DEET, lab procedures prepare the intermediate m-toluoyl chloride by heating m-toluic acid with thionyl chloride for times ranging from 15 to 45 minutes. The acid chloride is then worked up under Schotten-Baumann conditions to yield DEET. In our students' hands, these procedures gave a darkly colored product which was contaminated with an anhydride by-product. We have shown that the m-toluoyl chloride can be prepared at room temperature in 8 minutes and that the eventual DEET product is obtained in excellent yield without the dark coloration or anhydride by-product.
Brunson, Roy J.
1982-01-01
Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a pretreating agent selected from the group consisting of phthalic acid, phthalic anhydride, pyromellitic acid and pyromellitic anhydride. The pretreatment is believed to convert the scale-forming components to the corresponding phthalate and/or pyromellitate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 1 to about 2 atmospheres. Temperature during pretreatment will generally be within the range from about 5.degree. to about 80.degree. C.
LaRC-I-TPI - A status report on a new high performance, thermoplastic polyimide
NASA Technical Reports Server (NTRS)
Pratt, J. Richard; Saint Clair, Terry L.
1990-01-01
A new thermoplastic polyimide designated LaRC-I-TPI has been prepared from 4,4'-isophthaloyldiphthalic anhydride (IDPA) and 1,3-phenylenediamine (m-PDA), phthalic anhydride endcapped or unendcapped. It is closely related to the well-known commercial LaRC-TPI. A survey of the synthesis and some thermal, film, adhesive, fracture toughness, and composite properties of this new polyimide is presented. While both materials have similar properties at comparable stages of development, LaRC-I-TPI should be less expensive to manufacture as a result of the use of lower cost readily available monomers.
Phosphorus-containing imide resins
NASA Technical Reports Server (NTRS)
Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)
1983-01-01
Bis- and tris-imides derived from tris (m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, and addition polymers of such imides, including a variant in which a mono-imide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride. Such monomers or their oligomes may be used to impregnate fibers and fabrics which when cured, are flame resistant. Also an improved method of producing tris (m-aminophenyl) phosphine oxides from the nitro analogues by reduction with hydrazine hydrate using palladized charcoal or Raney nickel as the catalyst is described.
Structural studies of 4-aminoantipyrine derivatives
NASA Astrophysics Data System (ADS)
Cunha, Silvio; Oliveira, Shana M.; Rodrigues, Manoel T.; Bastos, Rodrigo M.; Ferrari, Jailton; de Oliveira, Cecília M. A.; Kato, Lucília; Napolitano, Hamilton B.; Vencato, Ivo; Lariucci, Carlito
2005-10-01
Reaction of 4-aminoantipyrine with acetylacetone, ethyl acetoacetate, benzoyl isothiocyanate, phenyl isothiocyanate, maleic anhydride and methoxymethylene Meldrum's acid afforded a series of new antipyrine derivatives. The antibacterial activity of the synthesized compounds against Micrococcus luteus ATCC 9341, Staphilococcus aureus ATCC 29737, and Escherichia coli ATCC 8739 was evaluated and the minimal inhibitory concentration determined. Modest activity was found only to the maleamic acid obtained from the reaction of 4-aminoantipyrine and maleic anhydride. 1H NMR investigation of this maleamic acid showed that it is slowly converted to the corresponding toxic maleimide. The structures of three derivatives were determined by X-ray diffraction analysis.
21 CFR 172.830 - Succinylated monoglycerides.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of glycerol with edible fat-forming fatty acids. (b) The additive meets the following specifications: Succinic acid content: 14.8%-25.6% Melting point: 50 °C-60 °C. Acid number: 70-120 (c) The additive is used... additive is a mixture of semi-and neutral succinic acid esters of mono- and diglycerides produced by the...
Succinate-based preparation alleviates manifestations of the climacteric syndrome in women.
Peskov, A B; Maevskii, E I; Uchitel', M L; Sakharova, N Yu; Vize-Khripunova, M A
2005-09-01
Clinical placebo-controlled study of Enerlit-Clima (bioactive succinate-based food additive) a showed positive effect of the preparation on general clinical and psychoemotional manifestations of the climacteric syndrome. A trend to an increase in estradiol level in early pathological climacteric and normalization of the endometrial status were observed.
Value of acid metabolic products in identification of certain corynebacteria.
Reddy, C A; Kao, M
1978-01-01
Acid metabolic products of 23 strains of human and animal pathogenic corynebacteria, representing eight different species, were determined by gas chromatography. The results showed that the species examined were metabolically heterogeneous and could be presumptively identified based on the acid products produced. Corynebacterium equi did not produce any acids; C. renale produced lactate; and C. pyogenes produced major amounts of lactate, variable amounts of acetate, and minor amounts of succinate and pyruvate. C. kutscheri produced propionate and lactate as major products and pyruvate and oxalacetate as minor products. C. diphtheriae and C. pseudotuberculosis produced major amounts of propionate, acetate, and formate. In addition, C. pseudotuberculosis produced major amounts of pyruvate and minor amounts of succinate, lactate, and oxalacetate, whereas C. diphtheriae strains produced minor but variable amounts of lactate, succinate, fumarate, pyruvate, and oxalacetate. C. bovis produced aicd products similar to those of C. pyogenes but was readily distinguishable from the latter by the lack of hemolysis on blood agar, colony morphology, catalase reaction, and biochemicals. C. suis characteristically produced major amounts of ethanol, acetate, and formate and minor amounts of lactate and succinate but no propionate. PMID:96126
Nanoporosity studies of novel catalysts through positronium annihilation
NASA Astrophysics Data System (ADS)
Félix, M. V.; Rodríguez-Rojas, R. A.; Castañeda-Contreras, J.; Nava, R.; Consolati, G.; Castaño, V. M.
