Sample records for ocular surface tissue

  1. Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases.

    PubMed

    Kobayashi, Masakazu; Nakamura, Takahiro; Yasuda, Makoto; Hata, Yuiko; Okura, Shoki; Iwamoto, Miyu; Nagata, Maho; Fullwood, Nigel J; Koizumi, Noriko; Hisa, Yasuo; Kinoshita, Shigeru

    2015-01-01

    Severe ocular surface diseases (OSDs) with severe dry eye can be devastating and are currently some of the most challenging eye disorders to treat. To investigate the feasibility of using an autologous tissue-engineered cultivated nasal mucosal epithelial cell sheet (CNMES) for ocular surface reconstruction, we developed a novel technique for the culture of nasal mucosal epithelial cells expanded ex vivo from biopsy-derived human nasal mucosal tissues. After the protocol, the CNMESs had 4-5 layers of stratified, well-differentiated cells, and we successfully generated cultured epithelial sheets, including numerous goblet cells. Immunohistochemistry confirmed the presence of keratins 3, 4, and 13; mucins 1, 16, and 5AC; cell junction and basement membrane assembly proteins; and stem/progenitor cell marker p75 in the CNMESs. We then transplanted the CNMESs onto the ocular surfaces of rabbits and confirmed the survival of this tissue, including the goblet cells, up to 2 weeks. The present report describes an attempt to overcome the problems of treating severe OSDs with the most severe dry eye by treating them using tissue-engineered CNMESs to supply functional goblet cells and to stabilize and reconstruct the ocular surface. The present study is a first step toward assessing the use of tissue-engineered goblet-cell transplantation of nonocular surface origin for ocular surface reconstruction. ©AlphaMed Press.

  2. [Challenge and treatment strategy for ocular surface damage in patients with long term use of antiglaucoma drugs].

    PubMed

    He, Xiang-Ge

    2011-02-01

    Long term use of topical anti-glaucoma drugs has been shown to induce chronic conjunctivitis, superficial punctate keratitis (SPK) and dry eye symptom. Under these conditions, a loss of goblet cells in conjunctiva, epithelial squamous metaplasia and apoptosis were morphologically revealed. Benzalkonium Chloride (BKC), a most frequently used preservative in eye drops, has been found to be an important factor causing ocular surface damage. Furthermore, a big challenge for ophthalmologists is that toxic damage of medication to ocular surface tissues is mild, poor specificity, and delayed manifestation in patients, especially when coexisting with other ocular surface diseases. Impairment of ocular surface tissues greatly impacts the life quality of patients and subsequently influences compliance with glaucoma therapy. This paper emphasizes to take measures to prevent ocular surface tissue damage resulted from chronic use of topical anti-glaucoma drugs and further discusses the treatment strategy. Effective and long-lasting action drugs should always be selected for glaucomatous patients in order to decrease the frequency of topical instillation or at a more expensive medication, a fixed combination formula can be considered for glaucoma therapy. An early surgery or laser treatment is also proposed for the patients who require an IOP reduction with an existing ocular surface impairment. Future investigation and development of new medications with long-term efficacy and appropriate BKC are suggested and preservative-free or drugs with new preservative materials recommended.

  3. Development of a second-generation novel UVR sensor for the quantification of the light field at the anterior ocular surface

    NASA Astrophysics Data System (ADS)

    Fleming, David; Walsh, James E.; Moore, Linda; Bergmanson, Jan P. G.; McMahon, David

    2005-06-01

    Research has shown in recent years that acute and cumulative exposure to excessive ultraviolet radiation (UVR) can cause a range of degenerative ocular conditions such as pterygium, photokeratitis and pinguecula. The increase in natural solar UVR as a result of the depletion of the ozone layer has led to a greater awareness of the adverse effects of UVR on the anterior ocular surface tissues. The relevance of this lies in the fact that these tissues are not immune to photodamage and that there is selective absorption of UVR by conjunctival and corneal tissue in the anterior ocular surface. Therefore, there is a demand for more precise quantification and localisation of UVR incidence at the anterior ocular surface. A novel solar blind photodiode sensor array has been designed, constructed and tested for this purpose. The emphasis of the measurements made by this sensor system is the acquisition of real time, field based surveys of the ocular UVR light field in a broad range of insolation environments. These data will then provide a thorough database of UVR irradiances that can be related to induced damage of anterior ocular tissue. Results to date show the first measured, in-vivo, absolute UVR levels on the eye, the corresponding relative field across the eye and the presence of nasal-temporal biases that exist.

  4. Plasma Rich in Growth Factors for the Treatment of Ocular Surface Diseases.

    PubMed

    Anitua, Eduardo; Muruzabal, Francisco; de la Fuente, María; Merayo, Jesús; Durán, Juan; Orive, Gorka

    2016-07-01

    The purpose of this work is to describe and review the technology of plasma rich in growth factors (PRGF), a novel blood derivative product, in the treatment of ocular surface disorders. To demonstrate the importance of this technology in the treatment of ocular pathologies, a thorough review of the preclinical and clinical literature results obtained following use of the different therapeutic formulations of PRGF was carried out. A literature search for applications of PGRF plasma in the ophthalmology field was carried out using the PubMed database. PRGF involves the use of patient's own biologically active proteins, growth factors, and biomaterial scaffolds for therapeutic purposes. This procedural technology is gaining interest in regenerative medicine due to its potential to stimulate and accelerate the tissue healing processes. The versatility and biocompatibility of this technology opens the door to a personalized medicine on ocular tissue regeneration. This review discusses the state of the art of the new treatments and technologies developed to promote ocular surface tissue regeneration. The standardized protocol that has been developed to source eye drops from PRGF technology is also described. The preclinical research, together with the most relevant clinical applications are summarized and discussed. The preliminary results suggest that the use of PRGF to enhance ocular tissue regeneration is safe and efficient.

  5. Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease.

    PubMed

    Lee, David; Lu, Qiaozhi; Sommerfeld, Sven D; Chan, Amanda; Menon, Nikhil G; Schmidt, Tannin A; Elisseeff, Jennifer H; Singh, Anirudha

    2017-06-01

    Hyaluronic acid (HA) solutions effectively lubricate the ocular surface and are used for the relief of dry eye related symptoms. However, HA undergoes rapid clearance due to limited adhesion, which necessitates frequent instillation. Conversely, highly viscous artificial tear formulations with HA blur vision and interfere with blinking. Here, we developed an HA-eye drop formulation that selectively binds and retains HA for extended periods of time on the ocular surface. We synthesized a heterobifunctional polymer-peptide system with one end binding HA while the other end binding either sialic acid-containing glycosylated transmembrane molecules on the ocular surface epithelium, or type I collagen molecule within the tissue matrix. HA solution was mixed with the polymer-peptide system and tested on both ex vivo and in vivo models to determine its ability to prolong HA retention. Furthermore, rabbit ocular surface tissues treated with binding peptides and HA solutions demonstrated superior lubrication with reduced kinetic friction coefficients compared to tissues treated with conventional HA solution. The results suggest that binding peptide-based solution can keep the ocular surface enriched with HA for prolonged times as well as keep it lubricated. Therefore, this system can be further developed into a more effective treatment for dry eye patients than a standard HA eye drop. Eye drop formulations containing HA are widely used to lubricate the ocular surface and relieve dry eye related symptoms, however its low residence time remains a challenge. We designed a polymer-peptide system for the targeted delivery of HA to the ocular surface using sialic acid or type I collagen as anchors for HA immobilization. The addition of the polymer-peptide system to HA eye drop exhibited a reduced friction coefficient, and it can keep the ocular surface enriched with HA for prolonged time. This system can be further developed into a more effective treatment for dry eye than a standard HA eye drop. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. SFTA3 - a novel surfactant protein of the ocular surface and its role in corneal wound healing and tear film surface tension.

    PubMed

    Schicht, Martin; Garreis, Fabian; Hartjen, Nadine; Beileke, Stephanie; Jacobi, Christina; Sahin, Afsun; Holland, Detlef; Schröder, Henrik; Hammer, Christian M; Paulsen, Friedrich; Bräuer, Lars

    2018-06-28

    The study aimed to characterize the expression and function of SFTA3 at the ocular surface and in tears. Ocular tissues, conjunctival (HCjE) and human corneal (HCE) epithelial cell lines as well as tearfilm of patients suffering from different forms of dry eye disease (DED) were analyzed by means of RT-PCR, western blot, immunohistochemistry, and ELISA. A possible role of recombinant SFTA3 in corneal wound healing was investigated performing in vitro scratch assays. Tear film regulatory properties were analyzed with the spinning drop method and the regulation of SFTA3 transcripts was studied in HCE and HCjE after incubation with proinflammatory cytokines as well as typical ocular pathogens by real-time RT-PCR and ELISA. The results reveal that human ocular tissue as well as tears of healthy volunteers express SFTA3 whereas tears from patients with DED showed significantly increased SFTA3 levels. In vitro wounding of HCE cell cultures that had been treated with recombinant SFTA3 demonstrated a significantly increased wound closure rate and rSFTA3 reduced the surface tension of tear fluid. The results indicate that SFTA3 at the ocular surface seemed to be involved in wound healing and the reduction of surface tension.

  7. Biomaterials and Tissue Engineering Strategies for Conjunctival Reconstruction and Dry Eye Treatment

    PubMed Central

    Lu, Qiaozhi; Al-Sheikh, Osama; Elisseeff, Jennifer H.; Grant, Michael P.

    2015-01-01

    The ocular surface is a component of the anterior segment of the eye and is covered by the tear film. Together, they protect the vital external components of the eye from the environment. Injuries, surgical trauma, and autoimmune diseases can damage this system, and in severe cases, tissue engineering strategies are necessary to ensure proper wound healing and recovery. Dry eye is another major concern and a complicated disease affecting the ocular surface. More effective and innovative therapies are required for better outcomes in treating dry eye. This review focuses on the regenerative medicine of the conjunctiva, which is an essential part of the ocular surface system. Features and advances of different types of biomolecular materials, and autologous and allogeneic tissue grafts are summarized and compared. Specifically, vitrigel, a collagen membrane and novel material for use on the ocular surface, offers significant advantages over other biomaterials. This review also discusses a breakthrough microfluidic technology, “organ-on-a-chip” and its potential application in investigating new therapies for dry eye. PMID:26692712

  8. Development of Causative Treatment Strategies for Lacrimal Gland Insufficiency by Tissue Engineering and Cell Therapy. Part 2: Reconstruction of Lacrimal Gland Tissue: What Has Been Achieved So Far and What Are the Remaining Challenges?

    PubMed

    Massie, Isobel; Dietrich, Jana; Roth, Mathias; Geerling, Gerd; Mertsch, Sonja; Schrader, Stefan

    2016-10-01

    The lacrimal gland is located in the upper temporal compartment of the orbita, and along with the ocular surface, eye lids, and sensory and motor nerves forms the lacrimal functional unit (LFU). The LFU is responsible for producing, distributing, and maintaining the tear film in order to maintain a smooth, moist, and regular ocular surface epithelium such that appropriate refractive properties are achieved and the eyeball is protected against dust, debris, and pathogens. If the main lacrimal gland is impaired (due to either disease or injury), this balance is disrupted, and severe quantitative dry eye syndrome (DES) can develop. DES treatments remain palliative, with the most commonly used therapies being based on tear substitution, tear retention, and control of inflammation on the ocular surface. Causative treatments such as salivary gland transplantation have shown to reduce symptoms in very severe cases, however can cause problems on the ocular surface due to different properties of saliva and tears. Therefore, causative approaches for treating DES by regeneration or reconstruction of lacrimal gland tissue depending on disease severity seem highly appealing. This article reviews current approaches for in vitro reconstruction of lacrimal gland tissue. Finally, the limitations that must be overcome before a new, tissue-engineered therapy may be delivered to clinic will be discussed.

  9. Comparison of Cornea Module and DermaInspect for noninvasive imaging of ocular surface pathologies

    NASA Astrophysics Data System (ADS)

    Steven, Philipp; Müller, Maya; Koop, Norbert; Rose, Christian; Hüttmann, Gereon

    2009-11-01

    Minimally invasive imaging of ocular surface pathologies aims at securing clinical diagnosis without actual tissue probing. For this matter, confocal microscopy (Cornea Module) is in daily use in ophthalmic practice. Multiphoton microscopy is a new optical technique that enables high-resolution imaging and functional analysis of living tissues based on tissue autofluorescence. This study was set up to compare the potential of a multiphoton microscope (DermaInspect) to the Cornea Module. Ocular surface pathologies such as pterygia, papillomae, and nevi were investigated in vivo using the Cornea Module and imaged immediately after excision by DermaInspect. Two excitation wavelengths, fluorescence lifetime imaging and second-harmonic generation (SHG), were used to discriminate different tissue structures. Images were compared with the histopathological assessment of the samples. At wavelengths of 730 nm, multiphoton microscopy exclusively revealed cellular structures. Collagen fibrils were specifically demonstrated by second-harmonic generation. Measurements of fluorescent lifetimes enabled the highly specific detection of goblet cells, erythrocytes, and nevus-cell clusters. At the settings used, DermaInspect reaches higher resolutions than the Cornea Module and obtains additional structural information. The parallel detection of multiphoton excited autofluorescence and confocal imaging could expand the possibilities of minimally invasive investigation of the ocular surface toward functional analysis at higher resolutions.

  10. Surgical Reconstruction of Ocular Surface Tumors Using Fibrin Sealant Tissue Adhesive.

    PubMed

    Queiroz de Paiva, Aline Roseane; Abreu de Azevedo Fraga, Larissa; Torres, Virgínia Laura Lucas

    2016-10-01

    To evaluate the surgical outcomes of ocular surface reconstruction in corneal-conjunctival tumors using fibrin tissue adhesive. A prospective noncomparative study was performed between May 2013 and February 2015. Patients were submitted to routine surgical procedure for corneal-conjunctival tumor excision followed by amniotic membrane graft transplantation using fibrin tissue adhesive (Evicel®, Omrix Biopharmaceuticals Ltd., Israel). Results were assessed on the 1st, 7th, 15th and 30th postoperative days to analyze subjective complaints, adhesiveness and positioning of the graft, potential complications and recurrences. Twenty-five eyes were analyzed (male, 14). The diagnosis after the treatment was categorized as squamous cell neoplasia, dysplasia, actinic keratosis, squamous papilloma and compound melanocytic nevus. Few significant symptoms were reported, such as mild hyperemia and ocular dyscomfort. One case developed a conjunctival granuloma which regressed after topical treatment. All grafts were successful with no displacements or retraction postoperatively. There was no clinical recurrence of the tumor in a mean time of follow-up of 11 months. Fibrin tissue adhesive is safe and effective in the surgery of ocular surface tumor. In this series, sutureless amniotic membrane transplantation using fibrin glue has the potential to shorten the surgical time, mitigate inflammation postoperatively and improve patient discomfort.

  11. The mucosal surfaces of both eyes are immunologically linked by a neurogenic inflammatory reflex involving TRPV1 and substance P.

    PubMed

    Guzmán, Mauricio; Miglio, Maximiliano S; Zgajnar, Nadia R; Colado, Ana; Almejún, María B; Keitelman, Irene A; Sabbione, Florencia; Fuentes, Federico; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G

    2018-06-04

    Immunological interdependence between the two eyes has been reported for the cornea and the retina but not for the ocular mucosal surface. Intriguingly, patients frequently report ocular surface-related symptoms in the other eye after unilateral ocular surgery. Here we show how unilateral eye injuries in mice affect the mucosal immune response of the opposite ocular surface. We report that, despite the lack of lymphatic cross-drainage, a neurogenic inflammatory reflex in the contralateral conjunctiva is sufficient to increase, first, epithelial nuclear factor kappa B signaling, then, dendritic cell maturation, and finally, expansion of effector, instead of regulatory, T cells in the draining lymph node, leading to disrupted ocular mucosal tolerance. We also show that damage to ocular surface nerves is required. Using pharmacological inhibitors and agonists, we identified transient receptor potential vanilloid 1 (TRPV1) channel as the receptor sensing tissue damage in the injured eye and substance P released in the opposite ocular surface as the effector of the sympathetic response. Finally, blocking either step prevented subsequent ocular allergic reactions in the opposite eye in a unilateral corneal alkali burn model. This study demonstrates that both ocular surfaces are immunologically linked and suggests potential therapeutic targets for intervention.

  12. Expression of prostaglandin E receptor subtype EP4 in conjunctival epithelium of patients with ocular surface disorders: case-control study.

    PubMed

    Ueta, Mayumi; Sotozono, Chie; Yamada, Keiko; Yokoi, Norihiko; Inatomi, Tsutomu; Kinoshita, Shigeru

    2012-01-01

    To confirm the downregulation of PTGER4 mRNA in the conjunctiva of Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and ocular cicatricial pemphigoid (OCP) patients and to examine the expression of its EP4 protein in the conjunctival epithelium of patients with various ocular surface disorders. Case-control study. We performed quantitative reverse transcription-PCR (RT-PCR) analysis of PTGER4 mRNA in conjunctival tissue sections from patients with SJS/TEN and OCP to confirm the downregulation of PTGER4 mRNA expression. We also analysed EP4 immunohistologically in other ocular surface disorders. Conjunctival tissues were obtained from patients undergoing surgical reconstruction of the ocular surface due to chemical eye burns, subacute SJS/TEN or chronic SJS/TEN, chronic OCP, severe graft versus host disease (GVHD) and from patients with Mooren's ulcers treated by resection of the inflammatory conjunctiva. The expression of PTGER4 mRNA and EP4 protein assessed by quantitative RT-PCR assay and immunohistological methods. PTGER4 mRNA was significantly lower in conjunctival tissues from SJS and OCP patients than in the control conjunctivochalasis samples. EP4 protein was detected in conjunctival epithelium from patients with chemical eye burn and in control conjunctival epithelium from patients with conjunctivochalasis. Its expression varied in conjunctival epithelium from patients with Mooren's ulcer. We did not detect EP4 immunoreactivity in conjunctival epithelium from patients with subacute SJS/TEN, severe GVHD, chronic SJS/TEN or OCP. The strong downregulation of EP4 expression in conjunctival epithelium from patients with OCP or SJS/TEN may be attributable to ocular surface inflammation.

  13. Expression of prostaglandin E receptor subtype EP4 in conjunctival epithelium of patients with ocular surface disorders: case-control study

    PubMed Central

    Ueta, Mayumi; Sotozono, Chie; Yamada, Keiko; Yokoi, Norihiko; Inatomi, Tsutomu; Kinoshita, Shigeru

    2012-01-01

    Objectives To confirm the downregulation of PTGER4 mRNA in the conjunctiva of Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and ocular cicatricial pemphigoid (OCP) patients and to examine the expression of its EP4 protein in the conjunctival epithelium of patients with various ocular surface disorders. Design Case-control study. Setting and participants We performed quantitative reverse transcription-PCR (RT-PCR) analysis of PTGER4 mRNA in conjunctival tissue sections from patients with SJS/TEN and OCP to confirm the downregulation of PTGER4 mRNA expression. We also analysed EP4 immunohistologically in other ocular surface disorders. Conjunctival tissues were obtained from patients undergoing surgical reconstruction of the ocular surface due to chemical eye burns, subacute SJS/TEN or chronic SJS/TEN, chronic OCP, severe graft versus host disease (GVHD) and from patients with Mooren's ulcers treated by resection of the inflammatory conjunctiva. Primary and secondary outcome measures The expression of PTGER4 mRNA and EP4 protein assessed by quantitative RT-PCR assay and immunohistological methods. Results PTGER4 mRNA was significantly lower in conjunctival tissues from SJS and OCP patients than in the control conjunctivochalasis samples. EP4 protein was detected in conjunctival epithelium from patients with chemical eye burn and in control conjunctival epithelium from patients with conjunctivochalasis. Its expression varied in conjunctival epithelium from patients with Mooren's ulcer. We did not detect EP4 immunoreactivity in conjunctival epithelium from patients with subacute SJS/TEN, severe GVHD, chronic SJS/TEN or OCP. Conclusions The strong downregulation of EP4 expression in conjunctival epithelium from patients with OCP or SJS/TEN may be attributable to ocular surface inflammation. PMID:23065448

  14. Xenogeneic Acellular Conjunctiva Matrix as a Scaffold of Tissue-Engineered Corneal Epithelium

    PubMed Central

    Zhao, Haifeng; Qu, Mingli; Wang, Yao; Wang, Zhenyu; Shi, Weiyun

    2014-01-01

    Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM) and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS) for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen) remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM), the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface. PMID:25375996

  15. Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases.

    PubMed

    Li, Fei; Zhao, Shao-Zhen

    2016-01-01

    Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs), derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease.

  16. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye

    PubMed Central

    Bauskar, Aditi; Mack, Wendy J.; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A.; Kolar, Grant R.; Gleave, Martin E.; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C.; Wilson, Mark R.; Fini, M. Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye. PMID:26402857

  17. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    PubMed

    Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  18. Rebamipide suppresses PolyI:C-stimulated cytokine production in human conjunctival epithelial cells.

    PubMed

    Ueta, Mayumi; Sotozono, Chie; Yokoi, Norihiko; Kinoshita, Shigeru

    2013-09-01

    We previously documented that ocular surface epithelial cells could regulate ocular surface inflammation and suggested that, while Toll-like receptor 3 upregulates, EP3, one of the prostaglandin E2 receptors, downregulates ocular surface inflammation. Others reported that rebamipide, a gastroprotective drug, could not only increase the gastric mucus production, but also suppressed gastric mucosal inflammation and that it was dominantly distributed in mucosal tissues. The eyedrop form of rebamipide, approved in Japan for use in the treatment of dry eye diseases, upregulates mucin secretion and production, thereby suppressing superficial punctate keratopathy on the ocular surface of patients with this disease. In the current study, we investigated whether rebamipide has anti- inflammatory effects on the ocular surface. To examine the effects of rebamipide on polyI:C-induced cytokine expression by primary human conjunctival epithelial cells, we used enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction assay. We studied the effects of rebamipide on ocular surface inflammation in our murine experimental allergic conjunctivitis (EAC) model. Rebamipide could suppress polyI:C-induced cytokine production and the expression of mRNAs for CXCL10, CXCL11, RANTES, MCP-1, and IL-6 in human conjunctival epithelial cells. In our EAC model, the topical administration of rebamipide suppressed conjunctival allergic eosinophil infiltration. The topical application of rebamipide on the ocular surface might suppress ocular surface inflammation by suppressing the production of cytokines by ocular surface epithelial cells.

  19. Influenza Virus Respiratory Infection and Transmission Following Ocular Inoculation in Ferrets

    PubMed Central

    Belser, Jessica A.; Gustin, Kortney M.; Maines, Taronna R.; Pantin-Jackwood, Mary J.; Katz, Jacqueline M.; Tumpey, Terrence M.

    2012-01-01

    While influenza viruses are a common respiratory pathogen, sporadic reports of conjunctivitis following human infection demonstrates the ability of this virus to cause disease outside of the respiratory tract. The ocular surface represents both a potential site of virus replication and a portal of entry for establishment of a respiratory infection. However, the properties which govern ocular tropism of influenza viruses, the mechanisms of virus spread from ocular to respiratory tissue, and the potential differences in respiratory disease initiated from different exposure routes are poorly understood. Here, we established a ferret model of ocular inoculation to explore the development of virus pathogenicity and transmissibility following influenza virus exposure by the ocular route. We found that multiple subtypes of human and avian influenza viruses mounted a productive virus infection in the upper respiratory tract of ferrets following ocular inoculation, and were additionally detected in ocular tissue during the acute phase of infection. H5N1 viruses maintained their ability for systemic spread and lethal infection following inoculation by the ocular route. Replication-independent deposition of virus inoculum from ocular to respiratory tissue was limited to the nares and upper trachea, unlike traditional intranasal inoculation which results in virus deposition in both upper and lower respiratory tract tissues. Despite high titers of replicating transmissible seasonal viruses in the upper respiratory tract of ferrets inoculated by the ocular route, virus transmissibility to naïve contacts by respiratory droplets was reduced following ocular inoculation. These data improve our understanding of the mechanisms of virus spread following ocular exposure and highlight differences in the establishment of respiratory disease and virus transmissibility following use of different inoculation volumes and routes. PMID:22396651

  20. A nanomedicine to treat ocular surface inflammation: performance on an experimental dry eye murine model.

    PubMed

    Contreras-Ruiz, L; Zorzi, G K; Hileeto, D; López-García, A; Calonge, M; Seijo, B; Sánchez, A; Diebold, Y

    2013-05-01

    MUC5AC is a glycoprotein with gel-forming properties, whose altered expression has been implicated in the pathogenesis of dry eye disease. The aim of our study was to achieve an efficient in vivo transfection of MUC5AC, restore its normal levels in an inflamed ocular surface and determine whether restored MUC5AC levels improve ocular surface inflammation. Cationized gelatin-based nanoparticles (NPs) loaded with a plasmid coding a modified MUC5AC protein (pMUC5AC) were instilled in healthy and experimental dry eye (EDE) mice. MUC5AC expression, clinical signs, corneal fluorescein staining and tear production were evaluated. Ocular specimens were processed for histopathologic evaluation, including goblet cell count and CD4 immunostaining. Neither ocular discomfort nor irritation was observed in vivo after NP treatment. Expression of modified MUC5AC was significantly higher in ocular surface tissue of pMUC5AC-NP-treated animals than that of controls. In healthy mice, pMUC5AC-NPs had no effect on fluorescein staining or tear production. In EDE mice, both parameters significantly improved after pMUC5AC-NP treatment. Anterior eye segment of treated mice showed normal architecture and morphology with lack of remarkable inflammatory changes, and a decrease in CD4+ T-cell infiltration. Thus, pMUC5AC-NPs were well tolerated and able to induce the expression of modified MUC5A in ocular surface tissue, leading to reduction of the inflammation and, consequently improving the associated clinical parameters, such as tear production and fluorescein staining. These results identify a potential application of pMUC5AC-NPs as a new therapeutic modality for the treatment of dry eye disease.

  1. Phototoxic effects of an operating microscope on the ocular surface and tear film.

    PubMed

    Hwang, Hyung Bin; Kim, Hyun Seung

    2014-01-01

    We evaluated light exposure-induced dry eye syndrome by investigating the phototoxic effects of an operating microscope on the ocular surface and tear film in rabbits. Sixty eyes of 30 rabbits were divided into 3 groups based on the intensity of light exposure received from an operating microscope: Control group, no exposure to light; group A, 40,000-lx intensity for 30 minutes; and group B, 100,000-lx intensity for 30 minutes. To evaluate the potential damage to the ocular surface and tear film, Schirmer tests, rose bengal staining, and conjunctival impression cytology were performed before the light exposure and at 1, 3, and 5 days afterward. In addition, the expression of interleukin 1-beta was analyzed in tear samples. The expression of mucin 5AC was evaluated using immunofluorescence staining, and periodic acid-Schiff staining was conducted on conjunctival tissues. Corneal and conjunctival tissues were observed by means of electron microscopy. Potential damage to the ocular surface and tear film was found in the light-exposed groups as evidenced by decreased aqueous tear production, devitalized corneal and conjunctival epithelial cells, squamous metaplasia of conjunctival epithelial cells, decreased conjunctival goblet cell density, decreased expression of mucin 5AC, ultrastructural cellular damage to corneal and conjunctival tissues, and increased interleukin 1-beta expression in tears. This damage was more noticeable in group B than in group A (P < 0.05). Light exposure from an operating microscope had phototoxic effects on the ocular surface and tear film in this in vivo experiment. These changes seemed to intensify as the intensity of the light increased. Therefore, excessive light exposure during ophthalmic procedures could be a pathogenic factor in dry eye syndrome after a surgery is performed.

  2. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage.

    PubMed

    Galindo, Sara; Herreras, José M; López-Paniagua, Marina; Rey, Esther; de la Mata, Ana; Plata-Cordero, María; Calonge, Margarita; Nieto-Miguel, Teresa

    2017-10-01

    Limbal stem cells are responsible for the continuous renewal of the corneal epithelium. The destruction or dysfunction of these stem cells or their niche induces limbal stem cell deficiency (LSCD) leading to visual loss, chronic pain, and inflammation of the ocular surface. To restore the ocular surface in cases of bilateral LSCD, an extraocular source of stem cells is needed to avoid dependence on allogeneic limbal stem cells that are difficult to obtain, isolate, and culture. The aim of this work was to test the tolerance and the efficacy of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) to regenerate the ocular surface in two experimental models of LSCD that closely resemble different severity grades of the human pathology. hAT-MSCs transplanted to the ocular surface of the partial and total LSCD models developed in rabbits were well tolerated, migrated to inflamed tissues, reduced inflammation, and restrained the evolution of corneal neovascularization and corneal opacity. The expression profile of the corneal epithelial cell markers CK3 and E-cadherin, and the limbal epithelial cell markers CK15 and p63 was lost in the LSCD models, but was partially recovered after hAT-MSC transplantation. For the first time, we demonstrated that hAT-MSCs improve corneal and limbal epithelial phenotypes in animal LSCD models. These results support the potential use of hAT-MSCs as a novel treatment of ocular surface failure due to LSCD. hAT-MSCs represent an available, non-immunogenic source of stem cells that may provide therapeutic benefits in addition to reduce health care expenses. Stem Cells 2017;35:2160-2174. © 2017 AlphaMed Press.

  3. [Eye-associated lymphoid tissue (EALT) is continuously spread throughout the ocular surface from the lacrimal gland to the lacrimal drainage system].

    PubMed

    Knop, E; Knop, N

    2003-11-01

    Components of the mucosal immune system (MALT) have been identified in the conjunctiva (as CALT) and the lacrimal drainage system (as LDALT). Their structural and functional relation with the established immune protection by the lacrimal gland is unclear. Macroscopically normal and complete tissues of the conjunctiva, lacrimal drainage system and lacrimal gland from human body donors were investigated by analysis of translucent whole mounts, and using histology, immunohistology as well as scanning and transmission electron microscopy. A typical diffuse lymphoid tissue, composed of effector cells of the immune system (T-lymphocytes and IgA producing plasma cells) under an epithelium that contains the IgA transporter SC, is not isolated in the conjunctiva and lacrimal drainage system. It is anatomically continuous from the lacrimal gland along its excretory ducts into the conjunctiva and from there via the lacrimal canaliculi into the lacrimal drainage system. Lymphoid follicles occur in a majority (about 60%) and with bilateral symmetry. The topography of CALT corresponds to the position of the cornea in the closed eye. These results show that the MALT of the lacrimal gland, conjunctiva and lacrimal drainage system constitute an anatomical and functional unit for immune protection of the ocular surface. Therefore it should be integrated as an "eye-associated lymphoid tissue" (EALT) into the MALT system of the body. EALT can detect ocular surface antigens by the lymphoid follicles and can supply other organs and the ocular surface including the lacrimal gland with specific effector cells via the regulated recirculation of lymphoid cells.

  4. Mucin gene expression is not regulated by estrogen and/or progesterone in the ocular surface epithelia of mice.

    PubMed

    Lange, Christine; Fernandez, Jolene; Shim, David; Spurr-Michaud, Sandra; Tisdale, Ann; Gipson, Ilene K

    2003-07-01

    Dry eye syndrome is prevalent in post-menopausal women, and post-menopausal women secrete less mucus in their reproductive tracts. Using a mouse model, the purpose of this study was to determine if estrogen and/or progesterone regulates Muc4 and Muc5AC gene expression in the ocular surface epithelia, as the hormones do in reproductive tract epithelia. Adult C57BL/6 mice were ovariectomized, and 19 days later, pellets containing estrogen, progesterone, or a combination were inserted subcutaneously. Ocular surface and reproductive tract tissues were harvested following seven days of hormone treatment. A control group consisted of ovariectomized mice that received no hormone treatment. Real-time reverse transcription-polymerase chain reaction was used to determine the tissue expression levels of mucin mRNA of each treatment group relative to the control. Muc4 mRNA expression levels were determined for the reproductive tract, and both Muc4 and Muc5AC expression levels were determined for the ocular surface epithelia. Muc4 and Muc5AC gene expression in ocular surface and Muc4 in reproductive tract epithelia was demonstrated by In Situ hybridization, and Muc4 and Muc5AC protein was demonstrated in the epithelia of animals in the experimental groups. The mRNA expression levels of Muc4 and Muc5AC and the immunofluorescence localization pattern in the ocular surface epithelia were not significantly different in any hormone treatment group when compared to the control ovariectomized group. By comparison, mice that were administered estrogen had a significant increase of Muc4 mRNA in the reproductive tract epithelia, progesterone given in combination with estrogen antagonized the upregulatory effects of estrogen in the reproductive tract, and the amount of Muc4 mRNA in the reproductive tract of progesterone-treated animals was not different from ovariectomized controls. Immunofluorescence localization of Muc4 in the reproductive tract epithelia of the experimental groups correlated to message levels, with lack of Muc4 protein detected in the control and progesterone groups. In comparison to reproductive tract epithelia, Muc4 and Muc5AC are not hormonally regulated by estrogen or progesterone in the ocular surface epithelia of mice. These data demonstrate that regulation of epithelial mucin genes is tissue specific.

  5. Application of erbium: YAG laser in ocular ablation.

    PubMed

    Tsubota, K

    1990-01-01

    Recent developments in lasers have provided us the possibility of laser ocular surgery. The xenon, argon, neodymium:YAG and dye lasers have been successfully used in out-patient clinics. The excimer laser has been attracting researchers' interest in the new application of laser to cornea and lens. The erbium:YAG laser emits a 2.94-microns beam that can ablate the transparent ocular tissues such as lenses and corneas. The author has applied this laser to the cornea, lens, vitreous and other ocular tissues. The erbium:YAG laser beam was directed through a 1.5-meter-long, 200-microns-diameter fiberoptic guide. The radiant energy measured about 50 mJ at the end of the probe. The laser was emitted as a 400-microsecond pulse. Freshly enucleated rabbit eyes were used in this study. Laser burns were applied to the tissue surface at various energy settings. At minimal power, the tissues were coagulated by the erbium:YAG laser application. At a power of more than 636-954 mJ/mm2, tissue began to evaporate; the tissue loss was observed under a surgical light microscope. Corneal photoablation, lens ablation, iridotomy, trabeculotomy, cutting of the vitreous and retinal ablation were easily performed. Like the excimer laser, the erbium:YAG laser is a potential tool for ocular surgery.

  6. Local synthesis of sex hormones: are there consequences for the ocular surface and dry eye?

    PubMed

    Gibson, Emma J; Stapleton, Fiona; Wolffsohn, James S; Golebiowski, Blanka

    2017-12-01

    Sex hormones are associated with the physiology and pathophysiology of almost all organs in the body, as well as most diseases. Interest in the associations between sex hormones and ocular tissues has increased in recent years. Androgens may have a positive effect on dry eye, whereas the effects of oestrogen on ocular conditions remain unclear. Intracrinology, the local synthesis and metabolism of hormones that is unique to humans, is of relevance to the eye and may help to explain why studies of the relationship between oestrogens and dry eye signs and symptoms are inconclusive. Knowledge of the pathways of hormone formation and metabolism is crucial to understanding the pathogenesis of ocular disease including dry eye. This review examines the mechanisms of steroidal sex hormone biosynthesis and reviews the significance of locally produced sex hormones, with a focus on ocular surface tissues. Much of the current literature is based on animal studies, which may not be transferable to humans due to the absence of intracrine production in animals. A large proportion of the human studies investigate systemic hormone levels rather than local levels. There is subsequently a need for additional studies to provide a better understanding of the local production of sex hormones within the human eye and ocular surface and to clarify the relationships between ocular levels of sex hormones and conditions including dry eye. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  8. Regional differences in rat conjunctival ion transport activities.

    PubMed

    Yu, Dongfang; Thelin, William R; Rogers, Troy D; Stutts, M Jackson; Randell, Scott H; Grubb, Barbara R; Boucher, Richard C

    2012-10-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na(+) transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface.

  9. Infection and Replication of Influenza Virus at the Ocular Surface.

    PubMed

    Creager, Hannah M; Kumar, Amrita; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M; Belser, Jessica A

    2018-04-01

    Although influenza viruses typically cause respiratory tract disease, some viruses, particularly those with an H7 hemagglutinin, have been isolated from the eyes of conjunctivitis cases. Previous work has shown that isolates of multiple subtypes from both ocular and respiratory infections are capable of replication in human ex vivo ocular tissues and corneal or conjunctival cell monolayers, leaving the determinants of ocular tropism unclear. Here, we evaluated the effect of several variables on tropism for ocular cells cultured in vitro and examined the potential effect of the tear film on viral infectivity. All viruses tested were able to replicate in primary human corneal epithelial cell monolayers subjected to aerosol inoculation. The temperature at which cells were cultured postinoculation minimally affected infectivity. Replication efficiency, in contrast, was reduced at 33°C relative to that at 37°C, and this effect was slightly greater for the conjunctivitis isolates than for the respiratory ones. With the exception of a seasonal H3N2 virus, the subset of viruses studied in multilayer corneal tissue constructs also replicated productively after either aerosol or liquid inoculation. Human tears significantly inhibited the hemagglutination of both ocular and nonocular isolates, but the effect on viral infectivity was more variable, with tears reducing the infectivity of nonocular isolates more than ocular isolates. These data suggest that most influenza viruses may be capable of establishing infection if they reach the surface of ocular cells but that this is more likely for ocular-tropic viruses, as they are better able to maintain their infectivity during passage through the tear film. IMPORTANCE The potential spread of zoonotic influenza viruses to humans represents an important threat to public health. Unfortunately, despite the importance of cellular and tissue tropism to pathogenesis, determinants of influenza virus tropism have yet to be fully elucidated. Here, we sought to identify factors that limit the ability of most influenza viruses to cause ocular infection. Although ocular symptoms in humans caused by avian influenza viruses tend to be relatively mild, these infections are concerning due to the potential of the ocular surface to serve as a portal of entry for viruses that go on to establish respiratory infections. Furthermore, a better understanding of the factors that influence infection and replication in this noncanonical site may point toward novel determinants of tropism in the respiratory tract. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  10. Dry Eye as a Mucosal Autoimmune Disease

    PubMed Central

    Stern, Michael E.; Schaumburg, Chris S.; Pflugfelder, Stephen C.

    2013-01-01

    Dry eye is a common ocular surface inflammatory disease that significantly affects quality of life. Dysfunction of the lacrimal function unit (LFU) alters tear composition and breaks ocular surface homeostasis, facilitating chronic inflammation and tissue damage. Accordingly, the most effective treatments to date are geared towards reducing inflammation and restoring normal tear film. The pathogenic role of CD4+ T cells is well known, and the field is rapidly realizing the complexity of other innate and adaptive immune factors involved in the development and progression of disease. The data support the hypothesis that dry eye is a localized autoimmune disease originating from an imbalance in the protective immunoregulatory and proinflammatory pathways of the ocular surface. PMID:23360156

  11. Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium.

    PubMed

    Fatima, A; Iftekhar, G; Sangwan, V S; Vemuganti, G K

    2008-09-01

    To report histopathologic changes of the ocular surface pannus in patients with severe limbal stem cell deficiency (LSCD). Corneal and conjunctival pannus tissues from 29 patients undergoing ocular reconstruction with cultured limbal cell transplantation were included. The medical records of these patients were reviewed for demographics, aetiologic diagnosis, type of injury, interval between the initial insult and excision of pannus, and medical history involving human amniotic membrane (HAM) or limbal transplantation. The paraffin-embedded tissues were reviewed for epithelial changes, type-degree of fibrosis, degenerative changes, vascular changes, conjunctivalization of corneal surface, and evidence of residual HAM. We attempted a clinicopathologic correlation to understand the pathogenesis of pannus formation in LSCD. The 29 tissues were from 29 eyes of patients with primary aetiology of chemical burn in 89.6% (undetermined in 10.4%) of cases. The pannus showed epithelial hyperplasia in 62%, active fibrosis in 66%, severe inflammation in 21%, giant cell reaction in 28%, and stromal calcification in 14% cases. Goblet cells were seen over the cornea in 64% cases; their absence was associated with squamous metaplasia of the conjunctiva and with long duration of insult. Evidence of residual HAM was noted in 42% cases. The commonest cause of severe LSCD is alkali-induced injury. Goblet cells over the cornea were seen in 60% of cases. HAM used for ocular surface reconstruction could persist for long periods within the corneal pannus, thus raising the need for further studies with long-term follow-up.

