Science.gov

Sample records for octupole state coupling

  1. 34. mu. s isomer at high spin in sup 212 Fr: Evidence for a many-particle octupole coupled state

    SciTech Connect

    Byrne, A.P.; Dracoulis, G.D.; Schiffer, K.J.; Davidson, P.M.; Kibedi, T.; Fabricius, B.; Baxter, A.M.; Stuchbery, A.E. Australian National University, G.P.O. Box 4, Canberra, Australian Capital Territory )

    1990-07-01

    A very high spin isomeric state with {tau}{sub {ital m}}=34(3) {mu}s has been observed at an excitation energy of 8.5 MeV in {sup 212}Fr. The experimental evidence favors an {ital E}3 assignment, with a very large {ital E}3 transition strength, {ital B}({ital E}3)=100(12){times}10{sup 3} {ital e}{sup 2}fm{sup 6}, to one of the {gamma} rays de-exciting the isomer. The observed properties are in very good agreement with the characteristics of a 34{sup +} state predicted by the multiparticle octupole vibration model.

  2. One-phonon octupole vibrational states in 211At, 212Rn, 213Fr and 214Ra with N = 126

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.

    2013-12-01

    Excited high spin states in 211At, 212Rn, 213Fr and 214Ra with N = 126 are reorganized and interpreted in terms of the stretched weak coupling of an octupole 3- phonon. Nearly identical sequences of levels with ΔI = 3 and the parity change are found, for the first time, up to 25- for 20 states of 214Ra, up to 35- for 36 states of 212Rn and up to 53/2+ for 16 states of 213Fr. The stretched weak coupling of an octupole phonon is extended up to the highest excitation energy of 11355 keV for 212Rn which has the largest experimental B( E3) value of 44.1(88) W.u. for the 11- → 8{2/+} transition. The stretched weak coupling of an octupole 3- phonon needs to be considered when single particle configurations are assigned to high spin states. Average octupole excitation energies of 657(51) keV for 211At, 1101(28) keV for 212Rn, 667(25) keV for 213Fr, and 709(25) keV for 214Ra are obtained. The calculated level enegies are in a good agreement with the experimental level energies within the error limit of 4.3%.

  3. Collective states of odd nuclei in a model with quadrupole-octupole degrees of freedom

    SciTech Connect

    Minkov, N. Drenska, S. B.; Yotov, P.; Bonatsos, D. Scheid, W.

    2007-08-15

    We apply the collective axial quadrupole-octupole Hamiltonian to describe the rotation-vibration motion of odd nuclei with Coriolis coupling between the even-even core and the unpaired nucleon.We consider that the core oscillates coherently with respect to the quadrupole and octupole axialdeformation variables. The coupling between the core and the unpaired nucleon provides a split paritydoublet structure of the spectrum. The formalism successfully reproduces the parity-doublet splitting in a wide range of odd-A nuclei. It provides model estimations for the third angular-momentum projection K on the intrinsic symmetry axis and the related intrinsic nuclear structure.

  4. Influence of octupole interactions on the behavior of negative-parity states at low spins

    SciTech Connect

    Sitdikov, A. S. Safarov, R. Kh.; Kvasil, J.

    2006-12-15

    The energies of negative-parity levels based on two-particle states exhibit a nonlinear behavior at low spins versus the core-rotation energy because the alignment process has not yet been completed for them. This behavior of negative-parity levels in the low-spin region is satisfactorily described upon the inclusion of octupole-octupole interactions. This is demonstrated within the rotational model involving the Coriolis mixing of states for the even-even isotopes {sup 162-168}Hf.

  5. Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Rodríguez-Guzmán, R.; Robledo, L. M.

    2015-07-01

    Collective quadrupole and octupole states are described in a series of Sm and Gd isotopes within the framework of the interacting boson model (IBM), whose Hamiltonian parameters are deduced from mean-field calculations with the Gogny energy density functional. The link between both frameworks is the (β2β3 ) potential energy surface computed within the Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The diagonalization of the IBM Hamiltonian provides excitation energies and transition strengths of an assorted set of states including both positive- and negative-parity states. The resultant spectroscopic properties are compared with the available experimental data and also with the results of the configuration mixing calculations with the Gogny force within the generator coordinate method (GCM). The structure of excited 0+ states and its connection with double-octupole phonons is also addressed. The model is shown to describe the empirical trend of the low-energy quadrupole and octupole collective structure fairly well and turns out to be consistent with GCM results obtained with the Gogny force.

  6. Coupling of nuclear quadrupole and octupole degrees of freedom in an angular momentum dependent potential of two deformation variables

    SciTech Connect

    Minkov, N.; Yotov, P.; Drenska, S.; Scheid, W.; Bonatsos, Dennis; Lenis, D.; Petrellis, D.

    2006-04-26

    We propose a collective rotation-vibration Hamiltonian of nuclei in which the axial quadrupole {beta}2 and octupole {beta}3 variables are coupled through the centrifugal interaction. We consider that the system oscillates between positive and negative {beta}3-values by rounding a potential core in the ({beta}2,{beta}3)- space. We examine the effect of the 'rounding' in the structure of the spectrum.

  7. Octupole shapes in heavy nuclei

    SciTech Connect

    Ahmad, I.

    1994-08-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.

  8. Search for the two-phonon octupole vibrational state in {sup 208}Pb

    SciTech Connect

    Blumenthal, D.J.; Henning, W.; Janssens, R.V.F.

    1995-08-01

    We performed an experiment to search for the two-phonon octupole vibrational state in {sup 208}Pb. Thick targets of {sup 208}Pb, {sup 209}Bi, {sup 58,64}Ni, and {sup 160}Gd were bombarded with 1305 MeV beams of were bombard {sup 208}Pb supplied by ATLAS. Gamma rays were detected using the Argonne-Notre Dame BGO gamma-ray facility, consisting of 12 Compton-suppressed germanium detectors surrounding an array of 50 BGO scintillators. We identified some 30 known gamma rays from {sup 208}Pb in the spectra gated by the 5{sup -} {yields} 3{sup -} and 3{sup -} {yields} 0{sup +} transitions in {sup 208}Pb. In addition, after unfolding these spectra for Compton response, we observed broad coincident structures in the energy region expected for the 2-phonon states. Furthermore, we confirmed the placement of a 2485 keV line observed previously in {sup 207}Pb and find no evidence consistent with the placement of this line in {sup 208}Pb. We are currently in the process of investigating the origin of the broadened lines observed in the spectra, extracting the excitation probability of states in {sup 208}Pb, and determining the relative probability of mutual excitation and neutron transfer in this reaction. An additional experiment is also being performed to collect much higher statistics germanium-germanium coincidence data for the thick {sup 208}Pb target.

  9. Octupole shaps in nuclei, and some rotational consequences thereof

    SciTech Connect

    Nazarewicz, W.; Olanders, P.; Ragnarsson, I.; Dudek, J.; Leander, G.A.

    1984-01-01

    During the last years a large number of experimental papers presenting spectroscopic evidence for collective dipole and octupole deformations have appeared. Many theoretical attempts have been made to explain the observed spectroscopic properties in terms of stable octupole deformations. The coupling by the octupole potential, being proportional to Y/sub 30/, is strongest for those subshells for which ..delta..1 = 3. Therefore the tendency towards octupole deformation occurs just beyond closed shells where the high-j intruder subshells (N,1,j) lie very close to the normal parity subshells (N-1,1-3,j-3), i.e. for the particle numbers 34 (g/sub 9/2/-p/sub 3/2/), 56 (h/sub 11/2/-d/sub 5/2/). 9C (i/sub 13/2/-f/sub 7/2/) and 134 (j/sub 15/2/-g/sub 9/2/). Empirically, it is specifically for the particle numbers listed above that negative parity states are observed at relatively low energies in doubly even nuclei. From the different combinations of octupole-driving particle numbers four regions of likely candidates for octupole deformed equilibrium shapes emerge, namely the neutron-deficient nuclei with Z approx. = 90, N approx. = 134 (light actinides) and Z approx. = 34, N approx. = 34 (A approx. = 70) and the neutron-rich nuclei with Z approx. = 56, N approx. = 90 (heavy Ba) and Z approx. = 34, N/sup 56/ (A approx. = 90). In our calculations we searched for octupole unstable nuclei in these four mass regions. The Strutinsky method with the deformed Woods-Saxon potential was employed. The macroscopic part consists of a finite-range liquid drop energy, where both the surface and Coulomb terms contain a diffuseness correction.

  10. First observation of excited states in {sup 137}Te and the extent of octupole instability in the lanthanides

    SciTech Connect

    Urban, W.; Korgul, A.; Rzaca-Urban, T.; Schulz, N.; Bentaleb, M.; Lubkiewicz, E.; Durell, J. L.; Leddy, M. J.; Jones, M. A.; Phillips, W. R.

    2000-04-01

    Excited states in {sup 137}Te, populated in spontaneous fission of {sup 248}Cm, were studied by means of prompt-{gamma} spectroscopy, using the EUROGAM2 multidetector array. This is the first observation of excited states in {sup 137}Te. The yrast excitations of {sup 137}Te are due to the three valence neutrons, occupying the {nu}f{sub 7/2} and {nu}h{sub 9/2} orbitals, similarly as observed in its heavier N=85 isotones. Systematic comparison of excited levels in the N=85 isotones shows inconsistencies in spin and parity assignments in {sup 139}Xe and {sup 141}Ba nuclei. The new data for {sup 137}Te do not confirm earlier suggestions that octupole correlations increase in the N=85 isotones, close to the Z=50 closed shell. (c) 2000 The American Physical Society.

  11. Octupole Deformation Bands of πh11/2 in Neutron-Rich 145,147La Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; S, Zhu J.; Wang, Mu-ge; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; W, Ma C.; Long, Gui-lu; Zhu, Ling-yan; Li, Ming; A, Sakhaee; Gan, Cui-yun; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; Yu, Oganessian Ts; G, Ter-Akopian M.; A, Daniel V.

    1999-03-01

    Octupole deformation bands built on πh11/2 orbital in neutron-rich odd-Z 145,147La nuclei have been investigated by measuring the prompt γ-rays emitted from the 252Cf source. The alternating parity band structures and strong E1 transitions observed between negative- and positive-parity bands in both nuclei indicate the octupole deformation enhanced by the h11/2 single proton coupling. According to observed energy displacements the octupole deformation becomes stable at the intermediate spin states.

  12. Search for one- and two-phonon octupole vibrational states in the spherical nuclei near 132Sn

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.; Luo, Y. X.

    2013-10-01

    Excited high spin states in 135I, 136Xe, 137Cs, 138Ba, 139La, 140Ce and 142Nd with N = 82 are reorganized and interpreted in a different way to find one- phonon octupole vibrational (POV) bands. Two nearly identical (similar) bands with ΔI = 3 are found in these nuclei. From the presence of two nearly identical excited bands with ΔI = 3 in these nuclei, one-POV bands are proposed. Also, high spin states of 134Sb, 134,135Te, 135,136I, 137Xe and 139Ba near 132Sn are reanalyzed in order to search for one- and two-POV states. New spins and parities are tentatively assigned to the 2203.9 keV state in 137Xe and the 1976.6 and 2091.7 keV states in 139Ba from the state energy plots of the N = 82 and 83 nuclei. High spin states of 134Sb, 134,135Te, 135,136I, 137Xe and 139Ba connected by E1, E3 /M2 and E3 transitions are proposed, for the first time, as zero-, one- and two-POV states. One- and two-POV states in 134Sb and 135Te are built on a 7- (πg7/2 ν f7/2) state and a 19 /2- (νf7/2 ⊗ 61+)state, respectively. One-POV states built on the 19 /2- (ν f7/2 ⊗ 61+)and the 21 /2- (νh9/2 ⊗ 62+)states coexist in 137Xe. Then, one- and two-POV states in 139Ba are built only on the 21 /2- (νh9/2 ⊗ 62+)state. One- and two-POV states in 134Te are built on the 62+state with some mixing with the 61+state.

  13. Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-β decay

    NASA Astrophysics Data System (ADS)

    Yao, J. M.; Engel, J.

    2016-07-01

    We present a generator-coordinate calculation, based on a relativistic energy-density functional, of the low-lying spectra in the isotopes 150Nd and 150Sm and of the nuclear matrix element that governs the neutrinoless double-β decay of the first isotope to the second. We carefully examine the impact of octupole correlations on both nuclear structure and the double-β decay matrix element. Octupole correlations turn out to reduce quadrupole collectivity in both nuclei. Shape fluctuations, however, dilute the effects of octupole deformation on the double-β decay matrix element, so that the overall octupole-induced quenching is only about 7 % .

  14. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  15. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-08-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  16. Evolution of octupole correlations in 123Ba

    NASA Astrophysics Data System (ADS)

    Chen, X. C.; Zhao, J.; Xu, C.; Hua, H.; Shneidman, T. M.; Zhou, S. G.; Wu, X. G.; Li, X. Q.; Zhang, S. Q.; Li, Z. H.; Liang, W. Y.; Meng, J.; Xu, F. R.; Qi, B.; Ye, Y. L.; Jiang, D. X.; Cheng, Y. Y.; He, C.; Sun, J. J.; Han, R.; Niu, C. Y.; Li, C. G.; Li, P. J.; Wang, C. G.; Wu, H. Y.; Li, Z. H.; Zhou, H.; Hu, S. P.; Zhang, H. Q.; Li, G. S.; He, C. Y.; Zheng, Y.; Li, C. B.; Li, H. W.; Wu, Y. H.; Luo, P. W.; Zhong, J.

    2016-08-01

    High-spin states of 123Ba have been studied via the 108Cd(19F,3 n p )123Ba fusion-evaporation reaction at a beam energy of 90 MeV. Several E 1 transitions linking the positive-parity ν (d5 /2+g7 /2) band and negative-parity ν h11 /2 band are observed in 123Ba for the first time. Evidence for the existence of octupole correlations in 123Ba is presented based on the systematic comparisons of the B (E 1 )/B (E 2 ) branching ratios and the energy displacements in odd-A Ba isotopes. The characteristics of octupole correlation in the odd-A Ba,125123 are explained by the state-of-the-art multidimensionally-constrained relativistic mean-field model and cluster model based on the dinuclear system concept.

  17. Octupole response and stability of spherical shape in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Abrosimov, V. I.; Davidovskaya, O. I.; Dellafiore, A.; Matera, F.

    2003-11-01

    The isoscalar octupole response of a heavy spherical nucleus is analyzed in a semiclassical model based on the linearized Vlasov equation. The octupole strength function is evaluated with different degrees of approximation. The zero-order fixed-surface response displays a remarkable concentration of strength in the 1ℏ ω and 3ℏ ω regions, in excellent agreement with the quantum single-particle response. The collective fixed-surface response reproduces both the high- and low-energy octupole resonances, but not the low-lying 3 - collective states, while the moving-surface response function gives a good qualitative description of all the main features of the octupole response in heavy nuclei. The role of triangular nucleon orbits, that have been related to a possible instability of the spherical shape with respect to octupole-type deformations, is discussed within this model. It is found that, rather than creating instability, the triangular trajectories are the only classical orbits contributing to the damping of low-energy octupole excitations.

  18. Periodic orbits and shell structure in octupole deformed potentials

    SciTech Connect

    Heiss, W.D. ); Nazmitdinov, R.G. ); Radu, S. )

    1995-01-15

    The effect of an octupole term in a quadrupole deformed single-particle potential is studied from the classical and quantum-mechanical viewpoint. Whereas the problem is nonintegrable, the quantum-mechanical spectrum nevertheless shows some shell structure in the superdeformed prolate case for particular, yet fairly large octupole strengths; for spherical or oblate deformation the shell structure disappears. This result is associated with classical periodic orbits that are found by employing the removal of resonances method; this approximation method allows determination of the shape of the orbit and of the approximate octupole coupling strength for which it occurs. The validity of the method is confirmed by solving numerically the classical equations of motion. The quantum-mechanical shell structure is analyzed using the particle-number dependence of the fluctuating part of the total energy. In accordance with the classical result, this dependence turns out to be very similar for a superdeformed prolate potential plus octupole term and a hyperdeformed prolate potential without octupole term. In this way the shell structure is explained at least for some few hundred levels. The Fourier transform of the level density further corroborates these findings.

  19. Nuclear fusion as a probe for octupole deformation in 224Ra

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Lay, J. A.; Vitturi, A.

    2015-11-01

    Background: Nuclear fusion has been shown to be a useful probe to study the different nuclear shapes. However, the possibility of testing octupole deformation of a nucleus with this tool has not been fully explored yet. The presence of a static octupole deformation in nuclei will enhance a possible permanent electric dipole moment, leading to a possible demonstration of parity violation. Purpose: To check whether static octupole deformation and octupole vibration in fusion give different results so that both situations could be experimentally disentangled. Method: Fusion cross sections are computed in the coupled-channel formalism making use of the ingoing-wave boundary conditions (IWBC) for the systems 16O+144Ba and 16O+224Ra . Results: Barrier distributions of the two considered schemes show slightly different patterns. In the case of 144Ba, the difference between them is negligible. For the 224Ra case, perceptible differences are found in correspondence with its larger octupole deformation. However, the possibility of disentangling both schemes is not guaranteed and it will depend on the available experimental accuracy and the strength of the octupole deformation. Conclusions: The measurement of barrier distributions could be a complementary probe to support the presence of octupole deformation.

  20. Octupole correlations in the heavy elements

    SciTech Connect

    Chasman, R.R.

    1986-01-01

    The effects of octupole correlations on the nuclear structure of the heavy elements are discussed. The cluster model description of the heavy elements is analyzed. The relevance of 2/sup 6/-pole deformation and fast El transitions to an octupole model is considered. 30 refs., 21 figs., 1 tab.

  1. Influence of the octupole mode on nuclear high-K isomeric properties

    NASA Astrophysics Data System (ADS)

    Minkov, Nikolay; Walker, Phil

    2014-05-01

    The influence of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even actinide (U, Pu, Cm, Fm, No), rare-earth (Nd, Sm and Gd), and superheavy (^{270}\\text{Ds}) nuclei is examined within a deformed shell model with pairing interaction. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated over a wide range in the plane of quadrupole and octupole deformations. In most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation. At the same time, the calculations outline three different groups of nuclei: with pronounced, shallow, and missing minima in the 2qp energy surfaces with respect to the octupole deformation. The result indicates regions of nuclei with octupole softness as well as with possible octupole deformation in the high-K isomeric states. These findings show the need for further theoretical analysis as well as of detailed experimental measurements of magnetic moments in heavy deformed nuclei.

  2. Description of nuclear octupole and quadrupole deformation close to axial symmetry: Octupole vibrations in the X(5) nuclei {sup 150}Nd and {sup 152}Sm

    SciTech Connect

    Bizzeti, P. G.; Bizzeti-Sona, A. M.

    2010-03-15

    The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry is used to describe the negative-parity band based on the first octupole vibrational state in nuclei close to the critical point of the U(5)-to-SU(3) phase transition. The situation of {sup 150}Nd and {sup 152}Sm is discussed in detail. The positive-parity levels of these nuclei, and also the in-band E2 transitions, are reasonably accounted for by the X(5) model. With simple assumptions on the nature of the octupole vibrations, it is also possible to describe the negative-parity sector with comparable accuracy without changing the description of the positive-parity part.

  3. Nonaxial-octupole effect in superheavy nuclei

    SciTech Connect

    Chen, Y.-S.; Sun, Yang; Gao Zaochun

    2008-06-15

    The triaxial-octupole Y{sub 32} correlation in atomic nuclei has long been expected to exist but experimental evidence has not been clear. We find, in order to explain the very low-lying 2{sup -} bands in the transfermium mass region, that this exotic effect may manifest itself in superheavy elements. Favorable conditions for producing triaxial-octupole correlations are shown to be present in the deformed single-particle spectrum, which is further supported by quantitative Reflection Asymmetric Shell Model calculations. It is predicted that the strong nonaxial-octupole effect may persist up to the element 108. Our result thus represents the first concrete example of spontaneous breaking of both axial and reflection symmetries in the heaviest nuclear systems.

  4. Octupole deformation in sup 221 Fr; E1 transition rates

    SciTech Connect

    Liang, C.F.; Peghaire, A. ); Sheline, R.K. )

    1990-07-10

    Experimental data following the alpha decay of{sup 225}Ac are interpreted in terms of a spectroscopy in {sup 221}Fr consistent with octupole deformation. However, the measured E1 transition probabilities suggest that the low lying bands in {sup 221}Fr are considerably more mixed than in nuclei with slightly higher mass number. It is suggested that this mixing of states in {sup 221}Fr is indicative of the partial collapse of Nilsson-like orbitals into more degenerate shell model orbitals.

  5. Possible octupole deformation in Cs and Ba nuclei from their differential radii

    SciTech Connect

    Sheline, R.K.; Jain, A.K.; Jain, K.

    1988-12-01

    The odd-even staggering of the differential radii of Fr and Ra and the Cs and Ba nuclei is compared. This staggering is inverted in the region of known octupole deformation in the Fr and Ra nuclei. The normal staggering is eliminated in the Cs nuclei and attenuated in the Ba nuclei for neutron numbers 85--88. This fact is used to suggest the possible existence of octupole deformation and its neutron number range in the Cs and Ba nuclear ground states.

  6. Time-dependent Hartree-Fock Study of Octupole Vibrations in doubly magic nuclei

    NASA Astrophysics Data System (ADS)

    Simenel, C.; Buete, J.; Vo-Phuoc, K.

    2016-09-01

    Octupole vibrations are studied in some doubly magic nuclei using the time-dependent Hartree-Fock (TDHF) theory with a Skyrme energy density functional. Through the use of the linear response theory, the energies and transition amplitudes of the low-lying vibrational modes for each of the nuclei were determined. Energies were found to be close to experimental results. However, transition amplitudes, quantified by the deformation parameter β3, are underestimated by TDHF. A comparison with single-particle excitations on the Hartree-Fock ground-state shows that the collective octupole vibrations have their energy lowered due to attractive RPA residual interaction.

  7. Octupole Excitation of Trapped Ion Motion for Precision Mass Measurements

    NASA Astrophysics Data System (ADS)

    Bollen, G.; Ringle, R.; Schury, P.; Schwarz, S.; Sun, T.

    2005-04-01

    National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, USA An azimuthal octupole radiofrequency field has been used to excite the ion motion of ^40Ar^+ ions stored in a Penning trap. A resonant response was observed at twice the ions' true cyclotron frequency φc=q/m.B. The experiment has been performed with the 9.4-T Penning trap system of the recently commissioned LEBIT facility at the NSCL at MSU [1]. Similar to the excitation with an azimuthal quadrupole field at φc [2,3], octupole excitation at 2φc gives rise to a periodic beating of the ion motion between magnetron and reduced cyclotron motion. Differences are observed in the dependence of the excited ion motion on initial amplitudes and phases of the radial eigen motions. The observed behavior of the ions is found to be in good agreement with the results of numerical simulations. The technique still requires further testing but the first results indicate that 2φc excitation may provide benefits that are similar to doubling the magnetic field strength B. In particular precision mass measurements of short-lived rare isotopes may benefit from this technique by being able to reach a given precision with shorter ion storage and observation times. [1] S. Schwarz et al, Nucl. Instr. Meth. B204 (2004) 507 [2] G. Bollen et al., J. Appl. Phys. 68 (1990) 4355 [3] M. König et al., Int. J. Mass Spec. Ion. Proc. 142 (1995) 95

  8. Octupole deformation in 144,146Ba measured by Coulomb excitation of radioactive beams

    NASA Astrophysics Data System (ADS)

    Bucher, Brian; Zhu, Shaofei; ANL, LBNL, LLNL, Rochester, Florida State, Liverpool, Maryland, Notre Dame, Ohio, W. Scotland Collaboration

    2015-10-01

    The exotic, neutron-rich 144Ba (t1 / 2 = 11.5 s) and 146Ba (t1 / 2 = 2.2 s) nuclei are expected to exhibit some of the strongest octupole correlations in A < 200 systems. Up to now, evidence for such strong octupole correlations has been inferred from observations of low-lying negative-parity states and from the interleaving of positive- and negative-parity levels in the ground-state band. However, the E1 transition strengths are very different in these two nuclei, with two orders of magnitude reduction in 146Ba. In this experiment, we measure the octupole strength directly by Coulomb excitation of post-accelerated 144,146Ba beams produced at CARIBU using CHICO2 and GRETINA. In 144Ba, we found B(E3;3 -->0) = 48(-34+ 25) W.u., a value considerably larger than theoretical predictions, while preliminary results for 146Ba are also indicative of strong octupole collectivity. The experimental conditions, the analysis, and the results from these challenging new measurements will be presented. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), DE-AC02-05CH11231 (LBNL, GRETINA), DOE DE-AC52-07NA27344 (LLNL), and NSF.

  9. gamma-ray spectroscopic study of calcium-48,49 and scandium-50 focusing on low lying octupole vibration excitations

    NASA Astrophysics Data System (ADS)

    McPherson, David M.

    An inverse kinematic proton scattering experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) using the GRETINA-S800 detector system in conjunction with the Ursinus College liquid hydrogen target. gamma-ray yields from the experiment were determined using geant4 simulations, generating state population cross sections. These cross sections were used to extract the delta_3 deformation length for the low-lying octupole vibration excitations in Ca-48,49 using the coupled channels analysis code fresco. Particle-core coupling in Ca-49 was studied in comparison to Ca-48 through determination of the neutron and proton deformation lengths. The total inverse kinematic proton scattering deformation lengths were evaluated for the low-lying octupole vibration excitations in Ca-48,49 to be delta_3(Ca-48, 3. -_1) = 1.0(2)fm,delta_3(Ca-49, 9/2. +_1) = 1.2(1)fm, delta_3 (Ca-49, 9/2. +_1) = 1.5(2)fm, delta_3(Ca-49,5/2. +_1) = 1.1(1)fm. Proton and neutron deformation lengths for two of theseoctupole states were also determined to be delta_p(Ca-48, 3. -_1) = 0.9(1)fm,delta_p (Ca-49, 9/2. +_1) = 1.0(1)fm, delta_n(Ca-48, 3. -_1) = 1.1(3)fm, anddelta_n(Ca-49, 9/2. +_1) = 1.3(3)fm. Additionally, the ratios of the neutronto proton transition matrix elements were also determined for these two states to be M_n/M_p(Ca-48, 3. -_1) = 1.7(6) and M_n/M_p(Ca-49, 9/2. +_1) = 2.0(5).Statistically, the derived values for these two nuclei are nearly identical.

  10. Direct evidence of octupole deformation in neutron-rich 144Ba

    DOE PAGES

    Bucher, B.; Zhu, S.; Wu, C. Y.; Janssens, R. V. F.; Cline, D.; Hayes, A. B.; Albers, M.; Ayangeakaa, A. D.; Butler, P. A.; Campbell, C. M.; et al

    2016-03-17

    Here, the neutron-rich nucleus 144Ba (t1/2 = 11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multistep Coulomb excitation of a post-accelerated 650-MeV 144Ba beam on a 1.0–mg/cm2 208Pb target. The measured value of the matrix element, < 31–∥M(E3)∥01+ >= 0.65(+17–23) eb3/2, corresponds to a reduced B(E3) transition probabilitymore » of 48(+25–34) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.« less

  11. Generation of gravitational waves: The post Newtonian spin octupole moment

    NASA Astrophysics Data System (ADS)

    Damour, T.; Iyer, B. R.

    1993-12-01

    Using the gravitational wave formalism developed by Blanchet, Damour, and Iyer, this note computes the post-Newtonian-accurate spin octupole moment. The result is checked by explicitly verifying the transformation of the radiative spin octupole moment under shifts of the spatial origin.

  12. Coherent quadrupole-octupole modes and split parity-doublet spectra in odd-A nuclei

    SciTech Connect

    Minkov, N.; Drenska, S.; Yotov, P.; Lalkovski, S.; Bonatsos, D.; Scheid, W.

    2007-09-15

    A collective model describing coherent quadrupole-octupole oscillations and rotations with a Coriolis coupling between the even-even core and the unpaired nucleon is applied to odd nuclei. The particle-core coupling provides a parity-doublet structure of the spectrum, whereas the quadrupole-octupole motion leads to a splitting of the doublet energy levels. The formalism successfully reproduces the split parity-doublet spectra and the attendant B(E1) and B(E2) transition probabilities in a wide range of odd-A nuclei. It provides estimations for the influence of the Coriolis interaction on the collective motion and subsequently for the value of angular momentum projection K on which the spectrum is built. The analysis of the energy splitting and B(E1) transition probabilities between opposite parity counterparts suggests degenerate doublet structures at high angular momenta. The study provides information about the evolution of quadrupole-octupole collectivity in odd-mass nuclei.

  13. The smallest chimera state for coupled pendula

    PubMed Central

    Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-01-01

    Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, recently it has been suggested that chimera states may occur in the systems with small numbers of oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern of the smallest chimera state, which is characterized by the coexistence of two synchronized and one incoherent oscillator. We show that this chimera state can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton’s laws. Our finding suggests that chimera states are observable in small networks relevant to various real-world systems. PMID:27713483

  14. The smallest chimera state for coupled pendula

    NASA Astrophysics Data System (ADS)

    Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-10-01

    Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, recently it has been suggested that chimera states may occur in the systems with small numbers of oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern of the smallest chimera state, which is characterized by the coexistence of two synchronized and one incoherent oscillator. We show that this chimera state can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton’s laws. Our finding suggests that chimera states are observable in small networks relevant to various real-world systems.

  15. Measuring the full transverse beam matrix using a single octupole

    NASA Astrophysics Data System (ADS)

    Ögren, J.; Ruber, R.; Ziemann, V.; Farabolini, W.

    2015-07-01

    We propose a method to fully determine the transverse beam matrix using a simple setup consisting of two steering magnets, an octupole field and a screen. This works in principle for any multipole field, i.e., sextupole, octupole magnet or a radio frequency structure with a multipole field. We have experimentally verified the method at the Compact Linear Collider Test Facility 3 at CERN using a Compact Linear Collider accelerating structure, which has an octupole component of the radio frequency fields. By observing the position shifts of the beam centroid together with changes in transverse beam size on a screen, we determined the full transverse beam matrix, with all correlations.

  16. Octupole and hexadecapole bands in 152Sm

    SciTech Connect

    Garrett, P E; Kulp, W D; Wood, J L; Bandyopadhyay, D; Christen, S; Choudry, S; Dewald, A; Fitzler, A; Fransen, C; Jessen, K; Jolie, J; Kloezer, A; Kudejova, P; Kumar, A; Lesher, S R; Linnemann, A; Lisetskiy, A; Martin, D; Masur, M; McEllistrem, M T; Moller, O; Mynk, M; Orce, J N; Pejovic, P; Pissulla, T; Regis, J; Schiller, A; Tonev, D; Yates, S W

    2005-05-13

    The nucleus {sup 152}Sm is characterized by a variety of low-energy collective modes, conventionally described as rotations, {beta} vibrations, and {gamma} vibrations. Recently, it has been suggested that {sup 152}Sm is at a critical point between spherical and deformed collective phases. Consequently, {sup 152}Sm is being studied by a variety of techniques, including radioactive decay, multi-step Coulomb excitation, in-beam ({alpha},2n{gamma}) {gamma}-ray spectroscopy, and (n,n'{gamma}) spectroscopy. The present work focuses on the latter two reactions; these have been used to investigate the low-lying bands associated with the octupole degree of freedom, including one built on the first excited 0{sup +} band. In addition, the K{sup {pi}} = 4{sup +} hexadecapole vibrational band has been identified.

  17. Imperfect chimera states for coupled pendula.

    PubMed

    Kapitaniak, Tomasz; Kuzma, Patrycja; Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri

    2014-01-01

    The phenomenon of chimera states in the systems of coupled, identical oscillators has attracted a great deal of recent theoretical and experimental interest. In such a state, different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Here, considering the coupled pendula, we find another pattern, the so-called imperfect chimera state, which is characterized by a certain number of oscillators which escape from the synchronized chimera's cluster or behave differently than most of uncorrelated pendula. The escaped elements oscillate with different average frequencies (Poincare rotation number). We show that imperfect chimera can be realized in simple experiments with mechanical oscillators, namely Huygens clock. The mathematical model of our experiment shows that the observed chimera states are controlled by elementary dynamical equations derived from Newton's laws that are ubiquitous in many physical and engineering systems.

  18. Chaos in axially symmetric potentials with octupole deformation

    SciTech Connect

    Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )

    1994-04-11

    Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.

  19. Josephson-coupled Moore-Read states

    NASA Astrophysics Data System (ADS)

    Hormozi, Layla; Moller, Gunnar; Slingerland, Joost; Simon, Steven

    2015-03-01

    We study a quantum Hall bilayer system of bosons at total filling fraction ν = 1, and analyze the the coupled Moore-Read state [PRL 108, 256809 (2012)] that results from the interplay between short-ranged interactions and interlayer pair-tunneling terms. Supported by the exact solution of the full zero-energy quasihole spectrum and a conformal field theory analysis, we develop an intuitive picture of this system as two coupled composite fermion superconductors. In this language, pair tunneling plays the role of Josephson coupling between the superconducting phases of the two layers, which gaps out the Goldstone mode associated with interlayer particle distribution. This coupling further implies that non-Abelian quasiparticles are confined between the layers. In the bulk, the resulting phase has the topological order of the Halperin 220 state i.e. U(1)2 x U(1)2 but the edge spectrum at a fixed particle number reveals an unexpected U(1)4 x U(1) structure. We attribute this behavior to the fact that this state is realized in a rotated basis of layer index, where the charged and neutral sectors are separated. With the charge quantum number being conserved but without any such restriction on the neutral sector we show that the edge spectrum must take the observed form.

  20. Comment on {open_quotes}Experimental Fusion Barrier Distributions Reflecting Projectile Octupole State Coupling to Prolate and Oblate Target Nuclei{close_quotes}

    SciTech Connect

    Dasso, C.H.; Dasso, C.H.; Fernandez-Niello, J.

    1997-05-01

    The authors comment on the Letter by J.D. Bierman et al., Phys. Rev. Lett. 76, 1587(1996), and show the method by which they have been constructed is not the most appropriate. A Comment on the Letter by J.D. Bierman, {ital et al. }, Phys.Rev.Lett.{bold 76}, 1587 (1996). The authors of the Letter offer a Reply. {copyright} {ital 1997} {ital The American Physical Society}

  1. Measurement of tune spread in the Tevatron versus octupole strength

    SciTech Connect

    Marriner, John; Martens, Mike; /Fermilab

    1996-08-01

    An experiment was performed in the Tevatron to measure the tune spread versus octupole strength. The experiment is sensitive to the relationship between octupole strength and current in the T:OZF circuit and to the octupole (and other non-linear focusing fields) in the Tevatron. The major motivation for the experiment was to determine the value of octupole excitation that minimizes the tune spread: this value is an estimate of the value required to obtain ''zero'' total octupole excitation in the extraction process. The experiment was performed using the strip-line kickers at A17 and the resonant Schottky pickups. The horizontal proton kicker was excited with a sine-wave from a vector signal analyzer (HP-89440A) and the horizontal proton signal was received. The gating circuitry normally used to select proton or antiproton bunches was by-passed. The response function was measured and recorded on a floppy disk. Measurements were initially made with a 200 Hz span (0.250 Hz frequency bins) and later with a 100 Hz span (0.125 Hz frequency bins).

  2. Global systematics of octupole excitations in even-even nuclei

    NASA Astrophysics Data System (ADS)

    Robledo, L. M.; Bertsch, G. F.

    2011-11-01

    We present a computational methodology for a theory of the lowest axially symmetric octupole excitations applicable to all even-even nuclei beyond the lightest. The theory is the well-known generator-coordinate extension (GCM) of the Hartree-Fock-Bogoliubov (HFB) self-consistent mean field theory. We use the discrete-basis Hill-Wheeler (HW) method to compute the wave functions with an interaction from the Gogny family of Hamiltonians. Comparing to the compiled experimental data on octupole excitations, we find that the performance of the theory depends on the deformation characteristics of the nucleus. For nondeformed nuclei, the theory reproduces the energies to about ±20% apart from an overall scale factor of ≈1.6. The performance is somewhat poorer for (quadrupole) deformed nuclei, and for both together the dispersion of the scaled energies about the experimental values is about ±25%. This compares favorably with the performance of similar theories of the quadrupole excitations. Nuclei having static octupole deformations in HFB theory form a special category. These nuclei have the smallest measured octupole excitation energies as well as the smallest predicted energies. However, in these cases the energies are seriously underpredicted by the theory. We find that a simple two-configuration approximation, the minimization after projection (MAP) method, is almost as accurate as the full HW treatment, provided that the octupole-deformed nuclei are omitted from the comparison. This article is accompanied by a tabulation of the predicted octupole excitations for 818 nuclei extending from drip-line to drip-line, computed with several variants of the Gogny interaction.

  3. Josephson-coupled Moore-Read states

    NASA Astrophysics Data System (ADS)

    Möller, Gunnar; Hormozi, Layla; Slingerland, Joost; Simon, Steven H.

    2014-12-01

    We study a quantum Hall bilayer system of bosons at total filling factor ν =1 , and study the phase that results from short-ranged pair tunneling combined with short-ranged interlayer interactions. We introduce two exactly solvable model Hamiltonians which both yield the coupled Moore-Read state [Phys. Rev. Lett. 108, 256809 (2012), 10.1103/PhysRevLett.108.256809] as a ground state, when projected onto fixed particle numbers in each layer. One of these Hamiltonians describes a gapped topological phase, while the other is gapless. However, on introduction of a pair-tunneling term, the second system becomes gapped and develops the same topological order as the gapped Hamiltonian. Supported by the exact solution of the full zero-energy quasihole spectrum and a conformal field-theory approach, we develop an intuitive picture of this system as two coupled composite fermion superconductors. In this language, pair tunneling provides a Josephson coupling of the superconducting phases of the two layers, and gaps out the Goldstone mode associated with particle transport between the layers. In particular, this implies that quasiparticles are confined between the layers. In the bulk, the resulting phase has the topological order of the Halperin 220 phase with U(1)2× U (1)2 topological order, but it is realized in the symmetric/antisymmetric basis of the layer index. Consequently, the edge spectrum at a fixed particle number reveals an unexpected U(1)4× U (1) structure.

  4. Evidence for octupole excitations in the odd-odd neutron-rich nucleus {sup 142}Cs

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ma, W. C.; Daniel, A. V.; Ter-Akopian, G. M.

    2010-05-15

    High-spin states in the neutron-rich nucleus {sup 142}Cs are reinvestigated from a study of the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. A new level scheme is built and spin-parities are assigned to levels based on angular correlation measurements and systematics. The new structure of {sup 142}Cs is proposed to be related to octupole correlations. The electric dipole moment of {sup 142}Cs is measured and a dramatic decrease of the dipole moments with increasing neutron numbers in the Cs isotopic chain is found.

  5. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions.

    PubMed

    Boyarkin, Oleg V; Kopysov, Vladimir

    2014-03-01

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ~150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  6. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions

    NASA Astrophysics Data System (ADS)

    Boyarkin, Oleg V.; Kopysov, Vladimir

    2014-03-01

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ˜150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  7. Neutron-Rich Nuclei Beyond {sup 132}Sn: Spherical Shapes and Octupole Correlations

    SciTech Connect

    Liu Shaohua; Hamilton, Joseph H.; Ramayya, Akunuri V.; Goodin, Christopher T.; Hwang, Jae-Kwang; Luo Yixiao; Rasmussen, John O.; Covello, Aldo; Gargano, Angel; Stone, Nick J.; Daniel, Andrey V.; Ter-Akopian, Gurgen M.; Oganessian, Yuri Ts.; Zhu Shengjiang

    2010-04-30

    Nuclear properties of nuclei with a few valence nucleons outside the doubly-magic {sup 132}Sn core and located in the octupole correlation region have been investigated via gamma-gamma-gamma coincidence measurements of prompt gamma-ray emitted in the spontaneous fission of {sup 252}Cf with Gammasphere. The high spin level scheme of {sup 134}I has been identified for the first time. Shell model calculations reproduce the level scheme quite well. The level schemes of {sup 137}I and {sup 139}Cs have been reinvestigated and extended. Their nuclear structure is well described by realistic shell model calculations. The g-factors of the 4{sup +} state in {sup 134}Te, 15/2{sup +} state in {sup 135}I, and 15/2{sup -} state in {sup 137}Xe were determined using a newly developed program for angular correlation analysis. The measured g-factors compared favorably with shell model calculations. Octupole correlations are proposed in {sup 141}Cs and {sup 142}Cs. The variations of D{sub 0} in the Cs isotopes exhibit a pronounced drop of dipole moment with increasing neutron number.

  8. Chimera States in populations of nonlocally coupled chemical oscillators.

    PubMed

    Nkomo, Simbarashe; Tinsley, Mark R; Showalter, Kenneth

    2013-06-14

    Chimera states occur spontaneously in populations of coupled photosensitive chemical oscillators. Experiments and simulations are carried out on nonlocally coupled oscillators, with the coupling strength decreasing exponentially with distance. Chimera states with synchronized oscillators, phase waves, and phase clusters coexisting with unsynchronized oscillators are analyzed. Irregular motion of the cores of asynchronous oscillators is found in spiral-wave chimeras.

  9. Symmetry-broken states on networks of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; Abrams, Daniel M.

    2016-05-01

    When identical oscillators are coupled together in a network, dynamical steady states are often assumed to reflect network symmetries. Here, we show that alternative persistent states may also exist that break the symmetries of the underlying coupling network. We further show that these symmetry-broken coexistent states are analogous to those dubbed "chimera states," which can occur when identical oscillators are coupled to one another in identical ways.

  10. Symmetry-broken states on networks of coupled oscillators.

    PubMed

    Jiang, Xin; Abrams, Daniel M

    2016-05-01

    When identical oscillators are coupled together in a network, dynamical steady states are often assumed to reflect network symmetries. Here, we show that alternative persistent states may also exist that break the symmetries of the underlying coupling network. We further show that these symmetry-broken coexistent states are analogous to those dubbed "chimera states," which can occur when identical oscillators are coupled to one another in identical ways.

  11. Non-Axial Octupole Deformations and Tetrahedral Symmetry in Heavy Nuclei

    SciTech Connect

    Mazurek, Katarzyna; Dudek, Jerzy

    2005-11-21

    The total energies of about 120 nuclei in the Thorium region have been calculated within the macroscopic-microscopic method in the 5-dimensional space of deformation parameters {alpha}20, {alpha}22, {alpha}30, {alpha}32 and {alpha}40. The macroscopic energy term contains the nuclear surface-curvature dependence as proposed within the LSD approach. The microscopic energies are calculated with the Woods-Saxon single particle potential employing the universal set of parameters.We study a possible presence of the octupole axial and non-axial degrees of freedom all-over in the ({beta}, {gamma})-plane focussing on the ground-states, secondary minima and in the saddle points. In fact, a competition between axial and tri-axial octupole deformation parameters is obtained at the saddle points and in the secondary minima for many isotones with N > 136. The presence of the tetrahedral symmetry minima is predicted in numerous nuclei in the discussed region, although most of the time at relatively high excitation energies.

  12. Chimera-type states induced by local coupling.

    PubMed

    Clerc, M G; Coulibaly, S; Ferré, M A; García-Ñustes, M A; Rojas, R G

    2016-05-01

    Coupled oscillators can exhibit complex self-organization behavior such as phase turbulence, spatiotemporal intermittency, and chimera states. The latter corresponds to a coexistence of coherent and incoherent states apparently promoted by nonlocal or global coupling. Here we investigate the existence, stability properties, and bifurcation diagram of chimera-type states in a system with local coupling without different time scales. Based on a model of a chain of nonlinear oscillators coupled to adjacent neighbors, we identify the required attributes to observe these states: local coupling and bistability between a stationary and an oscillatory state close to a homoclinic bifurcation. The local coupling prevents the incoherent state from invading the coherent one, allowing concurrently the existence of a family of chimera states, which are organized by a homoclinic snaking bifurcation diagram.

  13. Chimera-type states induced by local coupling

    NASA Astrophysics Data System (ADS)

    Clerc, M. G.; Coulibaly, S.; Ferré, M. A.; García-Ñustes, M. A.; Rojas, R. G.

    2016-05-01

    Coupled oscillators can exhibit complex self-organization behavior such as phase turbulence, spatiotemporal intermittency, and chimera states. The latter corresponds to a coexistence of coherent and incoherent states apparently promoted by nonlocal or global coupling. Here we investigate the existence, stability properties, and bifurcation diagram of chimera-type states in a system with local coupling without different time scales. Based on a model of a chain of nonlinear oscillators coupled to adjacent neighbors, we identify the required attributes to observe these states: local coupling and bistability between a stationary and an oscillatory state close to a homoclinic bifurcation. The local coupling prevents the incoherent state from invading the coherent one, allowing concurrently the existence of a family of chimera states, which are organized by a homoclinic snaking bifurcation diagram.

  14. Chimera-type states induced by local coupling.

    PubMed

    Clerc, M G; Coulibaly, S; Ferré, M A; García-Ñustes, M A; Rojas, R G

    2016-05-01

    Coupled oscillators can exhibit complex self-organization behavior such as phase turbulence, spatiotemporal intermittency, and chimera states. The latter corresponds to a coexistence of coherent and incoherent states apparently promoted by nonlocal or global coupling. Here we investigate the existence, stability properties, and bifurcation diagram of chimera-type states in a system with local coupling without different time scales. Based on a model of a chain of nonlinear oscillators coupled to adjacent neighbors, we identify the required attributes to observe these states: local coupling and bistability between a stationary and an oscillatory state close to a homoclinic bifurcation. The local coupling prevents the incoherent state from invading the coherent one, allowing concurrently the existence of a family of chimera states, which are organized by a homoclinic snaking bifurcation diagram. PMID:27300877

  15. Amplitude-phase coupling drives chimera states in globally coupled laser networks.

    PubMed

    Böhm, Fabian; Zakharova, Anna; Schöll, Eckehard; Lüdge, Kathy

    2015-04-01

    For a globally coupled network of semiconductor lasers with delayed optical feedback, we demonstrate the existence of chimera states. The domains of coherence and incoherence that are typical for chimera states are found to exist for the amplitude, phase, and inversion of the coupled lasers. These chimera states defy several of the previously established existence criteria. While chimera states in phase oscillators generally demand nonlocal coupling, large system sizes, and specially prepared initial conditions, we find chimera states that are stable for global coupling in a network of only four coupled lasers for random initial conditions. The existence is linked to a regime of multistability between the synchronous steady state and asynchronous periodic solutions. We show that amplitude-phase coupling, a concept common in different fields, is necessary for the formation of the chimera states.

  16. Imperfect traveling chimera states induced by local synaptic gradient coupling.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.

  17. Imperfect traveling chimera states induced by local synaptic gradient coupling

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.

  18. Imperfect traveling chimera states induced by local synaptic gradient coupling.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state. PMID:27575131

  19. High. beta. studies in the Wisconsin Toroidal Octupole

    SciTech Connect

    Halle, J. H.; Kellman, A.; Post, R. S.; Prager, S. C.; Strait, E. J.; Zarnstorff, M. C.

    1980-09-01

    A wide range of MHD stable high ..beta.. plasmas is produced in the Wisconsin Levitated Octupole. At or near the single fluid regime we obtain, in the bad curvature region, ..beta.. = nk(T/sub e/ + T/sub i/)8..pi../B/sup 2/ approx. = 8%, twice the theoretical single fluid ballooning instability limit of 4%. We also obtain stable plasmas at ..beta.. approx. = 35%, 9 times the theoretical limit, in a regime in which both finite ion gyroradius and gyroviscosity effects are important.

  20. Chimera states in purely local delay-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar

    2016-05-01

    We study the existence of chimera states in a network of locally coupled chaotic and limit-cycle oscillators. The necessary condition for chimera state in purely local coupled oscillators is discussed. At first, we numerically observe the existence of chimera or multichimera states in the locally coupled Hindmarsh-Rose neuron model. We find that delay time in the nonlinear local coupling reduces the domain of the coherent island in the parameter space of the synaptic coupling strength and time delay, and thus the coherent region can be completely eliminated once the time delay exceeds a certain threshold. We then consider another form of nonlinearity in the local coupling, and the existence of chimera states is observed in the time-delayed Mackey-Glass system and in a Van der Pol oscillator. We also discuss the effect of time delay in local coupling for the existence of chimera states in Mackey-Glass systems. The nonlinearity present in the coupling function plays a key role in the emergence of chimera or multichimera states. A phase diagram for the chimera state is identified over a wide parameter space.

  1. Chimera states in purely local delay-coupled oscillators.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar

    2016-05-01

    We study the existence of chimera states in a network of locally coupled chaotic and limit-cycle oscillators. The necessary condition for chimera state in purely local coupled oscillators is discussed. At first, we numerically observe the existence of chimera or multichimera states in the locally coupled Hindmarsh-Rose neuron model. We find that delay time in the nonlinear local coupling reduces the domain of the coherent island in the parameter space of the synaptic coupling strength and time delay, and thus the coherent region can be completely eliminated once the time delay exceeds a certain threshold. We then consider another form of nonlinearity in the local coupling, and the existence of chimera states is observed in the time-delayed Mackey-Glass system and in a Van der Pol oscillator. We also discuss the effect of time delay in local coupling for the existence of chimera states in Mackey-Glass systems. The nonlinearity present in the coupling function plays a key role in the emergence of chimera or multichimera states. A phase diagram for the chimera state is identified over a wide parameter space.

  2. Proposed s =±1 octupole bands in 140Xe

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Zhu, S. J.; Hamilton, J. H.; Wang, E. H.; Ramayya, A. V.; Xiao, Z. G.; Li, H. J.; Luo, Y. X.; Rasmussen, J. O.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.

    2016-06-01

    Level structures of neutron-rich 140Xe nucleus have been reinvestigated by using a triple γ coincidence study from the spontaneous fission of 252Cf. Several new levels and transitions are identified. The previously observed s =+1 octupole band structure is confirmed and expanded. Another set of the Δ I =2 positive and negative parity bands connected by strong E 1 transitions is proposed as the s =-1 octupole band structure. Thus, the s =±1 doublet octupole bands are completed in 140Xe. The experimental B (E 1 )/B (E 2 ) branching ratios indicate that the octupole correlations in 140Xe are weak. The other characteristics of the s =±1 octupole bands have been discussed.

  3. Persistent chimera states in nonlocally coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Suda, Yusuke; Okuda, Koji

    2015-12-01

    Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this Rapid Communication, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that chimera states can be stable even without taking the continuous limit, which we call the persistent chimera state.

  4. Persistent chimera states in nonlocally coupled phase oscillators.

    PubMed

    Suda, Yusuke; Okuda, Koji

    2015-12-01

    Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this Rapid Communication, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that chimera states can be stable even without taking the continuous limit, which we call the persistent chimera state.

  5. Investigation into chromophore excited-state coupling in allophycocyanin

    NASA Astrophysics Data System (ADS)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  6. Search for two-phonon octupole excitations in 146Gd

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Kumar Raju, M.; Khumalo, N. A.; Dinoko, T. S.; Jones, P.; Bark, R. A.; Lawrie, E. A.; Majola, S. N. T.; Robledo, L. M.; Rubio, B.; Wiedeking, M.; Easton, J.; Khaleel, E. A.; Kheswa, B. V.; Kheswa, N.; Herbert, M. S.; Lawrie, J. J.; Masiteng, P. L.; Nchodu, M. R.; Ndayishimye, J.; Negi, D.; Noncolela, S. P.; Ntshangase, S. S.; Papka, P.; Roux, D. G.; Shirinda, O.; Sithole, P. S.; Yates, S. W.