2006-10-01
Eight novel hybrid silica gel-succinic acid-zinc acetate samples were analyzed through Positron annihilation lifetime spectroscopy in order to study average free volume quantities and free volume distributions. The aim of this work was to understand the type of porosity within these species and its relationship with surface textural properties (tested by the BET method) and catalytic activity. We found a noticeable dependence of o-Ps lifetimes on the nature of each modifier agent (succinic acid, Zn acetate, succinic acid-Zn acetate) fixed on the surface of SiO 2 and SiO 2-Al 2O 3 particles. We observed the trend of the Zinc acetate to create mesopores among silica particles, while succinic acid acts as a positronium quencher and a nanoporosity performer. Long o-Ps lifetimes were decomposed into two components accounting for the existence of interparticle and intraparticle holes, however discrepancies beyond elementary facts between the BET method measurements and our positronium calculations were found. A discussion of the kind of open spaces analysis necessary to fully understand the porosity in these hybrid materials is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Qu, Wenjie; Zhang, Xiaoxiao
A hydrometallurgical method involving natural organic acid leaching has been developed for recovery of lithium and cobalt from the cathode active materials in spent lithium-ion batteries. Succinic acid is employed as leaching agent and H2O2 as reductant. The cobalt and lithium contents from the succinic acid-based treatment of spent batteries are determined by inductively coupled plasma-optical emission spectroscopy to calculate the leaching efficiency. The spent LiCoO2 samples after calcination and the residues after leaching are characterized by X-ray diffraction and scanning electron microscopy. The results show that nearly 100% of cobalt and more than 96% of lithium are leached undermore » optimal conditions: succinic acid concentration of 1.5 mol L-1, H2O2 content of 4 vol.%, solid-to-liquid ratio of 15 g L-1, temperature of 70 °C, and reaction time of 40 min. Results are also given for fitting of the experimental data to acid leaching kinetic models.« less
Ohnishi, T; King, T E; Salerno, J C; Blum, H; Bowyer, J R; Maida, T
1981-06-10
Thermodynamic parameters of succinate dehydrogenase flavin were determined potentiometrically from the analysis of free radical signal levels as a function of the oxidation-reduction potential. Midpoint redox potentials of consecutive 1-electron transfer steps are -127 and -31 mV at pH 7.0. This corresponds to a stability constant of intermediate stability, 2.5 x 10(-2), which suggests flavin itself may be a converter from n = 2 to n = 1 electron transfer steps. The pK values of the free radical (FlH . in equilibrium Fl . -) and the fully reduced form (FlH2 in equilibrium FlH-) were estimated as 8.0 +/- 0.2 and 7.7 +/- 0.2, respectively. Succinate dehydrogenase flavosemiquinone elicits an EPR spectrum at g = 2.00 with a peak to peak width of 1.2 mT even in the protonated form, suggesting the delocalization in the unpaired electron density. A close proximity of succinate dehydrogenase flavin and iron-sulfur cluster S-1 was demonstrated based on the enhancement of flavin spin relaxation by Center S-1.
NASA Astrophysics Data System (ADS)
Juliet sheela, K.; Subramanian, P.
2018-04-01
A transparent and good optical quality semi organic single crystal of vanadium doped potassium succinate-succinic acid (KSSA) was synthesized by slow evaporation technique at room temperature. The structural perfection was supported by the powder XRD of the KSSA-VO2+ single crystal. Optical behavior of the material was discovered from the absorption and transmission spectra of UV-vis-NIR characterization. Functional group and presence of metal ion in the specimen are depicted from FTIR traces. From the photoluminescence studies, emission of wavelength in the violet region (418 nm) at the excitation of 243 nm could be ascertained. EDAX, SEM measurements identify presence of elements and pictures the step-line growth and the imperfection presents in the grown crystal. EPR analysis extracts the information about the local site symmetry around the impurity ion, molecular orbital coefficients, admixture coefficients and ground state wave function of VO2+ doped KSSA single crystal. Second harmonic generation (SHG) efficiency of the grown crystal was investigated to explore the NLO characteristic of the material.
Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis.
Lodi, Tiziana; Fontanesi, Flavia; Ferrero, Iliana; Donnini, Claudia
2004-09-15
Two new genes KlJEN1 and KlJEN2 were identified in Kluyveromyces lactis. The deduced structure of their products is typical of membrane-bound carriers and displays high similarity to Jen1p, the monocarboxylate permease of Saccharomyces cerevisiae. Both KlJEN1 and KlJEN2 are under the control of glucose repression mediated by FOG1 and FOG2, corresponding to S. cerevisiae GAL83 and SNF1 respectively, and KlCAT8, proteins involved in glucose signalling cascade in K. lactis. KlJEN1, but not KlJEN2, is induced by lactate. KlJEN2 in contrast is expressed at high level in ethanol and succinate. The physiological characterization of null mutants showed that KlJEN1 is the functional homologue of ScJEN1, whereas KlJEN2 encodes a dicarboxylic acids transporter. In fact, KlJen1p [transporter classification (TC) number: 2.A.1.12.2.] is required for lactate uptake and therefore for growth on lactate. KlJen2p is required for succinate transport, as demonstrated by succinate uptake experiments and by inability of Kljen2 mutant to grow on succinate. This carrier appears to transport also malate and fumarate because the Kljen2 mutant cannot grow on these substrates and the succinate uptake is competed by these carboxylic acids. We conclude that KlJEN2 is the first yeast gene shown to encode a dicarboxylic acids permease.
Sawisit, Apichai; Jampatesh, Surawee; Jantama, Sirima Suvarnakuta; Jantama, Kaemwich
2018-07-01
Rice straw was pretreated with sodium hydroxide (NaOH) before subsequent use for succinate production by Escherichia coli KJ122 under simultaneous saccharification and fermentation (SSF). The NaOH pretreated rice straw was significantly enhanced lignin removal up to 95%. With the optimized enzyme loading of 4% cellulase complex + 0.5% xylanase (endo-glucanase 67 CMC-U/g, β-glucosidase 26 pNG-U/g and xylanase 18 CMC-U/g dry biomass), total sugar conversion reached 91.7 ± 0.8% (w/w). The physicochemical analysis of NaOH pretreated rice straw indicated dramatical changes in its structure, thereby favoring enzymatic saccharification. In batch SSF, succinate production of 69.8 ± 0.3 g/L with yield and productivity of 0.84 g/g pretreated rice straw and 0.76 ± 0.02 g/L/h, respectively, was obtained. Fed-batch SSF significantly improved succinate concentration and productivity to 103.1 ± 0.4 g/L and 1.37 ± 0.07 g/L/h with a comparable yield. The results demonstrated a feasibility of sequential saccharification and fermentation of rice straw as a promising process for succinate production in industrial scale. Copyright © 2018 Elsevier Ltd. All rights reserved.
Struys, E A; Jansen, E E W; Gibson, K M; Jakobs, C
2005-01-01
Succinic semialdehyde (SSA) accumulates in the inborn error of meta- bolism succinic semialdehyde dehydrogenase deficiency owing to impaired enzymatic conversion to succinic acid. We developed a stable-isotope dilution liquid chromato- graphy-tandem mass spectrometry method for the determination of SSA in urine and cerebrospinal fluid samples. Stable-isotope-labelled [13C4]SSA, serving as internal standard, was prepared by reaction of ninhydrin with L-[13C5]glutamic acid. SSA in body fluids was converted to its dinitrophenylhydrazine (DNPH) derivative, without sample purification prior to the derivatization procedure. The DNPH derivative of SSA was injected onto a C18 analytical column and chromatography was performed by isocratic elution. Detection was accomplished by tandem mass spectrometry operating in the negative multiple-reaction monitoring mode. The limit of detection was 10 nmol/L and the calibration curves over the range 0-500 pmol of SSA showed good linearity (r2 > 0.99). The intra-day coefficient of variation (n = 10) for urine was 2.7% and inter-day coefficient of variation (n = 5) for urine was 8.5%. The average recoveries performed on two levels by enriching urine and cerebrospinal fluid samples ranged between 85 and 115%, with coefficients of variation < 8%. The method enabled the first determination of normal values for SSA in urine and pathological values of SSA in urine and cerebrospinal fluid samples derived from patients with succinic semialdehyde dehydrogenase deficiency.
Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase
Van Hellemond, Jaap J.; Opperdoes, Fred R.; Tielens, Aloysius G. M.