  12. Optimised laser microdissection of the human ocular surface epithelial regions for microarray studies

    PubMed Central

    2013-01-01

    Background The most important challenge of performing insitu transcriptional profiling of the human ocular surface epithelial regions is obtaining samples in sufficient amounts, without contamination from adjacent tissue, as the region of interest is microscopic and closely apposed to other tissues regions. We have effectively collected ocular surface (OS) epithelial tissue samples from the Limbal Epithelial Crypt (LEC), limbus, cornea and conjunctiva of post-mortem cadaver eyes with laser microdissection (LMD) technique for gene expression studies with spotted oligonucleotide microarrays and Gene 1.0 ST arrays. Methods Human donor eyes (4 pairs for spotted oligonucleotide microarrays, 3 pairs for Gene 1.0 ST arrays) consented for research were included in this study with due ethical approval of the Nottingham Research Ethics Committee. Eye retrieval was performed within 36 hours of post-mortem period. The dissected corneoscleral buttons were immersed in OCT media and frozen in liquid nitrogen and stored at −80°C till further use. Microscopic tissue sections of interest were taken on PALM slides and stained with Toluidine Blue for laser microdissection with PALM microbeam systems. Optimisation of the laser microdissection technique was crucial for efficient and cost effective sample collection. Results The starting concentration of RNA as stipulated by the protocol of microarray platforms was taken as the cut-off concentration of RNA samples in our studies. The area of LMD tissue processed for spotted oligonucleotide microarray study ranged from 86,253 μm2 in LEC to 392,887 μm2 in LEC stroma. The RNA concentration of the LMD samples ranged from 22 to 92 pg/μl. The recommended starting concentration of the RNA samples used for Gene 1.0 ST arrays was 6 ng/5 μl. To achieve the desired RNA concentration the area of ocular surface epithelial tissue sample processed for the Gene 1.0 ST array experiments was approximately 100,0000 μm2 to 130,0000 μm2. RNA concentration of these samples ranged from 10.88 ng/12 μl to 25.8 ng/12 μl, with the RNA integrity numbers (RIN) for these samples from 3.3 to 7.9. RNA samples with RIN values below 2, that had failed to amplify satisfactorily were discarded. Conclusions The optimised protocol for sample collection and laser microdissection improved the RNA yield of the insitu ocular surface epithelial regions for effective microarray studies on spotted oligonucleotide and affymetrix platforms. PMID:24160452

  13. Clinical implications of mast cell involvement in allergic conjunctivitis.

    PubMed

    Elieh Ali Komi, D; Rambasek, T; Bielory, L

    2018-03-01

    The conjunctiva is a common site for the allergic inflammatory response due to it being highly vascularized, having constant exposure to environmental pollutants and allergenic pollens and having a unique conjunctival associated lymphoid tissue. The primary morbidity of anterior surface conjunctival disorders that include allergic conjunctivitis and tear film disorders is associated with its high frequency of involvement rather than its severity, although the more chronic forms can involve the cornea and lead to sight-threatening conditions. Ocular allergy is associated with IgE-mediated mast cell activation in conjunctival tissue leading to the release of preformed mediators including histamine and proteases and subsequent de novo formation of lipid-derived mediators and cytokines that trigger a cascade of cellular and molecular events leading to extensive migration and infiltration of inflammatory cells to the ocular surface. The trafficking of neutrophils, eosinophils, and lymphocytes to the ocular surface is due to establishing various chemokine gradients (mainly CCL11, CCL24, CCL5, MCP-3, and MCP-4), cell surface expression of adhesion molecules (such as VCAM-1 the ligand for VLA-4), and leukocyte adhesion to vascular endothelium. The release of preformed mediators underlies the acute ocular surface response while the secondary influx of inflammatory cells leading to the recruitment and activation of eosinophils and the subsequent activation of Th2 and Th1 lymphocytes at the level of the conjunctiva reflects the late-phase reaction. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  14. Co-ordinated ocular development from human iPS cells and recovery of corneal function.

    PubMed

    Hayashi, Ryuhei; Ishikawa, Yuki; Sasamoto, Yuzuru; Katori, Ryosuke; Nomura, Naoki; Ichikawa, Tatsuya; Araki, Saori; Soma, Takeshi; Kawasaki, Satoshi; Sekiguchi, Kiyotoshi; Quantock, Andrew J; Tsujikawa, Motokazu; Nishida, Kohji

    2016-03-17

    The eye is a complex organ with highly specialized constituent tissues derived from different primordial cell lineages. The retina, for example, develops from neuroectoderm via the optic vesicle, the corneal epithelium is descended from surface ectoderm, while the iris and collagen-rich stroma of the cornea have a neural crest origin. Recent work with pluripotent stem cells in culture has revealed a previously under-appreciated level of intrinsic cellular self-organization, with a focus on the retina and retinal cells. Moreover, we and others have demonstrated the in vitro induction of a corneal epithelial cell phenotype from pluripotent stem cells. These studies, however, have a single, tissue-specific focus and fail to reflect the complexity of whole eye development. Here we demonstrate the generation from human induced pluripotent stem cells of a self-formed ectodermal autonomous multi-zone (SEAM) of ocular cells. In some respects the concentric SEAM mimics whole-eye development because cell location within different zones is indicative of lineage, spanning the ocular surface ectoderm, lens, neuro-retina, and retinal pigment epithelium. It thus represents a promising resource for new and ongoing studies of ocular morphogenesis. The approach also has translational potential and to illustrate this we show that cells isolated from the ocular surface ectodermal zone of the SEAM can be sorted and expanded ex vivo to form a corneal epithelium that recovers function in an experimentally induced animal model of corneal blindness.

  15. Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid.

    PubMed

    Pflugfelder, S C; Liu, Z; Monroy, D; Li, D Q; Carvajal, M E; Price-Schiavi, S A; Idris, N; Solomon, A; Perez, A; Carraway, K L

    2000-05-01

    To evaluate human ocular surface epithelium and tear fluid for the presence of sialomucin complex (MUC4), a high-molecular-weight heterodimeric glycoprotein composed of mucin (ASGP-1) and transmembrane (ASGP-2) subunits. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis assays were used to identify sialomucin complex RNA in ocular surface epithelia. Immunoprecipitation and immunoblot analysis were used to identify immunoreactive species in human tears and in the corneal and conjunctival epithelia using antibodies specific for carbohydrate and peptide epitopes on the sialomucin complex subunits. Immunofluorescence staining was used to detect sialomucin complex in frozen sections and impression cytology specimens of human cornea and conjunctival epithelia. ASGP-1- and ASGP-2-specific sequences were amplified from RNA extracted from both conjunctival and corneal epithelial biopsies by RT-PCR. Sialomucin complex transcripts were also detected in these tissues by Northern blot analysis, with a greater level of RNA detected in the peripheral than the central corneal epithelium. Sialomucin complex was immunoprecipitated from tear fluid samples and both corneal and conjunctival epithelia and detected by immunoblot analysis with specific anti-ASGP-1 and anti-ASGP-2 antibodies. The ASGP-1 peptide antibody HA-1 stained the full thickness of the corneal and conjunctival epithelia. In contrast, antibody 15H10, which reacts against a carbohydrate epitope on ASGP-1, stained only the superficial epithelial layers of these tissues. No staining was observed in the conjunctival goblet cells. Sialomucin complex was originally identified in rat mammary adenocarcinoma cells and has recently been shown to be produced by the ocular surface epithelia of rats. Furthermore, it has been identified as the rat homologue of human MUC4 mucin. The present studies show that it is expressed in the stratified epithelium covering the surface of the human eye and is present in human tear fluid. Expression of a carbohydrate-dependent epitope on the mucin subunit (ASGP-1) of sialomucin complex occurs in a differentiation-dependent fashion. Sialomucin complex joins MUC1 as another membrane mucin produced by the human ocular surface epithelia but is also found in the tear fluid, presumably in a soluble form, as found on the rat ocular surface.

  16. Functional anatomy and immunological interactions of ocular surface and adnexa.

    PubMed

    Paulsen, Friedrich

    2008-01-01

    This chapter gives an overview about the structures and physiology of the ocular surface and its adnexa and focuses in a second part on the possible meaning of eye-associated lymphoid tissue (EALT) in a context with the development of dry eye. Sections deal with (1) anatomy of the ocular surface, lacrimal gland, eyelid and nasolacrimal ducts. (2) The meaning and importance of the lacrimal functional unit and the function of the mucosal innate immune system are briefly summarized. (3) Finally, the occurrence and the possible function of EALT is discussed with regard to tolerance induction and dry eye. The epithelial surface of the eye and its specialized glandular infoldings produce the components of the tear film, which include water, protective antimicrobials, cytokines, lipids as well as mucins and trefoil factor family (TFF) peptides. Antimicrobials, mucins and TFF peptides perform a number of essential functions which, collectively, provide protection of the ocular surface. Their production changes in cases of dry eye. The development of EALT is a common feature frequently occurring in symptomatically normal conjunctiva and nasolacrimal ducts. The production of antimicrobials, mucins and TFF peptides can be linked with cell signaling, tear film rheology, and antimicrobial defense at the ocular surface. Changes in the production of such peptides and proteins in cases of dry eye support the assumption that these peptides and proteins are involved in the pathophysiological events that occur at the ocular surface and lacrimal apparatus. Whether special types of bacteria, viruses, or other factors, e.g., immune deviation, are responsible for the development of EALT in humans requires further investigation in prospective and experimental studies.

  17. Transcription, Translation, and Function of Lubricin, a Boundary Lubricant, at the Ocular Surface

    PubMed Central

    Schmidt, Tannin A.; Sullivan, David A.; Knop, Erich; Richards, Stephen M.; Knop, Nadja; Liu, Shaohui; Sahin, Afsun; Darabad, Raheleh Rahimi; Morrison, Sheila; Kam, Wendy R.; Sullivan, Benjamin D.

    2013-01-01

    Importance Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear. Objective To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage. Design, Setting, and Participants Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage. Results Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions. Conclusions and Relevance Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage. PMID:23599181

  18. Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface.

    PubMed

    Schmidt, Tannin A; Sullivan, David A; Knop, Erich; Richards, Stephen M; Knop, Nadja; Liu, Shaohui; Sahin, Afsun; Darabad, Raheleh Rahimi; Morrison, Sheila; Kam, Wendy R; Sullivan, Benjamin D

    2013-06-01

    Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear. To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4 ]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage. Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage. Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions. Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage.

  19. PRGF exerts more potent proliferative and anti-inflammatory effects than autologous serum on a cell culture inflammatory model.

    PubMed

    Anitua, E; Muruzabal, F; de la Fuente, M; Riestra, A; Merayo-Lloves, J; Orive, G

    2016-10-01

    Ocular graft versus host disease (oGVHD) is part of a systemic inflammatory disease that usually affects ocular surface tissues manifesting as a dry eye syndrome. Current treatments provide unsatisfactory results. Blood-derived products, like plasma rich in growth factors (PRGF) emerge as a potential therapy for this disease. The purpose of this study was to evaluate the tissue regeneration and anti-inflammatory capability of PRGF, an autologous platelet enriched plasma eye-drop, compared to autologous serum (AS) obtained from oGVHD patients on ocular surface cells cultured in a pro-inflammatory environment. PRGF and AS were obtained from four GVHD patients. Cell proliferation and inflammation markers, intercellular adhesion molecule-1 (ICAM-1) and cyclooxygenase-2 (COX-2), were measured in corneal and conjunctival fibroblastic cells cultured under pro-inflammatory conditions and after treatment with PRGF or AS eye drops. Moreover, cell proliferation increased after treatment with PRGF and AS, though this enhancement in the case of keratocytes was significantly higher with PRGF. PRGF eye drops showed a significant reduction of both inflammatory markers with respect to the initial inflammatory situation and to the AS treatment. Our results concluded that PRGF exerts more potent regenerative and anti-inflammatory effects than autologous serum on ocular surface fibroblasts treated with pro-inflammatory IL-1β and TNFα. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Silk film biomaterials for ocular surface repair

    NASA Astrophysics Data System (ADS)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the development of innovative procedures and technologies for corneal repair.

  1. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases

    PubMed Central

    Li, W; Chen, Y-T; Hayashida, Y; Blanco, G; Kheirkah, A; He, H; Chen, S-Y; Liu, C-Y; Tseng, SCG

    2010-01-01

    Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens–Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP–Pax6 transgenes into these Pax6− clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium. PMID:18027901

  2. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses.

    PubMed

    Tashakori-Sabzevar, Faezeh; Mohajeri, Seyed Ahmad

    2015-05-01

    Recently, significant advances have been made in order to optimize drug delivery to ocular tissues. The main problems in ocular drug delivery are poor bioavailability and uncontrollable drug delivery of conventional ophthalmic preparations (e.g. eye drops). Hydrogels have been investigated since 1965 as new ocular drug delivery systems. Increase of hydrogel loading capacity, optimization of drug residence time on the ocular surface and biocompatibility with the eye tissue has been the main focus of previous studies. Molecular imprinting technology provided the opportunity to fulfill the above-mentioned objectives. Molecularly imprinted soft contact lenses (SCLs) have high potentials as novel drug delivery systems for the treatment of eye disorders. This technique is used for the preparation of polymers with specific binding sites for a template molecule. Previous studies indicated that molecular imprinting technology could be successfully applied for the preparation of SCLs as ocular drug delivery systems. Previous research, particularly in vivo studies, demonstrated that molecular imprinting is a versatile and effective method in optimizing the drug release behavior and enhancing the loading capacity of SCLs as new ocular drug delivery systems. This review highlights various potentials of molecularly imprinted contact lenses in enhancing the drug-loading capacity and controlling the drug release, compared to other ocular drug delivery systems. We have also studied the effects of contributing factors such as the type of comonomer, template/functional monomer molar ratio, crosslinker concentration in drug-loading capacity, and the release properties of molecularly imprinted hydrogels.

  3. Quantitative Fourier Domain Optical Coherence Tomography Imaging of the Ocular Anterior Segment

    NASA Astrophysics Data System (ADS)

    McNabb, Ryan Palmer

    Clinical imaging within ophthalmology has had transformative effects on ocular health over the last century. Imaging has guided clinicians in their pharmaceutical and surgical treatments of macular degeneration, glaucoma, cataracts and numerous other pathologies. Many of the imaging techniques currently used are photography based and are limited to imaging the surface of ocular structures. This limitation forces clinicians to make assumptions about the underlying tissue which may reduce the efficacy of their diagnoses. Optical coherence tomography (OCT) is a non-invasive, non-ionizing imaging modality that has been widely adopted within the field of ophthalmology in the last 15 years. As an optical imaging technique, OCT utilizes low-coherence interferometry to produce micron-scale three-dimensional datasets of a tissue's structure. Much of the human body consists of tissues that significantly scatter and attenuate optical signals limiting the imaging depth of OCT in those tissues to only 1-2mm. However, the ocular anterior segment is unique among human tissue in that it is primarily transparent or translucent. This allows for relatively deep imaging of tissue structure with OCT and is no longer limited by the optical scattering properties of the tissue. This goal of this work is to develop methods utilizing OCT that offer the potential to reduce the assumptions made by clinicians in their evaluations of their patients' ocular anterior segments. We achieved this by first developing a method to reduce the effects of patient motion during OCT volume acquisitions allowing for accurate, three dimensional measurements of corneal shape. Having accurate corneal shape measurements then allowed us to determine corneal spherical and astigmatic refractive contribution in a given individual. This was then validated in a clinical study that showed OCT better measured refractive change due to surgery than other clinical devices. Additionally, a method was developed to combine the clinical evaluation of the iridocorneal angle through gonioscopy with OCT.

  4. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: Improving in vivo ocular distribution.

    PubMed

    Shen, Jie; Deng, Yanping; Jin, Xuefeng; Ping, Qineng; Su, Zhigui; Li, Lejun

    2010-12-15

    Ophthalmic drug delivery with long pre-corneal retention time and high penetration into aqueous humor and intraocular tissues is the key-limiting factor for the treatment of ocular diseases and disorders. Within this study, the conjugate of cysteine-polyethylene glycol monostearate (Cys-PEG-SA) was synthesized and was used to compose the thiolated nanostructured lipid carrier (Cys-NLC) as a potential nanocarrier for the topical ocular administration of cyclosporine A (CyA). The rapid cross-linking process of Cys-PEG-SA in vitro was found in simulated physiological environment. The in vitro CyA release from Cys-NLC was slower than that of non-thiolated nanostructured lipid carriers (NLC) due to the cross-linking of thiomers on the surface of nanocarriers. After topical ocular administration in rabbits, the in vivo ocular distribution of CyA was investigated in comparison of Cys-NLC with non-thiolated NLCs and oil solution. The results showed that CyA concentration in systemic blood was very low and close to the detection limit. The area-under-the-curve (AUC(0-24h)) and mean retention time (MRT(0-24h)) of Cys-NLC group in aqueous humor, tear and eye tissues were significantly higher than that of oil solution, non-thiolated NLCs (p<0.05). These results demonstrated that the thiolated NLC could deliver high level of CyA into intraocular tissues due to its bioadhesive property and sustained release characteristics. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. MUC19 expression in human ocular surface and lacrimal gland and its alteration in Sjögren syndrome patients.

    PubMed

    Yu, D F; Chen, Y; Han, J M; Zhang, H; Chen, X P; Zou, W J; Liang, L Y; Xu, C C; Liu, Z G

    2008-02-01

    This study investigated the expression of MUC19, a newly discovered gel-forming mucin gene, in normal human lacrimal functional unit components and its alteration in Sjögren syndrome patients. Real-time PCR and immunohistochemistry were performed to determine the expression of MUC19 and MUC5AC in human cornea, conjunctiva, and lacrimal gland tissues. Conjunctival impression cytology specimens were collected from normal control subjects and Sjögren syndrome patients for Real-time PCR, PAS staining, and immunohistochemistry assays. In addition, conjunctiva biopsy specimens from both groups were examined for the expression differences of MUC19 and MUC5AC at both mRNA and protein level. The MUC19 mRNA was found to be present in cornea, conjunctiva and lacrimal gland tissues. The immunohistochemical staining of mucins showed that MUC19 was expressed in epithelial cells from corneal, conjunctival, and lacrimal gland tissues. In contrast, MUC5AC mRNA was only present in conjunctiva and lacrimal gland tissues, but not in cornea. Immunostaining demonstrates the co-staining of MUC19 and MUC5AC in conjunctival goblet cells. Consistent with the significant decrease of mucous secretion, both MUC19 and MUC5AC were decreased in conjunctiva of Sjögren syndrome patients compared to normal subjects. Considering the contribution of gel-forming mucins to the homeostasis of the ocular surface, the decreased expression of MUC19 and MUC5AC in Sjögren syndrome patients suggested that these mucins may be involved in the disruption of the ocular surface homeostasis in this disease.

  6. Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation.

    PubMed

    Kowtharapu, B S; Marfurt, C; Hovakimyan, M; Will, F; Richter, H; Wree, A; Stachs, O; Guthoff, R F

    2017-01-01

    Assessment of various morphological parameters of the corneal subbasal nerve plexus is a valuable method of documenting the structural and presumably functional integrity of the corneal innervation in health and disease. The aim of this work is to establish a rapid, reliable and reproducible method for visualization of the human corneal SBP using femtosecond laser cut corneal tissue sections. Trephined healthy corneal buttons were fixed and processed using TissueSurgeon-a femtosecond laser based microtome, to obtain thick tissue sections of the corneal epithelium and anterior stroma cut parallel to the ocular surface within approximately 15 min. A near infrared femtosecond laser was focused on to the cornea approximately 70-90 μm from the anterior surface to induce material separation using TissueSurgeon. The obtained corneal sections were stained following standard immunohistochemical procedures with anti-neuronal β-III tubulin antibody for visualization of the corneal nerves. Sections that contained the epithelium and approximately 20-30 μm of anterior stroma yielded excellent visualisation of the SBP with minimal optical interference from underlying stromal nerves. In conclusion, the results of this study have demonstrated that femtosecond laser cutting of the human cornea offers greater speed, ease and reliability than standard tissue preparation methods for obtaining high quality thick sections of the anterior cornea cut parallel to the ocular surface. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  7. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    PubMed

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  8. In vivo tissue distribution and efficacy studies for cyclosporin A loaded nano-decorated subconjunctival implants.

    PubMed

    Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Kaffashi, Abbas; Çalamak, Semih; Ulubayram, Kezban; Palaska, Erhan; Çakmak, Hasan Basri; Ünlü, Nurşen

    2016-11-01

    Biodegradable implants are promising drug delivery systems for sustained release ocular drug delivery with the benefits such as minimum systemic side effects, constant drug concentration at the target site and getting cleared without surgical removal. Dry eye syndrome (DES) is a common disease characterized with the changes in ocular epithelia surface and results in inflammatory reaction that might lead to blindness. Cyclosporin A (CsA) is a cyclic peptide that is frequently employed for the treatment of DES and it needs to be applied several times a day in tear drops form. The aim of this study was to evaluate in vivo behavior and efficacy of the developed nano-decorated subconjunctival implant systems for sustained release CsA delivery. Biodegradable Poly-ɛ-caprolactone (PCL) implant or micro-fiber implants containing CsA loaded poly-lactide-co-glycolide (85:15) (PLGA) or PCL nanoparticles were prepared in order to achieve sustained release. Two of the formulations PCL-PLGA-NP-F and PCL-PCL-NP-I were selected for in vivo evaluation based on their in vitro characteristics determined in our previous study. In this study, formulations were implanted to Swiss Albino mice with induced dry eye syndrome to investigate the ocular distribution of CsA following subconjunctival implantation and to evaluate the efficacy. Tissue distribution study indicated that CsA was present in ocular tissues such as cornea, sclera and lens even 90 days after the application and blood CsA levels were found lower than ocular tissues. Efficacy studies also showed that application of CsA-loaded fiber implant formulation resulted in faster recovery based on their staining scores.

  9. Transcleral delivery of triamcinolone acetonide and ranibizumab to retinal tissues using macroesis.

    PubMed

    Singh, Rishi P; Mathews, Michael Ellen; Kaufman, Michael; Riga, Alan

    2010-02-01

    To determine the feasibility of macroesis for the delivery of ranibizumab and triamcinolone acetonide via a transcleral route. Macroesis is a non-invasive method of drug delivery that uses alternating current (AC) to deliver drugs to target tissues. Two preclinical models of drug delivery were used for feasibility studies of delivering ranibizumab and triamcinolone acetonide to ocular tissues. In the first model, full-thickness sections of rabbit ocular tissue (conjunctiva to retina) were placed on an interdigitated electrode platform, and the drug was placed on the surface of the tissue. A non-uniform electrical field was applied to the ocular tissue, and electrical conductivity, a measurement of drug delivery, was monitored during the course of the experiment. In a second model, termed a 'simulated vitreous model,' the same full-thickness sections of rabbit ocular tissue were mounted below the electrode device, and the test compounds were placed on the electrodes. The fluid below the tissue, which simulated the vitreous cavity, was analysed using UV spectroscopy at the end of the study for the presence of drug. In the electrical conductivity studies, the electric characteristics of the tissue-drug system clearly showed movement of the drug through the tissue to the dielectric sensor based on changes in the electrical conductivity of the tissue sample with triamcinolone. No change in tissue conductivity was observed when no drug was placed. No heat generation occurred during the course of the study; nor was any gross tissue destruction noted. In the simulated vitreous model, studies using triamcinolone yielded concentrations ranging from 0.280 to 0.970 mg/ml, depending on the voltage, frequency and time applied. In as little as 6.7 min, clinically efficacious doses could be obtained in the preclinical system. Studies using ranibizumab yielded concentrations of 0.070-0.171 mg/ml, depending on the voltage, frequency, and time applied. In as little at 6.7 min, 92.8% throughput could be achieved. Successful delivery of ranibizumab and triamcinolone acetonide can be achieved with macroesis in preclinical studies.

  10. Minimally invasive microneedles for ocular drug delivery.

    PubMed

    Thakur Singh, Raghu Raj; Tekko, Ismaiel; McAvoy, Kathryn; McMillan, Hannah; Jones, David; Donnelly, Ryan F

    2017-04-01

    Anterior and posterior segment eye diseases are highly challenging to treat, due to the barrier properties and relative inaccessibility of the ocular tissues. Topical eye drops and systemically delivered treatments result in low bioavailability. Alternatively, direct injection of medication into the ocular tissues is clinically employed to overcome the barrier properties, but injections cause significant tissue damage and are associated with a number of untoward side effects and poor patient compliance. Microneedles (MNs) has been recently introduced as a minimally invasive means for localizing drug formulation within the target ocular tissues with greater precision and accuracy than the hypodermic needles. Areas covered: This review article seeks to provide an overview of a range of challenges that are often faced to achieve efficient ocular drug levels within targeted tissue(s) of the eye. It also describes the problems encountered using conventional hypodermic needle-based ocular injections for anterior and posterior segment drug delivery. It discusses research carried out in the field of MNs, to date. Expert opinion: MNs can aid in localization of drug delivery systems within the selected ocular tissue. And, hold the potential to revolutionize the way drug formulations are administered to the eye. However, the current limitations and challenges of MNs application warrant further research in this field to enable its widespread clinical application.

  11. Ophthalmic complications following megavoltage irradiation of the nasal and paranasal cavities in dogs.

    PubMed

    Roberts, S M; Lavach, J D; Severin, G A; Withrow, S J; Gillette, E L

    1987-01-01

    Megavoltage x-radiation was used to treat orbital nasal, and paranasal cavity malignant neoplasia in 29 dogs. In each instance, the globe and adnexal tissues were within the treatment portals (entry and/or exit). Doses administered to tumors ranged from 3,680 to 5,000 cGy. Ocular reactions after irradiation were classified as mild in 5 of 29 cases (17.2%) and severe in 17 of 29 cases (58.6%). No ocular complications were noticed in 7 of 29 cases (24.1%). Complications frequently noticed included severe keratitis (41%), mild conjunctivitis (34%), severe conjunctivitis (28%), cataract (28%), and keratoconjunctivitis sicca (24%). Ocular complications that developed were not life threatening, but posed a threat to visual function and patient quality of life. Treatment for the complications included control of bacterial infection, reduction of tissue inflammation, and ocular surface protection when tear film deficiencies were noticed. Mild complications represented acute effects of irradiation, and typically resolved. Severe complications developed both acutely and as late irradiation effects. Those attributed to late irradiation effects were more vision threatening and altered the quality of life more than did the early effects.

  12. Sutureless closure of scleral wounds in animal models by the use of laser welded biocompatible patches

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Menabuoni, Luca; Lenzetti, Ivo; Pini, Roberto

    2011-03-01

    The common procedures used to seal the scleral or conjunctival injuries are based on the traditional suturing techniques, that may induce foreign body reaction during the follow up, with subsequent inflammation and distress for the patient. In this work we present an experimental study on the laser welding of biocompatible patches onto ocular tissues, for the closure of surgical or trauma wounds. The study was performed ex vivo in animal models (porcine eyes). A penetrating perforation of the ocular tissue was performed with a surgical knife. The wound walls were approximated, and a biocompatible patch was put onto the outer surface of the tissue, in order to completely cover the wound as a plaster. The patches were prepared with a biocompatible and biodegradable polymer, showing high mechanical strength, good elasticity, high permeability for vapour and gases and rather low biodegradation. During preparation, Indocyanine Green (ICG) was included in the biopolymeric matrix, so that the films presented high absorption at 810 nm. Effective adhesion of the membranes to the ocular tissues was obtained by using diode laser light emitted from an 810 nm diode laser and delivered by means of a 300 μm core diameter optical fiber, to produce spots of local film/tissue adhesion, due to the photothermal effect at the interface. The result is an immediate closure of the wound, thus reducing post-operative complications due to inflammation.

  13. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Sun, Minjie; Ping, Qineng; Ying, Zhi; Liu, Wen

    2010-01-01

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  14. Temperatures of the Ocular Surface, Lid, and Periorbital Regions of Sjögren's, Evaporative, and Aqueous-Deficient Dry Eyes Relative to Normals.

    PubMed

    Abreau, Kerstin; Callan, Christine; Kottaiyan, Ranjini; Zhang, Aizhong; Yoon, Geunyoung; Aquavella, James V; Zavislan, James; Hindman, Holly B

    2016-01-01

    To compare the temperatures of the ocular surface, eyelid, and periorbital skin in normal eyes with Sjögren's syndrome (SS) eyes, evaporative dry eyes (EDE), and aqueous deficient dry eyes (ADDE). 10 eyes were analyzed in each age-matched group (normal, SS, EDE, and ADDE). A noninvasive infrared thermal camera captured two-dimensional images in three regions of interest (ROI) in each of three areas: the ocular surface, the upper eyelid, and the periorbital skin within a controlled environmental chamber. Mean temperatures in each ROI were calculated from the videos. Ocular surface time-segmented cooling rates were calculated over a 5-s blink interval. Relative to normal eyes, dry eyes had lower initial central OSTs (SS -0.71°C, EDE -0.55°C, ADDE -0.95°C, KW P<.0001) and lower central upper lid temperatures (SS -0.24°C, ADDE -0.51°C, and EDE -0.54°C, KW P<.0001). ADDE eyes had the lowest initial central OST (P<.0001), while EDE eyes had the lowest central lid temperature and lower periorbital temperatures (P<.0001). Over the 5-s interblink interval, the greatest rate of temperature loss occurred following eyelid opening, but varied by group (normals -0.52, SS -0.73, EDE -0.63, and ADDE -0.75°C/s). The ADDE group also had the most substantial heat loss over the 5-s interblink interval (-0.97°C). Differences in OST may be related to thermal differences in lids and periorbita along with an altered tear film. Thermography of the ocular surface, lids, and surrounding tissues may help to differentiate between different etiologies of dry eye. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. LC-MS analysis to determine the biodistribution of a polymer coated ilomastat ocular implant.

    PubMed

    Mohamed-Ahmed, Abeer H A; Lockwood, Alastair; Fadda, Hala; Madaan, Shivam; Khaw, Peng T; Brocchini, Steve; Karu, Kersti

    2018-05-16

    Ilomastat is a matrix metalloproteinase inhibitor (MMPi) that has shown the potential to inhibit scarring (fibrosis) by mediating healing after injury or surgery. A long lasting ocular implantable pharmaceutical formulation of ilomastat is being developed to mediate the healing process to prevent scarring after glaucoma filtration surgery. The ilomastat implant was coated with water permeable and biocompatible phosphoryl choline polymer (PC1059) displayed extended slow release of ilomastat in vitro and in vivo. The ocular distribution of ilomastat from the implant in rabbits at day 30 post surgery was determined by the extraction of ilomastat and its internal standard marimastat from the ocular tissues, plasma, aqueous humour and vitreous fluid followed by capillary-flow liquid chromatography (cap-LC), the column effluent was directed into a triple quadrupole mass spectrometer operating in product scan mode. The lower limits of quantification (LLOQs) were 0.3 pg/μL for ocular fluids and plasma, and 3 pg/mg for ocular tissues. The extraction recoveries were 90-95% for ilomastat and its internal standard from ocular tissues. Ilomastat was found in ocular fluids and tissues at day 30 after surgery. The level of ilomastat was 18 times higher in the aqueous humour than vitreous humour. The concentration ranking of ilomastat in the ocular tissues was sclera > bleb conjunctiva > conjunctiva (rest of the eye) > cornea. Mass spectrometry analysis to confirm the presence of ilomastat in the ocular tissues and fluids at day 30 post-surgery establishes the extended release of ilomastat can be achieved in vivo, which is crucial information for optimisation of the ilomastat coated implant. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  16. Complement factor H: spatial and temporal expression and localization in the eye.

    PubMed

    Mandal, Md Nawajes A; Ayyagari, Radha

    2006-09-01

    Complement factor H (CFH) is a component of the mammalian complement system, which regulates the alternative pathway of complement activation and protects the host cell from inappropriate complement activation. CFH is a key regulator of innate immunity, and CFH deficiency leads to membranoproliferative glomerulonephritis type II. A variation in human CFH, Y402H, has been shown to be associated with an increased risk for age-related macular degeneration. The authors describe studies on the spatial and temporal expression of the CFH gene and localization of this protein in ocular tissues to gain insight into its role in the eye. CFH expression in human and mouse tissues was studied by quantitative RT-PCR and Western blot analysis, and localization of CFH was studied by immunohistochemical analysis followed by fluorescence microscopy. In human and mouse, CFH expression was found to be similar to the highest level of expression in the liver. In ocular tissue, CFH was detected in the distalmost optic nerve (3 mm) cut from the scleral surface of the eyeball, sclera, RPE-choroid, retina, lens, and ciliary body. In mouse, Cfh expression was observed from early embryonic stages, and in the eye its expression increased with age. A significant level of CFH expression is maintained in different ocular tissues during development and aging. Sustained high levels of CFH expression in eye tissues suggest that this protein may play a role in protecting these tissues from indiscriminate complement activation and inflammatory insult.

  17. Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen: Ocular anti-inflammatory applications.

    PubMed

    Parra, Alexander; Mallandrich, Mireia; Clares, Beatriz; Egea, María A; Espina, Marta; García, María L; Calpena, Ana C

    2015-12-01

    This work aimed the design and development of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) for the ocular delivery of Carprofen (CP) by a central rotatable composite design 2(3)+ star. NPs showed adequate size for ocular administration (189.50 ± 1.67 nm), low polydispersity (0.01 ± 0.01), negative charge surface (-22.80 ± 0.66 mV) and optimal entrapment efficiency (74.70 ± 0.95%). Physicochemical analysis confirmed that CP was dispersed inside the NPs. The drug release followed a first order kinetic model providing greater sustained CP release after lyophilization. Ex vivo permeation analysis through isolated rabbit cornea revealed that a sufficient amount of CP was retained in the tissue avoiding excessive permeation and thus, potential systemic levels. Ex vivo ocular tolerance results showed no signs of ocular irritancy, which was also confirmed by in vivo Draize test. In vivo ocular anti-inflammatory efficacy test confirmed an optimal efficacy of NPs and its potential application in eye surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.

    PubMed

    Mandal, Abhirup; Bisht, Rohit; Rupenthal, Ilva D; Mitra, Ashim K

    2017-02-28

    Effective intraocular drug delivery poses a major challenge due to the presence of various elimination mechanisms and physiological barriers that result in low ocular bioavailability after topical application. Over the past decades, polymeric micelles have emerged as one of the most promising drug delivery platforms for the management of ocular diseases affecting the anterior (dry eye syndrome) and posterior (age-related macular degeneration, diabetic retinopathy and glaucoma) segments of the eye. Promising preclinical efficacy results from both in-vitro and in-vivo animal studies have led to their steady progression through clinical trials. The mucoadhesive nature of these polymeric micelles results in enhanced contact with the ocular surface while their small size allows better tissue penetration. Most importantly, being highly water soluble, these polymeric micelles generate clear aqueous solutions which allows easy application in the form of eye drops without any vision interference. Enhanced stability, larger cargo capacity, non-toxicity, ease of surface modification and controlled drug release are additional advantages with polymeric micelles. Finally, simple and cost effective fabrication techniques render their industrial acceptance relatively high. This review summarizes structural frameworks, methods of preparation, physicochemical properties, patented inventions and recent advances of these micelles as effective carriers for ocular drug delivery highlighting their performance in preclinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Understanding the Presence and Roles of Ap4A (Diadenosine Tetraphosphate) in the Eye.

    PubMed

    Crooke, Almudena; Guzman-Aranguez, Ana; Carracedo, Gonzalo; de Lara, Maria J Perez; Pintor, Jesus

    Diadenosine tetraphosphate abbreviated Ap 4 A is a naturally occurring dinucleotide, which is present in most of the ocular fluids. Due to its intrinsic resistance to enzyme degradation compared to mononucleotides, this molecule can exhibit profound actions on ocular tissues, including the ocular surface, ciliary body, trabecular meshwork, and probably the retina. The actions of Ap 4 A are mostly carried out by P2Y 2 receptors, but the participation of P2X2 and P2Y 6 in processes such as the regulation of intraocular pressure (IOP), together with the P2Y 2 , is pivotal. Beyond the physiological role, this dinucleotide can present on the ocular surface keeping a right production of tear secretion or regulating IOP. It is important to note that exogenous application of Ap 4 A to cells or animal models can significantly modify pathophysiological conditions and thus is an attractive therapeutic molecule. The ocular location where Ap 4 A actions have not been fully elucidated is in the retina. Although some analogues show interesting actions on pathological situations such as retinal detachment, little is known about the real effect of this dinucleotide, this being one of the challenges that require pursuing in the near future.

  20. Potential Role of Induced Pluripotent Stem Cells (IPSCs) for Cell-Based Therapy of the Ocular Surface

    PubMed Central

    Casaroli-Marano, Ricardo P.; Nieto-Nicolau, Núria; Martínez-Conesa, Eva M.; Edel, Michael; Álvarez-Palomo, Ana B.

    2015-01-01

    The integrity and normal function of the corneal epithelium are crucial for maintaining the cornea’s transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio replacement—cultured limbal epithelial transplantation (CLET) and cultured oral mucosal epithelial transplantation (COMET)—present very encouraging clinical results for treating limbal stem cell deficiency (LSCD) and restoring vision. Another emerging therapeutic approach consists of obtaining and implementing human progenitor cells of different origins in association with tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal or induced pluripotent stem cells (IPSCs), represent a significant breakthrough in the treatment of certain eye diseases, offering a more rational, less invasive, and better physiological treatment option in regenerative medicine for the ocular surface. This review will focus on the main concepts of cell-based therapies for the ocular surface and the future use of IPSCs to treat LSCD. PMID:26239129

  1. Ozone depletion and solar ultraviolet radiation: ocular effects, a United nations environment programme perspective.

    PubMed

    Cullen, Anthony P

    2011-07-01

    To describe he role played by the United Nations Environmental Effects Panel with respect to the ocular effects of stratospheric ozone depletion and present the essence of the Health Chapter of the 2010 Assessment. A consideration of solar ultraviolet radiation (UVR) at the Earth's surface as it is affected by atmospheric changes and how these influence sunlight-related eye diseases. A review of the current Assessment with emphasis on pterygium, cataract, ocular melanoma, and age-related macular degeneration. Although the ozone layer is projected to recover slowly in the coming decades, continuing vigilance is required regarding exposure to the sun. Evidence implicating solar UVR, especially UVB, in every tissue of the eye continues to be amassed. The need for ocular UV protection existed before the discovery of the depletion of the ozone layer and will continue even when the layer fully recovers in approximately 2100.

  2. Glycobiology of ocular angiogenesis

    PubMed Central

    Markowska, Anna I; Cao, Zhiyi; Panjwani, Noorjahan

    2014-01-01

    Ocular neovascularization can affect almost all the tissues of the eye: the cornea, the iris, the retina, and the choroid. Pathological neovascularization is the underlying cause of vision loss in common ocular conditions such as diabetic retinopathy, retinopathy of prematurity and age-related macular neovascularization. Glycosylation is the most common covalent posttranslational modification of proteins in mammalian cells. A growing body of evidence demonstrates that glycosylation influences the process of angiogenesis and impacts activation, proliferation, and migration of endothelial cells as well as the interaction of angiogenic endothelial cells with other cell types necessary to form blood vessels. Recent studies have provided evidence that members of the galectin class of β-galactoside-binding proteins modulate angiogenesis by novel carbohydrate-based recognition systems involving interactions between glycans of angiogenic cell surface receptors and galectins. This review discusses the significance of glycosylation and the role of galectins in the pathogenesis of ocular neovascularization. PMID:25108228

  3. Reasons for family refusal of ocular tissue donation.

    PubMed

    Hermann, K C; Pagnussato, F; Franke, C A; de Oliveira, M L B

    2014-01-01

    Corneal donations do not fill the transplant demand. The waiting list had 5512 individuals in Brazil and 143 in Rio Grande do Sul in December 2012. The aim of this study was to identify the reasons for family refusal of ocular tissues donation. This retrospective study analyzed interview records for ocular tissue procurement performed in a general, public university hospital located in Southern Brazil between January 2008 and December 2012. It identified the reasons of family refusal for ocular tissue donation. A total of 1010 interviews for ocular tissues procurement were performed. From these, 513 (50.79%) refused donation with the following reasons: 60 (11.69%) family members were unaware of the desire of the potential donor, 153 (29.82%) of potential donors spoke against donation in life, 113 (22.02%) family members were undecided about the donation, 156 (30.40%) family members were against donation, 3 (0.58%) family members were unhappy with the service, 11 (2.14%) family members were afraid of body release delay, 6 (1.16%) families expressed religious convictions against donation, and 11 (2.14%) family members wanted to keep the body intact. There are many reasons for ocular tissues donation refusal, and the knowledge provides better strategies for family interviews. In this study, most of the reasons, around 90%, can be related to lack of information or communication about the subject. Greater awareness of the population about the subject can be a good way to increase ocular tissue procurement indexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Anti-Inflammatory Effects of Rebamipide Eyedrop Administration on Ocular Lesions in a Murine Model of Primary Sjögren's Syndrome

    PubMed Central

    Arakaki, Rieko; Eguchi, Hiroshi; Yamada, Akiko; Kudo, Yasusei; Iwasa, Akihiko; Enkhmaa, Tserennadmid; Hotta, Fumika; Mitamura-Aizawa, Sayaka; Mitamura, Yoshinori; Hayashi, Yoshio; Ishimaru, Naozumi

    2014-01-01

    Background Topical therapy is effective for dry eye, and its prolonged effects should help in maintaining the quality of life of patients with dry eye. We previously reported that the oral administration of rebamipide (Reb), a mucosal protective agent, had a potent therapeutic effect on autoimmune lesions in a murine model of Sjögren's syndrome (SS). However, the effects of topical treatment with Reb eyedrops on the ocular lesions in the murine model of SS are unknown. Methods and Finding Reb eyedrops were administered to the murine model of SS aged 4–8 weeks four times daily. Inflammatory lesions of the extraorbital and intraorbital lacrimal glands and Harderian gland tissues were histologically evaluated. The direct effects of Reb on the lacrimal glands were analyzed using cultured lacrimal gland cells. Tear secretions of Reb-treated mice were significantly increased compared with those of untreated mice. In addition to the therapeutic effect of Reb treatment on keratoconjunctivitis, severe inflammatory lesions of intraorbital lacrimal gland tissues in this model of SS were resolved. The mRNA expression levels of IL-10 and mucin 5Ac in conjunctival tissues from Reb-treated mice was significantly increased compared with those of control mice. Moreover, lactoferrin production from lacrimal gland cells was restored by Reb treatment. Conclusion Topical Reb administration had an anti-inflammatory effect on the ocular autoimmune lesions in the murine model of SS and a protective effect on the ocular surfaces. PMID:24866156

  5. A simplified technique for in situ excision of cornea and evisceration of retinal tissue from human ocular globe.

    PubMed

    Parekh, Mohit; Ferrari, Stefano; Di Iorio, Enzo; Barbaro, Vanessa; Camposampiero, Davide; Karali, Marianthi; Ponzin, Diego; Salvalaio, Gianni

    2012-06-12

    Enucleation is the process of retrieving the ocular globe from a cadaveric donor leaving the rest of the globe undisturbed. Excision refers to the retrieval of ocular tissues, especially cornea, by cutting it separate from the ocular globe. Evisceration is the process of removing the internal organs referred here as retina. The ocular globe consists of the cornea, the sclera, the vitreous body, the lens, the iris, the retina, the choroid, muscles etc (Suppl. Figure 1). When a patient is suffering from corneal damage, the cornea needs to be removed and a healthy one must be transplanted by keratoplastic surgeries. Genetic disorders or defects in retinal function can compromise vision. Human ocular globes can be used for various surgical procedures such as eye banking, transplantation of human cornea or sclera and research on ocular tissues. However, there is little information available on human corneal and retinal excision, probably due to the limited accessibility to human tissues. Most of the studies describing similar procedures are performed on animal models. Research scientists rely on the availability of properly dissected and well-conserved ocular tissues in order to extend the knowledge on human eye development, homeostasis and function. As we receive high amount of ocular globes out of which approximately 40% (Table 1) of them are used for research purposes, we are able to perform huge amount of experiments on these tissues, defining techniques to excise and preserve them regularly. The cornea is an avascular tissue which enables the transmission of light onto the retina and for this purpose should always maintain a good degree of transparency. Within the cornea, the limbus region, which is a reservoir of the stem cells, helps the reconstruction of epithelial cells and restricts the overgrowth of the conjunctiva maintaining corneal transparency and clarity. The size and thickness of the cornea are critical for clear vision, as changes in either of them could lead to distracted, unclear vision. The cornea comprises of 5 layers; a) epithelium, b) Bowman's layer, c) stroma, d) Descemet's membrane and e) endothelium. All layers should function properly to ensure clear vision(4,5,6). The choroid is the intermediate tunic between the sclera and retina, bounded on the interior by the Bruch's membrane and is responsible for blood flow in the eye. The choroid also helps to regulate the temperature and supplies nourishment to the outer layers of the retina(5,6). The retina is a layer of nervous tissue that covers the back of the ocular globe (Suppl. Figure 1) and consists of two parts: a photoreceptive part and a non-receptive part. The retina helps to receive the light from the cornea and lens and converts it into the chemical energy eventually transmitted to the brain with help of the optic nerve(5,6). The aim of this paper is to provide a protocol for the dissection of corneal and retinal tissues from human ocular globes. Avoiding cross-contamination with adjacent tissues and preserving RNA integrity is of fundamental importance as such tissues are indispensable for research purposes aimed at (i) characterizing the transcriptome of the ocular tissues, (ii) isolating stem cells for regenerative medicine projects, and (iii) evaluating histological differences between tissues from normal/affected subjects. In this paper we describe the technique we currently use to remove the cornea, the choroid and retinal tissues from an ocular globe. Here we provide a detailed protocol for the dissection of the human ocular globe and the excision of corneal and retinal tissues. The accompanying video will help researchers to learn an appropriate technique for the retrieval of precious human tissues which are difficult to find regularly.