    2016-06-01

    The low-spin structure of the nearly spherical nucleus 146Gd was studied using the 144Sm(4He, 2n) fusion-evaporation reaction. High-statistics γ - γ coincidence measurements were performed at iThemba LABS with 7× 109 γ- γ coincidence events recorded. Gated γ-ray energy spectra show evidence for the 6+2 → 3-1 → 0+1 cascade of E3 transitions in agreement with recent findings by Caballero and co-workers, but with a smaller branching ratio of I_{γ} = 4.7(10) for the 6+2 → 3-1 1905.1 keV γ ray. Although these findings may support octupole vibrations in spherical nuclei, sophisticated beyond mean-field calculations including angular-momentum projection are required to interpret in an appropriate way the available data due to the failure of the rotational model assumptions in this nucleus.

  7. Plasma resistivity measurements in the Wisconsin levitated octupole

    SciTech Connect

    Brouchous, D. A.

    1980-11-01

    Resistivity measurements parallel to the magnetic field were made on gun injected plasmas ranging in density from 10/sup 9/cm/sup -3/ to 10/sup 1/parallelcm/sup -3/ in the Wisconsin levitated octupole with toroidal and poloidal magnetic fields. The 10/sup 9/cm/sup -3/ plasma was collisionless with lambda/sub mfp/ > 100 mirror lengths, had T/sub e/ = 10 eV, T/sub i/ = 30 eV and was found to have anomalous resistivity scaling like eta = ..sqrt..T/sub e//n/sub e/ when E/sub parallel/ > E/su c/ is the Dreicer critical field. The 10/sup 12/cm/sup -3/ plasma was collisional with lambda/sub mfp/ < mirror length, had T/sub e/ = T/sub i/ approx. = .2 eV and was found to have Spitzer resistivity when E/sub parallel/ < E/sub c/.

  8. Different kinds of chimera death states in nonlocally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2016-05-01

    We investigate the significance of nonisochronicity parameter in a network of nonlocally coupled Stuart-Landau oscillators with symmetry breaking form. We observe that the presence of nonisochronicity parameter leads to structural changes in the chimera death region while varying the strength of the interaction. This gives rise to the existence of different types of chimera death states such as multichimera death state, type I periodic chimera death (PCD) state, and type II periodic chimera death state. We also find that the number of periodic domains in both types of PCD states decreases exponentially with an increase of coupling range and obeys a power law under nonlocal coupling. Additionally, we also analyze the structural changes of chimera death states by reducing the system of dynamical equations to a phase model through the phase reduction. We also briefly study the role of nonisochronicity parameter on chimera states, where the existence of a multichimera state with respect to the coupling range is pointed out. Moreover, we also analyze the robustness of the chimera death state to perturbations in the natural frequencies of the oscillators.

  9. Different kinds of chimera death states in nonlocally coupled oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2016-05-01

    We investigate the significance of nonisochronicity parameter in a network of nonlocally coupled Stuart-Landau oscillators with symmetry breaking form. We observe that the presence of nonisochronicity parameter leads to structural changes in the chimera death region while varying the strength of the interaction. This gives rise to the existence of different types of chimera death states such as multichimera death state, type I periodic chimera death (PCD) state, and type II periodic chimera death state. We also find that the number of periodic domains in both types of PCD states decreases exponentially with an increase of coupling range and obeys a power law under nonlocal coupling. Additionally, we also analyze the structural changes of chimera death states by reducing the system of dynamical equations to a phase model through the phase reduction. We also briefly study the role of nonisochronicity parameter on chimera states, where the existence of a multichimera state with respect to the coupling range is pointed out. Moreover, we also analyze the robustness of the chimera death state to perturbations in the natural frequencies of the oscillators. PMID:27300886

  10. Different kinds of chimera death states in nonlocally coupled oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2016-05-01

    We investigate the significance of nonisochronicity parameter in a network of nonlocally coupled Stuart-Landau oscillators with symmetry breaking form. We observe that the presence of nonisochronicity parameter leads to structural changes in the chimera death region while varying the strength of the interaction. This gives rise to the existence of different types of chimera death states such as multichimera death state, type I periodic chimera death (PCD) state, and type II periodic chimera death state. We also find that the number of periodic domains in both types of PCD states decreases exponentially with an increase of coupling range and obeys a power law under nonlocal coupling. Additionally, we also analyze the structural changes of chimera death states by reducing the system of dynamical equations to a phase model through the phase reduction. We also briefly study the role of nonisochronicity parameter on chimera states, where the existence of a multichimera state with respect to the coupling range is pointed out. Moreover, we also analyze the robustness of the chimera death state to perturbations in the natural frequencies of the oscillators.

  11. Simulations of octupole compensation of head-tail instability at the Tevatron

    SciTech Connect

    Meiqin Xiao; Tanaji Sen; Frank Schmidts

    2003-05-28

    The proton lifetime in the Tevatron depends sensitively on chromaticities. Too low chromaticities can make the beam unstable due to the weak head-tail instability. One way to compensate this effect is to introduce octupoles to create a larger amplitude dependent betatron tune spread. However, the use of octupoles will also introduce additional side effects such as second order chromaticity, differential tune shifts and chromaticities on both proton and anti-proton helices. The non-linear effects may also reduce the dynamic aperture. There are 67 octupoles in 4 different circuits in the Tevatron which may be used for this purpose. We report on a simulation study to find the best combinations of polarities and strengths of the octupoles.

  12. Experimental multistable states for small network of coupled pendula.

    PubMed

    Dudkowski, Dawid; Grabski, Juliusz; Wojewoda, Jerzy; Perlikowski, Przemyslaw; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-01-01

    Chimera states are dynamical patterns emerging in populations of coupled identical oscillators where different groups of oscillators exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in the large ensembles of oscillators, recently it has been shown that so-called weak chimera states may occur in the systems with small numbers of oscillators. Here, we show that similar multistable states demonstrating partial frequency synchronization, can be observed in simple experiments with identical mechanical oscillators, namely pendula. The mathematical model of our experiment shows that the observed multistable states are controlled by elementary dynamical equations, derived from Newton's laws that are ubiquitous in many physical and engineering systems. Our finding suggests that multistable chimera-like states are observable in small networks relevant to various real-world systems. PMID:27445038

  13. Experimental multistable states for small network of coupled pendula

    PubMed Central

    Dudkowski, Dawid; Grabski, Juliusz; Wojewoda, Jerzy; Perlikowski, Przemyslaw; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-01-01

    Chimera states are dynamical patterns emerging in populations of coupled identical oscillators where different groups of oscillators exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in the large ensembles of oscillators, recently it has been shown that so-called weak chimera states may occur in the systems with small numbers of oscillators. Here, we show that similar multistable states demonstrating partial frequency synchronization, can be observed in simple experiments with identical mechanical oscillators, namely pendula. The mathematical model of our experiment shows that the observed multistable states are controlled by elementary dynamical equations, derived from Newton’s laws that are ubiquitous in many physical and engineering systems. Our finding suggests that multistable chimera-like states are observable in small networks relevant to various real-world systems. PMID:27445038

  14. Experimental multistable states for small network of coupled pendula.

    PubMed

    Dudkowski, Dawid; Grabski, Juliusz; Wojewoda, Jerzy; Perlikowski, Przemyslaw; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-07-21

    Chimera states are dynamical patterns emerging in populations of coupled identical oscillators where different groups of oscillators exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in the large ensembles of oscillators, recently it has been shown that so-called weak chimera states may occur in the systems with small numbers of oscillators. Here, we show that similar multistable states demonstrating partial frequency synchronization, can be observed in simple experiments with identical mechanical oscillators, namely pendula. The mathematical model of our experiment shows that the observed multistable states are controlled by elementary dynamical equations, derived from Newton's laws that are ubiquitous in many physical and engineering systems. Our finding suggests that multistable chimera-like states are observable in small networks relevant to various real-world systems.

  15. Experimental multistable states for small network of coupled pendula

    NASA Astrophysics Data System (ADS)

    Dudkowski, Dawid; Grabski, Juliusz; Wojewoda, Jerzy; Perlikowski, Przemyslaw; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-07-01

    Chimera states are dynamical patterns emerging in populations of coupled identical oscillators where different groups of oscillators exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in the large ensembles of oscillators, recently it has been shown that so-called weak chimera states may occur in the systems with small numbers of oscillators. Here, we show that similar multistable states demonstrating partial frequency synchronization, can be observed in simple experiments with identical mechanical oscillators, namely pendula. The mathematical model of our experiment shows that the observed multistable states are controlled by elementary dynamical equations, derived from Newton’s laws that are ubiquitous in many physical and engineering systems. Our finding suggests that multistable chimera-like states are observable in small networks relevant to various real-world systems.

  16. Bound states in coupled guides. II. Three dimensions

    NASA Astrophysics Data System (ADS)

    Linton, C. M.; Ratcliffe, K.

    2004-04-01

    We compute bound-state energies in two three-dimensional coupled waveguides, each obtained from the two-dimensional configuration considered in paper I [J. Math. Phys. 45, 1359-1379 (2004)] by rotating the geometry about a different axis. The first geometry consists of two concentric circular cylindrical waveguides coupled by a finite length gap along the axis of the inner cylinder, and the second is a pair of planar layers coupled laterally by a circular hole. We have also extended the theory for this latter case to include the possibility of multiple circular windows. Both problems are formulated using a mode-matching technique, and in the cylindrical guide case the same residue calculus theory as used in paper I is employed to find the bound-state energies. For the coupled planar layers we proceed differently, computing the zeros of a matrix derived from the matching analysis directly.

  17. The coupled states approximation for scattering of two diatoms

    NASA Technical Reports Server (NTRS)

    Heil, T. G.; Kouri, D. J.; Green, S.

    1978-01-01

    The paper presents a detailed development of the coupled-states approximation for the general case of two colliding diatomic molecules. The high-energy limit of the exact Lippman-Schwinger equation is applied, and the analysis follows the Shimoni and Kouri (1977) treatment of atom-diatom collisions where the coupled rotor angular momentum and projection replace the single diatom angular momentum and projection. Parallels to the expression for the differential scattering amplitude, the opacity function, and the nondiagonality of the T matrix are reported. Symmetrized expressions and symmetrized coupled equations are derived. The present correctly labeled coupled-states theory is tested by comparing its calculated results with other computed results for three cases: H2-H2 collisions, ortho-para H2-H2 scattering, and H2-HCl.

  18. Solvable Model for Chimera States of Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Abrams, Daniel M.; Mirollo, Rennie; Strogatz, Steven H.; Wiley, Daniel A.

    2008-08-01

    Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.

  19. Solvable model for chimera states of coupled oscillators.

    PubMed

    Abrams, Daniel M; Mirollo, Rennie; Strogatz, Steven H; Wiley, Daniel A

    2008-08-22

    Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.

  20. Octupole correlations in the 144Ba nucleus described with symmetry-conserving configuration-mixing calculations

    NASA Astrophysics Data System (ADS)

    Bernard, Rémi N.; Robledo, Luis M.; Rodríguez, Tomás R.

    2016-06-01

    We study the interplay of quadrupole and octupole degrees of freedom in the structure of the isotope 144Ba. A symmetry-conserving configuration-mixing method (SCCM) based on a Gogny energy density functional (EDF) has been used. The method includes particle number, parity, and angular momentum restoration as well as axial quadrupole and octupole shape mixing within the generator coordinate method. Predictions both for excitation energies and electromagnetic transition probabilities are in good agreement with the most recent experimental data.

  1. Search for stable octupole deformation in the nucleus /sup 225/Fr

    SciTech Connect

    Burke, D.G.; Kurcewicz, W.; Loevhoeiden, G.; Nyboe, K.; Thorsteinsen, T.F.; Gietz, H.; Kaffrell, N.; Rogowski, J.; Naumann, R.A.; Borge, M.J.G.; and others

    1987-12-10

    The level structure of /sup 225/Fr has been studied from the /sup 225/Rn(..beta../sup -/) decay in on-line experiments at the ISOLDE facility. A level scheme was constructed on the basis of gamma--gamma coincidence data, and the multipolarities of many transitions were established by conversion electron measurements. Levels in /sup 225/Fr were also studied with the /sup 226/Ra(t,..cap alpha..)/sup 225/Fr reaction at the McMaster University Accelerator Laboratory, using a target of /sup 226/Ra(T/sub 1/2/ = 1600y) and a magnetic spectrograph to analyze the alpha spectra. The first three excited states, at 28.5, 82.5 and 128.2 keV, are interpreted as rotational band members based on the ground state, which is known to have I = 3/2. The (t,..cap alpha..) strengths to these levels indicate a 3/2/sup -/(532) assignment to the ground state. No evidence for an octupole deformation in /sup 225/Fr has been found so far, although analysis of data for other excited states is continuing.

  2. Multiple steady states in coupled flow tank reactors

    NASA Astrophysics Data System (ADS)

    Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John

    1992-05-01

    Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide

  3. Vibronic coupling in the excited-states of carotenoids.

    PubMed

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S; Southall, June; Cogdell, Richard J; Motzkus, Marcus

    2016-04-28

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2 to the optically dark state S1. Extending this picture, some additional dark states (3A(g)(-) and 1B(u)(-)) and their interaction with the S2 state have also been suggested to play a major role in the ultrafast deactivation of carotenoids and their properties. Here, we investigate the interaction between such dark and bright electronic excited states of open chain carotenoids, particularly its dependence on the number of conjugated double bonds (N). We focus on the ultrafast wave packet motion on the excited potential surface, which is modified by the interaction between bright and dark electronic states. Such a coupling between electronic states leads to a shift of the vibrational frequency during the excited-state evolution. In this regard, pump-degenerate four-wave mixing (pump-DFWM) is applied to a series of carotenoids with different numbers of conjugated double bonds N = 9, 10, 11 and 13 (neurosporene, spheroidene, lycopene and spirilloxanthin, respectively). Moreover, we demonstrate in a closed-chain carotenoid (lutein) that the coupling strength and therefore the vibrational shift can be tailored by changing the energy degeneracy between the 1B(u)(+) and 1B(u)(-) states via solvent interaction.

  4. The Coupling State of an Idealized Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Acevedo, Otávio C.; Costa, Felipe D.; Degrazia, Gervásio A.

    2012-10-01

    The coupling state between the surface and the top of the stable boundary layer (SBL) is investigated using four different schemes to represent the turbulent exchange. An idealized SBL is assumed, with fixed wind speed and temperature at its top. At the surface, two cases are considered, first a constant temperature, 20 K lower than the SBL top, and later a constant 2 K h-1 cooling rate is assumed for 10 h after a neutral initial condition. The idealized conditions have been chosen to isolate the influence of the turbulence formulations on the coupling state, and the intense stratification has the purpose of enhancing such a response. The formulations compared are those that solve a prognostic equation for turbulent kinetic energy (TKE) and those that directly prescribe turbulence intensity as a function of atmospheric stability. Two TKE formulations are considered, with and without a dependence of the exchange coefficients on stability, while short and long tail stability functions (SFs) are also compared. In each case, the dependence on the wind speed at the SBL top is considered and it is shown that, for all formulations, the SBL experiences a transition from a decoupled state to a coupled state at an intermediate value of mechanical forcing. The vertical profiles of potential temperature, wind speed and turbulence intensity are shown as a function of the wind speed at the SBL top, both for the decoupled and coupled states. The formulation influence on the coupling state is analyzed and it is concluded that, in general, the simple TKE formulation has a better response, although it also tends to overestimate turbulent mixing. The consequences are discussed.

  5. Probing scalar coupling differences via long-lived singlet states

    NASA Astrophysics Data System (ADS)

    DeVience, Stephen J.; Walsworth, Ronald L.; Rosen, Matthew S.

    2016-01-01

    We probe small scalar coupling differences via the coherent interactions between two nuclear spin singlet states in organic molecules. We show that the spin-lock induced crossing (SLIC) technique enables the coherent transfer of singlet order between one spin pair and another. The transfer is mediated by the difference in syn and anti vicinal or long-range J couplings among the spins. By measuring the transfer rate, we calculate a J coupling difference of 8 ± 2 mHz in phenylalanine-glycine-glycine and 2.57 ± 0.04 Hz in glutamate. We also characterize a coherence between two singlet states in glutamate, which may enable the creation of a long-lived quantum memory.

  6. First hyperpolarizabilities of 1,3,5-tricyanobenzene derivatives: origin of larger beta values for the octupoles than for the dipoles.

    PubMed

    Lee, Sang Hae; Park, Jo Ryoung; Jeong, Mi-Yun; Kim, Hwan Myung; Li, Shaojun; Song, Jongwon; Ham, Sihyun; Jeon, Seung-Joon; Cho, Bong Rae

    2006-01-16

    A series of donor-acceptor substituted stilbene and diphenylacetylene derivatives and their octupolar analogues have been synthesized and the linear and nonlinear optical properties (beta) studied by both experiments and theoretical calculation. The lambda(max) of the dipoles increases with the conjugation length and is always larger when the C=C bond is used, instead of the C[triple bond]C bond, as the conjugation bridge. Although the lambda(max) values of the octupoles show no clear trend, they are much larger than those of the dipoles. The beta(0) values of the dipoles increase with conjugation length and as the conjugation bridge is changed from the C[triple bond]C to C=C bond. This increase is accompanied by an increase in either lambda(max) or the oscillator strength. Similarly, the beta(0) values of the octupoles increase with the conjugation length and with a change in the donor in the order: NEt2 < N(i-amyl)Ph < NPh2. Moreover, beta(yyy)/beta(zzz) ratios are in the range of 1.6-3.9 and decrease with the conjugation length. Beta values calculated by the finite-field and sum-over-states methods are in good agreement with the experimental data. Also, there is a parallel relationship between the calculated beta values and bond length alternation (BLA). From these results, the origin of the larger beta values for octupoles than for dipoles is assessed. PMID:16323225

  7. Evidence for octupole vibration in the superdeformed well of {sup 190}Hg from eurogam

    SciTech Connect

    Crowell, B.; Carpenter, M.P.; Janssens, R.V.F.

    1995-08-01

    Gammasphere experiments in 1993-94 brought to light the existence of an excited superdeformed (SD) band in {sup 190}Hg with the unusual property of decaying entirely to the lowest (yrast) SD band over 3-4 transitions, rather than to the normally deformed states as is usually the case in the A {approximately} 150 and A {approximately} 190 regions of superdeformation. Although M1 transitions between signature-partner SD bands were previously observed in {sup 193}Hg, no such mechanism was available to explain the situation in the even-even nucleus {sup 190}Hg, whose yrast SD band has no signature partner. The best explanation appears to lie in long-standing theoretical predictions that the SD minimum in the potential energy surface would be quite soft with respect to octupole vibrations. This would lead to enhanced E1 transitions connecting the one-phonon and zero-phonon states. The data and this interpretation were published. A shortcoming of the Gammasphere experiments was that they did not allow the definitive measurement of the energies of the gamma-ray transitions connecting the two bands, due to the very weak population of the excited band ({approximately}0.05% of the {sup 190}Hg channel) and also partly, we believed, to the angular distributions of the transitions, which were peaked near 90 degrees, where Gammasphere had few detectors.

  8. Long-term Phanerozoic octupole fields and consequences for paleogeographic reconstructions

    NASA Astrophysics Data System (ADS)

    van der Voo, R.; Torsvik, T.

    2003-04-01

    The assumption that the ancient geomagnetic field was purely dipolar is fundamental to paleomagnetism. However, one sign that something may be amiss is that observed inclinations at mid-latitudes are often lower than expected. A zonal octupole field in the late Paleozoic, Mesozoic and Early Tertiary was revealed by comparing the observed paleomagnetic paleolatitude distributions for Laurussia (North America, Greenland, and Europe) with those predicted from the mean paleopoles. When only volcanics are analyzed, the pattern remains unchanged, indicating that inclination error in sediments is not the culprit. Estimates of the magnitude of the octupole/dipole field ratio center around 0.1, which could cause errors in conventional paleopoles of about 7.5 degrees; because of the antisymmetry of octupole fields a comparison of paleomagnetic poles from mid-northern and mid-southern hemisphere locations could thus be off by as much as 15 degrees. The well-known misfit between the paleomagnetic results from the Laurentia-European and Gondwana continents in a classical Pangea A configuration could be explained by such errors due to octupole fields. This explanation would negate the need to seek tectonic (Pangea B type) solutions for the misfit. Another misfit based on too-low inclinations is seen in a comparison of Central Asian poles with those for the Eurasian reference path, and here as well do octupole fields provide a possible solution, although sedimentary inclination shallowing is another possibility. When including Pre-Permian poles for Gondwana in a similar test for non-dipole fields, an increase in the percentage octupole contribution is suggested for older times. Undoubtedly, the octupole field contributions have varied in magnitude over shorter time scales as well.

  9. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-01-01

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  10. Bell states and entanglement dynamics on two coupled quantum molecules

    SciTech Connect

    Oliveira, P.A.; Sanz, L.

    2015-05-15

    This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the path to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.

  11. Detecting Majorana nonlocality using strongly coupled Majorana bound states

    NASA Astrophysics Data System (ADS)

    Rubbert, S.; Akhmerov, A. R.

    2016-09-01

    Majorana bound states (MBS) differ from the regular zero energy Andreev bound states in their nonlocal properties, since two MBS form a single fermion. We design strategies for detection of this nonlocality by using the phenomenon of Coulomb-mediated Majorana coupling in a setting which still retains falsifiability and does not require locally separated MBS. Focusing on the implementation of MBS based on the quantum spin Hall effect, we also design a way to probe Majoranas without the need to open a magnetic gap in the helical edge states. In the setup that we analyze, long range MBS coupling manifests in the h /e magnetic flux periodicity of tunneling conductance and supercurrent. While h /e is also the periodicity of Aharonov-Bohm effect and persistent current, we show how to ensure its Majorana origin by verifying that switching off the charging energy restores h /2 e periodicity conventional for superconducting systems.

  12. Partially coherent twisted states in arrays of coupled phase oscillators

    SciTech Connect

    Omel'chenko, Oleh E.; Wolfrum, Matthias; Laing, Carlo R.

    2014-06-15

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

  13. Partially coherent twisted states in arrays of coupled phase oscillators.

    PubMed

    Omel'chenko, Oleh E; Wolfrum, Matthias; Laing, Carlo R

    2014-06-01

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly "twisted" in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

  14. Pfaffian states in coupled atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Hayward, Andrew L. C.; Martin, Andrew M.

    2016-05-01

    Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings-Hubbard model, have the potential to emulate a wide range of condensed-matter phenomena. In particular, the strongly correlated states of the fractional quantum Hall effect can be realized. At some filling fractions, the fraction quantum Hall effect has been shown to possess ground states with non-Abelian excitations. The most well studied of these states is the Pfaffian state of Moore and Read G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991), 10.1016/0550-3213(91)90407-O, which is the ground state of a Hall liquid with a three-body interaction. We show how an effective three-body interaction can be generated within the cavity QED framework, and that a Pfaffian-like ground state of these systems exists.

  15. Coherent phonon coupling to individual Bloch states in photoexcited bismuth.

    PubMed

    Papalazarou, E; Faure, J; Mauchain, J; Marsi, M; Taleb-Ibrahimi, A; Reshetnyak, I; van Roekeghem, A; Timrov, I; Vast, N; Arnaud, B; Perfetti, L

    2012-06-22

    We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time- and angle-resolved photoelectron spectroscopy. The binding energy of bulklike bands oscillates with the frequency of the A(1g) phonon mode, whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wave vector is correctly reproduced by ab initio calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.

  16. Signature of nonadiabatic coupling in excited-state vibrational modes.

    PubMed

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes. PMID:24844735

  17. Topological quantum states of light in coupled microwave cavities

    NASA Astrophysics Data System (ADS)

    Owens, John; Lachapelle, Aman; Ma, Ruichao; Simon, Jonathan; Schuster, David

    2016-05-01

    We present a unique photonic platform to explore quantum many-body phenomena in coupled cavity arrays. We create tight binding lattices with arrays of evanescently coupled three-dimensional coaxial microwave cavities. Topologically non-trivial band structures are engineered by utilizing the chiral coupling of the cavity modes to ferrite spheres in a magnetic field. We develop robust, minimal methods to completely characterize the tight-binding Hamiltonian, including all onsite disorder, tunnel coupling, local dissipation and effective flux, using only spectroscopic measurement on specific sites. These efforts pave the way to realize low-disorder, long-coherence, topological tight binding models, where the many-body states can be spectroscopically driven and probed in temporally- and spatially- resolved measurements. Using techniques from circuit QED, effective onsite photon-photon interactions may be introduced by coupling to superconducting qubits. This will allow us to explore the interplay between topology and coherent interaction in these artificial strongly-correlated photonic quantum materials.

  18. Selective protected state preparation of coupled dissipative quantum emitters

    PubMed Central

    Plankensteiner, D.; Ostermann, L.; Ritsch, H.; Genes, C.

    2015-01-01

    Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501

  19. Superdeformed nuclei: Shells-vs-liquid drop, pairing-vs-thermal excitations, triaxial-vs-octupole shapes, super-superdeformation

    SciTech Connect

    Dudek, J.

    1987-01-01

    Mechanisms influencing the behavior of superdeformed nuclei are studied using several well established nuclear structure techniques. In particular: pairing, thermal excitation, shell and liquid-drop mechanisms are considered. The effects of quadrupole and hexadecapole (both axial and non-axial), and octupole deformation degrees of freedom are studied. Most of the results are illustrated using the case of /sup 152/Dy nucleus in which a superdeformed band extending up to I approx. 60 h-bar has been found in experiment. Some comparisons between /sup 152/Dy and the nuclei in the neighborhood are given. Calculations show that pairing ''de-aligns'' typically 6 to 8 units of angular momentum, as compared to the corresponding rigid rotation. This takes place for spins extending up to the highest limit, and thus diminishes the effective moments of inertia. Predicted octupole shape susceptibility is extremely large, significantly stronger than the susceptibilities known in the ground-states of many Actinide nuclei. Consequences of this result for the near-constancy of the dynamical moments of inertia are pointed out. Nuclear level densities calculated in function of spin, excitation energy and deformation explain the ''unusual'' side feeding pattern of the /sup 152/Dy superdeformed states. Predictions of super-superdeformed nuclear states (axis ratio varying between 2:1 and 3:1 or more) are given and exemplified for Erbium nuclei. Finally, the problem of superdeformation stability and the influence of increased collective inertia on a barrier penetration are examined. An analytical expression for the effective inertia parameter is obtained and its derivation outlined. 35 refs., 9 figs.

  20. Specifications of the octupole magnets required for the ATF2 ultra-low ß* lattice

    SciTech Connect

    Marin, E.; Modena, M.; Tauchi, T.; Terunuma, N.; Tomas, R.; White, G.R.; /SLAC

    2014-05-28

    The Accelerator Test Facility 2 (ATF2) aims to test the novel chromaticity correction for higher chromaticity lattices as the one of CLIC. To this end the ATF2 ultra-low ß* lattice is designed to vertically focus the beam at the focal point or usually referred to as interaction point (IP), down to 23 nm. However when the measured multipole components of the ATF2 magnets are considered in the simulations, the evaluated spot sizes at the IP are well above the design value. The designed spot size is effectively recovered by inserting a pair of octupole magnets. In this note we address the technical specifications required for these octupole magnets.

  1. Stability of the splay state in pulse-coupled networks

    SciTech Connect

    Zillmer, Ruediger; Livi, Roberto; Politi, Antonio; Torcini, Alessandro

    2007-10-15

    The stability of the dynamical states characterized by a uniform firing rate (splay states) is analyzed in a network of globally coupled leaky integrate-and-fire neurons. This is done by reducing the set of differential equations to a map that is investigated in the limit of large network size. We show that the stability of the splay state depends crucially on the ratio between the pulse width and the interspike interval. More precisely, the spectrum of Floquet exponents turns out to consist of three components: (i) one that coincides with the predictions of the mean-field analysis [Abbott and van Vreesvijk, Phys. Rev. E 48, 1483 (1993)], (ii) a component measuring the instability of 'finite-frequency' modes, (iii) a number of 'isolated' eigenvalues that are connected to the characteristics of the single pulse and may give rise to strong instabilities (the Floquet exponent being proportional to the network size). Finally, as a side result, we find that the splay state can be stable even for inhibitory coupling.

  2. Multiple climate and sea ice states on a coupled Aquaplanet

    NASA Astrophysics Data System (ADS)

    Rose, B.; Ferreira, D.; Marshall, J.

    2010-12-01

    A fully coupled atmosphere-ocean-sea ice GCM is used to explore the climates of Earth-like planets with no continents and idealized ocean basin geometries. We find three qualitatively different stable equilibria under identical external forcing: an equable ice-free climate, a cold climate with ice caps extending into mid-latitudes, and a completely ice-covered "Snowball" state. These multiple states persist for millennia with no drift despite a full seasonal cycle and vigorous internal variability of the system on all time scales. The behavior of the coupled system is rationalized through an extension of the Budyko-Sellers model to include explicit ocean heat transport (OHT), and the insulation of the ice-covered sea surface. Sensitivity tests are also conducted with a slab ocean GCM with prescribed OHT. From these we conclude that albedo feedback and ocean circulation both play essential roles in the maintenance of the multiple states. OHT in the coupled system is dominated by a wind-driven subtropical cell carrying between 2 and 3 PW of thermal energy out of the deep tropics, most of which converges in the subtropics to lower mid-latitudes. This convergence pattern (similar to modern Earth) is robust to changes in the ocean basin geometry, and is directly responsible for the stabilization of the large ice cap. OHT also plays an essential but indirect role in the maintenance of the ice-free pole in the warm states, by driving an enhanced poleward atmospheric latent heat flux. The hysteresis loop for transitions between the warm and large ice cap states spans a much smaller range of parameter space (e.g. ±1.8% variations in solar constant) than the transitions in and out of the Snowball. Three qualitatively different climate states for the same external forcing in a coupled GCM: ice-free, large ice cap, and Snowball. SST and sea ice thickness are plotted. Similar results are found in a pure Aquaplanet (lower) and a "RidgeWorld" with a global-scale ocean basin

  3. Note: Excited State Studies of Ozone using State-Specific Multireference Coupled Cluster Methods

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol

    2012-12-07

    Vertical excitation energies obtained with state-specific multi-reference coupled cluster (MRCC) methods are reported for the ozone molecule. Using state-specific MRCC non-iterative methods with singles, doubles, and non-iterative triples (MRCCSD(T)) we obtain 4.40 eV for the challenging doubly excited 21A1 state when using a reliable model space. This estimate is in good agreement with experiment (4.5 eV). We also compare our MRCC results with the excitation energies obtained with high-order equation-of-motion coupled cluster methods

  4. Direct state reconstruction with coupling-deformed pointer observables

    NASA Astrophysics Data System (ADS)

    Zhu, Xuanmin; Zhang, Yu-Xiang; Wu, Shengjun

    2016-06-01

    Direct state tomography (DST) using weak measurements has received wide attention. Based on the concept of coupling-deformed pointer observables presented by Zhang et al. [Y.-X. Zhang, S. Wu, and Z.-B. Chen, Phys. Rev. A 93, 032128 (2016), 10.1103/PhysRevA.93.032128], a modified direct state tomography (MDST) is proposed, examined, and compared with other typical state tomography schemes. MDST has exact validity for measurements of any strength. We identify the strength needed to attain the highest efficiency level of MDST by using statistical theory. MDST is much more efficient than DST in the sense that far fewer samples are needed to reach DST's level of reconstruction accuracy. Moreover, MDST has no inherent bias when compared to DST.

  5. Search for particle-vibration coupling in 65Cu

    NASA Astrophysics Data System (ADS)

    Bocchi, Giovanni; Leoni, S.; Bracco, A.; Bottoni, S.; Benzoni, G.; Coló, G.; Bortignon, P. F.; Mǎrginean, N.; Bucurescu, D.; Cǎta-Danil, Gh.; Cǎta-Danil, I.; Deleanu, D.; Filipescu, D.; Gheorghe, I.; Ghiţǎ, D. G.; Glodariu, T.; Licǎ, R.; Mihai, C.; Mǎrginean, R.; Negreţ, A.; Nitǎ, C. R.; Sava, T.; Stroe, L.; Şuvǎilǎ, R.; Ur, C. A.

    2014-03-01

    The lifetime of the 9/2+ state of 65Cu, at 2534 keV, has been measured by fast timing techniques, in order to establish wether such state arises from a weak coupling between a p3/2 proton and the 3- octupole vibration at 3.56 MeV in the 64Ni core. The 65Cu nucleus was populated by the reaction 7Li + 64Ni at 32 MeV, at the Horia Hulubei National Institute of Physics and Nuclear Engineering (NIPNE) in Bucharest, and its γ-decay was detected by the ROSPHERE array. The measured lifetime coresponds to a B(E3) reduced transition probability to the ground state equal to 8.89 W.u., in agreement with theoretical predictions in the weak coupling limit.

  6. Coupling of Large Amplitude Inversion with Other States

    NASA Astrophysics Data System (ADS)

    Pearson, John; Yu, Shanshan

    2016-06-01

    The coupling of a large amplitude motion with a small amplitude vibration remains one of the least well characterized problems in molecular physics. Molecular inversion poses a few unique and not intuitively obvious challenges to the large amplitude motion problem. In spite of several decades of theoretical work numerous challenges in calculation of transition frequencies and more importantly intensities persist. The most challenging aspect of this problem is that the inversion coordinate is a unique function of the overall vibrational state including both the large and small amplitude modes. As a result, the r-axis system and the meaning of the K-quantum number in the rotational basis set are unique to each vibrational state of large or small amplitude motion. This unfortunate reality has profound consequences to calculation of intensities and the coupling of nearly degenerate vibrational states. The case of NH3 inversion and inversion through a plane of symmetry in alcohols will be examined to find a general path forward.

  7. Integrating proton coupled electron transfer (PCET) and excited states

    SciTech Connect

    Gagliardi, Christopher J.; Westlake, Brittany C.; Kent, Caleb A.; Paul, Jared J.; Papanikolas, John M.; Meyer, Thomas J.

    2010-11-01

    In many of the chemical steps in photosynthesis and artificial photosynthesis, proton coupled electron transfer (PCET) plays an essential role. An important issue is how excited state reactivity can be integrated with PCET to carry out solar fuel reactions such as water splitting into hydrogen and oxygen or water reduction of CO2 to methanol or hydrocarbons. The principles behind PCET and concerted electron–proton transfer (EPT) pathways are reasonably well understood. In Photosystem II antenna light absorption is followed by sensitization of chlorophyll P680 and electron transfer quenching to give P680+. The oxidized chlorophyll activates the oxygen evolving complex (OEC), a CaMn4 cluster, through an intervening tyrosine–histidine pair, YZ. EPT plays a major role in a series of four activation steps that ultimately result in loss of 4e-/4H+ from the OEC with oxygen evolution. The key elements in photosynthesis and artificial photosynthesis – light absorption, excited state energy and electron transfer, electron transfer activation of multiple-electron, multiple-proton catalysis – can also be assembled in dye sensitized photoelectrochemical synthesis cells (DS-PEC). In this approach, molecular or nanoscale assemblies are incorporated at separate electrodes for coupled, light driven oxidation and reduction. Separate excited state electron transfer followed by proton transfer can be combined in single semi-concerted steps (photo-EPT) by photolysis of organic charge transfer excited states with H-bonded bases or in metal-to-ligand charge transfer (MLCT) excited states in pre-associated assemblies with H-bonded electron transfer donors or acceptors. In these assemblies, photochemically induced electron and proton transfer occur in a single, semi-concerted event to give high-energy, redox active intermediates.

  8. Octupole Resonance in the AGS at High Intensity: A SIMBAD study

    SciTech Connect

    Luccio, A.U.; D'Imperio, N.L.

    2005-06-08

    We studied the Octupole (Montague) resonance in the AGS, in its high intensity mode, by tracking with the PIC code SIMBAD. We calculated, turn-by-turn, the betatron tune footprint from the eigenvalues of the one-turn matrix. We show that one should exercise particular caution when the betatron tunes are close together, since the matrix gives ambiguous results at the resonance.

  9. Reconstructing the dark energy equation of state with varying couplings

    SciTech Connect

    Avelino, P. P.; Martins, C. J. A. P.; Nunes, N. J.; Olive, K. A.

    2006-10-15

    We revisit the idea of using varying couplings to probe the nature of dark energy, in particular, by reconstructing its equation of state. We show that for the class of models studied this method can be far superior to the standard methods (using type Ia supernovae or weak lensing). We also show that the simultaneous use of measurements of the fine-structure constant {alpha} and the electron-to-proton mass ratio {mu} allows a direct probe of grand unification scenarios. We present forecasts for the sensitivity of this method, both for the near future and for the next generation of spectrographs--for the latter we focus on the planned CODEX instrument for ESO's Extremely Large Telescope (formerly known as OWL). A high-accuracy reconstruction of the equation of state may be possible all the way up to redshift z{approx}4.

  10. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    SciTech Connect

    Chen, Gong Schmid, Andreas K.; Mascaraque, Arantzazu; N'Diaye, Alpha T.

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  11. Coupling term derivation and general implementation of state-specific multireference coupled cluster theories

    NASA Astrophysics Data System (ADS)

    Evangelista, Francesco A.; Allen, Wesley D.; Schaefer, Henry F.

    2007-07-01

    Simple closed-form expressions are derived for the "same vacuum" renormalization terms that arise in state-specific multireference coupled cluster (MRCC) theories. Explicit equations are provided for these coupling terms through the triple excitation level of MRCC theory, and a general expression is included for arbitrary-order excitations. The first production-level code (PSIMRCC) for state-specific and rigorously size-extensive Mukherjee multireference coupled cluster singles and doubles (MkCCSD) computations has been written. This code is also capable of evaluating analogous Brillouin-Wigner multireference energies (BWCCSD), including a posteriori size-extensivity corrections. Using correlation-consistent basis sets (cc-pVXZ, X =D,T,Q), MkCCSD and BWCCSD were tested and compared on two classic multireference problems: (1) the dissociation potential curve of molecular fluorine (F2) and (2) the structure and vibrational frequencies of ozone. Comparison with experimental data shows that the Mukherjee method is generally superior to the Brillouin-Wigner theory in predicting energies, structures, and vibrational frequencies. Particularly accurate results for F2 are obtained by applying the MkCCSD method with localized molecular orbitals. Although the MkCCSD theory greatly improves upon single-reference CCSD for the geometric parameters and a1 vibrational frequencies of ozone, the antisymmetric stretching frequency ω3(b2) remains pathological and cannot be properly treated without the inclusion of connected triple excitations. Finally, preliminary multireference MkCCSD results are reported for the singlet-triplet splittings in ortho-, meta-, and para-benzyne, coming within 1.5kcalmol-1 of experiment in all cases.

  12. Symmetry of the CMB sky as a new test of its statistical isotropy. Non cosmological octupole?

    SciTech Connect

    Naselsky, P.; Hansen, M.; Kim, J. E-mail: kirstejn@nbi.dk

    2011-09-01

    In this article we propose a novel test for statistical anisotropy of the CMB ΔT( n-circumflex = (θ,φ)). The test is based on the fact, that the Galactic foregrounds have a remarkably strong symmetry with respect to their antipodal points with respect to the Galactic plane, while the cosmological signal should not be symmetric or asymmetric under these transitions. We have applied the test for the octupole component of the WMAP ILC 7 map, by looking at a{sub 3,1} and a{sub 3,3}, and their ratio to a{sub 3,2} both for real and imaginary values. We find abnormal symmetry of the octupole component at the level of 0.58%, compared to Monte Carlo simulations. By using the analysis of the phases of the octupole we found remarkably strong cross-correlations between the phases of the kinematic dipole and the ILC 7 octupole, in full agreement with previous results. We further test the multipole range 2 < l < 100, by investigating the ratio between the l+m = even and l+m = odd parts of power spectra. We compare the results to simulations of a Gaussian random sky, and find significant departure from the statistically isotropic and homogeneous case, for a very broad range of multipoles. We found that for the most prominent peaks of our estimator, the phases of the corresponding harmonics are coherent with phases of the octupole. We believe, our test would be very useful for detections of various types of residuals of the foreground and systematic effects at a very broad range of multipoles 2 ≤ l ≤ 1500−3000 for the forthcoming PLANCK CMB map, before any conclusions about primordial non-Gaussianity and statistical anisotropy of the CMB.

  13. Chimera states in coupled Kuramoto oscillators with inertia

    NASA Astrophysics Data System (ADS)

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  14. Chimera states in coupled Kuramoto oscillators with inertia.

    PubMed

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  15. Chimera states in coupled Kuramoto oscillators with inertia

    SciTech Connect

    Olmi, Simona

    2015-12-15

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  16. Chimera states in coupled Kuramoto oscillators with inertia.

    PubMed

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry. PMID:26723164

  17. Coupled Leidenfrost states as a monodisperse granular clock.

    PubMed

    Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing

    2016-08-01

    Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results. PMID:27627232

  18. Coupled Leidenfrost states as a monodisperse granular clock

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing

    2016-08-01

    Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.

  19. Coupled Leidenfrost states as a monodisperse granular clock.

    PubMed

    Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing

    2016-08-01

    Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.

  20. All possible coupling schemes in XY spin chains for perfect state transfer

    SciTech Connect

    Wang Yaoxiong; Shuang Feng; Rabitz, Herschel

    2011-07-15

    We investigate quantum state transfer in XY spin chains and propose a recursive procedure to construct the nonuniform couplings within these chains of arbitrary length in order to achieve perfect state transfer. We show that this method is capable of finding all possible coupling schemes for perfect state transfer. These schemes, without external control fields, involve analytically identified engineered couplings without the need for dynamical control. The analytical solutions provide all information for coupling design.

  1. Exchange bias and coercivity for ferromagnets coupled to the domain state and spin glass state

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaozhi; Mao, Zhongquan; Chen, Xi

    2016-05-01

    The exchange bias (EB) effect for systems with a ferromagnetic (FM) layer coupled to bond-diluted pinning layers has been investigated by Monte Carlo simulations. Two bond dilution concentrations are chosen to obtain two kinds of pinning layers: the antiferromagnetic domain state (DS) and the spin glass (SG) state. It is found that when coupled to the more disordered SG state, the ferromagnet shows enhanced EB with higher coercivity due to larger amounts of both frozen and reversible spins at the pinning interface. Spin configurations of the FM/DS interface layer reveal that reversible spins are mostly found in domain boundaries and small domains, while most spins in large domains maintain antiferromagnetic coupling and contribute to the EB effect. The coercivity is linear to the amount of interface reversible spins, but with different slopes in the temperature ranges above or below the blocking temperature t B. This bimodal temperature-dependent coercivity indicates a sudden change in macroscopic interface coupling at the temperature t B.

  2. Determination of the B(E3, 0+ → 3-)-excitation strength in octupole-correlated nuclei near A ≈ 224 by the means of Coulomb excitation at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Gaffney, L. P.; Butler, P. A.; Hayes, A. B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Bönig, S.; Bree, N.; Cederkäil, J.; Chupp, T.; Cline, D.; Cocolios, T. E.; Davinson, T.; De Witte, H.; Diriken, J.; Grahn, T.; Gregor, E. T.; Herzan, A.; Huyse, M.; Jenkins, D. G.; Joss, D. T.; Kesteloot, N.; Konki, J.; Kowalczyk, M.; Kröll, Th; Kwan, E.; Lutter, R.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Reynders, K.; Rigby, S. V.; Robledo, L. M.; Rudigier, M.; Sambi, S.; Seidlitz, M.; Siebeck, B.; Stora, T.; Thoele, P.; Van Duppen, P.; Vermeulen, M. J.; von Schmid, M.; Voulot, D.; Warr, N.; Wimmer, K.; Wrzosek-Lipska, K.; Wu, C. Y.; Zielińska, M.

    2014-09-01

    The IS475 collaboration conducted Coulomb-excitation experiments with postaccelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam ≈ 2.83 MeV/u) were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted langle3-||Ê3||0+rangle matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations in its ground state. An observation that has implications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.

  3. Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer.

    PubMed

    Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I

    2015-02-12

    Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.

  4. Identification of the Jπ=1- state in 218Ra populated via α decay of 222Th

    NASA Astrophysics Data System (ADS)

    Parr, E.; Smith, J. F.; Greenlees, P. T.; Smolen, M.; Papadakis, P.; Auranen, K.; Chapman, R.; Cullen, D. M.; Grahn, T.; Grocutt, L.; HerzáÅ, A.; Herzberg, R.-D.; Hodge, D.; Jakobsson, U.; Julin, R.; Juutinen, S.; Konki, J.; Leino, M.; McPeake, C.; Mengoni, D.; Mistry, A. K.; Mulholland, K. F.; O'Neill, G. G.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scheck, M.; Scholey, C.; Sorri, J.; Stolze, S.; Taylor, M. J.; Uusitalo, J.

    2016-07-01

    The α decay of 222Th populating the low-lying Jπ=3- state, and also a proposed 1- state, in 218Ra has been observed. The observations suggest an excitation energy of 853 keV for the 1- state, which is 60 keV above the 3- state. The hindrance factors of these α decays give a possible boundary to the region of ground-state octupole deformation in the light-actinide nuclei. The relative positions of the Jπ=1- and 3- states suggest they are produced by an octupole-vibrational mechanism, as opposed to α clustering or rotations of a reflection-asymmetric octupole-deformed shape.

  5. Rescue of endemic states in interconnected networks with adaptive coupling

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-07-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network -and therefore on the interconnected system- the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.

  6. Rescue of endemic states in interconnected networks with adaptive coupling

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-07-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network –and therefore on the interconnected system– the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.

  7. Equation of State Measurement Technique for Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Tierney, T.; Benage, J.; Evans, S.; Kyrala, G.; Montoya, R.; Roberts, J.; Taylor, T.; Workman, J.

    2000-09-01

    Low-temperature ( ~ 1eV), high-density(n_e ~10^21 cm-3) plasmas are called strongly coupled (SCP) when the coulomb interaction energy is comparable to the thermal kinetic energy. We intend to measure the SCP equation of state (EOS) by modifying the standard EOS shock technique. A square column of aluminum SCP ( ~0.1 g/ cm^3, ~1 eV) is shocked by a 2-3 J, 0.8 ns frequency-doubled Nd:Yag laser pulse, producing a ~1 g/cm^3, ~20 eV SCP. The densities of the pre-shocked and shocked regions are measured by Ti K-shell (4.75 keV) x-ray absorption. Mg K-shell x-ray (1.35 keV) absorption, imaged through a high-resolution 1-D microscope onto a streak camera, provides shock speed measurements. Filtered PMTs provide the temperature and an initial internal energy estimate. Using these measurements in the Rankine-Hugoniot conservation equations we determine the pressure, final internal energy and, thus, the SCP EOS. We present the preliminary measurements of the aluminum conditions with emphasis on determining the EOS. * Work performed under the auspices of DOE

  8. Rescue of endemic states in interconnected networks with adaptive coupling

    PubMed Central

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-01-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network –and therefore on the interconnected system– the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime. PMID:27380771

  9. Rescue of endemic states in interconnected networks with adaptive coupling.

    PubMed

    Vazquez, F; Serrano, M Ángeles; Miguel, M San

    2016-07-06

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network -and therefore on the interconnected system- the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.

  10. Analysis of strongly coupled electronic states in diatomic molecules: Low-lying excited states of RbCs

    SciTech Connect

    Bergeman, T.; Fellows, C.E.; Gutterres, R.F.; Amiot, C.

    2003-05-01

    Analysis and assignment of spectra involving the lowest excited states of the heavier alkali-metal atom dimers are complicated by the strong spin-orbit coupling elements. Here we report an analysis of the Fourier-transform spectroscopy data from laser-induced fluorescence of the coupled A {sup 1}{sigma}{sup +} and b {sup 3}{pi} states of RbCs, using the discrete variable representation. Fitted parameters are given and special effects due to strong coupling are discussed.

  11. Studies of Octupole Structures in RADON-220,222 and RADIUM-224.

    NASA Astrophysics Data System (ADS)

    Poynter, Raymond John

    Available from UMI in association with The British Library. alpha-gamma angular correlation measurements have been made using the alpha-radioactive sources ^{226}Ra and ^{228}Th in the POLYTESSA array at the N.S.F., Daresbury Laboratory. These measurements enabled spin-parity (J^{pi}) assignments to be made to nuclei in the two decay chains. The J^{pi} assignments have been made as follows; 1^ {-} and 3^{-} to the 601 and 635keV levels (respectively) in ^{222}Rn, 1^ {-} to the 645 keV level in ^ {220}Rn, 2^{+} to the 510 and 550keV levels (the first excited states) in ^{218,216}Po respectively, 4^{+} to the 250keV level in ^{224}Ra and 4^{+} to the 448 and 534 levels in ^{222,220}Rn respectively. alpha-e^ {-} coincidence measurements with the ^{228}Th source in the superconducting electron solenoid spectrometer also at the N.S.F. have been performed and the internal conversion coefficient for the 205keV transition in ^ {224}Ra has been measured. The 205keV transition was demonstrated to be an E1 transition, thus the 292keV level is assigned as having J^ {pi}=3^{-} (or 1^{-}). These J ^{pi} assignments have enabled interpretation of alpha hindrance factors to the low-lying negative parity levels in these radium and radon nuclei. The systematics of alpha hindrance factors in these nuclei are compared with others from the region. A preliminary experiment on the higher spin structure of ^{224}Ra has been performed utilising the ^{226}Ra (^{58}Ni,^ {60}Ni)^{224} Ra^{*} reaction, also on the POLYTESSA array. The use of a transfer reaction necessitated the event-by-event correction of the Doppler shift of the gamma-rays. The experimental apparatus used to enable this correction is described. gamma-gamma coincidence spectroscopy was performed and a tentative decay scheme constructed up to a spin of 10hbar . B(E1)/B(E2) branching ratios were measured to be 5.5 +/- 1 times 10^{-7}fm ^{-2} and a provisional intrinsic dipole moment of Q_1 = 0.24 +/- 0.05efm for ^ {224}Ra was

  12. Accurate collision-induced line-coupling parameters for the fundamental band of CO in He - Close coupling and coupled states scattering calculations

    NASA Technical Reports Server (NTRS)

    Green, Sheldon; Boissoles, J.; Boulet, C.

    1988-01-01

    The first accurate theoretical values for off-diagonal (i.e., line-coupling) pressure-broadening cross sections are presented. Calculations were done for CO perturbed by He at thermal collision energies using an accurate ab initio potential energy surface. Converged close coupling, i.e., numerically exact values, were obtained for coupling to the R(0) and R(2) lines. These were used to test the coupled states (CS) and infinite order sudden (IOS) approximate scattering methods. CS was found to be of quantitative accuracy (a few percent) and has been used to obtain coupling values for lines to R(10). IOS values are less accurate, but, owing to their simplicity, may nonetheless prove useful as has been recently demonstrated.

  13. Representing Adiabatic Potential Energy Surfaces Coupled by Conical Intersections in their Full Dimensionality Using Coupled Quasi-Diabatic States

    NASA Astrophysics Data System (ADS)

    Yarkony, David

    2015-03-01

    The construction of fit single state potential energy surfaces (PESs), analytic representations of ab initio electronic energies and energy gradients, is now well established. These single state PESs, which are essential for accurate quantum dynamics and have found wide application in more approximate quasi-classical treatments, have revolutionized adiabatic dynamics. The situation for nonadiabatic processes involving dissociative and large amplitude motion is less sanguine. In these cases, compared to single electronic state dynamics, both the electronic structure data and the representation are more challenging to determine. We describe the recent development and applications of algorithms that enable description of multiple adiabatic electronic potential energy surfaces coupled by conical intersections in their full dimensionality using coupled quasi-diabatic states. These representations are demonstrably quasi-diabatic, provide accurate representations of conical intersection seams and can smooth out the discontinuities in electronic structure energies due to changing active orbital spaces that routinely afflict global multistate representations.