1998-01-01
Hydrogenosome-containing anaerobic protists, such as the trichomonads, produce large amounts of acetate by an acetate:succinate CoA transferase (ASCT)/succinyl CoA synthetase cycle. The notion that mitochondria and hydrogenosomes may have originated from the same α-proteobacterial endosymbiont has led us to look for the presence of a similar metabolic pathway in trypanosomatids because these are the earliest-branching mitochondriate eukaryotes and because they also are known to produce acetate. The mechanism of acetate production in these organisms, however, has remained unknown. Four different members of the trypanosomatid family: promastigotes of Leishmania mexicana mexicana, L. infantum and Phytomonas sp., and procyclics of Trypanosoma brucei were analyzed as well as the parasitic helminth Fasciola hepatica. They all use a mitochondrial ASCT for the production of acetate from acetyl CoA. The succinyl CoA that is produced during acetate formation by ASCT is recycled presumably to succinate by a mitochondrial succinyl CoA synthetase, concomitantly producing ATP from ADP. The ASCT of L. mexicana mexicana promastigotes was further characterized after partial purification of the enzyme. It has a high affinity for acetyl CoA (Km 0.26 mM) and a low affinity for succinate (Km 6.9 mM), which shows that significant acetate production can occur only when high mitochondrial succinate concentrations prevail. This study identifies a metabolic pathway common to mitochondria and hydrogenosomes, which strongly supports a common origin for these two organelles. PMID:9501211
Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells
Schiro, Faith R.; Pajor, Ana M.; Hamm, L. Lee
2011-01-01
Urinary citrate is an important inhibitor of calcium nephrolithiasis and is primarily determined by proximal tubule reabsorption. The major transporter to reabsorb citrate is Na+-dicarboxylate cotransporter (NaDC1), which transports dicarboxylates, including the divalent form of citrate. We previously found that opossum kidney (OK) proximal tubule cells variably express either divalent or trivalent citrate transport, depending on extracellular calcium. The present studies were performed to delineate the mechanism of the effect of calcium on citrate and succinate transport in these cells. Transport was measured using isotope uptake assays. In some studies, NaDC1 transport was studied in Xenopus oocytes, expressing either the rabbit or opossum ortholog. In the OK cell culture model, lowering extracellular calcium increased both citrate and succinate transport by more than twofold; the effect was specific in that glucose transport was not altered. Citrate and succinate were found to reciprocally inhibit transport at low extracellular calcium (<60 μM), but not at normal calcium (1.2 mM); this mutual inhibition is consistent with dicarboxylate transport. The inhibition varied progressively at intermediate levels of extracellular calcium. In addition to changing the relative magnitude and interaction of citrate and succinate transport, decreasing calcium also increased the affinity of the transport process for various other dicarboxylates. Also, the affinity for succinate, at low concentrations of substrate, was increased by calcium removal. In contrast, in oocytes expressing NaDC1, calcium did not have a similar effect on transport, indicating that NaDC1 could not likely account for the findings in OK cells. In summary, extracellular calcium regulates constitutive citrate and succinate transport in OK proximal tubule cells, probably via a novel transport process that is not NaDC1. The calcium effect on citrate transport parallels in vivo studies that demonstrate the regulation of urinary citrate excretion with urinary calcium excretion, a process that may be important in decreasing urinary calcium stone formation. PMID:21123491
Bistability of the lac operon during growth of Escherichia coli on lactose and lactose+glucose.
Narang, Atul; Pilyugin, Sergei S
2008-05-01
The lac operon of Escherichia coli can exhibit bistability. Early studies showed that bistability occurs during growth on TMG/succinate and lactose+glucose, but not during growth on lactose. More recently, studies with lacGFP-transfected cells show bistability during growth on TMG/succinate, but not during growth on lactose and lactose+glucose. In the literature, these results are invariably attributed to variations in the destabilizing effect of the positive feedback generated by induction. Specifically, during growth on TMG/succinate, lac induction generates strong positive feedback because the permease stimulates the accumulation of intracellular TMG, which in turn, promotes the synthesis of even more permease. This positive feedback is attenuated during growth on lactose because hydrolysis of intracellular lactose by beta-galactosidase suppresses the stimulatory effect of the permease. It is attenuated even more during growth on lactose + glucose because glucose inhibits the uptake of lactose. But it is clear that the stabilizing effect of dilution also changes dramatically as a function of the medium composition. For instance, during growth on TMG/succinate, the dilution rate of lac permease is proportional to its activity, e, because the specific growth rate is independent of e (it is completely determined by the concentration of succinate). However, during growth on lactose, the dilution rate of the permease is proportional to e2 because the specific growth rate is proportional to the specific lactose uptake rate, which in turn, proportional to e. We show that: (a) This dependence on e2 creates such a strong stabilizing effect that bistability is virtually impossible during growth on lactose, even in the face of the intense positive feedback generated by induction. (b) This stabilizing effect is weakened during growth on lactose+glucose because the specific growth rate on glucose is independent of e, so that the dilution rate once again contains a term that is proportional to e. These results imply that the lac operon is much more prone to bistability if the medium contains carbon sources that cannot be metabolized by the lac enzymes, e.g., succinate during growth on TMG/succinate and glucose during growth on lactose+glucose. We discuss the experimental data in the light of these results.
Nakamura, K; Yamaki, M; Sarada, M; Nakayama, S; Vibat, C R; Gennis, R B; Nakayashiki, T; Inokuchi, H; Kojima, S; Kita, K
1996-01-05
Complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli is composed of four nonidentical subunits encoded by the sdhCDAB operon. Gene products of sdhC and sdhD are small hydrophobic subunits that anchor the hydrophilic catalytic subunits (flavoprotein and iron-sulfur protein) to the cytoplasmic membrane and are believed to be the components of cytochrome b556 in E. coli complex II. In the present study, to elucidate the role of two hydrophobic subunits in the heme b ligation and functional assembly of complex II, plasmids carrying portions of the sdh gene were constructed and introduced into E. coli MK3, which lacks succinate dehydrogenase and fumarate reductase activities. The expression of polypeptides with molecular masses of about 19 and 17 kDa was observed when sdhC and sdhD were introduced into MK3, respectively, indicating that sdhC encodes the large subunit (cybL) and sdhD the small subunit (cybS) of cytochrome b556. An increase in cytochrome b content was found in the membrane when sdhD was introduced, while the cytochrome b content did not change when sdhC was introduced. However, the cytochrome b expressed by the plasmid carrying sdhD differed from cytochrome b556 in its CO reactivity and red shift of the alpha absorption peak to 557.5 nm at 77 K. Neither hydrophobic subunit was able to bind the catalytic portion to the membrane, and only succinate dehydrogenase activity, not succinate-ubiquinone oxidoreductase activity, was found in the cytoplasmic fractions of the cells. In contrast, significantly higher amounts of cytochrome b556 were expressed in the membrane when sdhC and sdhD genes were both present, and the catalytic portion was found to be localized in the membrane with succinate-ubiquitnone oxidoreductase and succinate oxidase activities. These results strongly suggest that both hydrophobic subunits are required for heme insertion into cytochrome b556 and are essential for the functional assembly of E. coli complex II in the membrane. Accumulation of the catalytic portion in the cytoplasm was found when sdhCDAB was introduced into a heme synthesis mutant, suggesting the importance of heme in the assembly of E. coli complex II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beddows, C.G.; Gil, M.H.; Guthrie, J.T.