  6. Nanoparticle Delivery of RNAi Therapeutics for Ocular Vesicant Injury

    DTIC Science & Technology

    2014-04-01

    nanoparticles to smaller size with higher stability in physiological media, optimized a protocol to surface-coat nucleic acid nanoparticles with hyaluronic acid ...nanoparticle tissue retention and cell uptake by conjugating cell adhesion ligand to nanoparticles and by surface coating of hyaluronic acid to... hyaluronic acid , and retain the stability of the nanoparticles. Identified the conditions using reversible crosslinking density to stabilize siRNA

  7. Ocular Distribution and Pharmacokinetics of Lifitegrast in Pigmented Rabbits and Mass Balance in Beagle Dogs.

    PubMed

    Chung, Jou-Ku; Spencer, Elizabeth; Hunt, Matthew; McCauley, Thomas; Welty, Devin

    Lifitegrast is approved in the United States for the treatment of dry eye disease (DED). We assessed lifitegrast's ocular distribution/pharmacokinetic profile in rabbits, and 14 C-lifitegrast mass balance/excretion in dogs. Female pigmented rabbits received a single topical ocular dose of lifitegrast (Formulation No. 1, n = 25; No. 2, n = 25) per eye twice daily (target, 1.75 mg/eye/dose). Blood/ocular tissues were collected on day 5. Beagle dogs received single intravenous (n = 10; target, 3 mg, 262 μCi/animal) and ocular (n = 8, target, 3 mg, 30 μCi/eye) doses of 14 C-lifitegrast (∼8 weeks between doses). Blood, excreta, and cage rinse/wipes were collected. Concentrations were measured by mass spectrometry/liquid scintillation counting. Pharmacokinetic analyses (noncompartmental) included maximum concentration (C max ), time to C max (t max ), and area under the concentration-time curve from 0 to 8 h (AUC 0-8 ). In rabbits, lifitegrast C max and AUC 0-8 were similar between formulations. C max was highest in ocular anterior segment tissues: 5,190-14,200 ng/g [conjunctiva (palpebral/bulbar), cornea, anterior sclera]. Posterior segment tissues had lower concentrations (0-826 ng/g). AUC 0-8 followed a similar trend. Plasma concentrations were low (C max <18 ng/mL). Tissue/plasma t max was ∼0.25-1 h. In dogs, after intravenous/ocular doses, 14 C-lifitegrast was eliminated primarily through feces. Excreted radioactivity was mainly unchanged lifitegrast. High exposure of lifitegrast in rabbit ocular anterior segment tissues and low exposure in posterior segment tissues/plasma suggests that lifitegrast reaches target tissues for DED treatment, with low potential for off-target systemic/ocular effects. Excretion of unchanged 14 C-lifitegrast suggests minimal drug metabolism in vivo. This is consistent with lifitegrast clinical trial efficacy/safety data.

  8. Efficacy of a New Ocular Surface Modulator in Restoring Epithelial Changes in an In Vitro Model of Dry Eye Syndrome.

    PubMed

    Barabino, Stefano; De Servi, Barbara; Aragona, Salvatore; Manenti, Demetrio; Meloni, Marisa

    2017-03-01

    So far tear substitutes have demonstrated a limited role in restoring ocular surface damage in dry eye syndrome (DES). The aim of this study was to assess the efficacy of a new ocular surface modulator in an in vitro model of human corneal epithelium (HCE) damaged by severe osmotic stress mirroring the features of dry eye conditions. A reconstructed HCE model challenged by the introduction of sorbitol in the culture medium for 16 h was used to induce an inflammatory pathway and to impair the tight junctions integrity determining a severe modification of the superficial layer ultrastructure. At the end of the overnight stress period in the treated HCE series, 30 μl of the ocular surface modulator (T-LysYal, Sildeha, Switzerland) and of hyaluronic acid (HA) in the control HCE series were applied for 24 h. The following parameters were quantified: scanning electron microscopy (SEM), trans-epithelial electrical resistance (TEER), immunofluorescence analysis of integrin β1 (ITG-β1), mRNA expression of Cyclin D-1 (CCND1), and ITG-β1. In the positive control after the osmotic stress the HCE surface damage was visible at the ultrastructural level with loss of cell-cell interconnections, intercellular matrix destruction, and TEER reduction. After 24 h of treatment with T-LysYal, HCE showed a significant improvement of the ultrastructural morphological organization and increased expression of ITG-β1 at the tissue level when compared to positive and control series. A significant increase of mRNA expression for ITG-β1 and CCND1 was shown in the HA-treated cells compared to T-LysYal. TEER measurement showed a significant reduction in all groups after 16 h without modifications after the treatment period. This study has shown the possibility of a new class of agents denominated ocular surface modulators to restore corneal cells damaged by dry eye conditions. Further in vivo studies are certainly necessary to confirm these results.

  9. Formulation Development, Optimization, and In vitro - In vivo Characterization of Natamycin Loaded PEGylated Nano-lipid Carriers for Ocular Applications.

    PubMed

    Patil, Akash; Lakhani, Prit; Taskar, Pranjal; Wu, Kai-Wei; Sweeney, Corinne; Avula, Bharathi; Wang, Yan-Hong; Khan, Ikhlas A; Majumdar, Soumyajit

    2018-04-23

    Current study aimed at formulating and optimizing natamycin (NT) loaded PEGylated NLCs (NT-PEG-NLCs) using Box-Behnken Design and investigating their potential in ocular applications. Response surface methodology (RSM) computations and plots for optimization were performed using Design Expert ® software, to obtain optimum values for response variables based on the criteria of desirability. Optimized NT-PEG-NLCs had predicted values for the dependent variables not significantly different from the experimental values. NT-PEG-NLCs were characterized for their physicochemical parameters; NT's rate of permeation and flux across rabbit cornea was evaluated, in vitro; ocular tissue distribution was assessed in rabbits, in vivo. NT-PEG-NLCs were found to have optimum particle size (< 300 nm) narrow PDI, high NT entrapment and NT content. In vitro transcorneal permeability and flux of NT from NT-PEG-NLCs was significantly higher than Natacyn ® . NT-PEG-NLC (0.3%) showed improved delivery of NT across the intact cornea and provided concentrations statistically similar to the marketed suspension (5%) in inner ocular tissues, in vivo, indicating that it could be a potential alternative to the conventional suspension during the course of fungal keratitis therapy. Copyright © 2018. Published by Elsevier Inc.

  10. Standard terminology and labeling of ocular tissue for transplantation.

    PubMed

    Armitage, W John; Ashford, Paul; Crow, Barbara; Dahl, Patricia; DeMatteo, Jennifer; Distler, Pat; Gopinathan, Usha; Madden, Peter W; Mannis, Mark J; Moffatt, S Louise; Ponzin, Diego; Tan, Donald

    2013-06-01

    To develop an internationally agreed terminology for describing ocular tissue grafts to improve the accuracy and reliability of information transfer, to enhance tissue traceability, and to facilitate the gathering of comparative global activity data, including denominator data for use in biovigilance analyses. ICCBBA, the international standards organization for terminology, coding, and labeling of blood, cells, and tissues, approached the major Eye Bank Associations to form an expert advisory group. The group met by regular conference calls to develop a standard terminology, which was released for public consultation and amended accordingly. The terminology uses broad definitions (Classes) with modifying characteristics (Attributes) to define each ocular tissue product. The terminology may be used within the ISBT 128 system to label tissue products with standardized bar codes enabling the electronic capture of critical data in the collection, processing, and distribution of tissues. Guidance on coding and labeling has also been developed. The development of a standard terminology for ocular tissue marks an important step for improving traceability and reducing the risk of mistakes due to transcription errors. ISBT 128 computer codes have been assigned and may now be used to label ocular tissues. Eye banks are encouraged to adopt this standard terminology and move toward full implementation of ISBT 128 nomenclature, coding, and labeling.

  11. Sutureless Fixation of Amniotic Membrane for Therapy of Ocular Surface Disorders

    PubMed Central

    Kotomin, Ilya; Valtink, Monika; Hofmann, Kai; Frenzel, Annika; Morawietz, Henning; Werner, Carsten; Funk, Richard H. W.; Engelmann, Katrin

    2015-01-01

    Amniotic membrane is applied to the diseased ocular surface to stimulate wound healing and tissue repair, because it releases supportive growth factors and cytokines. These effects fade within about a week after application, necessitating repeated application. Generally, amniotic membrane is fixed with sutures to the ocular surface, but surgical intervention at the inflamed or diseased site can be detrimental. Therefore, we have developed a system for the mounting of amniotic membrane between two rings for application to a diseased ocular surface without surgical intervention (sutureless amniotic membrane transplantation). With this system, AmnioClip, amniotic membrane can be applied like a large contact lens. First prototypes were tested in an experiment on oneself for wearing comfort. The final system was tested on 7 patients in a pilot study. A possible influence of the ring system on the biological effects of amniotic membrane was analyzed by histochemistry and by analyzing the expression of vascular endothelial growth factor-A (VEGF-A), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF 2) and pigment epithelium-derived factor (PEDF) from amniotic membranes before and after therapeutic application. The final product, AmnioClip, showed good tolerance and did not impair the biological effects of amniotic membrane. VEGF-A and PEDF mRNA was expressed in amniotic membrane after storage and mounting before transplantation, but was undetectable after a 7-day application period. Consequently, transplantation of amniotic membranes with AmnioClip provides a sutureless and hence improved therapeutic strategy for corneal surface disorders. Trial Registration ClinicalTrials.gov NCT02168790 PMID:25955359

  12. Ocular Adverse Events Associated with Antibody–Drug Conjugates in Human Clinical Trials

    PubMed Central

    Miller, Paul E.; Mannis, Mark J.

    2015-01-01

    Abstract This article reviews ocular adverse events (AEs) reported in association with administration of antibody–drug conjugates (ADCs) in human clinical trials. References reporting ocular toxicity or AEs associated with ADCs were collected using online publication searches. Articles, abstracts, or citations were included if they cited ocular toxicities or vision-impairing AEs with a confirmed or suspected association with ADC administration. Twenty-two references were found citing ocular or vision-impairing AEs in association with ADC administration. All references reported use of ADCs in human clinical trials for treatment of various malignancies. The molecular target and cytotoxic agent varied depending on the ADC used. Ocular AEs affected a diversity of ocular tissues. The most commonly reported AEs involved the ocular surface and included blurred vision, dry eye, and corneal abnormalities (including microcystic corneal disease). Most ocular AEs were not severe (≤ grade 2) or dose limiting. Clinical outcomes were not consistently reported, but when specified, most AEs improved or resolved with cessation of treatment or with ameliorative therapy. A diverse range of ocular AEs are reported in association with administration of ADCs for the treatment of cancer. The toxicologic mechanism(s) and pathogenesis of such events are not well understood, but most are mild in severity and reversible. Drug development and medical professionals should be aware of the clinical features of these events to facilitate early recognition and intervention in the assessment of preclinical development programs and in human clinical trials. PMID:26539624

  13. Long-term effects of the extended wear of senofilcon A silicone hydrogel contact lenses on ocular tissues.

    PubMed

    Guillon, Michel; Maïssa, Cécile

    2010-12-01

    The objective of the investigation was to show that, because of their overall properties, Acuvue® Oasys™ with Hydraclear™ Plus brand (senofilcon A) silicone hydrogel contact lenses achieve excellent ocular tissue tolerance during long-term extended wear. The investigation was a 2-year, prospective, extended wear investigation of senofilcon A silicone hydrogel contact lenses worn for up to 6 nights without removal. The 2-year results compared with the subjects' baseline ocular statuses on entering the study revealed: The quantification of the effects on the ocular tissues of 2 years of extended wear of senofilcon A, by mainly previously successful daily soft contact lens wearers, found an excellent biocompatibility. The results support the hypothesis that senofilcon A contact lenses, when worn on a 6-night/7-day extended wear regimen, maintain excellent long-term ocular tissue tolerance. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  14. Miniature real-time intraoperative forward-imaging optical coherence tomography probe

    PubMed Central

    Joos, Karen M.; Shen, Jin-Hui

    2013-01-01

    Optical coherence tomography (OCT) has a tremendous global impact upon the ability to diagnose, treat, and monitor eye diseases. A miniature 25-gauge forward-imaging OCT probe with a disposable tip was developed for real-time intraoperative ocular imaging of posterior pole and peripheral structures to improve vitreoretinal surgery. The scanning range was 2 mm when the probe tip was held 3-4 mm from the tissue surface. The axial resolution was 4-6 µm and the lateral resolution was 25-35 µm. The probe was used to image cellophane tape and multiple ocular structures. PMID:24009997

  15. Improvements in Topical Ocular Drug Delivery Systems: Hydrogels and Contact Lenses.

    PubMed

    Ribeiro, Andreza Maria; Figueiras, Ana; Veiga, Francisco

    2015-01-01

    Conventional ophthalmic systems present very low corneal systemic bioavailability due to the nasolacrimal drainage and the difficulty to deliver the drug in the posterior segment of ocular tissue. For these reasons, recent advances have focused on the development of new ophthalmic drug delivery systems. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings in soft contact lenses (SCL) and the applications of novel pharmaceutical systems for ocular drug delivery. Among the new therapeutic approaches in ophthalmology, SCL are novel continuous-delivery systems, providing high and sustained levels of drugs to the cornea. The tendency of research in ophthalmic drug delivery systems development are directed towards a combination of several technologies (bio-inspired and molecular imprinting techniques) and materials (cyclodextrins, surfactants, specific monomers). There is a tendency to develop systems which not only prolong the contact time of the vehicle at the ocular surface, but also at the same time slow down the clearance of the drug. Different materials can be applied during the development of contact lenses and can be combined with natural inspired strategies of drug immobilization and release, providing successful tools for ocular drug delivery systems.

  16. Management of the ocular surface and tear film before, during, and after laser in situ keratomileusis.

    PubMed

    Albietz, Julie M; Lenton, Lee M

    2004-01-01

    To identify evidence-based, best practice strategies for managing the ocular surface and tear film before, during, and after laser in situ keratomileusis (LASIK). After a comprehensive review of relevant published literature, evidence-based recommendations for best practice management strategies are presented. Symptoms of ocular irritation and signs of dysfunction of the integrated lacrimal gland/ocular surface functional gland unit are common before and after LASIK. The status of the ocular surface and tear film before LASIK can impact surgical outcomes in terms of potential complications during and after surgery, refractive outcome, optical quality, patient satisfaction, and the severity and duration of dry eye after LASIK. Before LASIK, the health of the ocular surface should be optimized and patients selected appropriately. Dry eye before surgery and female gender are risk factors for developing chronic dry eye after LASIK. Management of the ocular surface during LASIK can minimize ocular surface damage and the risk of adverse outcomes. Long-term management of the tear film and ocular surface after LASIK can reduce the severity and duration of dry eye symptoms and signs. Strategies to manage the integrated ocular surface/lacrimal gland functional unit before, during, and after LASIK can optimize outcomes. As problems with the ocular surface and tear film are relatively common, attention should focus on the use and improvement of evidence-based management strategies.

  17. The role of microbial flora on the ocular surface.

    PubMed

    Miller, Darlene; Iovieno, Alfonso

    2009-10-01

    Presence and interplay of microbial flora at the ocular surface reveal dynamic and evolving interactions with implications for both ocular surface health and disease. Data in this area are scarce or non-existent. The purpose of this review is to provide a snapshot of new and emerging developments in this area over the last 12 months. Recent findings signal potential roles for ocular surface microbial flora in both the preservation and extension of ocular surface health and in the initiation of new or escalation of common surface disorders. Contributions range from priming surface epithelial immune cells to regulating mucin composition and production. Other findings explore the emergent role of ocular microbial flora cross talk with pattern recognition receptors to protect and strengthen local and adaptive mucosal immunity while preserving vision. Deciphering the functional role of microbial communities at the ocular surface could bring new insights into and clarify the epidemiology and pathology of ocular surface dynamics in health and disease.

  18. Altered Mucin and Glycoprotein Expression in Dry Eye Disease.

    PubMed

    Stephens, Denise N; McNamara, Nancy A

    2015-09-01

    Mucins are among the many important constituents of a healthy tear film. Mucins secreted and/or associated with conjunctival goblet cells, ocular mucosal epithelial cells, and the lacrimal gland must work together to create a stable tear film. Although many studies have explored the mechanism(s) whereby mucins maintain and protect the ocular surface, the effects of dry eye on the structure and function of ocular mucins are unclear. Here, we summarize current findings regarding ocular mucins and how they are altered in dry eye. We performed a literature review of studies exploring the expression of mucins produced and/or associated with tissues that comprise the lacrimal functional unit and how they are altered in dry eye. We also summarize new insights on the immune-mediated effects of aqueous tear deficiency on ocular surface mucins that we discovered using a mouse model of dry eye. Although consistent decreases in MUC5AC and altered expression of membrane-bound mucins have been noted in both Sjögren and non-Sjögren dry eye, many reports of altered mucins in dry eye are contradictory. Mechanistic studies, including our own, suggest that changes in the glycosylation of mucins rather than the proteins themselves may occur as the direct result of local inflammation induced by proinflammatory mediators, such as interleukin-1. Altered expression of ocular mucins in dry eye varies considerably from study to study, likely attributed to inherent difficulties in analyzing small-volume tear samples, as well as differences in tear collection methods and disease severity in dry eye cohorts. To better define the functional role of ocular mucin glycosylation in the pathogenesis of dry eye disease, we propose genomic and proteomic studies along with biological pathway analysis to reveal novel avenues for exploration.

  19. Characterization of human ocular mucin secretion mediated by 15(S)-HETE.

    PubMed

    Jumblatt, James E; Cunningham, Lauren T; Li, Yang; Jumblatt, Marcia M

    2002-11-01

    The eicosanoid 15-(S)-hydroxy-5,8,11,13-eicosatetraenoic acid [15(S)-HETE] is reported to stimulate mucin production in both airway and ocular surface epithelia. The current study was undertaken to evaluate the effects of 15(S)-HETE on secretion of specific ocular mucins by human conjunctiva. Segments of human bulbar conjunctival tissue were incubated with 15(S)-HETE (1-1000 nM) for 30 minutes at 37 degrees C. Secretion of human ocular mucins MUC1, MUC2, MUC4, and MUC5AC into the incubation media was measured by dot-blot immunoassay using antibodies directed to unique mucin polypeptide epitopes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting were used to verify the specificity of anti-mucin antibody binding and to investigate the presence of MUC1 mucin in human tears. 15(S)-HETE (10(-8)-10(-6) M) stimulated secretion of conjunctival mucins in a concentration-dependent manner. Significant increases in total mucin secretion were observed at 10(-7) M 15(S)-HETE with a maximum response (>50% increase above controls) at 10(-6) M. Results of immunoassays showed that 15(S)-HETE differentially stimulates secretion of MUC1 mucin with no detectable effects on MUC2, MUC4, or MUC5AC release. Western analysis of tear samples from human volunteers indicated that MUC1 is a component of the preocular tear film. The results demonstrate that 15(S)-HETE is a selective secretogogue for MUC1 in isolated human conjunctival tissue. Although the biochemical mechanism(s) and cellular origins of MUC1 secretion remain to be established, the ubiquitous expression of MUC1 in corneal and conjunctival epithelia and its presence in human tears suggest that secreted MUC1 may contribute to the mucin layer that coats and protects the ocular surface.

  20. Effective melanin depigmentation of human and murine ocular tissues: an improved method for paraffin and frozen sections.

    PubMed

    Manicam, Caroline; Pitz, Susanne; Brochhausen, Christoph; Grus, Franz H; Pfeiffer, Norbert; Gericke, Adrian

    2014-01-01

    The removal of excessive melanin pigments that obscure ocular tissue morphology is important to address scientific questions and for differential diagnosis of ocular tumours based on histology. Thus, the goal of the present study was to establish an effective and fast melanin bleaching method for paraffin and frozen mouse and human ocular tissues. Paraffin-embedded and frozen ocular specimens from mice and human donors were subjected to bleaching employing two methods. The first employed potassium permanganate (KMnO4) with oxalic acid, and the second 10% hydrogen peroxide (H2O2). To determine optimal bleaching conditions, depigmentation was carried out at various incubation times. The effect of diluents used for 10% H2O2 was assessed using phosphate-buffered saline (PBS), and deionized water. Three different slide types and two fixatives, which were ice-cold acetone with 80% methanol, and 4% paraformaldehyde (PFA) were used to determine the optimal conditions for better tissue adherence during bleaching. All tissues were stained in hematoxylin and eosin for histological evaluation. Optimal bleaching was achieved using warm 10% H2O2 diluted in PBS at 65°C for 120 minutes. Chromium-gelatin-coated slides prevented tissue detachment. Adherence of cryosections was also improved with post-fixation using 4% PFA and overnight air-drying at RT after cryosectioning. Tissue morphology was preserved under these conditions. Conversely, tissues bleached in KMnO4/oxalic acid demonstrated poor depigmentation with extensive tissue damage. Warm dilute H2O2 at 65°C for 120 minutes rapidly and effectively bleached both cryo- and paraffin sections of murine and human ocular tissues.

  1. Comparing the Effects of Particulate Matter on the Ocular Surfaces of Normal Eyes and a Dry Eye Rat Model.

    PubMed

    Han, Ji Yun; Kang, Boram; Eom, Youngsub; Kim, Hyo Myung; Song, Jong Suk

    2017-05-01

    To compare the effect of exposure to particulate matter on the ocular surface of normal and experimental dry eye (EDE) rat models. Titanium dioxide (TiO2) nanoparticles were used as the particulate matter. Rats were divided into 4 groups: normal control group, TiO2 challenge group of the normal model, EDE control group, and TiO2 challenge group of the EDE model. After 24 hours, corneal clarity was compared and tear samples were collected for quantification of lactate dehydrogenase, MUC5AC, and tumor necrosis factor-α concentrations. The periorbital tissues were used to evaluate the inflammatory cell infiltration and detect apoptotic cells. The corneal clarity score was greater in the EDE model than in the normal model. The score increased after TiO2 challenge in each group compared with each control group (normal control vs. TiO2 challenge group, 0.0 ± 0.0 vs. 0.8 ± 0.6, P = 0.024; EDE control vs. TiO2 challenge group, 2.2 ± 0.6 vs. 3.8 ± 0.4, P = 0.026). The tear lactate dehydrogenase level and inflammatory cell infiltration on the ocular surface were higher in the EDE model than in the normal model. These measurements increased significantly in both normal and EDE models after TiO2 challenge. The tumor necrosis factor-α levels and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were also higher in the EDE model than in the normal model. TiO2 nanoparticle exposure on the ocular surface had a more prominent effect in the EDE model than it did in the normal model. The ocular surface of dry eyes seems to be more vulnerable to fine dust of air pollution than that of normal eyes.

  2. Density of ocular components of the bovine eye.

    PubMed

    Su, Xiao; Vesco, Christina; Fleming, Jacquelyn; Choh, Vivian

    2009-10-01

    Density is essential for acoustic characterization of tissues and provides a basic input for ultrasound backscatter and absorption models. Despite the existence of extensive compilations of acoustic properties, neither unified data on ocular density nor comparisons of the densities between all ocular components can be found. This study was undertaken to determine the mass density of all the ocular components of the bovine eye. Liquid components were measured through mass/volume ratio, whereas solid tissues were measured with two different densitometry techniques based on Archimedes Principle. The first method determines the density by measuring dry and wet weight of the tissues. The second method consists of immersing the tissues in sucrose solutions of varying densities and observing their buoyancy. Although the mean densities for all tissues were found to be within 0.02 g/cm by both methods, only the sucrose solution method offered a consistent relative order for all measured ocular components, as well as a considerably smaller standard deviation (a maximum standard deviation of 0.004 g/cm for cornea). The lens was found to be the densest component, followed by the sclera, cornea, choroid, retina, aqueous, and vitreous humors. The consistent results of the sucrose solution tests suggest that the ocular mass density is a physical property that is more dependent on the compositional and structural characteristics of the tissue and than on population variability.

  3. Development of the EpiOcular(TM) eye irritation test for hazard identification and labelling of eye irritating chemicals in response to the requirements of the EU cosmetics directive and REACH legislation.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; Hayden, Patrick; Kubilus, Joseph; d'Argembeau-Thornton, Laurence; Klausner, Mitchell

    2011-09-01

    The recently implemented 7th Amendment to the EU Cosmetics Directive and the EU REACH legislation have heightened the need for in vitro ocular test methods. To address this need, the EpiOcular(TM) eye irritation test (EpiOcular-EIT), which utilises the normal (non-transformed) human cell-based EpiOcular tissue model, has been developed. The EpiOcular-EIT prediction model is based on an initial training set of 39 liquid and 21 solid test substances and uses a single exposure period and a single cut-off in tissue viability, as determined by the MTT assay. A chemical is classified as an irritant (GHS Category 1 or 2), if the tissue viability is ≤ 60%, and as a non-irritant (GHS unclassified), if the viability is > 60%. EpiOcular-EIT results for the training set, along with results for an additional 52 substances, which included a range of alcohols, hydrocarbons, amines, esters, and ketones, discriminated between ocular irritants and non-irritants with 98.1% sensitivity, 72.9% specificity, and 84.8% accuracy. To ensure the long-term commercial viability of the assay, EpiOcular tissues produced by using three alternative cell culture inserts were evaluated in the EpiOcular-EIT with 94 chemicals. The assay results obtained with the initial insert and the three alternative inserts were very similar, as judged by correlation coefficients (r²) that ranged from 0.82 to 0.96. The EpiOcular-EIT was pre-validated in 2007/2008, and is currently involved in a formal, multi-laboratory validation study sponsored by the European Cosmetics Association (COLIPA) under the auspices of the European Centre for the Validation of Alternative Methods (ECVAM). The EpiOcular-EIT, together with EpiOcular's long history of reproducibility and proven utility for ultra-mildness testing, make EpiOcular a useful model for addressing current legislation related to animal use in the testing of potential ocular irritants. 2011 FRAME.

  4. Ex Vivo and in Vivo Evaluation of the Effect of Coating a Coumarin-6-Labeled Nanostructured Lipid Carrier with Chitosan-N-acetylcysteine on Rabbit Ocular Distribution.

    PubMed

    Liu, Dandan; Li, Jinyu; Cheng, Bingchao; Wu, Qingyin; Pan, Hao

    2017-08-07

    This study is focused on further understanding the characteristics of chitosan-N-acetylcysteine surface-modified nanostructured lipid carriers (CS-NAC-NLCs) in their interaction with ocular mucosa. Coumarin-6 (C6)-labeled NLCs, including uncoated NLCs, chitosan hydrochloride (CH)-, and CS-NAC-coated NLCs, were developed using a melt-emulsification technique and subsequently decorated with different types or portions of chitosan derivatives. Mucoadhesion was evaluated ex vivo using a flow-through process with fluorescence detection. The results demonstrated that the presence of CS-NAC on the C6-NLC surface provided the most obvious enhancement in adhesion due to the formation of both noncovalent (ionic) and covalent (disulfide bridges) interactions with mucus chains. Meanwhile, the concentration of CS-NAC in the formulation positively influenced the viscosity of the nanoparticles and hence prolonged their retention in the ocular tissue. Transcorneal penetration studies revealed that CS-NAC-NLC particles were able to penetrate through the entire corneal epithelium primarily via a transcellular route. The transport depth and velocity strongly relied on the modification material and the particle size. Ex vivo fluorescence imaging and in vivo ocular distribution investigations showed that C6 was broadly distributed in rabbit eye tissues and absorbed by aqueous humor after CS-NAC-NLC instillation. In relation to C6 eye drops, CS-NAC-NLCs achieved considerably higher C max (4.01-fold), MRT 0-∞ (1.87-fold), and AUC 0-∞ (16.29-fold) in the aqueous humor. Moreover, the increase in drug absorption was greater in the cornea than in the conjunctiva. Thereby, it is possible to draw a conclusion that CS-NAC-NLCs presented great potential for drug application to the front portion of the eye.

  5. Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues.

    PubMed

    Yang, Bin; Jan, Ning-Jiun; Brazile, Bryn; Voorhees, Andrew; Lathrop, Kira L; Sigal, Ian A

    2018-04-06

    Collagen fibers play a central role in normal eye mechanics and pathology. In ocular tissues, collagen fibers exhibit a complex 3-dimensional (3D) fiber orientation, with both in-plane (IP) and out-of-plane (OP) orientations. Imaging techniques traditionally applied to the study of ocular tissues only quantify IP fiber orientation, providing little information on OP fiber orientation. Accurate description of the complex 3D fiber microstructures of the eye requires quantifying full 3D fiber orientation. Herein, we present 3dPLM, a technique based on polarized light microscopy developed to quantify both IP and OP collagen fiber orientations of ocular tissues. The performance of 3dPLM was examined by simulation and experimental verification and validation. The experiments demonstrated an excellent agreement between extracted and true 3D fiber orientation. Both IP and OP fiber orientations can be extracted from the sclera and the cornea, providing previously unavailable quantitative 3D measures and insight into the tissue microarchitecture. Together, the results demonstrate that 3dPLM is a powerful imaging technique for the analysis of ocular tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of poly(2-hydroxyethyl methacrylate) and poly(vinyl-pyrrolidone) hydrogel implants on myopic and normal chick sclera

    PubMed Central

    Su, James; Iomdina, Elena; Tarutta, Elena; Ward, Brian; Song, Jie; Wildsoet, Christine F.

    2008-01-01

    There has been generally little attention paid to the utilization of biomaterials as an anti-myopia treatment. The purpose of this study was to investigate whether polymeric hydrogels, either implanted or injected adjacent to the outer scleral surface, slow ocular elongation. White Leghorn (gallus gallus domesticus) chicks were used at 2 weeks of age. Chicks had either (1) strip of poly(2-hydroxyethyl methacrylate) (pHEMA) implanted monocularly against the outer sclera at the posterior pole, or (2) an in situ polymerizing gel [main ingredient: poly(vinyl-pyrrolidone) (PVP)] injected monocularly at the same location. Some of the eyes injected with the polymer were fitted with a diffuser or a −10D lens. In each experiment, ocular lengths were measured at regular intervals by high frequency A-scan ultrasonography, and chicks were sacrificed for histology at staged intervals. No in vivo signs of either orbital or ocular inflammation were observed. The pHEMA implant significantly increased scleral thickness by the third week, and the implant became encapsulated with fibrous tissue. The PVP-injected eyes left otherwise untreated, showed a significant increase in scleral thickness, due to increased chondrocyte proliferation and extracellular matrix deposition. However, there was no effect of the PVP injection on ocular elongation. In eyes wearing optical devices, there was no effect on either scleral thickness or ocular elongation. These results represent “proof of principle” that scleral growth can be manipulated without adverse inflammatory responses. However, since neither approach slowed ocular elongation, additional factors must influence scleral surface area expansion in the avian eye. PMID:19109950

  7. Release of Membrane-associated Mucins from Ocular Surface Epithelia

    PubMed Central

    Blalock, Timothy D.; Spurr-Michaud, Sandra J.; Tisdale, Ann S.; Gipson, Ilene K.

    2008-01-01

    Purpose Three membrane-associated mucins (MAMs)—MUC1, MUC4 and MUC16—are expressed at the ocular surface epithelium. Soluble forms of MAMs are detected in human tears, but the mechanisms of their release from the apical cells are unknown. The purpose of this study was to identify physiologic agents that induce ocular surface MAM release. Methods An immortalized human corneal-limbal epithelial cell line (HCLE) expressing the same MAMs as native tissue was used. An antibody specific to MUC16’s cytoplasmic tail was developed to confirm that only the extracellular domain is released into the tear fluid or culture media. Effects of agents that have been shown to be present in tears or are implicated in release/shedding of MAMs in other epithelia (neutrophil elastase, tumor necrosis factor (TNF), TNF-α-converting enzyme, and matrix metalloproteinases-7 and –9) were assessed on HCLE cells. HCLE cell surface proteins were biotinylated to measure efficiency of induced MAM release and surface restoration. Effects of induced release on surface barrier function were measured by rose bengal dye penetrance. Results MUC16 in tears and in HCLE-conditioned medium lacked the cytoplasmic tail. TNF induced release of MUC1, MUC4, and MUC16 from the HCLE surface. Matrix metalloproteinase-7 and neutrophil elastase induced release of MUC16 but not MUC1 or MUC4. Neutrophil elastase removed 68% of MUC16—78% of which was restored to the HCLE cell surface 24 hours after release. Neutrophil elastase-treated HCLE cells showed significantly reduced rose bengal dye exclusion. Conclusions Results suggest that extracellular domains of MUC1, 4, and 16 can be released from the ocular surface by agents present in tears. Neutrophil elastase and TNF present in higher amounts in dry eye patients’ tears may cause MAM release—allowing rose bengal staining. PMID:18436821

  8. ELECTRICAL SIGNALING IN CONTROL OF OCULAR CELL BEHAVIORS

    PubMed Central

    Zhao, Min; Chalmers, Laura; Cao, Lin; Viera, Ana C.; Mannis, Mark; Reid, Brian

    2011-01-01

    Epithelia of the cornea, lens and retina contain a vast array of ion channels and pumps. Together they produce a polarized flow of ions in and out of cells, as well as across the epithelia. These naturally occurring ion fluxes are essential to the hydration and metabolism of the ocular tissues, especially for the avascular cornea and lens. The directional transport of ions generates electric fields and currents in those tissues. Applied electric fields affect migration, division and proliferation of ocular cells which are important in homeostasis and healing of the ocular tissues. Abnormalities in any of those aspects may underlie many ocular diseases, for example chronic corneal ulcers, posterior capsule opacity after cataract surgery, and retinopathies. Electric field-inducing cellular responses, termed electrical signaling here, therefore may be an unexpected yet powerful mechanism in regulating ocular cell behavior. Both endogenous electric fields and applied electric fields could be exploited to regulate ocular cells. We aim to briefly describe the physiology of the naturally occurring electrical activities in the corneal, lens, and retinal epithelia, to provide experimental evidence of the effects of electric fields on ocular cell behaviors, and to suggest possible clinical implications. PMID:22020127

  9. Modern Diagnostic Techniques for the Assessment of Ocular Blood Flow in Myopia: Current State of Knowledge.

    PubMed

    Grudzińska, Ewa; Modrzejewska, Monika

    2018-01-01

    Myopia is the most common refractive error and the subject of interest of various studies assessing ocular blood flow. Increasing refractive error and axial elongation of the eye result in the stretching and thinning of the scleral, choroid, and retinal tissues and the decrease in retinal vessel diameter, disturbing ocular blood flow. Local and systemic factors known to change ocular blood flow include glaucoma, medications and fluctuations in intraocular pressure, and metabolic parameters. Techniques and tools assessing ocular blood flow include, among others, laser Doppler flowmetry (LDF), retinal function imager (RFI), laser speckle contrast imaging (LSCI), magnetic resonance imaging (MRI), optical coherence tomography angiography (OCTA), pulsatile ocular blood flowmeter (POBF), fundus pulsation amplitude (FPA), colour Doppler imaging (CDI), and Doppler optical coherence tomography (DOCT). Many researchers consistently reported lower blood flow parameters in myopic eyes regardless of the used diagnostic method. It is unclear whether this is a primary change that causes secondary thinning of ocular tissues or quite the opposite; that is, the mechanical stretching of the eye wall reduces its thickness and causes a secondary lower demand of tissues for oxygen. This paper presents a review of studies assessing ocular blood flow in myopes.

  10. Dry Eye Management: Targeting the Ocular Surface Microenvironment.

    PubMed

    Zhang, Xiaobo; M, Vimalin Jeyalatha; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo; Li, Wei

    2017-06-29

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment.

  11. Dry Eye Management: Targeting the Ocular Surface Microenvironment

    PubMed Central

    Zhang, Xiaobo; Jeyalatha M, Vimalin; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo

    2017-01-01

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment. PMID:28661456

  12. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands.

    PubMed

    Stern, M E; Beuerman, R W; Fox, R I; Gao, J; Mircheff, A K; Pflugfelder, S C

    1998-11-01

    Most dry-eye symptoms result from an abnormal, nonlubricative ocular surface that increases shear forces under the eyelids and diminishes the ability of the ocular surface to respond to environmental challenges. This ocular-surface dysfunction may result from immunocompromise due to systemic autoimmune disease or may occur locally from a decrease in systemic androgen support to the lacrimal gland as seen in aging, most frequently in the menopausal female. Components of the ocular surface (cornea, conjunctiva, accessory lacrimal glands, and meibomian glands), the main lacrimal gland, and interconnecting innervation act as a functional unit. When one portion is compromised, normal lacrimal support of the ocular surface is impaired. Resulting immune-based inflammation can lead to lacrimal gland and neural dysfunction. This progression yields the OS symptoms associated with dry eye. Restoration of lacrimal function involves resolution of lymphocytic activation and inflammation. This has been demonstrated in the MRL/lpr mouse using systemic androgens or cyclosporine and in the dry-eye dog using topical cyclosporine. The efficacy of cyclosporine may be due to its immunomodulatory and antiinflammatory (phosphatase inhibitory capability) functions on the ocular surface, resulting in a normalization of nerve traffic. Although the etiologies of dry eye are varied, common to all ocular-surface disease is an underlying cytokine/receptor-mediated inflammatory process. By treating this process, it may be possible to normalize the ocular surface/lacrimal neural reflex and facilitate ocular surface healing.

  13. Ocular surface injury from a microwave superheated egg resulting in a pseudopterygium.

    PubMed

    Gagnon, Michael R; Dickinson, Paul J

    2005-05-01

    To describe the first case of ocular surface injury resulting in a pseudopterygium from a microwave superheated egg. Case report. A 12-year-old girl sustained an ocular surface injury resulting in a pseudopterygium from a microwave superheated egg. Microwave superheated eggs can result in ocular injury. This case illustrates the potential ocular danger involved with microwave ovens.