  14. Review of advances in coupling electrochemistry and liquid state NMR.

    PubMed

    Bussy, Ugo; Boujtita, Mohammed

    2015-05-01

    The coupling of electrochemistry and NMR spectroscopy (EC-NMR) may present an interesting approach in the environmental oxidative degradation or metabolism studies. This review presents experimental advances in the field of EC-NMR and highlights the main advantages and drawbacks of in situ and on line of NMR spectroelectrochemistry. The analysis of NMR spectra recorded in situ or on line EC-NMR permits to elucidate the reaction pathway of the electrochemical oxidation reactions and could constitute a fast way for monitoring unstable species as for instance quinone and quinone imine structures without using any coupling agents. The use of 1D and 2D NMR coupled with electrochemistry may leads to the elucidation of the major species produced from the electrochemical oxidation process. The present review gives an overview about the development of the electrochemical cells which can operate on line or in situ with NMR measurements. Future developments and potential applications of EC-NMR are also discussed.

  15. Transition from homogeneous to inhomogeneous steady states in oscillators under cyclic coupling

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Hens, Chittaranjan; Bhowmick, Sourav K.; Pal, Pinaki; Ghosh, Dibakar

    2016-01-01

    We report a transition from homogeneous steady state to inhomogeneous steady state in coupled oscillators, both limit cycle and chaotic, under cyclic coupling and diffusive coupling as well when an asymmetry is introduced in terms of a negative parameter mismatch. Such a transition appears in limit cycle systems via pitchfork bifurcation as usual. Especially, when we focus on chaotic systems, the transition follows a transcritical bifurcation for cyclic coupling while it is a pitchfork bifurcation for the conventional diffusive coupling. We use the paradigmatic Van der Pol oscillator as the limit cycle system and a Sprott system as a chaotic system. We verified our results analytically for cyclic coupling and numerically check all results including diffusive coupling for both the limit cycle and chaotic systems.

  16. Creating a duet: The Couples Life Story Approach in the United States and Japan

    PubMed Central

    Ingersoll-Dayton, Berit; Spencer, Beth; Campbell, Ruth; Kurokowa, Yukiko; Ito, Mio

    2015-01-01

    There is a global need for interventions that help couples who are dealing with dementia. This paper describes the way in which interventionists from the United States and Japan participated in the development of an intervention for dyads in which one person is experiencing memory loss. The 5-week intervention, the Couples Life Story Approach, helps dyads to reminisce about their life together as a couple, to work on their patterns of communication, and to develop a Life Story Book. Based on an analysis of cases conducted in the United States (n = 20 couples) and Japan (n = 9 couples), this paper highlights the cross-fertilization process that has occurred as interventionists from the two countries have shared their experiences with one another. Using case illustrations, the discussion focuses on the clinical themes that have emerged for couples in the United States and Japan. PMID:24627456

  17. Creating a duet: The Couples Life Story Approach in the United States and Japan.

    PubMed

    Ingersoll-Dayton, Berit; Spencer, Beth; Campbell, Ruth; Kurokowa, Yukiko; Ito, Mio

    2016-07-01

    There is a global need for interventions that help couples who are dealing with dementia. This paper describes the way in which interventionists from the United States and Japan participated in the development of an intervention for dyads in which one person is experiencing memory loss. The 5-week intervention, the Couples Life Story Approach, helps dyads to reminisce about their life together as a couple, to work on their patterns of communication, and to develop a Life Story Book. Based on an analysis of cases conducted in the United States (n = 20 couples) and Japan (n = 9 couples), this paper highlights the cross-fertilization process that has occurred as interventionists from the two countries have shared their experiences with one another. Using case illustrations, the discussion focuses on the clinical themes that have emerged for couples in the United States and Japan.

  18. A novel antiproton radial diagnostic based on octupole induced ballistic loss

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.

    2008-03-15

    We report results from a novel diagnostic that probes the outer radial profile of trapped antiproton clouds. The diagnostic allows us to determine the profile by monitoring the time history of antiproton losses that occur as an octupole field in the antiproton confinement region is increased. We show several examples of how this diagnostic helps us to understand the radial dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better understanding of these dynamics may aid current attempts to trap antihydrogen atoms.

  19. Crystallization of ion clouds in octupole traps: Structural transitions, core melting, and scaling laws

    SciTech Connect

    Calvo, F.; Champenois, C.; Yurtsever, E.

    2009-12-15

    The stable structures and melting properties of ion clouds in isotropic octupole traps are investigated using a combination of semianalytical and numerical models, with a particular emphasis at finite-size scaling effects. Small-size clouds are found to be hollow and arranged in shells corresponding approximately to the solutions of the Thomson problem. The shell structure is lost in clusters containing more than a few thousands of ions, the inner parts of the cloud becoming soft and amorphous. While melting is triggered in the core shells, the melting temperature follows the rule expected for three-dimensional dense particles, with a depression scaling linearly with the inverse radius.

  20. Long distance coupling of a quantum mechanical oscillator to the internal states of an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Vogell, B.; Kampschulte, T.; Rakher, M. T.; Faber, A.; Treutlein, P.; Hammerer, K.; Zoller, P.

    2015-04-01

    We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.

  1. Meron ground state of Rashba spin-orbit-coupled dipolar bosons.

    PubMed

    Wilson, Ryan M; Anderson, Brandon M; Clark, Charles W

    2013-11-01

    We study the effects of dipolar interactions on a Bose-Einstein condensate with synthetically generated Rashba spin-orbit coupling. The dipolar interaction we consider includes terms that couple spin and orbital angular momentum in a way perfectly congruent with the single-particle Rashba coupling. We show that this internal spin-orbit coupling plays a crucial role in the rich ground-state phase diagram of the trapped condensate. In particular, we predict the emergence of a thermodynamically stable ground state with a meron spin configuration.

  2. Interlayer coupling through a dimensionality-induced magnetic state.

    PubMed

    Gibert, M; Viret, M; Zubko, P; Jaouen, N; Tonnerre, J-M; Torres-Pardo, A; Catalano, S; Gloter, A; Stéphan, O; Triscone, J-M

    2016-04-15

    Dimensionality is known to play an important role in many compounds for which ultrathin layers can behave very differently from the bulk. This is especially true for the paramagnetic metal LaNiO3, which can become insulating and magnetic when only a few monolayers thick. We show here that an induced antiferromagnetic order can be stabilized in the [111] direction by interfacial coupling to the insulating ferromagnet LaMnO3, and used to generate interlayer magnetic coupling of a nature that depends on the exact number of LaNiO3 monolayers. For 7-monolayer-thick LaNiO3/LaMnO3 superlattices, negative and positive exchange bias, as well as antiferromagnetic interlayer coupling are observed in different temperature windows. All three behaviours are explained based on the emergence of a (¼,¼,¼)-wavevector antiferromagnetic structure in LaNiO3 and the presence of interface asymmetry with LaMnO3. This dimensionality-induced magnetic order can be used to tailor a broad range of magnetic properties in well-designed superlattice-based devices.

  3. Interlayer coupling through a dimensionality-induced magnetic state

    PubMed Central

    Gibert, M.; Viret, M.; Zubko, P.; Jaouen, N.; Tonnerre, J.-M.; Torres-Pardo, A.; Catalano, S.; Gloter, A.; Stéphan, O.; Triscone, J.-M.

    2016-01-01

    Dimensionality is known to play an important role in many compounds for which ultrathin layers can behave very differently from the bulk. This is especially true for the paramagnetic metal LaNiO3, which can become insulating and magnetic when only a few monolayers thick. We show here that an induced antiferromagnetic order can be stabilized in the [111] direction by interfacial coupling to the insulating ferromagnet LaMnO3, and used to generate interlayer magnetic coupling of a nature that depends on the exact number of LaNiO3 monolayers. For 7-monolayer-thick LaNiO3/LaMnO3 superlattices, negative and positive exchange bias, as well as antiferromagnetic interlayer coupling are observed in different temperature windows. All three behaviours are explained based on the emergence of a (¼,¼,¼)-wavevector antiferromagnetic structure in LaNiO3 and the presence of interface asymmetry with LaMnO3. This dimensionality-induced magnetic order can be used to tailor a broad range of magnetic properties in well-designed superlattice-based devices. PMID:27079668

  4. Robustness of chimera states for coupled FitzHugh-Nagumo oscillators.

    PubMed

    Omelchenko, Iryna; Provata, Astero; Hizanidis, Johanne; Schöll, Eckehard; Hövel, Philipp

    2015-02-01

    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of spatially coherent and incoherent dynamics. This counterintuitive phenomenon was first observed in systems of identical oscillators with symmetric coupling topology. Can one overcome these limitations? To address this question, we discuss the robustness of chimera states in networks of FitzHugh-Nagumo oscillators. Considering networks of inhomogeneous elements with regular coupling topology, and networks of identical elements with irregular coupling topologies, we demonstrate that chimera states are robust with respect to these perturbations and analyze their properties as the inhomogeneities increase. We find that modifications of coupling topologies cause qualitative changes of chimera states: additional random links induce a shift of the stability regions in the system parameter plane, gaps in the connectivity matrix result in a change of the multiplicity of incoherent regions of the chimera state, and hierarchical geometry in the connectivity matrix induces nested coherent and incoherent regions.

  5. Multireference general-model-space state-universal and state-specific coupled-cluster approaches to excited states

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhu; Paldus, Josef

    2010-11-01

    The concept of C-conditions, originally introduced in the framework of the multireference (MR), general-model-space (GMS), state-universal (SU), coupled-cluster (CC) approach with singles and doubles (GMS-SU-CCSD) to account for the internal amplitudes that vanish in the case of a complete model space, is applied to a state-selective or state-specific Mukherjee MR-CC method (MkCCSD). In contrast to the existing applications, the emphasis is on the description of excited states, particularly those belonging to the same symmetry species. The applicability of the C-conditions in all MR-SU-CC approaches is emphasized. Convergence problems encountered in the MkCCSD method when handling higher-lying states are pointed out. The performance of the GMS-SU-CCSD and MkCCSD methods is illustrated by considering low-lying vertical excitation energies of the ethylene molecule and para-benzyne diradical. A comparison with the equation-of-motion CCSD results, as well as with the available experimental data and recent multireference configuration interaction theoretical results, is also provided.

  6. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  7. Multiplicity of singular synchronous states in the Kuramoto model of coupled oscillators.

    PubMed

    Komarov, Maxim; Pikovsky, Arkady

    2013-11-15

    We study the Kuramoto model of globally coupled oscillators with a biharmonic coupling function. We develop an analytic self-consistency approach to find stationary synchronous states in the thermodynamic limit and demonstrate that there is a huge multiplicity of such states, which differ microscopically in the distributions of locked phases. These synchronous regimes already exist prior to the linear instability transition of the fully asynchronous state. In the presence of white Gaussian noise, the multiplicity is lifted, but the dependence of the order parameters on coupling constants remains nontrivial.

  8. Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays

    SciTech Connect

    Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi

    2013-12-15

    We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.

  9. Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2016-05-01

    Hyperfine-induced electric dipole contributions may significantly increase probabilities of otherwise very weak electric octupole and magnetic quadrupole atomic clock transitions (e.g., transitions between s and f electron orbitals). These transitions can be used for exceptionally accurate atomic clocks, quantum information processing, and the search for dark matter. They are very sensitive to new physics beyond the standard model, such as temporal variation of the fine-structure constant, the Lorentz invariance, and Einstein equivalence principle violation. We formulate conditions under which the hyperfine-induced electric dipole contribution dominates and perform calculations of the hyperfine structure and E3, M2 and the hyperfine-induced E1 transition rates for a large number of atoms and ions of experimental interest. Due to the hyperfine quenching the electric octupole clock transition in +173Yb is 2 orders of magnitude stronger than that in currently used +171Yb. Some enhancement is found in 13+143Nd, 14+149Pm, 14+147Sm, and 15+147Sm ions.

  10. Timescales of Kozai-Lidov oscillations at quadrupole and octupole order in the test particle limit

    NASA Astrophysics Data System (ADS)

    Antognini, J. M. O.

    2015-10-01

    Kozai-Lidov (KL) oscillations in hierarchical triple systems have found application to many astrophysical contexts, including planet formation, Type Ia supernovae, and supermassive black hole dynamics. The period of these oscillations is known at the order-of-magnitude level, but dependences on the initial mutual inclination or inner eccentricity are not typically included. In this work I calculate the period of KL oscillations (tKL) exactly in the test particle limit at quadrupole order (TPQ). I explore the parameter space of all hierarchical triples at TPQ and show that except for triples on the boundary between libration and rotation, the period of KL oscillations does not vary by more than a factor of a few. The exact period may be approximated to better than 2 per cent for triples with mutual inclinations between 60° and 120° and initial eccentricities less than ˜0.3. In addition, I derive an analytic expression for the period of octupole-order oscillations due to the `eccentric KL mechanism' (EKM). I show that the time-scale for EKM oscillations is proportional to ɛ _{oct}^{-1/2}, where ɛoct measures the strength of octupole perturbations relative to quadrupole perturbations.

  11. Construction and Operational Experience with a Superconducting Octupole Used to Trap Antihydrogen

    SciTech Connect

    Wanderer P.; Escallier, J.; Marone, A.; Parker, B.

    2011-09-06

    A superconducting octupole magnet has seen extensive service as part of the ALPHA experiment at CERN. ALPHA has trapped antihydrogen, a crucial step towards performing precision measurements of anti-atoms. The octupole was made at the Direct Wind facility by the Superconducting Magnet Division at Brookhaven National Laboratory. The magnet was wound with a six-around-one NbTi cable about 1 mm in diameter. It is about 300 mm long, with a radius of 25 mm and a peak field at the conductor of 4.04 T. Specific features of the magnet, including a minimal amount of material in the coil and coil ends with low multipole content, were advantageous to its use in ALPHA. The magnet was operated for six months a year for five years. During this time it underwent about 900 thermal cycles (between 4K and 100K). A novel operational feature is that during the course of data-taking the magnet was repeatedly shut off from its 950 A operating current. The magnet quenches during the shutoff, with a decay constant of 9 ms. Over the course of the five years, the magnet was deliberately quenched many thousands of times. It still performs well.

  12. Faithful conditional quantum state transfer between weakly coupled qubits

    NASA Astrophysics Data System (ADS)

    Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.

    2016-08-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.

  13. Faithful conditional quantum state transfer between weakly coupled qubits.

    PubMed

    Miková, M; Straka, I; Mičuda, M; Krčmarský, V; Dušek, M; Ježek, M; Fiurášek, J; Filip, R

    2016-01-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons. PMID:27562544

  14. Faithful conditional quantum state transfer between weakly coupled qubits

    PubMed Central

    Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.

    2016-01-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons. PMID:27562544

  15. Faithful conditional quantum state transfer between weakly coupled qubits.

    PubMed

    Miková, M; Straka, I; Mičuda, M; Krčmarský, V; Dušek, M; Ježek, M; Fiurášek, J; Filip, R

    2016-08-26

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.

  16. Examining the role of transfer coupling in sub-barrier fusion of Ti46,50+Sn124

    DOE PAGES

    Liang, J. Felix; Allmond, J. M.; Gross, C. J.; Mueller, Paul E.; Shapira, Dan; Varner, R. L.; Dasgupta, M.; Hinde, David J.; Simenel, C.; Williams, E.; et al

    2016-08-24

    In this study, the presence of neutron transfer channels with positive Q values can enhance sub-barrier fusion cross sections. Recent measurements of the fusion excitation functions for 58Ni+132,124Sn found that the fusion enhancement due to the influence of neutron transfer is smaller than that in 40Ca +132,124Sn although the Q values for multineutron transfer are comparable. The purpose of this study is to investigate the differences observed between the fusion of Sn + Ni and Sn + Ca. Methods: Fusion excitation functions for 46,50Ti +124Sn have been measured at energies near the Coulomb barrier. As a result, a comparison ofmore » the barrier distributions for 46Ti+124Sn and 40Ca+124Sn shows that the 40Ca+124Sn system has a barrier strength resulting from the coupling to the very collective octupole state in 40Ca at an energy significantly lower than the uncoupled barrier. In conclusion, the large sub-barrier fusion enhancement in 40Ca induced reactions is attributed to both couplings to neutron transfer and inelastic excitation, with the octupole vibration of 40Ca playing a major role.« less

  17. Approximating electronically excited states with equation-of-motion linear coupled-cluster theory

    SciTech Connect

    Byrd, Jason N. Rishi, Varun; Perera, Ajith; Bartlett, Rodney J.

    2015-10-28

    A new perturbative approach to canonical equation-of-motion coupled-cluster theory is presented using coupled-cluster perturbation theory. A second-order Møller-Plesset partitioning of the Hamiltonian is used to obtain the well known equation-of-motion many-body perturbation theory equations and two new equation-of-motion methods based on the linear coupled-cluster doubles and linear coupled-cluster singles and doubles wavefunctions. These new methods are benchmarked against very accurate theoretical and experimental spectra from 25 small organic molecules. It is found that the proposed methods have excellent agreement with canonical equation-of-motion coupled-cluster singles and doubles state for state orderings and relative excited state energies as well as acceptable quantitative agreement for absolute excitation energies compared with the best estimate theory and experimental spectra.

  18. Chimera and phase-cluster states in populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  19. First-order derivative couplings between excited states from adiabatic TDDFT response theory

    SciTech Connect

    Ou, Qi; Subotnik, Joseph E.; Bellchambers, Gregory D.; Furche, Filipp

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  20. Shot noise in a quantum dot system coupled with Majorana bound states.

    PubMed

    Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang

    2014-08-01

    We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green's function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ϵ(M) increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions. PMID:25016999

  1. Non-equilibrium Steady States in Kac's Model Coupled to a Thermostat

    NASA Astrophysics Data System (ADS)

    Evans, Josephine

    2016-09-01

    This paper studies the existence, uniqueness and convergence to non-equilibrium steady states in Kac's model with an external coupling. We work in both Fourier distances and Wasserstein distances. Our methods work in the case where the external coupling is not a Maxwellian equilibrium. This provides an example of a non-equilibrium steady state. We also study the behaviour as the number of particles goes to infinity and show quantitative estimates on the convergence rate of the first marginal.

  2. Origin of Temperature Gradient in Nonequilibrium Steady States in Weakly Coupled Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Ishida, Toyohiko; Sugita, Ayumu

    2016-07-01

    We study nonequilibrium steady states (NESSs) in quantum spin-1/2 chains in contact with two heat baths at different temperatures. We consider the weak-coupling limit both for spin-spin coupling in the system and for system-bath coupling. This setting allows us to treat NESSs with a nonzero temperature gradient analytically. We develop a perturbation theory for this weak-coupling situation and show a simple condition for the existence of nonzero temperature gradient. This condition is independent of the integrability of the system.

  3. Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics

    SciTech Connect

    Filipp, S.; Goeppl, M.; Fink, J. M.; Baur, M.; Bianchetti, R.; Steffen, L.; Wallraff, A.

    2011-06-15

    Microwave cavities with high quality factors enable coherent coupling of distant quantum systems. Virtual photons lead to a transverse interaction between qubits when they are nonresonant with the cavity but resonant with each other. We experimentally investigate the inverse scaling of the interqubit coupling with the detuning from a cavity mode and its proportionality to the qubit-cavity interaction strength. We demonstrate that the enhanced coupling at higher frequencies is mediated by multiple higher-harmonic cavity modes. Moreover, we observe dark states of the coupled qubit-qubit system and analyze their relation to the symmetry of the applied driving field at different frequencies.

  4. Derivative couplings between TDDFT excited states obtained by direct differentiation in the Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Shao, Yihan; Subotnik, Joseph E.

    2014-07-01

    Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the {T}1/{T}2 conical intersection of benzaldehyde.

  5. Line broadening estimate from averaged energy differences of coupled states

    NASA Astrophysics Data System (ADS)

    Lavrentieva, Nina N.; Dudaryonok, Anna S.; Ma, Qiancheng

    2014-11-01

    The method to the calculation of rotation-vibrational line half-width of asymmetric top molecules is proposed. The influence of the buffer gas on the internal state of the absorbing molecule is emphasized in this method. The basic expressions of present approach are given. The averaged energy differences method was used for the calculation of H2O and HDO lines broadening. Comparisons of the calculated line shape parameters with the experimental values in different absorption bands are made.

  6. Coupling-induced bipartite pointer states in arrays of electron billiards: quantum Darwinism in action?

    PubMed

    Brunner, R; Akis, R; Ferry, D K; Kuchar, F; Meisels, R

    2008-07-11

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create "offspring" indicates that quantum Darwinism is in action.

  7. Coupling-Induced Bipartite Pointer States in Arrays of Electron Billiards: Quantum Darwinism in Action?

    NASA Astrophysics Data System (ADS)

    Brunner, R.; Akis, R.; Ferry, D. K.; Kuchar, F.; Meisels, R.

    2008-07-01

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create “offspring” indicates that quantum Darwinism is in action.

  8. Robustness of spin-coupling distributions for perfect quantum state transfer

    SciTech Connect

    Zwick, Analia; Alvarez, Gonzalo A.; Stolze, Joachim; Osenda, Omar

    2011-08-15

    The transmission of quantum information between different parts of a quantum computer is of fundamental importance. Spin chains have been proposed as quantum channels for transferring information. Different configurations for the spin couplings were proposed in order to optimize the transfer. As imperfections in the creation of these specific spin-coupling distributions can never be completely avoided, it is important to find out which systems are optimally suited for information transfer by assessing their robustness against imperfections or disturbances. We analyze different spin coupling distributions of spin chain channels designed for perfect quantum state transfer. In particular, we study the transfer of an initial state from one end of the chain to the other end. We quantify the robustness of different coupling distributions against perturbations and we relate it to the properties of the energy eigenstates and eigenvalues. We find that the localization properties of the systems play an important role for robust quantum state transfer.

  9. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  10. High-spin octupole yrast levels in {sup 216}Rn{sub 86}

    SciTech Connect

    Debray, M.E.; Davidson, J.; Davidson, M.; Kreiner, A. J.; Cardona, M. A.; Hojman, D.; Napoli, D.R.; De Angelis, G.; De Poli, M.; Gadea, A.; Lenzi, S.; Bazzacco, D.; Lunardi, S.; Rossi-Alvarez, C.; Ur, C.A.; Medina, N.

    2006-02-15

    The yrast level structure of {sup 216}Rn has been studied using in-beam spectroscopy {alpha}-{gamma}-{gamma} coincidence techniques through the {sup 208}Pb({sup 18}O, 2{alpha}2n) reaction in the 91-93 MeV energy range, using the 8{pi} GASP-ISIS spectrometer at Legnaro. The level scheme of {sup 216}Rn resulting from this study shows alternating parity bands only above a certain excitation energy. From this result, the lightest nucleus showing evidence of octupole collectivity at low spins is still {sup 216}Fr, thereby defining the lowest-mass corner for this kind of phenomenon as N{>=}129 and Z{>=}87.

  11. Evidence for octupole correlation and chiral symmetry breaking in 124Cs

    NASA Astrophysics Data System (ADS)

    Selvakumar, K.; Singh, A. K.; Ghosh, Chandan; Singh, Purnima; Goswami, A.; Raut, R.; Mukherjee, A.; Datta, U.; Datta, P.; Roy, S.; Gangopadhyay, G.; Bhowal, S.; Muralithar, S.; Kumar, R.; Singh, R. P.; Raju, M. Kumar

    2015-12-01

    Lifetime measurements have been carried out using the Doppler shift attenuation method (DSAM) for the negative- and positive-parity bands built on π h11/2⊗ν (d5/2g7/2) and π h11/2⊗ν h11/2 configurations, respectively, in 124Cs. The reduced transition probabilities have been obtained for both the bands and are compared with the available theoretical calculations. The enhanced B (E 1 ) rates for the linking transitions between the bands with the above configurations suggest the existence of octupole correlations in 124Cs. The observed electromagnetic properties for the positive-parity bands in 124Cs agree well with the characteristics pattern required for chiral symmetry breaking.

  12. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    SciTech Connect

    Yurtsever, E.; Onal, E. D.; Calvo, F.

    2011-05-15

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  13. Octupole Magnet For Soft X Ray Magnetic Dichroism Experiments: Design and Performance

    SciTech Connect

    Arenholz, Elke; Prestemon, Soren O.

    2004-05-12

    An octupole magnet endstation for soft x ray magnetic dichroism measurements has been developed at the Advanced Light Source. The system consists of an eight pole electromagnet that surrounds a small vacuum chamber. The magnet provides fields up to 0.9 T that can be applied in any direction relative to the incoming x ray beam. High precision magnetic circular and linear dichroism spectra can be obtained reversing the magnetic field for each photon energy in an energy scan. Moreover, the field dependence of all components of the magnetization vector can be studied in detail by choosing various angles of x ray incidence while keeping the relative orientation of magnetic field and sample fixed.

  14. Mechanism for intensity-induced chimera states in globally coupled oscillators.

    PubMed

    Chandrasekar, V K; Gopal, R; Venkatesan, A; Lakshmanan, M

    2014-12-01

    We identify the mechanism behind the existence of intensity-induced chimera states in globally coupled oscillators. We find that the effect of intensity in the system is to cause multistability by increasing the number of fixed points. This in turn increases the number of multistable attractors, and we find that their stability is determined by the strength of coupling. This causes the coexistence of different collective states in the system depending upon the initial state. We demonstrate that intensity-induced chimera is generic to both periodic and chaotic systems. We discuss possible applications of our results to real-world systems like the brain and spin torque nano-oscillators.

  15. Vibronic coupling in the first four electronic states of CH2F+2

    NASA Astrophysics Data System (ADS)

    Sarkar, Rudraditya; Mahapatra, Susanta

    2015-10-01

    Vibronic coupling in the energetically lowest first four electronic states of CH2F+2 is studied in this paper. A model 4×4 Hamiltonian is constructed in a diabatic electronic representation employing normal coordinates of vibrational modes and standard vibronic coupling theory. Extensive ab initio quantum chemistry calculations are carried out to determine the parameters of the Hamiltonian and energetic ordering of the electronic states. The topographical features of the latter are examined at length and several conical intersections are established. Nuclear dynamics calculations on coupled electronic states are carried out from first principles by propagating wave packet. Theoretically calculated broad band vibronic structure of the four states are found to be in good accord with the experimental results. Dedicated to Professor Sourav Pal on the occassion of his 60th birthday.

  16. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.

    PubMed

    Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K

    2015-12-01

    We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics. PMID:26764787

  17. Chimeralike states in a network of oscillators under attractive and repulsive global coupling

    NASA Astrophysics Data System (ADS)

    Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K.; Dana, Syamal K.

    2015-12-01

    We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.

  18. Microscopic structure of high-spin vibrational states in superdeformed A=190 nuclei

    SciTech Connect

    Nakatsukasa, Takashi; Matsuyanagi, Kenichi; Mizutori, Shoujirou

    1996-12-31

    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed (SD) bands in even-even A=190 nuclei. The K = 2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. The Coriolis coupling at finite frequency produces different effects depending on the neutron and proton number of nucleus. The calculations also indicate that some collective excitations may produce moments of inertia almost identical to those of the yrast SD band. An interpretation of the observed excited bands invoking the octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in even-even SD A=190 nuclei.

  19. Experimental observation of chimera and cluster states in a minimal globally coupled network

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    2016-09-01

    A "chimera state" is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  20. Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states

    NASA Astrophysics Data System (ADS)

    Picallo, Clara B.; Riecke, Hermann

    2011-03-01

    Motivated by recent observations in neuronal systems we investigate all-to-all networks of nonidentical oscillators with adaptive coupling. The adaptation models spike-timing-dependent plasticity in which the sum of the weights of all incoming links is conserved. We find multiple phase-locked states that fall into two classes: near-synchronized states and splay states. Among the near-synchronized states are states that oscillate with a frequency that depends only very weakly on the coupling strength and is essentially given by the frequency of one of the oscillators, which is, however, neither the fastest nor the slowest oscillator. In sufficiently large networks the adaptive coupling is found to develop effective network topologies dominated by one or two loops. This results in a multitude of stable splay states, which differ in their firing sequences. With increasing coupling strength their frequency increases linearly and the oscillators become less synchronized. The essential features of the two classes of states are captured analytically in perturbation analyses of the extended Kuramoto model used in the simulations.

  1. Ground-State Chemical Reactivity under Vibrational Coupling to the Vacuum Electromagnetic Field.

    PubMed

    Thomas, Anoop; George, Jino; Shalabney, Atef; Dryzhakov, Marian; Varma, Sreejith J; Moran, Joseph; Chervy, Thibault; Zhong, Xiaolan; Devaux, Eloïse; Genet, Cyriaque; Hutchison, James A; Ebbesen, Thomas W

    2016-09-12

    The ground-state deprotection of a simple alkynylsilane is studied under vibrational strong coupling to the zero-point fluctuations, or vacuum electromagnetic field, of a resonant IR microfluidic cavity. The reaction rate decreased by a factor of up to 5.5 when the Si-C vibrational stretching modes of the reactant were strongly coupled. The relative change in the reaction rate under strong coupling depends on the Rabi splitting energy. Product analysis by GC-MS confirmed the kinetic results. Temperature dependence shows that the activation enthalpy and entropy change significantly, suggesting that the transition state is modified from an associative to a dissociative type. These findings show that vibrational strong coupling provides a powerful approach for modifying and controlling chemical landscapes and for understanding reaction mechanisms. PMID:27529831

  2. Modulation of bilayer quantum Hall states by tilted-field-induced subband-Landau-level coupling

    NASA Astrophysics Data System (ADS)

    Kumada, N.; Iwata, K.; Tagashira, K.; Shimoda, Y.; Muraki, K.; Hirayama, Y.; Sawada, A.

    2008-04-01

    We study effects of tilted magnetic fields on energy levels in a double-quantum-well (DQW) system, focusing on the coupling of subbands and Landau levels (LLs). The subband-LL coupling induces anticrossings between LLs directly manifested in the magnetoresistance. The anticrossing gap becomes larger than the spin splitting at the tilting angle θ˜20° and larger than the cyclotron energy at θ˜50° , demonstrating that the subband-LL coupling exerts a strong influence on quantum Hall states even at a relatively small θ and plays a dominant role for larger θ . We also find that when the DQW potential is asymmetric, LL coupling occurs even within a subband. Calculations including higher-order coupling reproduce the experimental results quantitatively well.

  3. Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators

    NASA Astrophysics Data System (ADS)

    Nkomo, Simbarashe; Tinsley, Mark R.; Showalter, Kenneth

    2016-09-01

    Chimera and chimera-like states are characterized in populations of photochemically coupled Belousov-Zhabotinsky (BZ) oscillators. Simple chimeras and chimera states with multiple and traveling phase clusters, phase-slip behavior, and chimera-like states with phase waves are described. Simulations with a realistic model of the discrete BZ system of populations of homogeneous and heterogeneous oscillators are compared with each other and with experimental behavior.

  4. Steady-state atom-light entanglement with engineered spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Meystre, Pierre; Zhang, Wei; He, Qiongyi

    2016-04-01

    By driving a Bose-Einstein condensate trapped in a single-mode high-Q optical resonator and coupled to a classical transverse running-wave field above a Dicke-like superradiant phase transition, the resulting cavity field-induced spin-orbit coupling leads to a band structure with doubly degenerate ground states. We show theoretically that the effective bosonic mode defined by interstate hopping can be entangled with the cavity field via the combined effect of spin-orbit coupling and dissipation.

  5. Ground State Properties of Ising Chain with Random Monomer-Dimer Couplings

    NASA Astrophysics Data System (ADS)

    Ardebili, S. Bahareh Seyedein; Sepehrinia, Reza

    2016-05-01

    We study analytically the one-dimensional Ising model with a random binary distribution of ferromagnetic and antiferromagnetic exchange couplings at zero temperature. We introduce correlations in the disorder by assigning a dimer of one type of coupling with probability x, and a monomer of the other type with probability 1-x. We find that the magnetization behaves differently from the original binary model. In particular, depending on which type of coupling comes in dimers, magnetization jumps vanish at a certain set of critical fields. We explain the results based on the structure of ground state spin configuration.

  6. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    SciTech Connect

    Wang, Zhifan; Hu, Shu; Guo, Jingwei; Wang, Fan

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  7. Vibronic structure and coupling of higher excited electronic states in carotenoids

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław; Luchowski, Rafał

    2013-03-01

    Absorption spectra of all-trans carotenoids (lycopene, violaxanthin, ζ-carotene) at low temperature exhibit peculiar features in the UV range. The transition to the 11Ag+ state ('cis-band') weakens on cooling, indicating that it is induced by thermal deformations of the conjugated chain. The higher energy band has unique vibrational structure indicating the vibronic coupling of nBu with another electronic state. The electroabsorption spectra point to the electric field-induced mixing of the nBu state with the vibrational continuum of a lower-lying excited state (Fano effect). These observations widen the basis for elucidation of the vibronic coupling effects in the lower excited states.

  8. Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators.

    PubMed

    Gambuzza, Lucia Valentina; Buscarino, Arturo; Chessari, Sergio; Fortuna, Luigi; Meucci, Riccardo; Frasca, Mattia

    2014-09-01

    Chimera states, that is, dynamical regimes characterized by the existence of a symmetry-broken solution where a coherent domain and an incoherent one coexist, have been theoretically demonstrated and numerically found in networks of homogeneously coupled identical oscillators. In this work we experimentally investigate the behavior of a closed and an open chain of electronic circuits with neuron-like spiking dynamics and first neighbor connections. Experimental results show the onset of a regime that we call chimera states with quiescent and synchronous domains, where synchronization coexists with spatially patterned oscillation death. The whole experimental bifurcation scenario, showing how disordered states, synchronization, chimera states with quiescent and synchronous domains, and oscillatory death states emerge as coupling is varied, is presented.

  9. Dressed-state resonant coupling between bright and dark spins in diamond.

    PubMed

    Belthangady, C; Bar-Gill, N; Pham, L M; Arai, K; Le Sage, D; Cappellaro, P; Walsworth, R L

    2013-04-12

    Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.

  10. Small chimera states without multistability in a globally delay-coupled network of four lasers

    NASA Astrophysics Data System (ADS)

    Röhm, André; Böhm, Fabian; Lüdge, Kathy

    2016-10-01

    We present results obtained for a network of four delay-coupled lasers modeled by Lang-Kobayashi-type equations. We find small chimera states consisting of a pair of synchronized lasers and two unsynchronized lasers. One class of these small chimera states can be understood as intermediate steps on the route from synchronization to desynchronization, and we present the entire chain of bifurcations giving birth to them. This class of small chimeras can exhibit limit-cycle or quasiperiodic dynamics. A second type of small chimera states exists apparently disconnected from any region of synchronization, arising from pair synchronization inside the chaotic desynchronized regime. In contrast to previously reported chimera states in globally coupled networks, we find that the small chimera state is the only stable solution of the system for certain parameter regions; i.e., we do not need to specially prepare initial conditions.

  11. Spin Number Coherent States and the Problem of Two Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.

    2015-07-01

    From the definition of the standard Perelomov coherent states we introduce the Perelomov number coherent states for any su(2) Lie algebra. With the displacement operator we apply a similarity transformation to the su(2) generators and construct a new set of operators which also close the su(2) Lie algebra, being the Perelomov number coherent states the new basis for its unitary irreducible representation. We apply our results to obtain the energy spectrum, the eigenstates and the partition function of two coupled oscillators. We show that the eigenstates of two coupled oscillators are the SU(2) Perelomov number coherent states of the two-dimensional harmonic oscillator with an appropriate choice of the coherent state parameters. Supported by SNI-México, COFAA-IPN, EDD-IPN, EDI-IPN, SIP-IPN Project No. 20150935

  12. Dressed-state resonant coupling between bright and dark spins in diamond.

    PubMed

    Belthangady, C; Bar-Gill, N; Pham, L M; Arai, K; Le Sage, D; Cappellaro, P; Walsworth, R L

    2013-04-12

    Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems. PMID:25167312

  13. Fluctuation of the electronic coupling in DNA: Multistate versus two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2007-05-01

    The electronic coupling for hole transfer between guanine bases G in the DNA duplex (GT) 6GTG(TG) 6 is studied using a QM/MD approach. The coupling V is calculated for 10 thousand snapshots within the two- and multistate state Generalized Mulliken-Hush model. We find that the two-state scheme considerably underestimates the rate of the hole transfer within the π stack. Moreover, the probability distributions computed with the two- and multistate schemes are quite different. It has been found that large fluctuations of V2, which are at least an order of magnitude larger than its average value, occur roughly every 1 ps.

  14. Marginal chimera state at cross-frequency locking of pulse-coupled neural networks

    NASA Astrophysics Data System (ADS)

    Bolotov, M. I.; Osipov, G. V.; Pikovsky, A.

    2016-03-01

    We consider two coupled populations of leaky integrate-and-fire neurons. Depending on the coupling strength, mean fields generated by these populations can have incommensurate frequencies or become frequency locked. In the observed 2:1 locking state of the mean fields, individual neurons in one population are asynchronous with the mean fields, while in another population they have the same frequency as the mean field. These synchronous neurons form a chimera state, where part of them build a fully synchronized cluster, while other remain scattered. We explain this chimera as a marginal one, caused by a self-organized neutral dynamics of the effective circle map.

  15. Pythagorean coupling: Complete population transfer in a four-state system

    SciTech Connect

    Suchowski, Haim; Silberberg, Yaron; Uskov, Dmitry B.

    2011-07-15

    Complete population transfer in a four-coupled-modes system is analyzed from a geometrical point of view. An analytical solution of the dynamics is written by the use of two distinct frequencies, the generalization of the single Rabi frequency of the two-state dynamics. We also present its visualization on two separate Bloch spheres with two independent torque equations. With this scheme we analytically derive the requirements for complete population transfer in a four-state quantum system. Interestingly, the solutions are found to be linked to fundamental number theory, whereas complete population transfer occurs only if the ratios between coupling coefficients exactly match a set of Pythagorean triples.

  16. Cascade of quantum phase transitions in tunnel-coupled edge states.

    PubMed

    Yang, I; Kang, W; Baldwin, K W; Pfeiffer, L N; West, K W

    2004-02-01

    We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across a quantum Hall line junction. We identify a series of quantum critical points between successive strong and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance near the critical magnetic fields B(c) is a function of a single scaling argument /B-B(c)/T(-kappa), where the exponent kappa=0.42. This puzzling resemblance to a quantum Hall-insulator transition points to the importance of interedge correlation between the coupled edge states.

  17. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Chen, Sheng-Gen; Li, Yu-Ye

    2015-05-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).

  18. Sub-Ohmic spin-boson model with off-diagonal coupling: ground state properties.

    PubMed

    Lü, Zhiguo; Duan, Liwei; Li, Xin; Shenai, Prathamesh M; Zhao, Yang

    2013-10-28

    We have carried out analytical and numerical studies of the spin-boson model in the sub-ohmic regime with the influence of both the diagonal and the off-diagonal coupling accounted for, via the Davydov D1 variational ansatz. While a second-order phase transition is known to be exhibited by this model in the presence of diagonal coupling only, we demonstrate the emergence of a discontinuous first order phase transition upon incorporation of the off-diagonal coupling. A plot of the ground state energy versus magnetization highlights the discontinuous nature of the transition between the isotropic (zero magnetization) state and nematic (finite magnetization) phases. We have also calculated the entanglement entropy and a discontinuity found at a critical coupling strength further supports the discontinuous crossover in the spin-boson model in the presence of off-diagonal coupling. It is further revealed via a canonical transformation approach that for the special case of identical exponents for the spectral densities of the diagonal and the off-diagonal coupling, there exists a continuous crossover from a single localized phase to doubly degenerate localized phase with differing magnetizations.

  19. Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control

    NASA Astrophysics Data System (ADS)

    Shao, X. Q.; Wang, Z. H.; Liu, H. D.; Yi, X. X.

    2016-09-01

    We propose an experimentally feasible scheme for dissipative preparation of a tripartite entangled state with atoms separately trapped in an array of three coupled cavities. The combination of coherent driving fields and quantum-jump-based feedback control will drive the system into a nonequilibrium steady state, which has a nearly perfect overlap with the genuine three-atom singlet state. Different control strategies are investigated and the corresponding optimal parameters are confirmed. Moreover, the fidelity of the target state is insensitive to detection inefficiencies, and it exceeds 90% for a wide range of decoherence parameters as long as the single-atom cooperativity parameter C ≡g2/(γ κ ) >350 .

  20. Stationary states of fermions in a sign potential with a mixed vector–scalar coupling

    SciTech Connect

    Castilho, W.M. Castro, A.S. de

    2014-01-15

    The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm–Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein’s paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries. -- Highlights: •Scattering of fermions in a sign potential assessed under a Sturm–Liouville perspective. •An isolated bounded solution. •No pair production despite the high localization. •No bounded solution under exact spin and pseudospin symmetries.

  1. Tamm State-Coupled Emission: Effect of Probe Location and Emission Wavelength

    PubMed Central

    2015-01-01

    We report the effect of the probe location and wavelength on the emission spatial distribution and spectral properties of fluorophores located on structures which display Tamm states. Our structure consists of a one-dimensional photonic crystal (1DPC)—that is, a multilayer structure of alternate high and low refractive index dielectrics—and a thin top silver film. Simulations show the presence of Tamm and surface plasmon modes in the structure. The electric field intensities for the Tamm modes are located mostly in the dielectric layer below the metal film. The corresponding field intensities for the surface plamon modes are located above the metal film in the distal side. Tamm states can be in resonance with the incident light normal or near normal to the surface, within the light line, and can be accessed without the use of a coupling prism or gratings. We investigated the emission spectra and angular distribution of the emission for probes located above and below the metal film to explore the interaction of fluorophores with Tamm plasmons and surface plasmons modes. Three probes were chosen with different overlap of the emission spectra with the Tamm modes. The fluorophores below the metal film coupled predominantly with the Tamm state and displayed more intense and only Tamm state-coupled emission (TSCE). Probes above the metal film display both surface plasmon-coupled emission (SPCE) and Tamm state-coupled emission. In contrast to SPCE, which shows only KR, P-polarized emission, the Tamm states can display both S- and P-polarized emission and can be populated using both RK and KR illuminations. The TSCE angle is highly sensitive to wavelength, which suggests the use of Tamm structures to provide both directional emission and wavelength dispersion. The combination of plasmonic and photonic structures with directional emission close to surface normal offers the opportunities for new design formats for clinical testing, portable devices, and other

  2. Derivative couplings between TDDFT excited states obtained by direct differentiation in the Tamm-Dancoff approximation

    SciTech Connect

    Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E.; Shao, Yihan

    2014-07-14

    Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the T{sub 1}/T{sub 2} conical intersection of benzaldehyde.

  3. Field effects on the vortex states in spin-orbit coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Xu, Liang-Liang; Liu, Yong-Kai; Feng, Shiping; Yang, Shi-Jie

    2016-06-01

    Multi-quantum vortices can be created in the ground state of rotating Bose-Einstein condensates with spin-orbit couplings. We investigate the effects of external fields, either a longitudinal field or a transverse field, on the vortex states. We reveal that both fields can effectively reduce the number of vortices. In the latter case we further find that the condensate density packets are pushed away in the horizontal direction and the vortices finally disappear to form a plane wave phase.

  4. US Department of Energy State Coupled Resource Assessment Program. Final report for FY 1983

    SciTech Connect

    Foley, D.,

    1984-01-01

    The State Coupled Program has been instrumental in identifying low- and moderate-temperature geothermal resources throughout the nation. In several cases, such as Pagosa Springs, Colorado, development has taken place that would not have occurred without the program. Twenty-two maps depicting geothermal resources have raised the profile of this alternative energy. Numerous reports produced within each state have transferred the data compiled to public and technical audiences.

  5. Channel coupling in heavy quarkonia: Energy levels, mixing, widths, and new states

    SciTech Connect

    Danilkin, I. V.; Simonov, Yu. A.

    2010-04-01

    The mechanism of channel coupling via decay products is used to study energy shifts, level mixing as well as the possibility of new near-threshold resonances in cc, bb systems. The Weinberg eigenvalue method is formulated in the multichannel problems, which allows one to describe coupled-channel resonances and wave functions in a unitary way, and to predict new states due to channel coupling. Realistic wave functions for all single-channel states and decay matrix elements computed earlier are exploited, and no new fitting parameters are involved. Examples of level shifts, widths, and mixings are presented; the dynamical origin of X(3872) and the destiny of the single-channel 2{sup 3}P{sub 1}(cc) state are clarified. As a result a sharp and narrow peak in the state with quantum numbers J{sup PC}=1{sup ++} is found at 3.872 GeV, while the single-channel resonance originally around 3.940 GeV becomes increasingly broad and disappears with growing coupling to open channels.

  6. Quantum state engineering of spin-orbit-coupled ultracold atoms in a Morse potential

    NASA Astrophysics Data System (ADS)

    Ban, Yue; Chen, Xi; Muga, J. G.; Sherman, E. Ya

    2015-02-01

    Achieving full control of a Bose-Einstein condensate can have valuable applications in metrology, quantum information processing, and quantum condensed matter physics. We propose protocols to simultaneously control the internal (related to its pseudospin-1/2) and motional (position-related) states of a spin-orbit-coupled Bose-Einstein condensate confined in a Morse potential. In the presence of synthetic spin-orbit coupling, the state transition of a noninteracting condensate can be implemented by Raman coupling and detuning terms designed by invariant-based inverse engineering. The state transfer may also be driven by tuning the direction of the spin-orbit-coupling field and modulating the magnitude of the effective synthetic magnetic field. The results can be generalized for interacting condensates by changing the time-dependent detuning to compensate for the interaction. We find that a two-level algorithm for the inverse engineering remains numerically accurate even if the entire set of possible states is considered. The proposed approach is robust against the laser-field noise and systematic device-dependent errors.

  7. Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC

    PubMed Central

    Yang, Hongchun; Howard, Martin; Dean, Caroline

    2016-01-01

    Establishment and maintenance of gene expression states is central to development and differentiation. Transcriptional and epigenetic mechanisms interconnect in poorly understood ways to determine these states. We explore these mechanisms through dissection of the regulation of Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC can be present in a transcriptionally active state marked by H3K36me3 or a silent state marked by H3K27me3. Here, we investigate the trans factors modifying these opposing histone states and find a physical coupling in vivo between the H3K36 methyltransferase, SDG8, and the H3K27me3 demethylase, ELF6. Previous modeling has predicted this coupling would exist as it facilitates bistability of opposing histone states. We also find association of SDG8 with the transcription machinery, namely RNA polymerase II and the PAF1 complex. Delivery of the active histone modifications is therefore likely to be through transcription at the locus. SDG8 and ELF6 were found to influence the localization of each other on FLC chromatin, showing the functional importance of the interaction. In addition, both influenced accumulation of the associated H3K27me3 and H3K36me3 histone modifications at FLC. We propose the physical coupling of activation and derepression activities coordinates transcriptional activity and prevents ectopic silencing. PMID:27482092

  8. Incoherent chimera and glassy states in coupled oscillators with frustrated interactions

    NASA Astrophysics Data System (ADS)

    Choe, Chol-Ung; Ri, Ji-Song; Kim, Ryong-Son

    2016-09-01

    We suggest a site disorder model that describes the population of identical oscillators with quenched random interactions for both the coupling strength and coupling phase. We obtain the reduced equations for the suborder parameters, on the basis of Ott-Antonsen ansatz theory, and present a complete bifurcation analysis of the reduced system. New effects include the appearance of the incoherent chimera and glassy state, both of which are caused by heterogeneity of the coupling phases. In the incoherent chimera state, the system displays an exotic symmetry-breaking behavior in spite of the apparent structural symmetry where the oscillators for both of the two subpopulations are in a frustrated state, while the phase distribution for each subpopulation approaches a steady state that differs from each other. When the incoherent chimera undergoes Hopf bifurcation, the system displays a breathing incoherent chimera. The glassy state that occurs on a surface of three-dimensional parameter space exhibits a continuum of metastable states with zero value of the global order parameter. Explicit formulas are derived for the system's Hopf, saddle-node, and transcritical bifurcation curves, as well as the codimension-2 crossing points, including the Takens-Bogdanov point.

  9. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  10. Modeling quasi-dark states with temporal coupled-mode theory.

    PubMed

    Souza, Mario C M M; Rezende, Guilherme F M; Barea, Luis A M; Wiederhecker, Gustavo S; Frateschi, Newton C

    2016-08-22

    Coupled resonators are commonly used to achieve tailored spectral responses and allow novel functionalities in a broad range of applications. The Temporal Coupled-Mode Theory (TCMT) provides a simple and general tool that is widely used to model these devices. Relying on TCMT to model coupled resonators might however be misleading in some circumstances due to the lumped-element nature of the model. In this article, we report an important limitation of TCMT related to the prediction of dark states. Studying a coupled system composed of three microring resonators, we demonstrate that TCMT predicts the existence of a dark state that is in disagreement with experimental observations and with the more general results obtained with the Transfer Matrix Method (TMM) and the Finite-Difference Time-Domain (FDTD) simulations. We identify the limitation in the TCMT model to be related to the mechanism of excitation/decay of the supermodes and we propose a correction that effectively reconciles the model with expected results. Our discussion based on coupled microring resonators can be useful for other electromagnetic resonant systems due to the generality and far-reach of the TCMT formalism. PMID:27557177

  11. Tropical interannual variability in a global coupled GCM: Sensitivity to mean climate state

    SciTech Connect

    Moore, A.M.

    1995-04-01

    A global coupled ocean-atmosphere-sea ice general circulation model is used to study interannual variability in the Tropics. Flux correction is used to control the mean climate of the coupled system, and in one configuration of the coupled model, interannual variability in the tropical Pacific is dominated by westward moving anomalies. Through a series of experiments in which the equatorial ocean wave speeds and ocean-atmosphere coupling strength are varied, it is demonstrated that these westward moving disturbances are probably some manifestation of what Neelin describes as an {open_quotes}SST mode.{close_quotes} By modifying the flux correction procedure, the mean climate of the coupled model can be changed. A fairly modest change in the mean climate is all that is required to excite eastward moving anomalies in place of the westward moving SST modes found previously. The apparent sensitivity of the nature of tropical interannual variability to the mean climate state in a coupled general circulation model such as that used here suggests that caution is advisable if we try to use such models to answer questions relating to changes in ENSO-like variability associated with global climate change. 41 refs., 23 figs., 1 tab.

  12. Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance

    NASA Astrophysics Data System (ADS)

    Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.

    2016-04-01

    We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.

  13. Spin-orbit coupling effect on the 23 Π state of 39K85Rb

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Stolyarov, Andrey; Stwalley, William

    2013-05-01

    Recently we investigated the spin-orbit components (Ω = 0+, 0-, 1, and 2) of the 23 Π state of 39K85Rb by using experimental spectroscopy of ultracold molecules formed by photoassociation. The separations (Δ (EΩ = 1 -EΩ = 0) and Δ (EΩ = 2 -EΩ = 1)) between Ω components were unequal due to second-order perturbations by other electronic states. In the present work we investigate the spin-orbit coupling effect on the 2 3 Π state of 39K85Rb in the framework of 1st and 2nd order non-degenerate perturbation theory based on an ab initiomethod. Required potential energy curves and electronic spin-orbit coupling matrix elements are evaluated over a wide range of internuclear distance in the basis of the spin-averaged wavefunctions corresponding to the pure Hund's case (a) coupling scheme. We compare the experimental spin-orbit splittings of the 2 3 Π state with its ab initio counterparts, which agree well and elucidate the pronounced 2nd order perturbation effects caused by nearby electronic states.