1986-01-01
Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatasemore » using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.« less
Narita, Kazuto; Ishii, Yuuki; Vo, Phuc Thi Hong; Nakagawa, Fumiko; Ogata, Shinichi; Yamashita, Kunihiko; Kojima, Hajime; Itagaki, Hiroshi
2018-01-01
Recently, animal testing has been affected by increasing ethical, social, and political concerns regarding animal welfare. Several in vitro safety tests for evaluating skin sensitization, such as the human cell line activation test (h-CLAT), have been proposed. However, similar to other tests, the h-CLAT has produced false-negative results, including in tests for acid anhydride and water-insoluble chemicals. In a previous study, we demonstrated that the cause of false-negative results from phthalic anhydride was hydrolysis by an aqueous vehicle, with IL-8 release from THP-1 cells, and that short-time exposure to liquid paraffin (LP) dispersion medium could reduce false-negative results from acid anhydrides. In the present study, we modified the h-CLAT by applying this exposure method. We found that the modified h-CLAT is a promising method for reducing false-negative results obtained from acid anhydrides and chemicals with octanol-water partition coefficients (LogK ow ) greater than 3.5. Based on the outcomes from the present study, a combination of the original and the modified h-CLAT is suggested for reducing false-negative results. Notably, the combination method provided a sensitivity of 95% (overall chemicals) or 93% (chemicals with LogK ow > 2.0), and an accuracy of 88% (overall chemicals) or 81% (chemicals with LogK ow > 2.0). We found that the combined method is a promising evaluation scheme for reducing false-negative results seen in existing in vitro skin-sensitization tests. In the future, we expect a combination of original and modified h-CLAT to be applied in a newly developed in vitro test for evaluating skin sensitization.
Exposure to methylhexahydrophthalic anhydride (MHHPA) in two workplaces of the electric industry.
Pfäffli, Pirkko; Hämeilä, Mervi; Riala, Riitta; Tornaeus, Jarkko; Wirmoila, Ritva
2004-04-01
Methylhexahydrophthalic anhydride (MHHPA) is a hardener for hot-cured epoxy resins employed as insulators in the electric industry. MHHPA has only been measured as an ingredient with other alicyclic anhydrides, albeit there are also large processes which use only MHHPA. We collected MHHPA vapour in a set of devices: Teflon filter, glass spiral, TenaxTA tube connected consecutively together. Elution was performed with a solvent mixture of methyl-tert-butyl ether (70%), acetonitrile (30%), and acetic anhydride (0.5%). By capillary GC-ECD, the regression was linear (0.9994) in the practical low concentration range of 0.04-1 microg ml(-1) being equal to 0.001-0.035 mg m(-3) in 30 l of air. The exposure was measured in two factories manufacturing electric appliances. The assembled objects were first impregnated with a liquid epoxy/hardener mixture, and then the resin hardened at elevated temperature. In condenser manufacturing, the operators' 8 h exposure ranged from 0.068 to 0.118 mg m(-3), and the short-term exposure was during operation at ovens mean 1.90 mg m(-3). The impregnation of coiled resistors and transfer of them to ovens caused the worst exposures, short-term mean 3.846 mg m(-3) and long-term mean 2.191 mg m(-3). During the 'baking', the ovens were closed and evacuated, but when the hot objects were moved out of the ovens, they continued during chilling to emit MHHPA, mean 0.366 mg m(-3). In the adjacent areas, assembling, control rooms, offices, the exposure was still significant, 0.017-0.043 mg m(3), due to leaks from the high exposure areas. Mechanical general ventilation and local exhausts were functioning. Respirators were available for short supervising of the hot equipment.
Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua (Inventor)
2012-01-01
.[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.
Study of the Glutaminase Inhibitor CB-839 in Solid Tumors
2016-08-18
Solid Tumors; Triple-Negative Breast Cancer; Non Small Cell Lung Cancer; Renal Cell Carcinoma; Mesothelioma; Fumarate Hydratase (FH)-Deficient Tumors; Succinate Dehydrogenase (SDH)-Deficient Gastrointestinal Stromal Tumors (GIST); Succinate Dehydrogenase (SDH)-Deficient Non-gastrointestinal Stromal Tumors; Tumors Harboring Isocitrate Dehydrogenase-1 (IDH1) and IDH2 Mutations; Tumors Harboring Amplifications in the cMyc Gene
Nucleation kinetics of urea succinic acid –ferroelectric single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhivya, R.; Voohrees College, Vellore-632014, Tamilnadu; Vizhi, R. Ezhil, E-mail: rezhilvizhi@vit.ac.in, E-mail: revizhi@gmail.com
2015-06-24
Single crystals of Urea Succinic Acid (USA) were grown by slow cooling technique. The crystalline system was confirmed by powder X-ray diffraction. The metastable zonewidth were carried out for various temperatures i.e., 35°, 40°, 45° and 50°C. The induction period is experimentally determined and various nucleation parameters have been estimated.
21 CFR 522.784 - Doxylamine succinate injection.
Code of Federal Regulations, 2013 CFR
2013-04-01
... mg of doxylamine succinate. (b) Sponsor. See No. 000061 in § 510.600(c) of this chapter. (c... alleviate some signs of disease in horses, dogs, and cats. 1 1 These conditions are NAS/NRC reviewed and... body weight. It is administered to dogs and cats at a dosage level of 0.5 to 1 mg per pound of body...
USDA-ARS?s Scientific Manuscript database
Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...
Synergism of isothermal regimen and sodium succinate in experimental therapy of barbiturate coma.
Reinyuk, V L; Shefer, T V; Ivnitskii, Yu Yu
2006-07-01
In rats with experimental thiopental coma rectal temperature decreased by 9.4 degrees C, oxygen consumption 5-fold, and arteriovenous Po(2)gradient decreased 2-fold within 3 h; CO(2)accumulated in the blood and mixed type acidosis developed. Administration of sodium succinate under these conditions increased arteriovenous Po(2)gradient and reduced manifestations of metabolic acidosis. Maintenance of normal body temperature (warming) corrected primarily manifestations of respiratory acidosis. Each therapeutic agent reduced inhibition of O(2)consumption by 1/4; animal survival tended to increase from 42 to 50%. Combined use of these treatments potentiated the antiacidotic effect and increased survival to 92%. The authors conclude that hypothermia inhibits the therapeutic effect of succinate in barbiturate coma.