  14. Lactoferrin Expression in Human and Murine Ocular Tissue.

    PubMed

    Rageh, Abrar A; Ferrington, Deborah A; Roehrich, Heidi; Yuan, Ching; Terluk, Marcia R; Nelson, Elizabeth F; Montezuma, Sandra R

    2016-07-01

    Lactoferrin (LF) is a multifunctional protein known to provide innate defense due to its antimicrobial and anti-inflammatory properties. In the eye, LF has been identified in the tears and vitreous humor. Its presence in other ocular tissues has not been determined. Our aim is to assess the presence of LF in the cornea, iris, retina and retinal pigment epithelium (RPE) of humans and mice. To test for the endogenous production of LF, reverse transcription polymerase chain reaction was performed in cultured human cells from the cornea and RPE and in murine tissues. To confirm LF localization in specific ocular tissue, immunohistochemistry was performed on flat mounts of cornea, retina and RPE in human donor eyes. The presence of LF was assessed by western blotting in human and mouse ocular tissue and human culture cells (cornea and RPE). To verify antibody specificity, purified human LF and transferrin (TF) were used on 1D and 2D western blots. LF gene expression was confirmed in the cornea and RPE cell cultures from humans, suggesting that LF is an endogenously produced protein. PCR results from mouse ocular tissue showed LF expression in cornea, iris, RPE, but not in retina. These results were also consistent with immunohistochemical localization of LF in human donor tissue. Antibody reaction for human LF was specific and western blotting showed its presence in the cornea, iris and RPE tissues. A faint reaction for the retina was observed but was likely due to contamination from other ocular tissues. Multiple commercially available antibodies for murine LF cross-reacted with TF, so no reliable results were obtained for murine western blot. LF is expressed in multiple eye tissues of humans and mice. This widespread expression and multifunctional activity of LF suggests that it may play an important role in protecting eye tissues from inflammation-associated diseases.

  15. Differential regulation of membrane-associated mucins in the human ocular surface epithelium.

    PubMed

    Hori, Yuichi; Spurr-Michaud, Sandra; Russo, Cindy Leigh; Argüeso, Pablo; Gipson, Ilene K

    2004-01-01

    Membrane-associated mucins present in the apical cells of the ocular surface epithelium (MUC1, -4, and -16) are believed to contribute to the maintenance of a hydrated and wet-surfaced epithelial phenotype. Serum and retinoic acid (RA) have been used to treat drying ocular surface diseases. The goal of this study was to determine whether serum or RA regulates the production of membrane-associated mucins in human conjunctival epithelial cells. A telomerase-immortalized human conjunctival epithelial cell line (HCjE) was used. Cells were cultured in serum-free medium to confluence and then cultured with either 10% calf serum or with 100 nM RA for 0 to 72 hours. Conventional RT-PCR was used to determine the expression of retinoic acid receptors (RARs) and quantitative real-time PCR was used to investigate the mRNA expression of MUC1, -4, and -16. Protein levels were assayed by immunoblot analysis, using the antibodies HMFG-2, 1G8, or OC125, which are specific to MUC1, -4 and -16, respectively. To determine whether RA-associated MUC4 mRNA induction is a direct or indirect effect, HCjE cells were treated with RA and the protein synthesis inhibitor cycloheximide (1.0 microg/mL) for 12 hours. MUC1 and -16, but not -4, mRNAs were detectable in HCjE cells grown in serum-free medium. Real-time PCR revealed that MUC4 mRNA was significantly induced by serum 3 hours after its addition, and that MUC1 and MUC16 mRNA levels were significantly upregulated at 72 hours. Western blot analysis demonstrated that the MUC1, -4, and -16 proteins increased over time after addition of serum. Conventional RT-PCR analysis demonstrated that RAR-alpha and -gamma mRNA were expressed in native human conjunctival tissue as well as in the HCjE cells. Treatment with RA upregulated the expression of both MUC4 and -16 mRNA and protein, but MUC1 was unaffected. Because the protein synthesis inhibitor cycloheximide did not prevent the RA-associated induction of MUC4 mRNA, the action of RA on the MUC4 promoter may be direct. The membrane-associated mucins of the ocular surface epithelia, MUC1, -4, and -16, are differentially regulated by serum and RA in the telomerase-immortalized human conjunctival epithelial cell line. Serum derived from vessels in the conjunctiva may play an important role in mucin regulation in the ocular surface epithelia. These data also support the clinical efficacy of autologous serum and RA application in patients with ocular surface diseases. Furthermore, the data suggest that MUC4 and -16 are particularly important hydrophilic molecules involved in maintenance of a healthy ocular surface.

  16. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability.

    PubMed

    Liu, Rui; Liu, Zhidong; Zhang, Chengui; Zhang, Boli

    2012-10-01

    The aim of this study was to develop a novel nanostructured lipid carriers (NLCs) system to improve ocular bioavailability of mangiferin (MGN) for the potential treatment of cataract. The physicochemical properties of MGN-loaded NLC (MGN-NLC) formulation were characterized by particle size, polydispersity index, zeta potential, entrapment efficiency, drug loading, morphological property, and crystalline state. in vitro characteristics were investigated by drug release from NLC system, physical stability, and corneal permeation through excised rabbit cornea. Moreover, in vivo ocular tolerability was assessed by a modified Draize test and histological microscopy. Preocular retention capability was evaluated by slit-lamp observation. Pharmacokinetic study in the aqueous humor was performed by microdialysis technique. Transmission electron microscopy depicted spherical and uniform morphology. Differential scanning calorimetry and X-ray diffractometry displayed imperfect crystalline lattice. The optimized MGN-NLC formulation exhibited a sustained drug release with 3 months stability and 4.31-fold increase of in vitro corneal permeation. Furthermore, in vivo studies exhibited a high tolerance in the ocular tissues and prolonged drug retention capacity on the corneal surface. Finally, pharmacokinetic study suggested a 5.69-fold increase of ocular bioavailability compared with MGN solution (MGN-SOL). Therefore, NLC system is a promising approach for ocular delivery of MGN. Copyright © 2012 Wiley Periodicals, Inc.

  17. Implementation Intentions as a Strategy to Increase the Notification Rate of Potential Ocular Tissue Donors by Nurses: A Clustered Randomized Trial in Hospital Settings

    PubMed Central

    2014-01-01

    Aim. The purpose of this study is to evaluate the impact, among nurses in hospital settings, of a questionnaire-based implementation intentions intervention on notification of potential ocular tissue donors to donation stakeholders. Methods. This randomized intervention was clustered at the level of hospital departments with two study arms: questionnaire-based implementation intentions intervention and control. In the intervention group, nurses were asked to plan specific actions if faced with a number of barriers when reporting potential ocular donors. The primary outcome was the potential ocular tissue donors' notification rate before and after the intervention. Analysis was based on a generalized linear model with an identity link and a binomial distribution. Results. We compared outcomes in 26 departments from 5 hospitals, 13 departments per condition. The implementation intentions intervention did not significantly increase the notification rate of ocular tissue donors (intervention: 23.1% versus control: 21.1%; χ 2 = 1.14, 2; P = 0.56). Conclusion. A single and brief implementation intentions intervention among nurses did not modify the notification rate of potential ocular tissue donors to donation stakeholders. Low exposure to the intervention was a major challenge in this study. Further studies should carefully consider a multicomponent intervention to increase exposure to this type of intervention. PMID:25132990

  18. Aquaporins in the eye: Expression, function, and roles in ocular disease☆

    PubMed Central

    Schey, Kevin L.; Wang, Zhen; Wenke, Jamie L.; Qi, Ying

    2015-01-01

    Background All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. Scope of review This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. Major conclusions Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. General significance Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins. PMID:24184915

  19. The tear film and ocular mucins.

    PubMed

    Davidson, Harriet J; Kuonen, Vanessa J

    2004-01-01

    Abstract The trilaminar tear film, composed of the lipid, aqueous and mucin layers, has many functions including defending the ocular surface. The aqueous layer has several soluble antimicrobial factors that protect the ocular surface. Ocular mucins have recently been studied with regard to their role in the defense of the eye as well as in dry eye syndromes. To date, 15 mucin genes have been identified, and six of these mucin genes are localized to or secreted by ocular glands or epithelia. Understanding the production, secretion and function of ocular mucins will aid in the treatment of dry eye syndromes and ocular surface microbial infections.

  20. Significance of mucin on the ocular surface.

    PubMed

    Watanabe, Hitoshi

    2002-03-01

    To review the significance of mucin in the tear film and the ocular surface epithelium. Summary of the information on how mucin derived from the corneal and conjunctival epithelia and from goblet cells plays a role in the stability of the tear film over the ocular surface. The change in mucin expression derived from the ocular surface epithelium is also discussed with reference to ocular surface disease. The corneal and conjunctival epithelia produce transmembrane mucins such as MUC1, MUC2, and MUC4. In contrast, goblet cells produce the gel-forming secretory mucin, MUC5AC. The lacrimal gland produces MUC7. On the ocular surface, cooperation between transmembrane mucin and secretory mucin is necessary for the stability of the tear film. The expression of mucin from the ocular surface epithelium is coordinated from the time of eyelid opening and is altered in conditions such as squamous metaplasia and dry eye. This alteration may result in instability of the tear film. CONCLU SION: The induction of mucin from the ocular surface may facilitate the stability of the tear film, and increased knowledge may lead to the development of a new modality for the treatment of dry eye.

  1. Ocular drug delivery systems: An overview

    PubMed Central

    Patel, Ashaben; Cholkar, Kishore; Agrahari, Vibhuti; Mitra, Ashim K

    2014-01-01

    The major challenge faced by today’s pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments. Also, recent developments with other ocular drug delivery strategies employing in situ gels, implants, contact lens and microneedles have been discussed. PMID:25590022

  2. Ocular drug delivery systems: An overview.

    PubMed

    Patel, Ashaben; Cholkar, Kishore; Agrahari, Vibhuti; Mitra, Ashim K

    The major challenge faced by today's pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments. Also, recent developments with other ocular drug delivery strategies employing in situ gels, implants, contact lens and microneedles have been discussed.

  3. Antioxidant delivery pathways in the anterior eye.

    PubMed

    Umapathy, Ankita; Donaldson, Paul; Lim, Julie

    2013-01-01

    Tissues in the anterior segment of the eye are particular vulnerable to oxidative stress. To minimise oxidative stress, ocular tissues utilise a range of antioxidant defence systems which include nonenzymatic and enzymatic antioxidants in combination with repair and chaperone systems. However, as we age our antioxidant defence systems are overwhelmed resulting in increased oxidative stress and damage to tissues of the eye and the onset of various ocular pathologies such as corneal opacities, lens cataracts, and glaucoma. While it is well established that nonenzymatic antioxidants such as ascorbic acid and glutathione are important in protecting ocular tissues from oxidative stress, less is known about the delivery mechanisms used to accumulate these endogenous antioxidants in the different tissues of the eye. This review aims to summarise what is currently known about the antioxidant transport pathways in the anterior eye and how a deeper understanding of these transport systems with respect to ocular physiology could be used to increase antioxidant levels and delay the onset of eye diseases.

  4. Gelatin-Based Materials in Ocular Tissue Engineering.

    PubMed

    Rose, James B; Pacelli, Settimio; Haj, Alicia J El; Dua, Harminder S; Hopkinson, Andrew; White, Lisa J; Rose, Felicity R A J

    2014-04-17

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.

  5. Gelatin-Based Materials in Ocular Tissue Engineering

    PubMed Central

    Rose, James B.; Pacelli, Settimio; El Haj, Alicia J.; Dua, Harminder S.; Hopkinson, Andrew; White, Lisa J.; Rose, Felicity R. A. J.

    2014-01-01

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology. PMID:28788609

  6. Mechanisms Involved in Injury and Repair of the Murine Lacrimal Gland: Role of Programmed Cell Death and Mesenchymal Stem Cells

    PubMed Central

    Zoukhri, Driss

    2011-01-01

    The non-keratinized epithelia of the ocular surface are constantly challenged by environmental insults, such as smoke, dust, and airborne pathogens. Tears are the sole physical protective barrier for the ocular surface. Production of tears in inadequate quantity or of inadequate quality results in constant irritation of the ocular surface, leading to dry eye disease, also referred to as keratoconjunctivitis sicca (KCS). Inflammation of the lacrimal gland, such as occurs in Sjögren’s syndrome, sarcoidosis, chronic graft versus-host disease, and other pathological conditions, results in inadequate secretion of the aqueous layer of the tear film, and is a leading cause of dry eye disease. The hallmarks of lacrimal gland inflammation are the presence of immune cell infiltrates, loss of acinar epithelial cells (the secreting cells), and increased production of proinflammatory cytokines. To date, the mechanisms leading to acinar cell loss and the associated decline in lacrimal gland secretion are still poorly understood. It is also not understood why the remaining lacrimal gland cells are unable to proliferate in order to regenerate a functioning lacrimal gland. This article reviews recent advances in exocrine tissue injury and repair, with emphasis on the roles of programmed cell death and stem/progenitor cells. PMID:20427009

  7. Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review.

    PubMed

    Szczotka-Flynn, Loretta B; Pearlman, Eric; Ghannoum, Mahmoud

    2010-03-01

    A contact lens (CL) can act as a vector for microorganisms to adhere to and transfer to the ocular surface. Commensal microorganisms that uneventfully cohabitate on lid margins and conjunctivae and potential pathogens that are found transiently on the ocular surface can inoculate CLs in vivo. In the presence of reduced tissue resistance, these resident microorganisms or transient pathogens can invade and colonize the cornea or conjunctiva to produce inflammation or infection. The literature was reviewed and used to summarize the findings over the last 30 years on the identification, enumeration, and classification of microorganisms adherent to CLs and their accessories during the course of normal wear and to hypothesize the role that these microorganisms play in CL infection and inflammation. Lens handling greatly increases the incidence of lens contamination, and the ocular surface has a tremendous ability to destroy organisms. However, even when removed aseptically from the eye, more than half of lenses are found to harbor microorganisms, almost exclusively bacteria. Coagulase-negative Staphylococci are most commonly cultured from worn lenses; however, approximately 10% of lenses harbor Gram-negative and highly pathogenic species, even in asymptomatic subjects. In storage cases, the incidence of positive microbial bioburden is also typically greater than 50%. All types of care solutions can become contaminated, including up to 30% of preserved products. The process of CL-related microbial keratitis and inflammation is thought to be preceded by the presence or transfer or both of microorganisms from the lens to the ocular surface. Thus, this detailed understanding of lens-related bioburden is important in the understanding of factors associated with infectious and inflammatory complications. Promising mechanisms to prevent bacterial colonization on lenses and lens cases are forthcoming, which may decrease the incidence of microbially driven CL complications.

  8. Small leucine rich proteoglycan family regulates multiple signalling pathways in neural development and maintenance.

    PubMed

    Dellett, Margaret; Hu, Wanzhou; Papadaki, Vasiliki; Ohnuma, Shin-ichi

    2012-04-01

    The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  9. Hydrogel Ring for Topical Drug Delivery to the Ocular Posterior Segment.

    PubMed

    Shikamura, Yuko; Yamazaki, Yoshiko; Matsunaga, Toru; Sato, Takao; Ohtori, Akira; Tojo, Kakuji

    2016-05-01

    To investigate the efficacy of a topical hydrogel ring for drug delivery to the posterior segment of the rabbit eye. Novel hydrogel corneal lenses (CL), scleral/corneal lenses (S/CL), and rings were prepared using poly(hydroxyethyl methacrylate). The devices were immersed in 0.3% ofloxacin ophthalmic solution (OOS) to homogeneously distribute the drug throughout the hydrogel. The medicated CL, S/CL, Ring 1 (standard ring), or Ring 2 (shape-optimized ring) was applied to the surface of the cornea, cornea/bulbar conjunctiva, or bulbar conjunctiva of albino rabbits, respectively. Medicated rings did not touch the corneal surface. In another group, one OOS drop was administered to the eye. After 0.25-8 hours, the hydrogel devices were removed and ocular tissues were harvested. High-performance liquid chromatography (HPLC) was used to measure the ofloxacin concentration in the devices and tissues. The drug concentrations in the posterior segment tissues were compared among ofloxacin delivery methods. One hour after placement, eyes treated with Ring 1 or S/CL had markedly higher ofloxacin levels in the posterior segment tissues (conjunctiva, sclera, and retina/choroid) than eyes treated with topical OOS or a CL. Lower levels of ofloxacin were found in anterior segment tissues (cornea and aqueous humor) in eyes treated with Ring 1 compared to those treated with S/CL. Ring 2 most effectively delivered ofloxacin to the retina/choroid. The tissue ofloxacin concentration in the fellow eye was markedly lower than the eye treated with Ring 2. Our results suggest that hydrogel rings are effective in delivering topical ophthalmic drugs to the posterior segment. The drugs are most likely delivered via the transconjunctival/scleral route by lateral diffusion across the bulbar conjunctiva and through the sclera. Systemic drug delivery to the posterior segment is minimal.

  10. Polymicrobial and microsporidial keratitis in a patient using Boston scleral contact lens for Sjogren's syndrome and ocular cicatricial pemphigoid.

    PubMed

    Fernandes, Merle; Sharma, Savitri

    2013-04-01

    To report a rare case of microsporidial and polymicrobial keratitis in a patient with Sjogren's syndrome and ocular cicatricial pemphigoid. This is a descriptive case report. A 66-year-old lady diagnosed with Sjogren's syndrome (SS) and ocular cicatricial pemphigoid (OCP) presented to us with microbial keratitis after using a Boston sclera contact lens for a painful epithelial defect. After 9 days of medical treatment, she underwent therapeutic penetrating keratoplasty. 10% potassium hydroxide and calcofluor white wet mount revealed microsporidial spores. Gram positive cocci and Gram variable bacilli on Gram stain were identified as Staphylococcus epidermidis and Corynebacterium accolens in culture. Histopathological examination of the corneal tissue confirmed the presence of microsporidial spores. Microsporidal keratitis can occur in patients with severe ocular surface disease due to SS and OCP. Predisposing factors include dry eye, local and systemic immunosuppression and Boston scleral contact lens. Early surgical intervention may be needed to eradicate the infection. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  11. Lipoxin A4 Counter-regulates Histamine-stimulated Glycoconjugate Secretion in Conjunctival Goblet Cells.

    PubMed

    Hodges, Robin R; Li, Dayu; Shatos, Marie A; Serhan, Charles N; Dartt, Darlene A

    2016-11-08

    Conjunctival goblet cells synthesize and secrete mucins which play an important role in protecting the ocular surface. Pro-resolution mediators, such as lipoxin A 4 (LXA 4 ), are produced during inflammation returning the tissue to homeostasis and are also produced in non-inflamed tissues. The purpose of this study was to determine the actions of LXA 4 on cultured human conjunctival goblet cell mucin secretion and increase in intracellular [Ca 2+ ] ([Ca 2+ ] i ) and on histamine-stimulated responses. LXA 4 increased mucin secretion and [Ca 2+ ] i , and activated ERK1/2 in human goblet cells. Addition of LXA 4 before resolvin D1 (RvD1) decreased RvD1 responses though RvD1 did not block LXA 4 responses. LXA 4 inhibited histamine-stimulated increases in mucin secretion, [Ca 2+ ] i , and ERK1/2 activation through activation of β-adrenergic receptor kinase 1. We conclude that conjunctival goblet cells respond to LXA 4 through the ALX/FPR2 receptor to maintain homeostasis of the ocular surface and regulate histamine responses and could provide a new therapeutic approach for allergic conjunctivitis and dry eye diseases.

  12. Lipoxin A4 Counter-regulates Histamine-stimulated Glycoconjugate Secretion in Conjunctival Goblet Cells

    PubMed Central

    Hodges, Robin R.; Li, Dayu; Shatos, Marie A.; Serhan, Charles N.; Dartt, Darlene A.

    2016-01-01

    Conjunctival goblet cells synthesize and secrete mucins which play an important role in protecting the ocular surface. Pro-resolution mediators, such as lipoxin A4 (LXA4), are produced during inflammation returning the tissue to homeostasis and are also produced in non-inflamed tissues. The purpose of this study was to determine the actions of LXA4 on cultured human conjunctival goblet cell mucin secretion and increase in intracellular [Ca2+] ([Ca2+]i) and on histamine-stimulated responses. LXA4 increased mucin secretion and [Ca2+]i, and activated ERK1/2 in human goblet cells. Addition of LXA4 before resolvin D1 (RvD1) decreased RvD1 responses though RvD1 did not block LXA4 responses. LXA4 inhibited histamine-stimulated increases in mucin secretion, [Ca2+]i, and ERK1/2 activation through activation of β-adrenergic receptor kinase 1. We conclude that conjunctival goblet cells respond to LXA4 through the ALX/FPR2 receptor to maintain homeostasis of the ocular surface and regulate histamine responses and could provide a new therapeutic approach for allergic conjunctivitis and dry eye diseases. PMID:27824117

  13. Distribution of cyclosporine A in ocular tissues after topical administration of cyclosporine A cationic emulsions to pigmented rabbits.

    PubMed

    Daull, Philippe; Lallemand, Frédéric; Philips, Betty; Lambert, Grégory; Buggage, Ronald; Garrigue, Jean-Sébastien

    2013-03-01

    The aim of this study was to compare the ocular and systemic distribution of cyclosporine A (CsA) in rabbits after the instillation of preservative-free CsA cationic and anionic emulsions. For the single-dose pharmacokinetic (PK) study, rabbits were instilled with 50 μL of the test material. For the multiple-dose PK study, rabbits were instilled twice daily with Restasis or once daily with NOVA22007 for 10 days. At each time point, the cornea, conjunctiva, and whole blood were harvested for CsA quantification. Ocular and systemic distribution were determined after 4 times daily instillations with 50 μL of 3H-CsA cationic and anionic emulsions for 7 days. Restasis was used as a reference in all studies. Single-dose PK data demonstrated that NOVA22007 0.1% and 0.05% delivered higher CsA concentrations to the cornea than Restasis [concentration maximum (C max): 2692, 1372, and 748 ng/g, respectively] and have a better exposition (area under the curve). Conjunctival Cmax values were 1914, 696, and 849 ng/g and area under the curve values were 3984, 2796, and 2515 ng/g · h, for either dose of the cationic emulsions and Restasis, respectively. The multiple-dose PK and the 3H-CsA distribution data demonstrated that the systemic distribution after repeated instillations was low and comparable for all emulsions. These data demonstrate that the CsA cationic emulsions were more effective than Restasis at delivering CsA to target tissues, thus confirming the potential advantage of cationic emulsions over anionic emulsions as vehicle for ocular drug delivery for the treatment of ocular surface diseases.

  14. Clusterin in the eye: An old dog with new tricks at the ocular surface.

    PubMed

    Fini, M Elizabeth; Bauskar, Aditi; Jeong, Shinwu; Wilson, Mark R

    2016-06-01

    The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as a novel biotherapeutic for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Emerging treatment paradigms of ocular surface disease: proceedings of the Ocular Surface Workshop.

    PubMed

    Rolando, M; Geerling, G; Dua, H S; Benítez-del-Castillo, J M; Creuzot-Garcher, C

    2010-01-01

    The objective of the Ocular Surface Workshop in Rome, Italy, on 6 February 2009, was to enhance the understanding of ocular surface disease (OSD) through an exploration of the nature of its complexities and current treatment paradigms across Europe. It was hoped that the peer-to-peer discussions and updates regarding common knowledge, clinical practices and shared experiences at this workshop would subsequently shape future treatment approaches to OSD.

  16. Quercetin and the ocular surface: What we know and where we are going

    PubMed Central

    McKay, Tina B

    2017-01-01

    Flavonoids are a class of plant and fungus secondary metabolites that serve functional roles in protecting against UV-induced oxidative stress, mediating auxin signaling, and promoting microbial defense. Flavonoids are extremely abundant in nature where their potent antioxidant capacity and very low toxicity makes them highly attractive as potential therapeutic agents. In terms of clinical applications, neither the Food and Drug Administration (FDA) nor the European Food Safety Authority (EFSA) has approved any health claims or drugs related to the use of flavonoids for therapeutic purposes. Quercetin is a common flavonol that has been shown to have potent antioxidant, anti-inflammatory, and anti-fibrotic activities both in vitro and in vivo in various tissues. Recently, the application of quercetin as a therapeutic has been gaining attention in the ocular surface scientific community in the study of dry eye, keratoconus, inflammation, and neovascularization of the cornea. This review will discuss the latest findings and the use of quercetin for the treatment of dystrophies of the ocular surface. Impact statement The eye represents a small portion of the human body, accounting for one decimal fraction of the anterior body surface. The cornea is an avascular, transparent tissue that acts as a primary barrier against mechanical and infectious damaging agents, protecting the internal structures of the eye. Corneal survival and function are affected by a number of factors including but not limited to injury, trauma, infection, genetics, and environment. Corneal injury, or trauma, often leads to loss of corneal transparency and even blindness. The concept of “curing” corneal opacity has been discussed in published form for over 200 years. Currently, full corneal transplant is the only treatment option. There is a strong interest in developing natural therapeutic products that come with minimum side effects. A novel antioxidant flavonoid, quercetin, has been gaining traction as a potential therapeutic to prevent the injured cornea. This review discusses the potential of this antioxidant. PMID:28056553

  17. Animal models to assess the therapeutic efficacy of human serum and serum-converted platelet lysates for dry eye syndrome: Seeing is believing.

    PubMed

    Tseng, Ching-Li; Seghatchian, Jerard; Burnouf, Thierry

    2015-08-01

    There is much interest in the clinical use of serum-converted human blood or platelet concentrates in regenerative medicine, most specifically for wound healing and tissue repair of soft and hard tissues. The scientific rationale supporting the clinical efficacy of these preparations is based on the expectation that their physiological mixture of natural growth factors can orchestrate cell expansion and differentiation in vivo. However, a lack of standardization and regulatory oversight of these blood materials maintain a perception of uncertainty in the scientific and medical community on the value of these preparations for some clinical indications. More studies are needed to understand the mechanism of action underlying their expected efficacy and standardize their use, and benefit from their biological versatility. One application of serum is as eye drop for treating dry eye syndrome (DES), a multifactorial disease of the ocular surface, which has a prevalence of 15% of more in the population. DES can lead to chronic inflammation of the ocular surface, surface impairment in the cornea and conjunctiva, and, in patients with Sjogren syndrome, result in a disruption of the ocular surface epithelium. Objective experimental assessment of safety and efficacy of serum eye drops can help establish scientific rationale in optimal product composition and use. This can be achieved, first, through cell cultures with relevant cell models, before considering, then, animal studies using DES animal models. Several models have been evaluated and are reported in this concise review. The model we have developed encompasses the use of rabbits, where their eyes are treated with 0.1% benzalkonium chloride (BAC), a common preservative in ophthalmic agents, 3 times daily for 4 weeks. This relatively mild treatment results in moderate DES pathology, with a stable shortage of tear secretion throughout a 7-week study period, which we found suitable for assessing efficacy of serum eye drops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Quercetin and the ocular surface: What we know and where we are going.

    PubMed

    McKay, Tina B; Karamichos, Dimitrios

    2017-03-01

    Flavonoids are a class of plant and fungus secondary metabolites that serve functional roles in protecting against UV-induced oxidative stress, mediating auxin signaling, and promoting microbial defense. Flavonoids are extremely abundant in nature where their potent antioxidant capacity and very low toxicity makes them highly attractive as potential therapeutic agents. In terms of clinical applications, neither the Food and Drug Administration (FDA) nor the European Food Safety Authority (EFSA) has approved any health claims or drugs related to the use of flavonoids for therapeutic purposes. Quercetin is a common flavonol that has been shown to have potent antioxidant, anti-inflammatory, and anti-fibrotic activities both in vitro and in vivo in various tissues. Recently, the application of quercetin as a therapeutic has been gaining attention in the ocular surface scientific community in the study of dry eye, keratoconus, inflammation, and neovascularization of the cornea. This review will discuss the latest findings and the use of quercetin for the treatment of dystrophies of the ocular surface. Impact statement The eye represents a small portion of the human body, accounting for one decimal fraction of the anterior body surface. The cornea is an avascular, transparent tissue that acts as a primary barrier against mechanical and infectious damaging agents, protecting the internal structures of the eye. Corneal survival and function are affected by a number of factors including but not limited to injury, trauma, infection, genetics, and environment. Corneal injury, or trauma, often leads to loss of corneal transparency and even blindness. The concept of "curing" corneal opacity has been discussed in published form for over 200 years. Currently, full corneal transplant is the only treatment option. There is a strong interest in developing natural therapeutic products that come with minimum side effects. A novel antioxidant flavonoid, quercetin, has been gaining traction as a potential therapeutic to prevent the injured cornea. This review discusses the potential of this antioxidant.

  19. Ocular surface injury from a microwave superheated liquid.

    PubMed

    Gagnon, Michael R; Walter, Keith A

    2004-03-01

    To describe the ocular surface injury resulting from a microwave superheated liquid. Case report. A 40-year-old man sustained an ocular surface injury from a microwave superheated liquid. The injury resulted in limbal stem cell damage requiring an autograft limbal stem cell transplantation. We are unaware of previous reports of microwave superheated liquids resulting in ocular injury. Microwave superheating of liquids is a potential ocular danger that should be brought to the attention of both ophthalmologists and their patients.

  20. [Clinical and histopathologic analysis of superficial tissue proliferation following the implantation of keratoprosthesis].

    PubMed

    Dong, Ying; Huang, Yi-Fei; Liu, Qian; DU, Gai-Ping

    2011-05-01

    To investigate the clinical and histopathologic features of the superficial tissue proliferation (STP) following the implantation of MICOF keratoprosthesis, and to analyze the formation and treatment of STP. Retrospective study. Eighty-five patients (85 eyes) received MICOF keratoprosthesis surgery from January 2000 through December 2009 in General Hospital of PLA, which included 72 males and 13 females. The mean age of the patients was (45 ± 15) years. Preoperative diagnoses were ocular burn (56 eyes), end-stage of autoimmune dry eye (14 eyes), severe ocular trauma (10 eyes) and repeated graft failure (5 eyes). Postoperatively, STPs of Kpro were observed and treated. The membranes anterior to the optical cylinder were removed and investigated by histological and immunohistochemical methods, and anterior segment specimens from normal eyes were taken as control. Twenty-two (26%) patients presented STP during the follow-up, and proliferations occurred ranging from 2 to 63 months (median, 7 months). The incident rates of STP were 34% (19/56 eyes) in burned eyes, 14% (2/14 eyes) in end-stage dry eye, 10% (1/10 eyes) in severe mechanical ocular trauma, and none in repeated grafts failure. Difference among four groups did not arrive significance statistically (χ(2) = 5.93, P = 0.11). The epithelial proliferations were observed in 11 patients, which were removed easily. To prevent from recurrence, the height of the cylinder was adjusted. Other 4 patients underwent ultra-high frequency ocular surface plastic operation and 7 patients received membranectomy. Histologically, the superficial proliferative membrane was composed of proliferative epithelium and fibrovascular tissue incorporating inflammatory cells. The immunohistochemical staining demonstrated the expression of PCNA increased in the epithelium, compared with control cornea and conjunctiva. Many vimentin-positive fibroblasts and a few α-SMA-positive myofibroblasts presented in the interstitial tissue, and the numbers of CD45RO-positive T cells, CD11c-positive dendritic cells, and CD68-positive macrophages were increased in proliferative membranes. The tissue proliferation around optical cylinder results in membrane formation anterior to the Kpro. The excessive inflammation at the prosthesis-corneal junction and the unsuited height of the optical cylinder might have been the main reasons of STP.

  1. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review.

    PubMed

    Teh, Seoh Wei; Mok, Pooi Ling; Abd Rashid, Munirah; Bastion, Mae-Lynn Catherine; Ibrahim, Normala; Higuchi, Akon; Murugan, Kadarkarai; Mariappan, Rajan; Subbiah, Suresh Kumar

    2018-02-13

    Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.

  2. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review

    PubMed Central

    Teh, Seoh Wei; Mok, Pooi Ling; Abd Rashid, Munirah; Bastion, Mae-Lynn Catherine; Ibrahim, Normala; Higuchi, Akon; Murugan, Kadarkarai; Mariappan, Rajan

    2018-01-01

    Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections. PMID:29438279

  3. Novel Strategies for Anterior Segment Ocular Drug Delivery

    PubMed Central

    Cholkar, Kishore; Patel, Sulabh P.; Vadlapudi, Aswani Dutt

    2013-01-01

    Abstract Research advancements in pharmaceutical sciences have led to the development of new strategies in drug delivery to anterior segment. Designing a new delivery system that can efficiently target the diseased anterior ocular tissue, generate high drug levels, and maintain prolonged and effective concentrations with no or minimal side effects is the major focus of current research. Drug delivery by traditional method of administration via topical dosing is impeded by ocular static and dynamic barriers. Various products have been introduced into the market that prolong drug retention in the precorneal pocket and to improve bioavailability. However, there is a need of a delivery system that can provide controlled release to treat chronic ocular diseases with a reduced dosing frequency without causing any visual disturbances. This review provides an overview of anterior ocular barriers along with strategies to overcome these ocular barriers and deliver therapeutic agents to the affected anterior ocular tissue with a special emphasis on nanotechnology-based drug delivery approaches. PMID:23215539

  4. Multiple etiologies of equine recurrent uveitis--A natural model for human autoimmune uveitis: A brief review.

    PubMed

    Witkowski, Lucjan; Cywinska, Anna; Paschalis-Trela, Katarzyna; Crisman, Mark; Kita, Jerzy

    2016-02-01

    Equine recurrent uveitis (ERU) has various etiologies, with Leptospira infection and genetic predisposition being the leading risk factors. Regardless of etiology, expression of ocular proteins associated with maintenance of the blood-ocular barrier is impaired in ERU. The recurring-remitting cycle of ERU repeatedly disrupts the blood-ocular barrier, allowing the previously immune-privileged ocular environment to become the site of a progressive local autoimmune pathology that ultimately results in tissue destruction and vision loss. The immune-mediated process involves humoral and cellular mechanisms. Intraocular antibodies either produced in the eye or that leak through the blood-ocular barrier, are often present at higher levels than in serum and react with antigens in ocular tissue of horses with ERU. Ocular infiltration of auto-aggressive lymphocytes occurs with each uveitis episode and is the most crucial contributor to inflammation and eye damage. Recurring uveitis episodes may be initiated when epitopes of an ocular antigen become visible to the immune system (intramolecular spreading) or another autoantigen (intermolecular spreading), resulting in a new inflammatory reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. In utero eyeball development study by magnetic resonance imaging.

    PubMed

    Brémond-Gignac, D S; Benali, K; Deplus, S; Cussenot, O; Ferkdadji, L; Elmaleh, M; Lassau, J P

    1997-01-01

    The aim of this study was to measure fetal ocular development and to determine a growth curve by means of measurements in utero. Fetal ocular development was recorded by analysis of the results of magnetic resonance imaging (MRI). An anatomic study allowed definition of the best contrasted MRI sequences for calculation of the ocular surface. Biometric analysis of the values of the ocular surface in the neuro-ocular plane in 35 fetuses allowed establishment of a linear model of ocular growth curve in utero. Evaluation of ocular development may allow the detection and confirmation of malformational ocular anomalies such as microphthalmia.

  6. Long-term effects of the daily wear of senofilcon A silicone hydrogel contact lenses on corneal and conjunctival tissues.

    PubMed

    Guillon, Michel; Maïssa, Cécile

    2010-12-01

    The objective of the investigation was to show that, because of their overall properties, Acuvue® Oasys™ with Hydraclear® Plus brand (senofilcon A) silicone hydrogel contact lenses achieve excellent ocular tissue tolerance during long-term daily wear. The 2-year investigation was a prospective daily wear analysis of Acuvue® Oasys™ with Hydraclear® Plus (senofilcon A) silicone hydrogel contact lenses replaced every 2 weeks and used in conjunction with a representative range of care systems. The 2-year results compared with the subjects' baseline ocular status on entering the study revealed: The quantification of the effects on the ocular tissues of 2 years of daily wear of senofilcon A, by mainly previously successful daily soft contact lens wearers, showed an excellent biocompatibility. The results support the hypothesis that senofilcon A contact lenses, when worn on a 2-week daily wear regimen, maintain excellent long-term ocular tissue tolerance. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  7. Geometrical gradients in the distribution of temperature and absorbed ultraviolet radiation in ocular tissues.

    PubMed

    Sliney, David H

    2002-01-01

    The geographical variations in the incidence of age-related ocular changes such as presbyopia and cataracts and diseases such as pterygium and droplet keratopathies have led to theories pointing to sunlight, ultraviolet radiation (UVR) exposure and ambient temperature as potential etiological factors. Some epidemiological evidence also points to an association of age-related macular degeneration to sunlight exposure. The actual distribution of sunlight exposure and the determination of temperature variations of different tissues within the anterior segment of the eye are difficult to assess. Of greatest importance are the geometrical factors that influence selective UVR exposures to different segments of the lens, cornea and retina. Studies show that the temperature of the lens and cornea varies by several degrees depending upon climate, and that the incidence of nuclear cataract incidence is greater in areas of higher ambient temperature (i.e., in the tropics). Likewise, sunlight exposure to local areas of the cornea, lens and retina varies greatly in different environments. However, epidemiological studies of the influence of environmental UVR in the development of cataract, pterygium, droplet keratopathies and age-related macular degeneration have produced surprisingly inconsistent findings. The lack of consistent results is seen to be due largely to either incomplete or erroneous estimates of outdoor UV exposure dose. Geometrical factors dominate the determination of UVR exposure of the eye. The degree of lid opening limits ocular exposure to rays entering at angles near the horizon. Clouds redistribute overhead UVR to the horizon sky. Mountains, trees and building shield the eye from direct sky exposure. Most ground surfaces reflect little UVR. The result is that highest UVR exposure occurs during light overcast where the horizon is visible and ground surface reflection is high. By contrast, exposure in a high mountain valley (lower ambient temperature) with green foliage results in a much lower ocular dose. Other findings of these studies show that retinal exposure to light and UVR in daylight occurs largely in the superior retina.

  8. Ocular and systemic pharmacokinetics of lidocaine hydrochloride ophthalmic gel in rabbits after topical ocular administration.

    PubMed

    Liu, Bing; Ding, Li; Xu, Xiaowen; Lin, Hongda; Sun, Chenglong; You, Linjun

    2015-12-01

    Lidocaine hydrochloride ophthalmic gel is a novel ophthalmic preparation for topical ocular anesthesia. The study is aimed at evaluating the ocular and systemic pharmacokinetics of lidocaine hydrochloride 3.5 % ophthalmic gel in rabbits after ocular topical administration. Thirty-six rabbits were randomly placed in 12 groups (3 rabbits per group). The rabbits were quickly killed according to their groups at 0 (predose), 0.0833, 0.167, 0.333, 0.667, 1, 1.5, 2, 3, 4, 6, and 8 h postdose and then the ocular tissue and plasma samples were collected. All the samples were analyzed by a validated LC-MS/MS method. The test result showed that the maximum concentration (C max) of lidocaine in different ocular tissues and plasma were all achieved within 20 min after drug administration, and the data of C max were (2,987 ± 1814) μg/g, (44.67 ± 12.91) μg/g, (26.26 ± 7.19) μg/g, (11,046 ± 2,734) ng/mL, and (160.3 ± 61.0) ng/mL for tear fluid, cornea, conjunctiva, aqueous humor, and plasma, respectively. The data of the elimination half-life in these tissues were 1.5, 3.2, 3.5, 1.9, and 1.7 h for tear fluid, cornea, conjunctiva, aqueous humor, and plasma, respectively. The intraocular lidocaine levels were significantly higher than that in plasma, and the elimination half-life of lidocaine in cornea, conjunctiva, and aqueous humor was relatively longer than that in tear fluid and plasma. The high intraocular penetration, low systemic exposure, and long duration in the ocular tissues suggested lidocaine hydrochloride 3.5 % ophthalmic gel as an effective local anesthetic for ocular anesthesia during ophthalmic procedures.

  9. [Study of ocular surface electromyography signal analysis].

    PubMed

    Zhu, Bei; Qi, Li-Ping

    2009-11-01

    Test ocular surface electromyography signal waves and characteristic parameters to provide effective data for the diagnosis and treatment of ocular myopathy. Surface electromyography signals tests were performed in 140 normal volunteers and 30 patients with ophthalmoplegia. Surface electrodes were attached to medial canthi, lateral canthi and the middle of frontal bone. Then some alternate flashing red lamps were installed on perimeter to reduce the movement of eyeball. The computer hardware, software, and A/D adapter (12 Bit) were used. Sampling frequency could be selected within 40 kHz, frequency of amplifier was 2 kHz, and input short circuit noise was less than 3 microV. For normal volunteers, the ocular surface electromyography signals were regular, and the electric waves were similar between different sex groups and age groups. While for patients with ophthalmoplegia, the wave amplitude of ocular surface electromyography signals were declined or disappeared in the dyskinesia direction. The wave amplitude was related with the degree of pathological process. The characteristic parameters of patients with ophthalmoplegia were higher than normal volunteers. The figures of ocular surface electromyogram obtained from normal volunteers were obviously different with that from patients with ophthalmoplegia. This test can provide reliable quantized data for the diagnosis and treatment of ocular myopathy.

  10. Identification and localization of trauma-related biomarkers using matrix assisted laser desorption/ionization imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jones, Kirstin; Reilly, Matthew A.; Glickman, Randolph D.