  14. Bound States of the Spin-Orbit Coupled Ultra-Cold Atoms

    NASA Astrophysics Data System (ADS)

    Jursenas, Rytis; Ruseckas, Julius; Juzeliunas, Gediminas; Spielman, Ian

    2013-05-01

    Motivated by recent theoretical and experimental research, we consider the Hamiltonian for the one-dimensional atomic center of mass motion with the spin-orbit and Raman coupling included. The Hamiltonian is perturbed by a short-range potential describing the impurity scattering. We concentrate on the bound state problem, though the continuous spectrum of the Hamiltonian is of interest as well. We model the potential in terms of the Dirac delta function. By taking into account a correct treatment of the Dirac deltas, we construct the associated self-adjoint operators and show that the number of bound states of the Hamiltonian under consideration is highly dependent on the treatment of the eigenfunctions at a zero point. Additionally, we establish all possible bound states and present their behavior in various regimes of both the spin-orbit and the Raman coupling.

  15. Topological phononic states of underwater sound based on coupled ring resonators

    NASA Astrophysics Data System (ADS)

    He, Cheng; Li, Zheng; Ni, Xu; Sun, Xiao-Chen; Yu, Si-Yuan; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng

    2016-01-01

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracy is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.

  16. Unambiguous discrimination of mixed states: A description based on system-ancilla coupling

    SciTech Connect

    Zhou, Xiang-Fa; Zhang, Yong-Sheng; Guo, Guang-Can

    2007-05-15

    We propose a general description for the unambiguous discrimination of mixed states according to the system-environment coupling, and present a procedure to reduce this to a standard semidefinite programming problem. In the two-state case, we introduce the canonical vectors and partly simplify the problem to the case of discrimination between pairs of canonical vectors. By considering the positivity of the 2x2 matrices, we obtain a series of new upper bounds for the total success probability, which depends on both the prior probabilities and specific state structures.

  17. Geometry of classical periodic orbits and quantum coherent states in coupled oscillators with SU(2) transformations

    SciTech Connect

    Chen, Y. F.

    2011-03-15

    The geometry of classical dynamics in coupled oscillators with SU(2) transformations is explored and found to be relevant to a family of continuous-transformation orbits between Lissajous and trochoidal curves. The quantum wave-packet coherent states are derived analytically to correspond exactly to the transformation geometry of classical dynamics. By using the quantum wave-packet coherent states derived herein, stationary coherent states are constructed and are shown to possess spatial patterns identical to the transformation geometry between Lissajous and trochoidal orbits.

  18. Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation

    SciTech Connect

    Lopez-Garcia, M.; Ho, Y.-L. D.; Taverne, M. P. C.; Chen, L.-F.; Rarity, J. G.; Oulton, R.; Murshidy, M. M.; Edwards, A. P.; Adawi, A. M.; Serry, M. Y.

    2014-06-09

    We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed.

  19. Intermediate Coupling For Core-Level Excited States: Consequences For X-Ray Absorption Spectroscopy

    SciTech Connect

    Bagus, Paul S.; Sassi, Michel JPC; Rosso, Kevin M.

    2015-04-15

    The origin of the complex NEXAFS features of X-Ray Absorption, XAS, spectra in transition metal complexes is analyzed and interpreted in terms of the angular momentum coupling of the open shell electrons. Especially for excited configurations where a core-electron is promoted to an open valence shell, the angular momentum coupling is intermediate between the two limits of Russell- Saunders, RS, coupling where spin-orbit splitting of the electron shells is neglected and j-j coupling where this splitting is taken as dominant. The XAS intensities can be understood in terms of two factors: (1) The dipole selection rules that give the allowed excited RS multiplets and (2) The contributions of these allowed multiplets to the wavefunctions of the intermediate coupled levels. It is shown that the origin of the complex XAS spectra is due to the distribution of the RS allowed multiplets over several different intermediate coupled excited levels. The specific case that is analyzed is the L2,3 edge XAS of an Fe3+ cation, because this cation allows a focus on the angular momentum coupling to the exclusion of other effects; e.g., chemical bonding. Arguments are made that the properties identified for this atomic case are relevant for more complex materials. The analysis is based on the properties of fully relativistic, ab initio, many-body wavefunctions for the initial and final states of the XAS process. The wavefunction properties considered include the composition of the wavefunctions in terms of RS multiplets and the occupations of the spin-orbit split open shells; the latter vividly show whether the coupling is j-j or not.

  20. K{sup {pi}}=8{sup -} isomers and K{sup {pi}}=2{sup -} octupole vibrations in N=150 shell-stabilized isotones

    SciTech Connect

    Robinson, A. P.; Khoo, T. L.; Ahmad, I.; Kondev, F. G.; Seweryniak, D.; Back, B. B.; Carpenter, M. P.; Davids, C. N.; Greene, J. P.; Gros, S.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Peterson, D.; Zhu, S.; Tandel, S. K.; Chowdhury, P.; Tandel, U. S.; Nakatsukasa, T.; Asai, M.

    2008-09-15

    Isomers have been populated in {sup 246}Cm and {sup 252}No with quantum numbers K{sup {pi}}=8{sup -}, which decay through K{sup {pi}}=2{sup -} rotational bands built on octupole vibrational states. For N=150 isotones with (even) atomic number Z=94-102, the K{sup {pi}}=8{sup -} and 2{sup -} states have remarkably stable energies, indicating neutron excitations. An exception is a singular minimum in the 2{sup -} energy at Z=98, due to the additional role of proton configurations. The nearly constant energies, in isotones spanning an 18% increase in Coulomb energy near the Coulomb limit, provide a test for theory. The two-quasiparticle K{sup {pi}}=8{sup -} energies are described with single-particle energies given by the Woods-Saxon potential and the K{sup {pi}}=2{sup -} vibrational energies by quasiparticle random-phase approximation calculations. Ramifications for self-consistent mean-field theory are discussed.

  1. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2016-07-01

    We investigate the emergence of different kinds of imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. We find that the complete synchronization in population I and existence of solitary oscillators which escape from the synchronized group in population II lead to imperfectly synchronized states for sufficiently small values of nonisochronicity parameter. Interestingly, upon increasing the strength of this parameter further there occurs an onset of mixed imperfectly synchronized states where the solitary oscillators occur from both the populations. Synchronized oscillators from both the populations are locked to a common average frequency. In both cases of imperfectly synchronized states, synchronized oscillators exhibit periodic motion while the solitary oscillators are quasiperiodic in nature. In this region, for spatially prepared initial conditions, we can observe the mixed chimera states where the coexistence of synchronized and desynchronized oscillations occur from both the populations. On the other hand, imperfectly synchronized states are not always stable, and they can drift aperiodically due to instability caused by an increase of nonisochronicity parameter. We observe that these states are robust to the introduction of frequency mismatch between the two populations.

  2. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2016-07-01

    We investigate the emergence of different kinds of imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. We find that the complete synchronization in population I and existence of solitary oscillators which escape from the synchronized group in population II lead to imperfectly synchronized states for sufficiently small values of nonisochronicity parameter. Interestingly, upon increasing the strength of this parameter further there occurs an onset of mixed imperfectly synchronized states where the solitary oscillators occur from both the populations. Synchronized oscillators from both the populations are locked to a common average frequency. In both cases of imperfectly synchronized states, synchronized oscillators exhibit periodic motion while the solitary oscillators are quasiperiodic in nature. In this region, for spatially prepared initial conditions, we can observe the mixed chimera states where the coexistence of synchronized and desynchronized oscillations occur from both the populations. On the other hand, imperfectly synchronized states are not always stable, and they can drift aperiodically due to instability caused by an increase of nonisochronicity parameter. We observe that these states are robust to the introduction of frequency mismatch between the two populations. PMID:27575152

  3. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2016-07-01

    We investigate the emergence of different kinds of imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. We find that the complete synchronization in population I and existence of solitary oscillators which escape from the synchronized group in population II lead to imperfectly synchronized states for sufficiently small values of nonisochronicity parameter. Interestingly, upon increasing the strength of this parameter further there occurs an onset of mixed imperfectly synchronized states where the solitary oscillators occur from both the populations. Synchronized oscillators from both the populations are locked to a common average frequency. In both cases of imperfectly synchronized states, synchronized oscillators exhibit periodic motion while the solitary oscillators are quasiperiodic in nature. In this region, for spatially prepared initial conditions, we can observe the mixed chimera states where the coexistence of synchronized and desynchronized oscillations occur from both the populations. On the other hand, imperfectly synchronized states are not always stable, and they can drift aperiodically due to instability caused by an increase of nonisochronicity parameter. We observe that these states are robust to the introduction of frequency mismatch between the two populations.

  4. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators.

    PubMed

    Ghoshal, Gourab; Muñuzuri, Alberto P; Pérez-Mercader, Juan

    2016-01-01

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers. PMID:26753772

  5. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab; Muñuzuri, Alberto P.; Pérez-Mercader, Juan

    2016-01-01

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.

  6. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators

    PubMed Central

    Ghoshal, Gourab; Muñuzuri, Alberto P.; Pérez-Mercader, Juan

    2016-01-01

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers. PMID:26753772

  7. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators.

    PubMed

    Ghoshal, Gourab; Muñuzuri, Alberto P; Pérez-Mercader, Juan

    2016-01-12

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.

  8. U.S. Department of Energy State Coupled Resource Assessment Program Final Report for FY 1982

    SciTech Connect

    Foley, Duncan

    1983-02-01

    During FY 1982, ESL/UURI tasks under the DOE State Coupled Program included: 2.1 Technical Assistance--Provide assistance to DOE through communicating program objectives, acting as liason among state contractors and other program participants, and writing periodic status reports. promote coordination of this program with other federal geothermal programs. 2.2 Technical Services--Provide geological, geochemical, and geophysical expertise and support as requested by state teams and other program participants to the extent made possible by funding. 2.3 Publications--Document and publish technical aspects of this program that are otherwise not documented in state contractor or other reports, provide DOE with semi-annual technical and status reports. This status report summarizes activities under 2.1 and 2.3. Technical services provided by ESL/UURI to individual state resource assessment teams are summarized in a separate technical support memorandum.

  9. Intramolecular energy transfer and excitation coupling in metal-to-ligand charge transfer (MLCT) excited states

    NASA Astrophysics Data System (ADS)

    Riesen, Hans; Krausz, Elmars

    1995-02-01

    Several new spectroscopic studies relating to the coupling and dynamics in the spin-forbidden 3MLCT excited states of the chromophores [Ru(bpy)3]2+ and [Os(bpy)3]2+ (bpy equals 2,2'-bipyridine) in the racemic crystal lattices [Ru(bpy)3](PF6)2, [Ru(bpy)3](ClO4)2 and [Zn(bpy)3](ClO4)2 are presented. In the first of these lattices there are three closely related chromophoric sites at low temperatures, each with trigonal (C3) symmetry. In the two, isomorphic perchlorate salts there is a single chromophoric site, which has C2 symmetry. Using time resolved luminescence line narrowing, we have been able to directly measure the excitation transfer rate between two equivalent metal-ligand units in the [Ru(bpy)3]2+ chromophore doped in the [Zn(bpy)3](ClO4)2 lattice. The rate obtained (approximately equals 1 X 108 sec-1) is in excellent accord with estimates made from the observed linewidth in Stark swept transient hole-burning experiments made on the same system and confirm the single ligand, localized nature of the lowest emitting excited states and thus the very weak intramolecular coupling between metal ligand sub-units within this chromophore. The corresponding coupling in the [Os(bpy)3]2+ system is stronger and, in contrast to the ruthenium analogue, gives rise to additional features in the optical spectra in the origin region of the lowest 3MLCT excited states. The magnitude of the coupling can be probed and assessed by preparing modified chromophoric materials, in which one or two of the bpy ligands are perdeuterated (bpy-d8). This selective deuteration breaks the (near) degeneracy of excitations involving crystallographically equivalent ligands by approximately equals 30 - 40 cm-1 and this competes with or completely overrides the exciton coupling process. The exciton coupling is found to be approximately equals 2.4 cm-1 for [Os(bpy)3]2+ doped in [Ru(bpy)3](PF6)2 and can be understood within a mini-exciton description. Stronger couplings for the same chromophore in

  10. Extensive ab initio study of the electronic states of BSe radical including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liu, Siyuan; Zhai, Hongsheng; Liu, Yufang

    2016-06-01

    The internally contracted multi-reference configuration interaction method (MRCI) with Davidson modification and the Douglas-Kroll scalar relativistic correction has been used to calculate the BSe molecule at the level of aug-cc-pV5Z basis set. The calculated electronic states, including 9 doublet and 6 quartet Λ-S states, are correlated to the dissociation limit of B(2Pu) + Se(3Pg) and B(2Pu) + Se(1Dg). The Spin-orbit coupling (SOC) interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian operator, which causes the entire 15 Λ-S states to split into 32 Ω states. This is the first time that the spin-orbit coupling calculation has been carried out on BSe. The potential energy curves of the Λ-S and Ω electronic states are depicted with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound Λ-S and Ω states were determined, which are in good agreement with the experimental data. The transition dipole moments (TDMs) and the Franck-Condon factors (FCs) of the transitions from the low-lying bound Ω states A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 to the ground state X2Σ+1/2 have also been presented. Based on the previous calculations, the radiative lifetimes of the A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 were evaluated.

  11. Analysis of state-specific vibrations coupled to the unidirectional energy transfer in conjugated dendrimers.

    PubMed

    Soler, Miguel A; Roitberg, Adrian E; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2012-10-11

    The nonadiabatic excited-state molecular dynamics (NA-ESMD) method and excited-state instantaneous normal modes (ES-INMs) analyses have been applied to describe the state-specific vibrations that participate in the unidirectional energy transfer between the coupled chromophores in a branched dendrimeric molecule. Our molecule is composed of two-, three-, and four-ring linear poly(phenyleneethynylene) (PPE) units linked through meta-substitutions. After an initial laser excitation, an ultrafast sequential S(3) → S(2) → S(1) electronic energy transfer from the shortest to longest segment takes place. During each S(n) → S(n-1) (n = 3, 2) transition, ES-INM(S(n)) and ES-INM(S(n-1)) analyses have been performed on S(n) and S(n-1) states, respectively. Our results reveal a unique vibrational mode localized on the S(n) state that significantly matches with the corresponding nonadiabatic coupling vector d(n,(n-1)). This mode also corresponds to the highest frequency ES-INM(S(n)) and it is seen mainly during the electronic transitions. Furthermore, its absence as a unique ES-INM(S(n-1)) reveals that state-specific vibrations play the main role in the efficiency of the unidirectional S(n) → S(n-1) electronic and vibrational energy funneling in light-harvesting dendrimers. PMID:22985079

  12. Exotic insulating states of (t2 g) 4 Hubbard model with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Sato, Toshihiro; Shirakawa, Tomonori; Yunoki, Seiji

    We numerically study electronic properties of a t2 g-orbital Hubbard model with a relativistic spin-orbit coupling (SOC) at four electrons per site. Our approach is a multi-orbital dynamical mean field theory with a continuous-time quantum Monte Carlo solver based on a strong coupling expansion. The main issue is the variation of electronic structure in the parameter space of the SOC and the Coulomb interactions at temperature fixed. For larger Coulomb interactions, a Van Vleck-type nonmagnetic insulating state with a total angular momentum J = 0 is induced by the SOC. When the SOC decreases, the insulating state is magnetically ordered along with increasing the hybridization between a nonmagnetic J = 0 state and an excited J = 1 state. Moreover, for smaller Coulomb interactions, we demonstrate that an excitonic insulating state without magnetic order appears, in addition to metallic and band insulating states. The exciton condensation is formed by an electron-hole pairing between the local effective total angular momentum j = 1 / 2 and j = 3 / 2 based bands.

  13. Study of the Ionization Dynamics and Equation of State of a Strongly Coupled Plasma

    SciTech Connect

    Shepherd, R; Audebert, P; Geindre, J P; Iglesias, C; Foord, M; Rogers, F; Gauthier, J C; Springer, P

    2003-02-06

    Preliminary experiments to study the ionization dynamics and equation of state of a strongly coupled plasma have been performed at the LLNL COMET laser facility. In these experiment, a 1.0 J, 500 fs, 532 nm laser was used to create a uniform, warm dense plasma.The primary diagnostic, Fourier Domain Interferometry (FDI), was used to provide information about the position of the critical density of the target and thus the expansion hydrodynamics, laying the ground work for the plasma characterization. The plasmas were determined to be strongly coupled. In addition work was performed characterizing the back-lighter. A von Hamos spectrograph coupled to a 500 fs X-ray streak camera (TREX-VHS) developed at LLNL was used for these measurements. This diagnostic combines high collection efficiency ({approx} 10{sup -4} steradians) with fast temporal response ({approx} 500 fs), allowing resolution of extremely transient spectral variations. The TREX-VHS will be used to determine the time history, intensity, and spectral content of the back-lighter resulting in absorption measurements that provide insight into bound states in strongly coupled conditions.

  14. Coherent manipulation of quantum states in a coupled cavity-atom system

    NASA Astrophysics Data System (ADS)

    Wang, Yanhua; Wan, Jinyin; Zou, Bichen; Zhang, Jiepeng; Zhu, Yifu

    2013-02-01

    We study atomic coherence and interference in four-level atoms confined in an optical cavity and explores the interplay between cavity QED and electromagnetically induced transparency (EIT). The destructive interference can be induced in the coupled cavity-atom system with a free-space control laser tuned to the normal mode resonance and leads to suppression of the normal mode excitation. Then by adding a pump laser coupled to the four-level atoms from free space, the control-laser induced destructive interference can be reversed and the normal mode excitation is restored. When the free-space control laser is tuned to the atomic resonance and forms a Λ-type EIT configuration with the cavity-atom system, EIT is manifested as a narrow transmission peak of a weak probe laser coupled into the cavity mode. With the free-space pump laser driving the cavity-confined atoms in a four-level configuration, the narrow transmission peak of the cavity EIT can be split into two peaks and the dressed intra-cavity dark states are created analogous to the dressed states in free space. We report experimental studies of such coherently coupled cavity-atom system realized with cold Rb atoms confined in an optical cavity and discuss possible applications in quantum nonlinear optics and quantum information science.

  15. Tunable transport through a quantum dot chain with side-coupled Majorana bound states

    SciTech Connect

    Jiang, Cui; Lu, Gang; Gong, Wei-Jiang

    2014-09-14

    We investigate the transport properties of a quantum dot (QD) chain side-coupled to a pair of Majorana bound states (MBSs). It is found that the zero-bias conductance is tightly dependent on the parity of QD number. First, if a Majorana zero mode is introduced to couple to one QD of the odd-numbered QD structure, the zero-bias conductance is equal to (e{sup 2})/(2h) , but the zero-bias conductance will experience a valley-to-peak transition if the Majorana zero mode couples to the different QDs of the even-numbered QD structure. On the other hand, when the inter-MBS coupling is nonzero, the zero-bias conductance spectrum shows a peak in the odd-numbered QD structure, and in the even-numbered QD structure one conductance valley appears at the zero-bias limit. These results show the feasibility to manipulate the current in a multi-QD structure based on the QD-MBS coupling. Also, such a system can be a candidate for detecting the MBSs.

  16. State diagram of magnetostatic coupling phase-locked spin-torque oscillators

    SciTech Connect

    Zhang, Mengwei; Wang, Longze; Wei, Dan; Gao, Kai-Zhong

    2015-05-07

    The state diagram of magnetostatic coupling phase-locked spin torque oscillator (STO) with perpendicular reference layer and planar field generation layer (FGL) is studied by the macrospin model and the micromagnetic model. The state diagrams of current densities are calculated under various external fields. The simulation shows that there are two phase-lock current density regions. In the phase-locked STOs in low current region I, the spin configuration of FGL is uniform; in high current region II, the spin configuration of FGL is highly nonuniform. In addition, the results with different STOs separation L{sub s} are compared, and the coupling between two STOs is largely decreased when L{sub s} is increased from 40 nm to 60 nm.

  17. Calculating Derivative Couplings between Time-Dependent Hartree-Fock Excited States with Pseudo-Wavefunctions.

    PubMed

    Alguire, Ethan C; Ou, Qi; Subotnik, Joseph E

    2015-06-18

    A pseudo-wavefunction description of time-dependent Hartree-Fock (TDHF) states is proposed and used to develop an analytic expression for derivative couplings between TDHF excited states based on the Hellmann-Feynman theorem. The resulting expression includes Pulay terms associated with using an atom-centered basis as well as a correction to ensure translational invariance. We demonstrate that our formalism recovers the well-known Chernyak-Mukamel expression near a crossing and in the limit of a complete basis, and thus our approach is consistent with time-dependent response theory. In a companion paper (DOI 10.1021/jp5057682 ), we investigate these derivative couplings near conical intersections and show that they behave correctly. PMID:25148602

  18. Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?

    NASA Astrophysics Data System (ADS)

    Semenova, N.; Zakharova, A.; Schöll, E.; Anishchenko, V.

    2015-11-01

    We analyze nonlocally coupled networks of identical chaotic oscillators with either time-discrete or time-continuous dynamics (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of oscillators with nonhyperbolic chaotic attractors and cannot be found in networks of systems with hyperbolic chaotic attractors. This hypothesis is supported by analytical results and numerical simulations for hyperbolic and nonhyperbolic cases.

  19. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Semenova, N.; Zakharova, A.; Schöll, E.; Anishchenko, V.

    2016-06-01

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  20. Excited states with internally contracted multireference coupled-cluster linear response theory

    NASA Astrophysics Data System (ADS)

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-01

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  1. Search for anomalous ZZZ couplings in the dilepton+dijet final state at CDF

    NASA Astrophysics Data System (ADS)

    Norman, Matthew; Hsu, Shih-Chieh; Lipeles, Elliot; Neubauer, Mark; Vanguri, Rami; Wurthwein, Frank

    2007-04-01

    Using the di-lepton di-jet final state, we study ZZZ anomalous triple neutral gauge couplings (aTGC) produced in p p collisions at √s = 1.96 TeV at the Fermilab Tevatron collected with the CDF II detector. Specifically, we reconstruct two Zs, one decaying to two leptons and one decaying to two jets, and constrain aTGC based on the observed yield in Z ->ll at high transverse momentum.

  2. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.

  3. Initial-state dependence of coupled electronic and nuclear fluxes in molecules

    NASA Astrophysics Data System (ADS)

    Kenfack, A.; Marquardt, F.; Paramonov, G. K.; Barth, I.; Lasser, C.; Paulus, B.

    2010-05-01

    We demonstrate that coupled electronic and nuclear fluxes in molecules can strongly depend on the initial state preparation. Starting the dynamics of an aligned D2+ molecule at two different initial conditions, the inner and the outer turning points, we observe qualitatively different oscillation patterns of the nuclear fluxes developing after 30 fs. This corresponds to different orders of magnitude bridged by the time evolution of the nuclear dispersion. Moreover, there are attosecond time intervals within which the electronic fluxes do not adapt to the nuclei motion depending on the initial state. These results are inferred from two different approaches for the numerical flux simulation, which are both in good agreement.

  4. Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng

    2016-05-01

    We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.

  5. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy.

    PubMed

    Zhao, Bo; Zhang, Qi

    2015-10-28

    Nucleic acids undergo structural transitions to access sparsely populated and transiently lived conformational states--or excited conformational states--that play important roles in diverse biological processes. Despite ever-increasing detection of these functionally essential states, 3D structure determination of excited states (ESs) of RNA remains elusive. This is largely due to challenges in obtaining high-resolution structural constraints in these ESs by conventional structural biology approaches. Here, we present nucleic-acid-optimized chemical exchange saturation transfer (CEST) NMR spectroscopy for measuring residual dipolar couplings (RDCs), which provide unique long-range angular constraints in ESs of nucleic acids. We demonstrate these approaches on a fluoride riboswitch, where one-bond (13)C-(1)H RDCs from both base and sugar moieties provide direct structural probes into an ES of the ligand-free riboswitch.

  6. Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits.

    PubMed

    Xu, H K; Song, C; Liu, W Y; Xue, G M; Su, F F; Deng, H; Tian, Ye; Zheng, D N; Han, Siyuan; Zhong, Y P; Wang, H; Liu, Yu-xi; Zhao, S P

    2016-01-01

    Stimulated Raman adiabatic passage offers significant advantages for coherent population transfer between uncoupled or weakly coupled states and has the potential of realizing efficient quantum gate, qubit entanglement and quantum information transfer. Here we report on the realization of the process in the superconducting Xmon and phase qutrits--two ladder-type three-level systems in which the ground state population is coherently transferred to the second excited state via the dark state subspace. We demonstrate that the population transfer efficiency is no less than 96% and 67% for the two devices, which agree well with the numerical simulation of the master equation. Population transfer via stimulated Raman adiabatic passage is significantly more robust against variations of the experimental parameters compared with that via the conventional resonant π pulse method. Our work opens up a new venue for exploring the process for quantum information processing using the superconducting artificial atoms. PMID:27009972

  7. Core-coupled states and split proton-neutron quasiparticle multiplets in 122-126Ag

    NASA Astrophysics Data System (ADS)

    Lalkovski, S.; Bruce, A. M.; Jungclaus, A.; Górska, M.; Pfützner, M.; Cáceres, L.; Naqvi, F.; Pietri, S.; Podolyák, Zs.; Simpson, G. S.; Andgren, K.; Bednarczyk, P.; Beck, T.; Benlliure, J.; Benzoni, G.; Casarejos, E.; Cederwall, B.; Crespi, F. C. L.; Cuenca-García, J. J.; Cullen, I. J.; Denis Bacelar, A. M.; Detistov, P.; Doornenbal, P.; Farrelly, G. F.; Garnsworthy, A. B.; Geissel, H.; Gelletly, W.; Gerl, J.; Grebosz, J.; Hadinia, B.; Hellström, M.; Hinke, C.; Hoischen, R.; Ilie, G.; Jaworski, G.; Jolie, J.; Khaplanov, A.; Kisyov, S.; Kmiecik, M.; Kojouharov, I.; Kumar, R.; Kurz, N.; Maj, A.; Mandal, S.; Modamio, V.; Montes, F.; Myalski, S.; Palacz, M.; Prokopowicz, W.; Reiter, P.; Regan, P. H.; Rudolph, D.; Schaffner, H.; Sohler, D.; Steer, S. J.; Tashenov, S.; Walker, J.; Walker, P. M.; Weick, H.; Werner-Malento, E.; Wieland, O.; Wollersheim, H. J.; Zhekova, M.

    2013-03-01

    Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe beam and the relativistic fission of 238U. The fragments were mass analyzed with the GSI Fragment Separator and subsequently implanted into a passive stopper. Isomeric transitions were detected by 105 high-purity germanium detectors. Eight isomeric states were observed in 122-126Ag nuclei. The level schemes of 122,123,125Ag were revised and extended with isomeric transitions being observed for the first time. The excited states in the odd-mass silver isotopes are interpreted as core-coupled states. The isomeric states in the even-mass silver isotopes are discussed in the framework of the proton-neutron split multiplets. The results of shell-model calculations, performed for the most neutron-rich silver nuclei are compared to the experimental data.

  8. Communication: state mixing by spin-orbit coupling in the anionic chloroiodine dissociations.

    PubMed

    Xia, L; Wang, X-D; Xuan, C-J; Zeng, X-J; Li, H-K; Tian, S X; Pan, Y; Lau, K-C

    2014-01-28

    Three spin-orbit states, 1(2)Π1/2, 2(2)Π3/2, and 2(2)Π1/2, of chloroiodine anion (ICl(-)) formed by low-energy electron attachment in the Franck-Condon region are associated with the dissociative limits of I(-) ((1)S0) and Cl ((2)P3/2) or Cl(*) ((2)P1/2) fragments. Within the adiabatic scheme, the presumptive Π-symmetry of the fragment angular distributions is dramatically changed to be the Π-Σ mixing symmetry, due to the significant spin-orbit interaction effect on the electronic state couplings of ICl(-). The present experimental approach also enables us to separate the contributions of different electronic states from the mixed states, providing a crucial method for quantitatively evaluating the configuration-interaction wavefunctions. PMID:25669497

  9. Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits

    PubMed Central

    Xu, H. K.; Song, C.; Liu, W. Y.; Xue, G. M.; Su, F. F.; Deng, H.; Tian, Ye; Zheng, D. N.; Han, Siyuan; Zhong, Y. P.; Wang, H.; Liu, Yu-xi; Zhao, S. P.

    2016-01-01

    Stimulated Raman adiabatic passage offers significant advantages for coherent population transfer between uncoupled or weakly coupled states and has the potential of realizing efficient quantum gate, qubit entanglement and quantum information transfer. Here we report on the realization of the process in the superconducting Xmon and phase qutrits—two ladder-type three-level systems in which the ground state population is coherently transferred to the second excited state via the dark state subspace. We demonstrate that the population transfer efficiency is no less than 96% and 67% for the two devices, which agree well with the numerical simulation of the master equation. Population transfer via stimulated Raman adiabatic passage is significantly more robust against variations of the experimental parameters compared with that via the conventional resonant π pulse method. Our work opens up a new venue for exploring the process for quantum information processing using the superconducting artificial atoms. PMID:27009972

  10. Radiative Decay Engineering 7: Tamm State-Coupled Emission Using a Hybrid Plasmonic-Photonic Structure

    PubMed Central

    Badugu, Ramachandram; Descrovi, Emiliano; Lakowicz, Joseph R.

    2014-01-01

    There is a continuing need to increase the brightness and photostability of fluorophores for use in biotechnology, medical diagnostics and cell imaging. One approach developed during the past decade is to use metallic surfaces and nanostructures. It is now known that excited state fluorophores display interactions with surface plasmons, which can increase the radiative decay rates, modify the spatial distribution of emission and result in directional emission. One important example is Surface Plasmon-Coupled Emission (SPCE). In this phenomenon the fluorophores at close distances from a thin metal film, typically silver, display emission over a small range of angles into the substrate. A disadvantage of SPCE is that the emission occur at large angles relative to the surface normal, and at angles which are larger than the critical angle for the glass substrate. The large angles make it difficult to collect all the coupled emission and have prevented use of SPCE with high-throughput and/or array applications. In the present report we describe a simple multi-layer metal-dielectric structure which allows excitation with light that is perpendicular (normal) to the plane and provides emission within a narrow angular distribution that is normal to the plane. This structure consist of a thin silver film on top of a multi-layer dielectric Bragg grating, with no nanoscale features except for the metal or dielectric layer thicknesses. Our structure is designed to support optical Tamm states, which are trapped electromagnetic modes between the metal film and the underlying Bragg grating. We used simulations with the transfer matrix method to understand the optical properties of Tamm states and localization of the modes or electric fields in the structure. Tamm states can exist with zero in-plane wavevector components and can be created without the use of a coupling prism. We show that fluorophores on top of the metal film can interact with the Tamm state under the metal film

  11. Rotational excitation of symmetric top molecules by collisions with atoms: Close coupling, coupled states, and effective potential calculations for NH3-He

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.

  12. The influence of culture on couples coping with breast cancer: a comparative analysis of couples from China, India, and the United States.

    PubMed

    Kayser, Karen; Cheung, Peter K H; Rao, Nalini; Chan, Yuen Chun L; Chan, Yu; Lo, Phyllis H Y

    2014-01-01

    This study examines the process of dyadic coping among couples who are managing stress related to a partner's breast cancer diagnosis and identifies cultural factors that affect how couples cope together. Utilizing a qualitative method based on relational psychologies, the "Listening Guide," the authors analyzed the narratives of 28 couples who where coping with early-stage breast cancer and lived in Hong Kong-China, India, and the United States. Analysis revealed four cultural factors influencing the process of coping with breast cancer. These factors included (1) family boundaries, (2) gender roles, (3) personal control, and (4) interdependence. Some couples were able to transcend prevailing cultural norms to re-establish balance in their lives and adapt to the cancer. Implications for using couple-based interventions with cancer patients in differing cultural contexts are discussed. PMID:24611914

  13. Cosmic flows on 100 h-1 Mpc scales: standardized minimum variance bulk flow, shear and octupole moments

    NASA Astrophysics Data System (ADS)

    Feldman, Hume A.; Watkins, Richard; Hudson, Michael J.

    2010-10-01

    The low-order moments, such as the bulk flow and shear, of the large-scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. In practice, however, peculiar velocity surveys are usually sparse and noisy, which can lead to the aliasing of small-scale power into what is meant to be a probe of the largest scales. Previously, we developed an optimal `minimum variance' (MV) weighting scheme, designed to overcome this problem by minimizing the difference between the measured bulk flow (BF) and that which would be measured by an ideal survey. Here we extend this MV analysis to include the shear and octupole moments, which are designed to have almost no correlations between them so that they are virtually orthogonal. We apply this MV analysis to a compilation of all major peculiar velocity surveys, consisting of 4536 measurements. Our estimate of the BF on scales of ~100h-1Mpc has a magnitude of |v| = 416 +/- 78 kms -1 towards Galactic l = 282° +/- 11° and b = 6° +/- 6°. This result is in disagreement with Λ cold dark matter with Wilkinson Microwave Anisotropy Probe 5 (WMAP5) cosmological parameters at a high confidence level, but is in good agreement with our previous MV result without an orthogonality constraint, showing that the shear and octupole moments did not contaminate the previous BF measurement. The shear and octupole moments are consistent with WMAP5 power spectrum, although the measurement noise is larger for these moments than for the BF. The relatively low shear moments suggest that the sources responsible for the BF are at large distances.

  14. Edge states, spin transport, and impurity-induced local density of states in spin-orbit coupled graphene

    NASA Astrophysics Data System (ADS)

    Seshadri, Ranjani; Sengupta, K.; Sen, Diptiman

    2016-01-01

    We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.

  15. A state interaction spin-orbit coupling density matrix renormalization group method.

    PubMed

    Sayfutyarova, Elvira R; Chan, Garnet Kin-Lic

    2016-06-21

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4](3-), determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter. PMID:27334156

  16. A systematic approach to vertically excited states of ethylene using configuration interaction and coupled cluster techniques

    SciTech Connect

    Feller, David Peterson, Kirk A.; Davidson, Ernest R.

    2014-09-14

    A systematic sequence of configuration interaction and coupled cluster calculations were used to describe selected low-lying singlet and triplet vertically excited states of ethylene with the goal of approaching the all electron, full configuration interaction/complete basis set limit. Included among these is the notoriously difficult, mixed valence/Rydberg {sup 1}B{sub 1u} V state. Techniques included complete active space and iterative natural orbital configuration interaction with large reference spaces which led to variational spaces of 1.8 × 10{sup 9} parameters. Care was taken to avoid unintentionally biasing the results due to the widely recognized sensitivity of the V state to the details of the calculation. The lowest vertical and adiabatic ionization potentials to the {sup 2}B{sub 3u} and {sup 2}B{sub 3} states were also determined. In addition, the heat of formation of twisted ethylene {sup 3}A{sub 1} was obtained from large basis set coupled cluster theory calculations including corrections for core/valence, scalar relativistic and higher order correlation recovery.

  17. Light states in Chern-Simons theory coupled to fundamental matter

    NASA Astrophysics Data System (ADS)

    Banerjee, Shamik; Hellerman, Simeon; Maltz, Jonathan; Shenker, Stephen H.

    2013-03-01

    Motivated by developments in vectorlike holography, we study SU(N) Chern-Simons theory coupled to matter fields in the fundamental representation on various spatial manifolds. On the spatial torus T 2, we find light states at small `t Hooft coupling λ = N/k, where k is the Chern-Simons level, taken to be large. In the free scalar theory the gaps are of order sqrt{λ }/N and in the critical scalar theory and the free fermion theory they are of order λ /N. The entropy of these states grows like N log( k). We briefly consider spatial surfaces of higher genus. Based on results from pure Chern-Simons theory, it appears that there are light states with entropy that grows even faster, like N 2 log( k). This is consistent with the log of the partition function on the three sphere S 3, which also behaves like N 2 log( k). These light states require bulk dynamics beyond standard Vasiliev higher spin gravity to explain them.

  18. A state interaction spin-orbit coupling density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2016-06-01

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  19. A state interaction spin-orbit coupling density matrix renormalization group method.

    PubMed

    Sayfutyarova, Elvira R; Chan, Garnet Kin-Lic

    2016-06-21

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4](3-), determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  20. Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator

    NASA Astrophysics Data System (ADS)

    Ortiz, Laura; Molina, Rafael A.; Platero, Gloria; Lunde, Anders Mathias

    2016-05-01

    We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.

  1. Improved Diabatic Model for Vibronic Coupling in the Ground Electronic State of NO_3

    NASA Astrophysics Data System (ADS)

    Stanton, J. F.

    2011-06-01

    While model Hamiltonian approaches have provided considerable qualitative understanding regarding the nature of vibronic coupling and, especially, its effect on the electronic spectra of the nitrate radical, the parametrizations heretofore applied have been rather simplistic. As a result, while patterns of energy levels and appearance of ``forbidden" spectral features are satisfactorily reproduced, the absolute position of the levels has not been calculated accurately enough to allow meaningful comparisons with those based on experimental assignments. In recent years, the machinery has been developed and applied to rather routinely make quite accurate calculations of level positions in strongly coupled systems (to, say, 20 Cm-1 per quantum of excitation). Such calculations, which have been carried out for systems such as BNB, the formyloxyl radical (HCO_2) and low-lying excited electronic states of propadienylidene (H_2C=C=C:), have now been completed for NO_3. The spectra obtained from the corresponding model Hamiltonian, which explicitly treat the coupling between the ground {tilde X}^2A_2' and {tilde B}^2E' electronic states, and use a fairly elaborate parametrization of the corresponding diabatic surfaces, are presented and discussed.

  2. Sulfur-Bridged Terthiophene Dimers: How Sulfur Oxidation State Controls Interchromophore Electronic Coupling.

    PubMed

    Cruz, Chad D; Christensen, Peter R; Chronister, Eric L; Casanova, David; Wolf, Michael O; Bardeen, Christopher J

    2015-10-01

    Symmetric dimers have the potential to optimize energy transfer and charge separation in optoelectronic devices. In this paper, a combination of optical spectroscopy (steady-state and time-resolved) and electronic structure theory is used to analyze the photophysics of sulfur-bridged terthiophene dimers. This class of dimers has the unique feature that the interchromophore (intradimer) electronic coupling can be modified by varying the oxidation state of the bridging sulfur from sulfide (S), to sulfoxide (SO), to sulfone (SO2). Photoexcitation leads to the formation of a delocalized charge resonance state (S1) that relaxes quickly (<10 ps) to a charge-transfer state (S1*). The amount of charge-transfer character in S1* can be enhanced by increasing the oxidation state of the bridging sulfur group as well as the solvent polarity. The S1* state has a decreased intersystem crossing rate when compared to monomeric terthiophene, leading to an enhanced photoluminescence quantum yield. Computational results indicate that electrostatic screening by the bridging sulfur electrons is the key parameter that controls the amount of charge-transfer character. Control of the sulfur bridge oxidation state provides the ability to tune interchromophore interactions in covalent assemblies without altering the molecular geometry or solvent polarity. This capability provides a new strategy for the design of functional supermolecules with applications in organic electronics.

  3. Strong intermolecular exciton couplings in solid-state circular dichroism of aryl benzyl sulfoxides.

    PubMed

    Padula, Daniele; Di Pietro, Sebastiano; Capozzi, Maria Annunziata M; Cardellicchio, Cosimo; Pescitelli, Gennaro

    2014-09-01

    A series of 13 enantiopure aryl benzyl sulfoxides () with different substituents on the two aromatic rings has been previously analyzed by means of electronic circular dichroism (CD) spectroscopy. Most of these compounds are crystalline and their X-ray structure is established. For almost one-half of the series, CD spectra measured in the solid state were quite different from those in acetonitrile solution. We demonstrate that the difference is due to strong exciton couplings between molecules packed closely together in the crystal. The computational approach consists of time-dependent density functional theory (TDDFT) calculations run on "dimers" composed of nearest neighbors found in the lattice. Solid-state CD spectra are well reproduced by the average of all possible pairwise terms. The relation between the crystal space group and conformation, and the appearance of solid-state CD spectra, is also discussed.

  4. The Coriolis-Coupled States v(6) = 1 and v(8) = 1 of DCOOH.

    PubMed

    Baskakov; Alanko; Koivusaari

    1999-11-01

    The Fourier transform gas-phase infrared spectra of the Coriolis-perturbed nu(6) and nu(8) bands of deuterated formic acid DCOOH were measured with a resolution of ca. 0.003 cm(-1). Combined analysis of the 8977 IR transitions and all the available rotational data (from literature) in the ground state, as well as in the excited vibrational states v(6) = 1 and v(8) = 1 was carried out. The Coriolis coupling terms were determined and improved sets of rotational and centrifugal distortion parameters for the ground and excited vibrational states were obtained. The determined band centers are nu(0) (nu(8)) = 873.385046(12) cm(-1) and nu(0) (nu(6)) = 970.8889551(46) cm(-1). Copyright 1999 Academic Press.

  5. Consecutive transitions from localized to delocalized transport states in the anharmonic chain of three coupled oscillators.

    PubMed

    Kislovsky, V; Kovaleva, M; Jayaprakash, K R; Starosvetsky, Y

    2016-07-01

    In the present paper, we study the mechanism of formation and bifurcations of highly nonstationary regimes manifested by different energy transport intensities, emerging in an anharmonic trimer model. The basic model under investigation comprises a chain of three coupled anharmonic oscillators subject to localized excitation, where the initial energy is imparted to the first oscillator only. We report the formation of three basic nonstationary transport states traversed by locally excited regimes. These states differ by spatial energy distribution, as well as by the intensity of energy transport along the chain. In the current study, we focus on numerical and analytical investigation of the intricate resonant mechanism governing the inter-state transitions of locally excited regimes. Results of the analytical study are in good agreement with the numerical simulations of the trimer model.

  6. Consecutive transitions from localized to delocalized transport states in the anharmonic chain of three coupled oscillators

    NASA Astrophysics Data System (ADS)

    Kislovsky, V.; Kovaleva, M.; Jayaprakash, K. R.; Starosvetsky, Y.

    2016-07-01

    In the present paper, we study the mechanism of formation and bifurcations of highly nonstationary regimes manifested by different energy transport intensities, emerging in an anharmonic trimer model. The basic model under investigation comprises a chain of three coupled anharmonic oscillators subject to localized excitation, where the initial energy is imparted to the first oscillator only. We report the formation of three basic nonstationary transport states traversed by locally excited regimes. These states differ by spatial energy distribution, as well as by the intensity of energy transport along the chain. In the current study, we focus on numerical and analytical investigation of the intricate resonant mechanism governing the inter-state transitions of locally excited regimes. Results of the analytical study are in good agreement with the numerical simulations of the trimer model.

  7. Remarkable coincidence for the top Yukawa coupling and an approximately massless bound state

    SciTech Connect

    Froggatt, C. D.; Nielsen, H. B.

    2009-08-01

    We calculate, with several corrections, the nonrelativistic binding by Higgs exchange and gluon exchange between six top and six antitop quarks (actually replaced by left-handed b quarks from time to time). The remarkable result is that, within our calculational accuracy of the order of 14% in the top-quark Yukawa coupling g{sub t}, the experimental running top-quark Yukawa coupling g{sub t}=0.935 happens to have just that value which gives a perfect cancellation of the unbound mass=12 top-quark masses by this binding energy. In other words the bound state is massless to the accuracy of our calculation. Our calculation is in disagreement with a similar calculation by Kuchiev et al., but this deviation may be explained by a phase transition. We and Kuchiev et al. compute on different sides of this phase transition.

  8. Spin-orbit coupling controlled ground state in Sr2ScOsO6

    NASA Astrophysics Data System (ADS)

    Taylor, A. E.; Morrow, R.; Fishman, R. S.; Calder, S.; Kolesnikov, A. I.; Lumsden, M. D.; Woodward, P. M.; Christianson, A. D.

    2016-06-01

    We report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr2ScOsO6 . The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5 d3Os5 + ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. This demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective properties of 4 d3 and 5 d3 systems and that theoretical treatments must include spin-orbit coupling.

  9. Spin-orbit coupling controlled ground state in Sr2ScOsO6

    DOE PAGES

    Taylor, A. E.; Morrow, R.; Fishman, R. S.; Calder, S.; Kolesnikov, A. I.; Lumsden, M. D.; Woodward, P. M.; Christianson, A. D.

    2016-06-27

    In this paper, we report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr2ScOsO6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d3Os5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. Finally, this demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective properties of 4d3 and 5d3more » systems and that theoretical treatments must include spin-orbit coupling.« less

  10. Parity splitting and E1/E2 branching in the alternating parity band of {sup 240}Pu from two-center octupole wave functions using supersymmetric quantum mechanics

    SciTech Connect

    Jolos, R. V.; Brentano, P. von

    2011-08-15

    An interpretation is suggested of the recently published experimental data on the alternating parity bands in {sup 240}Pu. The interpretation is based on the assumption that the main role in the description of the properties of the alternating parity bands plays the octupole mode which preserves the axial symmetry. The mathematical technique of the supersymmetric quantum mechanics is used for the realization of the model with the two-center octupole wave functions. A good description of the parity splitting and of the ratio of the dipole and quadrupole transitional moments is obtained for the first two bands.

  11. Coriolis coupling effects in the calculation of state-to-state integral and differential cross sections for the H+D2 reaction.

    PubMed

    Chu, Tian-Shu; Han, Ke-Li; Hankel, Marlies; Balint-Kurti, Gabriel G

    2007-06-01

    The quantum wavepacket parallel computational code DIFFREALWAVE is used to calculate state-to-state integral and differential cross sections for the title reaction on the BKMP2 surface in the total energy range of 0.4-1.2 eV with D2 initially in its ground vibrational-rotational state. The role of Coriolis couplings in the state-to-state quantum calculations is examined in detail. Comparison of the results from calculations including the full Coriolis coupling and those using the centrifugal sudden approximation demonstrates that both the energy dependence and the angular dependence of the calculated cross sections are extremely sensitive to the Coriolis coupling, thus emphasizing the importance of including it correctly in an accurate state-to-state calculation.

  12. Proton coupled electron transfer from the excited state of a ruthenium(II) pyridylimidazole complex.

    PubMed

    Pannwitz, Andrea; Wenger, Oliver S

    2016-04-28

    Proton coupled electron transfer (PCET) from the excited state of [Ru(bpy)2pyimH](2+) (bpy = 2,2'-bipyridine; pyimH = 2-(2'-pyridyl)imidazole) to N-methyl-4,4'-bipyridinium (monoquat, MQ(+)) was studied. While this complex has been investigated previously, our study is the first to show that the formal bond dissociation free energy (BDFE) of the imidazole-N-H bond decreases from (91 ± 1) kcal mol(-1) in the electronic ground state to (43 ± 5) kcal mol(-1) in the lowest-energetic (3)MLCT excited state. This makes the [Ru(bpy)2pyimH](2+) complex a very strong (formal) hydrogen atom donor even when compared to metal hydride complexes, and this is interesting for light-driven (formal) hydrogen atom transfer (HAT) reactions with a variety of different substrates. Mechanistically, formal HAT between (3)MLCT excited [Ru(bpy)2pyimH](2+) and monoquat in buffered 1 : 1 (v : v) CH3CN/H2O was found to occur via a sequence of reaction steps involving electron transfer from Ru(ii) to MQ(+) coupled to release of the N-H proton to buffer base, followed by protonation of reduced MQ(+) by buffer acid. Our study is relevant in the larger contexts of photoredox catalysis and light-to-chemical energy conversion. PMID:27094541

  13. Bridging coupled wires and lattice Hamiltonian for two-component bosonic quantum Hall states

    NASA Astrophysics Data System (ADS)

    Fuji, Yohei; He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank

    2016-05-01

    We investigate a model of hard-core bosons with correlated hopping on the honeycomb lattice in an external magnetic field by means of a coupled-wire approach. It has been numerically shown that this model exhibits at half filling the bosonic integer quantum Hall (BIQH) state, which is a symmetry-protected topological phase protected by the U (1 ) particle conservation [Y.-C. He et al., Phys. Rev. Lett. 115, 116803 (2015), 10.1103/PhysRevLett.115.116803]. By combining the bosonization approach and a coupled-wire construction, we analytically confirm this finding and show that it even holds in the strongly anisotropic (quasi-one-dimensional) limit. We discuss the stability of the BIQH phase against tunnelings that break the separate particle conservations on different sublattices down to a global particle conservation. We further argue that a phase transition between two different BIQH phases is in a deconfined quantum critical point described by two copies of the (2 +1 ) -dimensional O (4 ) nonlinear sigma model with the topological θ term at θ =π . Finally, we predict a possible fractional quantum Hall state, the Halperin (221 ) state, at 1 /6 filling.

  14. Structure and magnetic ground states of spin-orbit coupled compound alpha-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Chakoumakos, Bryan; Tennant, Alan; Nagler, Stephen

    2015-03-01

    The layered material alpha-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3 + ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. In this talk, we discuss the synthesis of phase-pure alpha-RuCl3 and the characterization of the magnetization, susceptibility, and heat-capacity. We also report neutron diffraction on both powder and single crystal alpha-RuCl3, identifying the low temperature magnetic order observed in the material. The results, when compared to theoretical calculations, shed light on the relative importance of Kitaev and Heisenberg terms in the Hamiltonian. The research is supported by the DOE BES Scientific User Facility Division.

  15. Strongly coupled slow-light polaritons in one-dimensional disordered localized states

    PubMed Central

    Gao, Jie; Combrie, Sylvain; Liang, Baolai; Schmitteckert, Peter; Lehoucq, Gaelle; Xavier, Stephane; Xu, XinAn; Busch, Kurt; Huffaker, Diana L.; De Rossi, Alfredo; Wong, Chee Wei

    2013-01-01

    Cavity quantum electrodynamics advances the coherent control of a single quantum emitter with a quantized radiation field mode, typically piecewise engineered for the highest finesse and confinement in the cavity field. This enables the possibility of strong coupling for chip-scale quantum processing, but till now is limited to few research groups that can achieve the precision and deterministic requirements for these polariton states. Here we observe for the first time coherent polariton states of strong coupled single quantum dot excitons in inherently disordered one-dimensional localized modes in slow-light photonic crystals. Large vacuum Rabi splittings up to 311 μeV are observed, one of the largest avoided crossings in the solid-state. Our tight-binding models with quantum impurities detail these strong localized polaritons, spanning different disorder strengths, complementary to model-extracted pure dephasing and incoherent pumping rates. Such disorder-induced slow-light polaritons provide a platform towards coherent control, collective interactions, and quantum information processing. PMID:23771242

  16. A generalised 17-state vibronic-coupling Hamiltonian model for ethylene

    NASA Astrophysics Data System (ADS)

    Jornet-Somoza, Joaquim; Lasorne, Benjamin; Robb, Michael A.; Meyer, Hans-Dieter; Lauvergnat, David; Gatti, Fabien

    2012-08-01

    In a previous work [B. Lasorne, M. A. Robb, H.-D. Meyer, and F. Gatti, "The electronic excited states of ethylene with large-amplitude deformations: A dynamical symmetry group investigation," Chem. Phys. 377, 30-45 (2010), 10.1016/j.chemphys.2010.08.011; B. Lasorne, M. A. Robb, H.-D. Meyer, and F. Gatti, Chem. Phys. 382, 132 (2011) (Erratum)], 10.1016/j.chemphys.2011.01.004, we investigated the electronic structure of ethylene (ethene, C2H4) in terms of 17 dominant configurations selected at the multiconfiguration self-consistent field level of theory. These were shown to be sufficient to recover most of the static electron correlation among the first valence and Rydberg states at all geometries. We also devised a strategy to build a 17-quasidiabatic-state matrix representation of the electronic Hamiltonian for curvilinear coordinates using dynamical symmetry. Here, we present fitted surfaces in the form of a generalised vibronic-coupling Hamiltonian model for two nuclear coordinates, CC bond stretching and torsion. Dynamic electron correlation is included into the electronic structure to improve the energetics of the Rydberg states at the multireference configuration interaction level of theory. The chemical interpretation of the adiabatic states of interest does not change qualitatively, which validates our choice of underlying quasidiabatic states in the model. The absorption spectrum is calculated with quantum dynamics and partially assigned. This first two-dimensional model shows a surprisingly good agreement with the experimental spectrum.