Uchida, H; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nomura, N; Tokiwa, Y; Nakahara, T
2000-08-01
Various microorganisms were screened for their ability to degrade poly(tetramethylene succinate)-co-(tetramethylene adipate) (PBSA). Strain BS-3, which was newly isolated from a soil sample, was selected as the best strain. From taxonomical studies, the strain was tentatively ascribed to belong to the genus Acidovorax, most probably to the species A. delafieldii. Strain BS-3 could degrade both solid and emulsified PBSA, and also emulsified poly(tetramethylene succinate). During the degradation, a lipase activity was observed in the culture broth. This lipase activity was induced more strongly by PBSA than by tributyrin or triolein which are typical substrates of lipase. These observations strongly suggest that this lipase was involved in the PBSA biodegradation in strain BS-3.
Melin, Frederic; Noor, Mohamed R.; Pardieu, Elodie; Boulmedais, Fouzia; Banhart, Florian; Cecchini, Gary; Soulimane, Tewfik
2015-01-01
Succinate Quinone reductases (SQRs) are the enzymes which couple the oxidation of succinate and the reduction of quinones in the respiratory chain of prokaryotes and eukaryotes. We compare herein the temperature-dependent activity and structural stability of two SQRs, the first one from the mesophilic bacterium E. coli and the second one from the thermophilic bacterium T. thermophilus by a combined electrochemical and infrared spectroscopy approach. Direct electron transfer was achieved with the full membrane protein complexes at SWNTs-modified electrodes. The possible structural factors which contribute to the temperature-dependent activity of the enzymes and to the thermostability of the T. thermophiles SQR in particular, are discussed. PMID:25139263
NASA Astrophysics Data System (ADS)
Sheeja, Manaf, O.; Sujith, A.
2017-06-01
Polymer modification by radiation grafting of monomers onto polymers has received much attention recently. In the current study, γ-irradiation technique was used to achieve graft copolymerization of maleic anhydride (MA) onto low-density polyethylene (LDPE). To optimize, the process was performed at different γ-irradiation doses and MA concentration. The microstructure of grafted polymer film has been characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, field emission-scanning electron microscopy, and atomic force microscopy. The studies performed made possible the selection of experimental protocols adequate for the production of new copolymeric materials with high grafting yield.
Horiguchi, Yoshie; Kodama, Hirokazu; Nakamura, Masayoshi; Yoshimura, Tsuyoshi; Hanezi, Kaori; Hamada, Hiroko; Saitoh, Toshiaki; Sano, Takehiro
2002-02-01
A synthesis of 1,1-disubstituted 1,2,3,4-tetrahydroisoquinolines (6) was achieved in a highly efficient manner via Pictet-Spengler reaction of arylethylamines (1) and acyclic and cyclic ketones (2) using titanium (IV) isopropoxide and acetic-formic anhydride. The cyclization of the in situ formed acyliminium ion (4) to N-formyl 1,2,3,4-tetrahydroisoquinoline (5) was greatly facilitated by using trifluoroacetic acid as an additional reagent. The Pictet-Spengler reaction was carried out by one pot procedure, providing a convenient and effective method for preparing various 1,2,3,4-tetrahydroisoquinolines.
Plant Oil-Derived Epoxy Polymers toward Sustainable Biobased Thermosets.
Wang, Zhongkai; Yuan, Liang; Ganewatta, Mitra S; Lamm, Meghan E; Rahman, Md Anisur; Wang, Jifu; Liu, Shengquan; Tang, Chuanbing
2017-06-01
Epoxy polymers (EPs) derived from soybean oil with varied chemical structures are synthesized. These polymers are then cured with anhydrides to yield soybean-oil-derived epoxy thermosets. The curing kinetic, thermal, and mechanical properties are well characterized. Due to the high epoxide functionality per epoxy polymer chain, these thermosets exhibit tensile strength over an order of magnitude higher than a control formulation with epoxidized soybean oil. More importantly, thermosetting materials ranging from soft elastomers to tough thermosets can be obtained simply by using different EPs and/or by controlling feed ratios of EPs to anhydrides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sheena Mary, Y; Raju, K; Panicker, C Yohannan; Al-Saadi, Abdulaziz A; Thiemann, Thies; Van Alsenoy, Christian
2014-07-15
The conformational behavior and structural stability of (2E)-3-phenylprop-2-enoic anhydride were investigated by using density functional theory. Seventeen possible stable conformations of the title compound were determined and verified with their calculated vibrational frequencies being all positive. The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of (2E)-3-phenylprop-2-enoic anhydride have been investigated experimentally and theoretically using Gaussian09 software package. Potential energy distribution of normal modes vibrations was done using GAR2PED program. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of the title compound is 12×10(-30) esu and is 92.31 times that of the standard NLO material urea and the title compound is an attractive object for future studies of nonlinear optical properties. MEP was performed by the DFT method and the predicted infrared intensities and Raman activities have also been reported. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.
2015-07-01
Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90 %). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize product yields and to identify side products. The present work demonstrates that UV-LED arrays are a viable alternative to current Hg lamp setups.
2012-01-01
Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3′-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface. PMID:22984898
Moriguchi, K; Mitamura, Y; Iwami, J; Hasegawa, Y; Higuchi, N; Murakami, Y; Maeda, H; Yoshimura, F; Nakamura, H; Ohno, N
2012-11-01
Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3'-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface.
Anti-inflammatory triterpenoids from the stems of Microtropis fokienensis.
Chen, I-Hsiao; Du, Ying-Chi; Hwang, Tsong-Long; Chen, I-Fen; Lan, Yu-Hsuan; Yen, Hsin-Fu; Chang, Fang-Rong; Wu, Yang-Chang
2014-04-14
Three new ursane- and four new oleanane- type triterpenoids 1-7 were isolated, along with six known compounds 8-13, from the methanolic extract of Microtropis fokienensis. All structures were elucidated by mass and NMR spectroscopic methods. The isolates 4-10 and known compounds 14-17 that were previously isolated from this material were evaluated for anti-inflammatory activity based on effects against superoxide anion generation and elastase release by neutrophils in response to fMLP/CB. 11α,30-Dihydroxy-2,3-seco-olean-12-en-2,3-dioic anhydride (7) was the first triterpene anhydride from the genus of Microtropis to have the ring A expanded to a seven-membered ring; it showed significant anti-inflammatory activity against superoxide anion generation and elastase release. Unexpectedly, 30-hydroxy-2,3-seco-lup-20(29)-ene-2,3-dioic acid (17) showed the best effect against superoxide anion generation and elastase release with IC50 values of 0.06±0.01 and 1.03±0.35 µg/mL, respectively. Compound 17 had a dioic acid function, and compound 7 had an anhydride function modification in ring A; both showed promising activity in the target assays.
Johyama, Y; Yokota, K; Fujiki, Y; Takeshita, T; Morimoto, K
1999-10-01
Methyltetrahydrophthalic anhydride (MTHPA) stimulates the production of specific IgE antibodies which can cause occupational allergy even at extremely low levels of exposure (15-22 micrograms/m3). Safe use in industry demands control of the levels of exposure causing allergic diseases. Thus, the air monitoring of MTHPA is very important, and sensitive methods are required to measure low air concentrations or short-time peak exposures. This paper outlines the use of silica-gel tubes for sampling airborne MTHPA vapour, followed by analysis using gas chromatography with electron-capture detection. No breakthrough was observed at 113, 217, 673 and 830 micrograms/m3 (sampling volume 30, 60, 60 and 20 l, respectively; relative humidity 40-55%). Concentrations > 1.0 microgram/m3 could be quantified at 20-min sampling with a sampling rate of 1 l/min. The present method can also be applied to measurements of exposure to hexahydrophthalic and methylhexahydrophthalic anhydride. The risk of MTHPA exposure in two condenser plants was also assessed by determining MTHPA levels in air of the workplace. In conclusion, our method was found to be reliable and sensitive, and can be applied to the evaluation of MTHPA exposure.
Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks.
Kascholke, Christian; Loth, Tina; Kohn-Polster, Caroline; Möller, Stephanie; Bellstedt, Peter; Schulz-Siegmund, Michaela; Schnabelrauch, Matthias; Hacker, Michael C
2017-03-13
Biomimetic hydrogels are advanced biomaterials that have been developed following different synthetic routes. Covalent postfabrication functionalization is a promising strategy to achieve efficient matrix modification decoupled of general material properties. To this end, dual-functional macromers were synthesized by free radical polymerization of maleic anhydride with diacetone acrylamide (N-(1,1-dimethyl-3-oxobutyl)acrylamide) and pentaerythritol diacrylate monostearate. Amphiphilic oligomers (M n < 7.5 kDa) with anhydride contents of 7-20% offered cross-linking reactivity to yield rigid hydrogels with gelatinous peptides (E = 4-13 kPa) and good cell adhesion properties. Mildly reactive methyl ketones as second functionality remained intact during hydrogel formation and potential of covalent matrix modification was shown using hydrazide and hydrazine model compounds. Successful secondary dihydrazide cross-linking was demonstrated by an increase of hydrogel stiffness (>40%). Efficient hydrazide/hydrazine immobilization depending on solution pH, hydrogel ketone content as well as ligand concentration for bioconjugation was shown and reversibility of hydrazone formation was indicated by physiologically relevant hydrazide release over 7 days. Proof-of-concept experiments with hydrazido-functionalized hyaluronan demonstrated potential for covalent aECM immobilization. The presented dual-functional macromers have perspective as reactive hydrogel building blocks for various biomedical applications.
Xie, Wen-Jie; Zhou, Xiao-Ming
2015-01-01
Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by (1)H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t1/2, Zc and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. Copyright © 2014 Elsevier B.V. All rights reserved.
Formulation and evaluation of sublingual tablets containing Sumatriptan succinate
Prajapati, Shailesh T; Patel, Parth B; Patel, Chhagan N
2012-01-01
Objective: Sumatriptan succinate is a selective 5-hydroxytryptamine-1 receptor agonist effective in the acute treatment of migraine headaches, having low bioavailability of about 15% orally due to first-pass metabolism. The purpose of this research was to mask the intensely bitter taste of Sumatriptan succinate and to formulate fast-acting, taste-masked sublingual tablet formulation. Materials and Methods: Taste masking was performed by solid dispersion method with mannitol and ion exchange with Kyron T 114 because it releases the drug in salivary pH. The resultant batches were evaluated for in-vivo taste masking as well compatability study (Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC)). For a better feel in the mouth, menthol and sweetener Na saccharine were added to the tablet formulation. The tablets were prepared by direct compression and evaluated for weight variation, thickness, friability, drug content, hardness, disintegration time, wetting time, in vitro drug release, and in vitro permeation study. Results and Discussion: Optimized batches disintegrated in vitro within 28-34 s. Maximum drug release could be achieved with in 10 min for the solid dispersion batches and 14-15 min for the ion-exchange batches with Kyron T 114. The optimized tablet formulation showed better taste and the formulated sublingual tablets may act as a potential alternate for the Sumatriptan succinate oral tablet. Conclusion: Sumatriptan succinate can be successfully taste-masked by both the solid dispersion method using mannitol by the melting method and Ion exchange resin with Kyron T114. It was also concluded that prepared formulation improve bioavailability by prevention of first pass metabolism. PMID:23373008
USDA-ARS?s Scientific Manuscript database
Previously it was shown that the gas produced in an ethanol fermentor using either corn or barley as feedstock could be sparged directly into an adjacent fermentor using Escherichia coli AFP184 to provide the CO2 required for succinic acid production. In the present investigation it has been demons...
Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo
2016-04-01
The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh. Copyright © 2016. Published by Elsevier Ltd.
Yang, Zhuona; Jiang, Min; Li, Jian; Fang, Xiaojiang; Ye, Guizi; Bai, Xuefei; Zheng, Xiaoyu; Wei, Ping
2010-11-01
Different neutralizing agents were used as pH controller to investigate their effects on the growth and succinic acid production of Actinobacillus succinogenes NJ113. The fermentation results showed that Ca(OH)2, CaCO3 and NH4OH were not suitable for succinic acid production by A. succinogenes NJ113 because of their negative effects on cell growth. When Na-base was used, cells would flocculate and lump, and due to the sodium ion concentration reaching to a high level, OD660 dropped sharply after 12 h of fermentation. Mg-base was better because there was no significant inhibition by magnesium ion. Two combined neutralizing agents were used to maintain pH level, one with NaOH and Mg(OH)2 while the other with Na2CO3 and Mg(OH)2. The optimum ratios of the combined neutralizing agents were both 1:1 (g:g) when using 100 g/L glucose. When NaOH and Mg(OH)2 were chosen with the ratio of 1:1(g:g), 69.8 g/L of the succinic acid and 74.5% of the yield was obtained.
Vrbacký, Marek; Drahota, Zdenek; Mrácek, Tomás; Vojtísková, Alena; Jesina, Pavel; Stopka, Pavel; Houstek, Josef
2007-07-01
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.
A novel organic nonlinear optical crystal: Creatininium succinate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom
2015-06-24
A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance inmore » the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.« less
Saakian, I R; Saakian, G G
2006-01-01
Glutamate (GLU) and alpha-ketoglutarate (KGL), the substrates involved in transamination, have reciprocal effects on succinate-dependent respiration, NADH reduction, as well as on the accumulation and stable retention of Ca2+ in heart and liver mitochondria and homogenates from experimental animals. The succinate-dependent Ca2+ accumulation was shown to be highly sensitive to changes of the concentration ratios of GLU and KGL within the range 1:10 mM. GLU activated this process by transamination of oxalacetate (OAA) to aspartate. The predomination of KGL blocked the activating effect of GLU. The predomination of GLU eliminated the block produced by KGL or phosphoenolpyruvate (sources of OAA and GTP) but did not eliminate the Ca2+ accumulation-suppressing effect of aminoacetate, inhibitor of transaminases.