    2017-02-01

    Current treatments for ocular and optic nerve trauma are largely ineffective and may have adverse side effects; therefore, new approaches are needed to understand trauma mechanisms. Identification of trauma-related biomarkers may yield insights into the molecular aspects of tissue trauma that can contribute to the development of better diagnostics and treatments. The conventional approach for protein biomarker measurement largely relies on immunoaffinity methods that typically can only be applied to analytes for which antibodies or other targeting means are available. Matrix assisted laser-assisted desorption/ionization imaging mass spectrometry (MALDI-IMS) is a specialized application of mass spectrometry that not only is well suited to the discovery of novel or unanticipated biomarkers, but also provides information about the spatial localization of biomarkers in tissue. We have been using MALDI-IMS to find traumarelated protein biomarkers in retina and optic nerve tissue from animal models subjected to ocular injury produced by either blast overpressure or mechanical torsion. Work to date by our group, using MALDI-IMS, found that the pattern of protein expression is modified in the injured ocular tissue as soon as 24 hr post-injury, compared to controls. Specific proteins may be up- or down-regulated by trauma, suggesting different tissue responses to a given injury. Ongoing work is directed at identifying the proteins affected and mapping their expression in the ocular tissue, anticipating that systematic analysis can be used to identify targets for prospective therapies for ocular trauma.

  11. [Ocular surface system integrity].

    PubMed

    Safonova, T N; Pateyuk, L S

    2015-01-01

    The interplay of different structures belonging to either the anterior segment of the eye or its accessory visual apparatus, which all share common embryological, anatomical, functional, and physiological features, is discussed. Explanation of such terms, as ocular surface, lacrimal functional unit, and ocular surface system, is provided.

  12. Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells and Tissues Following Combat Associated Trauma

    DTIC Science & Technology

    2013-09-01

    death pathways such as apoptosis subsequent to acute trauma as soon as possible, ideally by self- administration of a drug or a biologic that can be... Drugs to Ocular Tissues Including Retina and Cornea . Mol Ther, 2007;16(1):107- 14. 3. Read SP, Cashman SM, and Kumar-Singh R: POD...1 AD_________________ Award Number: W81XWH-12-1-0374 TITLE: Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells

  13. Annexin A2 in Proliferative Vitreoretinopathy

    DTIC Science & Technology

    2016-10-01

    migrate in the presence of macrophages in an in vitro system. In addition, analysis of human retinal tissue from subjects undergoing ocular surgery... tissue from subjects undergoing ocular surgery for PVR reveals the presence of A2- immunoreactive cells that express both macrophage and RPE cell...greatly attenuated in the absence of annexin A2. Task 2: Macrophage depletion and tissue specific knockout. We have completed the characterization

  14. [Study of changes in the enzyme-salt composition affecting the permeability of ocular tissues under infrasound phonophoresis].

    PubMed

    Filatov, V V

    2005-01-01

    This paper deals with the study of infrasound phonophoresis-induced changes in biochemical factors, which affect the permeability of eyeball tissues. During 10 days, the rabbit right eye was exposed to an infrasound in the changing pressure mode at 4 Hz and 173 dB for 10 minutes every day. The left eye remained control. After finishing a series of studies, the animals were slaughtered, the eyes were enucleated and prepared into individual tissues. Changes in sodium-potassium composition were investigated in the first series. By causing a reduction in the cellular content of K+, infrasound exposure was found to cause a decrease in membranous potential and activation Na-channel, as confirmed by the elevated intracellular levels of Na+. This in turn enhances ocular tissue permeability for drugs without damaging the structure of a cell membrane. Changes in the activity of the following enzymes: beta-glucosidase, cathepsin D, and hy- aluronidase. Infrasound was ascertained to enhance the activity of beta-glucosidase, which accounts for the lower levels of glucose in ocular tissues and points to the activation and acceleration of biochemical processes in the tissues. At the same time the increased concentrations of cathepsin D and hyaluronidase found in ocular tissues were responsible for a temporary reduction in the viscosity of hyaluronic acid, which promotes resolution of opacities, adhesions or scars and increased tissue permeability.

  15. Effect of chitosan-N-acetylcysteine conjugate in a mouse model of botulinum toxin B-induced dry eye.

    PubMed

    Hongyok, Teeravee; Chae, Jemin J; Shin, Young Joo; Na, Daero; Li, Li; Chuck, Roy S

    2009-04-01

    To evaluate the effect of a thiolated polymer lubricant, chitosan-N-acetylcysteine conjugate (C-NAC), in a mouse model of dry eye. Eye drops containing 0.5% C-NAC, 0.3% C-NAC, a vehicle (control group), artificial tears, or fluorometholone were applied in a masked fashion in a mouse model of induced dry eye from 3 days to 4 weeks after botulinum toxin B injection. Corneal fluorescein staining was periodically recorded. Real-time reverse transcriptase-polymerase chain reaction and immunofluorescence staining were performed at the end of the study to evaluate inflammatory cytokine expressions. Mice treated with C-NAC, 0.5%, and fluorometholone showed a downward trend that was not statistically significant in corneal staining compared with the other groups. Chitosan-NAC formulations, fluorometholone, and artificial tears significantly decreased IL-1beta (interleukin 1beta), IL-10, IL-12alpha, and tumor necrosis factor alpha expression in ocular surface tissues. The botulinum toxin B-induced dry eye mouse model is potentially useful in evaluating new dry eye treatment. Evaluation of important molecular biomarkers suggests that C-NAC may impart some protective ocular surface properties. However, clinical data did not indicate statistically significant improvement of tear production and corneal staining in any of the groups tested. Topically applied C-NAC might protect the ocular surface in dry eye syndrome, as evidenced by decreased inflammatory cytokine expression.

  16. Functions of ocular surface mucins in health and disease

    PubMed Central

    Mantelli, Flavio; Argüeso, Pablo

    2009-01-01

    Purpose of review The purpose of the present review is to describe new concepts on the role of mucins in the protection of corneal and conjunctival epithelia and to identify alterations of mucins in ocular surface diseases. Recent findings New evidence indicates that gel-forming and cell surface-associated mucins contribute differently to the protection of the ocular surface against allergens, pathogens, extracellular molecules, abrasive stress, and drying. Summary Mucins are high molecular weight glycoproteins characterized by their extensive O-glycosylation. Major mucins expressed by the ocular surface epithelia include cell surface-associated mucins MUC1, -4 and -16, and the gel-forming mucin MUC5AC. Recent advances using functional assays have allowed the examination of their roles in the protection of corneal and conjunctival epithelia. Alterations in mucin and mucin O-glycan biosynthesis in ocular surface disorders, including allergy, non-autoimmune dry eye, autoimmune dry eye, and infection, are presented. PMID:18769205

  17. Effects of ocular surface strontium-90 beta radiotherapy in dogs latently infected with canine herpesvirus-1.

    PubMed

    Nicklin, Amanda M; McEntee, Margaret C; Ledbetter, Eric C

    2014-12-05

    Latent canine herpesvirus-1 (CHV-1) infections are common in domestic dogs, but stimuli causing viral reactivation and recrudescent disease are poorly understood. Immunosuppressive pharmaceuticals are currently the only experimentally established triggers for recurrent ocular CHV-1 infection in dogs; however, ocular CHV-1 shedding has been reported clinically following strontium-90 beta radiotherapy of the ocular surface and it has been speculated that radiotherapy can directly induce viral reactivation. Strontium-90 is used as a beta radiation source for the treatment of a variety of neoplastic and immune-mediated canine ocular surface diseases. In the present study, the effects of ocular surface strontium-90 beta radiotherapy in dogs latently infected with CHV-1 were evaluated. Ten mature dogs with experimentally induced latent CHV-1 infections were randomly divided into two groups: one group received a single fraction 50 Gy radiation dose in one application from a strontium-90 ophthalmic applicator and the second group received sham radiotherapy. Dogs were then monitored for 45 days for recurrent ocular CHV-1 infection using clinical and virological outcome measures. Clinical ophthalmic examinations, ocular sample CHV-1 PCR assays, and serum CHV-1 virus neutralizing antibody assays were performed at specified intervals. No abnormalities suggestive of recurrent CHV-1 ocular disease were observed on clinical examination in any dog during the study. Ocular viral shedding was not detected and CHV-1 virus neutralizing titers remained stable in all dogs. A single fraction 50 Gy radiation dose administered to the ocular surface by strontium-90 beta radiotherapy did not result in detectable recurrent ocular CHV-1 infection in mature dogs with experimentally induced latent infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The enhancement of biological ocular UV radiation on beaches compared to the radiation on grass.

    PubMed

    Liu, Guang-Cong; Wang, Fang; Gao, Yan-Yan; Yang, Zheng; Hu, Li-Wen; Gao, Qian; Ri, Jun-Chol; Liu, Yang

    2014-12-01

    The influence of albedo on ocular UV exposure has seldom been reported. This paper aimed to explore the enhancement effect on measured ocular UV radiation due to a sand surface compared to measured ocular UV radiation due to a grass surface. We measured ambient and ocular UV radiation over the beach and grass surface in Sanya City of China (18.4°N, 109.7°E). The experimental apparatus was composed of a manikin and a dual-detector spectrometer. Integration of both UVA and UVB radiation was used to denote UV radiation. Then biologically effective ocular UVB radiation (UVBE) and the ratios of UVBE of two surfaces were calculated. Maximum of ocular UV radiation versus time over the two surfaces is bimodal. UVBE on the beach is significantly larger than UVBE on the sand, and UVBE peaked at different solar elevation angle (SEA) over the two surfaces (about 53° and 40° on the beach and grass, respectively, according to Bayesian regression). The maximum of ocular UVBE ratios is greater than two, which peaked SEA was about 50°. One hour's cumulative radiation under sunny weather exceeds thresholds for photokeratitis, conjunctivitis and lens damage. Higher albedo significantly increased biological ocular UV radiation. Tourists on tropical beaches should take protective measures and avoid facing the sun directly, especially when SEA is around 50°. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea.

    PubMed

    Johnson, Leslie N; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2008-01-01

    As in other organ systems, gene and drug delivery to ocular tissues such as the retina and cornea is hampered by inefficient penetration of therapeutic molecules across the plasma membrane. We describe the use of a novel peptide for ocular delivery (POD) with protein transduction properties, for delivery of small and large molecules across the plasma membrane. POD enters cells within 5 minutes in a temperature dependent manner. POD can compact and deliver plasmid DNA, achieving transgene expression in >50% of human embryonic retinoblasts. Delivery of small interfering RNA (siRNA) duplexes to cells using POD, allowed for silencing of transgene expression by >50%. POD could also be used to deliver quantum dots in vitro and in vivo. Upon ocular delivery, POD rapidly entered neural retina and localized to retinal pigment epithelium (RPE), photoreceptor, and ganglion cells. Additionally, POD was able to enter corneal epithelium, sclera, choroid, and the dura of the optic nerve via topical application. POD also functions as a bacteriostatic, a useful property for a carrier of molecules to post mitotic neural ocular tissues.

  20. Influence of Ophthalmic Solutions on Tear Components.

    PubMed

    Shigeyasu, Chika; Yamada, Masakazu; Akune, Yoko

    2016-11-01

    Tear fluids are a mixture of secretions derived from lacrimal glands, accessory lacrimal glands, conjunctiva, and meibomian glands. Compositional changes to tears occur in the normal state and during ocular surface disease, such as dry eye conditions. We have investigated compositional changes to tears after topical application of ophthalmic solutions, with regard to tear-specific proteins (secretory immunoglobulin A, lactoferrin, lipocalin-1, and lysozyme) and ocular surface mucin in normal and dry eye conditions using high-performance liquid chromatography. After application of saline solution (0.9% sodium chloride) in normal subjects, transient but significant decreases in all tear components were observed. The recovery of protein concentrations took up to 30 minutes and lasted longer when the saline solution was applied more frequently. When applying ophthalmic solutions, a balance between washout and dilutional effects should be considered in addition to the therapeutic effect. Investigation of the effect of diquafosol solution (3%) in normal subjects revealed a significant increase in sialic acid concentration, a marker of ocular mucin, at 5 minutes after application, whereas a significant decrease was observed with saline. This result indicates the accelerated secretion of mucin from ocular tissues induced by diquafosol. A clinical study to determine the efficacy of diquafosol in patients with dry eye revealed improvements in tear breakup time, keratoconjunctival staining scores, and Schirmer test score, accompanied by an increase in sialic acid concentration in tears. Investigating normal and dry eye conditions through tear analysis may clarify the pathophysiology of dry eye conditions and support the efficacy of treatments.

  1. Recent perspectives on the delivery of biologics to back of the eye

    PubMed Central

    Joseph, Mary; Trinh, Hoang M.; Cholkar, Kishore; Pal, Dhananjay; Mitra, Ashim K.

    2017-01-01

    Introduction Biologics are generally macromolecules, large in size with poor stability in biological environments. Delivery of biologics to tissues at the back of the eye remains a challenge. To overcome these challenges and treat posterior ocular diseases, several novel approaches have been developed. Nanotechnology-based delivery systems, like drug encapsulation technology, macromolecule implants and gene delivery are under investigation. We provide an overview of emerging technologies for biologics delivery to back of the eye tissues. Moreover, new biologic drugs currently in clinical trials for ocular neovascular diseases have been discussed. Areas Covered Anatomy of the eye, posterior segment disease and diagnosis, barriers to biologic delivery, ocular pharmacokinetic, novel biologic delivery system Expert Opinion Anti-VEGF therapy represents a significant advance in developing biologics for the treatment of ocular neovascular diseases. Various strategies for biologic delivery to posterior ocular tissues are under development with some in early or late stages of clinical trials. Despite significant progress in the delivery of biologics, there is unmet need to develop sustained delivery of biologics with nearly zero-order release kinetics to the back of the eye tissues. In addition, elevated intraocular pressure associated with frequent intravitreal injections of macromolecules is another concern that needs to be addressed. PMID:27573097

  2. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.

    PubMed

    Coursey, Terry G; Gandhi, Niral B; Volpe, Eugene A; Pflugfelder, Stephen C; de Paiva, Cintia S

    2013-01-01

    CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.

  3. Chemokine Receptors CCR6 and CXCR3 Are Necessary for CD4+ T Cell Mediated Ocular Surface Disease in Experimental Dry Eye Disease

    PubMed Central

    Coursey, Terry G.; Gandhi, Niral B.; Volpe, Eugene A.; Pflugfelder, Stephen C.; de Paiva, Cintia S.

    2013-01-01

    CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease. PMID:24223818

  4. Cornea and ocular lens visualized with three-dimensional confocal microscopy

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1992-08-01

    This paper demonstrates the advantages of three-dimensional reconstruction of the cornea and the ocular crystalline lens by confocal microscopy and volume rendering computer techniques. The advantages of noninvasive observation of ocular structures in living, unstained, unfixed tissue include the following: the tissue is in a natural living state without the artifacts of fixation, mechanical sectioning, and staining; the three-dimensional structure can be observed from any view point and quantitatively analyzed; the dynamics of morphological changes can be studied; and the use of confocal microscopic observation results in a reduction of the number of animals required for ocular morphometric studies. The main advantage is that the dynamic morphology of ocular structures can be investigated in living ocular tissue. A laser scanning confocal microscope was used in the reflected light mode to obtain the two- dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with 488 nm wavelength. The microscope objective was a Leitz 25X, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133, three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The under sampling resulted in a three-dimensional visualization rendering in which the corneal thickness (z-axis) is compressed. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their `beaded' cell borders, basal lamina, nerve plexus, nerve fibers, free nerve endings in the basal epithelial cells, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in-situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers.

  5. Material Properties of Human Ocular Tissue at 7-µm Resolution.

    PubMed

    Rohrbach, Daniel; Ito, Kazuyo; Lloyd, Harriet O; Silverman, Ronald H; Yoshida, Kenji; Yamaguchi, Tadashi; Mamou, Jonathan

    2017-09-01

    Quantitative assessment of the material properties of ocular tissues can provide valuable information for investigating several ophthalmic diseases. Quantitative acoustic microscopy (QAM) offers a means of obtaining such information, but few QAM investigations have been conducted on human ocular tissue. We imaged the optic nerve (ON) and iridocorneal angle in 12-µm deparaffinized sections of the human eye using a custom-built acoustic microscope with a 250-MHz transducer (7-µm lateral resolution). The two-dimensional QAM maps of ultrasound attenuation (α), speed of sound ( c), acoustic impedance ( Z), bulk modulus ( K), and mass density (ρ) were generated. Scanned samples were then stained and imaged by light microscopy for comparison with QAM maps. The spatial resolution and contrast of scanning acoustic microscopy (SAM) maps were sufficient to resolve anatomic layers of the retina (Re); anatomic features in SAM maps corresponded to those seen by light microscopy. Significant variations of the acoustic parameters were found. For example, the sclera was 220 MPa stiffer than Re, choroid, and ON tissue. To the authors' knowledge, this is the first systematic study to assess c, Z, K, ρ, and α of human ocular tissue at the high ultrasound frequencies used in this study.

  6. The interaction of infrared radiation with the eye: A review of the literature

    NASA Technical Reports Server (NTRS)

    Turner, H. S.

    1972-01-01

    A compilation of data concerning the effects of infrared radiation on the eye is presented. Information in the following areas is included: (1) transmission and absorption of infrared radiation by the ocular tissues, (2) range of infrared radiation which is harmful to the ocular tissues, (3) infrared radiation thresholds of the various oscular tissues, and (4) infrared radiation transmission and absorption of current optic materials.

  7. Disposition and metabolism of a novel prostanoid antiglaucoma medication, tafluprost, following ocular administration to rats.

    PubMed

    Fukano, Y; Kawazu, K

    2009-08-01

    The disposition and metabolism of tafluprost, an ester prodrug of the 15,15-difluoro-prostaglandin F(2alpha) antiglaucoma agent, have been studied in rats after ocular administration. Radioactivity was absorbed very rapidly into the eye and systemic circulation after a single ocular dose of 0.005% [(3)H]tafluprost ophthalmic solution, with maximum levels in plasma and most eye tissues occurring within 15 min. The absorption ratio of radioactivity was approximately 75%, suggesting the high availability of ocular administration of tafluprost. Approximately 10% of the dose was present in cornea at this time, and radioactivity concentrations in this tissue exceeded those in aqueous humor and iris/ciliary body throughout the 24-h study period. After repeated daily ocular doses, radioactivity levels remained greatest in cornea, followed by iris/ciliary body that replaced aqueous humor as the eye tissue containing the second highest radioactivity concentration. In female rats, radioactivity was excreted equally between urine and feces after a single ocular dose, whereas in male rats more was excreted in feces, reflecting the greater biliary excretion in males rats (50% dose) compared with females rats (33% dose). Tafluprost was extensively metabolized in the rat, such that intact prodrug was not detected in plasma, tissues, or excreta by radio-high-performance liquid chromatography. On the other hand, the active moiety, tafluprost acid, was the only noteworthy radioactive component in cornea, aqueous humor, and iris/ciliary body for at least 8 h after the ocular dose, and it was also a major plasma metabolite in early time points. The gender differences in conjugation reactions resulted in the differences in the excretion.

  8. Histological observation of goblet cells following topical rebamipide treatment of the human ocular surface: A case report.

    PubMed

    Kase, Satoru; Shinohara, Toshiya; Kase, Manabu

    2015-02-01

    The topical administration of rebamipide (Mucosta®), an antiulcer agent, clinically increases the mucin level of tear film. The aim of this study was to report the histological changes of goblet cells following the topical administration of rebamipide to a patient with nevus of the lacrimal caruncle. A 62-year-old male exhibited a pigmented nodule located in the lacrimal caruncle in the left eye. An excisional biopsy and subsequent surgical resection were conducted at the caruncle, prior to and three months after topical rebamipide administration. Histologically, a biopsy specimen revealed a pigmented nevus beneath the caruncle epithelium containing a few goblet cells [4 cells/high power field (HPF)]. A few nevus cells were present at the surgical margin. By contrast, the secondary resected specimen obtained three months after the initiation of topical rebamipide treatment revealed the epithelium and nevus, where numerous goblet cells were present (28 cells/HPF), and mucin-like substances were markedly secreted from the goblet cells. Topical rebamipide markedly increased the number of goblet cells and stimulated the secretion of mucin-like substances in the caruncular tissue of a human patient. These results suggest that topical rebamipide is useful in patients following surgery and/or biopsy to support tissue repair of the ocular surface.

  9. Improvement of chronic corneal opacity in ocular surface disease with prosthetic replacement of the ocular surface ecosystem (PROSE) treatment.

    PubMed

    Cressey, Anna; Jacobs, Deborah S; Remington, Crystal; Carrasquillo, Karen G

    2018-06-01

    To demonstrate clearing of chronic corneal opacities and improvement of visual acuity with the use of BostonSight prosthetic replacement of the ocular surface ecosystem (PROSE) treatment in ocular surface disease. We undertook retrospective analysis of the medical records of a series of patients who underwent PROSE treatment from August 2006 to December 2014. Patients were referred for ocular surface disease of various etiologies. Primary inclusion criterion was corneal opacity that improved with PROSE treatment. Patients were excluded if topical steroids or adjuvant therapy used once PROSE treatment was initiated. Underlying disease, prior treatment, clinical presentation, and clinical course were extracted from the medical record. Four patients are included in this series. There were three females and one male; median age at time of treatment initiation was 30 years (range = 0.5-58 years). Median duration of PROSE treatment at time of retrospective analysis was 3.5 years (range = 1-8 years). Two cases had corneal opacification in the context of neurotrophic keratopathy: a unilateral case due to presumed herpes simplex keratitis and a bilateral case due to congenital corneal anesthesia associated with familial dysautonomia. One case had corneal opacity from exposure related to seventh nerve palsy, and one had corneal opacification associated with recurrent surface breakdown, neurotrophic keratopathy, and limbal stem deficiency of uncertain etiology. After consistent wear of prosthetic devices used in PROSE treatment for support of the ocular surface, visual acuity improved and clearing of the opacities was observed, without use of topical steroids or adjuvant therapy. These cases demonstrate clearing of chronic corneal opacity with PROSE treatment for ocular surface disease. This clearing can occur with no adjuvant therapy, suggesting that restoration of ocular surface function and integrity allows for corneal remodeling.

  10. Dry Eye Disease and Microbial Keratitis: Is There a Connection?

    PubMed Central

    Narayanan, Srihari; Redfern, Rachel L.; Miller, William L.; Nichols, Kelly K.; McDermott, Alison M.

    2013-01-01

    Dry eye is a common ocular surface disease of multifactorial etiology characterized by elevated tear osmolality and inflammation leading to a disrupted ocular surface. The latter is a risk factor for ocular surface infection, yet overt infection is not commonly seen clinically in the typical dry eye patient. This suggests that important innate mechanisms operate to protect the dry eye from invading pathogens. This article reviews the current literature on epidemiology of ocular surface infection in dry eye patients and laboratory-based studies on innate immune mechanisms operating at the ocular surface and their alterations in human dry eye and animal models. The review highlights current understanding of innate immunity in dry eye and identifies gaps in our knowledge to help direct future studies to further unravel the complexities of dry eye disease and its sequelae. PMID:23583043

  11. Structure and Biological Roles of Mucin-type O-glycans at the Ocular Surface

    PubMed Central

    Guzman-Aranguez, Ana; Argüeso, Pablo

    2010-01-01

    Mucins are major components in mucus secretions and apical cell membranes on wet-surfaced epithelia. Structurally, they are characterized by the presence of tandem repeat domains containing heavily O-glycosylated serine and threonine residues. O-glycans contribute to maintaining the highly extended and rigid structure of mucins, conferring to them specific physical and biological properties essential for their protective functions. At the ocular surface epithelia, mucin-type O-glycan chains are short and predominantly sialylated, perhaps reflecting specific requirements of the ocular surface. Traditionally, secreted mucins and their O-glycans in the tear film have been involved in the clearance of debris and pathogens from the surface of the eye. New evidence, however, shows that O-glycans on the cell-surface glycocalyx have additional biological roles in the protection of corneal and conjunctival epithelia, such as preventing bacterial adhesion, promoting boundary lubrication, and maintaining the epithelial barrier function through their interaction with galectin-3. Abnormalities in mucin-type O-glycosylation have been identified in many disorders where the stability of the ocular surface is compromised. This review summarizes recent advances in understanding the structure, biosynthesis, and function of mucin-type O-glycans at the ocular surface and their alteration in ocular surface disease. PMID:20105403

  12. Tear clearance implications for ocular surface health.

    PubMed

    de Paiva, Cintia Sade; Pflugfelder, Stephen C

    2004-03-01

    Tear clearance/turnover provides a global assessment of the function of the lacrimal functional unit and of tear exchange on the ocular surface. It is an indirect measure of dry eye induced inflammation on the ocular surface. It shows better correlation with the severity of ocular irritation symptoms and corneal epithelial disease in dry eye than the Schirmer 1 test. Delayed tear clearance may prove to be the best measure for identifying patients with tear film disorders who may respond to anti-inflammatory therapy.

  13. Coal dust contiguity-induced changes in the concentration of TNF- and NF- B p65 on the ocular surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z.Y.; Hong, J.; Liu, Z.Y.

    2009-07-01

    To observe the influence of coal dust on ocular surface of coal miners and rabbits with coal dust contiguity on expression TNF- and NF- Bp65 and dry eye occurrence. Expression TNF- and NF- Bp65 in ocular surface were determined. Results showed tear production, BUT and lysozyme decreased for coal miners and rabbits with coal dust contiguity. Coal dust exposure was linked to development of xerophthalmia, and induced a higher expression of NF- B p65 and TNF- perhaps as a mechanism to resist coal dust ocular surface injury.

  14. Comparative Toxicity of Preservatives on Immortalized Corneal and Conjunctival Epithelial Cells

    PubMed Central

    Ahdoot, Michael; Marcus, Edward; Asbell, Penny A.

    2009-01-01

    Abstract Purpose Nearly all eye drops contain preservatives to decrease contamination. Nonpreservatives such as disodium-ethylene diamine tetra-acetate (EDTA) and phosphate-buffered saline are also regularly added as buffering agents. These components can add to the toxicity of eye drops and cause ocular surface disease. To evaluate the potential toxicity of these common components and their comparative effects on the ocular surface, a tissue culture model utilizing immortalized corneal and conjunctival epithelial cells was utilized. Methods Immortalized human conjunctival and corneal epithelial cells were grown. At confluency, medium was replaced with 100 μL of varying concentrations of preservatives: benzalkonium chloride (BAK), methyl paraben (MP), sodium perborate (SP), chlorobutanol (Cbl), and stabilized thimerosal (Thi); varying concentrations of buffer: EDTA; media (viable control); and formalin (dead control). After 1 h, solutions were replaced with 150 μL of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazonium bromide). After 4 h, solutions decanted, 100 μL of acid isopropanol added, and the optical density determined at 572 nm to evaluate cell viability. Results Conjunctival and corneal cell toxicity was seen with all preservatives. Depending upon concentration, BAK exhibited from 56% to 89% toxicity. In comparison, Cbl exhibited from 50% to 86%, MP from 30% to 76%, SP from 23% to 59%, and Thi from 70% to 95%. EDTA with minimal toxicity (from 6% to 59%) was indistinguishable from SP. Conclusions Generally, the order of decreasing toxicity at the most commonly used concentrations: Thi (0.0025%) > BAK (0.025%) > Cbl (0.25%) > MP (0.01%) > SP (0.0025%) ≈ EDTA (0.01%). Even at low concentration, these agents will cause some degree of ocular tissue damage. PMID:19284328

  15. Microbial Contamination of Contact Lenses, Lens Care Solutions, and Their Accessories: A Literature Review

    PubMed Central

    Szczotka-Flynn, Loretta B.; Pearlman, Eric; Ghannoum, Mahmoud

    2012-01-01

    Purpose A contact lens (CL) can act as a vector for microorganisms to adhere to and transfer to the ocular surface. Commensal microorganisms that uneventfully cohabitate on lid margins and conjunctivae and potential pathogens that are found transiently on the ocular surface can inoculate CLs in vivo. In the presence of reduced tissue resistance, these resident microorganisms or transient pathogens can invade and colonize the cornea or conjunctiva to produce inflammation or infection. Methods The literature was reviewed and used to summarize the findings over the last 30 years on the identification, enumeration, and classification of microorganisms adherent to CLs and their accessories during the course of normal wear and to hypothesize the role that these microorganisms play in CL infection and inflammation. Results Lens handling greatly increases the incidence of lens contamination, and the ocular surface has a tremendous ability to destroy organisms. However, even when removed aseptically from the eye, more than half of lenses are found to harbor microorganisms, almost exclusively bacteria. Coagulase-negative Staphylococci are most commonly cultured from worn lenses; however, approximately 10% of lenses harbor Gram-negative and highly pathogenic species, even in asymptomatic subjects. In storage cases, the incidence of positive microbial bioburden is also typically greater than 50%. All types of care solutions can become contaminated, including up to 30% of preserved products. Conclusions The process of CL-related microbial keratitis and inflammation is thought to be preceded by the presence or transfer or both of microorganisms from the lens to the ocular surface. Thus, this detailed understanding of lens-related bioburden is important in the understanding of factors associated with infectious and inflammatory complications. Promising mechanisms to prevent bacterial colonization on lenses and lens cases are forthcoming, which may decrease the incidence of microbially driven CL complications. PMID:20168237

  16. Characterization of the corneal surface in limbal stem cell deficiency and after transplantation of cultured allogeneic limbal epithelial cells.

    PubMed

    Chen, Peng; Zhou, Qingjun; Wang, Junyi; Zhao, Xiaowen; Duan, Haoyun; Wang, Yao; Liu, Ting; Xie, Lixin

    2016-09-01

    The objective of this study was to characterize the changes that occur in the cornea during Limbal Stem Cell Deficiency (LSCD) and on the corneal surface after transplantation of ex vivo cultured allogeneic limbal epithelial transplantation (CALET). Forty-one pannus were analyzed to characterize the changes found in the cornea in LSCD. Nineteen impression cytology samples, including 14 pannus and five corneal buttons, obtained during subsequent procedures from patients who had undergone CALET were examined to assess the effect of CALET and to determine the long-term fate of donor cells. The presence of donor and recipient epithelial cells in each sample was determined by short tandem repeat (STR) amplification and fluorescent-multiplex polymerase chain reaction (PCR). Phenotypic analysis of the epithelium was performed by immunohistochemistry and real-time PCR. The expression of lineage markers was similar between pannus and conjunctivae, but not to corneas. Objective long-term benefits from the transplantation were recorded in most cases. After CALET, the lineage markers in the excised corneal buttons and pannus showed a limbus phenotype. DNA analysis of the 19 cases showed no donor cells present on the ocular surface beyond three months after CALET. LSCD was characterized by ingrowth of abnormal, inflamed tissue with a conjunctival phenotype. CALET was a useful technique for restoring the ocular surface in LSCD. However, such benefits did not necessarily correlate with survival of measurable numbers of donor cells on the ocular surface. The absence of donor DNA beyond three months raises questions regarding the period of ongoing immunosuppression and the origin of the regenerated corneal epithelium.

  17. The Relation of Ocular Surface Irregularity and Visual Disturbance in Early Stage Acanthamoeba Keratitis.

    PubMed

    Matsumoto, Yukihiro; Kodama, Asako; Goto, Eiki; Kawakita, Tetsuya; Dogru, Murat; Tsubota, Kazuo

    2017-01-01

    To evaluate the relation between ocular surface irregularity and visual disturbance in early stage Acanthamoeba keratitis (AK). Fifteen patients with culture-proven AK underwent routine ophthalmic examinations, including best-corrected visual acuity (BCVA) measurement, slitlamp biomicroscope examination, and corneal fluorescein dye staining test, in both the eyes. We also evaluated the corneal sensitivity with Cochet-Bonnet esthesiometer, tear functions by Schirmer's test, and ocular surface irregularity by corneal topography and compared the results with the contralateral healthy eyes in this study. The mean logarithm of the minimum angle of resolution BCVA (0.71±0.77) was significantly lower in the eyes with AK (P=0.002). Epithelial disorders were present in all eyes, and radial keratoneuritis in 14 eyes (93.3%). The mean corneal sensitivity (39.3±24.1 mm) was significantly lower in eyes with AK compared with the healthy eyes (P=0.005). The mean Schirmer's test value (22.5±12.0 mm) in eyes with AK was significantly higher compared with the healthy eyes (P=0.01). The ocular surface irregularity indices (the surface regularity index, 2.47±0.42; the surface asymmetry index, 3.24±1.31) were significantly higher in eyes with AK compared with contralateral healthy eyes (P<0.0001 and P<0.0001, respectively). The ocular surface disease in AK is associated with decrease in corneal sensitivity and increase in Schirmer's test value and ocular surface irregularity indices. The visual disturbance in AK may owe not only to corneal haze but also to ocular surface irregularity.

  18. Suppressor of cytokine signaling 1 (SOCS1) mitigates anterior uveitis and confers protection against ocular HSV-1 infection.

    PubMed

    Yu, Cheng-Rong; Hayashi, Kozaburo; Lee, Yun Sang; Mahdi, Rashid M; Shen, De Fen; Chan, Chi-Chao; Egwuagu, Charles E

    2015-04-01

    Immunological responses to pathogens are stringently regulated in the eye to prevent excessive inflammation that damage ocular tissues and compromise vision. Suppressors of cytokine signaling (SOCS) regulate intensity/duration of inflammatory responses. We have used SOCS1-deficient mice and retina-specific SOCS1 transgenic rats to investigate roles of SOCS1 in ocular herpes simplex virus (HSV-1) infection and non-infectious uveitis. We also genetically engineered cell-penetrating SOCS proteins (membrane-translocating sequence (MTS)-SOCS1, MTS-SOCS3) and examined whether they can be used to inhibit inflammatory cytokines. Overexpression of SOCS1 in transgenic rat eyes attenuated ocular HSV-1 infection while SOCS1-deficient mice developed severe non-infectious anterior uveitis, suggesting that SOCS1 may contribute to mechanism of ocular immune privilege by regulating trafficking of inflammatory cells into ocular tissues. Furthermore, MTS-SOCS1 inhibited IFN-γ-induced signal transducers and activators of transcription 1 (STAT1) activation by macrophages while MTS-SOCS3 suppressed expansion of pathogenic Th17 cells that mediate uveitis, indicating that MTS-SOCS proteins maybe used to treat ocular inflammatory diseases of infectious or autoimmune etiology.

  19. JBP485 promotes tear and mucin secretion in ocular surface epithelia

    PubMed Central

    Nakamura, Takahiro; Hata, Yuiko; Nagata, Maho; Yokoi, Norihiko; Yamaguchi, Shumpei; Kaku, Taiichi; Kinoshita, Shigeru

    2015-01-01

    Dry eye syndrome (DES), a multifactorial disease of the tears and ocular surface, is one of the most common ocular disorders. Tear film contains ocular mucins and is essential for maintaining the homeostasis of the wet ocular surface. Since there are a limited number of clinical options for the treatment of DES, additional novel treatments are needed to improve the clinical results. In this study, we found that placental extract-derived dipeptide (JBP485) clearly promoted the expression and secretion of gel-forming mucin 5ac (Muc5ac) in rabbit conjunctival epithelium. JBP485 also elevated the expression level of cell surface-associated mucins (Muc1/4/16) in rabbit corneal epithelium. The Schirmer tear test results indicated that JBP485 induced tear secretion in the rabbit model. Moreover, JBP485 clinically improved corneal epithelial damage in a mouse dry eye model. Thus, our data indicate that JBP485 efficiently promoted mucin and aqueous tear secretion in rabbit ocular surface epithelium and has the potential to be used as a novel treatment for DES. PMID:25996902

  20. JBP485 promotes tear and mucin secretion in ocular surface epithelia.

    PubMed

    Nakamura, Takahiro; Hata, Yuiko; Nagata, Maho; Yokoi, Norihiko; Yamaguchi, Shumpei; Kaku, Taiichi; Kinoshita, Shigeru

    2015-05-21

    Dry eye syndrome (DES), a multifactorial disease of the tears and ocular surface, is one of the most common ocular disorders. Tear film contains ocular mucins and is essential for maintaining the homeostasis of the wet ocular surface. Since there are a limited number of clinical options for the treatment of DES, additional novel treatments are needed to improve the clinical results. In this study, we found that placental extract-derived dipeptide (JBP485) clearly promoted the expression and secretion of gel-forming mucin 5ac (Muc5ac) in rabbit conjunctival epithelium. JBP485 also elevated the expression level of cell surface-associated mucins (Muc1/4/16) in rabbit corneal epithelium. The Schirmer tear test results indicated that JBP485 induced tear secretion in the rabbit model. Moreover, JBP485 clinically improved corneal epithelial damage in a mouse dry eye model. Thus, our data indicate that JBP485 efficiently promoted mucin and aqueous tear secretion in rabbit ocular surface epithelium and has the potential to be used as a novel treatment for DES.

  1. Functional relationship between cationic amino acid transporters and beta-defensins: implications for dry skin diseases and the dry eye.

    PubMed

    Jäger, Kristin; Garreis, Fabian; Posa, Andreas; Dunse, Matthias; Paulsen, Friedrich P

    2010-04-20

    The ocular surface, constantly exposed to environmental pathogens, is particularly vulnerable to infection. Hence an advanced immune defence system is essential to protect the eye from microbial attack. Antimicrobial peptides, such as beta-defensins, are essential components of the innate immune system and are the first line of defence against invaders of the eye. High concentrations of L-arginine and L-lysine are necessary for the expression of beta-defensins. These are supplied by epithelial cells in inflammatory processes. The limiting factor for initiation of beta-defensin production is the transport of L-arginine and L-lysine into the cell. This transport is performed to 80% by only one transporter system in the human, the y(+)-transporter. This group of proteins exclusively transports the cationic amino acids L-arginine, L-lysine and L-ornithine and is also known under the term cationic amino acid transporter proteins (CAT-proteins). Various infections associated with L-arginine deficiency (for example psoriasis, keratoconjuctivitis sicca) are also associated with an increase in beta-defensin production. For the first time, preliminary work has shown the expression of human CATs in ocular surface epithelia and tissues of the lacrimal apparatus indicating their relevance for diseases of the ocular surface. In this review, we summarize current knowledge on the human CATs that appear to be integrated in causal regulation cascades of beta-defensins, thereby offering novel concepts for therapeutic perspectives. Copyright 2010 Elsevier GmbH. All rights reserved.

  2. Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples

    NASA Astrophysics Data System (ADS)

    Peters, Sven; Hammer, Martin; Schweitzer, Dietrich

    2011-07-01

    Two-photon excited fluorescence (TPEF) imaging of ocular tissue has recently become a promising tool in ophthalmology for diagnostic and research purposes. The feasibility and the advantages of TPEF imaging, namely deeper tissue penetration and improved high-resolution imaging of microstructures, have been demonstrated lately using human ocular samples. The autofluorescence properties of endogenous fluorophores in ocular fundus tissue are well known from spectrophotometric analysis. But fluorophores, especially when it comes to fluorescence lifetime, typically display a dependence of their fluorescence properties on local environmental parameters. Hence, a more detailed investigation of ocular fundus autofluorescence ideally in vivo is of utmost interest. The aim of this study is to determine space-resolved the stationary and time-resolved fluorescence properties of endogenous fluorophores in ex vivo porcine ocular fundus samples by means of two-photon excited fluorescence spectrum and lifetime imaging microscopy (FSIM/FLIM). By our first results, we characterized the autofluorescence of individual anatomical structures of porcine retina samples excited at 760 nm. The fluorescence properties of almost all investigated retinal layers are relatively homogenous. But as previously unknown, ganglion cell bodies show a significantly shorter fluorescence lifetime compared to the adjacent mueller cells. Since all retinal layers exhibit bi-exponential autofluorescence decays, we were able to achieve a more precise characterization of fluorescence properties of endogenous fluorophores compared to a present in vivo FLIM approach by confocal scanning laser ophthalmoscope (cSLO).

  3. Biophotonics in diagnosis and modeling of tissue pathologies

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Makropoulou, M.; Drakaki, E.

    2008-12-01

    Biophotonics techniques are applied to several fields in medicine and biology. The laser based techniques, such as the laser induced fluorescence (LIF) spectroscopy and the optical coherence tomography (OCT), are of particular importance in dermatology, where the laser radiation could be directly applied to the tissue target (e.g. skin). In addition, OCT resolves architectural tissue properties that might be useful as tumour discrimination parameters for skin as well as for ocular non-invasive visualization. Skin and ocular tissues are complex multilayered and inhomogeneous organs with spatially varying optical properties. This fact complicates the quantitative analysis of the fluorescence and/or light scattering spectra, even from the same tissue sample. To overcome this problem, mathematical simulation is applied for the investigation of the human tissue optical properties, in the visible/infrared range of the spectrum, resulting in a better discrimination of several tissue pathologies. In this work, we present i) a general view on biophotonics applications in diagnosis of human diseases, ii) some specific results on laser spectroscopy techniques, as LIF measurements, applied in arterial and skin pathologies and iii) some experimental and theoretical results on ocular OCT measurements. Regarding the LIF spectroscopy, we examined the autofluorescence properties of several human skin samples, excised from humans undergoing biopsy examination. A nitrogen laser was used as an excitation source, emitting at 337 nm (ultraviolet excitation). Histopathology examination of the samples was also performed, after the laser spectroscopy measurements and the results from the spectroscopic and medical analysis were compared, to differentiate malignancies, e.g. basal cell carcinoma tissue (BCC), from normal skin tissue. Regarding the OCT technique, we correlated human data, obtained from patients undergoing OCT examination, with Monte Carlo simulated cornea and retina tissues for diagnosis of ocular diseases.