  17. Rotational-vibrational Description of Nucleon Scattering on Actinide Nuclei Using a Dispersive Coupled-channel Optical Model

    NASA Astrophysics Data System (ADS)

    Quesada, J. M.; Capote, R.; Soukhovitskiı˜, E. Sh.; Chiba, S.

    2014-04-01

    Tamura's coupling formalism has been extended to consider low-lying rotational bands built on vibrational (single-particle) band heads in well-deformed even-even (odd) actinides. These additional excitations are introduced as a perturbation to the underlying rigid rotor structure that is known to describe well the ground state rotational band of major actinides. Coupling matrix elements needed in extended Tamura's formalism are derived for both even-even and odd actinides. Employed dispersive optical model (DCCOMP) replaces the incident proton energy Ep (for proton induced reactions) by the equivalent Coulomb subtracted energy in all potential terms including both the imaginary and real potentials with the corresponding dispersive corrections. Therefore, the optical potential becomes fully symmetric for protons and neutrons. This potential is used to fit simultaneously all the available optical experimental databases (including neutron strength functions) for nucleon scattering on 238U and 232Th (even even) nuclei. Quasi-elastic (p,n) scattering data to the isobaric analogue states of the target nuclei are also used to constrain the isovector part of the optical potential. Derived Lane-consistent DCCOMP is based on coupling of almost all levels below 1 MeV of excitation energy. The ground state, octupole, beta, gamma and non-axial rotational bands are considered for even nuclei, and rotational bands built on single-particle levels - for odd nuclei. Application of derived potential to odd targets based on a new coupling scheme is foreseen.

  18. A modified coupled pair functional approach. [for dipole moment calculation of metal hydride ground states

    NASA Technical Reports Server (NTRS)

    Chong, D. P.; Langhoff, S. R.

    1986-01-01

    A modified coupled pair functional (CPF) method is presented for the configuration interaction problem that dramatically improves properties for cases where the Hartree-Fock reference configuration is not a good zeroth-order wave function description. It is shown that the tendency for CPF to overestimate the effect of higher excitations arises from the choice of the geometric mean for the partial normalization denominator. The modified method is demonstrated for ground state dipole moment calculations of the NiH, CuH, and ZnH transition metal hydrides, and compared to singles-plus-doubles configuration interaction and the Ahlrichs et al. (1984) CPF method.

  19. Foreword - Strong light-matter coupling in solid-state systems: A historical perspective

    NASA Astrophysics Data System (ADS)

    Amo, Alberto; Bloch, Jacqueline; Carusotto, Iacopo

    2016-10-01

    The possibility of engineering solid-state systems mixing light and matter excitations has opened a new era in the manipulation of photons. The strong coupling regime appears when the exchange of energy between matter and the light field, which is usually confined in a cavity, overcomes the losses. The resulting new eigenstates, named polaritons, combine light and matter properties. From their photonic component, polaritons can be manipulated and detected using standard optical techniques, while from the matter part they inherit spectacular nonlinear properties.

  20. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1984-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem. Previously announced in STAR as N83-30109

  1. Dressed states of a quantum emitter strongly coupled to a metal nanoparticle

    NASA Astrophysics Data System (ADS)

    Varguet, H.; Rousseaux, B.; Dzsotjan, D.; Jauslin, H. R.; Guérin, S.; Colas des Francs, G.

    2016-10-01

    Hybrid molecular-plasmonic nanostructures have demonstrated their potential for surface enhanced spectroscopies, sensing or quantum control at the nanoscale. In this work, we investigate the strong coupling regime and explicitly describe the hybridization between the localized plasmons of a metal nanoparticle and the excited state of a quantum emitter, offering a simple and precise understanding of the energy exchange in full analogy with cavity quantum electrodynamics treatment and dressed atom picture. Both near field emission and far field radiation are discussed, revealing the richness of such optical nanosources.

  2. Agreement on Reporting of Physical, Psychological, and Sexual Violence among White, Black, and Hispanic Couples in the United States

    ERIC Educational Resources Information Center

    Caetano, Raul; Field, Craig; Ramisetty-Mikler, Suhasini; Lipsky, Sherry

    2009-01-01

    This article examines agreement on reports of male-to-female and female-to-male psychological, physical, and sexual violence among White, Black, and Hispanic couples in the United States. Using a probability sample, separate face-to-face interviews were conducted in respondents' homes with both members of 1,025 intact couples living in the 48…

  3. Coupling of the electrocaloric and electromechanical effects for solid-state refrigeration

    NASA Astrophysics Data System (ADS)

    Bradeško, A.; Juričić, Äń.; Santo Zarnik, M.; Malič, B.; Kutnjak, Z.; Rojac, T.

    2016-10-01

    Electrocaloric (EC) materials have shown the potential to replace some of the technologies in current commercial refrigeration systems. The key problem when fabricating an efficient EC refrigerator is the small adiabatic temperature change that current bulk materials can achieve. Therefore, such a solid-state EC refrigerator should be engineered to enhance the EC temperature change by rectifying the induced EC heat flow. Here, we present a numerical study of a device that couples the EC and electromechanical (EM) effects in a single active material. The device consists of several elements made from a functional material with coupled EC and EM properties, allowing the elements to bend and change their temperature with the application of an electric field. The periodic excitation of these elements results in a temperature span across the device. By assuming heat exchange with the environment and a low thermal contact resistivity between the elements, we show that a device with 15 elements and an EC effect of 1.2 K achieves a temperature span between the hot and cold sides of the device equal to 12.6 K. Since the temperature span can be controlled by the number of elements in the device, the results suggest that in combination with the so-called "giant" EC effect (ΔTEC ≥ 10 K), a very large temperature span would be possible. The results of this work should motivate the development of efficient EC refrigeration systems based on a coupling of the EC and EM effects.

  4. Classifying BPS states in supersymmetric gauge theories coupled to higher derivative chiral models

    NASA Astrophysics Data System (ADS)

    Nitta, Muneto; Sasaki, Shin

    2015-06-01

    We study N =1 supersymmetric gauge theories coupled with higher derivative chiral models in four dimensions in the off-shell superfield formalism. We solve the equation of motion for the auxiliary fields and find two distinct on-shell structures of the Lagrangian that we call the canonical and noncanonical branches characterized by zero and nonzero auxiliary fields, respectively. We classify Bogomol'nyi-Prasado-Sommerfield (BPS) states of the models in Minkowski and Euclidean spaces. In Minkowski space, we find Abelian and non-Abelian vortices, vortex lumps (or gauged lumps with fractional lump charges) as 1 /2 BPS states in the canonical branch, and higher derivative generalization of vortices and vortex-(BPS)baby Skyrmions (or gauged BPS baby Skyrmions with fractional baby Skyrme charges) as 1 /4 BPS states in the noncanonical branch. In four-dimensional Euclidean space, we find Yang-Mills instantons trapped inside a non-Abelian vortex, intersecting vortices, and intersecting vortex-(BPS)baby Skyrmions as 1 /4 BPS states in the canonical branch but no BPS states in the noncanonical branch other than those in the Minkowski space.

  5. Effects of impurity states on exchange coupling in Fe/Fe3O4 junctions

    NASA Astrophysics Data System (ADS)

    Inoue, J.; Honda, S.; Itoh, H.; Mibu, K.; Yanagihara, H.; Kita, E.

    2012-05-01

    Exchange coupling (EC) in Fe/Fe3O4 junctions containing magnetic impurities and in-gap states at the interface is calculated using a formula obtained by a cleaved layer method. The model for EC is constructed by performing first-principles calculations of the electronic and magnetic states of Co, Mn, and Cr impurities on the Fe surface and those of in-gap states in a bulk γ-Fe2O3, which has the same lattice structure as Fe3O4 but contains Fe defects. We show that the effect of Co impurities on EC is opposite to that of Cr and Mn impurities and that in-gap states tend to cause parallel magnetization alignment of two ferromagnets. These results are attributed to the change in electronic states caused by the presence of impurities. Further, we compare calculated results with experimental ones obtained in Fe/Fe3O4 junctions and suggest that doping magnetic impurities at the interface could be a useful way to control the magnitude and sign of the EC.

  6. Stable AMOC off-state in an eddy-resolving coupled climate model

    NASA Astrophysics Data System (ADS)

    Mecking, Jennifer; Drijfhout, Sybren; Jackson, Laura; Graham, Tim; Wood, Richard

    2015-04-01

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) despite being unlikely could have devastating impacts on the current climate. Shifts between on- and off-states of the AMOC have been associated with past abrupt climate change, supported by the bistability of the AMOC found in many ocean and climate models. However, as coupled climate models evolved in complexity a stable AMOC off-state no longer seemed supported. In this study a next-generation, eddy-resolving, climate model, HadGEM3 has an AMOC off-state that remains stable for the 260 year duration of the model integration. Ocean eddies modify the overall freshwater balance, allowing for stronger northward salt transport by the AMOC compared to non-eddy resolving models. As a result, the salinification of the subtropical North Atlantic, due to a southward shift of the intertropical rain belt, is balanced by reduced salt transport of the collapsed AMOC, stabilizing the off-state. Without ocean eddies, salinity biases in the Atlantic preclude the balance that stabilizes the off-state, unless flux-correction is applied.

  7. Electronic coupling for charge transfer in donor-bridge-acceptor systems. Performance of the two-state FCD model.

    PubMed

    Voityuk, Alexander A

    2012-10-28

    Electronic coupling is a key parameter that determines the rate of electron transfer reactions and electrical conductivity of molecular wires. To examine the performance of a two-state approach based on the orthogonal transformation of adiabatic states to diabatic states, we compare the effective donor-acceptor coupling V(DA) computed with three different approaches in model donor-bridge-acceptor (D-B-A) systems. It is found that V(DA) derived with the two-state method accounts properly for both the direct and superexchange interactions. The approach becomes, however, less accurate with the increasing energy difference of the donor and acceptor states. We suggest a simple diagnostic to identify the situation when the estimated coupling might be inaccurate and consider how to improve the performance of the two-state scheme in such a case.

  8. Probing the C₆₀ triplet state coupling to nuclear spins inside and out.

    PubMed

    Filidou, Vasileia; Mamone, Salvatore; Simmons, Stephanie; Karlen, Steven D; Anderson, Harry L; Kay, Christopher W M; Bagno, Alessandro; Rastrelli, Federico; Murata, Yasujiro; Komatsu, Koichi; Lei, Xuegong; Li, Yongjun; Turro, Nicholas J; Levitt, Malcolm H; Morton, John J L

    2013-09-13

    The photoexcitation of functionalized fullerenes to their paramagnetic triplet electronic state can be studied by pulsed electron paramagnetic resonance (EPR) spectroscopy, whereas the interactions of this state with the surrounding nuclear spins can be observed by a related technique: electron nuclear double resonance (ENDOR). In this study, we present EPR and ENDOR studies on a functionalized exohedral fullerene system, dimethyl[9-hydro (C60-Ih)[5,6]fulleren-1(9H)-yl]phosphonate (DMHFP), where the triplet electron spin has been used to hyperpolarize, couple and measure two nuclear spins. We go on to discuss the extension of these methods to study a new class of endohedral fullerenes filled with small molecules, such as H₂@C₆₀, and we relate the results to density functional calculations. PMID:23918718

  9. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    NASA Technical Reports Server (NTRS)

    Fleming, K. J.; Crump, O. B.

    1994-01-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  10. Portable, solid state, fiber optic coupled doppler interferometer system for detonation and shock diagnostics

    SciTech Connect

    Fleming, K.J.; Crump, O.B.

    1993-01-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity has restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation (UGT). The Solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensor was developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy-to-use instrument that is capable of field test use and rapid data reduction employing only a personal computer (PC).

  11. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    SciTech Connect

    Fleming, K.J.

    1994-08-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR`s large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity has restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation (UGT). The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors was developed for fiber optic coupling (1 kilometer long) to the VISCAR. The system has proven itself as reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  12. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    SciTech Connect

    Fleming, K.J.; Crump, O.B.

    1994-03-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR`s large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation. The solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  13. Glassy states and super-relaxation in populations of coupled phase oscillators.

    PubMed

    Iatsenko, D; McClintock, P V E; Stefanovska, A

    2014-01-01

    Large networks of coupled oscillators appear in many branches of science, so that the kinds of phenomena they exhibit are not only of intrinsic interest but also of very wide importance. In 1975, Kuramoto proposed an analytically tractable model to describe these systems, which has since been successfully applied in many contexts and remains a subject of intensive research. Some related problems, however, remain unclarified for decades, such as the existence and properties of the oscillator glass state. Here we present a detailed analysis of a very general form of the Kuramoto model. In particular, we find the conditions when it can exhibit glassy behaviour, which represents a kind of synchronous disorder in the present case. Furthermore, we discover a new and intriguing phenomenon that we refer to as super-relaxation where the oscillators feel no interaction at all while relaxing to incoherence. Our findings offer the possibility of creating glassy states and observing super-relaxation in real systems.

  14. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization.

    PubMed

    Demchenko, Alexander P; Tang, Kuo-Chun; Chou, Pi-Tai

    2013-02-01

    Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.

  15. Generation of Fock state and quantum entanglement in a coupled ladder atom-cavity system

    NASA Astrophysics Data System (ADS)

    Gong, Shang-qing; Feng, Xun-li; Xu, Zhi-zhan

    2003-02-01

    We investigate the behaviour of an atom-cavity system via an adiabatic passage technique using a three-level ladder atom both for one-mode and for two-mode cavity QED. For one-mode cavity QED, we find that a single-photon Fock state can be generated via the technique of stimulated Raman adiabatic passage in the microwave domain. For two-mode cavity QED, we find that a two-photon pair can be generated via the technique of Stark shift rapid adiabatic passage (SRAP). We also find, for the two-mode cavity QED system, that an entangled state of the two modes in a microwave cavity can be prepared via the SRAP technique, in which the number of steps required is significantly reduced due to the adiabatic passage of the ladder atom-cavity coupled system.

  16. Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states.

    PubMed

    Humeniuk, Alexander; Mitrić, Roland

    2016-06-21

    A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully's fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronic wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states. PMID:27334155

  17. Discrete-state, object-oriented simulation of coupled thermoelectric transport

    NASA Astrophysics Data System (ADS)

    Radkowski, Peter Paul Francis, III

    The Discrete State Simulation (DSS) has been developed to model heat and charge transport on a micron-scale with nanometer-resolution. Written in object-oriented code, the DSS is a coupled cellular automata simulator that builds upon the objects and rules of quantum mechanics. The DSS represents global non-equilibrium processes as patterns that emerge through an ensemble of scattering events that are localized at vibronic nodes. By tracking the energy-momentum-position coordinates of the individual particles that define the vibronic state at a node, the DSS undercuts equilibrium concepts such as temperature. Consequently, the DSS can represent physical systems that are described by more than one temperature or that contain physical features that defy definitions of temperature. Using modified bootstrap sampling algorithms, the DSS depicted (1) shifts in distribution functions induced by external fields and temperature gradients, (2) field-dependent transitions from linear mobility to non-linear mobility, (3) saturation velocities, (4) non-exponential decay functions generated by multiple phonon scattering modes, and (5) charge separations and electric potentials generated by temperature gradients. Ensemble averages were sensitive to the structure of dispersion relations, to the energy of the system, and to quantum coupling strengths. Although the Discrete State Simulation requires more development before it becomes an engineering design tool, the reported research effort offers substantial justification for the development of object-oriented, discrete-state cellular automata. These computational machines would match the capabilities of conventional simulation techniques, and they would be able to address highly non-equilibrium situations by exercising dynamic rule construction---computational algorithms that evolve in response to the conditions that are being simulated.

  18. Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states

    NASA Astrophysics Data System (ADS)

    Humeniuk, Alexander; Mitrić, Roland

    2016-06-01

    A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully's fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronic wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states.

  19. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    PubMed

    Lecrux, C; Hamel, E

    2016-10-01

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574304

  20. Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury.

    PubMed

    Antonakakis, Marios; Dimitriadis, Stavros I; Zervakis, Michalis; Micheloyannis, Sifis; Rezaie, Roozbeh; Babajani-Feremi, Abbas; Zouridakis, George; Papanicolaou, Andrew C

    2016-04-01

    Cross-frequency coupling (CFC) is thought to represent a basic mechanism of functional integration of neural networks across distant brain regions. In this study, we analyzed CFC profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 30 mild traumatic brain injury (mTBI) patients and 50 controls. We used mutual information (MI) to quantify the phase-to-amplitude coupling (PAC) of activity among the recording sensors in six nonoverlapping frequency bands. After forming the CFC-based functional connectivity graphs, we employed a tensor representation and tensor subspace analysis to identify the optimal set of features for subject classification as mTBI or control. Our results showed that controls formed a dense network of stronger local and global connections indicating higher functional integration compared to mTBI patients. Furthermore, mTBI patients could be separated from controls with more than 90% classification accuracy. These findings indicate that analysis of brain networks computed from resting-state MEG with PAC and tensorial representation of connectivity profiles may provide a valuable biomarker for the diagnosis of mTBI.

  1. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    PubMed

    Lecrux, C; Hamel, E

    2016-10-01

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  2. Investigation of coupling mechanisms in attosecond transient absorption of autoionizing states: comparison of theory and experiment in xenon

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Bernhardt, Birgitta; Beck, Annelise R.; Warrick, Erika R.; Pfeiffer, Adrian N.; Justine Bell, M.; Haxton, Daniel J.; McCurdy, C. William; Neumark, Daniel M.; Leone, Stephen R.

    2015-06-01

    Attosecond transient absorption spectra near the energies of autoionizing states are analyzed in terms of the photon coupling mechanisms to other states. In a recent experiment, the autoionization lifetimes of highly excited states of xenon were determined and compared to a simple expression based on a model of how quantum coherence determines the decay of a metastable state in the transient absorption spectrum. Here it is shown that this procedure for extracting lifetimes is more general and can be used in cases involving either resonant or nonresonant coupling of the attosecond-probed autoionizing state to either continua or discrete states by a time-delayed near infrared (NIR) pulse. The fits of theoretically simulated absorption signals for the 6p resonance in xenon (lifetime = 21.1 fs) to this expression yield the correct decay constant for all the coupling mechanisms considered, properly recovering the time signature of twice the autoionization lifetime due to the coherent nature of the transient absorption experiment. To distinguish between these two coupling cases, the characteristic dependencies of the transient absorption signals on both the photon energy and time delay are investigated. Additional oscillations versus delay-time in the measured spectrum are shown and quantum beat analysis is used to pinpoint the major photon-coupling mechanism induced by the NIR pulse in the current xenon experiment: the NIR pulse resonantly couples the attosecond-probed state, 6p, to an intermediate 8s (at 22.563 eV), and this 8s state is also coupled to a neighboring state (at 20.808 eV).

  3. A full-dimensional quantum dynamical study of H2+H2 collisions: coupled-states versus close-coupling formulation.

    PubMed

    Bohr, Alex; Paolini, Stephen; Forrey, Robert C; Balakrishnan, N; Stancil, P C

    2014-02-14

    Collision-induced energy transfer involving H2 molecules plays an important role in many areas of physics. Kinetic models often require a complete set of state-to-state rate coefficients for H2+H2 collisions in order to interpret results from spectroscopic observations or to make quantitative predictions. Recent progress in full-dimensional quantum dynamics using the numerically exact close-coupling (CC) formulation has provided good agreement with existing experimental data for low-lying states of H2 and increased the number of state-to-state cross sections that may be reliably determined over a broad range of energies. Nevertheless, there exist many possible initial states (e.g., states with high rotational excitation) that still remain elusive from a computational standpoint even at relatively low collision energies. In these cases, the coupled-states (CS) approximation offers an alternative full-dimensional formulation. We assess the accuracy of the CS approximation for H2+H2 collisions by comparison with benchmark results obtained using the CC formulation. The results are used to provide insight into the orientation effects of the various internal energy transfer mechanisms. A statistical CS approximation is also investigated and cross sections are reported for transitions which would otherwise be impractical to compute.

  4. Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories

    SciTech Connect

    Diniz, I.; Portolan, S.; Auffeves, A.

    2011-12-15

    We investigate theoretically the coupling of a cavity mode to a continuous distribution of emitters. We discuss the influence of the emitters' inhomogeneous broadening on the existence and on the coherence properties of the polaritonic peaks. We find that their coherence depends crucially on the shape of the distribution and not only on its width. Under certain conditions the coupling to the cavity protects the polaritonic states from inhomogeneous broadening, resulting in a longer storage time for a quantum memory based on emitter ensembles. When two different ensembles of emitters are coupled to the resonator, they support a peculiar collective dark state, which is also very attractive for the storage of quantum information.

  5. Impurity-Induced Bound States in Superconductors with Spin-Orbit Coupling.

    PubMed

    Kim, Younghyun; Zhang, Junhua; Rossi, E; Lutchyn, Roman M

    2015-06-12

    We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in superconductors. The presence of SOC breaks the SU(2)-spin symmetry and causes the superconducting order parameter to have generically both singlet (s-wave) and triplet (p-wave) components. We find that in the presence of SOC the spectrum of Yu-Shiba-Rusinov (YSR) states is qualitatively different in s-wave and p-wave superconductors, a fact that can be used to identify the superconducting pairing symmetry of the host system. We also predict that, in the presence of SOC, the spectrum of the impurity-induced bound states depends on the orientation of the magnetic moment S of the impurity and, in particular, that by changing the orientation of S, the fermion-parity of the lowest energy bound state can be tuned. We then study the case of a dimer of magnetic impurities and show that, in this case, the YSR spectrum for a p-wave superconductor is qualitatively very different from the one for an s-wave superconductor even in the limit of vanishing SOC. PMID:26196821

  6. Stable AMOC off state in an eddy-permitting coupled climate model

    NASA Astrophysics Data System (ADS)

    Mecking, J. V.; Drijfhout, S. S.; Jackson, L. C.; Graham, T.

    2016-10-01

    Shifts between on and off states of the Atlantic Meridional Overturning Circulation (AMOC) have been associated with past abrupt climate change, supported by the bistability of the AMOC found in many older, coarser resolution, ocean and climate models. However, as coupled climate models evolved in complexity a stable AMOC off state no longer seemed supported. Here we show that a current-generation, eddy-permitting climate model has an AMOC off state that remains stable for the 450-year duration of the model integration. Ocean eddies modify the overall freshwater balance, allowing for stronger northward salt transport by the AMOC compared with previous, non eddy-permitting models. As a result, the salinification of the subtropical North Atlantic, due to a southward shift of the intertropical rain belt, is counteracted by the reduced salt transport of the collapsed AMOC. The reduced salinification of the subtropical North Atlantic allows for an anomalous northward freshwater transport into the subpolar North Atlantic dominated by the gyre component. Combining the anomalous northward freshwater transport with the freshening due to reduced evaporation in this region helps stabilise the AMOC off state.

  7. System-environment correlations for dephasing two-qubit states coupled to thermal baths

    NASA Astrophysics Data System (ADS)

    Costa, A. C. S.; Beims, M. W.; Strunz, W. T.

    2016-05-01

    Based on the exact dynamics of a two-qubit system and environment, we investigate system-environment (SE) quantum and classical correlations. The coupling is chosen to represent a dephasing channel for one of the qubits and the environment is a proper thermal bath. First we discuss the general issue of dilation for qubit phase damping. Based on the usual thermal bath of harmonic oscillators, we derive criteria of separability and entanglement between an initial X state and the environment. Applying these criteria to initial Werner states, we find that entanglement between the system and environment is built up in time for temperatures below a certain critical temperature Tcrit. On the other hand, the total state remains separable during those short times that are relevant for decoherence and loss of entanglement in the two-qubit state. Close to Tcrit the SE correlations oscillate between separable and entangled. Even though these oscillations are also observed in the entanglement between the two qubits, no simple relation between the loss of entanglement in the two-qubit system and the build-up of entanglement between the system and environment is found.

  8. Majorana end states in multiband microstructures with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Potter, Andrew C.; Lee, Patrick A.

    2011-03-01

    A recent work [Potter and Lee, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.227003 105, 227003 (2010)] demonstrated, for an ideal spinless p+ip superconductor, that Majorana end states can be realized outside the strict one-dimensional limit, so long as (1) the sample width does not greatly exceed the superconducting coherence length and (2) an odd number of transverse subbands are occupied. Here we extend this analysis to the case of an effective p+ip superconductor engineered from a Rashba spin-orbit-coupled surface with induced magnetization and superconductivity, and find a number of additional features. Specifically, we find that finite-size quantization allows Majorana end states even when the chemical potential is outside of the induced Zeeman gap where the bulk material would not be topological. This is relevant to proposals utilizing semiconducting quantum wires; however, we also find that the bulk energy gap is substantially reduced if the induced magnetization is too large. We next consider a slightly different geometry, and show that Majorana end states can be created at the ends of ferromagnetic domains. Finally, we consider the case of meandering edges and find, surprisingly, that the existence of well-defined transverse subbands is not necessary for the formation of robust Majorana end states.

  9. Effect of spin-orbit coupling on the ground state structure of mercury

    NASA Astrophysics Data System (ADS)

    Mishra, Vinayak; Gyanchandani, Jyoti; Chaturvedi, Shashank; Sikka, S. K.

    2014-05-01

    Near zero kelvin ground state structure of mercury is the body centered tetragonal (BCT) structure (β Hg). However, in all previously reported density functional theory (DFT) calculations, either the rhombohedral or the HCP structure has been found to be the ground state structure. Based on the previous calculations it was predicted that the correct treatment of the SO effects would improve the result. We have performed FPLAPW calculations, with and without inclusion of the SO coupling, for determining the ground state structure. These calculations determine rhombohedral structure as the ground state structure instead of BCT structure. The calculations, without inclusion of SO effect, predict that the energies of rhombohedral and BCT structures are very close to each other but the energy of rhombohedral structure is lower than that of BCT structure at ambient as well as high pressure. On the contrary, the SO calculations predict that though at ambient conditions the rhombohedral structure is the stable structure but on applying a pressure of 3.2 GPa, the BCT structure becomes stable. Hence, instead of predicting the stability of BCT structure at zero pressure, the SO calculations predict its stability at 3.2 GPa. This small disagreement is expected when the energy differences between the structures are small.

  10. Communication: State mixing by spin-orbit coupling in the anionic chloroiodine dissociations

    SciTech Connect

    Xia, L.; Wang, X.-D.; Xuan, C.-J.; Zeng, X.-J.; Li, H.-K.; Tian, S. X. E-mail: kaichung@cityu.edu.hk; Pan, Y.; Lau, K.-C. E-mail: kaichung@cityu.edu.hk

    2014-01-28

    Three spin-orbit states, 1{sup 2}Π{sub 1/2}, 2{sup 2}Π{sub 3/2}, and 2{sup 2}Π{sub 1/2}, of chloroiodine anion (ICl{sup −}) formed by low-energy electron attachment in the Franck-Condon region are associated with the dissociative limits of I{sup −} ({sup 1}S{sub 0}) and Cl ({sup 2}P{sub 3/2}) or Cl{sup *} ({sup 2}P{sub 1/2}) fragments. Within the adiabatic scheme, the presumptive Π-symmetry of the fragment angular distributions is dramatically changed to be the Π-Σ mixing symmetry, due to the significant spin-orbit interaction effect on the electronic state couplings of ICl{sup −}. The present experimental approach also enables us to separate the contributions of different electronic states from the mixed states, providing a crucial method for quantitatively evaluating the configuration-interaction wavefunctions.

  11. Hessian facilitated analysis of optimally controlled quantum dynamics of systems with coupled primary and secondary states.

    PubMed

    Shu, Chuan-Cun; Edwalds, Melanie; Shabani, Alireza; Ho, Tak-San; Rabitz, Herschel

    2015-07-28

    The efficacy of optimal control of quantum dynamics depends on the topology and associated local structure of the underlying control landscape defined as the objective as a function of the control field. A commonly studied control objective involves maximization of the transition probability for steering the quantum system from one state to another state. This paper invokes landscape Hessian analysis performed at an optimal solution to gain insight into the controlled dynamics, where the Hessian is the second-order functional derivative of the control objective with respect to the control field. Specifically, we consider a quantum system composed of coupled primary and secondary subspaces of energy levels with the initial and target states lying in the primary subspace. The primary and secondary subspaces may arise in various scenarios, for example, respectively, as sub-manifolds of ground and excited electronic states of a poly-atomic molecule, with each possessing a set of rotational-vibrational levels. The control field may engage the system through electric dipole transitions that occur either (I) only in the primary subspace, (II) between the two subspaces, or (III) only in the secondary subspace. Important insights about the resultant dynamics in each case are revealed in the structural patterns of the corresponding Hessian. The Fourier spectrum of the Hessian is shown to often be complementary to mechanistic insights provided by the optimal control field and population dynamics.

  12. Stable AMOC off state in an eddy-permitting coupled climate model

    NASA Astrophysics Data System (ADS)

    Mecking, J. V.; Drijfhout, S. S.; Jackson, L. C.; Graham, T.

    2016-01-01

    Shifts between on and off states of the Atlantic Meridional Overturning Circulation (AMOC) have been associated with past abrupt climate change, supported by the bistability of the AMOC found in many older, coarser resolution, ocean and climate models. However, as coupled climate models evolved in complexity a stable AMOC off state no longer seemed supported. Here we show that a current-generation, eddy-permitting climate model has an AMOC off state that remains stable for the 450-year duration of the model integration. Ocean eddies modify the overall freshwater balance, allowing for stronger northward salt transport by the AMOC compared with previous, non eddy-permitting models. As a result, the salinification of the subtropical North Atlantic, due to a southward shift of the intertropical rain belt, is counteracted by the reduced salt transport of the collapsed AMOC. The reduced salinification of the subtropical North Atlantic allows for an anomalous northward freshwater transport into the subpolar North Atlantic dominated by the gyre component. Combining the anomalous northward freshwater transport with the freshening due to reduced evaporation in this region helps stabilise the AMOC off state.

  13. Coherent coupling between a molecular vibration and Fabry-Perot optical cavity to give hybridized states in the strong coupling limit (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Long, James P.; Owrutsky, Jeff C.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Compton, Ryan; Spann, Bryan; Simpkins, Blake S.

    2015-09-01

    Coherent coupling between an optical-transition and confined optical mode, when sufficiently strong, gives rise to new modes separated by the vacuum Rabi splitting. Such systems have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we bring strong polaritonic-coupling in cavities from the visible into the infrared where a new range of static and dynamic vibrational processes await investigation. First, we experimentally and numerically describe coupling between a Fabry-Perot cavity and carbonyl stretch (~1730 cm 1) in poly-methylmethacrylate. As is requisite for "strong coupling", the measured vacuum Rabi splitting of 132 cm 1 is much larger than the full width of the cavity (34 cm-1) and the inhomogeneously broadened carbonyl-stretch (24 cm-1). Agreement with classical theories providea evidence that the mixed-states are relatively immune to inhomogeneous broadening. Next, we investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of urethane. Rabi splittings increases from 0 to ~104 cm-1 with concentrations from 0-20 vol% and are in excellent agreement to an analytical description using no fitting parameters. Ultra-fast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band as well as modifications of energy relaxation times. Finally, we demonstrate coupling to liquids using the C-O stretching band (~1985 cm-1) of Mo(CO)6 in an aqueous solution. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied statically and dynamically.

  14. Coherent superpositions of states in coupled Hilbert-space using step by step Morris-Shore transformation

    NASA Astrophysics Data System (ADS)

    Saadati-Niari, Maghsoud

    2016-09-01

    Creation of coherent superpositions in quantum systems with Na states in the lower set and Nb states in the upper set is presented. The solution is drived by using the Morris-Shore transformation, which step by step reduces the fully coupled system to a three-state Λ-like system and a set of decoupled states. It is shown that, for properly timed pulse, robust population transfer from an initial ground state (or superposition of M ground states) to an arbitrary coherent superposition of the ground states can be achieved by coincident pulses and/or STIRAP techniques.

  15. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics

    NASA Astrophysics Data System (ADS)

    Marani, Marco; D'Alpaos, Andrea; Lanzoni, Stefano; Carniello, Luca; Rinaldo, Andrea

    2010-10-01

    We describe and apply a point model of the joint evolution of tidal landforms and biota which incorporates the dynamics of intertidal vegetation; benthic microbial assemblages; erosional, depositional, and sediment exchange processes; wind-wave dynamics, and relative sea level change. Alternative stable states and punctuated equilibria emerge, characterized by possible sudden transitions of the system state, governed by vegetation type, disturbances of the benthic biofilm, sediment availability, and marine transgressions or regressions. Multiple stable states are suggested to result from the interplay of erosion, deposition, and biostabilization, providing a simple explanation for the ubiquitous presence of the typical landforms observed in tidal environments worldwide. The main properties of accessible equilibrium states prove robust with respect to specific modeling assumptions and are thus identified as characteristic dynamical features of tidal systems. Halophytic vegetation emerges as a key stabilizing factor through wave dissipation, rather than a major trapping agent, because the total inorganic deposition flux is found to be largely independent of standing biomass under common supply-limited conditions. The organic sediment production associated with halophytic vegetation represents a major contributor to the overall deposition flux, thus critically affecting the ability of salt marshes to keep up with high rates of relative sea level rise. The type and number of available equilibria and the possible shifts among them are jointly driven and controlled by the available suspended sediment, the rate of relative sea level change, and vegetation and microphytobenthos colonization. The explicit description of biotic and abiotic processes thus emerges as a key requirement for realistic and predictive models of the evolution of a tidal system as a whole. The analysis of such coupled processes finally indicates that hysteretic switches between stable states arise

  16. Coupling of X-chromosome reactivation with the pluripotent stem cell state.

    PubMed

    Payer, Bernhard; Lee, Jeannie T

    2014-01-01

    X-chromosome inactivation (XCI) in female mammals is a dramatic example of epigenetic gene regulation, which entails the silencing of an entire chromosome through a wide range of mechanisms involving noncoding RNAs, chromatin-modifications, and DNA-methylation. While XCI is associated with the differentiated cell state, it is reversed by X-chromosome reactivation (XCR) ex vivo in pluripotent stem cells and in vivo in the early mouse embryo and the germline. Critical in the regulation of XCI vs. XCR is the X-inactivation center, a multigene locus on the X-chromosome harboring several long noncoding RNA genes including, most prominently, Xist and Tsix. These genes, which sit at the top of the XCI hierarchy, are by themselves controlled by pluripotency factors, coupling XCR with the naïve pluripotent stem cell state. In this point-of-view article we review the latest findings regarding this intricate relationship between cell differentiation state and epigenetic control of the X-chromosome. In particular, we discuss the emerging picture of complex multifactorial regulatory mechanisms, ensuring both a fine-tuned and robust X-reactivation process.

  17. Steady-State and Transient Boundary Element Methods for Coupled Heat Conduction

    NASA Technical Reports Server (NTRS)

    Kontinos, Dean A.

    1997-01-01

    Boundary element algorithms for the solution of steady-state and transient heat conduction are presented. The algorithms are designed for efficient coupling with computational fluid dynamic discretizations and feature piecewise linear elements with offset nodal points. The steady-state algorithm employs the fundamental solution approach; the integration kernels are computed analytically based on linear shape functions, linear elements, and variably offset nodal points. The analytic expressions for both singular and nonsingular integrands are presented. The transient algorithm employs the transient fundamental solution; the temporal integration is performed analytically and the nonsingular spatial integration is performed numerically using Gaussian quadrature. A series solution to the integration is derived for the instance of a singular integrand. The boundary-only character of the algorithm is maintained by integrating the influence coefficients from initial time. Numerical results are compared to analytical solutions to verify the current boundary element algorithms. The steady-state and transient algorithms are numerically shown to be second-order accurate in space and time, respectively.

  18. Relativistic state-specific multireference coupled cluster theory description for bond-breaking energy surfaces

    NASA Astrophysics Data System (ADS)

    Ghosh, Anirban; Chaudhuri, Rajat K.; Chattopadhyay, Sudip

    2016-09-01

    A four-component (4c) relativistic state specific multireference coupled cluster (4c-SSMRCC) method has been developed and applied to compute the ground state spectroscopic constants of Ag2, Cu2, Au2, and I2. The reference functions used in these calculations are obtained using computationally inexpensive improved virtual orbital-complete active space configuration interaction scheme. Rigorous size-extensivity and insensitivity towards the intruder state problem make our method an interesting choice for the calculation of the dissociation energy surface. To the best of our knowledge, this study is the first implementation of the SSMRCC within the relativistic framework. The overall agreement of our results, employing the smallest model space, with both theoretical and experimental reference values indicates that the 4c-SSMRCC method can be fruitfully used to describe electronic structures and associated properties of systems containing heavy elements. We observe a relativistic bond stabilization for the coinage metal dimers while the I-I bond is weakened by the relativistic effects.

  19. Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance

    PubMed Central

    Kim, Wook

    2003-01-01

    Salmonella enterica serovar Typhimurium is capable of swarming over semi-solid surfaces. Although its swarming behavior shares many readily observable similarities with other swarming bacteria, the phenomenon remains somewhat of an enigma in this bacterium since some attributes skew away from the better characterized systems. Swarming is quite distinct from the classic swimming motility, as there is a prerequisite for cells to first undergo a morphological transformation into swarmer cells. In some organisms, swarming is controlled by quorum sensing, and in others, swarming has been shown to be coupled to increased expression of important virulence factors. Swarming in serovar Typhimurium is coupled to elevated resistance to a wide variety of structurally and functionally distinct classes of antimicrobial compounds. As serovar Typhimurium differentiates into swarm cells, the pmrHFIJKLM operon is up-regulated, resulting in a more positively charged LPS core. Furthermore, as swarm cells begin to de-differentiate, the pmr operon expression is down-regulated, rapidly reaching the levels observed in swim cells. This is one potential mechanism which confers swarm cells increased resistance to antibiotics such as the cationic antimicrobial peptides. However, additional mechanisms are likely associated with the cells in the swarm state that confer elevated resistance to such a broad spectrum of antimicrobial agents. PMID:14615815

  20. Symmetric bifurcation analysis of synchronous states of time-delayed coupled Phase-Locked Loop oscillators

    NASA Astrophysics Data System (ADS)

    Ferruzzo Correa, Diego Paolo; Wulff, Claudia; Piqueira, José Roberto Castilho

    2015-05-01

    In recent years there has been an increasing interest in studying time-delayed coupled networks of oscillators since these occur in many real life applications. In many cases symmetry patterns can emerge in these networks, as a consequence a part of the system might repeat itself, and properties of this subsystem are representative of the dynamics on the whole phase space. In this paper an analysis of the second order N-node time-delay fully connected network is presented which is based on previous work: synchronous states in time-delay coupled periodic oscillators: a stability criterion. Correa and Piqueira (2013), for a 2-node network. This study is carried out using symmetry groups. We show the existence of multiple eigenvalues forced by symmetry, as well as the existence of Hopf bifurcations. Three different models are used to analyze the network dynamics, namely, the full-phase, the phase, and the phase-difference model. We determine a finite set of frequencies ω , that might correspond to Hopf bifurcations in each case for critical values of the delay. The Sn map is used to actually find Hopf bifurcations along with numerical calculations using the Lambert W function. Numerical simulations are used in order to confirm the analytical results. Although we restrict attention to second order nodes, the results could be extended to higher order networks provided the time-delay in the connections between nodes remains equal.

  1. A two-layer approach to the coupled coherent states method

    NASA Astrophysics Data System (ADS)

    Green, James A.; Grigolo, Adriano; Ronto, Miklos; Shalashilin, Dmitrii V.

    2016-01-01

    In this paper, a two-layer scheme is outlined for the coupled coherent states (CCS) method, dubbed two-layer CCS (2L-CCS). The theoretical framework is motivated by that of the multiconfigurational Ehrenfest method, where different dynamical descriptions are used for different subsystems of a quantum mechanical system. This leads to a flexible representation of the wavefunction, making the method particularly suited to the study of composite systems. It was tested on a 20-dimensional asymmetric system-bath tunnelling problem, with results compared to a benchmark calculation, as well as existing CCS, matching-pursuit/split-operator Fourier transform, and configuration interaction expansion methods. The two-layer method was found to lead to improved short and long term propagation over standard CCS, alongside improved numerical efficiency and parallel scalability. These promising results provide impetus for future development of the method for on-the-fly direct dynamics calculations.

  2. Dynamics of a metastable state nonlinearly coupled to a heat bath driven by external noise.

    PubMed

    Chaudhuri, Jyotipratim Ray; Barik, Debashis; Banik, Suman Kumar

    2006-12-01

    Based on a system-reservoir model, where the system is nonlinearly coupled to a heat bath and the heat bath is modulated by an external stationary Gaussian noise, we derive the generalized Langevin equation with space-dependent friction and multiplicative noise and construct the corresponding Fokker-Planck equation, valid for short correlation time, with space-dependent diffusion coefficient to study the escape rate from a metastable state in the moderate- to large-damping regime. By considering the dynamics in a model cubic potential we analyze the results numerically which are in good agreement with theoretical predictions. It has been shown numerically that enhancement of the rate is possible by properly tuning the correlation time of the external noise. PMID:17280050

  3. Asymptotic stability of stationary states in the wave equation coupled to a nonrelativistic particle

    NASA Astrophysics Data System (ADS)

    Kopylova, E. A.; Komech, A. I.

    2016-01-01

    We consider the Hamiltonian system consisting of a scalar wave field and a single particle coupled in a translation invariant manner. The point particle is subjected to an external potential. The stationary solutions of the system are a Coulomb type wave field centered at those particle positions for which the external force vanishes. It is assumed that the charge density satisfies the Wiener condition, which is a version of the "Fermi Golden Rule." We prove that in the large time approximation, any finite energy solution, with the initial state close to the some stable stationary solution, is a sum of this stationary solution and a dispersive wave which is a solution of the free wave equation.

  4. Ab initio determination of mode coupling in HSSH - The torsional splitting in the first excited S-S stretching state

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.

    1989-01-01

    A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.

  5. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  6. Resonances in the photodissociation of OH by absorption into coupledstates: Adiabatic and diabatic formulations

    NASA Astrophysics Data System (ADS)

    van Dishoeck, Ewine F.; van Hemert, Marc C.; Allison, A. C.; Dalgarno, A.

    1984-12-01

    The bound 3 2Π and repulsive 2 2Π states of OH are strongly coupled by the action of the nuclear kinetic energy operator. The process of photodissociation by absorption into the coupledstates is studied theoretically. The adiabatic electronic eigenfunctions and potential energy curves of the 2 2Π and 3 2Π states are calculated using large configuration-interaction (CI) representations and the nuclear radial coupling matrix elements are obtained by numerical differentiation. The coupled equations for the nuclear wave functions of the two states are set up in an adiabatic and in a diabatic formulation and are solved by numerical integration. The electric dipole transition moments connecting the ground X 2Π state to the 2 2Π and 3 2Π states are computed from the CI wave functions and the resulting photodissociation cross sections of OH arising from absorption into the coupled 2 2Π and 3 2Π states are obtained. Two alternative sets of potential curves, coupling matrix elements, and transition moments are employed to provide an assessment of the accuracy of the results. The photodissociation cross section shows a series of resonances superimposed on a broad continuous background. The resonances are located near to the vibrational levels of the uncoupled bound diabatic potential curve. They have asymmetric Beutler-Fano profiles and vary in width from 50 cm-1 for the lowest levels to 2 cm-1 for the higher levels. The accuracy of adiabatic and diabatic approximations, carried to first order in the coupling, is explored and it is demonstrated that the diabatic approximation provides a more satisfactory representation of the photodissociation process. The discrete-continuum configuration interaction theory of Fano is applied in the diabatic formulation and the resonance structures are calculated. The discrete-continuum interaction theory yields profile parameters and level shifts which agree well with the accurate values obtained by solving the coupled

  7. Determination of the hyperfine coupling constant of the cesium 7S1/2 state

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Wang, Jie; Yang, Baodong; Wang, Junmin

    2016-08-01

    We report the hyperfine splitting (HFS) measurement of the cesium (Cs) 7S1/2 state by optical–optical double-resonance spectroscopy with the Cs 6S1/2–6P3/2–7S1/2 (852 nm  +  1470 nm) ladder-type system. The HFS frequency calibration is performed by employing a phase-type waveguide electro-optic modulator together with a stable confocal Fabry–Perot cavity. From the measured HFS between the F″  =  3 and F″  =  4 manifolds of the Cs 7S1/2 state (HFS  =  2183.273  ±  0.062 MHz), we have determined the magnetic dipole hyperfine coupling constant (A  =  545.818  ±  0.016 MHz), which is in good agreement with the previous work but much more precise.

  8. Determination of the hyperfine coupling constant of the cesium 7S1/2 state

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Wang, Jie; Yang, Baodong; Wang, Junmin

    2016-08-01

    We report the hyperfine splitting (HFS) measurement of the cesium (Cs) 7S1/2 state by optical-optical double-resonance spectroscopy with the Cs 6S1/2-6P3/2-7S1/2 (852 nm  +  1470 nm) ladder-type system. The HFS frequency calibration is performed by employing a phase-type waveguide electro-optic modulator together with a stable confocal Fabry-Perot cavity. From the measured HFS between the F″  =  3 and F″  =  4 manifolds of the Cs 7S1/2 state (HFS  =  2183.273  ±  0.062 MHz), we have determined the magnetic dipole hyperfine coupling constant (A  =  545.818  ±  0.016 MHz), which is in good agreement with the previous work but much more precise.

  9. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states

    SciTech Connect

    Sharma, Sandeep; Alavi, Ali

    2015-09-14

    We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids.

  10. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states.

    PubMed

    Sharma, Sandeep; Alavi, Ali

    2015-09-14

    We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids. PMID:26374008

  11. A state-specific partially internally contracted multireference coupled cluster approach

    NASA Astrophysics Data System (ADS)

    Datta, Dipayan; Kong, Liguo; Nooijen, Marcel

    2011-06-01

    A state-specific partially internally contracted multireference coupled cluster approach is presented for general complete active spaces with arbitrary number of active electrons. The dominant dynamical correlation is included via an exponential parametrization of internally contracted cluster operators (hat{T}) which excite electrons from a multideterminantal reference function. The remaining dynamical correlation and relaxation effects are included via a diagonalization of the transformed Hamiltonian {{hat{overline{H}}=e^{-hat{T}}hat{H}e^{hat{T}}}} in the multireference configuration interaction singles space in an uncontracted fashion. A new set of residual equations for determining the internally contracted cluster amplitudes is proposed. The second quantized matrix elements of {{hat{overline{H}}}}, expressed using the extended normal ordering of Kutzelnigg and Mukherjee, are used as the residual equations without projection onto the excited configurations. These residual equations, referred to as the many-body residuals, do not have any near-singularity and thus, should allow one to solve all the amplitudes without discarding any. There are some relatively minor remaining convergence issues that may arise from an attempt to solve all the amplitudes and an initial analysis is provided in this paper. Applications to the bond-stretching potential energy surfaces for N2, CO, and the low-lying electronic states of C2 indicate clear improvements of the results using the many-body residuals over the conventional projected residual equations.

  12. Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS2

    NASA Astrophysics Data System (ADS)

    Yang, Bowen; Tu, Min-Feng; Kim, Jeongwoo; Wu, Yong; Wang, Hui; Alicea, Jason; Wu, Ruqian; Bockrath, Marc; Shi, Jing

    2016-09-01

    We demonstrate clear weak anti-localization (WAL) effect arising from induced Rashba spin-orbit coupling (SOC) in WS2-covered single-layer and bilayer graphene devices. Contrary to the uncovered region of a shared single-layer graphene flake, WAL in WS2-covered graphene occurs over a wide range of carrier densities on both electron and hole sides. At high carrier densities, we estimate the Rashba SOC relaxation rate to be ˜ 0.2 {{ps}}-1 and show that it can be tuned by transverse electric fields. In addition to the Rashba SOC, we also predict the existence of a‘valley-Zeeman’ SOC from first-principles calculations. The interplay between these two SOC’s can open a non-topological but interesting gap in graphene; in particular, zigzag boundaries host four sub-gap edge states protected by time-reversal and crystalline symmetries. The graphene/WS2 system provides a possible platform for these novel edge states.

  13. FOXO1 couples metabolic activity and growth state in the vascular endothelium.

    PubMed

    Wilhelm, Kerstin; Happel, Katharina; Eelen, Guy; Schoors, Sandra; Oellerich, Mark F; Lim, Radiance; Zimmermann, Barbara; Aspalter, Irene M; Franco, Claudio A; Boettger, Thomas; Braun, Thomas; Fruttiger, Marcus; Rajewsky, Klaus; Keller, Charles; Brüning, Jens C; Gerhardt, Holger; Carmeliet, Peter; Potente, Michael

    2016-01-14

    Endothelial cells (ECs) are plastic cells that can switch between growth states with different bioenergetic and biosynthetic requirements. Although quiescent in most healthy tissues, ECs divide and migrate rapidly upon proangiogenic stimulation. Adjusting endothelial metabolism to the growth state is central to normal vessel growth and function, yet it is poorly understood at the molecular level. Here we report that the forkhead box O (FOXO) transcription factor FOXO1 is an essential regulator of vascular growth that couples metabolic and proliferative activities in ECs. Endothelial-restricted deletion of FOXO1 in mice induces a profound increase in EC proliferation that interferes with coordinated sprouting, thereby causing hyperplasia and vessel enlargement. Conversely, forced expression of FOXO1 restricts vascular expansion and leads to vessel thinning and hypobranching. We find that FOXO1 acts as a gatekeeper of endothelial quiescence, which decelerates metabolic activity by reducing glycolysis and mitochondrial respiration. Mechanistically, FOXO1 suppresses signalling by MYC (also known as c-MYC), a powerful driver of anabolic metabolism and growth. MYC ablation impairs glycolysis, mitochondrial function and proliferation of ECs while its EC-specific overexpression fuels these processes. Moreover, restoration of MYC signalling in FOXO1-overexpressing endothelium normalizes metabolic activity and branching behaviour. Our findings identify FOXO1 as a critical rheostat of vascular expansion and define the FOXO1-MYC transcriptional network as a novel metabolic checkpoint during endothelial growth and proliferation.

  14. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states.