Brett, Gemma L; Miedziak, Peter J; He, Qian; Knight, David W; Edwards, Jennifer K; Taylor, Stuart H; Kiely, Christopher J; Hutchings, Graham J
2013-10-01
The oxidation of 1,4-butanediol and butyrolactone have been investigated by using supported gold, palladium and gold-palladium nanoparticles. The products of such reactions are valuable chemical intermediates and, for example, can present a viable pathway for the sustainable production of polymers. If both gold and palladium were present, a significant synergistic effect on the selective formation of dimethyl succinate was observed. The support played a significant role in the reaction, with magnesium hydroxide leading to the highest yield of dimethyl succinate. Based on structural characterisation of the fresh and used catalysts, it was determined that small gold-palladium nanoalloys supported on a basic Mg(OH)2 support provided the best catalysts for this reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate
Wheatley, Rachel M.; Ramachandran, Vinoy K.; Geddes, Barney A.; Perry, Benjamin J.; Yost, Chris K.
2016-01-01
ABSTRACT Insertion sequencing (INSeq) analysis of Rhizobium leguminosarum bv. viciae 3841 (Rlv3841) grown on glucose or succinate at both 21% and 1% O2 was used to understand how O2 concentration alters metabolism. Two transcriptional regulators were required for growth on glucose (pRL120207 [eryD] and RL0547 [phoB]), five were required on succinate (pRL100388, RL1641, RL1642, RL3427, and RL4524 [ecfL]), and three were required on 1% O2 (pRL110072, RL0545 [phoU], and RL4042). A novel toxin-antitoxin system was identified that could be important for generation of new plasmidless rhizobial strains. Rlv3841 appears to use the methylglyoxal pathway alongside the Entner-Doudoroff (ED) pathway and tricarboxylic acid (TCA) cycle for optimal growth on glucose. Surprisingly, the ED pathway was required for growth on succinate, suggesting that sugars made by gluconeogenesis must undergo recycling. Altered amino acid metabolism was specifically needed for growth on glucose, including RL2082 (gatB) and pRL120419 (opaA, encoding omega-amino acid:pyruvate transaminase). Growth on succinate specifically required enzymes of nucleobase synthesis, including ribose-phosphate pyrophosphokinase (RL3468 [prs]) and a cytosine deaminase (pRL90208 [codA]). Succinate growth was particularly dependent on cell surface factors, including the PrsD-PrsE type I secretion system and UDP-galactose production. Only RL2393 (glnB, encoding nitrogen regulatory protein PII) was specifically essential for growth on succinate at 1% O2, conditions similar to those experienced by N2-fixing bacteroids. Glutamate synthesis is constitutively activated in glnB mutants, suggesting that consumption of 2-ketoglutarate may increase flux through the TCA cycle, leading to excess reductant that cannot be reoxidized at 1% O2 and cell death. IMPORTANCE Rhizobium leguminosarum, a soil bacterium that forms N2-fixing symbioses with several agriculturally important leguminous plants (including pea, vetch, and lentil), has been widely utilized as a model to study Rhizobium-legume symbioses. Insertion sequencing (INSeq) has been used to identify factors needed for its growth on different carbon sources and O2 levels. Identification of these factors is fundamental to a better understanding of the cell physiology and core metabolism of this bacterium, which adapts to a variety of different carbon sources and O2 tensions during growth in soil and N2 fixation in symbiosis with legumes. PMID:27795326
Brain’s DNA Repair Response to Neurotoxicants
2005-07-01
it is possible that OTA exposure may impact on this ability of this structure to maintain its functional integrity over time. Indeed it is known...Gordon et al., 2004). In light of the critical role played by hippocampus in cognitive function, and the importance of neurogenesis in this structure ...uncompetitive inhibitorof both succinate-cytochrome c reductase and succinate dehydrogenase while sparing cytochrome oxidase and NADH dehydrogenase
Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer
2011-05-01
Briefly, the electron transfer activities of complex I/III (NADH dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from NADH to...ferricytochrome c) and complex II/III (succinate dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from succinate to ferricytochrome...The electron transfer activity of complex IV (cytochrome c oxidase: catalyzes the final step of the respiratory chain by transferring electrons from
BER-Myriant Succinic Acid Biorefinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmorhun, Mark
Myriant Corporation (Myriant) has successfully produced the bioproduct succinic acid by the fermentation of glucose at a commercial scale operation in Lake Providence, Louisiana. The MySAB facility (Myriant Succinic Acid Biorefinery) came on stream in May 2013 and has been producing product since then. The MySAB facility is a demonstration-scale plant, capable of utilizing sorghum grits and commercially available dextrose, to ferment glucose into succinic acid. A downstream processing train has demonstrated the ability to produce an industrial, a standard and a polymer grade product. It consists of cell separation, membrane filtration, continuous chromatography, polishing to remove ionic and colormore » bodies impurities, and final evaporation and crystallization. A by-product of the process is ammonium sulfate which is sold as a liquid fertilizer product. Since 2007 when development work began in the Woburn, Massachusetts R&D laboratories, the succinic acid bio-process has evolved through: Process development (microbiology, fermentation, and downstream) – R&D development laboratories; Piloting efforts at Fermic S.A. de C.V., Mexico City, Mexico – upstream and downstream processes; Design, construction, commissioning, and commercial production operations at the MySAB facility Additionally, Myriant became a wholly-owned subsidiary of the PTT Global Chemical Plc., Thailand, in late 2015, their investment into and support of Myriant goes back to 2011. The support of PTT Global Chemical Plc. helped to improve the upstream and downstream processes, and produce significant metric ton quantities of high quality bio-based succinic acid. The product has gone into a number of commercial markets worldwide for customer applications, development and production. The experience base gained via operations at the MySAB facility since May 2013, along with continued R&D development efforts involving Microbiology, Fermentation, and Downstream processes, at both the Woburn, Massachusetts and PTT Global Chemical Plc. Thailand laboratories, positions the company well for future production at the plant and commercialization of new bio-based products. This will be especially important and valuable as the green chemistry business climate continues to take root and flourish.« less
Xiao, Mengyong; Zhu, Xinna; Fan, Feiyu; Xu, Hongtao; Tang, Jinlei; Qin, Ying; Ma, Yanhe; Zhang, Xueli
2017-04-01
Improvement in the osmotolerance of Escherichia coli is essential for the production of high titers of various bioproducts. In this work, a cusS mutation that was identified in the previously constructed high-succinate-producing E. coli strain HX024 was investigated for its effect on osmotolerance. CusS is part of the two-component system CusSR that protects cells from Ag(I) and Cu(I) toxicity. Changing cusS from strain HX024 back to its original sequence led to a 24% decrease in cell mass and succinate titer under osmotic stress (12% glucose). When cultivated with a high initial glucose concentration (12%), introduction of the cusS mutation into parental strain Suc-T110 led to a 21% increase in cell mass and a 40% increase in succinate titer. When the medium was supplemented with 30 g/liter disodium succinate, the cusS mutation led to a 120% increase in cell mass and a 492% increase in succinate titer. Introducing the cusS mutation into the wild-type strain ATCC 8739 led to increases in cell mass of 87% with 20% glucose and 36% using 30 g/liter disodium succinate. The cusS mutation increased the expression of cusCFBA , and gene expression levels were found to be positively related to osmotolerance abilities. Because high osmotic stress has been associated with deleterious accumulation of Cu(I) in the periplasm, activation of CusCFBA may alleviate this effect by transporting Cu(I) out of the cells. This hypothesis was confirmed by supplementing sulfur-containing amino acids that can chelate Cu(I). Adding methionine or cysteine to the medium increased the osmotolerance of E. coli under anaerobic conditions. IMPORTANCE In this work, an activating Cus copper efflux system was found to increase the osmotolerance of E. coli In addition, new osmoprotectants were identified. Supplementation with methionine or cysteine led to an increase in osmotolerance of E. coli under anaerobic conditions. These new strategies for improving osmotolerance will be useful for improving the production of chemicals in industrial bioprocesses. Copyright © 2017 American Society for Microbiology.