  4. Treatment with solubilized Silk-Derived Protein (SDP) enhances rabbit corneal epithelial wound healing.

    PubMed

    Abdel-Naby, Waleed; Cole, Brigette; Liu, Aihong; Liu, Jingbo; Wan, Pengxia; Schreiner, Ryan; Infanger, David W; Paulson, Nicholas B; Lawrence, Brian D; Rosenblatt, Mark I

    2017-01-01

    There is a significant clinical need to improve current therapeutic approaches to treat ocular surface injuries and disease, which affect hundreds of millions of people annually worldwide. The work presented here demonstrates that the presence of Silk-Derived Protein (SDP) on the healing rabbit corneal surface, administered in an eye drop formulation, corresponds with an enhanced epithelial wound healing profile. Rabbit corneas were denuded of their epithelial surface, and then treated for 72-hours with either PBS or PBS containing 5 or 20 mg/mL SDP in solution four times per day. Post-injury treatment with SDP formulations was found to accelerate the acute healing phase of the injured rabbit corneal epithelium. In addition, the use of SDP corresponded with an enhanced tissue healing profile through the formation of a multi-layered epithelial surface with increased tight junction formation. Additional biological effects were also revealed that included increased epithelial proliferation, and increased focal adhesion formation with a corresponding reduction in the presence of MMP-9 enzyme. These in vivo findings demonstrate for the first time that the presence of SDP on the injured ocular surface may aid to improve various steps of rabbit corneal wound healing, and provides evidence that SDP may have applicability as an ingredient in therapeutic ophthalmic formulations.

  5. Ocular manifestations of xeroderma pigmentosum: long term follow-up highlights the role of DNA repair in protection from sun damage

    PubMed Central

    Brooks, Brian P; Thompson, Amy H; Bishop, Rachel J; Clayton, Janine A; Chan, Chi-Chao; Tsilou, Ekaterini T; Zein, Wadih M; Tamura, Deborah; Khan, Sikandar G.; Ueda, Takahiro; Boyle, Jennifer; Oh, Kyu-Seon; Imoto, Kyoko; Inui, Hiroki; Moriwaki, Shin-Ichi; Emmert, Steffen; Iliff, Nicholas T.; Bradford, Porcia; DiGiovanna, John J.; Kraemer, Kenneth H

    2013-01-01

    Objective Xeroderma pigmentosum (XP) is a rare autosomal recessive disease caused by mutations in DNA repair genes. Clinical manifestations of XP include mild to extreme sensitivity to ultraviolet radiation resulting in inflammation and neoplasia in sun-exposed areas of the skin, mucous membranes, and ocular surfaces. This report describes the ocular manifestations of XP in patients systematically evaluated in the Clinical Center at the National Institutes of Health. Design Retrospective Observational Case Series Participants Eighty-seven participants, aged 1.3 to 63.4 years, referred to the National Eye Institute for examination from 1964 to 2011. Eighty-three had XP, 3 had XP/Cockayne Syndrome complex, and 1 had XP/trichothiodystrophy complex. Methods Complete, age- and developmental stage-appropriate ophthalmic examination. Main Outcome Measures Visual acuity; eyelid, ocular surface and lens pathology; tear film and tear production measures; and cytological analysis of conjunctival surface swabs. Results Of the 87 patients, 91% had at least one ocular abnormality. The most common abnormalities were conjunctivitis (51%), corneal neovascularization (44%), dry eye (38%), corneal scarring (26%), ectropion (25%), blepharitis (23%), conjunctival melanosis (20%), and cataracts (14%). Thirteen percent of patients had some degree of visual axis impingement and 5% had no light perception in one or both eyes. Ocular surface cancer or a history of ocular surface cancer was present in 10% of patients. Patients with an acute sunburning skin phenotype were less likely to develop conjunctival melanosis and ectropion but more likely to develop neoplastic ocular surface lesions than non-burning patients. Some patients also showed signs of limbal stem cell deficiency. Conclusions Our longitudinal study reports the ocular status of the largest group of XP patients systematically examined at one facility over an extended period of time. Structural eyelid abnormalities, neoplasms of the ocular surface and eyelids, tear film and tear production abnormalities, ocular surface disease and inflammation, as well as corneal abnormalities were present in this population. Burning and non-burning XP patients exhibit different rates of important ophthalmologic findings, including neoplasia. Additionally, ophthalmic characteristics can help refine diagnoses in the case of XP complex phenotypes. DNA repair plays major role in protection of the eye from sunlight induced damage. PMID:23601806

  6. The surface activity of purified ocular mucin at the air-liquid interface and interactions with meibomian lipids.

    PubMed

    Millar, Thomas J; Tragoulias, Sophia T; Anderton, Philip J; Ball, Malcolm S; Miano, Fausto; Dennis, Gary R; Mudgil, Poonam

    2006-01-01

    Ocular mucins are thought to contribute to the stability of the tear film by reducing surface tension. The purpose of this study was to compare the effect of different mucins and hyaluronic acid (HA) alone and mixed with meibomian lipids on the surface pressure at an air-liquid interface. A Langmuir trough and Wilhelmy balance were used to measure and compare the surface activity of bovine submaxillary gland mucin (BSM), purified BSM, purified bovine ocular mucin and HA, and mixtures of these with meibomian lipids, phosphatidylcholine, and phosphatidylglycerol. Their appearance at the surface of an air-buffer interface was examined using epifluorescence microscopy. Purified ocular mucin had no surface activity even at concentrations that were 100 times more than normally occur in tears. By contrast, commercial BSM caused changes to surface pressure that were concentration dependent. The surface pressure-area profiles showed surface activity with maximum surface pressures of 12.3-22.5 mN/m depending on the concentration. Purified BSM showed no surface activity at low concentrations, whereas higher concentrations reached a maximum surface pressure of 25 mN/m. HA showed no surface activity, at low or high concentrations. Epifluorescence showed that the mucins were located at the air-buffer interface and changed the appearance of lipid films. Purified bovine ocular mucin and HA have no surface activity. However, despite having no surface activity in their own right, ocular mucins are likely to be present at the surface of the tear film, where they cause an increase in surface pressure by causing a compression of the lipids (a reorganization of the lipids) and alter the viscoelastic properties at the surface.

  7. Ocular Applications of Dipyridamole: A Review of Indications and Routes of Administration

    PubMed Central

    Isakov, Itzhak; Wlassoff, Wjatschesslaw; Ingram, April; Barishak, Y. Robert

    2016-01-01

    Abstract Dipyridamole was introduced decades ago as a treatment for angina, subsequently found to inhibit platelet aggregation. It is most commonly used, and approved for use in thromboembolism prevention, following surgery. Some of its recognized effects such as adenosine uptake inhibition, elevation of cAMP and cGMP levels, vasodilation, and tissue perfusion are important in various ocular disorders. For this reason, dipyridamole represents an interesting candidate as a therapeutic target for the treatment of eye disorders affecting different ocular structures. The aim of this article is to review the evidence and current understanding of the mechanisms by which dipyridamole exerts its effects on different ocular tissues, discuss the role of dipyridamole in clinical practice, and highlight areas of use and routes of administration. PMID:26696547

  8. The impact of the International Atomic Energy Agency (IAEA) program on radiation and tissue banking in Mexico.

    PubMed

    Martínez-Pardo, María Esther; Morales Pedraza, Jorge; Sánchez Ramírez, Omar

    2009-05-01

    Tissue banking started in Mexico in 1948-1949, when two bone banks were established, one at the Infantile Hospital of Mexico and other at the Central Military Hospital. Mexico has benefited for the implementation of the IAEA program since through it has been able to settle down and to consolidate the Tissue Bank at the Instituto Nacional de Investigaciones Nucleares ININ (National Institute for Nuclear Research). This is the only bank in Latin America that has a Quality Management System in force, certified under ISO 9001:2000 since August 1, 2003. The first tissue processed was amnion. The main products of the BTR are amnion and pig skin. Both are biological tissues which their main use is as a wound dressing in patients with burns, scars, diabetic ulcers, epidermolysis bullosa, damaged ocular surface, etc. The General Health Law, published in 1984 and reformed in June 19, 2007, describes the procedure for the disposal of organs, tissues and human cadavers in its fourteenth title and in the Regulation for Sanitary Control. During the period 2001-2005, the ININ Tissue Bank produced 292 sterilised tissues (amnion, 86,668 cm(2), and frozen pig skin, 164,220 cm(2), at an estimated cost of 1,012,668 Mexican pesos. Until 2006, one hundred eighty five (185) patients have been treated with the use of sterilised tissues produced by the ININ Tissue Bank. The radiation source used for sterilisation of tissues is an industrial Cobalt-60 irradiator model JS-6500 AECL, which belongs to ININ. This equipment is located in other building, close to the BTR, in the Centro Nuclear de México "Dr. Nabor Carrillo Flores" (Nuclear Center of Mexico). Until 2006, six hospitals use in a routine way the sterilised tissues produced by the ININ Tissue Bank, for the treatment of burns originated by diverse agents like flame, electricity, liquids in boil, chemical reagents, as well as for the reconstruction of the ocular surface. Two of these hospitals treat patients of very low economic incomes, mainly needy individuals, who cannot afford to pay this type of treatments in other hospitals due to their high cost. The results obtained up to now are highly promising.

  9. Characterisation of the metabolome of ocular tissues and post-mortem changes in the rat retina.

    PubMed

    Tan, Shi Z; Mullard, Graham; Hollywood, Katherine A; Dunn, Warwick B; Bishop, Paul N

    2016-08-01

    Time-dependent post-mortem biochemical changes have been demonstrated in donor cornea and vitreous, but there have been no published studies to date that objectively measure post-mortem changes in the retinal metabolome over time. The aim of the study was firstly, to investigate post-mortem, time-dependent changes in the rat retinal metabolome and secondly, to compare the metabolite composition of healthy rat ocular tissues. To study post-mortem changes in the rat retinal metabolome, globes were enucleated and stored at 4 °C and sampled at 0, 2, 4, 8, 24 and 48 h post-mortem. To study the metabolite composition of rat ocular tissues, eyes were dissected immediately after culling to isolate the cornea, lens, vitreous and retina, prior to storing at -80 °C. Tissue extracts were subjected to Gas Chromatograph Mass Spectrometry (GC-MS) and Ultra High Performance Liquid Chromatography Mass Spectrometry (UHPLC-MS). Generally, the metabolic composition of the retina was stable for 8 h post-mortem when eyes were stored at 4 °C, but showed increasing changes thereafter. However, some more rapid changes were observed such as increases in TCA cycle metabolites after 2 h post-mortem, whereas some metabolites such as fatty acids only showed decreases in concentration from 24 h. A total of 42 metabolites were identified across the ocular tissues by GC-MS (MSI level 1) and 2782 metabolites were annotated by UHPLC-MS (MSI level 2) according to MSI reporting standards. Many of the metabolites detected were common to all of the tissues but some metabolites showed partitioning between different ocular structures with 655, 297, 93 and 13 metabolites being uniquely detected in the retina, lens, cornea and vitreous respectively. Only a small percentage (1.6%) of metabolites found in the vitreous were only detected in the retina and not other tissues. In conclusion, mass spectrometry-based techniques have been used for the first time to compare the metabolic composition of different ocular tissues. The metabolite composition of the retina stored at 4 °C post-mortem is mostly stable for at least 8 h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Aniridia and Brachmann-de Lange syndrome: a review of ocular surface and anterior segment findings.

    PubMed

    Lee, W Barry; Brandt, James D; Mannis, Mark J; Huang, Charles Q; Rabin, Gregory J

    2003-03-01

    To review the ocular surface and anterior segment findings in Brachmann-de Lange syndrome and describe a new case involving aniridia and congenital glaucoma. A newborn presented 2 days after birth with bilateral cloudy corneas, photophobia, and epiphora. We provide a 5-year descriptive history and clinical course with review of the literature on Brachmann-de Lange syndrome. Multiple ocular surgeries were performed for ocular sequelae from aniridia and congenital glaucoma including Ahmed valve placement and penetrating keratoplasties in both eyes. At 5.5 years of age, the child had a clear graft OD and amblyopia from graft failure OS following recurrent graft infections. A review of Brachmann-de Lange syndrome found 43 patients with ocular surface and anterior segment findings. The most common findings included conjunctivitis, blepharitis, microcornea, and corectopia. Aniridia and congenital glaucoma were not previously reported with Brachmann-de Lange syndrome. Ocular surface and anterior segment abnormalities must be considered when examining patients with Brachmann-de Lange syndrome. Ocular findings may include vision-threatening anomalies, as in our case with aniridia and congenital glaucoma. To our knowledge, these findings are previously unreported in Brachmann-de Lange syndrome.

  11. Dry eye disease: an immune-mediated ocular surface disorder

    PubMed Central

    Stevenson, William; Chauhan, Sunil K.; Dana, Reza

    2013-01-01

    Dry eye disease is a multifactorial disorder of the tears and ocular surface characterized by symptoms of dryness and irritation. Although the pathogenesis of dry eye disease is not fully understood, it is recognized that inflammation has a prominent role in the development and propagation of this debilitating condition. Factors that adversely affect tear film stability and osmolarity can induce ocular surface damage and initiate an inflammatory cascade that generates innate and adaptive immune responses. These immunoinflammatory responses lead to further ocular surface damage and the development of a self-perpetuating inflammatory cycle. Herein, we review the fundamental links between inflammation and dry eye disease and discuss the clinical implications of inflammation in disease management. PMID:22232476

  12. Accounting for Ethnicity-Related Differences in Ocular Surface Integrity as a Step Toward Understanding Contact Lens Discomfort.

    PubMed

    Chan, Stefanie M; Svitova, Tatyana F; Lin, Meng C

    2017-01-01

    Contact lens discomfort is a common problem that can lead to unsuccessful or limited contact lens wear. Although many factors may contribute to contact lens discomfort, limited research has explored the influence of ethnicity-related differences in the anatomy and physiology of the ocular surface. Therefore, we performed a search of the literature in PubMed using key words related to "ocular surface" paired with the terms "race" and "ethnicity." The goal of this review was to determine potential areas of research regarding ethnicity differences, particularly between Asian and non-Asian eyes, in ocular surface integrity to advance our understanding of contact lens discomfort.

  13. RES-loaded pegylated CS NPs: for efficient ocular delivery.

    PubMed

    Pandian, Saravanakumar; Jeevanesan, Vinoth; Ponnusamy, Chandrasekar; Natesan, Subramanian

    2017-02-01

    The objective of this study is to develop resveratrol (RES) loaded polyethylene glycols (PEGs) modified chitosan (CS) nanoparticles (NPs) by ionic gelation method for the treatment of glaucoma. While increasing the concentration of PEG, the particle size and polydispersity index of the formulations increased. Entrapment efficiency and RES loading (RL) of NPs decreased while increasing PEG concentration. The in vitro release of NPs showed an initial burst release of RES (45%) followed by controlled release. Osmolality of formulations revealed that the prepared NPs were iso-osmolar with the tear. Ocular tolerance of the NPs was evaluated using hen's egg test on the chorioallantoic membrane and it showed that the NPs were non-irritant. RES-loaded PEG-modified CS NPs shows an improved corneal permeation compared with RES dispersion. Fluorescein isothiocyanate loaded CS NPs accumulated on the surface of the cornea but the PEG-modified CS NPs crossed the cornea and reached retinal choroid. RES-loaded PEG-modified CS NPs reduced the intra-ocular pressure (IOP) by 4.3 ± 0.5 mmHg up to 8 h in normotensive rabbits. These results indicate that the developed NPs have efficient delivery of RES to the ocular tissues and reduce the IOP for the treatment of glaucoma.

  14. Depth-resolved measurement of ocular fundus pulsations by low-coherence tissue interferometry

    NASA Astrophysics Data System (ADS)

    Dragostinoff, Nikolaus; Werkmeister, René M.; Gröschl, Martin; Schmetterer, Leopold

    2009-09-01

    A device that allows for the measurement of ocular fundus pulsations at preselected axial positions of a subject's eye is presented. Unlike previously presented systems, which only allow for observation of the strongest reflecting retinal layer, our system enables the measurement of fundus pulsations at a preselected ocular layer. For this purpose the sample is illuminated by light of low temporal coherence. The layer is then selected by positioning one mirror of a Michelson interferometer according to the depth of the layer. The device contains a length measurement system based on partial coherence interferometry and a line scan charge-coupled device camera for recording and online inspection of the fringe system. In-vivo measurements in healthy humans are performed as proof of principle. The algorithms used for enhancing the recorded images are briefly introduced. The contrast of the observed interference pattern is evaluated for different positions of the measurement mirror and at various distances from the front surface of the cornea. The applications of such a system may be wide, including assessment of eye elongation during myopia development and blood-flow-related changes in intraocular volume.

  15. Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes

    PubMed Central

    Dejneka, Nadine S.; Wan, Shanhong; Bond, Ottrina S.; Kornbrust, Douglas J.

    2008-01-01

    Purpose The primary objective of these investigations was to determine the ocular biodistribution of bevasiranib, a small interfering RNA (siRNA) targeting vascular endothelial growth factor A (VEGF-A), following a single intravitreal injection to rabbit eyes. Methods A tissue distribution and pharmacokinetic study was conducted with 3H-bevasiranib prepared in balanced-salt solution (BSS). Single doses of either 0.5 mg/eye or 2.0 mg/eye of 3H-bevasiranib were given by intravitreal injection to Dutch-Belted rabbits (both eyes were treated). Subgroups of rabbits were serially-sacrificed at various times up to 7 days following dosing for collection of tissue samples. The right eye of each rabbit was collected whole, and the left eye was dissected to isolate five ocular tissues. All samples were analyzed by liquid scintillation counting to determine the concentrations of bevasiranib equivalents. An ocular disposition study was also performed with non-radiolabeled bevasiranib, which was administered to Dutch-Belted rabbit eyes via intravitreal injection at a dose of 2.0 mg/eye. Twenty-four hours post-dose, the eyes were enucleated and dissected into eight individual ocular structures that were analyzed for intact bevasiranib using a locked nuleic acid (LNA) noncompetitive hybridization-ligation enzyme-linked immunosorbent assay. Results Following intravitreal injection of 0.5 mg or 2.0 mg radiolabeled bevasiranib to Dutch-Belted rabbits, bevasiranib was detected in the vitreous, iris, retina, retinal pigment epithelium (RPE), and sclera (+choroid). As expected, the highest concentrations were found in the vitreous, and vitreous levels steadily decreased over time, while concentrations of radioactivity in the other ocular tissues increased to maximum values between 24 h and 72 h after dosing. Of these tissues, the highest concentration of radioactivity was detected in the retina. The LNA assay further confirmed the presence of intact bevasiranib in these tissues 24 h following intravitreal injection of non-radiolabeled bevasiranib (2 mg/eye). Conclusions These studies demonstrate distribution of bevasiranib throughout the eye following intravitreal injection, including extensive uptake into the retina. PMID:18523657

  16. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials. © 2013.

  17. Interfacial Interaction between Transmembrane Ocular Mucins and Adhesive Polymers and Dendrimers Analyzed by Surface Plasmon Resonance

    PubMed Central

    Noiray, M.; Briand, E.; Woodward, A. M.; Argüeso, P.; Molina Martínez, I. T.; Herrero-Vanrell, R.; Ponchel, G.

    2013-01-01

    Purpose Development of the first in vitro method based on biosensor chip technology designed for probing the interfacial interaction phenomena between transmembrane ocular mucins and adhesive polymers and dendrimers intended for ophthalmic administration. Methods The surface plasmon resonance (SPR) technique was used. A transmembrane ocular mucin surface was prepared on the chip surface and characterized by QCM-D (Quartz Crystal Microbalance with Dissipation) and XPS (X-ray photoelectron spectroscopy). The mucoadhesive molecules tested were: hyaluronic acid (HA), carboxymethyl cellulose (CMC), hydroxypropylmethyl cellulose (HPMC), chitosan (Ch) and polyamidoamine dendrimers (PAMAM). Results While Ch originated interfacial interaction with ocular transmembrane mucins, for HA, CMC and HPMC, chain interdiffusion seemed to be mandatory for bioadherence at the concentrations used in ophthalmic clinical practise. Interestingly, PAMAM dendrimers developed permanent interfacial interactions with transmembrane ocular mucins whatever their surface chemical groups, showing a relevant importance of co-operative effect of these multivalent systems. Polymers developed interfacial interactions with ocular membrane-associated mucins in the following order: Ch(1 %) > G4PAMAM-NH2(2 %) = G4PAMAM-OH(2 %) > G3.5PAMAM-COOH(2 %)≫ CMC(0.5 %) = HA(0.2 %) = HPMC(0.3 %). Conclusions The method proposed is useful to discern between the mucin-polymer chemical interactions at molecular scale. Results reinforce the usefulness of chitosan and den-drimers as polymers able to increase the retention time of drugs on the ocular surface and hence their bioavailability. PMID:22565639

  18. Ophthalmic Manifestations of Xeroderma Pigmentosum: A Perspective from the United Kingdom.

    PubMed

    Lim, Rongxuan; Sethi, Mieran; Morley, Ana M S

    2017-11-01

    To document the ocular manifestations of xeroderma pigmentosum (XP), presenting via the United Kingdom (UK) XP service, and to analyze the correlations between XP genotype and ophthalmic phenotype. Prospective observational case series. Eighty-nine patients seen by the UK Nationally Commissioned XP Service, from April 2010 to December 2014, with a genetically confirmed diagnosis of XP. Patients underwent a full ophthalmic examination at each visit. Clinical features from both eyes were recorded on a standard proforma. The most recent assessments were analyzed. A 2-tailed Fisher exact test was used to assess for differences in ocular features between patients in XP subgroups with impaired transcription coupled nucleotide excision repair (TC-NER) (category 1: XP-A, B, D, F, and G) and preserved TC-NER (category 2: XP-C, E, and V). Lid and periocular abnormalities, ocular surface pathologies, neuro-ophthalmologic abnormalities, lens and retinal abnormalities, and visual acuity (VA). Ninety-three percent of XP patients in our cohort had ocular involvement, with 65% describing photophobia. The most common abnormalities were in the periocular skin and ocular surface, including interpalpebral conjunctival melanosis (44%) and conjunctival injection (43%). Eleven percent of patients had required treatment for periocular cancers and 2% for ocular surface cancers. The most common neuro-ophthalmologic finding was minimal pupillary reaction to light (25%). Patients in category 2 had significantly more ocular surface abnormalities than patients in category 1, including a greater proportion of conjunctival injection (P = 0.003), conjunctival corkscrew vessels (P < 0.001), corneal scarring (P = 0.01) and pingueculae under the age of 50 (P = 0.02). Meanwhile, patients in category 1 had a higher proportion of poorly reactive pupils (P < 0.001) and abnormal ocular movements (P = 0.03) compared with those in category 2. Five patients (6%) presented to ophthalmologists with ocular surface signs related to XP, before any formal diagnosis of XP was made. A large proportion of XP patients have ocular involvement. Regular examination by an ophthalmologist is essential, especially in screening for eyelid and ocular surface tumors. The ocular phenotype-genotype segregation within XP patients suggests that XP is a heterogeneous and complex disease. With further study, we hope to offer these patients more individualized patient care. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  19. The ocular surface and tear film and their dysfunction in dry eye disease.

    PubMed

    Rolando, M; Zierhut, M

    2001-03-01

    The ocular surface, tear film, lacrimal glands, and eyelids act as a functional unit to preserve the quality of the refractive surface of the eye and to resist injury and protect the eye against changing bodily and environmental conditions. Events that disturb the homeostasis of this functional unit can result in a vicious cycle of ocular surface disease. The tear film is the most dynamic structure of the functional unit, and its production and turnover is essential to maintaining the health of the ocular surface. Classically, the tear film is reported to be composed of three layers: the mucin, aqueous, and lipid layers. The boundaries and real thickness of such layers is still under discussion. A dysfunction of any of these layers can result in dry eye disease.

  20. Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes

    PubMed Central

    Marchitti, Satori A.; Chen, Ying; Thompson, David C.; Vasiliou, Vasilis

    2011-01-01

    Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species are highly reactive with DNA, proteins and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat reactive oxygen species and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, NADPH and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants which are essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multi-functional ocular antioxidants. PMID:21670692

  1. Therapeutic Effects of Sodium Hyaluronate on Ocular Surface Damage Induced by Benzalkonium Chloride Preserved Anti-glaucoma Medications

    PubMed Central

    Liu, Xing; Yu, Fen-Fen; Zhong, Yi-Min; Guo, Xin-Xing; Mao, Zhen

    2015-01-01

    Background: Long-term use of benzalkonium chloride (BAC)-preserved drugs is often associated with ocular surface toxicity. Ocular surface symptoms had a substantial impact on the glaucoma patients’ quality of life and compliance. This study aimed to investigate the effects of sodium hyaluronate (SH) on ocular surface toxicity induced by BAC-preserved anti-glaucoma medications treatment. Methods: Fifty-eight patients (101 eyes), who received topical BAC-preserved anti-glaucoma medications treatment and met the severe dry eye criteria, were included in the analysis. All patients were maintained the original topical anti-glaucoma treatment. In the SH-treated group (56 eyes), unpreserved 0.3% SH eye drops were administered with 3 times daily for 90 days. In the control group (55 eyes), phosphate-buffered saline were administered with 3 times daily for 90 days. Ocular Surface Disease Index (OSDI) questionnaire, break-up time (BUT) test, corneal fluorescein staining, corneal and conjunctival rose Bengal staining, Schirmer test, and conjunctiva impression cytology were performed sequentially on days 0 and 91. Results: Compared with the control group, SH-treated group showed decrease in OSDI scores (Kruskal-Wallis test: H = 38.668, P < 0.001), fluorescein and rose Bengal scores (Wilcoxon signed-ranks test: z = −3.843, P < 0.001, and z = −3.508, P < 0.001, respectively), increase in tear film BUT (t-test: t = −10.994, P < 0.001) and aqueous tear production (t-test: t = −10.328, P < 0.001) on day 91. The goblet cell density was increased (t-test: t = −9.981, P < 0.001), and the morphology of the conjunctival epithelium were also improved after SH treatment. Conclusions: SH significantly improved both symptoms and signs of ocular surface damage in patients with BAC-preserved anti-glaucoma medications treatment. SH could be proposed as a new attempt to reduce ocular surface toxicity, and alleviate symptoms of ocular surface damage in BAC-preserved anti-glaucoma medications treatment. PMID:26365960

  2. Study on the Protective Effect of a New Manganese Superoxide Dismutase on the Microvilli of Rabbit Eyes Exposed to UV Radiation.

    PubMed

    Grumetto, Lucia; Del Prete, Antonio; Ortosecco, Giovanni; Barbato, Francesco; Del Prete, Salvatore; Borrelli, Antonella; Schiattarella, Antonella; Mancini, Roberto; Mancini, Aldo

    2015-01-01

    We present a study on the protective effects against UV radiation of a gel formulation containing a new recombinant form of manganese superoxide dismutase on the conjunctiva and corneal epithelia of rabbit eyes. The integrity of the microvilli of both ocular tissues has been considered as an indicator of the health of the tissues. Samples, collected by impression cytology technique, were added of 80 µL of a gel formulation containing superoxide dismutase (2.0 µg/mL) and irradiated with UV rays for 30 minutes and were evaluated with scanning electron microscopy. Wilcoxon test was used to verify the possible occurrence of statistically significant differences between damage for treated and nontreated tissues. Application of gel produces a significant reduction of damage by UV irradiation of ocular epithelia; both epithelia present a significant reduction of damaged microvilli number if treated with the superoxide dismutase gel formulation: the p values (differences between damage found for treated and nontreated both ocular tissues) for conjunctiva and cornea samples were p ≪ 0.01 and p ≪ 0.0001, respectively, at confidence level of 95%. The administration of this gel formulation before UV exposure plays a considerable protective role in ocular tissues of rabbit eye with a significant reduction of the damage.

  3. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma

    PubMed Central

    Zode, Gulab S.; Sharma, Arti B.; Lin, Xiaolei; Searby, Charles C.; Bugge, Kevin; Kim, Gun Hee; Clark, Abbot F.; Sheffield, Val C.

    2014-01-01

    Administration of glucocorticoids induces ocular hypertension in some patients. If untreated, these patients can develop a secondary glaucoma that resembles primary open-angle glaucoma (POAG). The underlying pathology of glucocorticoid-induced glaucoma is not fully understood, due in part to lack of an appropriate animal model. Here, we developed a murine model of glucocorticoid-induced glaucoma that exhibits glaucoma features that are observed in patients. Treatment of WT mice with topical ocular 0.1% dexamethasone led to elevation of intraocular pressure (IOP), functional and structural loss of retinal ganglion cells, and axonal degeneration, resembling glucocorticoid-induced glaucoma in human patients. Furthermore, dexamethasone-induced ocular hypertension was associated with chronic ER stress of the trabecular meshwork (TM). Similar to patients, withdrawal of dexamethasone treatment reduced elevated IOP and ER stress in this animal model. Dexamethasone induced the transcriptional factor CHOP, a marker for chronic ER stress, in the anterior segment tissues, and Chop deletion reduced ER stress in these tissues and prevented dexamethasone-induced ocular hypertension. Furthermore, reduction of ER stress in the TM with sodium 4-phenylbutyrate prevented dexamethasone-induced ocular hypertension in WT mice. Our data indicate that ER stress contributes to glucocorticoid-induced ocular hypertension and suggest that reducing ER stress has potential as a therapeutic strategy for treating glucocorticoid-induced glaucoma. PMID:24691439

  4. Development of a non-settling gel formulation of 0.5% loteprednol etabonate for anti-inflammatory use as an ophthalmic drop

    PubMed Central

    Coffey, Martin J; DeCory, Heleen H; Lane, Stephen S

    2013-01-01

    The eye has protective barriers (ie, the conjunctival and corneal membranes) and defense mechanisms (ie, reflex tearing, blinking, lacrimal drainage) which present challenges to topical drug delivery. Topical ocular corticosteroids are commonly used in the treatment of anterior segment diseases and inflammation associated with ocular surgery, and manufacturers continually strive to improve their characteristics. We describe the development of a novel ophthalmic gel formulation of loteprednol etabonate (LE), a C-20 ester-based corticosteroid with an established safety profile, in the treatment of ocular inflammatory conditions. The new LE gel formulation is non-settling, eliminating the need to shake the product to resuspend the drug, has a pH close to that of tears, and a low preservative concentration. The rheological characteristics of LE gel are such that the formulation is instilled as a drop and transitions to a fluid upon instillation in the eye, yet retains sufficient viscosity to prolong ocular surface retention. The new formulation provides consistent, uniform dosing as evidenced by dose extrusion studies, while pharmacokinetic studies in rabbits demonstrated rapid and sustained exposure to LE in ocular tissues following instillation of LE gel. Finally, results from two clinical studies of LE gel in the treatment of postoperative inflammation and pain following cataract surgery indicate that it was safe and effective. Most patients reported no unpleasant drop sensation upon instillation, and reports of blurred vision were rare. PMID:23430378

  5. Ocular Pharmacokinetics of Fluocinolone Acetonide Following Iluvien Implantation in the Vitreous Humor of Rabbits

    PubMed Central

    Kane, Frances E.

    2015-01-01

    Abstract Purpose: The purpose of this study was to evaluate the systemic and ocular pharmacokinetics (PK) of fluocinolone acetonide (FAc) following administration of Iluvien® intravitreal implants. Methods: The FAc intravitreal implant was administered to rabbits in 3 doses (0.2, 0.5, and 1.0 μg/day). The concentration of FAc was measured by a validated liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method in plasma and ocular tissues at various time points through month 24. Results: Following administration of the 0.2 μg/day implant, FAc levels peaked in most tissues at day 2 or 8, reached approximate steady state levels by month 3 and very gradually decreased over the duration of the study. The FAc level in the aqueous humor was not measurable at most time points in the rabbit. FAc was still present in most ocular tissues at 2 years. The 0.5 and 1.0 μg/day dose groups followed the same pattern through month 9. The elimination half lives in the tissues for which it was measurable were greater than 83 days. Exposure to FAc was highest in the choroid/retinal pigment epithelium for all doses, followed by lens and retina. Conclusions: The results of this study demonstrate sustained delivery of FAc from the Iluvien intravitreal implant in the ocular tissue of rabbits. Retina and lens FAc levels with the Iluvien implant were approximately 1/10 those reported with the Retisert® implant. FAc levels in the aqueous were not measureable with Iluvien where they were measured for 12 months with Retisert. PMID:25562126

  6. Protecting the ocular surface and improving the quality of life of dry eye patients: a study of the efficacy of an HP-guar containing ocular lubricant in a population of dry eye patients.

    PubMed

    Rolando, Maurizio; Autori, Silvia; Badino, Francesco; Barabino, Stefano

    2009-06-01

    The aim of this study was to evaluate the efficacy of a non-Newtonian tear substitute containing 0.4% polyethylene glycol 400 (PEG 400) and 0.3% propylene glycol in an 0.18% hydroxypropyl-guar (HPG) containing vehicle (Systane Lubricant Eye Drops; Alcon) in reducing the signs and symptoms of dry eye, as well as its effect on ocular protection. Twenty patients with moderate to severe dry eye were enrolled in a 28-day prospective, randomized, controlled study. Subjects self-administered the HPG containing ocular lubricant four times daily (QID) over the study duration. After 28 days, the effect of the HPG containing ocular lubricant was evaluated by means of the Global Staining Score (a measure of the corneal and conjunctival staining), inter-blink tear film stability, Ocular Protection Index (OPI), and subjective symptoms. The HPG containing ocular lubricant produced statistically significant improvements compared with baseline in dry eye symptoms (P < 0.0001 at Days 7, 14, and 28); in ocular surface staining, as measured by a reduction in the Global Staining Score (P < 0.0001 at Days 7, 14, and 28); and in the OPI (P = 0.0025 at Day 14 and P = 0.0067 at Day 28). The improvements in ocular surface staining and dry eye symptoms with the HPG containing ocular lubricant -- evident as early as the first follow-up visit (Day 7) and continued throughout the 28 days of the study with a concurrent, increase in OPI to a level greater than unity -- indicate that this preparation is a fast-acting, long-lasting, and effective treatment for dry eye. In concurrence with the results from previously published clinical studies, the HPG containing ocular lubricant has shown efficacy in alleviating the signs and symptoms of dry eye as well as affording improved ocular surface protection.

  7. UV-blocking spectacle lens protects against UV-induced decline of visual performance.

    PubMed

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh; Chen, Bo-Yie

    2015-01-01

    Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined.

  8. The Relationship Between Ocular Itch, Ocular Pain, and Dry Eye Symptoms (An American Ophthalmological Society Thesis).

    PubMed

    Galor, Anat; Small, Leslie; Feuer, William; Levitt, Roy C; Sarantopoulos, Konstantinos D; Yosipovitch, Gil

    2017-08-01

    To evaluate associations between sensations of ocular itch and dry eye (DE) symptoms, including ocular pain, and DE signs. A cross-sectional study of 324 patients seen in the Miami Veterans Affairs eye clinic was performed. The evaluation consisted of questionnaires regarding ocular itch, DE symptoms, descriptors of neuropathic-like ocular pain (NOP), and evoked pain sensitivity testing on the forehead and forearm, followed by a comprehensive ocular surface examination including corneal mechanical sensitivity testing. Analyses were performed to examine for differences between those with and without subjective complaints of ocular itch. The mean age was 62 years with 92% being male. Symptoms of DE and NOP were more frequent in patients with moderate-severe ocular itch compared to those with no or mild ocular itch symptoms. With the exception of ocular surface inflammation (abnormal matrix metalloproteinase 9 testing) which was less common in those with moderate-severe ocular itch symptoms, DE signs were not related to ocular itch. Individuals with moderate-severe ocular itch also demonstrated greater sensitivity to evoked pain on the forearm and had higher non-ocular pain, depression, and post-traumatic stress disorders scores, compared to those with no or mild itch symptoms. Subjects with moderate-severe ocular itch symptoms have more severe symptoms of DE, NOP, non-ocular pain and demonstrate abnormal somatosensory testing in the form of increased sensitivity to evoked pain at a site remote from the eye, consistent with generalized hypersensitivity.

  9. The Relationship Between Ocular Itch, Ocular Pain, and Dry Eye Symptoms (An American Ophthalmological Society Thesis)

    PubMed Central

    Galor, Anat; Small, Leslie; Feuer, William; Levitt, Roy C.; Sarantopoulos, Konstantinos D.; Yosipovitch, Gil

    2017-01-01

    Purpose To evaluate associations between sensations of ocular itch and dry eye (DE) symptoms, including ocular pain, and DE signs. Methods A cross-sectional study of 324 patients seen in the Miami Veterans Affairs eye clinic was performed. The evaluation consisted of questionnaires regarding ocular itch, DE symptoms, descriptors of neuropathic-like ocular pain (NOP), and evoked pain sensitivity testing on the forehead and forearm, followed by a comprehensive ocular surface examination including corneal mechanical sensitivity testing. Analyses were performed to examine for differences between those with and without subjective complaints of ocular itch. Results The mean age was 62 years with 92% being male. Symptoms of DE and NOP were more frequent in patients with moderate-severe ocular itch compared to those with no or mild ocular itch symptoms. With the exception of ocular surface inflammation (abnormal matrix metalloproteinase 9 testing) which was less common in those with moderate-severe ocular itch symptoms, DE signs were not related to ocular itch. Individuals with moderate-severe ocular itch also demonstrated greater sensitivity to evoked pain on the forearm and had higher non-ocular pain, depression, and post-traumatic stress disorders scores, compared to those with no or mild itch symptoms. Conclusions Subjects with moderate-severe ocular itch symptoms have more severe symptoms of DE, NOP, non-ocular pain and demonstrate abnormal somatosensory testing in the form of increased sensitivity to evoked pain at a site remote from the eye, consistent with generalized hypersensitivity. PMID:29391860

  10. Corneal toxicity induced by vesicating agents and effective treatment options

    PubMed Central

    Goswami, Dinesh G.; Tewari-Singh, Neera; Agarwal, Rajesh

    2016-01-01

    The vesicating agents sulfur mustard (SM) and lewisite (LEW) are potent chemical warfare agents that primarily cause damage to the ocular, skin, and respiratory systems. However, ocular tissue is the most sensitive organ, and vesicant exposure results in a biphasic injury response, including photophobia, corneal lesions, corneal edema, ulceration, and neovascularization, and may cause loss of vision. There are several reports on ocular injury from exposure to SM, which has been frequently used in warfare. However, there are very few reports on ocular injury by LEW, which indicate that injury symptoms appear instantly after exposure and faster than SM. In spite of extensive research efforts, effective therapies for vesicant-induced ocular injuries, mainly to the most affected corneal tissue, are not available. Hence, we have established primary human corneal epithelial (HCE) cells and rabbit corneal organ culture models with the SM analog nitrogen mustard (NM), which have helped to test the efficacy of potential therapeutic agents. These agents will then be further evaluated against in vivo SM- and LEW-induced corneal injury models, which will assist in the development of potential broad-spectrum therapies against vesicant-induced ocular injuries. PMID:27327041

  11. In Vitro/In Vivo Evaluation of Dexamethasone--PAMAM Dendrimer Complexes for Retinal Drug Delivery.

    PubMed

    Yavuz, Burçin; Pehlivan, Sibel Bozdağ; Vural, İmran; Ünlü, Nurşen

    2015-11-01

    Current treatment options for diabetic retinopathy (DR) have side effects because of invasive application and topical application does not generally result in therapeutic levels in the target tissue. Therefore, improving the drug delivery to retina, following topical administration, might be a solution to DR treatment problems. The purpose of this study was to investigate the complexation effects of poly(amidoamine) (PAMAM) dendrimers on ocular absorption of dexamethasone (DEX). Using different PAMAM generations, complex formulations were prepared and characterized. Formulations were evaluated in terms of cytotoxicity and cell permeability, as well as ex vivo transport across ocular tissues. The ocular pharmacokinetic properties of DEX formulations were studied in Sprague-Dawley rats following topical and subconjunctival applications, to evaluate the effect of PAMAM on retinal delivery of DEX. Methyl-thiazol-tetrazolium (MTT) assay indicated that all groups resulted in cell viability comparable to DEX solution (87.5%), with the cell viability being the lowest for G3 complex at 73.5%. Transport study results showed that dendrimer complexation increases DEX transport across both cornea and sclera tissues. The results of in vivo studies were also indicated that especially anionic DEX-PAMAM complex formulations have reached higher DEX concentrations in ocular tissues compared with plain DEX suspension. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Excretory-secretory antigens: a suitable candidate for immunization against ocular toxoplasmosis in a murine model.

    PubMed

    Norouzpour Deilami, Kiumars; Daryani, Ahmad; Ahmadpour, Ehsan; Sharif, Mehdi; Dadimoghaddam, Yousef; Sarvi, Shahabeddin; Alizadeh, Ahad

    2014-12-01

    Toxoplasmosis, responsible for ocular impairment, is caused by Toxoplasma gondii. We investigated the effect of Toxoplasma excretory-secretory antigens (ESA) on parasite load and distribution in the eye tissue of a murine model. Case and control groups were immunized with ESA and PBS, respectively. Two weeks after the second immunization, the mice were challenged intraperitoneally with virulent RH strain of Toxoplasma; eye tissue samples of both groups were collected daily (days 1, 2, 3, and the last day before death). Parasite load was determined using real-time quantitative PCR targeted at the B1 gene. Compared to the control group, infected mice that received ESA vaccine presented a considerable decrease in parasite load in the eye tissue, demonstrating the effect of ESA on parasite load and distribution. Diminution of parasite load in mouse eye tissue indicated that ESA might help control disease-related complications and could be a valuable immunization candidate against ocular toxoplasmosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Two Patients with Dry Eye Disease Followed Up Using an Expression Assay of Ocular Surface Mucin.