    PubMed

    Sharma, Sandeep; Alavi, Ali

    2015-09-14

    We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids.

  15. Iterative universal state selective correction for the Brillouin-Wigner multireference coupled-cluster theory.

    PubMed

    Banik, Subrata; Ravichandran, Lalitha; Brabec, Jiří; Hubač, Ivan; Kowalski, Karol; Pittner, Jiří

    2015-03-21

    As a further development of the previously introduced a posteriori Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011); J. Brabec et al., ibid. 136, 124102 (2012)], we suggest an iterative form of the USS correction by means of correcting effective Hamiltonian matrix elements. We also formulate USS corrections via the left Bloch equations. The convergence of the USS corrections with excitation level towards the full configuration interaction (FCI) limit is also investigated. Various forms of the USS and simplified diagonal USS corrections at the singles and doubles and perturbative triple levels are numerically assessed on several model systems and on the ozone and tetramethyleneethane molecules. It is shown that the iterative USS correction can successfully replace the previously developed a posteriori Brillouin-Wigner coupled cluster size-extensivity correction, while it is not sensitive to intruder states and performs well also in other cases when the a posteriori one fails, like, e.g., for the asymmetric vibration mode of ozone. PMID:25796230

  16. Interacting residues in an activated state of a G protein-coupled receptor.

    PubMed

    Lee, Yong-Hun; Naider, Fred; Becker, Jeffrey M

    2006-01-27

    Ste2p, the G protein-coupled receptor (GPCR) for the tridecapeptide pheromone alpha-factor of Saccharomyces cerevisiae, was used as a model GPCR to investigate the role of specific residues in the resting and activated states of the receptor. Using a series of biological and biochemical analyses of wild-type and site-directed mutant receptors, we identified Asn(205) as a potential interacting partner with the Tyr(266) residue. An N205H/Y266H double mutant showed pH-dependent functional activity, whereas the N205H receptor was non-functional and the Y266H receptor was partially active indicating that the histidine 205 and 266 residues interact in an activated state of the receptor. The introduction of N205K or Y266D mutations into the P258L/S259L constitutively active receptor suppressed the constitutive activity; in contrast, the N205K/Y266D/P258L/S259L quadruple mutant was fully constitutively active, again indicating an interaction between residues at the 205 and 206 positions in the receptor-active state. To further test this interaction, we introduced the N205C/Y266C, F204C/Y266C, and N205C/A265C double mutations into wild-type and P258L/S259L constitutively active receptors. After trypsin digestion, we found that a disulfide-cross-linked product, with the molecular weight expected for a receptor fragment with a cross-link between N205C and Y266C, formed only in the N205C/Y266C constitutively activated receptor. This study represents the first experimental demonstration of an interaction between specific residues in an active state, but not the resting state, of Ste2p. The information gained from this study should contribute to an understanding of the conformational differences between resting and active states in GPCRs. PMID:16314417

  17. Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system.

    PubMed

    Han, Xue; Hu, Shi; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    We propose effective fusion schemes for stationary electronic W state and flying photonic W state, respectively, by using the quantum-dot-microcavity coupled system. The present schemes can fuse a n-qubit W state and a m-qubit W state to a (m + n - 1)-qubit W state, that is, these schemes can be used to not only create large W state with small ones, but also to prepare 3-qubit W states with Bell states. The schemes are based on the optical selection rules and the transmission and reflection rules of the cavity and can be achieved with high probability. We evaluate the effect of experimental imperfections and the feasibility of the schemes, which shows that the present schemes can be realized with high fidelity in both the weak coupling and the strong coupling regimes. These schemes may be meaningful for the large-scale solid-state-based quantum computation and the photon-qubit-based quantum communication.

  18. Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system

    PubMed Central

    Han, Xue; Hu, Shi; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    We propose effective fusion schemes for stationary electronic W state and flying photonic W state, respectively, by using the quantum-dot-microcavity coupled system. The present schemes can fuse a n-qubit W state and a m-qubit W state to a (m + n − 1)-qubit W state, that is, these schemes can be used to not only create large W state with small ones, but also to prepare 3-qubit W states with Bell states. The schemes are based on the optical selection rules and the transmission and reflection rules of the cavity and can be achieved with high probability. We evaluate the effect of experimental imperfections and the feasibility of the schemes, which shows that the present schemes can be realized with high fidelity in both the weak coupling and the strong coupling regimes. These schemes may be meaningful for the large-scale solid-state-based quantum computation and the photon-qubit-based quantum communication. PMID:26242356

  19. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    NASA Astrophysics Data System (ADS)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit

  20. Bacterial chemoreceptor dynamics correlate with activity state and are coupled over long distances

    PubMed Central

    Samanta, Dipanjan; Borbat, Peter P.; Dzikovski, Boris; Freed, Jack H.; Crane, Brian R.

    2015-01-01

    Dynamics are hypothesized to play an important role in the transmission of signals across membranes by receptors. Bacterial chemoreceptors are long helical proteins that consist of a periplasmic ligand-binding domain; a transmembrane region; a cytoplasmic HAMP (histidine kinase, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases) domain; and a kinase-control module (KCM). The KCM is further composed of adaptation, hinge, and protein interaction regions (PIRs), the latter of which binds the histidine kinase CheA and adaptor CheW. Fusions of the Escherichia coli aspartate receptor KCM to HAMP domains of defined structure (H1-Tar vs. H1-2-Tar) give opposite responses in phosphotransfer and cellular assays, despite similar binding to CheA and CheW. Pulsed dipolar ESR spectroscopy (PDS) of these isolated on and off dimeric effectors reveals that, in the kinase-on state, the HAMP is more conformationally destabilized compared with the PIR, whereas in the kinase-off state, the HAMP is more compact, and the PIR samples a greater breadth of conformations. On and off HAMP states produce different conformational effects at the KCM junction, but these differences decrease through the adaptation region and into the hinge only to return with the inverted relationship in the PIR. Continuous wave–ESR of the spin-labeled proteins confirms that broader PDS distance distributions correlate with increased rates of dynamics. Conformational breadth in the adaptation region changes with charge alterations caused by modification enzymes. Activating modifications broaden the HAMP conformational ensemble but correspondingly, compact the PIR. Thus, chemoreceptors behave as coupled units, in which dynamics in regions proximal and distal to the membrane change coherently but with opposite sign. PMID:25675479

  1. Influence of the Basic State Zonal Flow on Convectively Coupled Equatorial Waves

    NASA Astrophysics Data System (ADS)

    Kiladis, G. N.; Dias, J.

    2014-12-01

    Observational data are used to test the hypothesis that the basic state modulates the dispersion properties of convectively coupled equatorial waves (CCEWs). This hypothesis is based on shallow water theory, which predicts that the zonal speed of propagation of equatorial modes is altered by the equivalent depth and the basic zonal flow. Typical diagnostics of space-time power spectra of cloudiness data reflect the mean behavior of CCEWs in space and time. Here, localized space-time spectra are calculated to investigate how the global spectral peaks vary across the tropics, and how they are affected by the substantial variations in zonal flow observed geographically and by season. The strength of some convectively coupled mode signals are seen to vary widely across the globe, while others show much less dependence on location. For example, Kelvin waves are observed in all sectors, while mixed Rossby-gravity waves only exist with appreciable amplitude over the western and central Pacific. Doppler shifting of the phase speed of CCEWs by the barotropic component of the wind is readily detectable due to both the mean flow and temporally varying extremes in this flow. However, once the Doppler effect is taken into account, the equivalent depths of CCEWs inferred from global power-spectra are surprisingly uniform, both geographically and temporally. There does not seem to be a unique steering level for CCEWs. For instance, the phase speed of Kelvin waves appear to be more influenced by the upper tropopspheric zonal flow, while mixed Rossby-gravity waves respond more to lower tropospheric flow. There are also detectable phase speed and equivalent depth shifts that are consistent with changes in the zonal flow vertical shear. This is particularly evident for equatorial Rossby modes.

  2. Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion.

    PubMed

    Banerjee, Tanmoy; Biswas, Debabrata

    2013-12-01

    We explore and experimentally demonstrate the phenomena of amplitude death (AD) and the corresponding transitions through synchronized states that lead to AD in coupled intrinsic time-delayed hyperchaotic oscillators interacting through mean-field diffusion. We identify a novel synchronization transition scenario leading to AD, namely transitions among AD, generalized anticipatory synchronization (GAS), complete synchronization (CS), and generalized lag synchronization (GLS). This transition is mediated by variation of the difference of intrinsic time-delays associated with the individual systems and has no analogue in non-delayed systems or coupled oscillators with coupling time-delay. We further show that, for equal intrinsic time-delays, increasing coupling strength results in a transition from the unsynchronized state to AD state via in-phase (complete) synchronized states. Using Krasovskii-Lyapunov theory, we derive the stability conditions that predict the parametric region of occurrence of GAS, GLS, and CS; also, using a linear stability analysis, we derive the condition of occurrence of AD. We use the error function of proper synchronization manifold and a modified form of the similarity function to provide the quantitative support to GLS and GAS. We demonstrate all the scenarios in an electronic circuit experiment; the experimental time-series, phase-plane plots, and generalized autocorrelation function computed from the experimental time series data are used to confirm the occurrence of all the phenomena in the coupled oscillators.

  3. Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Biswas, Debabrata

    2013-12-01

    We explore and experimentally demonstrate the phenomena of amplitude death (AD) and the corresponding transitions through synchronized states that lead to AD in coupled intrinsic time-delayed hyperchaotic oscillators interacting through mean-field diffusion. We identify a novel synchronization transition scenario leading to AD, namely transitions among AD, generalized anticipatory synchronization (GAS), complete synchronization (CS), and generalized lag synchronization (GLS). This transition is mediated by variation of the difference of intrinsic time-delays associated with the individual systems and has no analogue in non-delayed systems or coupled oscillators with coupling time-delay. We further show that, for equal intrinsic time-delays, increasing coupling strength results in a transition from the unsynchronized state to AD state via in-phase (complete) synchronized states. Using Krasovskii-Lyapunov theory, we derive the stability conditions that predict the parametric region of occurrence of GAS, GLS, and CS; also, using a linear stability analysis, we derive the condition of occurrence of AD. We use the error function of proper synchronization manifold and a modified form of the similarity function to provide the quantitative support to GLS and GAS. We demonstrate all the scenarios in an electronic circuit experiment; the experimental time-series, phase-plane plots, and generalized autocorrelation function computed from the experimental time series data are used to confirm the occurrence of all the phenomena in the coupled oscillators.

  4. Electronically excited-state properties and predissociation mechanisms of phosphorus monofluoride: A theoretical study including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Yu, Le; Bian, Wensheng

    2012-07-01

    The 51 Ω states generated from the 22 Λ - S states of phosphors monofluoride have been investigated using the valence internally contracted multireference configuration interaction method with the Davidson correction and the entirely uncontracted aug-cc-pV5Z basis set. The spin-orbit coupling is computed using the state interaction approach with the Breit-Pauli Hamiltonian. Based on the calculated potential energy curves, the spectroscopic constants of the bound and quasibound Λ - S and Ω states are obtained, and very good agreement with experiment is achieved. Several quasibound states caused by avoided crossings are found. Various curve crossings and avoided crossings are revealed, and with the help of our computed spin-orbit coupling matrix elements, the predissociation mechanisms of the a1Δ, b1Σ+, e3Π, g1Π, and (3)3Π states are analyzed. The intricate couplings among different electronic states are investigated. We propose that the avoided crossing between the A3Π0 + and b^1 {Σ }_{{0 + }}^{+ } states may be responsible for the fact that the A3Π ν' ⩾ 12 vibrational levels can not be observed in experiment. The transition properties of the A3Π - X3Σ- transition are studied, and our computed Franck-Condon factors and radiative lifetimes match the experimental results very well.

  5. Preparing Greenberger--Horne--Zeilinger Entangled Photon Fock States of Three Cavities Coupled by a Superconducting Flux Qutrit

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Fei; Su, Qi-Ping; Yang, Chui-Ping

    2013-08-01

    We propose a way to prepare Greenberger--Horne--Zeilinger (GHZ) entangled photon Fock states of three cavities, by using a superconducting flux qutrit coupled to the cavities. This proposal does not require the use of classical microwave pulses and measurement during the entire operation. Thus, the operation is greatly simplified and the circuit engineering complexity and cost is much reduced. The proposal is quite general and can be applied to generate three-cavity GHZ entangled photon Fock states when the three cavities are coupled by a different three-level physical system such as a superconducting charge qutrit, a transmon qutrit, or a quantum dot.

  6. Simulation of unsteady state performance of a secondary air system by the 1D-3D-Structure coupled method

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Peng; Li, Yulong

    2016-02-01

    This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.

  7. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  8. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  9. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  10. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  11. Coupled-cluster with active space selected higher amplitudes: performance of seminatural orbitals for ground and excited state calculations.

    PubMed

    Köhn, Andreas; Olsen, Jeppe

    2006-11-01

    The active space approach for coupled-cluster models is generalized using the general active space concept and implemented in a string-based general coupled-cluster code. Particular attention is devoted to the choice of orbitals on which the subspace division is based. Seminatural orbitals are proposed for that purpose. These orbitals are obtained by diagonalizing only the hole-hole and particle-particle block of the one-electron density of a lower-order method. The seminatural orbitals are shown to be a good replacement for complete active space self-consistent field orbitals and avoid the ambiguities with respect to the reference determinant introduced by the latter orbitals. The seminatural orbitals also perform well in excited state calculations, including excited states with strong double excitation contributions, which usually are difficult to describe with standard coupled-cluster methods. A set of vertical excitation energies is obtained and benchmarked against full configuration interaction calculations, and alternative hierarchies of active space coupled-cluster models are proposed. As a simple application the spectroscopic constants of the C(2) B (1)Delta(g) and B(') (1)Sigma(g) (+) states are calculated using active space coupled-cluster methods and basis sets up to quadruple-zeta quality in connection with extrapolation and additivity schemes. PMID:17100432

  12. Coupled-cluster with active space selected higher amplitudes: Performance of seminatural orbitals for ground and excited state calculations

    NASA Astrophysics Data System (ADS)

    Köhn, Andreas; Olsen, Jeppe

    2006-11-01

    The active space approach for coupled-cluster models is generalized using the general active space concept and implemented in a string-based general coupled-cluster code. Particular attention is devoted to the choice of orbitals on which the subspace division is based. Seminatural orbitals are proposed for that purpose. These orbitals are obtained by diagonalizing only the hole-hole and particle-particle block of the one-electron density of a lower-order method. The seminatural orbitals are shown to be a good replacement for complete active space self-consistent field orbitals and avoid the ambiguities with respect to the reference determinant introduced by the latter orbitals. The seminatural orbitals also perform well in excited state calculations, including excited states with strong double excitation contributions, which usually are difficult to describe with standard coupled-cluster methods. A set of vertical excitation energies is obtained and benchmarked against full configuration interaction calculations, and alternative hierarchies of active space coupled-cluster models are proposed. As a simple application the spectroscopic constants of the C2 BΔg1 and B'Σg+1 states are calculated using active space coupled-cluster methods and basis sets up to quadruple-zeta quality in connection with extrapolation and additivity schemes.

  13. Recovery and nonrecovery of the untrained state in an exchange-coupled system

    NASA Astrophysics Data System (ADS)

    Jutimoosik, Jaru; Yimnirun, Rattikorn; Setzer, Annette; Esquinazi, Pablo; Stahn, Jochen; Paul, Amitesh

    2015-06-01

    We report depth sensitive investigations of the magnetic interaction between exchange-coupled stacked CoO and ferromagnetic Co bilayers (separated by thick Au layers) as we explore the degree of recovery of the untrained state after the first two field cycles. Such a recovery is expected by field cycling a reorientation field (HRE) along a direction (ΩRE) away from the initial field cooling direction. Measurements as a function of ΩRE and the strength of HRE (along each direction) map the influence of ΩRE on the reversal mechanism in the layers and thereby the degree of recovery. Our results are consistent with the earlier observations in similar systems that was realized with ΩRE=90∘ . We ascribe these partial and/or significant recoveries to the unchanged sense of rotation after initial field cooling of the ferromagnetic magnetization upon each field cycling. Furthermore, in our system, we find that this recovery can be regulated by choosing various other HRE and ΩRE values without changing the rotational sense. The best recipe for recovery is identified for ΩRE=45∘ , that can be achieved partially with HRE=3.0 kOe and remain significant even with HRE=10.0 kOe. In this study we not only understand the fundamental mechanism in the recovery of training, but also instigate its technological prospects by lifting the directional restrictions of the reorientation field.

  14. Non-Fermi-liquid and topological states with strong spin-orbit coupling.

    PubMed

    Moon, Eun-Gook; Xu, Cenke; Kim, Yong Baek; Balents, Leon

    2013-11-15

    We argue that a class of strongly spin-orbit-coupled materials, including some pyrochlore iridates and the inverted band gap semiconductor HgTe, may be described by a minimal model consisting of the Luttinger Hamiltonian supplemented by Coulomb interactions, a problem studied by Abrikosov and collaborators. It contains twofold degenerate conduction and valence bands touching quadratically at the zone center. Using modern renormalization group methods, we update and extend Abrikosov's classic work and show that interactions induce a quantum critical non-Fermi-liquid phase, stable provided time-reversal and cubic symmetries are maintained. We determine the universal power-law exponents describing various observables in this Luttinger-Abrikosov-Beneslavskii state, which include conductivity, specific heat, nonlinear susceptibility, and the magnetic Gruneisen number. Furthermore, we determine the phase diagram in the presence of cubic and/or time-reversal symmetry breaking perturbations, which includes a topological insulator and Weyl semimetal phases. Many of these phases possess an extraordinarily large anomalous Hall effect, with the Hall conductivity scaling sublinearly with magnetization σ(xy)∼M0.51.

  15. Quantum dynamics with fermion coupled coherent states: Theory and application to electron dynamics in laser fields

    SciTech Connect

    Kirrander, Adam; Shalashilin, Dmitrii V.

    2011-09-15

    We present an alternate version of the coupled-coherent-state method, specifically adapted for solving the time-dependent Schroedinger equation for multielectron dynamics in atoms and molecules. This theory takes explicit account of the exchange symmetry of fermion particles, and it uses fermion molecular dynamics to propagate trajectories. As a demonstration, calculations in the He atom are performed using the full Hamiltonian and accurate experimental parameters. Single- and double-ionization yields by 160-fs and 780-nm laser pulses are calculated as a function of field intensity in the range 10{sup 14}-10{sup 16} W/cm{sup 2}, and good agreement with experiments by Walker et al. is obtained. Since this method is trajectory based, mechanistic analysis of the dynamics is straightforward. We also calculate semiclassical momentum distributions for double ionization following 25-fs and 795-nm pulses at 1.5x10{sup 15} W/cm{sup 2}, in order to compare them with the detailed experiments by Rudenko et al. For this more challenging task, full convergence is not achieved. However, major effects such as the fingerlike structures in the momentum distribution are reproduced.

  16. A collective coupled-channel model and mirror state energy displacements

    NASA Astrophysics Data System (ADS)

    Fraser, P. R.; Amos, K.; Canton, L.; Karataglidis, S.; van der Knijff, D.; Svenne, J. P.

    2015-09-01

    The spectra of nucleon-nucleus mirror systems allow examination of charge symmetry breaking in nucleon-nucleus interactions. To date, such examination has been performed with studies using microscopic models of structure. Herein we seek characterisation with a coupled-channel model in which the nucleon-nucleus interactions are described using a collective model prescription with the Pauli principle taken into account. The neutron-nucleus Hamiltonian is chosen to give the best match to the compound system spectrum, with emphasis on finding the correct ground state energy relative to the neutron-nucleus threshold. The Coulomb interactions for the proton-nucleus partner of a mirror pair are determined using charge distributions that match the root-mean-square charge radii of the nuclei in question. With the Coulomb interaction so defined modifying the neutron-nucleus Hamiltonian, we then predict a spectrum for the relevant proton-nucleus compound. Discrepancies in that resulting spectrum with measured values we tentatively ascribe to charge-symmetry breaking effects. We consider spectra obtained in this way for the mirror pairs 13C and 13N, 15C and 15F, and 15O and 15N, all to ˜ 10 MeV excitation.

  17. Tunneling spectroscopy of a single quantum dot coupled to a superconductor: From Kondo ridge to Andreev bound states

    NASA Astrophysics Data System (ADS)

    Pillet, J.-D.; Joyez, P.; Žitko, Rok; Goffman, M. F.

    2013-07-01

    We performed tunneling spectroscopy of a carbon nanotube quantum dot (QD) coupled to a metallic reservoir either in the normal or in the superconducting state. We explore how the Kondo resonance, observed when the QD's occupancy is odd and the reservoir is normal, evolves towards Andreev bound states (ABS) in the superconducting state. Within this regime, the ABS spectrum observed is consistent with a quantum phase transition from a singlet to a degenerate magnetic doublet ground state, in quantitative agreement with a single-level Anderson model with superconducting leads.

  18. Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator

    SciTech Connect

    Ng, H. T.; Chu, Shih-I

    2011-08-15

    We consider a two-component Bose-Einstein condensate in a double-well potential, where the atoms are magnetically coupled to a single mode of the microwave field inside a superconducting resonator. We find that the system has different dark-state subspaces in the strong- and weak-tunneling regimes. In the limit of weak tunnel coupling, steady-state entanglement between the two spatially separated condensates can be generated by evolving to a mixture of dark states via the dissipation of the photon field. We show that the entanglement can be faithfully indicated by an entanglement witness. Long-lived entangled states are useful for quantum-information processing with atom-chip devices.

  19. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    SciTech Connect

    Gotoh, Hideki Sanada, Haruki; Yamaguchi, Hiroshi; Sogawa, Tetsuomi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  20. Effect of the spin-orbit interaction and the electron phonon coupling on the electronic state in a silicon vacancy

    NASA Astrophysics Data System (ADS)

    Yamada, Takemi; Yamakawa, Youichi; Ōno, Yoshiaki

    2010-01-01

    The electronic state around a single vacancy in silicon crystal is investigated by using the Green's function approach. The triply degenerate charge states are found to be widely extended and account for extremely large elastic softening at low temperature as observed in recent ultrasonic experiments. When we include the LS coupling λSi on each Si atom, the 6-fold spin-orbital degeneracy for the V+ state with the valence +1 and spin 1/2 splits into Γ doublet groundstates and Γ8 quartet excited states with a reduced excited energy of O(λSi/10). We also consider the effect of couplings between electrons and Jahn-Teller phonons in the dangling bonds within the second order perturbation and find that the groundstate becomes Γ8 quartet which is responsible for the magnetic-field suppression of the softening in B-doped silicon.

  1. Rabi-coupled two-component Bose-Einstein condensates: Classification of the ground states, defects, and energy estimates

    NASA Astrophysics Data System (ADS)

    Aftalion, Amandine; Mason, Peter

    2016-08-01

    We classify the ground states and topological defects of two-component Bose-Einstein condensates under the effect of internal coherent Rabi coupling. We present numerical phase diagrams which show the boundaries between symmetry-breaking components and various vortex patterns (triangular, square, bound state between vortices). We estimate the Rabi energy in the Thomas-Fermi limit which allows us to have an analytical description of the point energy leading to the formation of the various vortex patterns.

  2. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  3. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers

    NASA Astrophysics Data System (ADS)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  4. Coupled Iron and Sulfur Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State

    NASA Astrophysics Data System (ADS)

    Rouxel, O. J.; Bekker, A.

    2009-05-01

    The rise of atmospheric oxygen level by ca. 2.3 Ga have led to dramatic shifts in the iron and sulfur oceanic cycles. Past studies of non-mass dependent and mass dependent sulfur isotope record in sedimentary sulfides over geological time have placed important constraints on biogeochemical cycle of sulfur and evolution of Precambrian ocean chemistry. Recently, we applied a similar time-record approach to explore potential changes in Fe isotope composition of pyrite in black shales. Although the underlying mechanisms for Fe isotope fractionation in organic-rich sediments are debated, we identified direct link between the rise of atmospheric oxygen and changes in the Fe ocean cycle suggesting that Fe isotopes are useful proxies to the past ocean redox state. Since biogeochemical cycles of Fe and S are closely coupled in marine systems, Fe-limitation and S-limitation for pyrite formation in black shales should leave imprint on the isotopic record of both elements. Coupled Fe and S isotope systematics of Devonian pyrite display a range of 50‰ in δ34S values whereas δ56Fe values vary between - 1.0 and +0.1‰ consistent with Fe isotope variations in modern marine sediments. Similarly, pyrite in the 1.88 Ga Gunflint Formation has δ34S values ranging from - 32‰ to +10‰ and displays a range of δ56Fe values between 0 to - 0.4‰. In contrast, Archean black shales (e.g. Manjeri Fm., Belingwe Belt and Jeerinah Fm., Hamersley Basin) display a smaller range of δ34S values between together with ubiquitous non-mass dependent S-isotope fractionation but a larger range of δ56Fe values from - 3.5 to +0.2‰. A transitional period between ca. 2.3 and ca. 1.8 Ga is marked by a larger spread of δ34S values from - 34 to +28‰, disappearance of MIF and a larger range of δ56Fe values from - 1.7 to +1.1‰. These results confirm that after the rise of atmospheric oxygen by ca. 2.3 Ga, Paleoproterozoic ocean became stratified and gradually affected by an increase of seawater

  5. Generators of nonclassical states by a combination of linear coupling of boson modes, Kerr nonlinearity, and strong linear losses

    SciTech Connect

    Shchesnovich, V. S.; Mogilevtsev, D.

    2011-07-15

    We show that the generators of quantum states of light can be built by employing the Kerr nonlinearity, a strong linear absorption or losses, and the linear coupling of optical modes. Our setup can be realized, for instance, with the use of the optical fiber technology. We consider in detail the simplest cases of three and four coupled modes, where a strongly lossy mode is linearly coupled to other linear and nonlinear modes. In the three-mode design, our scheme emulates the third-order nonlinear absorption, allowing for generation of the single-photon states, or two-photon absorption allowing the generation of the phase states. In the four-mode design, the scheme emulates a nonlocal absorption which produces an entangled state of two uncoupled modes. We also note that in the latter case and in the case of phase state generation the output state is in the linear mode, which prevents its subsequent degradation by strong losses accompanying a strong Kerr nonlinearity.

  6. STM probe on the surface electronic states of spin-orbit coupled materials

    NASA Astrophysics Data System (ADS)

    Zhou, Wenwen

    Spin-orbit coupling (SOC) is the interaction of an electron's intrinsic angular momentum (spin) with its orbital momentum. The strength of this interaction is proportional to Z4 where Z is the atomic number, so generally it is stronger in atoms with higher atomic number, such as bismuth (Z=83) and iridium (Z=77). In materials composed of such heavy elements, the prominent SOC can be sufficient to modify the band structure of the system and lead to distinct phase of matter. In recent years, SOC has been demonstrated to play a critical role in determining the unusual properties of a variety of compounds. SOC associated materials with exotic electronic states have also provided a fertile platform for studying emergent phenomena as well as new physics. As a consequence, the research on these interesting materials with any insight into understanding the microscopic origin of their unique properties and complex phases is of great importance. In this context, we implement scanning tunneling microscopy (STM) and spectroscopy (STS) to explore the surface states (SS) of the two major categories of SOC involved materials, Bi-based topological insulators (TI) and Ir-based transition metal oxides (TMO). As a powerful tool in surface science which has achieved great success in wide variety of material fields, STM/STS is ideal to study the local density of states of the subject material with nanometer length scales and is able to offer detailed information about the surface electronic structure. In the first part of this thesis, we report on the electronic band structures of three-dimensional TIs Bi2Te3 and Bi2Se 3. Topological insulators are distinct quantum states of matter that have been intensely studied nowadays. Although they behave like ordinary insulators in showing fully gapped bulk bands, they host a topologically protected surface state consisting of two-dimensional massless Dirac fermions which exhibits metallic behavior. Indeed, this unique gapless surface state is a

  7. Characterization of Selenium Pollution in the Western United States by Coupling Soil Moisture with Geochemical Transport

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Liang, X.; Guo, J.

    2004-12-01

    Due to the arid conditions of the Western United States, selenium released from sandstone and shale hillslopes is transported by overland runoff and is shown to cause fish and aquatic bird death and reproductive failure. Precipitation in contact with exposed seleniferous soils, carry dissolved and particulate forms of selenium in runoff and groundwater to the valley floor to be redistributed throughout the hillslope and alluvial fan. Impervious clay soils and the arid climate impede the flushing of selenium below the groundwater table so that selenium is continually cycled in the alluvial fan. A physically based model that couples hydrologic land surface interactions and geochemical transport based on soil moisture was developed to characterize the loading, transport, and distribution of selenium. The soil moisture distribution and overland flow patterns determined by the hydrologic model for the watershed are factors that control soil chemical movement and transformation. The main geochemical and physical transport mechanisms of selenite and selenate, dissolution from soil, speciation, adsorption, advection, and mass transfer from pore water to overland form, are characterized as functions of surface flow and the soil moisture of the fifteen centimeter deep soil layer for each model grid. The movement of overland flow within each grid is routed to the outlet of the watershed. Flow patterns and measured selenium concentrations at two sites; the Panoche/ Silver Creek watershed in Central California, and the Leach Creek watershed in Colorado, are compared to model results. Selenium pollution characterization at a watershed scale will add to the understanding of the cycling of selenium within and across watersheds and aid in the mitigation of selenium pollution.

  8. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.

    PubMed

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-10-01

    A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.

  9. Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling

    NASA Astrophysics Data System (ADS)

    Perez, Camilo; Faust, Belinda; Mehdipour, Ahmad Reza; Francesconi, Kevin A.; Forrest, Lucy R.; Ziegler, Christine

    2014-07-01

    The Na+-coupled betaine symporter BetP shares a highly conserved fold with other sequence unrelated secondary transporters, for example, with neurotransmitter symporters. Recently, we obtained atomic structures of BetP in distinct conformational states, which elucidated parts of its alternating-access mechanism. Here, we report a structure of BetP in a new outward-open state in complex with an anomalous scattering substrate, adding a fundamental piece to an unprecedented set of structural snapshots for a secondary transporter. In combination with molecular dynamics simulations these structural data highlight important features of the sequential formation of the substrate and sodium-binding sites, in which coordinating water molecules play a crucial role. We observe a strictly interdependent binding of betaine and sodium ions during the coupling process. All three sites undergo progressive reshaping and dehydration during the alternating-access cycle, with the most optimal coordination of all substrates found in the closed state.

  10. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    SciTech Connect

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-09-15

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  11. Spin splitting of s and p states in single atoms and magnetic coupling in dimers on a surface.

    PubMed

    Lee, H J; Ho, W; Persson, M

    2004-05-01

    Electronic states of magnetic atoms (Mn, Fe, and Co) and artificially assembled dimers (Mn2, Fe2, and Co2) on a NiAl(110) surface were probed by scanning tunneling spectroscopy at 17 K. Resonance peaks characteristic of each adsorbed species were observed in the unoccupied density of states. Comparison of the measured spectra with calculations by density functional theory revealed spin splitting in the unoccupied states with s and p characters for the single magnetic adatoms and addimers. The magnitude of the resonance splitting for the adatoms increased with the calculated values of magnetic moments. The resonance structures for the addimers exhibited signatures of their internal magnetic coupling.

  12. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  13. Decoherence of Two-qubits Coupled with Reservoirs Studied with New Ket-Bra Entangled State Method

    NASA Astrophysics Data System (ADS)

    Ren, Yi-Chong; Fan, Hong-Yi

    2016-04-01

    For the first time we define a so-called Ket-Bra Entangled State (KBES) for two-qubits coupled with reservoirs by introduce an extra fictitious mode vector, and convert the corresponding master equation into Schrödinger-like equation by virtue of this state. Via this approach we concisely obtain the dynamic evolution of two uncoupled qubits each immersed in local thermal noise. Based on this, the decoherence evolution for the extended Werner-like states is derived and how purity and temperature influence the concurrence is analyzed. This KBES method may also be applied to tackling master equations of limited atomic level systems.

  14. Generating the Schrödinger cat state in a nanomechanical resonator coupled to a charge qubit

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Qi; Xiong, Wei; Zhang, Shuo; Li, Yong; Feng, Mang

    2015-01-01

    We propose a scheme for generating the Schr\\"{o}dinger cat state based on geometric operations by a nanomechanical resonator coupled to a superconducting charge qubit. The charge qubit, driven by two strong classical fields, interacts with a high-frequency phonon mode of the nanomechanical resonator. During the operation, the charge qubit undergoes no real transitions, while the phonon mode of the nanomechanical resonator is displaced along different paths in the phase space, dependent on the states of the charge qubit, which yields the Schr\\"{o}dinger cat state. The robustness of the scheme is justified by considering noise from environment, and the feasibility of the scheme is discussed.

  15. Couples-focused behavioral interventions for prevention of HIV: Systematic review of the state of evidence

    PubMed Central

    Burton, Jennifer; Darbes, Lynae A.; Operario, Don

    2009-01-01

    HIV is frequently transmitted in the context of partners in a committed relationship, thus couples-focused HIV prevention interventions are a potentially promising modality for reducing infection. We conducted a systematic review of studies testing whether couples-focused behavioral prevention interventions reduce HIV transmission and risk behavior. We included studies using randomized controlled trial designs, quasi-randomized controlled trials and nonrandomized controlled studies. We searched five electronic databases and screened 7628 records. Six studies enrolling 1,084 couples met inclusion criteria and were included in this review. Results across studies consistently indicated that couples-focused programs reduced unprotected sexual intercourse and increased condom use compared with control groups. However, studies were heterogeneous in population, type of intervention, comparison groups, and outcomes measures, and so meta-analysis to calculate pooled effects was inappropriate. Although couples-based approaches to HIV prevention appear initially promising, additional research is necessary to build a stronger theoretical and methodological basis for couples-based HIV prevention, and future interventions must pay closer attention to homosexual couples, adolescents and young people in relationships. PMID:18843530

  16. Synchronized states and multistability in a random network of coupled discontinuous maps

    SciTech Connect

    Nag, Mayurakshi; Poria, Swarup

    2015-08-15

    The synchronization behavior of coupled chaotic discontinuous maps over a ring network with dynamic random connections is reported in this paper. It is observed that random rewiring stabilizes one of the two strongly unstable fixed points of the local map. Depending on initial conditions, the network synchronizes to different unstable fixed points, which signifies the existence of synchronized multistability in the complex network. Moreover, the length of discontinuity of the local map has an important role in generating windows of different synchronized fixed points. Synchronized fixed point and synchronized periodic orbits are found in the network depending on coupling strength and different parameter values of the local map. We have identified the existence of period subtracting bifurcation with respect to coupling strength in the network. The range of coupling strength for the occurrence of synchronized multistable spatiotemporal fixed points is determined. This range strongly depends upon the dynamic rewiring probability and also on the local map.

  17. Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: Magnetic-dipolar-mode vortex polaritons

    SciTech Connect

    Kamenetskii, E. O.; Joffe, R.; Shavit, R.

    2011-08-15

    A coupled state of an electromagnetic field with an electric or magnetic dipole-carrying excitation is well known as a polariton. Such a state is the result of the mixing of a photon with the excitation of a material. The most discussed types of polaritons are phonon polaritons, exciton polaritons, and surface-plasmon polaritons. Recently, it was shown that, in microwaves, strong magnon-photon coupling can be achieved due to magnetic-dipolar-mode (MDM) vortices in small thin-film ferrite disks. These coupled states can be specified as MDM-vortex polaritons. In this paper, we study the properties of MDM-vortex polaritons. We numerically analyze a variety of topological structures of MDM-vortex polaritons. Based on analytical studies of the MDM spectra, we give theoretical insight into a possible origin for the observed topological properties of the fields. We show that the MDM-vortex polaritons are characterized by helical-mode resonances. We demonstrate the PT-invariance properties of MDM oscillations in a quasi-two-dimensional ferrite disk and show that such properties play an essential role in the physics of the observed topologically distinctive states with the localization or cloaking of electromagnetic fields. We may suppose that one of the useful implementations of the MDM-vortex polaritons could be microwave metamaterial structures and microwave near-field sensors.

  18. Accurate calculations of spectroscopic properties for the 13 Λ-S states and the 23 Ω states of BO radical including the spin-orbit coupling effect.

    PubMed

    Zhu, Zunlue; Yu, Wei; Wang, Shuai; Sun, Jinfeng; Shi, Deheng

    2014-10-15

    The spectroscopic properties of 23 Ω states generated from the 13 Λ-S states of BO radical are studied for the first time for internuclear separations from about 0.07 to 1.0nm. Of the 13 Λ-S states, each of the F(2)Π, 1(2)Φ and 1(2)Δ states is found to possess the double well. Each of the 1(4)Π, C(2)Π, 1(2)Σ(-) and 2(2)Σ(-) states possesses one well with one barrier. The A(2)Π, 1(4)Π and F(2)Π are the inverted states with the spin-orbit coupling effect taken into account. All the states possess the deep well except for the 1(2)Φ. The potential energy curves (PECs) are calculated by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction. Core-valence correlation and scalar relativistic corrections are included into the calculations. The PECs are extrapolated to the complete basis set limit. The spin-orbit coupling effect is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. The spectroscopic parameters are evaluated, and compared with the available measurements and other theoretical results. The Franck-Condon factors and radiative lifetimes of the transitions from the B(2)Σ(+), C(2)Π, D(2)Σ(+), 1(2)Σ(-) and 1(4)Π Λ-S states to the ground state are calculated for several low vibrational levels, and some necessary discussion is made. Analyses show that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. PMID:24820321

  19. Influence of silane coupling agents on the rheological behavior of hemp fiber filled polyamide 1010 biomass composites in molten state

    NASA Astrophysics Data System (ADS)

    Nishitani, Yosuke; Hasumi, Megumi; Kitano, Takeshi

    2015-05-01

    In order to develop the new engineering materials such as structural materials and tribomaterials based on all plants-derived materials, the influence of silane coupling agent on the rheological properties of hemp fiber (HF) filled polyamide 1010 (PA1010) biomass composites in molten state was investigated for one step of the fabrication of these materials. PA1010 was made from sebacic acid and decamethylenediamine, which are obtained from plant-derived castor oil. Hemp fibers were surface-treated by two types of surface treatment: a) alkali treatment by NaOH solution and b) surface treatment by silane coupling agents with different concentrations. Three types of silane coupling agents: aminosilane, epoxysilane and ureidosilane were used for surface treatment. HF/PA1010 composites were extruded by a twin screw extruder and compression-molded. Rheological behavior in molten state were evaluated by oscillatory flow testing using a parallel plate type rheometer. It was found that the silane coupling agents remarkably influence on: 1) rheological properties such as storage modulus, loss modulus, loss tangent and complex viscosity in low angular frequency region in molten state, 2) temperature dependences of rheological properties, and 3) relationship between phase angle and complex modulus (van Gurp - Palmen plots). These rheological behavior were also strongly influenced by the type of silane coupling agents. The viscoelastic properties (both storage and loss moduli) of aminosilane and epoxysilane treated composites were lower, however, those of ureidosilane treated ones were higher than the moduli of only alkali treated composites. Ureidosilane treated composites were the least temperature sensitive in the surface treated composites investigated here.

  20. Equilibrium states of pancake vortices in layered superconductors: coupling of inter-layer ordering and in-layer ordering

    NASA Astrophysics Data System (ADS)

    Wu, Wenjuan; Zhao, H. J.; Zhou, Wei; Shi, Z. X.

    2016-10-01

    We numerically study the static configurations of pancake vortices in layered superconductors. We analyze how disordering induced by random pinning centers competes with inter-layer ordering and in-layer ordering. In general, for inter-layer ordering, 3D states composed of coupled vortex lines are formed for strong inter-layer coupling strength and weak pinning strength. In contrast, 2D states composed of decoupled individual pancake vortices are formed for weak inter-layer coupling strength and strong pinning strength. For in-layer ordering, with increasing pinning forces, the in-layer structure evolves from crystals to Bragg glasses (BGs), vortex glasses (VGs), and liquid-like structures. Changing the vortex density, an initially fast disordering, then slow ordering procedure is found for both in-layer and inter-layer ordering, which is a possible clue to second peak effect (SPE). The reason behind this non-monotonic behavior is discussed. Our results are summarized in a phase diagram in the plane of ‘inter-layer coupling strength s m versus pinning strength f p.

  1. Constraining the Higgs boson coupling to light quarks in the H →Z Z final states

    NASA Astrophysics Data System (ADS)

    Zhou, Yaofu

    2016-01-01

    We constrain the Higgs boson (Yukawa) coupling to quarks in the first two generations in the H →Z Z final states. Deviation of these couplings from the Standard Model values leads to changes in the Higgs boson width and in the cross sections of relevant processes. In the Higgs boson resonance region, an increased light Yukawa coupling leads to an increased Higgs boson width, which in turn leads to a decreased cross section. In the off-shell region, increased Yukawa couplings result in an enhancement of the Higgs boson signal through q q ¯ annihilation. With the assumption of scaling one Yukawa coupling at a time, this study is conceptually simple and yields results with the same order of magnitude as the tightest in the literature. The study is based on results published by the CMS experiment at the LHC in 2014, corresponding to integrated luminosities of 5.1 fb-1 at a centre-of-mass energy √{s }=7 TeV and 19.7 fb-1 at 8 TeV.

  2. Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states

    NASA Astrophysics Data System (ADS)

    Zhao-Tan, Jiang; Cheng-Cheng, Zhong

    2016-06-01

    We investigate the quantum transport properties through a special kind of quantum dot (QD) system composed of a serially coupled multi-QD-pair (multi-QDP) chain and side-coupled Majorana bound states (MBSs) by using the Green functions method, where the conductance can be classified into two kinds: the electron tunneling (ET) conductance and the Andreev reflection (AR) one. First we find that for the nonzero MBS-QDP coupling a sharp AR-induced zero-bias conductance peak with the height of e 2/h is present (or absent) when the MBS is coupled to the far left (or the other) QDP. Moreover, the MBS-QDP coupling can suppress the ET conductance and strengthen the AR one, and further split into two sub-peaks each of the total conductance peaks of the isolated multi-QDPs, indicating that the MBS will make obvious influences on the competition between the ET and AR processes. Then we find that the tunneling rate Γ L is able to affect the conductances of leads L and R in different ways, demonstrating that there exists a Γ L-related competition between the AR and ET processes. Finally we consider the effect of the inter-MBS coupling on the conductances of the multi-QDP chains and it is shown that the inter-MBS coupling will split the zero-bias conductance peak with the height of e 2/h into two sub-peaks. As the inter-MBS coupling becomes stronger, the two sub-peaks are pushed away from each other and simultaneously become lower, which is opposite to that of the single QDP chain where the two sub-peaks with the height of about e 2/2h become higher. Also, the decay of the conductance sub-peaks with the increase of the MBS-QDP coupling becomes slower as the number of the QDPs becomes larger. This research should be an important extension in studying the transport properties in the kind of QD systems coupled with the side MBSs, which is helpful for understanding the nature of the MBSs, as well as the MBS-related QD transport properties. Project supported by the National Natural

  3. Competition between diagonal and off-diagonal coupling gives rise to charge-transfer states in polymeric solar cells

    PubMed Central

    Yao, Yao; Zhou, Nengji; Prior, Javier; Zhao, Yang

    2015-01-01

    It has long been a puzzle on what drives charge separation in artificial polymeric solar cells as a consensus has yet to emerge among rivaling theories based upon electronic localization and delocalization pictures. Here we propose an alternative using the two-bath spin-boson model with simultaneous diagonal and off-diagonal coupling: the critical phase, which is born out of the competition of the two coupling types, and is neither localized nor delocalized. The decoherence-free feature of the critical phase also helps explain sustained coherence of the charge-transfer state. Exploiting Hamiltonian symmetries in an enhanced algorithm of density-matrix renormalization group, we map out boundaries of the critical phase to a precision previously unattainable, and determine the bath spectral densities inducive to the existence of the charge-transfer state. PMID:26412693

  4. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing

    2016-01-01

    The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E

  5. Lower hybrid heating associated with mode conversion on the Wisconsin toroidal octupole

    SciTech Connect

    Owens, T L; Scharer, J E

    1980-09-01

    Wave heating experiments and wave propagation measurements in the lower hybrid range of frequencies are described. A T antenna launches up to 40 kW of wave power at 140 MHz with better than 95% coupling efficiency. Ion temperature increases of ..delta..T/sub i/ = 37 eV are measured with ..delta..T/sub parallel//T/sub io/ = 12. Ion heating is strongly localized near the lower hybrid turning point for a peak value of (k/sub parallel//..omega..)(KT/sub i//m/sub e/)/sup 1/2/ approx. = 0.3 corresponding to an upshifted k/sub parallel/ spectrum. Wavelength measurements indicate that the upshift in k/sub parallel/ occurs in the interior of the plasma. Other wave measurements show the existence of a large amplitude weakly damped fast wave component in addition to the slow wave.

  6. Dynamic Couplings, Radiative and Nonradiative Lifetimes of the A1Σ+ and C1Σ+ States of the KH Molecule

    NASA Astrophysics Data System (ADS)

    Khelifi, Neji; Oujia, Brahim; Gadea, Florent Xavier

    2007-03-01

    In this article, dynamic couplings for X-A, X-C, and A-C, by using first and second derivatives terms neglected in the Born-Oppenheimer approximation, are calculated. Newly calculated radiative transition probabilities for the A1Σ +→X1Σ+ and C1Σ+→X1Σ+ emission bands of KH are used to calculate the radiative and nonradiative lifetimes of the various vibrational levels (0⩽v ⩽35) and (0⩽v⩽55) of A1Σ+ and C1Σ+ states of the diatomic potassium hydride, KH, molecule. For higher vibrational levels, an estimate of the bound-to-free emission probability is also needed and included. Accurate positions, radiative and nonradiative lifetimes of states belonging to the adiabatic A and C states of the KH molecule are estimated. The results come from a Fermi's Golden Rule treatment in coupling calculation. That confirms the accuracy reached in both approaches and also in the treatment of the diabatic-adiabatic transformation. It involves, in particular, an effective phase choice that is needed to properly estimate nonadiabatic couplings.

  7. Competing magnetic ground states and their coupling to the crystal lattice in CuFe2Ge2

    NASA Astrophysics Data System (ADS)

    May, Andrew F.; Calder, Stuart; Parker, David S.; Sales, Brian C.; McGuire, Michael A.

    2016-10-01

    Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe2Ge2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. Temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K. Powder neutron diffraction confirms antiferromagnetic ordering below TN ≈ 175 K, and an incommensurate spin density wave is observed below ≈125 K. Coupled with the small refined moments (0.5–1 μB/Fe), this provides a picture of itinerant magnetism in CuFe2Ge2. The neutron diffraction data also reveal a coexistence of two magnetic phases that further highlights the near-degeneracy of various magnetic states. These results demonstrate that the ground state in CuFe2Ge2 can be easily manipulated by external forces, making it of particular interest for doping, pressure, and further theoretical studies.

  8. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states.

    PubMed

    Lee, Wai Shing; Ott, Edward; Antonsen, Thomas M

    2013-09-01

    This paper addresses the behavior of large systems of heterogeneous, globally coupled oscillators each of which is described by the generic Landau-Stuart equation, which incorporates both phase and amplitude dynamics of individual oscillators. One goal of our paper is to investigate the effect of a spread in the amplitude growth parameter of the oscillators and of the effect of a homogeneous nonlinear frequency shift. Both of these effects are of potential relevance to recently reported experiments. Our second goal is to gain further understanding of the macroscopic system dynamics at large coupling strength, and its dependence on the nonlinear frequency shift parameter. It is proven that at large coupling strength, if the nonlinear frequency shift parameter is below a certain value, then there is a unique attractor for which the oscillators all clump at a single amplitude and uniformly rotating phase (we call this a single-cluster "locked state"). Using a combination of analytical and numerical methods, we show that at higher values of the nonlinear frequency shift parameter, the single-cluster locked state attractor continues to exist, but other types of coexisting attractors emerge. These include two-cluster locked states, periodic orbits, chaotic orbits, and quasiperiodic orbits.

  9. Competing magnetic ground states and their coupling to the crystal lattice in CuFe2Ge2

    PubMed Central

    May, Andrew F.; Calder, Stuart; Parker, David S.; Sales, Brian C.; McGuire, Michael A.

    2016-01-01

    Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe2Ge2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. Temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K. Powder neutron diffraction confirms antiferromagnetic ordering below TN ≈ 175 K, and an incommensurate spin density wave is observed below ≈125 K. Coupled with the small refined moments (0.5–1 μB/Fe), this provides a picture of itinerant magnetism in CuFe2Ge2. The neutron diffraction data also reveal a coexistence of two magnetic phases that further highlights the near-degeneracy of various magnetic states. These results demonstrate that the ground state in CuFe2Ge2 can be easily manipulated by external forces, making it of particular interest for doping, pressure, and further theoretical studies. PMID:27739477

  10. Competing magnetic ground states and their coupling to the crystal lattice in CuFe2Ge2

    DOE PAGES

    May, Andrew F.; Calder, Stuart; Parker, David S.; Sales, Brian C.; McGuire, Michael A.

    2016-10-14

    Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe2Ge2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. The temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K. Powder neutron diffraction confirms antiferromagnetic ordering below TN ≈ 175 K, and an incommensurate spin density wavemore » is observed below ≈125 K. Coupled with the small refined moments (0.5–1 μB/Fe), this provides a picture of itinerant magnetism in CuFe2Ge2. Furthermore, the neutron diffraction data reveal a coexistence of two magnetic phases that further highlights the near-degeneracy of various magnetic states. Our results demonstrate that the ground state in CuFe2Ge2 can be easily manipulated by external forces, making it of particular interest for doping, pressure, and further theoretical studies.« less

  11. Matrix elements in the coupled-cluster approach - With application to low-lying states in Li

    NASA Technical Reports Server (NTRS)

    Martensson-Pendrill, Ann-Marie; Ynnerman, Anders

    1990-01-01

    A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.

  12. Nonadiabatic couplings in low-energy collisions of hydrogen ground-state atoms

    SciTech Connect

    Wolniewicz, L.

    2003-10-01

    The effect of nonadiabatic couplings on low-energy s-wave scattering of two hydrogen atoms is investigated. Coupling matrix elements are computed in a wide range of internuclear distances. The resulting scattering equations are numerically unstable and therefore are integrated only approximately. Computations are performed for H, D, and T atoms. The phase shifts in the zero velocity limit are inversely proportional to the nuclear reduced mass {delta}{sub 0}{approx_equal}0.392/{mu}. This leads to infinite scattering lengths.

  13. Insulating state to quantum Hall-like state transition in a spin-orbit-coupled two-dimensional electron system

    SciTech Connect

    Lo, Shun-Tsung; Hsu, Chang-Shun; Lin, Y. M.; Lin, S.-D.; Lee, C. P.; Ho, Sheng-Han; Chuang, Chiashain; Wang, Yi-Ting; Liang, C.-T.

    2014-07-07

    We study interference and interactions in an InAs/InAsSb two-dimensional electron system. In such a system, spin-orbit interactions are shown to be strong, which result in weak antilocalization (WAL) and thereby positive magnetoresistance around zero magnetic field. After suppressing WAL by the magnetic field, we demonstrate that classical positive magnetoresistance due to spin-orbit coupling plays a role. With further increasing the magnetic field, the system undergoes a direct insulator-quantum Hall transition. By analyzing the magnetotransport behavior in different field regions, we show that both electron-electron interactions and spin-related effects are essential in understanding the observed direct transition.