Luo, Zhiqiang; Chen, Xinjing; Wang, Guopeng; Du, Zhibo; Ma, Xiaoyun; Wang, Hao; Yu, Guohua; Liu, Aoxue; Li, Mengwei; Peng, Wei; Liu, Yang
2018-01-01
Trelagliptin succinate is a dipeptidyl peptidase IV (DPP-4) inhibitor which is used as a new long-acting drug for once-weekly treatment of type 2 diabetes mellitus (DM). In the present study, a rapid, sensitive and accurate high-performance liquid chromatography (HPLC) method was developed and validated for separation and determination of trelagliptin succinate and its eight potential process-related impurities. The chromatographic separation was achieved on a Waters Xselect CSH™ C 18 (250mm×4.6mm, 5.0μm) column. The mobile phases comprised of 0.05% trifluoroacetic acid in water as well as acetonitrile containing 0.05% trifluoroacetic acid. The compounds of interest were monitored at 224nm and 275nm. The stability-indicating capability of this method was evaluated by performing stress test studies. Trelagliptin succinate was found to degrade significantly in acid, base, oxidative and thermal stress conditions and only stable in photolytic degradation condition. The degradation products were well resolved from the main peak and its impurities. In addition, the major degradation impurities formed under acid, base, oxidative and thermal stress conditions were characterized by ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). The method was validated to fulfill International Conference on Harmonisation (ICH) requirements and this validation included specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and robustness. The developed method in this study could be applied for routine quality control analysis of trelagliptin succinate tablets, since there is no official monograph. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing metabolic heterogeneity in genetically homogeneous populations of bacteria using SIMS
NASA Astrophysics Data System (ADS)
McClelland, H. L. O.; Fike, D. A.; Jones, C.; Bradley, A. S.
2016-12-01
Biogeochemical cycles of elements are catalyzed by microbes, and can be assessed using a wide array of geochemical techniques. As the spatial resolution of these analytical techniques improves over time, it has become apparent that spatial heterogeneity of geochemical processes may impose noise on a range of geochemical signals. This spatial heterogeneity may reflect population structure, as well as metabolic heterogeneity among cells. New analytical approaches are required to understand, at the cellular level, differences in biogeochemical cycling of elements. We are developing such approaches by applying secondary-ion mass spectrometry (SIMS) techniques to populations of model organisms. In this work we report initial results from the analysis of genetically homogeneous cultures of Methylobacterium extorquens PA1, a facultative methylotrophic Alphaproteobacterium that has been extensively studied growing on both single carbon (e.g., methanol) and multi-carbon (e.g., succinate) substrates. PA1 cultures acclimated to succinate exhibited a more pronounced lag when grown on methanol compared with populations acclimated to methanol. However neither acclimation condition results in a pronounced lag during growth on succinate. When grown on a mixture of methanol and succinate, Methylobacterium co-utilize these substrates on a population level. We investigated the degree to which this apparent coutilisation is representative of individual cells, or whether it is a superposition of distinct metabolically specialized subpopulations. To explore this metabolic heterogeneity, we have grown populations of PA1 in liquid media containing a mixture of both methanol and succinate with one or the other substrate labelled with 13C. SIMS analysis of the isotopic composition of each cell allows us to infer the substrate, or mix of substrates, used for anabolic processes in each cell, along with cell-specfic growth rates via the exponential dilution of a 15N label.
Quirino, Isabel G; Silva, Jose Maria P; Diniz, Jose S; Lima, Eleonora M; Rocha, Ana Cristina S; Simões e Silva, Ana Cristina; Oliveira, Eduardo A
2011-01-01
The aim of this study was to evaluate the diagnostic accuracy of dimercapto-succinic acid renal scintigraphy and renal ultrasound in identifying high grade vesicoureteral reflux in children after a first episode of urinary tract infection. A total of 533 children following a first urinary tract infection were included in the analysis. Patients were assessed by 3 diagnostic imaging studies, renal ultrasound, dimercapto-succinic acid scan and voiding cystourethrography. The main event of interest was the presence of high grade (III to V) vesicoureteral reflux. The combined and separate diagnostic accuracy of screening methods was assessed by calculation of diagnostic OR, sensitivity, specificity, positive predictive value, negative predictive value and likelihood ratio. A total of 246 patients had reflux, of whom 144 (27%) had high grade (III to V) disease. Sensitivity, negative predictive value and diagnostic OR of ultrasound for high grade reflux were 83.3%, 90.8% and 7.9, respectively. Dimercapto-succinic acid scan had the same sensitivity as ultrasound but a higher negative predictive value (91.7%) and diagnostic OR (10.9). If both tests were analyzed in parallel by using the OR rule, ie a negative diagnosis was established only when both test results were normal, sensitivity increased to 97%, negative predictive value to 97% and diagnostic OR to 25.3. Only 9 children (6.3%) with dilating reflux had an absence of alterations in both tests. Our findings support the idea that ultrasound and dimercapto-succinic acid scan used in combination are reliable predictors of dilating vesicoureteral reflux. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Mayser, P; Schulz, S
2016-08-01
Lithium succinate and gluconate are effective alternative options licensed for the topical treatment of seborrhoeic dermatitis (SD). Their mode of action is not fully elucidated. Minimal inhibitory concentrations against Malassezia (M.) yeasts, which play an important role in SD, are very high. An assay based on the hydrolysis of ethyl octanoate enables us to test the hydrolytic activity of reference strains of the species M. globosa, M. sympodialis and M. furfur solely without interference by fungal growth as the free octanoic acid generated has antifungal activity. In this assay the presence of alkali salts (lithium, sodium and potassium succinate resp.) in concentrations of 2%, 4% and 8% does not influence hydrolytic activity but the availability of the generated free fatty acid in a dose-dependent manner which was analysed by means of high-performance thin layer chromatography and densitometry. This was best effected with the lithium, followed by the sodium and only to a low degree by the potassium salt. As shown by attenuated total reflection Fourier transform infrared spectroscopy the free fatty acid reacted to the respective alkali soap and precipitate from solution. The alkali soaps could not be utilized by the M. spp. as shown in a modified Tween auxanogram and in lack of fungal growth by ethyl oleate in the presence of 8% lithium succinate. The effect of lithium succinate on growth of M. yeasts and presumably in SD can be explained by a precipitation of free fatty acids as alkali soaps limiting their availability for the growth of these lipid-dependent yeasts. © 2016 European Academy of Dermatology and Venereology.