    PubMed

    Machida, Yumiko; Shoji, Jun; Harada, Natsuko; Inada, Noriko

    2016-01-01

    We report 2 patients with dry eye disease followed up using the expression levels of ocular surface mucin. Patient 1: a 57-year-old woman with Sjögren's syndrome-associated dry eyes experienced severe dryness and foreign body sensation in both her eyes, and instilled sodium hyaluronate ophthalmic solution 0.3% about 10-15 times daily. We measured the expression levels of MUC5AC mRNA (MUC5AC) and MUC16 mRNA (MUC16) by using real-time reversed transcription polymerase chain reaction for the specimens of modified impression cytology. Expression levels of MUC5AC and MUC16 on her ocular surface were very low. Subjective symptoms and expression levels of ocular surface mucin improved after combined treatment of rebamipide (4 times daily) and fluorometholone (once daily) ophthalmic suspension. Patient 2: a 62-year-old man with chronic graft-versus-host disease-associated dry eye experienced severe foreign body sensation and developed superficial punctate keratopathy with mucous thread and filamentary keratitis. Expression level of MUC5AC was very high at baseline. Subjective symptoms and expression levels of ocular surface mucin improved by combined treatment of rebamipide (4 times daily) and fluorometholone (once daily) ophthalmic suspension. Clinical test for MUC gene expression on the ocular surface was found to be useful in the follow-up of dry eye treatment.

  14. Conjunctival Goblet Cell Function: Effect of Contact Lens Wear and Cytokines

    PubMed Central

    García-Posadas, Laura; Contreras-Ruiz, Laura; Soriano-Romaní, Laura; Dartt, Darlene A.; Diebold, Yolanda

    2015-01-01

    This review focuses on conjunctival goblet cells and their essential function in the maintenance of eye health. The main function of goblet cells is to produce and secrete mucins that lubricate the ocular surface. An excess or a defect in those mucins leads to several alterations that makes goblet cells central players in maintaining the proper mucin balance and ensuring the correct function of ocular surface tissues. A typical pathology that occurs with mucous deficiency is dry eye disease, whereas the classical example of mucous hyperproduction is allergic conjunctivitis. In this review we analyze how goblet cell number and function can be altered in these diseases and in contact lens wearers. We found that most published studies focused exclusively on goblet cell number. However, recent advances have demonstrated that, along with mucin secretion, goblet cells are also able to secrete cytokines and respond to them. We describe the effect of different cytokines on goblet cell proliferation and secretion. We conclude that it is important to further explore the effect of contact lens wear and cytokines on conjunctival goblet cell function. PMID:26067396

  15. Colloidal drug delivery system: amplify the ocular delivery.

    PubMed

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  16. Ocular Toxicity Testing of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.

    2010-01-01

    This slide presentation reviews the use of ocular testing to determine the toxicity of lunar dust. The OECD recommendations are reviewed. With these recommendations in mind the test methodology was to use EpiOcular, tissues derived from normal human epidermal keratinocytes, the cells of which have been differentiated on cell culture inserts to form a multi-layered structure, which closely parallels the corneal epithelium and to dose the tissue with 100 mg dust from various sources. The in-vitro study provides evidence that lunar dust is not severely corrosive or irritating, however, in vitro tests have limitations, and in vivo tests provides a more complete scenario, and information, it is recommended that in vivo tests be performed.

  17. Plasma rich in growth factors membrane as coadjuvant treatment in the surgery of ocular surface disorders.

    PubMed

    Sanchez-Avila, Ronald M; Merayo-Lloves, Jesús; Riestra, Ana C; Berisa, Silvia; Lisa, Carlos; Sánchez, José Alfonso; Muruzabal, Francisco; Orive, Gorka; Anitua, Eduardo

    2018-04-01

    To evaluate the safety and efficacy of the surgical use of plasma rich in growth factors fibrin membrane (mPRGF) in different ocular surface pathologies.Fifteen patients with different corneal and conjunctival diseases were included in the study. Patients were grouped according to the use of mPRGF as graft (corneal and/or conjunctival) or dressing; they were also grouped according to the surgical subgroup of intervention (persistent corneal ulcer [PCU], keratoplasty, superficial keratectomy, corneal perforation, and pterygium). Best corrected visual acuity, intraocular pressure (IOP), inflammation control time (ICT), mPRGF AT (PRGF membrane absorption time), and the healing time of the epithelial defect (HTED) were evaluated throughout the clinical follow-up time. Safety assessment was also performed reporting all adverse events.mPRGF showed a total closure of the defect in 13 of 15 patients (86.7%) and a partial closure in 2 patients (13.3%). The mean follow-up time was 11.1 ± 4.2 (4.8-22.8) months, the mean ICT was 2.5 ± 1.1 (1.0-4.0) months, the mean mPRGF AT was 12.4 ± 2.0 (10.0-16.0) days, and for the global HTED the mean was 2.9 ± 1.2 (1-4.8) months. Results showed an improvement in BCVA in all patients, with an overall improvement of 2.9 in Vision Lines. The BCVA significantly improved (P < .05) in the groups of corneal graft and dressing. In the PCU subgroup (6 patients), the healing time of epithelial defect was significantly reduced (P < .05) in patients treated only with the mPRGF in comparison to those which mPRGF therapy was associated to the amniotic membrane. The IOP remained stable (P > .05) throughout the clinical follow-up time. No adverse events were reported after mPRGF use.The mPRGF is effective and safe as coadjuvant treatment in surgeries related with ocular surface disorders, being an alternative to the use of amniotic membrane. The mPRGF accelerates tissue regeneration after ocular surface surgery thus minimizing inflammation and fibrosis.

  18. Photochemical mechanisms of ocular photic injury (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Stuck, Bruce E.; Lund, David J.; Zuclich, Joseph A.

    2000-03-01

    Mechanisms of photic injury to the eye can be categorized as photochemical, photothermal or photodistruptive. Exposure wavelength, exposure duration, ocular tissue characteristics and response criteria are key factors in the delineation of the ocular injury mechanisms. Depending on the exposure condition, one or all of the laser-tissue interaction mechanisms can be involved. Although photic injury to the eye was initially assumed to involve thermal mechanisms, more recent research has demonstrated that ocular effects can be produced by light exposure without a significant retinal temperature rise. Photochemical mechanisms are also implicated in UV photic injury to the cornea and lens. Exposure of the retina to short visible wavelengths for prolonged durations results in photochemical retinal damage with negligible localized retinal temperature elevation. For exposure conditions where photochemical mechanisms are dominate, the reciprocity of irradiance and exposure duration is apparent. The latency until observation of a photochemical lesion is often 24-48 hours whereas a thermal lesion is observed immediately or within a few hours after the exposure. Action spectra for photochemical injury to the eye are discussed in the context of ocular injury thresholds and current permissible exposure limits.

  19. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    PubMed Central

    Nabili, Marjan; Geist, Craig; Zderic, Vesna

    2015-01-01

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm2, and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm2 (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety of this method in the whole orbit especially regarding potential adverse optic nerve heating at the location of the bone. PMID:26429235

  20. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in excised tissue samples and synthetic preparations and thus to identify potential biomarkers for the onset of this disease. Using resonance Raman detection techniques, the concentration and spatial distribution of macular pigment, a protective compound, can be detected in the living human retina Useable in clinical settings for patient screening, the technology is suitable to investigate correlations between pigment concentration levels and risk for macular degeneration and to monitor increases in pigment levels occurring as a result of dietary intervention strategies.

  1. Ocular Sarcoidosis

    PubMed Central

    Pasadhika, Sirichai; Rosenbaum, James T

    2015-01-01

    Sarcoidosis is one of the leading causes of inflammatory eye disease. Ocular sarcoidosis can involve any part of the eye and its adnexal tissues, and may cause uveitis, episcleritis/scleritis, eyelid abnormalities, conjunctival granuloma, optic neuropathy, lacrimal gland enlargement and orbital inflammation. Glaucoma and cataract can be complications from inflammation itself or adverse effects from therapy. Ophthalmic manifestations can be isolated, or associated with other organ involvement. Patients with ocular sarcoidosis can present with a wide range of clinical presentations and severity. Multi-disciplinary approaches are required to achieve the best treatment outcomes for both ocular and systemic manifestations. PMID:26593141

  2. In vitro methods of assessing ocular biocompatibility using THP-1-derived macrophages.

    PubMed

    McCanna, David Joseph; Barthod-Malat, Aurore V; Gorbet, Maud B

    2015-01-01

    Macrophages play an important role in the elimination of infections, the removal of debris and in tissue repair after infection and trauma. In vitro models that assess ocular biomaterials for toxicity typically focus on the effects of these materials on epithelial or fibroblast cells. This investigation evaluated known ocular toxins deposited on model materials for their effects on the viability and activation of macrophages. THP-1-derived macrophages were cultured onto silicone films (used as a base biomaterial) deposited with chemical toxins (benzalkonium chloride (BAK), zinc diethyldithiocarbamate (ZDEC) and lipopolysaccharide (LPS)). Utilizing three fluorescent dyes calcein, ethidium homodimer-1 (EthD-1) and annexin V, the viability of macrophages attached to the biomaterial was determined using confocal microscopy. Propidium iodide (PI) staining and alamarBlue® (resazurin) reduction were used to assess cell death and metabolic activity. CD14, CD16, CD33, CD45, and CD54 expression of adherent macrophages, were also evaluated to detect LPS activation of macrophages using flow cytometry. The sensitivity of this test battery was demonstrated as significant toxicity from treated surfaces with ZDEC (0.001-0.01%), and BAK (0.001%-0.1%) was detected. Also, macrophage activation could be detected by measuring CD54 expression after exposure to adsorbed LPS. These in vitro methods will be helpful in determining the toxicity potential of new ocular biomaterials.

  3. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  4. A COMPREHENSIVE INSIGHT ON OCULAR PHARMACOKINETICS

    PubMed Central

    Agrahari, Vibhuti; Mandal, Abhirup; Agrahari, Vivek; Trinh, Hoang My; Joseph, Mary; Ray, Animikh; Hadji, Hicheme; Mitra, Ranjana; Pal, Dhananjay; Mitra, Ashim K.

    2017-01-01

    Eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment model of ocular drug delivery has been developed for describing the absorption, distribution and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems and routes of administration are discussed including factors affecting intraocular bioavailability. Factors such as pre-corneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, drug metabolism renders ocular delivery challenging and elaborated in this manuscript. Several compartment models are discussed those are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations. PMID:27798766

  5. Involvement of p63 in the herpes simplex virus-1-induced demise of corneal cells.

    PubMed

    Orosz, László; Gallyas, Eva; Kemény, Lajos; Mándi, Yvette; Facskó, Andrea; Megyeri, Klára

    2010-06-07

    The transcription factor p63 plays a pivotal role in the development and maintenance of epithelial tissues, including the ocular surface. In an effort to gain insight into the pathogenesis of keratitis caused by HSV-1, we determined the expression patterns of the p63 and Bax proteins in the Staatens Seruminstitute Rabbit Cornea cell line (SIRC). SIRC cells were infected with HSV-1 at various multiplicities and maintained for different periods of time. Virus replication was measured by indirect immunofluorescence assay and Western blot analysis. Cell viability was determined by MTT assay. The apoptotic response of the infected cells was quantified by ELISA detecting the enrichment of nucleosomes in the cytoplasm. Western blot analysis was used to determine the levels of p63 and Bax proteins. Indirect immunofluorescence assays and Western blot analyses demonstrated the presence of HSV-1 glycoprotein D (gD) in the infected SIRC cell line, and the pattern of gD expression was consistent with efficient viral replication. The results of MTT and ELISA assays showed that HSV-1 elicited a strong cytopathic effect, and apoptosis played an important role in the demise of the infected cells. Mock-infected SIRC cells displayed the constitutive expression of DeltaNp63alpha. The expressions of the Bax-beta and TAp63gamma isoforms were considerably increased, whereas the level of DeltaNp63alpha was decreased in the HSV-1-infected SIRC cells. Experiments involving the use of acyclovir showed that viral DNA replication was necessary for the accumulation of TAp63gamma. These data suggest that a direct, virus-mediated cytopathic effect may play an important role in the pathogenic mechanism of herpetic keratitis. By disturbing the delicate balance between the pro-survival DeltaN and the pro-apoptotic TA isoforms, HSV-1 may cause profound alterations in the viability of the ocular cells and in the tissue homeostasis of the ocular surface.

  6. Tear film and ocular surface assessment in psoriasis.

    PubMed

    Aragona, Emanuela; Rania, Laura; Postorino, Elisa Imelde; Interdonato, Alberto; Giuffrida, Roberta; Cannavò, Serafinella Patrizia; Puzzolo, Domenico; Aragona, Pasquale

    2018-03-01

    Psoriasis is a skin disease with also systemic involvement: its impact on the eye is not well established and often clinically underestimated. Aim of this study was to investigate the presence of ocular discomfort symptoms and of ocular surface changes in a population of patients with psoriasis. For this cross-sectional, comparative study, 66 patients with psoriasis were subdivided according to the presence of arthritis and to the use of biological therapy. All patients underwent clinical evaluation with the following tests: Ocular Surface Disease Index Questionnaire, Tearscope examination, meibometry, tear film breakup time, corneal and conjunctival fluorescein staining, Schirmer I test, corneal aesthesiometry, meibomian gland dysfunction (MGD) assessment and conjunctival impression cytology. 28 healthy subjects were also enrolled and treated with the same clinical tests. A statistical analysis of the results was performed. Patients with psoriasis showed a significant deterioration of the ocular surface tests, if compared with healthy subjects, demonstrated by tear film lipid layer alteration, tear film instability, corneal and conjunctival epithelial suffering and mild squamous metaplasia at impression cytology. No differences were found in ocular surface test results of the psoriatic group when patients were divided according to the presence of arthritis, whereas the anti-inflammatory treatment with biological drugs demonstrated a significant improvement of corneal stain and MGD. Our findings suggest that the ocular surface involvement in patients with psoriasis indicates the need of periodic ophthalmological examinations to diagnose the condition and allow a proper treatment, so contributing to the amelioration of patients' quality of life. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Limitations of an ocular surface inflammatory biomarker in impression cytology specimens.

    PubMed

    Yafawi, Rolla; Ko, Mira; Sace, Frederick P; John-Baptiste, Annette

    2013-03-01

    A number of ocular conditions, such as dry eye, are associated with inflammation on the surface of the eye leading to irritation and ocular pain. Many drugs such as chemotherapeutics, beta blockers, angiotensin-converting enzymes and so forth also cause dry eye but currently there are no validated ocular surface biomarkers available. We evaluated sample stability, assay sensitivity, reproducibility and overall performance of impression cytology (IC) utilizing the cellular surface biomarker human leukocyte antigen DR-1 (HLA-DR) as an ocular surface inflammatory biomarker by flow cytometry in a fit-for-purpose validation study. Additionally, subjects classified as normal or having various degrees of dry eye were evaluated to determine if HLA-DR could demonstrate a clear separation between normal and dry eye samples. The assay demonstrated high dynamic range detecting a broad range of fluorescent intensities in healthy donors. Additionally, inter, intra and stability assay results demonstrated strong concordance and low variability. Overall CV% for both assays were less than 25% for all measured parameters. However, high variability was observed for donor samples assayed beyond day 10 post IC sample collection (4.2-110.8 CV%). HLA-DR expression demonstrated a progressive increase in patients with mild to severe levels of dry eye disease providing sufficient evidence it is sensitive enough to monitor inflammatory effects of dry eye when coupled with additional biomarkers and/or methodologies such as cytokine analysis or ICAM-1. This biomarker can be used to monitor ocular surface disorders in patients and to evaluate potential treatment options during drug development. Although our results demonstrate this methodology is reproducible for routine evaluation, limitations around sample integrity exist. The ocular cell surface inflammatory biomarker, HLA-DR coupled with impression cytology is a simple non-invasive robust, specific and reproducible assay that can be utilized to measure inflammatory infiltrates on the surface of the eye in IC samples less than 10-days old.

  8. TRI Microspheres prevent key signs of dry eye disease in a murine, inflammatory model.

    PubMed

    Ratay, Michelle L; Balmert, Stephen C; Acharya, Abhinav P; Greene, Ashlee C; Meyyappan, Thiagarajan; Little, Steven R

    2017-12-13

    Dry eye disease (DED) is a highly prevalent, ocular disorder characterized by an abnormal tear film and ocular surface. Recent experimental data has suggested that the underlying pathology of DED involves inflammation of the lacrimal functional unit (LFU), comprising the cornea, conjunctiva, lacrimal gland and interconnecting innervation. This inflammation of the LFU ultimately results in tissue deterioration and the symptoms of DED. Moreover, an increase of pathogenic lymphocyte infiltration and the secretion of pro-inflammatory cytokines are involved in the propagation of DED-associated inflammation. Studies have demonstrated that the adoptive transfer of regulatory T cells (Tregs) can mediate the inflammation caused by pathogenic lymphocytes. Thus, as an approach to treating the inflammation associated with DED, we hypothesized that it was possible to enrich the body's own endogenous Tregs by locally delivering a specific combination of Treg inducing factors through degradable polymer microspheres (TRI microspheres; TGF-β1, Rapamycin (Rapa), and IL-2). This local controlled release system is capable of shifting the balance of Treg/T effectors and, in turn, preventing key signs of dry eye disease such as aqueous tear secretion, conjunctival goblet cells, epithelial corneal integrity, and reduce the pro-inflammatory cytokine milieu in the tissue.

  9. Modeling of mouse eye and errors in ocular parameters affecting refractive state

    NASA Astrophysics Data System (ADS)

    Bawa, Gurinder

    Rodents eye are particularly used to study refractive error state of an eye and development of refractive eye. Genetic organization of rodents is similar to that of humans, which makes them interesting candidates to be researched upon. From rodents family mice models are encouraged over rats because of availability of genetically engineered models. Despite of extensive work that has been performed on mice and rat models, still no one is able to quantify an optical model, due to variability in the reported ocular parameters. In this Dissertation, we have extracted ocular parameters and generated schematics of eye from the raw data from School of Medicine, Detroit. In order to see how the rays would travel through an eye and the defects associated with an eye; ray tracing has been performed using ocular parameters. Finally we have systematically evaluated the contribution of various ocular parameters, such as radii of curvature of ocular surfaces, thicknesses of ocular components, and refractive indices of ocular refractive media, using variational analysis and a computational model of the rodent eye. Variational analysis revealed that variation in all the ocular parameters does affect the refractive status of the eye, but depending upon the magnitude of the impact those parameters are listed as critical or non critical. Variation in the depth of the vitreous chamber, thickness of the lens, radius of the anterior surface of the cornea, radius of the anterior surface of the lens, as well as refractive indices for the lens and vitreous, appears to have the largest impact on the refractive error and thus are categorized as critical ocular parameters. The radii of the posterior surfaces of the cornea and lens have much smaller contributions to the refractive state, while the radii of the anterior and posterior surfaces of the retina have no effect on the refractive error. These data provide the framework for further refinement of the optical models of the rat and mouse eye and suggest that extra efforts should be directed towards increasing the linear resolution of the rodent eye biometry and obtaining more accurate data for the refractive indices of the lens and vitreous.

  10. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease.

    PubMed

    Barabino, Stefano; Chen, Yihe; Chauhan, Sunil; Dana, Reza

    2012-05-01

    The tear film, lacrimal glands, corneal and conjunctival epithelia and Meibomian glands work together as a lacrimal functional unit (LFU) to preserve the integrity and function of the ocular surface. The integrity of this unit is necessary for the health and normal function of the eye and visual system. Nervous connections and systemic hormones are well known factors that maintain the homeostasis of the ocular surface. They control the response to internal and external stimuli. Our and others' studies show that immunological mechanisms also play a pivotal role in regulating the ocular surface environment. Our studies demonstrate how anti-inflammatory factors such as the expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in corneal cells, immature corneal resident antigen-presenting cells, and regulatory T cells play an active role in protecting the ocular surface. Dry eye disease (DED) affects millions of people worldwide and negatively influences the quality of life for patients. In its most severe forms, DED may lead to blindness. The etiology and pathogenesis of DED remain largely unclear. Nonetheless, in this review we summarize the role of the disruption of afferent and efferent immunoregulatory mechanisms that are responsible for the chronicity of the disease, its symptoms, and its clinical signs. We illustrate current anti-inflammatory treatments for DED and propose that prevention of the disruption of immunoregulatory mechanisms may represent a promising therapeutic strategy towards controlling ocular surface inflammation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Scleral Lenses in the Management of Corneal Irregularity and Ocular Surface Disease.

    PubMed

    Shorter, Ellen; Harthan, Jennifer; Nau, Cherie B; Nau, Amy; Barr, Joseph T; Hodge, David O; Schornack, Muriel M

    2017-09-29

    To describe current practice patterns regarding the use of scleral lens therapy in the management of corneal irregularity and ocular surface disease among eye care providers who fit scleral lenses. The Scleral Lenses in Current Ophthalmic Practice: an Evaluation (SCOPE) study group conducted an electronic survey of eye care providers from January 15 to March 31, 2015. Respondents ranked management options for corneal irregularity in the order in which they would generally consider their use. Respondents also ranked options for the management of ocular surface disease in the order in which they would use each of the treatments. Results for each option were analyzed as percentage first-place ranking; percentage first-, second-, or third-place ranking; and mean rank score. Survey responses were obtained from 723 providers who had fit 5 or more scleral lenses. Of these respondents, 629 ranked options for management of corneal irregularity and 612 ranked options for management of ocular surface disease. Corneal rigid gas-permeable lenses were the first option for management of corneal irregularity for 44% of respondents, and scleral lenses were the first option for 34% of respondents. Lubricant drops were the first therapeutic recommendation for ocular surface disease for 84% of respondents, and scleral lenses were ranked first by 6% of respondents. Scleral lenses rank second only to corneal rigid gas-permeable lenses for management of corneal irregularity. Scleral lenses are generally considered after other medical intervention and before surgery for the management of ocular surface disease.

  12. Ocular Surface Immunity: Homeostatic Mechanisms and Their Disruption in Dry Eye Disease

    PubMed Central

    Barabino, Stefano; Chen, Yihe; Chauhan, Sunil; Dana, Reza

    2012-01-01

    The tear film, lacrimal glands, corneal and conjunctival epithelia and Meibomian glands work together as a lacrimal functional unit (LFU) to preserve the integrity and function of the ocular surface. The integrity of this unit is necessary for the health and normal function of the eye and visual system. Nervous connections and systemic hormones are well known factors that maintain the homeostasis of the ocular surface. They control the response to internal and external stimuli. Our and others’ studies show that immunological mechanisms also play a pivotal role in regulating the ocular surface environment. Our studies demonstrate how anti-inflammatory factors such as the expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in corneal cells, immature corneal resident antigen-presenting cells, and regulatory T cells play an active role in protecting the ocular surface. Dry eye disease (DED) affects millions of people worldwide and negatively influences the quality of life for patients. In its most severe forms, DED may lead to blindness. The etiology and pathogenesis of DED remain largely unclear. Nonetheless, in this review we summarize the role of the disruption of afferent and efferent immunoregulatory mechanisms that are responsible for the chronicity of the disease, its symptoms, and its clinical signs. We illustrate current anti-inflammatory treatments for DED and propose that prevention of the disruption of immunoregulatory mechanisms may represent a promising therapeutic strategy towards controlling ocular surface inflammation. PMID:22426080

  13. The EpiOcular Eye Irritation Test (EIT) for hazard identification and labelling of eye irritating chemicals: protocol optimisation for solid materials and the results after extended shipment.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; Handa, Yuki; DeLuca, Jane; Truong, Thoa; Hunter, Amy; Kearney, Paul; d'Argembeau-Thornton, Laurence; Klausner, Mitchell

    2015-05-01

    The 7th Amendment to the EU Cosmetics Directive and the EU REACH Regulation have reinforced the need for in vitro ocular test methods. Validated in vitro ocular toxicity tests that can predict the human response to chemicals, cosmetics and other consumer products are required for the safety assessment of materials that intentionally, or inadvertently, come into contact with the eye. The EpiOcular Eye Irritation Test (EIT), which uses the normal human cell-based EpiOcular™ tissue model, was developed to address this need. The EpiOcular-EIT is able to discriminate, with high sensitivity and accuracy, between ocular irritant/corrosive materials and those that require no labelling. Although the original EpiOcular-EIT protocol was successfully pre-validated in an international, multicentre study sponsored by COLIPA (the predecessor to Cosmetics Europe), data from two larger studies (the EURL ECVAM-COLIPA validation study and an independent in-house validation at BASF SE) resulted in a sensitivity for the protocol for solids that was below the acceptance criteria set by the Validation Management Group (VMG) for eye irritation, and indicated the need for improvement of the assay's sensitivity for solids. By increasing the exposure time for solid materials from 90 minutes to 6 hours, the optimised EpiOcular-EIT protocol achieved 100% sensitivity, 68.4% specificity and 84.6% accuracy, thereby meeting all the acceptance criteria set by the VMG. In addition, to satisfy the needs of Japan and the Pacific region, the EpiOcular-EIT method was evaluated for its performance after extended shipment and storage of the tissues (4-5 days), and it was confirmed that the assay performs with similar levels of sensitivity, specificity and reproducibility in these circumstances. 2015 FRAME.

  14. [Ocular Surface Evaluation in Patients Treated with Prostaglandin Analogues Considering Preservative Agent].

    PubMed

    Mlčáková, E; Mlčák, P; Karhanová, M; Langová, K; Marešová, K

    The aim of this study was to evaluate the ocular surface in patients treated with prostaglandin analogues considering contained preservative agent. 60 patients with glaucoma or ocular hypertension treated with prostaglandin analogue monotherapy were enrolled in this observational study. 20 patients with glaucoma suspect or ocular hypertension without local or systemic glaucoma medication formed the control group. Demographic data and medical history were recorded for each participant. Patients filled in the Ocular surface disease index© (OSDI) questionnaire and underwent an ophthalmological examination including assessment of conjunctival hyperaemia according to Efron, tear film break up time (BUT) and fluorescein staining according to the Oxford grading scheme. Treated participants were divided into 3 groups according to the preservative contained in the currently used prostaglandin analogue: the preservative-free group (18 patients), the polyquaternium group (17 patients) and the benzalkonium chloride (BAK) group (25 patients). The control group had significantly lower fluorescein staining than the preservative-free group (p=0.001), the polyquaternium group (p=0.007) and the BAK group (p=0.002). The conjunctival hyperaemia was significantly lower in the preservative-free group compared to the polyquaternium group (p=0.011). There was no significant difference among the other groups. The difference neither in the OSDI score nor in the BUT was statistically important. This study confirmed that the ocular surface is worse in patients treated with prostaglandin analogue monotherapy than in people without glaucoma medication. A significant difference among treated patients depending on a preservative agent was not proved.Key words: benzalkonium chloride, glaucoma, ocular surface disease, preservatives, prostaglandin analogues.

  15. Dry eye syndrome: developments and lifitegrast in perspective

    PubMed Central

    Lollett, Ivonne V; Galor, Anat

    2018-01-01

    Dry eye (DE) is a chronic ocular condition with high prevalence and morbidity. It has a complex pathophysiology and is multifactorial in nature. Chronic ocular surface inflammation has emerged as a key component of DE that is capable of perpetuating ocular surface damage and leading to symptoms of ocular pain, discomfort, and visual phenomena. It begins with stress to the ocular surface leading to the production of proinflammatory mediators that induce maturation of resident antigen-presenting cells which then migrate to the lymph nodes to activate CD4 T cells. The specific antigen(s) targeted by these pathogenic CD4+ T cells remains unknown. Two emerging theories include self-antigens by autoreactive CD4 T cells or harmless exogenous antigens in the setting of mucosal immunotolerance loss. These CD4 T cells migrate to the ocular surface causing additional inflammation and damage. Lifitegrast is the second topical anti-inflammatory agent to be approved by the US Food and Drug Administration for the treatment of DE and the first to show improvement in DE symptoms. Lifitegrast works by blocking the interaction between intercellular adhesion molecule-1 and lymphocyte functional associated antigen-1, which has been shown to be critical for the migration of antigen-presenting cells to the lymph nodes as well as CD4+ T cell activation and migration to the ocular surface. In four large multicenter, randomized controlled trials, lifitegrast has proven to be effective in controlling both the signs and symptoms of DE with minimal side effects. Further research should include comparative and combination studies with other anti-inflammatory therapies used for DE. PMID:29391773

  16. Zoonotic ocular onchocercosis caused by Onchocerca lupi in dogs in Romania.

    PubMed

    Tudor, Poliana; Turcitu, Mihai; Mateescu, Cosmin; Dantas-Torres, Filipe; Tudor, Niculae; Bărbuceanu, Florica; Ciuca, Lavinia; Burcoveanu, Ioana; Acatrinei, Dumitru; Rinaldi, Laura; Mateescu, Romanița; Bădicu, Adina; Ionașcu, Iuliana; Otranto, Domenico

    2016-02-01

    Onchocerca lupi is a filarial nematode, which infects the scleral conjunctival tissue of dogs, wolves and cats. Whilst adult nematodes localize in the conjunctive tissue of sclera or in the retrobulbar, microfilariae are found in the skin, and they are rarely diagnosed in asymptomatic animals. Since the first report of human ocular infection 5 years ago, up to 10 zoonotic cases have been identified in patients worldwide. We report, for the first time in Romania, three cases of canine ocular onchocercosis in dogs. Fragments of the harvested worms were characterized morphologically and molecularly. This article expands knowledge on the distribution of this parasite in Eastern Europe and sounds an alarm bell for ophthalmologists about the possible occurrence of human cases of O. lupi infection.

  17. Defensins and Other Antimicrobial Peptides at the Ocular Surface

    PubMed Central

    McDermott, Alison M.

    2006-01-01

    Although constantly exposed to the environment and “foreign bodies” such as contact lenses and unwashed fingertips, the ocular surface succumbs to infection relatively infrequently. This is, in large part, due to a very active and robust innate immune response mounted at the ocular surface. Studies over the past 20 years have revealed that small peptides with antimicrobial activity are a major component of the human innate immune response system. The ocular surface is no exception, with peptides of the defensin and cathelicidin families being detected in the tear film and secreted by corneal and conjunctival epithelial cells. There is also much evidence to suggest that the role of some antimicrobial peptides is not restricted to direct killing of pathogens, but, rather, that they function in various aspects of the immune response, including recruitment of immune cells, and through actions on dendritic cells provide a link to adaptive immunity. A role in wound healing is also supported. In this article, the properties, mechanisms of actions and functional roles of antimicrobial peptides are reviewed, with particular emphasis on the potential multifunctional roles of defensins and LL-37 (the only known human cathelicidin) at the ocular surface. PMID:17216098

  18. Polyclonality of Staphylococcus epidermidis residing on the healthy ocular surface.

    PubMed

    Ueta, Mayumi; Iida, Tetsuya; Sakamoto, Masako; Sotozono, Chie; Takahashi, Junko; Kojima, Kentaro; Okada, Kazuhisa; Chen, Xiuhao; Kinoshita, Shigeru; Honda, Takeshi

    2007-01-01

    Staphylococcus epidermidis is part of the normal bacterial flora on the ocular surface. The chromosomal DNA of bacterial isolates obtained from the conjunctival sac, upper and lower lid margins, and upper and lower Meibomian glands of healthy volunteers was subjected to SmaI digestion and PFGE to study the genetic diversity of the organisms. Multiple colonies were also examined of S. epidermidis derived from the conjunctival sac of the same subjects. Lastly, commensal bacteria were harvested from the ocular surfaces of four healthy subjects once a month for 6 months, and the genetic background of the S. epidermidis isolates was analysed. It was found that bacterial strains not only from different subjects but also from multiple ocular surface sites of the same subject exhibited different PFGE patterns. In five of 42 subjects multiple colonies of S. epidermidis were isolated from the conjunctival sac; three harboured multiple colonies with different PFGE patterns, and two manifested multiple colonies with identical PFGE patterns. S. epidermidis isolated from the conjunctival sac of the same subjects over a 6-month period exhibited varying PFGE patterns. The data demonstrate the polyclonality of S. epidermidis on the healthy ocular surface.

  19. Hyaluronan receptors in the human ocular surface: a descriptive and comparative study of RHAMM and CD44 in tissues, cell lines and freshly collected samples.

    PubMed

    García-Posadas, Laura; Contreras-Ruiz, Laura; López-García, Antonio; Villarón Álvarez, Sonia; Maldonado, Miguel J; Diebold, Yolanda

    2012-02-01

    The purpose of this study was to demonstrate the presence of the receptor for hyaluronan-mediated motility (RHAMM) in human conjunctival epithelium and in two widely used cell lines from human corneal (HCE) and conjunctival (IOBA-NHC) epithelia. We compared the distribution of RHAMM proteins and mRNAs in human ocular surface tissues (corneal, limbal and conjunctival), HCE and IOBA-NHC cell lines, and corneal and conjunctival epithelia primary samples from healthy donors with the previously identified hyaluronan receptor CD44. We also aimed to determine if soluble CD44 (sCD44) was present in human tears, as it could have a role in the interaction of the tear fluid with hyaluronan. Protein expression was evaluated by Western blots and immunofluorescence microscopy. mRNA expression was evaluated by RT-PCR and Q-PCR. sCD44 was analyzed by ELISA in culture supernatants and in human tears. We describe the expression of RHAMM in human healthy conjunctiva and in HCE and IOBA-NHC cells at both protein and mRNA levels, and the presence of sCD44 in human tears. Furthermore, we detected CD44 and sCD44 expression variations in in vitro inflammatory conditions. This study also focused on the necessary caution with which the conclusions extracted from cell lines should be made, and in the great value of using primary samples as often as possible.

  20. Contact lens-related dry eye and ocular surface changes with mapping technique in long-term soft silicone hydrogel contact lens wearers.

    PubMed

    Sengor, Tomris; Aydin Kurna, Sevda; Ozbay, Nurver; Ertek, Semahat; Aki, Suat; Altun, Ahmet

    2012-01-01

    To evaluate ocular surface changes in long-term silicone hydrogel contact lens wearers. Thirty patients were included in this study. Twenty patients (40 eyes) using contact lenses constituted group 1 and 10 (20 eyes) volunteers constituted group 2. The duration of average contact lens usage was 7.74 ± 3.3 years. Ocular surface was evaluated by surface staining, tear film break-up time (TBUT), Schirmer I test, and conjunctival impression cytology with color-coded mapping technique and by the Ocular Surface Disease Index (OSDI). The mean break-up time was lower and staining scores were higher in group 1 (p<0.001) but Schirmer values were not significantly different from group 2 (p>0.05). The mean OSDI score was 34.59 ± 11.93 to 19.28 ± 6.7 in group 1 and 2. Increased metaplastic predominant changes of grade II and III were observed in the interpalpebral and perilimbal areas in group 1. Significant correlations were observed in TBUT, cornea staining, and grade II to grade III metaplasia ratios between duration of the lens usage and contact lens wear time in a day. Silicone hydrogel lenses produce significant changes on tear film and impression cytology of the ocular surface in long-term use.

  1. Pulse waveform analysis on temporal changes in ocular blood flow due to caffeine intake: a comparative study between habitual and non-habitual groups.

    PubMed

    Ismail, Aishah; Bhatti, Mehwish S; Faye, Ibrahima; Lu, Cheng Kai; Laude, Augustinus; Tang, Tong Boon

    2018-06-06

    To evaluate and compare the temporal changes in pulse waveform parameters of ocular blood flow (OBF) between non-habitual and habitual groups due to caffeine intake. This study was conducted on 19 healthy subjects (non-habitual 8; habitual 11), non-smoking and between 21 and 30 years of age. Using laser speckle flowgraphy (LSFG), three areas of optical nerve head were analyzed which are vessel, tissue, and overall, each with ten pulse waveform parameters, namely mean blur rate (MBR), fluctuation, skew, blowout score (BOS), blowout time (BOT), rising rate, falling rate, flow acceleration index (FAI), acceleration time index (ATI), and resistive index (RI). Two-way mixed ANOVA was used to determine the difference between every two groups where p < 0.05 is considered significant. There were significant differences between the two groups in several ocular pulse waveform parameters, namely MBR (overall, vessel, tissue), BOT (overall), rising rate (overall), and falling rate (vessel), all with p < 0.05. In addition, the ocular pulse waveform parameters, i.e., MBR (overall), skew (tissue), and BOT (tissue) showed significant temporal changes within the non-habitual group, but not within the habitual group. The temporal changes in parameters MBR (vessel, tissue), skew (overall, vessel), BOT (overall, vessel), rising rate (overall), falling rate (overall, vessel), and FAI (tissue) were significant for both groups (habitual and non-habitual) in response to caffeine intake. The experiment results demonstrated caffeine does modulate OBF significantly and response differently in non-habitual and habitual groups. Among all ten parameters, MBR and BOT were identified as the suitable biomarkers to differentiate between the two groups.

  2. The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye.

    PubMed

    Zhu, Mingxia; Collins, Michael J; Iskander, D Robert

    2006-09-01

    We have used videokeratoscopy and wavefront sensing to investigate the contribution of the ocular surface and the effect of stimulus vergence on the microfluctuations of the wavefront aberrations of the eye. The fluctuations of the wavefront aberrations were quantified by their variations around the mean and by using power spectrum analysis. Integrated power was determined in two regions: 0.1-0.7 Hz (low frequencies) and 0.8-1.8 Hz (high frequencies). Changes in the ocular surface topography were measured using high-speed videokeratoscopy and variations in the ocular wavefront aberrations were measured with a wavefront sensor. The microfluctuations of wavefront aberrations of the ocular surface were found to be considerably smaller than the microfluctuations of the wavefront aberrations of the total eye. The fluctuations in defocus while viewing a closer target at 2 or 4 D were found to be significantly greater than fluctuations in defocus when viewing a far target. This increase in defocus fluctuations (p < or = 0.001) occurred in both the low- and high-frequency regions of the power spectra.

  3. Pathophysiology of blast-induced ocular trauma in rats after repeated exposure to low-level blast overpressure.

    PubMed

    Choi, Jae Hyek; Greene, Whitney A; Johnson, Anthony J; Chavko, Mikulas; Cleland, Jeffery M; McCarron, Richard M; Wang, Heuy-Ching

    2015-04-01

    The incidence of blast-induced ocular injury has dramatically increased due to advances in weaponry and military tactics. A single exposure to blast overpressure (BOP) has been shown to cause damage to the eye in animal models; however, on the battlefield, military personnel are exposed to BOP multiple times. The effects of repeated exposures to BOP on ocular tissues have not been investigated. The purpose of this study is to characterize the effects of single or repeated exposure on ocular tissues. A compressed air shock tube was used to deliver 70 ± 7 KPa BOP to rats, once (single blast overpressure [SBOP]) or once daily for 5 days (repeated blast overpressure [RBOP]). Immunohistochemistry was performed to characterize the pathophysiology of ocular injuries induced by SBOP and RBOP. Apoptosis was determined by quantification activated caspase 3. Gliosis was examined by detection of glial fibrillary acidic protein (GFAP). Inflammation was examined by detection of CD68. Activated caspase 3 was detected in ocular tissues from all animals subjected to BOP, while those exposed to RBOP had more activated caspase 3 in the optic nerve than those exposed to SBOP. GFAP was detected in the retinas from all animals subjected to BOP. CD68 was detected in optic nerves from all animals exposed to BOP. SBOP and RBOP induced retinal damage. RBOP caused more apoptosis in the optic nerve than SBOP, suggesting that RBOP causes more severe optic neuropathy than SBOP. SBOP and RBOP caused gliosis in the retina and increased inflammation in the optic nerve. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  4. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma.

    PubMed

    Pieragostino, Damiana; Bucci, Sonia; Agnifili, Luca; Fasanella, Vincenzo; D'Aguanno, Simona; Mastropasqua, Alessandra; Ciancaglini, Marco; Mastropasqua, Leonardo; Di Ilio, Carmine; Sacchetta, Paolo; Urbani, Andrea; Del Boccio, Piero

    2012-04-01

    Primary open angle (POAG) and pseudoexfoliative glaucoma (PXG) are the most common primary and secondary forms of glaucoma, respectively. Even though the patho-physiology, aqueous humor composition, risk factors, clinical features, therapy and drug induced ocular surface changes in POAG and PXG have been widely studied, to date information concerning tear protein characterization is lacking. Tears are a source of nourishment for ocular surface tissues and a vehicle to remove local waste products, metabolized drugs and inflammatory mediators produced in several ophthalmic diseases. In glaucoma, the proteomic definition of tears may provide insights concerning patho-physiology of the disease and ocular surface modifications induced by topical therapy. Our study aimed at characterizing protein patterns in tears of patients with medically controlled POAG and PXG. A comparative tears proteomic analysis by label-free LC-MS(E) highlighted differences in the expression of several proteins in the two glaucoma sub-types and control subjects, highlighting inflammation pathways expressed in both diseases. Results were independently reconfirmed by SDS-PAGE and linear MALDI-TOF MS, validating altered levels of Lysozyme C, Lipocalin-1, Protein S100, Immunoglobulins and Prolactin Inducible Protein. Moreover, we found a differential pattern of phosphorylated Cystatin-S that distinguishes the two pathologies. The most relevant results suggest that in both pathologies there may be active inflammation pathways related to the disease and/or induced by therapy. We show, for the first time, tear protein patterns expressed under controlled intraocular pressure conditions in POAG and PXG subjects. These findings could help in the understanding of molecular machinery underlying these ophthalmologic diseases, resulting in early diagnosis and more specific therapy.