  14. Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs

    NASA Astrophysics Data System (ADS)

    Turchette, Q. A.; Myatt, C. J.; King, B. E.; Sackett, C. A.; Kielpinski, D.; Itano, W. M.; Monroe, C.; Wineland, D. J.

    2000-11-01

    We present results from an experimental study of the decoherence and decay of quantum states of a trapped atomic ion's harmonic motion interacting with several types of engineered reservoirs. We experimentally simulate three types of reservoirs: a high-temperature amplitude reservoir, a zero-temperature amplitude reservoir, and a high-temperature phase reservoir. Interaction with these environments causes the ion's motional state to decay or heat, and in the case of superposition states, to lose coherence. We report measurements of the decoherence of superpositions of coherent states and two-Fock-state superpositions into these reservoirs, as well as the decay and heating of Fock states. We confirm the theoretically well-known scaling laws that predict that the decoherence rate of superposition states scales with the square of the ``size'' of the state.

  15. Sustained anxiety increases amygdala–dorsomedial prefrontal coupling: a mechanism for maintaining an anxious state in healthy adults

    PubMed Central

    Vytal, Katherine E.; Overstreet, Cassie; Charney, Danielle R.; Robinson, Oliver J.; Grillon, Christian

    2014-01-01

    Background Neuroimaging research has traditionally explored fear and anxiety in response to discrete threat cues (e.g., during fear conditioning). However, anxiety is a sustained aversive state that can persist in the absence of discrete threats. Little is known about mechanisms that maintain anxiety states over a prolonged period. Here, we used a robust translational paradigm (threat of shock) to induce sustained anxiety. Recent translational work has implicated an amygdala–prefrontal cortex (PFC) circuit in the maintenance of anxiety in rodents. To explore the functional homologues of this circuitry in humans, we used a novel paradigm to examine the impact of sustained anticipatory anxiety on amygdala–PFC intrinsic connectivity. Methods Task-independent fMRI data were collected in healthy participants during long-duration periods of shock anticipation and safety. We examined intrinsic functional connectivity. Results Our study involved 20 healthy participants. During sustained anxiety, amygdala activity was positively coupled with dorsomedial PFC (DMPFC) activity. High trait anxiety was associated with increased amygdala–DMPFC coupling. In addition, induced anxiety was associated with positive coupling between regions involved in defensive responding, and decreased coupling between regions involved in emotional control and the default mode network. Limitations Inferences regarding anxious pathology should be made with caution because this study was conducted in healthy participants. Conclusion Findings suggest that anticipatory anxiety increases intrinsic amygdala–DMPFC coupling and that the DMPFC may serve as a functional homologue for the rodent prefrontal regions by sustaining anxiety. Future research may use this defensive neural context to identify bio-markers of risk for anxious pathology and target these circuits for therapeutic intervention. PMID:24886788

  16. Multi-GPU unsteady 2D flow simulation coupled with a state-to-state chemical kinetics

    NASA Astrophysics Data System (ADS)

    Tuttafesta, Michele; Pascazio, Giuseppe; Colonna, Gianpiero

    2016-10-01

    In this work we are presenting a GPU version of a CFD code for high enthalpy reacting flow, using the state-to-state approach. In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma and state-to-state kinetics is the most accurate approach used for this kind of problems. This model consists in writing a continuity equation for the population of each vibrational level of the molecules in the mixture, determining at the same time the species densities and the distribution of the population in internal levels. An explicit scheme is employed here to integrate the governing equations, so as to exploit the GPU structure and obtain an efficient algorithm. The best performances are obtained for reacting flows in state-to-state approach, reaching speedups of the order of 100, thanks to the use of an operator splitting scheme for the kinetics equations.

  17. Depression among Couples in the United States in the Context of Intimate Partner Violence

    ERIC Educational Resources Information Center

    Vaeth, Patrice A. C.; Ramisetty-Mikler, Suhasini; Caetano, Raul

    2010-01-01

    This paper examines the relationship between intimate partner violence and depression. A multicluster random household sample of U.S. couples was interviewed as part of a five-year national longitudinal study (response rate = 72%). Depression was assessed with the CES-D. The multivariate analyses for men showed that the odds of depression did not…

  18. Channel-Coupling Contribution to the Widths of Decay Nuclear States and to Their Wave Functions

    SciTech Connect

    Kadmensky, S.G.

    2004-12-01

    By using the formalism of the quantum theory of fission, the amplitudes of partial decay widths and the asymptotic behavior of the wave function for a decaying nucleus are found with allowance for open-decay-channel coupling not only for fission, but also for the binary decays of nuclei through protonic, alpha-particle, cluster, and other channels.

  19. Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel

    2016-04-01

    The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose

  20. Classical strongly coupled quark-gluon plasma. II. Screening and equation of state

    SciTech Connect

    Gelman, Boris A.; Shuryak, Edward V.; Zahed, Ismail

    2006-10-15

    We analyze the screening and bulk energy of a classical and strongly interacting plasma of color charges, a model we recently introduced for the description of a quark-gluon plasma at T=(1-3)T{sub c}. The partition function is organized around the Debye-Hueckel limit. The linear Debye-Hueckel limit is corrected by a virial expansion. For the pressure, the expansion is badly convergent even in the dilute limit. The nonlinear Debye-Hueckel theory is studied numerically as an alternative for moderately strong plasmas. We use the Debye theory of solid to extend the analysis to the crystal phase at very strong coupling. The analytical results for the bulk energy per particle compare well with the numerical results from molecular dynamics simulations for all couplings.

  1. Exchange Coupling Nanophase Fe-Pd Ferromagnets Through Solid State Transformation

    SciTech Connect

    Shugart, Kathleen N.; Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Soffa, William A

    2011-01-01

    This study continues previous work on off stoichiometric Fe-Pd alloys using a combined reaction strategy during thermomechanical processing [1,2]. Severe plastic deformation of the initial disordered fcc gamma phase ( ), followed by heat treatment in the two phase field produces a nano-composite ferromagnet comprised of soft alpha-Fe/ferrite in a high-anisotropy L10 FePd matrix. The length scale and morphology of the transformation products have been characterized using x-ray diffraction, and scanning and transmission electron microscopy. The transformed microstructures exhibit strong texture retention similar to the stoichiometric alloy suggesting a massive ordering mode. The alloy has shown a proclivity to exchange couple at a length scale not in agreement with proposed theories of exchange coupling [3,4]. The magnetic properties were measured using standard vibrating sample magnetometry (VSM). This research has been supported by the National Science Foundation (NSF-DMR).

  2. Topological edge states in correlated honeycomb materials with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Catuneanu, Andrei; Kim, Heung-Sik; Can, Oguzhan; Kee, Hae-Young

    2016-09-01

    We study the topological nature of single layers of correlated honeycomb materials α -RuCl3 and A2IrO3 (A =Li,Na) with strong spin-orbit coupling. An effective tight-binding model based on first principles band structure calculations including Hubbard and spin-orbit coupling is derived. Two pairs of propagating edge modes centered at the zone center and zone boundary are found when their one-dimensional boundary forms a zigzag shape, while the bulk has a gap with trivial time-reversal Z2 invariants. The effects of strong electronic interactions and doping on the edge modes in these Mott insulators are discussed. We further suggest a heterostructure of α -RuCl3/IrCl3 to search for the proposed topological Mott phase.

  3. Description of nuclear octupole and quadrupole deformation close to axial symmetry: Critical-point behavior of {sup 224}Ra and {sup 224}Th

    SciTech Connect

    Bizzeti, P. G.; Bizzeti-Sona, A. M.

    2008-02-15

    The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to axial symmetry, is applied to situations of shape phase transitions where the quadrupole amplitude can reach zero. The transitional nuclei {sup 224,226}Ra and {sup 224}Th are discussed in the frame of this model. Their level schemes can be reasonably accounted for by assuming a square-well potential in two dimensions. Electromagnetic transition amplitudes are also evaluated and compared with existing experimental data.

  4. Advancements in the Coupling of State-of-the-Art Energetic Particle and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Gorby, M.

    2015-12-01

    Recent advancements in coupling the Earth Moon Mars Radiation Environment Module (EMMREM) and two MHD models, Magnetohydrodynamics Around a Sphere (MAS) and ENLIL, have yielded promising results for predicting differential energy flux and radiation doses at 1AU. The EMMREM+MAS coupling focuses on the details of particle acceleration due to CMEs initiated low in the corona (1Rs - 20Rs). The EMMREM+ENLIL coupling gives results for CMEs initiated at ~20Rs and is part of a predictive capability being developed in conjunction with the CCMC. The challenge in forming large solar energetic particle events in both the prompt scenario lower down or for a gradual CME further out is to have enhanced scattering within the acceleration regions while also allowing for efficient escape of accelerated particles downstream. We present here details of the MHD parameters and topology of a CME around the acceleration regions in the early evolution (below 2Rs), dose and flux predictions at 1AU, and how compression regions vs. shocks affect the evolution and spectrum of an SEP event.

  5. Semianalytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity-waveguide structures.

    PubMed

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper; Gregersen, Niels

    2015-12-15

    We present and validate a semianalytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained, and for two types of two-dimensional PhCs, with one and two cavities side-coupled to an extended waveguide, the theory is validated against numerically exact computations. For the single cavity, a slightly asymmetric spectrum is found, which the QNM theory reproduces, and for two cavities, a nontrivial spectrum with a peak and a dip is found, which is reproduced only when including both the two relevant QNMs in the theory. In both cases, we find relative errors below 1% in the bandwidth of interest.

  6. Evidence for two coupled subsystems in the superconducting state of La2-xSrxCuO4

    NASA Astrophysics Data System (ADS)

    Rast, S.; Schneider, M. L.; Onellion, M.; Zeng, X. H.; Si, Weidong; Xi, X. X.; Abrecht, M.; Ariosa, D.; Pavuna, D.; Ren, Y. H.; Lüpke, G.; Perakis, I.

    2001-12-01

    We used a pump-probe technique to measure the transient change of optical reflectivity of both La2-xSrxCuO4, of various dopings, and slightly underdoped YBa2Cu3O7-x and NdBa2Cu3O7-x thin films. For the La2-xSrxCuO4 films, our data demonstrate the coexistence, in the superconducting state, of two coupled subsystems with different relaxation times and different contributions to the optical reflectivity. One subsystem is associated with the superconducting phase. By contrast, the data from YBa2Cu3O7-x and NdBa2Cu3O7-x shows that the coupling between the two subsystems is weak or absent.

  7. IPAP-HSQMBC: measurement of long-range heteronuclear coupling constants from spin-state selective multiplets.

    PubMed

    Gil, Sergi; Espinosa, Juan Félix; Parella, Teodor

    2010-12-01

    A new NMR approach is proposed for the measurement of long-range heteronuclear coupling constants ((n)J(XH), n>1) in natural abundance molecules. Two complementary in-phase (IP) and anti-phase (AP) data are separately recorded from a modified HSQMBC experiment and then added/subtracted to provide spin-state-selective α/β-HSQMBC spectra. The magnitude of (n)J(XH) can be directly determined by simple analysis of the relative displacement between α- and β-cross-peaks. The robustness of this IPAP-HSQMBC experiment is evaluated experimentally and by simulation using a variety of different conditions. Important aspects such as signal intensity dependence and presence of unwanted cross-talk effects are discussed and examples on the measurement of small proton-carbon ((n)J(CH)) and proton-nitrogen ((n)J(NH)) coupling constants are provided. PMID:20952232

  8. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.

    PubMed

    Ugur, O; Onaran, H O

    1997-05-01

    We used a simple experimental approach to clarify some contradictory predictions of the collision coupling and equilibrium models (e.g. ternary complex, two-state ternary complex or quinternary complex), which describe G-protein-mediated beta-adrenergic receptor signalling in essentially different manners. Analysis of the steady-state coupling of beta-adrenoceptors to adenylate cyclase in turkey erythrocyte membranes showed that: (1) in the absence of an agonist, Gpp(NH)p (a hydrolysis-resistant analogue of GTP) can activate adenylate cyclase very slowly; (2) this activity reaches a steady state in approx. 5 h, the extent of activity depending on the concentration of the nucleotide; (3) isoprenaline-activated steady-state adenylate cyclase can be inactivated by propranolol (a competitive antagonist that relaxes the receptor activation), in the presence of Gpp(NH)p (which provides a virtual absence of GTPase) and millimolar concentrations of Mg2+ (the rate of this inactivation is relatively fast); (4) increasing the concentration of Gpp(NH)p can saturate the steady-state activity of adenylate cyclase. The saturated enzyme activity was lower than that induced by isoprenaline under the same conditions. This additional agonist-induced activation was reversible. In the light of these results, we conclude that agonist can also activate the guanine nucleotide-saturated system in the absence of GTPase by a mechanism other than guanine nucleotide exchange. We explain these phenomena in the framework of a quinternary complex model as an agonist-induced and receptor-mediated dissociation of guanine nucleotide-saturated residual heterotrimer, the equilibrium concentration of which is not necessarily zero. These results, which suggest a continuous interaction between receptor and G-protein, can hardly be accommodated by the collision coupling model that was originally suggested for the present experimental system and then applied to many other G-protein systems. Therefore we

  9. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.

    PubMed Central

    Ugur, O; Onaran, H O

    1997-01-01

    We used a simple experimental approach to clarify some contradictory predictions of the collision coupling and equilibrium models (e.g. ternary complex, two-state ternary complex or quinternary complex), which describe G-protein-mediated beta-adrenergic receptor signalling in essentially different manners. Analysis of the steady-state coupling of beta-adrenoceptors to adenylate cyclase in turkey erythrocyte membranes showed that: (1) in the absence of an agonist, Gpp(NH)p (a hydrolysis-resistant analogue of GTP) can activate adenylate cyclase very slowly; (2) this activity reaches a steady state in approx. 5 h, the extent of activity depending on the concentration of the nucleotide; (3) isoprenaline-activated steady-state adenylate cyclase can be inactivated by propranolol (a competitive antagonist that relaxes the receptor activation), in the presence of Gpp(NH)p (which provides a virtual absence of GTPase) and millimolar concentrations of Mg2+ (the rate of this inactivation is relatively fast); (4) increasing the concentration of Gpp(NH)p can saturate the steady-state activity of adenylate cyclase. The saturated enzyme activity was lower than that induced by isoprenaline under the same conditions. This additional agonist-induced activation was reversible. In the light of these results, we conclude that agonist can also activate the guanine nucleotide-saturated system in the absence of GTPase by a mechanism other than guanine nucleotide exchange. We explain these phenomena in the framework of a quinternary complex model as an agonist-induced and receptor-mediated dissociation of guanine nucleotide-saturated residual heterotrimer, the equilibrium concentration of which is not necessarily zero. These results, which suggest a continuous interaction between receptor and G-protein, can hardly be accommodated by the collision coupling model that was originally suggested for the present experimental system and then applied to many other G-protein systems. Therefore we

  10. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: Divergences and resolution

    SciTech Connect

    Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng

    2014-11-21

    We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.

  11. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: divergences and resolution.

    PubMed

    Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng

    2014-11-21

    We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process. PMID:25416868

  12. Vibrationally Coherent Crossing and Coupling of Electronic States during Internal Conversion in β-Carotene

    NASA Astrophysics Data System (ADS)

    Liebel, M.; Schnedermann, C.; Kukura, P.

    2014-05-01

    Coupling of nuclear and electronic degrees of freedom mediates energy flow in molecules after optical excitation. The associated coherent dynamics in polyatomic systems, however, remain experimentally unexplored. Here, we combined transient absorption spectroscopy with electronic population control to reveal nuclear wave packet dynamics during the S2→S1 internal conversion in β-carotene. We show that passage through a conical intersection is vibrationally coherent and thereby provides direct feedback on the role of different vibrational coordinates in the breakdown of the Born-Oppenheimer approximation.

  13. Charge Order in LuFe2O4: Antiferroelectric Ground State and Coupling to Magnetism

    SciTech Connect

    Angst, Manuel; Hermann, Raphael P.; Christianson, Andrew D; Lumsden, Mark D; Lee, C; Whangbo, M.-H.; Kim, J.-W.; Ryan, P J; Nagler, Stephen E; Tian, Wei; Jin, Rongying; Sales, Brian C; Mandrus, David

    2008-11-01

    X-ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to 1 3 1 3 3 2 . The corresponding charge configuration, also found by electronic structure calculations as most stable, contains polar Fe=O double layers with antiferroelectric stacking. Diffuse scattering at 360 K, with 1 3 1 3 0 propagation, indicates ferroelectric short-range correlations between neighboring double layers. The temperature dependence of the incommensuration indicates that charge order and magnetism are coupled.

  14. Relation of the entanglement entropy and uncertainty product in ground states of coupled anharmonic oscillators

    SciTech Connect

    Chung, N. N.; Er, C. H.; Teo, Y. S.; Chew, L. Y.

    2010-07-15

    We explore quantitatively the fundamental connection between the entropy and local uncertainty product as an entanglement measure within the lowest energy eigenstate of a class of two-coupled anharmonic oscillator systems. We find that these two quantum aspects approach a unique relation as the entanglement between the oscillators becomes large if the potential of the first collective mode displays a generic single-well potential structure. This implies that the uncertainty product can be a good choice for the characterization of entanglement when the entropy is sufficiently large. Interestingly, although this relation is robust against the anharmonic perturbation, we find that it can be altered effectively by a quantum catastrophe.

  15. Solid-state electron transport via cytochrome c depends on electronic coupling to electrodes and across the protein

    PubMed Central

    Amdursky, Nadav; Ferber, Doron; Bortolotti, Carlo Augusto; Dolgikh, Dmitry A.; Chertkova, Rita V.; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2014-01-01

    Electronic coupling to electrodes, Γ, as well as that across the examined molecules, H, is critical for solid-state electron transport (ETp) across proteins. Assessing the importance of each of these couplings helps to understand the mechanism of electron flow across molecules. We provide here experimental evidence for the importance of both couplings for solid-state ETp across the electron-mediating protein cytochrome c (CytC), measured in a monolayer configuration. Currents via CytC are temperature-independent between 30 and ∼130 K, consistent with tunneling by superexchange, and thermally activated at higher temperatures, ascribed to steady-state hopping. Covalent protein–electrode binding significantly increases Γ, as currents across CytC mutants, bound covalently to the electrode via a cysteine thiolate, are higher than those through electrostatically adsorbed CytC. Covalent binding also reduces the thermal activation energy, Ea, of the ETp by more than a factor of two. The importance of H was examined by using a series of seven CytC mutants with cysteine residues at different surface positions, yielding distinct electrode–protein(–heme) orientations and separation distances. We find that, in general, mutants with electrode-proximal heme have lower Ea values (from high-temperature data) and higher conductance at low temperatures (in the temperature-independent regime) than those with a distal heme. We conclude that ETp across these mutants depends on the distance between the heme group and the top or bottom electrode, rather than on the total separation distance between electrodes (protein width). PMID:24706771

  16. Local measurement of the Eliashberg function of Pb islands: enhancement of electron-phonon coupling by quantum well states.

    PubMed

    Schackert, Michael; Märkl, Tobias; Jandke, Jasmin; Hölzer, Martin; Ostanin, Sergey; Gross, Eberhard K U; Ernst, Arthur; Wulfhekel, Wulf

    2015-01-30

    Inelastic tunneling spectroscopy of Pb islands on Cu(111) obtained by scanning tunneling microscopy below 1 K provides a direct access to the local Eliashberg function of the islands with high energy resolution. The Eliashberg function describes the electron-phonon interaction causing conventional superconductivity. The measured Eliashberg function strongly depends on the local thickness of the Pb nanostructures and shows a sharp maximum when quantum well states of the Pb islands come close to the Fermi energy. Ab initio calculations reveal that this is related to enhanced electron-phonon coupling at these thicknesses. PMID:25679904

  17. Neutron-Diffraction Evidence for the Ferrimagnetic Ground State of a Molecule-Based Magnet with Weakly Coupled Sublattices

    SciTech Connect

    Fishman, Randy Scott; Campo, Javier; Vos, Thomas E.; Miller, Joel S.

    2012-01-01

    The diruthenium compound [Ru2(O2CMe)4]3[Cr(CN)6] contains two weakly coupled, ferrimag- netically ordered sublattices occupying the same volume. The magnetic field Hc 800 Oe required to align the two sublattice moments is proportional to the antiferromagnetic dipolar interaction Kc B Hc 5 10 3 meV between sublattices. Powder neutron-diffraction measurements on a deuterated sample reveal that the sublattice moments are restricted by the anisotropy of the diruthenium paddle-wheel complexes to the cubic diagonals. Those measurements also suggest that the quantum corrections to the ground state are significant.

  18. Coherent States for the Two-Dimensional Dirac-Moshinsky Oscillator Coupled to an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.

    2015-03-01

    We show that the (2+1)-dimensional Dirac-Moshinsky oscillator coupled to an external magnetic field can be treated algebraically with the SU(1,1) group theory and its group basis. We use the su(1,1) irreducible representation theory to find the energy spectrum and the eigenfunctions. Also, with the su(1,1) group basis we construct the relativistic coherent states in a closed form for this problem. Supported by SNI-México, COFAA-IPN, EDI-IPN, EDD-IPN, SIP-IPN project number 20140598

  19. Surface binding of polymer coated nanoparticles: Coupling of physical interactions, molecular organization, and chemical state

    NASA Astrophysics Data System (ADS)

    Nap, Rikkert; Szleifer, Igal

    2014-03-01

    A key challenge in nanomedicine is to design carrier system for drug delivery that selectively binds to target cells without binding to healthy cells. A common strategy is to end-functionalize the polymers coating of the delivery device with specific ligands that bind strongly to overexpressed receptors. Such devices are usually unable to discriminate between receptors found on benign and malignant cells. We demonstrate, theoretically, how one can achieve selective binding to target cells by using multiple physical and chemical interactions. We study the effective interactions between a polymer decorated nanosized micelle or solid nanoparticle with model lipid layers. The polymer coating contains a mixture of two polymers, one neutral for protection and the other a polybase with a functional end-group to optimize specific binding and electrostatic interactions with the charged lipid head-groups found on the lipid surface. The strength of the binding for the combined system is much larger than the sum of the independent electrostatic or specific ligand-receptor binding. The search for optimal binding conditions lead to the finding of a non-additive coupling that exists in systems where chemical equilibrium, molecular organization, and physical interactions are coupled together.

  20. Characterization of the excited states of DNA building blocks: a coupled cluster computational study.

    PubMed

    Benda, Zsuzsanna; Szalay, Péter G

    2016-09-14

    DNA building blocks consisting of up to four nucleobases are investigated using the EOM-CCSD and CC2-LR methods in two B-DNA-like arrangements of a poly-adenine:poly-thymine (poly-A:poly-T) system. Excitation energies and oscillator strengths are presented and the characteristics of the excited states are discussed. Excited states of single-stranded poly-A systems are highly delocalized, especially the spectroscopically bright states, where delocalization over up to four fragments can be observed. In the case of poly-T systems, the states are somewhat less delocalized, extending to maximally about three fragments. A single A:T Watson-Crick pair has highly localized states, while delocalization over base pairs can be observed for some excited states of the (A)2:(T)2 system, but intrastrand delocalization is more pronounced in this case, as well. As for the characteristics of the simulated UV absorption spectra, a significant decrease of intensity can be observed in the case of single strands with increasing chain length; this is due to the stacking interactions and is in accordance with previous results. On the other hand, the breaking of H-bonds between the two strands does not alter the spectral intensity considerably, it only causes a redshift of the absorption band, thus it is unable to explain the experimentally observed DNA hyperchromism on its own, and stacking interactions need to be considered for the description of this effect as well. PMID:27506397

  1. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    SciTech Connect

    Nayak, R. K.; Das, S.; Panda, A. K.; Sahu, T.

    2015-11-15

    We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/Al{sub x}Ga{sub 1-x}As barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.

  2. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    NASA Astrophysics Data System (ADS)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  3. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    SciTech Connect

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-15

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  4. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  5. Depression among couples in the United States in the context of intimate partner violence

    PubMed Central

    Vaeth, Patrice A. C.; Ramisetty-Mikler, Suhasini; Caetano, Raul

    2010-01-01

    This paper examines the relationship between intimate partner violence (psychological/physical/sexual aggression) (IPV) and depression. A multi-cluster random household sample of U.S. couples was interviewed in 2000 as part of a five-year national longitudinal study (response rate, 72%). Couples were of White (n = 406), Black (n = 232), Hispanic (n = 387), and mixed (n = 111) ethnicity. Depression was assessed with the CES-D. The multivariate analyses for men showed that the odds of depression did not vary significantly by type of male-to-female (MF) or female-to-male (FM) aggression. Men who engaged in infrequent binge drinking, compared to those who never binged, were less likely to be depressed (OR= 0.30, 95% CI= 0.10–0.94), as were men with greater collective efficacy (OR = 47, 95% CI = 0.28–0.78). For women, the multivariate analysis, showed that FM aggression (physical, and minor and severe psychological) was associated with a greater likelihood of depression (OR = 2.18, 95% CI = 1.04–4.59; OR = 4.57, 95% CI = 1.25–16.62; and OR = 4.33, 95% CI = 1.67–14.81). Exposure to parental violence was also associated with depression (OR = 2.87, 95% CI = 1.22–6.76). Medical providers should be aware that both psychological and physical aggression is associated with depression in women and that depression can result even if women are the perpetrators rather than the victims of violence. Providers should be attentive and prepared to screen, refer, or treat depression among women involved in violent relationships. Providers should be attentive and prepared to screen, refer or treat depression among women involved in violent relationships. PMID:19520969

  6. Contribution of Land-atmosphere Coupling to Summer Climate Variability over the Contiguous United States

    SciTech Connect

    Zhang, Jingyong; Wang, Wei-Chyung; Leung, Lai R.

    2008-11-27

    The Weather Research and Forecasting (WRF) model has been used to study the role of land-atmosphere coupling in influencing interannual summer climate variability over the contiguous U.S. Two long-term climate simulations are performed: A control experiment (CTL) allows soil moisture to interact freely with the atmosphere, and an additional experiment uncouples the land surface from the atmosphere by replacing soil moisture at each time step with the climatology of CTL. The CTL simulation reproduces well the observed temperature and precipitation variability, despite some discrepancies in daily mean and maximum temperature variability in the Midwest/Ohio Valley region and the adjacent areas, and precipitation variability in the Great Plains and some other areas. Strong coupling of soil moisture with daily mean temperature appears mainly over the transitional zone between cold and warm climates from the Southwest to the northern Great Plains to the Southeast, contributing up to about 30%-60% of the total interannual variance of temperature. There is a significantly different influence on daily maximum and minimum temperatures. Whereas soil moisture plays a leading role in explaining the variability of maximum temperature over the transitional zone, minimum temperature variability is highly constrained by external factors including atmospheric circulation and sea surface temperature almost everywhere over land. Soil moisture, mainly through its effects on convection, makes a dominant contribution to precipitation variability over about half of the northern U.S. The model’s behavior agrees generally well with land-atmosphere relationships diagnosed using available observations and soil moisture data from the Global Land Data Assimilation System.

  7. Investigating Uranium Concentrations in Groundwaters in the State of Idaho Using Kinetic Phosphorescence Analysis and Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Tkavadze, Levan; Dunker, Roy E; Brey, Richard R; Dudgeon, John

    2016-11-01

    The determination of uranium concentrations in natural water samples is of great interest due to the environmental consequences of this radionuclide. In this study, 380 groundwater samples from various locations within the state of Idaho were analyzed using two different techniques. The first method was Kinetic Phosphorescence Analysis (KPA), which gives the total uranium concentrations in water samples. The second analysis method was inductively coupled plasma mass spectrometry (ICP- MS). This method determines the total uranium concentration as well as the separate isotope concentrations of uranium. The U/U isotopic ratio was also measured for each sample to confirm that there was no depleted or enriched uranium present. The results were compared and mapped separately from each other. The study also found that in some areas of the state, natural uranium concentrations are relatively high. PMID:27682901

  8. Spin-triplet paired state induced by Hund's rule coupling and correlations: a fully statistically consistent Gutzwiller approach.

    PubMed

    Spałek, J; Zegrodnik, M

    2013-10-30

    The intrasite and intersite spin-triplet pairing gaps induced by interband Hund's rule coupling and their correlations are analyzed in the doubly degenerate Hubbard Hamiltonian. To include the effect of correlations, the statistically consistent Gutzwiller approximation is used. In this approach the consistency means that the averages calculated from the self-consistent equations and those determined variationally coincide with each other. Emphasis is put on the solution for which the average particle number is conserved when carrying out the Gutzwiller projection. This method leads to a stable equal-spin paired state in the so-called repulsive interactions limit (U > 3J) in the regime of moderate correlations. The interband hybridization introduces an inequivalence of the bands which, above a critical magnitude, suppresses the paired state due to both the Fermi-wavevector mismatch for the Cooper pair and the interband hopping allowed by the Pauli principle.

  9. Investigation of the ground state of the anisotropic extended Hubbard chain at weak coupling

    NASA Astrophysics Data System (ADS)

    Ding, Hanqin; Zhang, Jun

    2016-09-01

    We study a one-dimensional anisotropic extended Hubbard model, where the inter-site density (V) and exchange (J) interactions are spin-dependent. Use of bosonization and renormalization helps investigate phase diagram. At half filling, the ground state characterizes insulating phases. The spin-dependent repulsion leads to a bond-spin-density-wave (BSDW) phase. The antiferromagnetic exchange enhances the bond-order-wave (BOW) phase while weakens the charge-density-wave (CDW) phase. When J > 4 V, the BSDW and CDW phases disappear. Away from half filling, the ground state exhibits superconducting behavior. The anisotropic interactions have an important effect on the phase structures.

  10. Vibrationally Averaged Long-Range Molecule-Molecule Dispersion Coefficients from Coupled-Cluster Calculations

    NASA Astrophysics Data System (ADS)

    Schmidt, Matthew; Nooijen, Marcel

    2011-06-01

    Recent years have seen increasing interest in the structure and dynamics of molecular clusters formed when a chromophore molecule such as CO_2, OCS or N_2O is solvated by number of He atoms and/or para-H_2 molecules. A key experimental probe of their behaviour is the shift of a chromophore's vibrational transition frequency which occurs when the solvent species are attached to it. Such shifts are driven by the changes in the solvent-chromophore interaction potential upon vibrational excitation of the probe molecule. While `conventional' supermolecule calculations can often provide realistic predictions of such changes in the potential well and repulsive wall region, they become increasingly unreliable for describing the weak interactions at long range where most of the solvent species in a large cluster are located. It is therefore important to have accurate relative-orientation and monomer-stretching dependent long-range C_6, C_8 and C10 dispersion coefficients to incorporate into the models for the interaction potential and for its dependence on the chromophore's vibrational state. This paper describes how those coefficients can be obtained from calculated monomer dipole, quadrupole, and octupole polarizabilities for imaginary frequencies, and by making use of the Casimir-Polder relation and angular momentum coupling to extract orientation-dependent quantities. The calculations are performed using a modified version of the ACES2 program system which allows the calculation of dipole, quadrupole and octupole polarizabilities at the EOM-CCSD level, and of static multipole moments using CCSD(T) calculations and adequate basis sets. For each relevant level of the chromophore, vibrational averaging is performed by calculating the imaginary frequency polarizabilities at judiciously chosen geometries and performing a numerical integration using the free-molecule vibrational wavefunction. Subsequent work will involve merging this long-range part of the potential with a

  11. Multipole (E1, M1, E2, M2, E3, M3) transition wavelengths and rates between 3l-15l' excited and ground states in nickel-like ions

    SciTech Connect

    Safronova, U I; Safronova, A S; Beiersdorfer, P

    2006-05-04

    A relativistic many-body method is developed to calculate energy and transition rates for multipole transitions in many-electron ions. This method is based on relativistic many-body perturbation theory (RMBPT), agrees with MCDF calculations in lowest-order, includes all second-order correlation corrections and includes corrections from negative energy states. Reduced matrix elements, oscillator strengths, and transition rates are calculated for electric-multipole (dipole (E1), quadrupole (E2), and octupole (E3)) and magnetic-multipole (dipole (M1), quadrupole (M2), and octupole (M3)) transitions between 3l{sup -1}5l{prime} excited and ground states in Ni-like ions with nuclear charges ranging from Z = 30 to 100. The calculations start from a 1s{sup 2}s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10} Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the matrix elements. A detailed discussion of the various contributions to the dipole matrix elements and energy levels is given for nickel-like tungsten (Z = 74). The contributions from negative-energy states are included in the second order E1, M1, E2, M2, E3 and M3 matrix elements. The resulting transition energies and transition rates are compared with experimental values and with results from other recent calculations. These atomic data are important in modeling of M-shell radiation spectra of heavy ions generated in electron beam ion trap experiments and in M-shell diagnostics of plasmas.

  12. Multipole (E1, M1, E2, M2, E3, M3) transition wavelengths and rates between 3l-15l' excited and ground states in nickel-like ions

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.

    2006-11-01

    A relativistic many-body method is used to calculate energy and transition rates for multipole transitions in many-electron ions. This method is based on relativistic many-body perturbation theory (RMBPT), agrees with MCDF calculations in lowest order, includes all second-order correlation corrections and includes corrections from negative energy states. Reduced matrix elements, oscillator strengths and transition rates are calculated for electric-multipole (dipole (E1), quadrupole (E2) and octupole (E3)) and magnetic-multipole (dipole (M1), quadrupole (M2) and octupole (M3)) transitions between 3l-15l' excited and ground states in Ni-like ions with nuclear charges ranging from Z = 30 to 100. The calculations start from a 1s22s22p63s23p63d10 Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the matrix elements. A detailed discussion of the various contributions to the dipole matrix elements and energy levels is given for nickel-like tungsten (Z = 74). The contributions from negative-energy states are included in the second-order E1, M1, E2 M2, E3 and M3 matrix elements. The resulting transition energies and transition rates are compared with experimental values and with results from other recent calculations. These atomic data are important in modelling of M-shell radiation spectra of heavy ions generated in electron beam ion trap experiments and in M-shell diagnostics of plasmas.

  13. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    PubMed

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  14. Ground-state phase diagram of the repulsive fermionic t -t' Hubbard model on the square lattice from weak coupling

    NASA Astrophysics Data System (ADS)

    Šimkovic, Fedor; Liu, Xuan-Wen; Deng, Youjin; Kozik, Evgeny

    2016-08-01

    We obtain a complete and numerically exact in the weak-coupling limit (U →0 ) ground-state phase diagram of the repulsive fermionic Hubbard model on the square lattice for filling factors 0 states with a high—higher than that of the fundamental mode of the corresponding irreducible representation—number of nodes. The effective coupling strength in the Cooper channel λ , which determines the critical temperature Tc of the superfluid transition, is calculated in the whole parameter space and regions with high values of λ are identified. It is shown that besides the expected increase of λ near the Van Hove singularity line, joining the ferromagnetic and antiferromagnetic points, another region with high values of λ can be found at quarter filling and t'=0.5 due to the presence of a line of nesting at t'≥0.5 . The results can serve as benchmarks for controlled nonperturbative methods and guide the ongoing search for high-Tc superconductivity in the Hubbard model.

  15. Formulation and implementation of a unitary group adapted state universal multi-reference coupled cluster (UGA-SUMRCC) theory: Excited and ionized state energies

    NASA Astrophysics Data System (ADS)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2012-08-01

    The traditional state universal multi-reference coupled cluster (SUMRCC) theory uses the Jeziorski-Monkhorst (JM) based Ansatz of the wave operator: Ω = ∑μΩμ|ϕμ⟩⟨ϕμ|, where Ωμ = exp (Tμ) is the cluster representation of the component of Ω inducing virtual excitations from the model function ϕμ. In the first formulations, ϕμs were chosen to be single determinants and Tμs were defined in terms of spinorbitals. This leads to spin-contamination for the non-singlet cases. In this paper, we propose and implement an explicitly spin-free realization of the SUMRCC theory. This method uses spin-free unitary generators in defining the cluster operators, {Tμ}, which even at singles-doubles truncation, generates non-commuting cluster operators. We propose the use of normal-ordered exponential parameterization for Ω:∑μ{exp (Tμ)}|ϕμ⟩⟨ϕμ|, where {} denotes the normal ordering with respect to a common closed shell vacuum which makes the "direct term" of the SUMRCC equations terminate at the quartic power. We choose our model functions {ϕμ} as unitary group adapted (UGA) Gel'fand states which is why we call our theory UGA-SUMRCC. In the spirit of the original SUMRCC, we choose exactly the right number of linearly independent cluster operators in {Tμ} such that no redundancies in the virtual functions lbrace χ _μ ^lrbrace are involved. Using example applications for electron detached/attached and h-p excited states relative to a closed shell ground state we discuss how to choose the most compact and non-redundant cluster operators. Although there exists a more elaborate spin-adapted JM-like ansatz of Datta and Mukherjee (known as combinatoric open-shell CC (COS-CC), its working equations are more complex. Results are compared with those from COS-CC, equation of motion coupled cluster methods, restricted open-shell Hartree-Fock coupled cluster, and full configuration interaction. We observe that our results are more accurate with respect to

  16. Analysis of the Rotational Structure of ˜{B}^2A' ← ˜{X}^2A' Transition of Isopropoxy Radical: Isolated State vs. Coupled States Model

    NASA Astrophysics Data System (ADS)

    Melnik, Dmitry G.; Miller, Terry A.; Liu, Jinjun

    2013-06-01

    Isopropoxy radicals are reactive intermediates in atmospheric and combustion chemistry. From the theoretical point of view, they represent an extreme case of ``isotopically'' substituted methoxy radicals with two methyl groups playing the role of heavy hydrogen isotopes. Previously the rotationally resolved spectra of ˜{B}^2A' ← ˜{X}^2A' electronic transition were successfully analyzed using a simple effective rotational Hamiltonian of the isolated ˜{X} and ˜{B} states. However, a number of the experimentally determined parameters appeared dramatically inconsistent with the quantum chemistry calculations and theoretical predictions based on the symmetry arguments. Recently, we analyzed these spectra using a coupled two state model, which explicitly includes interactions between the ground ˜{X}^2A' state and low-lying excited ˜{A}^2A^'' state. In this presentation we will discuss the results of this analysis and compare the parameters of both models and their physical significance. D. G. Melnik, T. A. Miller and J. Liu, TI15, 67^{th Molecular Spectroscopy Symposium}, Columbus, 2012

  17. Iterative universal state selective correction for the Brillouin-Wigner multireference coupled-cluster theory

    SciTech Connect

    Banik, Subrata; Ravichandran, Lalitha; Brabec, Jiri; Hubac, Ivan; Kowalski, Karol; Pittner, Jiri

    2015-03-21

    As a further development of the previously introduced a posteriori Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] and [Brabec et al., J. Chem. Phys., 136, 124102 (2012)], we suggest an iterative form of the USS correction by means of correcting effective Hamiltonian matrix elements. We also formulate USS corrections via the left Bloch equations. The convergence of the USS corrections with excitation level towards the FCI limit is also investigated. Various forms of the USS and simplified diagonal USSD corrections at the SD and SD(T) levels are numerically assessed on several model systems and on the ozone and tetramethyleneethane molecules. It is shown that the iterative USS correction can successfully replace the previously developed a posteriori BWCC size-extensivity correction, while it is not sensitive to intruder states and performs well also in other cases when the a posteriori one fails, like e.g. for the asymmetric vibration mode of ozone.

  18. Solid state power amplifier as 805 MHz master source for the LANSCE coupled-cavity linac

    SciTech Connect

    Lyles, J.; Davis, J.

    1998-12-31

    From 100 to 800 MeV, the Los Alamos Neutron Science Center (LANSCE) proton linac receives RF power from forty-four 1.25 MW klystrons at 805 Megahertz (MHz). A single master RF source provides a continuous high level phase reference signal which drives the klystrons along the 731 meter-long linac through a coaxial transmission line. A single point failure of this system can deenergize the entire coupled-cavity linac (CCL) RF plant. The authors replaced a physically large air-cooled tetrode amplifier with a compact water-cooled unit based on modular amplifier pallets developed at LANSCE. Each 600 Watt pallet utilizes eight push-pull bipolar power transistor pairs operated in class AB. Four of these can easily provide the 2000 watt reference carrier from the stable master RF source. A radial splitter and combiner parallels the modules. This amplifier has proven to be completely reliable after two years of operation without failure. A second unit was constructed and installed for redundancy, and the old tetrode system was removed in 1998. The compact packaging for cooling, DC power, impedance matching, RF interconnection, and power combining met the electrical and mechanical requirements. CRT display of individual collector currents and RF levels is made possible with built-in samplers and a VXI data acquisition unit.

  19. Weakly coupled bound state of 2-D Schrödinger operator with potential-measure

    PubMed Central

    Kondej, Sylwia; Lotoreichik, Vladimir

    2014-01-01

    We consider a self-adjoint two-dimensional Schrödinger operator Hαμ, which corresponds to the formal differential expression−Δ−αμ, where μ is a finite compactly supported positive Radon measure on R2 from the generalized Kato class and α>0 is the coupling constant. It was proven earlier that σess(Hαμ)=[0,+∞). We show that for sufficiently small α the condition ♯σd(Hαμ)=1 holds and that the corresponding unique eigenvalue has the asymptotic expansionλ(α)=−(Cμ+o(1))exp⁡(−4παμ(R2)),α→0+, with a certain constant Cμ>0. We also obtain a formula for the computation of Cμ. The asymptotic expansion of the corresponding eigenfunction is provided. The statements of this paper extend the results of Simon [41] to the case of potentials-measures. Also for regular potentials our results are partially new. PMID:25843975

  20. Dynamic state and evoked motility in coupled hair bundles of the bullfrog sacculus.

    PubMed

    Strimbu, C E; Kao, A; Tokuda, J; Ramunno-Johnson, D; Bozovic, D

    2010-06-14

    Spontaneous oscillations, one of the signatures of the active process in non-mammalian hair cells, have been shown to occur in individual hair bundles that have been fully decoupled from the overlying membrane. Here we use semi-intact preparations of the bullfrog sacculus to demonstrate that under more natural loading conditions, innate oscillations are suppressed by the presence of the overlying otolithic membrane, indicating that hair bundles lie in the quiescent rather than the unstable regime. Transepithelial electrical stimulation was then used to test the effect of evoking entrained hair bundle movement with an external stimulus. Firstly, we used a preparation in which the otolithic membrane has been partially detached, coupling only hair bundles of comparable orientations. Secondly, we deposited artificial polymer membranes on top of the epithelium so as to connect to only 10-20 cells. In both of these systems, hair bundle motion phase-locked by the electrical signal was found to induce movement in the overlying structures. PMID:20227476

  1. Weak-coupling structure of proton resonant states in 23Al studied with RI beam at CNS

    NASA Astrophysics Data System (ADS)

    He, J. J.; Kubono, S.; Teranishi, T.; Notani, M.; Michimasa, S.; Baba, H.; Nishimura, S.; Nishimura, M.; Yanagisawa, Y.; Hokoiwa, N.; Kibe, M.; Gono, Y.; Moon, J. Y.; Lee, J. H.; Lee, C. S.; Iwasaki, H.; Kato, S.

    2006-07-01

    Proton resonances in 23Al have been investigated for the first time by the resonant elastic and inelastic scattering of 22Mg+p by using a 4.38 MeV/nucleon 22Mg beam bombarding a thick Hydrogen target. The low-energy 22Mg beam was separated by the CNS radioactive ion beam separator (CRIB). A new resonant state due to elastic scattering was observed at Ex = 3.00 MeV with a Jπ = (3/2+) assignment. Other three excited states due to resonant inelastic scattering at 3.14, 3.26 and 3.95 MeV were identified and all mainly decay to the first excited state in 22Mg by the proton emissions. The newly observed 3.95-MeV state probably has a spin-parity of Jπ = (7/2+). The resonant properties were determined from an R-matrix analysis of the excitation functions. The weak-coupling structure in 23Al is discussed in conjunction with a shell-model calculation.

  2. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE PAGES

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  3. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling.

    PubMed

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥ 0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  4. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    SciTech Connect

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  5. Excited states in 146Sm and 147Sm

    NASA Astrophysics Data System (ADS)

    Kownacki, J.; Sujkowski, Z.; Hammarén, E.; Liukkonen, E.; Piiparinen, M.; Lindblad, Th.; Ryde, H.; Paar, V.

    1980-03-01

    The 144, 146Nd(α, χn) and 146,148Nd( 3He, χn) reactions with Eα = 20-43 MeV and E3He , = 19-27 MeV are used to investigate excited states in the isotopes 146Sm and 147Sm. The experiments involve measurements of singles γ-ray spectra and conversion electron spectra, γ-ray angular distributions and three-parameter ( Eγ- Eγ-time) coincidences. From these experiments information is obtained for states with spin up to I = 13 +and I = {27}/{2}-, respectively. These states are interpreted within the framework of the cluster-vibration model (CVM) as well as the shell model. In the latter approach, the energies of several well established states, in both isotopes, are calculated using empirical singleparticle energies, empirical two-particle interaction matrix elements and angular momentum algebra. The average deviation between the calculated and the experimental energies is less than 100 keV. The CVM calculations involve the coupling of a three-particle neutron cluster to the quadrupole vibration of the core. For 147Sm, these calculations reproduce the observed sequence of states based on the I π = {7}/{2}- ground state, as well as the sequence of states based on the I π = {13}/{2}+ excited state. The CVM calculations also reproduce the ground band in 146Sm, while for the negative parity states based on the cluster (f {7}/{2}i {13}/{2}) 3 --10 - an additional shift in energy is expected due to the mixing with octupole phonons.

  6. Continuous states for a relativistic problem plus tensor coupling in D-dimensional space

    NASA Astrophysics Data System (ADS)

    Eshghi, Mahdi; Mehraban, Hosein

    2015-10-01

    In this research, a relativistic particle scattering was investigated for particles with spin 1/2 in a hyperbolic potential including Coulomb-like tensor interaction in D-dimensional space. By using the Greene and Aldrich approximately, we presented solutions of the Dirac equation with this potential for any spin-orbit quantum number κ under spin symmetry. The normalized wave functions are expressed in terms of the hyper geometric series of continuous states on the k/ 2π scale. Also, the formula for the phase shifts is calculated. Some of the thermodynamics properties of a system Dirac electrons are also discussed.

  7. Variable Charge State Impurities in Coupled Kinetic Plasma-Kinetic Neutral Transport Simulations

    NASA Astrophysics Data System (ADS)

    Stotler, D. P.; Hager, R.; Kim, K.; Koskela, T.; Park, G.

    2015-11-01

    A previous version of the XGC0 neoclassical particle transport code with two fully stripped impurity species was used to study kinetic neoclassical transport in the DIII-D H-mode pedestal. To properly simulate impurities in the scrape-off layer and divertor and to account for radiative cooling, however, the impurity charge state distributions must evolve as the particles are transported into regions of different electron temperatures and densities. To do this, the charge state of each particle in XGC0 is included as a parameter in the list that represents the particle's location in phase space. Impurity ionizations and recombinations are handled with a dedicated collision routine. The associated radiative cooling is accumulated during the process and applied to the electron population later in the time step. The density profiles of the neutral impurities are simulated with the DEGAS 2 neutral transport code and then used as a background for electron impact ionization in XGC0 via a test particle Monte Carlo method analogous to that used for deuterium. This work supported by US DOE contracts DE-AC02-09CH11466.

  8. Vortices and gate-tunable bound states in a topological insulator coupled to superconducting leads

    NASA Astrophysics Data System (ADS)

    Finck, Aaron; Kurter, C.; Hor, Y. S.; van Harlingen, D. J.

    2014-03-01

    It has been predicted that zero energy Majorana bound states can be found in the core of vortices within topological superconductors. Here, we report on Andreev spectroscopy measurements of the topological insulator Bi2Se3 with a normal metal lead and one or more niobium leads. The niobium induces superconductivity in the Bi2Se3 through the proximity effect, leading to both signatures of Andreev reflection and a prominent re-entrant resistance effect. When a large magnetic field is applied perpendicular to the surface of the Bi2Se3, we observe multiple abrupt changes in the subgap conductance that are accompanied by sharp peaks in the dynamical resistance. These peaks are very sensitive to changes in magnetic field and disappear at temperatures associated with the critical temperature of the induced superconductivity. The appearance of the transitions and peaks can be tuned by a top gate. At high magnetic fields, we also find evidence of gate-tunable states, which can lead to stable zero-bias conductance peaks. We interpret our results in terms of a transition occurring within the proximity effect region of the topological insulator, likely due to the formation of vortices. We acknowledge support from Microsoft Project Q.

  9. Resolution of electrogenic steps coupled to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state.

    PubMed

    Siletsky, S; Kaulen, A D; Konstantinov, A A

    1999-04-13

    Charge translocation across the membrane coupled to transfer of the third electron in the reaction cycle of bovine cytochrome c oxidase (COX) has been studied. Flash-induced reduction of the peroxy intermediate (P) to the ferryl-oxo state (F) by tris-bipyridyl complex of Ru(II) in liposome-reconstituted COX is coupled to several phases of membrane potential generation that have been time-resolved with the use of an electrometric technique applied earlier in the studies of the ferryl-oxo-to-oxidized (F --> O) transition of the enzyme [Zaslavsky, D., et al. (1993) FEBS Lett. 336, 389-393]. As in the case of the F --> O transition, the electric response associated with photoreduction of P to F includes a rapid KCN-insensitive electrogenic phase with a tau of 40-50 microseconds (reduction of heme a by CuA) and a multiphasic slower part; this part is cyanide-sensitive and is assigned to vectorial transfer of protons coupled to reduction of oxygen intermediate in the binuclear center. The net KCN-sensitive phase of the response is approximately 4-fold more electrogenic than the rapid phase, which is similar to the characteristics of the F --> O electrogenic transition and is consistent with net transmembrane translocation of two protons per electron, including vectorial movement of both "chemical" and "pumped" protons. The protonic part of the P --> F electric response is faster than in the F --> O transition and can be deconvoluted into three exponential phases with tau values varying for different samples in the range of 0.25-0.33, 1-1.5, and 6-7.5 ms at pH 8. Of these three phases, the 1-1.5 ms component is the major one contributing 50-60%. The P --> F conversion induced by single electron photoreduction of the peroxy state as studied in this work is several times slower than the P --> F transition resolved during oxidation of the fully reduced oxidase by molecular oxygen. The role of the CuB redox state in controlling the rate of P --> F conversion of heme a3 is

  10. a Search for Low-Mass Short-Lived States Coupling to Positron-Electron

    NASA Astrophysics Data System (ADS)

    Phlips, Bernard Felix

    Following the discovery of correlated positron -electron peaks in heavy ion experiments, the existence of a previously undetected particle coupling to e ^+e^- was postulated. A new experiment with improved sensitivity was suggested to detect this particle. Monoenergetic positrons would be accelerated onto electrons in a lithium target and the kinematics of the e^+e ^- scattering events measured by energy and position sensitive detectors. The experiment was carried out at Brookhaven National Laboratory where a 3 MV Dynamitron electrostatic accelerator was converted to a positron accelerator. The monoenergetic positrons were provided by a ^{22} Na source in conjunction with a thin single crystal tungsten moderator, and accelerated by the Dynamitron to a tunable energy between 1.0 and 2.5 MeV with keV resolution. The beam was transported through a new beam line to the target chamber where it could be focused down to 1 mm spot size. The energy of the interactions of the positrons with the lithium target was measured by plastic scintillators, and the position of the scattered particles was recorded by a set of four multi-wire proportional chambers capable of sub millimeter resolution. In a first experiment, the positron beam was scanned between 2150 and 2350 keV in 5 keV steps onto a 1.5 mg/cm ^2 lithium target with at least 60 000 coincidences recorded per energy point. The full kinematics of each positron-electron scattering event was reconstructed. The positron-nucleus scattering events were also detected and served as a normalization to eliminate all beam and target effects. A normalized e^+-e ^- scattering excitation function was derived, leading to an upper limit (90% CL) to the cross section for pointlike particles of sigma~ 1-5 mb. This translates to lower limits on the lifetime of tau>= 0.5 to 7 times10^{13} sec. In an extended run, data were acquired on a 2.5 mg/cm^2 lithium target from 1350 keV to 2350 keV in 3.5 keV steps with ~ 300 000 coincidences per

  11. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    SciTech Connect

    Sahdan, Muhammad Fauzi; Darma, Yudi

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  12. Existence and stability of traveling-wave states in a ring of nonlocally coupled phase oscillators with propagation delays.

    PubMed

    Sethia, Gautam C; Sen, Abhijit

    2011-12-01

    We investigate the existence and stability of traveling-wave solutions in a continuum field of nonlocally coupled identical phase oscillators with distance-dependent propagation delays. A comprehensive stability diagram in the parametric space of the system is presented that shows a rich structure of multistable regions and illuminates the relative influences of time delay, the nonlocality parameter and the intrinsic oscillator frequency on the dynamics of these states. A decrease in the intrinsic oscillator frequency leads to a break-up of the stability domains of the traveling waves into disconnected regions in the parametric space. These regions exhibit a tongue structure for high connectivity, whereas they submerge into the stable region of the synchronous state for low connectivity. One finding is the existence of forbidden regions in the parametric space where no phase-locked solutions are possible. We also discover a new class of nonstationary breather states for this model system that are characterized by periodic oscillations of the complex order parameter.

  13. Coupled thermohydraulic-neutronic instabilities in boiling water nuclear reactors: A review of the state of the art

    SciTech Connect

    March-Leuba, J. ); Rey, J.M. )

    1992-01-01

    This paper provides a review of the current state of the art on the topic of coupled neutronic-thermohydraulic instabilities in boiling water nuclear reactors (BWRs). The topic of BWR instabilities is of great current relevance since it affects the operation of a large number of commercial nuclear reactors. The recent trends towards introduction of high efficiency fuels that permit reactor operation at higher power densities with increased void reactivity feedback and decreased response times, has resulted in a decrease of the stability margin in the low-flow, high-power region of the operating map. This trend has resulted in a number of unexpected'' instability events. For instance, United States plants have experienced two instability events recently, one of them resulted in an automatic reactor scram; in Spain, two BWR plants have experienced unstable limit cycle oscillations that required operator action to suppress. Similar events have been experienced in other European countries. In recent years, BWR instabilities have been one of the more exciting topics of work in the area of transient thermohydraulics. As a result, significant advances in understanding the physics behind these events have occurred, and a new and improved'' state of the art has emerged recently.

  14. Coupled thermohydraulic-neutronic instabilities in boiling water nuclear reactors: A review of the state of the art

    SciTech Connect

    March-Leuba, J.; Rey, J.M.

    1992-05-01

    This paper provides a review of the current state of the art on the topic of coupled neutronic-thermohydraulic instabilities in boiling water nuclear reactors (BWRs). The topic of BWR instabilities is of great current relevance since it affects the operation of a large number of commercial nuclear reactors. The recent trends towards introduction of high efficiency fuels that permit reactor operation at higher power densities with increased void reactivity feedback and decreased response times, has resulted in a decrease of the stability margin in the low-flow, high-power region of the operating map. This trend has resulted in a number of ``unexpected`` instability events. For instance, United States plants have experienced two instability events recently, one of them resulted in an automatic reactor scram; in Spain, two BWR plants have experienced unstable limit cycle oscillations that required operator action to suppress. Similar events have been experienced in other European countries. In recent years, BWR instabilities have been one of the more exciting topics of work in the area of transient thermohydraulics. As a result, significant advances in understanding the physics behind these events have occurred, and a ``new and improved`` state of the art has emerged recently.

  15. Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans.

    PubMed

    Koch, Stefan P; Werner, Peter; Steinbrink, Jens; Fries, Pascal; Obrig, Hellmuth

    2009-11-01

    A prompt behavioral response to a stimulus depends both on the salience of the stimulus as well as the subject's preparedness. Thus, both stimulus properties and cognitive factors, such as attention, may determine the strength of neuronal synchronization in the gamma range. For a comprehensive investigation of stimulus-response processing through noninvasive imaging, it is, however, a crucial issue whether both kinds of gamma modulation elicit a hemodynamic response. Here, we show that, in the human visual cortex, stimulus strength and internal state modulate sustained gamma activity and hemodynamic response in close correspondence. When participants reported velocity changes of gratings varying in contrast, gamma activity (35-70 Hz) increased systematically with contrast. For stimuli of constant contrast, the amplitude of gamma activity before the behaviorally relevant velocity change was inversely correlated to the behavioral response latency. This indicates that gamma activity also reflects an overall attentive state. For both sources of variance, gamma activity was tightly coupled to the hemodynamic response measured through optical topography. Because of the close relationship between high-frequency neuronal activity and the hemodynamic signal, we conclude that both stimulus-induced and state-dependent gamma activity trigger a metabolic demand and are amenable to vascular-based imaging. PMID:19890006

  16. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  17. Extensive calculations on 12 Λ-S and 27 Ω states of PCl+ cation including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Niu, Xianghong; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2014-01-01

    The potential energy curves (PECs) of 27 Ω states generated from the 12 Λ-S states (X2Π, A2Π, 14Π, 24Π, 12Σ-, 22Σ-, 14Σ-, 24Σ-, 12Σ+, 14Σ+, 12Δ and 14Δ) of PCl+ cation are studied for the first time for internuclear separations from about 0.10 to 1.10 nm using an ab initio quantum chemical method. All the 12 Λ-S states correlate to the first dissociation channel of PCl+ cation. Of these Λ-S states, the 24Π is found to be the repulsive one. The 14Σ+, 12Δ and 14Δ are found to be the inverted ones. And the 12Δ is found to possess the double wells. The PECs are calculated by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction in combination with the correlation-consistent basis sets, aug-cc-pV(n+d)Z. The effect of core-valence correlation and scalar relativistic corrections on the spectroscopic parameters is briefly discussed. Scalar relativistic corrections are included by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. Core-valence correlation corrections are included with a cc-pCVTZ basis set. The convergent behavior of present calculations is discussed with respect to the basis set and level of theory. The spin-orbit coupling is accounted for by the state interaction method with the Breit-Pauli Hamiltonian using the all-electron cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated for the 11 Λ-S bound states and for the 23 Ω bound states, and are compared with available experimental and other theoretical results. Fair agreement has been found between the present spectroscopic parameters and the measurements. The energy splitting in the X2Π Λ-S state is calculated to be 346.11 cm-1, close to the estimated measurements of 370 cm-1. It demonstrates that the spectroscopic parameters reported here can

  18. Evidence for coupling between collective state and phonons in two-dimensional charge-density-wave systems

    SciTech Connect

    Lavagnini, M.; Baldini, M.; Sacchetti, A.; Castro, D.Di; Delley, B.; Monnier, R.; Chu, J.-H.; Ru, N.; Fisher, I.R.; Postorino, P.; Degiorgi, L.; /Zurich, ETH

    2010-02-15

    We report on a Raman scattering investigation of the charge-density-wave (CDW), quasi two-dimensional rare-earth tri-tellurides RTe{sub 3} (R = La, Ce, Pr, Nd, Sm, Gd and Dy) at ambient pressure, and of LaTe{sub 3} and CeTe{sub 3} under externally applied pressure. The observed phonon peaks can be ascribed to the Raman active modes for both the undistorted as well as the distorted lattice in the CDW state by means of a first principles calculation. The latter also predicts the Kohn anomaly in the phonon dispersion, driving the CDW transition. The integrated intensity of the two most prominent modes scales as a characteristic power of the CDW-gap amplitude upon compressing the lattice, which provides clear evidence for the tight coupling between the CDW condensate and the vibrational modes.

  19. Ultrafast and steady-state laser heating effects on electron relaxation and phonon coupling mechanisms in thin gold films

    SciTech Connect

    Hopkins, Patrick E.; Duda, John C.; Kaehr, Bryan; Wang Zhou, Xiao; Peter Yang, C.-Y.; Jones, Reese E.

    2013-11-18

    We study the scattering mechanisms driving electron-phonon relaxation in thin gold films via pump-probe time-domain thermoreflectance. Electron-electron scattering can enhance the effective rate of electron-phonon relaxation when the electrons are out of equilibrium with the phonons. In order to correctly and consistently infer electron-phonon coupling factors in films on different substrates, we must account for the increase in steady-state lattice temperature due to laser heating. Our data provide evidence that a thermalized electron population will not directly exchange energy with the substrate during electron-phonon relaxation, whereas this pathway can exist between a non-equilibrium distribution of electrons and a non-metallic substrate.

  20. Search for a low-mass neutral Higgs boson with suppressed couplings to fermions using events with multiphoton final states

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2016-06-01

    A search for a Higgs boson with suppressed couplings to fermions, hf, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via p p ¯→H±hf→W*hfhf→4 γ +X , where H± is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2 fb-1. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV /c2 are excluded at 95% Bayesian credibility.

  1. Coupled cluster study of spectroscopic constants of ground states of heavy rare gas dimers with spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Tu, Zhe-Yan; Wang, Wen-Liang; Li, Ren-Zhong; Xia, Cai-Juan; Li, Lian-Bi

    2016-07-01

    The CCSD(T) approach based on two-component relativistic effective core potential with spin-orbit interaction just included in coupled cluster iteration is adopted to study the spectroscopic constants of ground states of Kr2, Xe2 and Rn2 dimers. The spectroscopic constants have significant basis set dependence. Extrapolation to the complete basis set limit provides the most accurate values. The spin-orbit interaction hardly affects the spectroscopic constants of Kr2 and Xe2. However, the equilibrium bond length is shortened about 0.013 Å and the dissociation energy is augmented about 18 cm-1 by the spin-orbit interaction for Rn2 in the complete basis set limit.

  2. Long-lived excited states of zwitterionic copper(I) complexes for photoinduced cross-dehydrogenative coupling reactions.

    PubMed

    Wang, Bin; Shelar, Deepak Prakash; Han, Xian-Zhu; Li, Ting-Ting; Guan, Xiangguo; Lu, Wei; Liu, Kun; Chen, Yong; Fu, Wen-Fu; Che, Chi-Ming

    2015-01-12

    Four heteroleptic copper(I) complexes containing phenanthroline and monoanionic nido-carborane-diphosphine ligands have been prepared and structurally characterized by various spectroscopic techniques and X-ray diffraction. These complexes exhibit intense absorptions in the visible range and excited-state lifetimes on the microsecond scale. Their application in visible-light-induced cross-dehydrogenative coupling reactions was investigated. Preliminary studies showed that one of the four copper(I) complexes is an efficient catalyst for photoinduced oxidative C-H functionalization using oxygen as oxidant. Furthermore, α-functionalized tertiary amines were obtained in good-to-excellent yields by light irradiation (λ>420 nm) of a mixture of our Cu(I) complex, tertiary amines, and a variety of nucleophiles (nitroalkane, acetone, or indoles) under aerobic conditions. Electron paramagnetic resonance measurements provided evidence for the formation of superoxide radical anions (O2(-⋅)) rather than singlet oxygen ((1)O2) during these photocatalytic reactions. PMID:25413572

  3. Electronic states in Cd{sub 1{minus}x}Zn{sub x}Te/CdTe strained layer coupled double quantum wells and their photoluminescence

    SciTech Connect

    Li, T.; Lozykowski, H.J.; Reno, J.

    1994-12-31

    Experimental and theoretical investigation of electronic states in a strained-layer CdTe/CdZnTe coupled double quantum well structure are presented. The optical properties of this lattice-mismatched heterostructure were characterized with photoluminescence (PL), PL excitation and polarization spectroscopies. Influence of electrical field on exciton states in the strained-layer CdTe/CdZnTe coupled double quantum well structure is experimentally studied. The confined electronic states were calculated in the framework of the envelope function approach, taking into account the strain effect induced by the lattice-mismatch. Experimental results are compared with the calculated transition energies.

  4. Closed state-coupled C-type inactivation in BK channels.

    PubMed

    Yan, Jiusheng; Li, Qin; Aldrich, Richard W

    2016-06-21

    Ion channels regulate ion flow by opening and closing their pore gates. K(+) channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and normally show no C-type inactivation. We hypothesized that the BK channel's activation gate may spatially overlap or coexist with the C-type inactivation gate at or near the selectivity filter. We induced C-type inactivation in BK channels and studied the relationship between activation/deactivation and C-type inactivation/recovery. We observed prominent slow C-type inactivation/recovery in BK channels by an extreme low concentration of extracellular K(+) together with a Y294E/K/Q/S or Y279F mutation whose equivalent in Shaker channels (T449E/K/D/Q/S or W434F) caused a greatly accelerated rate of C-type inactivation or constitutive C-inactivation. C-type inactivation in most K(+) channels occurs upon sustained membrane depolarization or channel opening and then recovers during hyperpolarized membrane potentials or channel closure. However, we found that the BK channel C-type inactivation occurred during hyperpolarized membrane potentials or with decreased intracellular calcium ([Ca(2+)]i) and recovered with depolarized membrane potentials or elevated [Ca(2+)]i Constitutively open mutation prevented BK channels from C-type inactivation. We concluded that BK channel C-type inactivation is closed state-dependent and that its extents and rates inversely correlate with channel-open probability. Because C-type inactivation can involve multiple conformational changes at the selectivity filter, we propose that the BK channel's normal closing may represent an early conformational stage of C-type inactivation.

  5. Time-resolved soft-x-ray spectroscopy of a magnetic octupole transition in nickel-like xenon, cesium, and barium ions

    SciTech Connect

    Trabert, E; Beiersdorfer, P; Brown, G V; Boyce, K; Kelley, R L; Kilbourne, C A; Porter, F S; Szymkowiak, A

    2005-11-11

    A microcalorimeter with event mode capability for time-resolved soft-x-ray spectroscopy, and a high-resolution flat-field EUV spectrometer have been employed at the Livermore EBIT-I electron beam ion trap for observations and wavelength measurements of M1, E2, and M3 decays of long-lived levels in the Ni-like ions Xe{sup 26+}, Cs{sup 27+}, and Ba{sup 28+}. Of particular interest is the lowest excited level, 3d{sup 9}4s {sup 3}D{sub 3}, which can only decay via a magnetic octupole (M3) transition. For this level in Xe an excitation energy of (590.40 {+-} 0.03eV) and a level lifetime of (11.5 {+-} 0.5 ms) have been determined.

  6. Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling

    SciTech Connect

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco

    2005-08-01

    We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold {approx}-4ln{kappa}). The corresponding meson masses are equal up to and including O({kappa}{sup 3}) and are asymptotically of order -2ln{kappa}-{kappa}{sup 2}. Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order b{kappa}{sup 2}{approx_equal}0.02359{kappa}{sup 2}. In the context of the strong coupling expansion in {kappa}, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger.

  7. Octupole excitations in 141,144Cs and the pronounced decrease of dipole moments with neutron number in odd- Z neutron-rich 141,143,144Cs

    NASA Astrophysics Data System (ADS)

    Luo, Y. X.; Rasmussen, J. O.; Hamilton, J. H.; Ramayya, A. V.; Liu, S. H.; Jones, E. F.; Gore, P. M.; Goodin, C.; Stone, N. J.; Zhu, S. J.; Hwang, J. K.; Li, Ke; Crowell, H. L.; Lee, I. Y.; Ter-Akopian, G. M.; Daniel, A. V.; Stoyer, M. A.; Donangelo, R.; Ma, W. C.; Cole, J. D.

    2010-07-01

    The level scheme of odd- Z neutron-rich 141Cs ( Z=55, N=86) was extended and expanded and that of 144Cs ( N=89) was identified for the first time by means of γ-γ-γ coincidence measurements of prompt γ rays in the spontaneous fission of 252Cf with Gammasphere. Spin/parity was assigned to the levels based on angular correlations and level systematics in 141,143Cs. Parity doublets characteristic of both simplex quantum number s=+i and s=-i were proposed in 141Cs. The tests by using rotational frequency ratio ω(I)/ω(I) imply octupole vibrations in 141Cs and 143Cs. B(E1)/B(E2) values and electric dipole moments D were calculated for 141Cs, and re-determined for 143Cs. It was found that B(E1)/B(E2) values of 141Cs are simplex-dependent and the average value is one order of magnitude larger than that of 143Cs, and the deduced dipole moment D of 141Cs is considerably larger than that of 143Cs, and comparable to the N=86 isotone 142Ba. For 144Cs the yrast sequence looks like a well-deformed rotational band, but no octupole band structure was identified in this nucleus. The overall variations of D in 141,143,144Cs exhibit a pronounced drop of dipole moment with increasing neutron number in this odd- Z isotopic chain, which may be analogous in nature to the quenching of D observed in even-even 146Ba ( Z=56, N=90) and 224Ra ( Z=88, N=136), and to the drop of D in the odd- Z neutron-rich 147La ( Z=57, N=90) reported by our collaboration.

  8. High-spin states in ^122_ 56Ba

    NASA Astrophysics Data System (ADS)

    Chiara, C. J.; Cardona, J.; Fossan, D. B.; Koike, T.; Lafosse, D. R.; Starosta, K.; Ye, Z.; Freeman, S.; Leddy, M.; Smith, J. F.; Wadsworth, R.; Wilson, A. N.; Devlin, M.; Lerma, F.; Sarantites, D. G.; Wilson, J. N.; Carpenter, M. P.; Davids, C. N.; Janssens, R. V. F.; Seweryniak, D.

    2000-10-01

    High-spin states in ^122Ba have been studied via the ^64Zn(^64Zn,α2p) reaction. A 260-MeV ^64Zn beam was provided by the Argonne Tandem/Linac Accelerator System. The emitted γ rays were detected using the Gammasphere array of 101 suppressed Ge detectors. In addition, the Microball charged-particle detector array was used to select the α 2p channel, thus isolating ^122Ba. The level scheme of ^122Ba has been substantially extended from the previously published level scheme of only six γ rays(J. Conrad, Nucl. Phys. A234), 157 (1974).. Six decoupled bands and two strongly-coupled bands have been observed to spins of up to 40hbar. Configuration assignments are made with the aid of the systematic alignment properties of ^122Ba and its neighbors. Octupole deformation is predicted to develop in Z ≈ 56 nuclei due to the occupation of Δ l = Δ j = 3 proton orbitals. Systematics of proposed negative-parity side bands in the A ≈ 120 barium isotopes will be discussed. Comparisons with cranked Nilsson-Strutinsky calculations will also be presented in light of possible smooth band termination properties.

  9. Toward enabling large-scale open-shell equation-of-motion coupled cluster calculations: triplet states of β-carotene

    SciTech Connect

    Hu, Hanshi; Bhaskaran-Nair, Kiran; Apra, Edoardo; Govind, Niranjan; Kowalski, Karol

    2014-10-02

    In this paper we discuss the application of novel parallel implementation of the coupled cluster (CC) and equation-of-motion coupled cluster methods (EOMCC) in calculations of excitation energies of triplet states in beta-carotene. Calculated excitation energies are compared with experimental data, where available. We also provide a detailed description of the new parallel algorithms for iterative CC and EOMCC models involving single and doubles excitations.

  10. Frequency-Tunable Multigigawatt Sub-Half-Cycle Light Pulses from Coupled-State Dynamics of Optical Solitons and Impulsively Driven Molecular Vibrations

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.; Voronin, A. A.; Kienberger, R.; Krausz, F.; Korn, G.

    2010-09-01

    Coupling ultrashort optical field waveforms to ultrafast molecular vibrations in an impulsively excited Raman medium is shown to enable the generation of frequency-tunable sub-half-cycle multigigawatt light pulses. In a gas-filled hollow waveguide, this coupled-state dynamics is strongly assisted by soliton effects, which help to suppress temporal stretching of subcycle optical pulses, providing efficient Raman-type impulsive excitation of ultrafast molecular vibrations over large propagation paths.

  11. Tuning extreme ultraviolet emission for optimum coupling with multilayer mirrors for future lithography through control of ionic charge states

    SciTech Connect

    Ohashi, Hayato Higashiguchi, Takeshi Suzuki, Yuhei; Kawasaki, Masato; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Kanehara, Tatsuhiko; Aida, Yuya; Nakamura, Nobuyuki; Torii, Shuichi; Makimura, Tetsuya; Jiang, Weihua

    2014-01-21

    We report on the identification of the optimum plasma conditions for a laser-produced plasma source for efficient coupling with multilayer mirrors at 6.x nm for beyond extreme ultraviolet lithography. A small shift to lower energies of the peak emission for Nd:YAG laser-produced gadolinium plasmas was observed with increasing laser power density. Charge-defined emission spectra were observed in electron beam ion trap (EBIT) studies and the charge states responsible identified by use of the flexible atomic code (FAC). The EBIT spectra displayed a larger systematic shift of the peak wavelength of intense emission at 6.x nm to longer wavelengths with increasing ionic charge. This combination of spectra enabled the key ion stage to be confirmed as Gd{sup 18+}, over a range of laser power densities, with contributions from Gd{sup 17+} and Gd{sup 19+} responsible for the slight shift to longer wavelengths in the laser-plasma spectra. The FAC calculation also identified the origin of observed out-of-band emission and the charge states responsible.

  12. Enzymatic turnover of macromolecules generates long-lasting protein–water-coupled motions beyond reaction steady state

    PubMed Central

    Dielmann-Gessner, Jessica; Grossman, Moran; Conti Nibali, Valeria; Born, Benjamin; Solomonov, Inna; Fields, Gregg B.; Havenith, Martina; Sagi, Irit

    2014-01-01

    The main focus of enzymology is on the enzyme rates, substrate structures, and reactivity, whereas the role of solvent dynamics in mediating the biological reaction is often left aside owing to its complex molecular behavior. We used integrated X-ray– and terahertz- based time-resolved spectroscopic tools to study protein–water dynamics during proteolysis of collagen-like substrates by a matrix metalloproteinase. We show equilibration of structural kinetic transitions in the millisecond timescale during degradation of the two model substrates collagen and gelatin, which have different supersecondary structure and flexibility. Unexpectedly, the detected changes in collective enzyme–substrate–water-coupled motions persisted well beyond steady state for both substrates while displaying substrate-specific behaviors. Molecular dynamics simulations further showed that a hydration funnel (i.e., a gradient in retardation of hydrogen bond (HB) dynamics toward the active site) is substrate-dependent, exhibiting a steeper gradient for the more complex enzyme–collagen system. The long-lasting changes in protein–water dynamics reflect a collection of local energetic equilibrium states specifically formed during substrate conversion. Thus, the observed long-lasting water dynamics contribute to the net enzyme reactivity, impacting substrate binding, positional catalysis, and product release. PMID:25425663

  13. Radio frequency measurements of tunnel couplings and singlet-triplet spin states in Si:P quantum dots

    NASA Astrophysics Data System (ADS)

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-11-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet-triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot-lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon.

  14. The importance of being coupled: Stable states, transitions and responses to changing forcings in tidal bio-morphodynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Marani, M.; D'Alpaos, A.; da Lio, C.; Carniello, L.; Lanzoni, S.; Rinaldo, A.

    2009-12-01

    Changes in relative sea level, nutrient and sediment loading, and ecological characteristics expose tidal landforms and ecosystems to responses which may or may not be reversible. Predicting such responses is important in view of the ecological, cultural and socio-economic importance of endangered tidal environments worldwide. Here we develop a point model of the joint evolution of tidal landforms and biota including the dynamics of intertidal vegetation, benthic microbial assemblages, erosional and depositional processes, local and general hydrodynamics, and relative sea-level change. Alternative stable states and punctuated equilibrium dynamics emerge, characterized by possible sudden transitions of the system, governed by vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions. Multiple equilibria are the result of the interplay of erosion, deposition and biostabilization. They highlight the importance of the coupling between biological and sediment transport processes in determining the evolution of a tidal system as a whole. Hysteretic switches between stable states may arise because of differences in the threshold values of relative sea level rise inducing transitions from vegetated to unvegetated equilibria and viceversa.

  15. Persistent Cold States of the Tropical Pacific Ocean in an Intermediate Coupled Model and a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Ramesh, N.; Cane, M. A.; Seager, R.

    2014-12-01

    The tropical Pacific Ocean has persistently cool sea surface temperature (SST) anomalies that last several years to a decade, with either no El Niño events or very few weak El Niño events. These have been shown to cause large-scale droughts in the extratropics[i], including the major North American droughts such as the 1930s Dust Bowl, and may also be responsible for modulating the global mean surface temperature[ii]. Here we show that two models with different levels of complexity - the Zebiak-Cane model and the Geophysical Fluid Dynamics Laboratory Coupled Model version 2.1 - are able to produce such periods in a realistic manner. We then test the predictability of these periods in the Zebiak-Cane model using an ensemble of experiments with perturbed initial states. Our results show that the cool mean state is modestly predictable, while the lack of El Niño events during these cool periods is not. These results have implications for our understanding of the origins of such persistent cool states and the possibility of improving predictions of large-scale droughts. Further, we apply this method of using an ensemble of model simulations with perturbed initial states to make retrospective forecasts and to forecast the mean state of the tropical Pacific Ocean for the upcoming decade. Our results suggest, albeit with low confidence, that the current cool mean state will persist. This could imply the continuation of the drier than normal conditions that have, in general, afflicted southwest North America since the 1997/98 El Niño, as well as the current pause in global warming. [i] C. Herweijer and R. Seager, "The global footprint of persistent extra-tropical drought in the instrumental era," International Journal of Climatology, vol. 28, pp. 1761-1774, 2008. [ii] G. A. Meehl, J. M. Arblaster, J. T. Fasullo, A. Hu and K. E. Trenberth, "Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods," Nature Climate Change, vol. 1, pp. 360

  16. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence.

    PubMed

    Lee, Tae-Ho; Telzer, Eva H

    2016-08-01

    Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level.

  17. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence.

    PubMed

    Lee, Tae-Ho; Telzer, Eva H

    2016-08-01

    Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level. PMID:27344035

  18. Validity of approximate methods in molecular scattering. III - Effective potential and coupled states approximations for differential and gas kinetic cross sections

    NASA Technical Reports Server (NTRS)

    Monchick, L.; Green, S.

    1977-01-01

    Two dimensionality-reducing approximations, the j sub z-conserving coupled states (sometimes called the centrifugal decoupling) method and the effective potential method, were applied to collision calculations of He with CO and with HCl. The coupled states method was found to be sensitive to the interpretation of the centrifugal angular momentum quantum number in the body-fixed frame, but the choice leading to the original McGuire-Kouri expression for the scattering amplitude - and to the simplest formulas - proved to be quite successful in reproducing differential and gas kinetic cross sections. The computationally cheaper effective potential method was much less accurate.

  19. Effect of vegetation physiology and structure on thermal and hydrological state in a coupled terrestrial system model

    NASA Astrophysics Data System (ADS)

    Lu, Yen-Sen; Rihani, Jehan; Langensiepen, Matthias; Simmer, Clemens

    2015-04-01

    When simulating the circulation of energy and moisture in the terrestrial system, vegetation is one of the key factors which affect energy and water fluxes at land surface and in the subsurface. Vegetation physiology in the terrestrial system includes transpiration, respiration, and root water uptake. One of the main vegetation schemes controlling transpiration in Land Surface Models is the empirical parameterization for stomatal conductance. There are two main types of stomatal conductance used in land surface models: the Jarvis-Stewart type based on environmental factors such as light use efficiency, temperature, vapor pressure deficit, and soil moisture limit: and the Ball-Berry type based on photosynthesis schemes with a semi-mechanistic parameterization. Moreover, the interconnection between soil moisture and stomatal conductance is not fully understood and needs further investigation. Alongside stomatal conductance, Leaf area index (LAI) also has a significant effect on the modelling system and thereby can impact the calculation of latent heat and sensible heat fluxes, ground temperature, and soil moisture. LAI represents the vegetation structure effects on the hydrological and thermal state of land surface by interception, albedo, and shading, and therefore altering transpiration and leaf surface evaporation. LAI can be obtained from observations such as field and satellite measurement; or estimated using parameterization in Land Surface Models and Dynamic Vegetation Models.. This study focuses on how different vegetation schemes of stomatal conductance and LAI input effect land surface energy fluxes and groundwater flow, and how the uncertainty of different schemes propagates to the calculation of thermal and hydrologic state of land surface and soil moisture. To reach the research aims of this study, land surface simulations and coupled land surface-groundwater simulations are performed and compared. In this numerical experiment, the modelling platform

  20. Description of spin-orbit coupling in excited states with two-component methods based on approximate coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Krause, Katharina; Klopper, Wim

    2015-03-01

    A generalization of the approximated coupled-cluster singles and doubles method and the algebraic diagrammatic construction scheme up to second order to two-component spinors obtained from a relativistic Hartree-Fock calculation is reported. Computational results for zero-field splittings of atoms and monoatomic cations, triplet lifetimes of two organic molecules, and the spin-forbidden part of the UV/Vis absorption spectrum of tris(ethylenediamine)cobalt(III) are presented.

  1. Description of spin–orbit coupling in excited states with two-component methods based on approximate coupled-cluster theory

    SciTech Connect

    Krause, Katharina; Klopper, Wim

    2015-03-14

    A generalization of the approximated coupled-cluster singles and doubles method and the algebraic diagrammatic construction scheme up to second order to two-component spinors obtained from a relativistic Hartree–Fock calculation is reported. Computational results for zero-field splittings of atoms and monoatomic cations, triplet lifetimes of two organic molecules, and the spin-forbidden part of the UV/Vis absorption spectrum of tris(ethylenediamine)cobalt(III) are presented.

  2. Coriolis coupling effects on the initial-state-resolved dynamics of the N(2D)+H2-->NH+H reaction.

    PubMed

    Defazio, Paolo; Petrongolo, Carlo

    2007-11-28

    We present Coriolis coupling effects on the initial-state-resolved dynamics of the insertion reaction N((2)D)+H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-) and a (1)Delta)+H((2)S), without and with nonadiabatic Renner-Teller (RT) interactions between the NH(2) X (2)B(1) and A (2)A(1) electronic states. We report coupled-channel (CC) Hamiltonian matrix elements, which take into account both Coriolis and RT couplings, use the real wave-packet and flux methods for calculating initial-state-resolved reaction probabilities, and contrast CC with centrifugal-sudden (CS) results. Without RT interactions, Coriolis effects are rather small up to J=40, and the CS approximation can be safely employed for calculating initial-state-resolved, integral cross sections. On the other hand, RT effects are associated with rather large Coriolis couplings, mainly near the linearity of NH(2), and the accuracy of the CS approximation thus breaks down at high collision energies, when the reaction starts on the excited A (2)A(1) surface. We also present the CC-RT distribution of the X (3)Sigma(-) and a (1)Delta electronic states of the NH products.

  3. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.

    PubMed

    Golibrzuch, Kai; Shirhatti, Pranav R; Altschäffel, Jan; Rahinov, Igor; Auerbach, Daniel J; Wodtke, Alec M; Bartels, Christof

    2013-09-12

    Translational motion is believed to be a spectator degree of freedom in electronically nonadiabatic vibrational energy transfer between molecules and metal surfaces, but the experimental evidence available to support this view is limited. In this work, we have experimentally determined the translational inelasticity in collisions of NO molecules with a single-crystal Au(111) surface-a system with strong electronic nonadiabaticity. State-to-state molecular beam surface scattering was combined with an IR-UV double resonance scheme to obtain high-resolution time-of-flight data. The measurements include vibrationally elastic collisions (v = 3→3, 2→2) as well as collisions where one or two quanta of molecular vibration are excited (2→3, 2→4) or de-excited (2→1, 3→2, 3→1). In addition, we have carried out comprehensive measurements of the effects of rotational excitation on the translational energy of the scattered molecules. We find that under all conditions of this work, the NO molecules lose a large fraction (∼0.45) of their incidence translational energy to the surface. Those molecules that undergo vibrational excitation (relaxation) during the collision recoil slightly slower (faster) than vibrationally elastically scattered molecules. The amount of translational energy change depends on the surface temperature. The translation-to-rotation coupling, which is well-known for v = 0→0 collisions, is found to be significantly weaker for vibrationally inelastic than elastic channels. Our results clearly show that the spectator view of the translational motion in electronically nonadiabatic vibrational energy transfer between NO and Au(111) is only approximately correct.

  4. Strain coupling mechanisms and elastic relaxation associated with spin state transitions in LaCoO3

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying; Koppensteiner, Johannes; Schranz, Wilfried; Prabhakaran, Dharmalingam; Carpenter, Michael A.

    2011-04-01

    Advantage is taken of the wealth of experimental data relating to the evolution with temperature of spin states of Co3 + in LaCoO3 in order to undertake a detailed investigation of the mechanisms by which changes in electronic structure can influence strain, and elastic and anelastic relaxations in perovskites. The macroscopic strain accompanying changes in the spin state in LaCoO3 is predominantly a volume strain arising simply from the change in effective ionic radius of the Co3 + ions. This acts to renormalize the octahedral tilting transition temperature in a manner that is easily understood in terms of coupling between the tilt and spin order parameters. Results from resonant ultrasound spectroscopy at high frequencies (0.1-1.5 MHz) reveal stiffening of the shear modulus which scales qualitatively with a spin order parameter defined in terms of changing Co-O bond lengths. From this finding, in combination with results from dynamic mechanical analysis at low frequencies (0.1-50 Hz) and data from the literature, four distinctive anelastic relaxation mechanisms are identified. The relaxation times of these are displayed on an anelasticity map and are tentatively related to spin-spin relaxation, spin-lattice relaxation, migration of twin walls and migration of magnetic polarons. The effective activation energy for the freezing of twin wall motion below ~ 590 K at low frequencies was found to be 182 ± 21 kJ mol - 1 (1.9 ± 0.2 eV) which is attributed to pinning by pairs of oxygen vacancies, though the local mechanisms appear to have a spread of relaxation times. It seems inevitable that twin walls due to octahedral tilting must have quite different characteristics from the matrix in terms of local spin configurations of Co3 + . A hysteresis in the elastic properties at high temperatures further emphasizes the importance of oxygen content in controlling the properties of LaCoO3.

  5. Large-Scale Parallel Uncontracted Multireference-Averaged Quadratic Coupled Cluster: The Ground State of the Chromium Dimer Revisited

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2009-09-01

    The accurate prediction of the potential energy function of the X1Σg+ state of Cr2 is a remarkable challenge; large differential electron correlation effects, significant scalar relativistic contributions, the need for large flexible basis sets containing g functions, the importance of semicore valence electron correlation, and its multireference nature pose considerable obstacles. So far, the only reasonable successful approaches were based on multireference perturbation theory (MRPT). Recently, there was some controversy in the literature about the role of error compensation and systematic defects of various MRPT implementations that cannot be easily overcome. A detailed basis set study of the potential energy function is presented, adopting a variational method. The method of choice for this electron-rich target with up to 28 correlated electrons is fully uncontracted multireference-averaged quadratic coupled cluster (MR-AQCC), which shares the flexibility of the multireference configuration interaction (MRCI) approach and is, in addition, approximately size-extensive (0.02 eV in error as compared to the MRCI value of 1.37 eV for two noninteracting chromium atoms). The best estimate for De arrives at 1.48 eV and agrees well with the experimental data of 1.47 ± 0.056 eV. At the estimated CBS limit, the equilibrium bond distance (1.685 Å) and vibrational frequency (459 cm-1) are in agreement with experiment (1.679 Å, 481 cm-1). Large basis sets and reference configuration spaces invariably result in huge wave function expansions (here, up to 2.8 billion configuration state functions), and efficient parallel implementations of the method are crucial. Hence, relevant details on implementation and general performance of the parallel program code are discussed as well.

  6. Large-scale parallel uncontracted multireference-averaged quadratic coupled cluster: the ground state of the chromium dimer revisited.

    PubMed

    Müller, Thomas

    2009-11-12

    The accurate prediction of the potential energy function of the X1Sigmag+ state of Cr2 is a remarkable challenge; large differential electron correlation effects, significant scalar relativistic contributions, the need for large flexible basis sets containing g functions, the importance of semicore valence electron correlation, and its multireference nature pose considerable obstacles. So far, the only reasonable successful approaches were based on multireference perturbation theory (MRPT). Recently, there was some controversy in the literature about the role of error compensation and systematic defects of various MRPT implementations that cannot be easily overcome. A detailed basis set study of the potential energy function is presented, adopting a variational method. The method of choice for this electron-rich target with up to 28 correlated electrons is fully uncontracted multireference-averaged quadratic coupled cluster (MR-AQCC), which shares the flexibility of the multireference configuration interaction (MRCI) approach and is, in addition, approximately size-extensive (0.02 eV in error as compared to the MRCI value of 1.37 eV for two noninteracting chromium atoms). The best estimate for De arrives at 1.48 eV and agrees well with the experimental data of 1.47 +/- 0.056 eV. At the estimated CBS limit, the equilibrium bond distance (1.685 A) and vibrational frequency (459 cm-1) are in agreement with experiment (1.679 A, 481 cm-1). Large basis sets and reference configuration spaces invariably result in huge wave function expansions (here, up to 2.8 billion configuration state functions), and efficient parallel implementations of the method are crucial. Hence, relevant details on implementation and general performance of the parallel program code are discussed as well. PMID:19725509

  7. Nonadiabatic coupling vectors for excited states within time-dependent density functional theory in the Tamm-Dancoff approximation and beyond

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano; Curchod, Basile F. E.; Laktionov, Andrey; Rothlisberger, Ursula

    2010-11-01

    Recently, we have proposed a scheme for the calculation of nonadiabatic couplings and nonadiabatic coupling vectors within linear response time-dependent density functional theory using a set of auxiliary many-electron wavefunctions [I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)]. As demonstrated in a later work [I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)], this approach is rigorous in the case of the calculation of nonadiabatic couplings between the ground state and any excited state. In this work, we extend this formalism to the case of coupling between pairs of singly excited states with the same spin multiplicity. After proving the correctness of our formalism using the electronic oscillator approach by Mukamel and co-workers [S. Tretiak and S. Mukamel, Chem. Rev. (Washington, D.C.) 102, 3171 (2002)], we tested the method on a model system, namely, protonated formaldimine, for which we computed S1/S2 nonadiabatic coupling vectors and compared them with results from high level (MR-CISD) electronic structure calculations.

  8. Nonadiabatic coupling vectors for excited states within time-dependent density functional theory in the Tamm-Dancoff approximation and beyond.

    PubMed

    Tavernelli, Ivano; Curchod, Basile F E; Laktionov, Andrey; Rothlisberger, Ursula

    2010-11-21

    Recently, we have proposed a scheme for the calculation of nonadiabatic couplings and nonadiabatic coupling vectors within linear response time-dependent density functional theory using a set of auxiliary many-electron wavefunctions [I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)]. As demonstrated in a later work [I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)], this approach is rigorous in the case of the calculation of nonadiabatic couplings between the ground state and any excited state. In this work, we extend this formalism to the case of coupling between pairs of singly excited states with the same spin multiplicity. After proving the correctness of our formalism using the electronic oscillator approach by Mukamel and co-workers [S. Tretiak and S. Mukamel, Chem. Rev. (Washington, D.C.) 102, 3171 (2002)], we tested the method on a model system, namely, protonated formaldimine, for which we computed S(1)/S(2) nonadiabatic coupling vectors and compared them with results from high level (MR-CISD) electronic structure calculations. PMID:21090851

  9. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.

    PubMed

    Hall, A J; Minchin, P E H

    2013-12-01

    A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants.

  10. An inventory of Geothermal Resources in Nebraska: State-Coupled Program between US Department of Energy and The University of Nebraska. Final report, June 30, 1983

    SciTech Connect

    Gosnold, William D.; Eversoll, Duane, A.; Messenger, Karen A.; Carlson, Marvin P.

    1983-06-30

    The goal of the State Coupled Resource Assessment Program is to identify and evaluate geothermal resources in the state, particularly low-temperature potential. Eight tasks were identified and documented in this report as follows: (1) Bottom-hole Temperature Survey; (2) Heat Flow and Temperature Gradient Survey; (3) Data Translation studies; (4) Gravity Data; (5) Substate Regions; (6) Information Dissemination; (7) State Geothermal Map; (8) Reports. The project had three major products: (1) a map ''Geothermal Resources of Nebraska''; (2) a significant amount of thermal data collected and documented within the state; and (3) a series of publications, presentations and meetings.

  11. Phase modulation in dipolar-coupled A 2 spin systems: effect of maximum state mixing in 1H NMR in vivo

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (A n system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this "pseudo-strong" system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.

  12. New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster.

    PubMed

    Adamska-Venkatesh, Agnieszka; Krawietz, Danuta; Siebel, Judith; Weber, Katharina; Happe, Thomas; Reijerse, Edward; Lubitz, Wolfgang

    2014-08-13

    Active [FeFe] hydrogenases can be obtained by expressing the unmaturated enzyme in Escherichia coli followed by incubation with a synthetic precursor of the binuclear [2Fe] subcluster, namely: [NEt4]2[Fe2(adt)(CO)4(CN)2] (adt = [S-CH2-NH-CH2-S](2-)). The binuclear subsite Fe2(adt)(CO)3(CN)2 is attached through a bridging cysteine side chain to a [4Fe-4S] subcluster already present in the unmaturated enzyme thus yielding the intact native "H-cluster". We present FTIR electrochemical studies of the [FeFe] hydrogenase from Chlamydomonas reinhardtii, CrHydA1, maturated with the precursor of the native cofactor [Fe2(adt)(CO)4(CN)2](2-) as well as a non-natural variant [Fe2(pdt)(CO)4(CN)2](2-) in which the bridging amine functionality is replaced by CH2. The obtained active enzyme CrHydA1(adt) shows the same redox states in the respective potential range as observed for the native system (E(ox/red) = -400 mV, E(red/sred) = -470 mV). For the Hox → Hred transition the reducing equivalent is stored on the binuclear part, ([4Fe-4S](2+)Fe(II)Fe(I) → [4Fe-4S](2+)Fe(I)Fe(I)), while the Hred → Hsred transition is characterized by a reduction of the [4Fe-4S] part of the H-cluster ([4Fe-4S](2+)Fe(I)Fe(I) → [4Fe-4S](+)Fe(I)Fe(I)). A similar transition is reported here for the CO inhibited state of the H-cluster: ([4Fe-4S](2+)Fe(I)Fe(II)CO → [4Fe-4S](+)Fe(I)Fe(II)CO). An FTIR electrochemical study of the inactive variant with the pdt ligand, CrHydA1(pdt), identified two redox states H(pdt)-ox and H(pdt)-"red". Both EPR and FTIR spectra of H(pdt)-ox are virtually identical to those of the H(adt)-ox and the native Hox state. The H(pdt)-"red" state is also characterized by a reduced [4Fe-4S] subcluster. In contrast to CrHydA1(adt), the H(pdt)-ox state of CrHydA1(pdt) is stable up to rather high potentials (+200 mV). This study demonstrates the distinct redox coupling between the two parts of the H-cluster and confirms that the [4Fe-4S]H subsite is also redox active and as

  13. Solution and solid-state study of the structure of azo-coupling products from isomeric enaminones possessing tert-butyl group: An unprecedented observation of pure hydrazo form in azo coupled N-alkyl β-enaminones

    NASA Astrophysics Data System (ADS)

    Šimůnek, Petr; Padělková, Zdeňka; Macháček, Vladimír

    2014-10-01

    The structure of the azo-coupling products from enaminones derived from 4,4-dimethyl-1-phenylpentane-1,3-dione has been studied by means of solution-state 1H, 13C and 15N NMR spectroscopy and X-ray diffractometry. The presence of bulky tert-butyl group hinders or even prevents from the formation of planar conjugated heterodiene system Hsbnd Nsbnd Cdbnd Csbnd Ndbnd N with an intramolecular hydrogen bond Nsbnd H⋯Ndbnd which is the prerequisite for fast tautomeric exchange imino-hydrazo - enamino-azo. The minor amount of azo compounds is formed by a proton exchange through a hydrogen bond Nsbnd H⋯N, which is either intramolecular (in solution) or intermolecular (solid state). The intermolecular exchange proceeds via the dimers of the azo coupling products. This is unprecedented result among the similar molecules hitherto studied.

  14. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol

    PubMed Central

    2014-01-01

    Background Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. Results TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. Conclusions SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS

  15. Enhancement of the photoproperties of solid-state TiO2|dye|CuI cells by coupling of two dyes

    NASA Astrophysics Data System (ADS)

    Sirimanne, P. M.; Senevirathna, M. K. I.; Premalal, E. V. A.; Pitigala, P. K. D. D. P.

    2006-06-01

    The electronic coupling of a natural pigment extracted from pomegranate fruits (rich with cyanin and exist as flavylium at natural PH) with an organic dye mercurochrome enhanced the performance of solid-state TiO2|dye|CuI-type photovoltaic cells sensitized from pomegranate pigments or mercurochrome individually.

  16. Simulation of the Indirect Radiative Forcing of Climate Due to Aerosols by the Two-Way Coupled WRF-CMAQ over the Eastern United States

    EPA Science Inventory

    In this study, the shortwave cloud forcing (SWCF) and longwave cloud forcing (LWCF) are estimated with the newly developed two-way coupled WRF-CMAQ over the eastern United States. Preliminary indirect aerosol forcing has been successfully implemented in WRF-CMAQ. The comparisons...

  17. Characterization of the tyrosine-Z radical and its environment in the spin-coupled S2TyrZ* state of photosystem II from Thermosynechococcus elongatus.

    PubMed

    Un, Sun; Boussac, Alain; Sugiura, Miwa

    2007-03-20

    The Mn4Ca cluster of photosystem II (PSII) goes through five sequential oxidation states (S0-S4) in the water oxidation process that also involves a tyrosine radical intermediate (TyrZ*). An S2TyrZ* state in which the Mn4Ca cluster and TyrZ* are magnetically coupled to each other and which is characterized by a distinct "split-signal" EPR spectrum can be generated in acetate-treated PSII. This state was examined by high-field EPR (HFEPR) in PSII from Thermosynechococcus elongatus isolated from a D2-Tyr160Phe mutant to avoid spectral contributions from TyrD*. In contrast to the same state in plants, both antiferromagnetic and ferromagnetic spin-spin couplings were observed. The intrinsic g values of TyrZ* in the coupled state were directly measured from the microwave frequency dependence of the HFEPR spectrum. The TyrZ* gx value in the antiferromagnetic centers was 2.0083, indicating that the coupled radical was in a less electropositive environment than in Mn-depleted PSII. Two gx values were found in the ferromagnetically coupled centers, 2.0069 and 2.0079. To put these values in perspective, the second redox-active tyrosine, TyrD*, was examined in various electrostatic environments. The TyrD* gx value changed from 2.0076 in the wild type to 2.0095 when the hydrogen bond from histidine 189 to TyrD* was removed using the D2-His189Leu mutant, indicating a change to a significantly less electropositive environment. BLY3P/6-31+G** density functional calculations on the hydrogen-bonded p-ethylphenoxy radical-imidazole supermolecular model complex showed that the entire range of Tyr* gx values, from 2.0065 to 2.0095, could be explained by the combined effects of hydrogen bonding and the dielectric constant of the local protein environment.

  18. Single-shot readout and relaxation of singlet and triplet states in exchange-coupled 31P electron spins in silicon.

    PubMed

    Dehollain, Juan P; Muhonen, Juha T; Tan, Kuan Y; Saraiva, Andre; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2014-06-13

    We present the experimental observation of a large exchange coupling J ≈ 300 μeV between two (31)P electron spin qubits in silicon. The singlet and triplet states of the coupled spins are monitored in real time by a single-electron transistor, which detects ionization from tunnel-rate-dependent processes in the coupled spin system, yielding single-shot readout fidelities above 95%. The triplet to singlet relaxation time T(1) ≈ 4 ms at zero magnetic field agrees with the theoretical prediction for J-coupled 31P dimers in silicon. The time evolution of the two-electron state populations gives further insight into the valley-orbit eigenstates of the donor dimer, valley selection rules and relaxation rates, and the role of hyperfine interactions. These results pave the way to the realization of two-qubit quantum logic gates with spins in silicon and highlight the necessity to adopt gating schemes compatible with weak J-coupling strengths. PMID:24972221

  19. Single-shot readout and relaxation of singlet and triplet states in exchange-coupled 31P electron spins in silicon.

    PubMed

    Dehollain, Juan P; Muhonen, Juha T; Tan, Kuan Y; Saraiva, Andre; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2014-06-13

    We present the experimental observation of a large exchange coupling J ≈ 300 μeV between two (31)P electron spin qubits in silicon. The singlet and triplet states of the coupled spins are monitored in real time by a single-electron transistor, which detects ionization from tunnel-rate-dependent processes in the coupled spin system, yielding single-shot readout fidelities above 95%. The triplet to singlet relaxation time T(1) ≈ 4 ms at zero magnetic field agrees with the theoretical prediction for J-coupled 31P dimers in silicon. The time evolution of the two-electron state populations gives further insight into the valley-orbit eigenstates of the donor dimer, valley selection rules and relaxation rates, and the role of hyperfine interactions. These results pave the way to the realization of two-qubit quantum logic gates with spins in silicon and highlight the necessity to adopt gating schemes compatible with weak J-coupling strengths.

  20. Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method.

    PubMed

    Mao, Jingdong; Kong, Xueqian; Schmidt-Rohr, Klaus; Pignatello, Joseph J; Perdue, E Michael

    2012-06-01

    Advanced (13)C solid-state techniques were employed to investigate the major structural characteristics of two surface-seawater dissolved organic matter (DOM) samples isolated using the novel coupled reverse osmosis/electrodialysis method. The NMR techniques included quantitative (13)C direct polarization/magic angle spinning (DP/MAS) and DP/MAS with recoupled dipolar dephasing, (13)C cross-polarization/total sideband suppression (CP/TOSS), (13)C chemical shift anisotropy filter, CH, CH(2), and CH(n) selection, two-dimensional (1)H-(13)C heteronuclear correlation NMR (2D HETCOR), 2D HETCOR combined with dipolar dephasing, and (15)N cross-polarization/magic angle spinning (CP/MAS). The two samples (Coastal and Marine DOM) were collected at the mouth of the Ogeechee River and in the Gulf Stream, respectively. The NMR results indicated that they were structurally distinct. Coastal DOM contained significantly more aromatic and carbonyl carbons whereas Marine DOM was markedly enriched in alkoxy carbon (e.g., carbohydrate-like moieties). Both samples contained significant amide N, but Coastal DOM had nitrogen bonded to aromatic carbons. Our dipolar-dephased spectra indicated that a large fraction of alkoxy carbons were not protonated. For Coastal DOM, our NMR results were consistent with the presence of the major structural units of (1) carbohydrate-like moieties, (2) lignin residues, (3) peptides or amino sugars, and (4) COO-bonded alkyls. For Marine DOM, they were (1) carbohydrate-like moieties, (2) peptides or amino sugars, and (3) COO-bonded alkyls. In addition, both samples contained significant amounts of nonpolar alkyl groups. The potential sources of the major structural units of DOM were discussed in detail. Nonprotonated O-alkyl carbon content was proposed as a possible index of humification. PMID:22553962