  5. Proof of Principle of Ocular sparing in dogs with sinonasal tumors treated with intensity-modulated radiation therapy

    PubMed Central

    Lawrence, Jessica A.; Forrest, Lisa J.; Turek, Michelle M.; Miller, Paul E.; Mackie, T. Rockwell; Jaradat, Hazim A.; Vail, David M.; Dubielzig, Richard R.; Chappell, Richard; Mehta, Minesh P.

    2010-01-01

    Intensity modulated radiation therapy (IMRT) allows optimization of radiation dose delivery to complex tumor volumes with rapid dose drop-off to surrounding normal tissues. A prospective study was performed to evaluate the concept of conformal avoidance using IMRT in canine sinonasal cancer. The potential of IMRT to improve clinical outcome with respect to acute and late ocular toxicity was evaluated. Thirty-one dogs with sinonasal cancer were treated definitively with IMRT using helical tomotherapy and/or dynamic multileaf collimator (DMLC) delivery. Ocular toxicity was evaluated prospectively and compared to a comparable group of historical controls treated with conventional two-dimensional radiotherapy (2D-RT) techniques. Treatment plans were devised for each dog using helical tomotherapy and DMLC that achieved the target dose to the planning treatment volume and limited critical normal tissues to the prescribed dose-volume constraints. Overall acute and late toxicities were limited and minor, detectable by an experienced observer. This was in contrast to the profound ocular morbidity observed in the historical control group treated with 2D-RT. Overall median survival for IMRT treated and 2D treated dogs was 420 days and 411 days, respectively. Compared with conventional techniques, IMRT reduced dose delivered to eyes and resulted in bilateral ocular sparing in the dogs reported herein. These data provide proof-of-principle that conformal avoidance radiotherapy can be delivered through high conformity IMRT, resulting in decreased normal tissue toxicity as compared to historical controls treated with 2D-RT. PMID:20973393

  6. An unusual case of ocular melanosis and limbal melanocytoma with benign intraorbital extension in a dog.

    PubMed

    Dees, D Dustin; Maclaren, Nicole E; Teixeira, Leandro; Dubielzig, Richard R

    2013-07-01

    This case report describes concurrent ocular melanosis and limbal melanocytoma in a 6-year-old Golden Retriever dog. Three years prior, the pet was examined for progressive corneal pigmentation and started on topical Tacrolimus but was subsequently lost to followup. Current ophthalmic examination revealed a large pigmented limbal mass and severe corneal pigmentation of the left eye as well as a small focal raised pigmented mass of the right third eyelid. Due to extent and rapidity of tumor growth, the left eye was removed via transconjunctival enucleation and submitted for histopathologic examination. At the time of surgery, numerous orbital structures including intraorbital fat, extraocular muscles, and portions of the proximal nasolacrimal drainage apparatus contained multifocal areas of black pigmentation. These tissues were subsequently removed and submitted for microscopic analysis. The pigmented mass of the right third eyelid was also excised. Histopathology of the left eye and orbital contents revealed a limbal melanocytoma extending to the bulbar conjunctiva and orbital space forming a large, markedly necrotic mass. Diffuse, severe ocular melanosis, abnormal stromal pigmentation of the sclera and orbital tissues, and corneal stromal pigmentation were noted. The mass of the right third eyelid was confirmed to be a conjunctival melanocytoma. To the authors' knowledge, this is the first report of concurrent ocular melanosis and limbal melanocytoma with orbital infiltration. The peculiar multifocal distribution of melanocytes throughout ocular connective tissues may explain the development of multiple melanocytic lesions in this patient. © 2012 American College of Veterinary Ophthalmologists.

  7. Hazards To The Eye From UV

    NASA Astrophysics Data System (ADS)

    Zuclich, Joseph A.

    1980-10-01

    Ocular effects of ultraviolet radiation, 200-400 nm, are reviewed. Depending upon the exposure parameter involved, UV radiation may be harmful to the cornea, lens and/or retina. Ranges of exposure parameters (wavelength, exposure duration, etc.) for which each of the tissues is susceptible are specified and the nature of the tissue is described. Present understanding of the thermal and photochemical damage mechanism operative for various conditions of exposure are discussed Ocular damage thresholds for wide ranges of exposure parameters are summarized and compared to existing safety standards.

  8. The EpiOcular™ Eye Irritation Test is the Method of Choice for the In Vitro Eye Irritation Testing of Agrochemical Formulations: Correlation Analysis of EpiOcular Eye Irritation Test and BCOP Test Data According to the UN GHS, US EPA and Brazil ANVISA Classification Schemes.

    PubMed

    Kolle, Susanne N; Rey Moreno, Maria Cecilia; Mayer, Winfried; van Cott, Andrew; van Ravenzwaay, Bennard; Landsiedel, Robert

    2015-07-01

    The Bovine Corneal Opacity and Permeability (BCOP) test is commonly used for the identification of severe ocular irritants (GHS Category 1), but it is not recommended for the identification of ocular irritants (GHS Category 2). The incorporation of human reconstructed tissue model-based tests into a tiered test strategy to identify ocular non-irritants and replace the Draize rabbit eye irritation test has been suggested (OECD TG 405). The value of the EpiOcular™ Eye Irritation Test (EIT) for the prediction of ocular non-irritants (GHS No Category) has been demonstrated, and an OECD Test Guideline (TG) was drafted in 2014. The purpose of this study was to evaluate whether the BCOP test, in conjunction with corneal histopathology (as suggested for the evaluation of the depth of the injury( and/or the EpiOcular-EIT, could be used to predict the eye irritation potential of agrochemical formulations according to the UN GHS, US EPA and Brazil ANVISA classification schemes. We have assessed opacity, permeability and histopathology in the BCOP assay, and relative tissue viability in the EpiOcular-EIT, for 97 agrochemical formulations with available in vivo eye irritation data. By using the OECD TG 437 protocol for liquids, the BCOP test did not result in sufficient correct predictions of severe ocular irritants for any of the three classification schemes. The lack of sensitivity could be improved somewhat by the inclusion of corneal histopathology, but the relative viability in the EpiOcular-EIT clearly outperformed the BCOP test for all three classification schemes. The predictive capacity of the EpiOcular-EIT for ocular non-irritants (UN GHS No Category) for the 97 agrochemical formulations tested (91% sensitivity, 72% specificity and 82% accuracy for UN GHS classification) was comparable to that obtained in the formal validation exercise underlying the OECD draft TG. We therefore conclude that the EpiOcular-EIT is currently the best in vitro method for the prediction of the eye irritation potential of liquid agrochemical formulations. 2015 FRAME.

  9. Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea.

    PubMed

    Chaiyasan, Wanachat; Praputbut, Sakonwun; Kompella, Uday B; Srinivas, Sangly P; Tiyaboonchai, Waree

    2017-01-01

    Topical application of drugs to the eyes suffers from poor bioavailability at the ocular surface and in the anterior chamber. This is due to rapid clearance of the drug because of tear secretion and outflow. This study has investigated mucoadhesive and penetration characteristics of chitosan-dextran sulfate nanoparticles (CDNs), prepared by polyelectrolyte complexation technique, following topical administration to the ocular surface. Topical FITC-labeled CDNs (FCDNs; mean size of 400nm and a surface charge of +48mV) were retained on the porcine ocular surface for more than 4h. Topical FCDNs were partially endocytosed into porcine corneal epithelial cells via a clathrin-dependent pathway. After 6h of topical FCDNs, particles accumulated in the corneal epithelium but not found in the corneal stroma. When epithelium was removed, FCDNs penetrated the stroma. Thus, CDNs are potentially useful for drug/gene delivery to the ocular surface and to stroma when epithelium is damaged. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ocular disposition of the hemiglutarate ester prodrug of ∆⁹-Tetrahydrocannabinol from various ophthalmic formulations.

    PubMed

    Hingorani, Tushar; Adelli, Goutham R; Punyamurthula, Nagendra; Gul, Waseem; Elsohly, Mahmoud A; Repka, Michael A; Majumdar, Soumyajit

    2013-08-01

    The overall goal of this project is to enhance ocular delivery of ∆(9)-Tetrahydrocannabinol (THC) through the topical route. Solubility, stability and in vitro transcorneal permeability of the relatively hydrophilic hemiglutarate ester derivative, THC-HG, was studied in the presence of surfactants. The solutions were characterized with respect to micelle size, zeta potential and solution viscosity. In vivo studies were carried out in New Zealand albino rabbits. A previously reported promising THC-HG ion-pair formulation was also studied in vivo. Aqueous solubility and stability and in vitro transcorneal permeability of THC-HG was enhanced significantly in the presence of surfactants. THC levels in the ocular tissues (except cornea) were found to be below detection limits from mineral oil, surfactant or emulsion based formulations containing THC. In contrast, micellar and ion pair based THC-HG formulations produced significantly higher total THC concentrations in the anterior ocular chamber. In this study, although delivery of THC to the anterior chamber ocular tissues could be significantly increased through the prodrug and formulation approaches tested, further studies are needed to increase penetration to the back-of-the eye.

  11. Adenovirus-mediated heme oxygenase-1 gene transfer into rabbit ocular tissues.

    PubMed

    Abraham, N G; da Silva, J L; Lavrovsky, Y; Stoltz, R A; Kappas, A; Dunn, M W; Schwartzman, M L

    1995-10-01

    Heme oxygenase-1 (HO-1) is a stress protein induced up to 100-fold within a few hours after exposure to oxidative stress, and it has been shown to counteract oxidative injury induced by ultraviolet light or free radicals. The current study was undertaken to determine whether the HO-1 gene can be introduced into adult rabbit ocular tissues by microinjection of a recombinant replication-deficient adenovirus human HO-1 cDNA (Adv-HHO). Human HO-1 gene was used for transfection studies to differentiate endogenous from transfected HO. The purified Adv-HHO construct (10(8) pfu/ml) was mixed with lipofectamine and microinjected into the anterior chamber, vitreous cavity, and subretinal space of New Zealand rabbit eyes. After 2 weeks, total RNA was extracted from different ocular tissues, reverse transcription-polymerase chain reaction was performed using specific human HO-1 primers, and amplification products were subjected to Southern hybridization. Transfection with the Adv-HHO construct into rabbit corneal epithelial cells in culture resulted in a functional expression of the human HO-1 gene; the human HO-1 mRNA was detected, and enzyme activity increased threefold. Human HO-1 mRNA was detected in the retina after microinjection of the Adv-HHO construct into the subretinal space. Microinjection into the vitreous resulted in HO-1 mRNA expression in the corneal endothelium, iris, lens, and retina; after intracameral injection of the Adv-HHO construct, human HO-1 mRNA was detected in corneal epithelium and endothelium, ciliary body, lens, and iris. Regardless of the injection site, transfected human HO-1 mRNA was undetectable in tissues outside the eye, that is, brain, liver, and kidney. These results demonstrated a tissue-selective functional transfer of the human HO-1 gene into rabbit ocular tissues in vivo. This technique may be a promising means for delivering HO-1 gene in vivo as a protective mechanism against oxidative stress that contributes to the pathogenesis of ocular diseases such as cataract, light-induced injury, age-related macular degeneration, and diabetic retinopathy.

  12. The Effects of Increasing Ocular Surface Stimulation on Blinking and Tear Secretion

    PubMed Central

    Wu, Ziwei; Begley, Carolyn G.; Port, Nicholas; Bradley, Arthur; Braun, Richard; King-Smith, Ewen

    2015-01-01

    Purpose. To investigate the effect of varying levels of ocular surface stimulation on the timing and amplitude of the blink and tear secretion. Methods. Following instillation of fluorescein dye, increasing levels of air flow were directed toward the central corneas of 10 healthy subjects. Interblink interval (IBI), tear meniscus height (TMH), and fluorescence intensity were measured simultaneously. Because blinking can obscure changes in TMH, we developed novel measures of tear secretion by calculating tear meniscus fluorescein concentration (TMFC) from intensity using a mathematical model. The change of TMH and TMFC over trials and the slope of the TMFC within each IBI (IBI-TTR) were further calculated. Results. The mean IBI was decreased by 8.08 ± 8.54 seconds from baseline to maximum air stimulation. The TMH increase was highly variable (0.41 ± 0.39 mm) among subjects, compared to the fluorescence tear turnover metrics: decrease in TMFC of 2.84 ± 0.98 natural logarithm or ln(%) and IBI-TTR of 0.065 ± 0.032 ln(%)/sec. Ocular surface stimulation was highly correlated with the TMFC and IBI-TTR, but less so with TMH (Pearson's r = 0.71, 0.69, and 0.40, P < 0.01, respectively). Blinking and tearing were significantly correlated with each other (Pearson's r = 0.56, P < 0.01), but tearing lagged behind by an average of 6.54 ± 4.07 seconds. Conclusions. Blinking and tearing share a common origin with sensory stimulation at the ocular surface. Both showed a dose–response increase with surface stimulation and were correlated with each other. These methods can potentially be used to understand alterations in ocular surface sensory function and associated protective responses in dry eye and other disorders of the ocular surface. PMID:26132780

  13. The Effects of Increasing Ocular Surface Stimulation on Blinking and Tear Secretion.

    PubMed

    Wu, Ziwei; Begley, Carolyn G; Port, Nicholas; Bradley, Arthur; Braun, Richard; King-Smith, Ewen

    2015-07-01

    To investigate the effect of varying levels of ocular surface stimulation on the timing and amplitude of the blink and tear secretion. Following instillation of fluorescein dye, increasing levels of air flow were directed toward the central corneas of 10 healthy subjects. Interblink interval (IBI), tear meniscus height (TMH), and fluorescence intensity were measured simultaneously. Because blinking can obscure changes in TMH, we developed novel measures of tear secretion by calculating tear meniscus fluorescein concentration (TMFC) from intensity using a mathematical model. The change of TMH and TMFC over trials and the slope of the TMFC within each IBI (IBI-TTR) were further calculated. The mean IBI was decreased by 8.08 ± 8.54 seconds from baseline to maximum air stimulation. The TMH increase was highly variable (0.41 ± 0.39 mm) among subjects, compared to the fluorescence tear turnover metrics: decrease in TMFC of 2.84 ± 0.98 natural logarithm or ln(%) and IBI-TTR of 0.065 ± 0.032 ln(%)/sec. Ocular surface stimulation was highly correlated with the TMFC and IBI-TTR, but less so with TMH (Pearson's r = 0.71, 0.69, and 0.40, P < 0.01, respectively). Blinking and tearing were significantly correlated with each other (Pearson's r = 0.56, P < 0.01), but tearing lagged behind by an average of 6.54 ± 4.07 seconds. Blinking and tearing share a common origin with sensory stimulation at the ocular surface. Both showed a dose-response increase with surface stimulation and were correlated with each other. These methods can potentially be used to understand alterations in ocular surface sensory function and associated protective responses in dry eye and other disorders of the ocular surface.

  14. The TFOS International Workshop on Contact Lens Discomfort: Report of the Subcommittee on Neurobiology

    PubMed Central

    Stapleton, Fiona; Marfurt, Carl; Golebiowski, Blanka; Rosenblatt, Mark; Bereiter, David; Begley, Carolyn; Dartt, Darlene; Gallar, Juana; Belmonte, Carlos; Hamrah, Pedram; Willcox, Mark

    2013-01-01

    This report characterizes the neurobiology of the ocular surface and highlights relevant mechanisms that may underpin contact lens–related discomfort. While there is limited evidence for the mechanisms involved in contact lens–related discomfort, neurobiological mechanisms in dry eye disease, the inflammatory pathway, the effect of hyperosmolarity on ocular surface nociceptors, and subsequent sensory processing of ocular pain and discomfort have been at least partly elucidated and are presented herein to provide insight in this new arena. The stimulus to the ocular surface from a contact lens is likely to be complex and multifactorial, including components of osmolarity, solution effects, desiccation, thermal effects, inflammation, friction, and mechanical stimulation. Sensory input will arise from stimulation of the lid margin, palpebral and bulbar conjunctiva, and the cornea. PMID:24058137

  15. Isolation of the ocular surface to treat dysfunctional tear syndrome associated with computer use.

    PubMed

    Yee, Richard W; Sperling, Harry G; Kattek, Ashballa; Paukert, Martin T; Dawson, Kevin; Garcia, Marcie; Hilsenbeck, Susan

    2007-10-01

    Dysfunctional tear syndrome (DTS) associated with computer use is characterized by mild irritation, itching, redness, and intermittent tearing after extended staring. It frequently involves foreign body or sandy sensation, blurring of vision, and fatigue, worsening especially at the end of the day. We undertook a study to determine the effectiveness of periocular isolation using microenvironment glasses (MEGS) alone and in combination with artificial tears in alleviating the symptoms and signs of dry eye related to computer use. At the same time, we evaluated the relative ability of a battery of clinical tests for dry eye to distinguish dry eyes from normal eyes in heavy computer users. Forty adult subjects who used computers 3 hours or more per day were divided into dry eye sufferers and controls based on their scores on the Ocular Surface Disease Index (OSDI). Baseline scores were recorded and ocular surface assessments were made. On four subsequent visits, the subjects played a computer game for 30 minutes in a controlled environment, during which one of four treatment conditions were applied, in random order, to each subject: 1) no treatment, 2) artificial tears, 3) MEGS, and 4) artificial tears combined with MEGS. Immediately after each session, subjects were tested on: a subjective comfort questionnaire, tear breakup time (TBUT), fluorescein staining, lissamine green staining, and conjunctival injection. In this study, a significant correlation was found between cumulative lifetime computer use and ocular surface disorder, as measured by the standardized OSDI index. The experimental and control subjects were significantly different (P<0.05) in the meibomian gland assessment and TBUT; they were consistently different in fluorescein and lissamine green staining, but with P>0.05. Isolation of the ocular surface alone produced significant improvements in comfort scores and TBUT and a consistent trend of improvement in fluorescein staining and lissamine green staining. Isolation plus tears produced a significant improvement in lissamine green staining. The subjective comfort inventory and the TBUT test were most effective in distinguishing between the treatments used. Computer users with ocular surface complaints should have a detailed ocular surface examination and, if symptomatic, they can be effectively treated with isolation of the ocular surface, artificial tears therapy, and effective environmental manipulations.

  16. A Review of Ocular Graft-Versus-Host Disease.

    PubMed

    Munir, Saleha Z; Aylward, James

    2017-05-01

    : Graft-versus-host disease (GVHD) is a major complication that occurs following allogeneic hematopoietic stem cell transplantation, which is a potential curative therapy used in a variety of malignant or benign hematological diseases. Graft-versus-host disease primarily occurs in many organs, but most notably in the skin, lungs, gastrointestinal tract, liver, eyes, mucosa, and musculoskeletal system. Ocular manifestations of GVHD may precede other systemic GVHD findings, and it may be a poor prognosis for mortality. While all parts of the eye may be affected, ocular GVHD occurs primarily in the ocular surface. Dry eye disease or keratoconjunctivitis sicca is the most common presenting manifestation of chronic ocular GVHD. Dry eye disease in ocular GVHD is a multifactorial process, which involves destruction and fibrosis of lacrimal glands and conjunctiva, leading to tear film deficiency and instability. Depending on the severity of ocular involvement and response to treatment, ocular GVHD may cause decreased quality of life. Management of GVHD begins with prevention by understanding risk factors and by implementing prophylactic treatment after allogeneic hematopoietic stem cell transplantation. A multidisciplinary approach to the prevention and treatment of GVHD is important, and there are currently no preventive therapies available for ocular GVHD. Once diagnosed, ocular GVHD treatment strategies target ocular surface lubrication and support, tear film stabilization, inflammation reduction, and surgical intervention. The goal of this review is to define ocular GVHD and its categorical manifestations, as well as to describe the importance of comprehensive assessment, diagnosis, and ophthalmologic treatment and management of ocular GVHD with a multidisciplinary approach.

  17. Are ultrasound-guided ophthalmic blocks injurious to the eye? A comparative rabbit model study of two ultrasound devices evaluating intraorbital thermal and structural changes.

    PubMed

    Palte, Howard D; Gayer, Steven; Arrieta, Esdras; Scot Shaw, Eric; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L; Dubovy, Sander; Birnbach, David J; Parel, Jean-Marie

    2012-07-01

    Since Atkinson's original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade, but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The US Food and Drug Administration (FDA) has defined guidelines for safe use of ultrasound for ophthalmic examination, but most ultrasound devices used by anesthesiologists are not FDA-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examinations can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital- and nonorbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from 2 devices: (1) the Sonosite Micromaxx (nonorbital rated) and (2) the Sonomed VuMax (orbital rated) machines. In phase I, temperatures were continuously monitored via thermocouples implanted within specific eye structures (n = 4). In phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n = 4). All eyes underwent light microscopy examinations, followed at different intervals by histology evaluations conducted by an ophthalmic pathologist. Temperature changes were monitored in the eyes of 4 rabbits. The nonorbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases >1.5°C) in the lens of 3 rabbits (at 5.0, 5.5, and 1.5 minutes) and cornea of 2 rabbits (both at 1.5 minutes). A secondary analysis of temporal temperature differences between the orbital-rated and nonorbital transducers revealed statistically significant differences (Bonferroni-adjusted P < 0.05) in the cornea at 3.5 minutes, the lens at 2.5 minutes, and the vitreous at 4.0 minutes. Light microscopy and histology failed to elicit ocular injury in either group. The nonorbital-rated ultrasound machine (Sonosite Micromaxx) increases the ocular tissue temperature. A larger study is needed to establish safety. Until then, ophthalmic ultrasound-guided blocks should only be performed with ocular-rated devices.

  18. Are Ultrasound-Guided Ophthalmic Blocks Injurious to the Eye? A Comparative Rabbit Model Study of Two Ultrasound Devices Evaluating Intraorbital Thermal and Structural Changes

    PubMed Central

    Palte, Howard D.; Gayer, Steven; Arrieta, Esdras; Shaw, Eric Scot; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L.; Dubovy, Sander; Birnbach, David J.; Parel, Jean-Marie

    2012-01-01

    Background Since Atkinson’s original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The United States Food and Drug Administration have defined guidelines for safe use of ultrasound for ophthalmic examination but most ultrasound devices used by anesthesiologists are not Food and Drug Administration-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examination can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Methods Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital and non-orbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from two devices: 1) the Sonosite Micromaxx (non-orbital-rated) and 2) the Sonomed VuMax (orbital-rated) machines. In Phase I temperatures were continuously monitored via thermocouples implanted within specific eye structures (n=4). In Phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n=4). All eyes underwent light microscopy examinations followed, at different intervals, by histology evaluations conducted by an ophthalmic pathologist. Results Temperature changes were monitored in the eyes of four rabbits. The non-orbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases> 1.50C ) in the lens of three rabbits (at 5.0, 5.5 and 1.5 minutes) and cornea of two rabbits (both at 1.5 minutes). A secondary analysis of temporal temperature differences between the orbital-rated and non-orbital transducers revealed statistically significant differences (Bonferroni-adjusted p < 0.05) in the cornea at 3.5 minutes, the lens at 2.5 minutes and the vitreous at 4.0 minutes. Light microscopy and histology failed to elicit ocular injury in either group. Conclusions The non-orbital-rated ultrasound machine (Sonosite Micromaxx) increases the ocular tissue temperature. A larger study is needed to establish safety. Until then, ophthalmic blocks performed with ultrasound should be performed only with ocular-rated devices. PMID:22504211

  19. In Vivo Pharmacokinetics of Bromfenac Ophthalmic Solution 0.075%, Bromfenac Ophthalmic Solution 0.07%, and Nepafenac/Amfenac Ophthalmic Suspension 0.3% in Rabbits.

    PubMed

    Sheppard, John D; Cockrum, Paul C; Justice, Angela; Jasek, Mark C

    2018-05-14

    Little is known of the ocular distribution characteristics of currently branded non-steroidal anti-inflammatory drugs (NSAIDs) in the United States. This study was designed to predict the ocular bioavailability characteristics in humans using Dutch Belted rabbits as a surrogate. Commercially available, topically-applied NSAIDs containing bromfenac or nepafenac/amfenac were evaluated. 126 healthy adult Dutch Belted rabbits were randomly assigned to three treatment cohorts (BromSite ® twice daily [BID] in the right eye, BromSite ® once daily [QD] in the right eye, Prolensa ® QD in the right eye and Ilevro™ QD in the left eye) and 7 post-dosing time points (0.5, 1, 2, 4, 8, 12, 24 h after final instillation). The study eyes received 40 µL of the assigned drug for a consecutive 9 days. Samples of aqueous humor, iris-ciliary body, choroid, sclera, and retina were harvested from the study eyes at the assigned time point after the last dose on the 9th day. NSAID content in ocular tissues was analyzed using high-performance liquid chromatography (HPLC), and area under the curve (AUC 0.5-24h ), maximum concentration (C max ), and time to maximum concentration (T max ) were determined. Peak NSAID concentrations were reached within 1-3 h in the anterior segment and within 1-3 h in the posterior segment after last dose. Throughout the ocular tissues, both AUC and C max for BromSite ® (BID and QD) were consistently higher than respective NSAID concentrations of Prolensa ® QD and Ilevro ® QD. When comparing BromSite ® BID to QD, the BID regimen produced generally higher but statistically similar bromfenac concentrations throughout the ocular tissues except in the aqueous humor and iris-ciliary body, where the AUC BID was statistically significantly higher with BromSite ® BID. As a surrogate to human ocular bioavailability, BromSite ® demonstrated significantly greater NSAID compared to Prolensa ® QD and Ilevro ® QD. The DuraSite ® component of BromSite ® appears to enhance ocular penetration throughout both anterior and posterior tissues. Sun Pharmaceutical Industries Ltd.

  20. Antibacterial activity of dilute povidone-iodine solutions used for ocular surface disinfection in dogs.

    PubMed

    Roberts, S M; Severin, G A; Lavach, J D

    1986-06-01

    Bacterial cultures of specimens from healthy canine eyelids and ocular surfaces were found to demonstrate bacterial growth in 69.7% (53/76) of the eyes sampled. Organisms most commonly isolated included: Staphylococcus aureus, alpha-hemolytic Streptococcus sp, S epidermidis, and Escherichia coli. Evaluation of dilute povidone-iodine solutions for effectiveness as ocular surface disinfectants was conducted. Bacterial growth initially detected in 32 of 46 eyes was not detected after disinfection with a 2-minute scrub and 2-minute soaking procedure, using 1:2, 1:10, or 1:50 dilutions of a povidone-iodine solution that contained 1% available iodine. The eyelid and ocular surfaces of 16 eyes were disinfected with 1:100 povidone-iodine solution. Bacterial growth initially present in 10 of 16 eyes was present in 1 eye after disinfection and consisted of a single colony of E coli. After eyes were disinfected with 1:10, 1:50, or 1:100 povidone-iodine solutions, there was no evidence of corneal epithelial edema or sloughing. In 15 eyes subjected to disinfection with the 1:2 dilution, one instance of epithelial corneal edema was noticed. A 1:50 dilution of povidone-iodine is recommended as an ocular surface disinfectant for use in presurgical situations.

  1. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye.

    PubMed

    Bernstein, P S; Khachik, F; Carvalho, L S; Muir, G J; Zhao, D Y; Katz, N B

    2001-03-01

    There is increasing evidence that the macular pigment carotenoids, lutein and zeaxanthin, may play an important role in the prevention of age-related macular degeneration, cataract, and other blinding disorders. Although it is well known that the retina and lens are enriched in these carotenoids, relatively little is known about carotenoid levels in the uveal tract and in other ocular tissues. Also, the oxidative metabolism and physiological functions of the ocular carotenoids are not fully understood. Thus, we have set out to identify and quantify the complete spectrum of dietary carotenoids and their oxidative metabolites in a systematic manner in all tissues of the human eye in order to gain better insight into their ocular physiology. Human donor eyes were dissected, and carotenoid extracts from ocular tissues [retinal pigment epithelium/choroid (RPE/choroid), macula, peripheral retina, ciliary body, iris, lens, vitreous, cornea, and sclera] were analysed by high-performance liquid chromatography (HPLC). Carotenoids were identified and quantified by comparing their chromatographic and spectral profiles with those of authentic standards. Nearly all ocular structures examined with the exception of vitreous, cornea, and sclera had quantifiable levels of dietary (3R,3'R,6'R)-lutein, zeaxanthin, their geometrical (E / Z) isomers, as well as their metabolites, (3R,3'S,6'R)-lutein (3'-epilutein) and 3-hydroxy-beta,epsilon-caroten-3'-one. In addition, human ciliary body revealed the presence of monohydroxycarotenoids and hydrocarbon carotenoids, while only the latter group was detected in human RPE/choroid. Uveal structures (iris, ciliary body, and RPE/choroid) account for approximately 50% of the eye's total carotenoids and approximately 30% of the lutein and zeaxanthin. In the iris, these pigments are likely to play a role in filtering out phototoxic short-wavelength visible light, while they are more likely to act as antioxidants in the ciliary body. Both mechanisms, light screening and antioxidant, may be operative in the RPE/choroid in addition to a possible function of this tissue in the transport of dihydroxycarotenoids from the circulating blood to the retina. This report lends further support for the critical role of lutein, zeaxanthin, and other ocular carotenoids in protecting the eye from light-induced oxidative damage and aging. Copyright 2001 Academic Press.

  2. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabili, Marjan, E-mail: mnabili@gwmail.gwu.edu; Geist, Craig, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu; Zderic, Vesna, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications ofmore » different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm{sup 2}, and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm{sup 2} (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety of this method in the whole orbit especially regarding potential adverse optic nerve heating at the location of the bone.« less

  3. An alternative means of retaining ocular structure and improving immunoreactivity for light microscopy studies

    PubMed Central

    Sun, Ning; Shibata, Brad; Hess, John F.

    2015-01-01

    Purpose Several properties of ocular tissue make fixation for light microscopy problematic. Because the eye is spherical, immersion fixation necessarily results in a temporal gradient of fixation, with surfaces fixing more rapidly and thoroughly than interior structures. The problem is compounded by the fact that the layers of the eye wall are compositionally quite different, resulting in different degrees of fixation-induced shrinkage and distortion. Collectively, these result in non-uniform preservation, as well as buckling and/or retinal detachment. This gradient problem is most acute for the lens, where the density of proteins can delay fixation of the central lens for days, and where the fixation gradient parallels the age gradient of lens cells, which complicates data interpretation. Our goal was to identify a simple method for minimizing some of the problems arising from immersion fixation, which avoided covalent modification of antigens, retained high quality structure, and maintained tissue in a state that is amenable to common cytochemical techniques. Methods A simple and inexpensive derivative of the freeze-substitution approach was developed and compared to fixation by immersion in formalin. Preservation of structure, immunoreactivity, GFP and tdTomato fluorescence, lectin reactivity, outer segment auto fluorescence, Click-iT chemistry, compatibility with in situ hybdrdization, and the ability to rehydrate eyes after fixation by freeze substitution for subsequent cryo sectioning were assessed. Results An inexpensive and simple variant of the freeze substitution approach provides excellent structural preservation for light microscopy, and essentially eliminates ocular buckling, retinal detachment, and outer segment auto-fluorescence, without covalent modification of tissue antigens. The approach shows a notable improvement in preservation of immunoreactivity. TdTomato intrinsic fluorescence is also preserved, as is compatibility with in situ hybridization, lectin labeling, and the Click-iT chemistry approach to labeling the thymidine analog EdU. On the negative side, this approach dramatically reduced intrinsic GFP fluorescence. Conclusions A simple, cost-effective derivative of the freeze substitution process is described that is of particular value in the study of rodent or other small eyes, where fixation gradients, globe buckling, retinal detachment, differential shrinkage, autofluorescence, and tissue immunoreactivity have been problematic. PMID:25991907

  4. Color Microfiche: Applications to Biomedical Optometric Education.

    ERIC Educational Resources Information Center

    Wing, Joan Tanabe; Chronister, Connie; Whittaker, Stephen G.; Crozier, Gilda C.

    1999-01-01

    A color microfiche containing ocular tissue section images was developed and introduced into an ocular history and embryology course to enhance student access to such images. Students found that the materials enhanced their ability to learn. Faculty found that the materials allowed students to prepare in advance for the laboratory, freeing class…

  5. Therapeutic inhibitors for the treatment of dry eye syndrome.

    PubMed

    Rodríguez-Pomar, Candela; Pintor, Jesus; Colligris, Basilio; Carracedo, Gonzalo

    2017-12-01

    Dry eye disease (DED), defined as a multifactorial disease of tears and ocular surface, results in symptoms of discomfort, ocular irritation, visual disturbance and tear film instability. This syndrome is accompanied of ocular surface inflammation and it is produced by a deficient activity of the lacrimal functional unit. In addition, it is associated with systemic autoimmune diseases such as Sjögren´s Syndrome, rheumatoid arthritis, systemic lupus erythematosus and some drug administration. The treatment of dry eye disease is based on the typical signs and symptoms of dry eye, which are associated with hyperosmolarity, ocular surface inflammation, discomfort, visual disturbance, and tear film instability. Areas covered: This review is focused on synthetic drugs currently used in clinical practice, from phase III development onwards to treat the ocular surface signs and symptoms of dry eye disease. Expert opinion: The multifactorial disease and the lack of correlation between signs and symptoms imply that not all the pharmacological approaches will be successful for dry eye. The correct design of the clinical trials, with appropriate endpoints, and the type of dry eye under study are complicated but mandatory. The anti-inflammatory and secretagogues drugs are both the main compounds to currently treat the dry eye disease.

  6. Flurbiprofen-loaded niosomes-in-gel system improves the ocular bioavailability of flurbiprofen in the aqueous humor.

    PubMed

    El-Sayed, Marwa M; Hussein, Amal K; Sarhan, Hatem A; Mansour, Heba F

    2017-06-01

    The present work aimed to prolong the contact time of flurbiprofen (FBP) in the ocular tissue to improve the drug anti-inflammatory activity. Different niosome systems were fabricated adopting thin-film hydration technique and using the nonionic surfactant Span 60. The morphology of the prepared niosomes was characterized by scanning electron microscopy (SEM). Physical characterization by differential scanning calorimetry, X-ray powder diffraction and Fourier transform infrared spectroscopy were conducted for the optimized formula (F5) that was selected on the basis of percent entrapment efficiency, vesicular size and total lipid content. F5 was formulated as 1% w/w Carpobol 934 gel. Pharmacokinetic parameters of FBP were investigated following ocular administration of F5-loaded gel system, F5 niosome dispersion or the corresponding FBP ocular drops to albino rabbits dispersion. Anti-inflamatory effect of F5-loaded carbopol gel was investigated by histopathological examination of the corneal tissue before and after the treatment of inflamed rabbit eye with the system. Results showed that cholesterol content, surfactant type. and total lipid contents had an apparent impact on the vesicle size of the formulated niosomes. Physical characterization revealed reduced drug crystallinity and incidence of interaction with other niosome contents. F5-loaded gel showed higher C max , area under the curve (AUC 0-12 ), and thus higher ocular bioavailability than those of the corresponding FBP ocular solution. F5-loaded gel showed a promising rapid anti-inflammatory effect in the inflamed rabbit eye. These findings will eradicate the necessity for frequent ocular drug instillation and thus, improve patient compliance.

  7. Laser applications and system considerations in ocular imaging

    PubMed Central

    Elsner, Ann E.; Muller, Matthew S.

    2009-01-01

    We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast. PMID:21052482

  8. Ocular Surface Symptoms in Veterans Returning From Operation Iraqi Freedom and Operation Enduring Freedom

    PubMed Central

    Modi, Yasha S.; Qurban, Qirat; Zlotcavitch, Leonid; Echeverri, Roberto J.; Feuer, William; Florez, Hermes; Galor, Anat

    2014-01-01

    Purpose. To correlate situational exposures and psychiatric disease with self-reported ocular surface symptoms in a younger veteran population involved in Operation Iraqi Freedom and Operation Enduring Freedom (OIF/OEF). Methods. Cross-sectional study of all veterans evaluated in the OIF/OEF clinic between December 2012 and April 2013 who completed the dry eye questionnaire and screening evaluations for environmental exposures, posttraumatic stress disorder (PTSD), and depression. The main outcome measures were the influence of environmental exposure and psychiatric disease on ocular surface symptoms. Results. Of 115 participants, the average age was 33 years. While overseas, exposure to incinerated waste (odds ratio [OR] 2.67, 95% confidence interval [CI] 1.23–5.81, P = 0.02) and PTSD (OR 2.68, 95% CI 1.23–5.85, P = 0.02) were associated with self-reported ocular surface symptoms. On return to the United States, older age (OR per decade 2.66, 95% CI 1.65–4.31, P = 0.04) was associated with persistent symptoms and incinerated waste was associated with resolution of symptoms (OR 0.25, 95% CI 0.07–0.90, P = 0.04). When evaluating symptom severity, 26% of the responders complained of severe ocular surface symptoms, with PTSD (OR 3.10, 95% CI 1.22–7.88, P = 0.02) and depression (OR 4.28, 95% CI 1.71–10.68, P = 0.002) being significant risk factors for their presence. Conclusions. PTSD was significantly associated with ocular surface symptoms both abroad and on return to the United States, whereas air pollution in the form of incinerated waste, was correlated with reversible symptoms. PMID:24408975

  9. Solubility, Stability, Physicochemical Characteristics and In Vitro Ocular Tissue Permeability of Hesperidin: a Natural Bioflavonoid

    PubMed Central

    Majumdar, Soumyajit; Srirangam, Ramesh

    2008-01-01

    Purpose Hesperidin holds potential in treating age-related macular degeneration, cataract and diabetic retinopathy. The aim of this study, constituting the first step towards efficient ocular delivery of hesperidin, was to determine its physicochemical properties and in vitro ocular tissue permeability. Methods pH dependent aqueous solubility and stability were investigated following standard protocols. Permeability of hesperidin across excised rabbit cornea, sclera, and sclera plus retinal pigmented epithelium (RPE) was determined using a side-bi-side diffusion apparatus. Results Hesperidin demonstrated poor, pH independent, aqueous solubility. Solubility improved dramatically in the presence of 2-hydroxypropyl-beta-cyclodextrin (HP-β-CD) and the results supported 1:1 complex formation. Solutions were stable in the pH and temperature (25, 40°C) conditions tested, except for samples stored at pH 9. Transcorneal permeability in the apical-basal and basal-apical directions was 1.11±0.86×10−6 and 1.16±0.05×10−6 cm/s, respectively. The scleral tissue was more permeable (10.2±2.1×10−6cm/s). However, permeability across sclera/choroid/RPE in the sclera to retina and retina to sclera direction was 0.82±0.69×10−6, 1.52±0.78×10−6 cm/s, respectively, demonstrating the barrier properties of the RPE. Conclusion Our results suggest that stable ophthalmic solutions of hesperidin can be prepared and that hesperidin can efficiently permeate across the corneal tissue. Further investigation into its penetration into the back-of-the eye ocular tissues is warranted. PMID:18810327

  10. Clinical evaluation of accommodation and ocular surface stability relavant to visual asthenopia with 3D displays

    PubMed Central

    2014-01-01

    Background To validate the association between accommodation and visual asthenopia by measuring objective accommodative amplitude with the Optical Quality Analysis System (OQAS®, Visiometrics, Terrassa, Spain), and to investigate associations among accommodation, ocular surface instability, and visual asthenopia while viewing 3D displays. Methods Fifteen normal adults without any ocular disease or surgical history watched the same 3D and 2D displays for 30 minutes. Accommodative ability, ocular protection index (OPI), and total ocular symptom scores were evaluated before and after viewing the 3D and 2D displays. Accommodative ability was evaluated by the near point of accommodation (NPA) and OQAS to ensure reliability. The OPI was calculated by dividing the tear breakup time (TBUT) by the interblink interval (IBI). The changes in accommodative ability, OPI, and total ocular symptom scores after viewing 3D and 2D displays were evaluated. Results Accommodative ability evaluated by NPA and OQAS, OPI, and total ocular symptom scores changed significantly after 3D viewing (p = 0.005, 0.003, 0.006, and 0.003, respectively), but yielded no difference after 2D viewing. The objective measurement by OQAS verified the decrease of accommodative ability while viewing 3D displays. The change of NPA, OPI, and total ocular symptom scores after 3D viewing had a significant correlation (p < 0.05), implying direct associations among these factors. Conclusions The decrease of accommodative ability after 3D viewing was validated by both subjective and objective methods in our study. Further, the deterioration of accommodative ability and ocular surface stability may be causative factors of visual asthenopia in individuals viewing 3D displays. PMID:24612686

  11. B-scan ultrasonography for the detection of space-occupying ocular masses.

    PubMed

    Miller, W W; Cartee, R E

    1985-07-01

    A noninvasive technique, B-scan ultrasonography, was used to obtain detailed cross-sectional images of ocular and orbital structure and form. When a low-frequency probe (5 MHz) was used, tissue penetration was excellent; however, axial resolution was limited. The technique was used in a study of 2 cats and 1 dog. The use of low-frequency B-scan ultrasound should aid in the diagnostic examinations of space-occupying masses in the posterior portion of the ocular bulb and the orbit.

  12. Ocular cells and light: harmony or conflict?

    PubMed

    Jurja, Sanda; Hîncu, Mihaela; Dobrescu, Mihaela Amelia; Golu, Andreea Elena; Bălăşoiu, Andrei Theodor; Coman, Mălina

    2014-01-01

    Vision is based on the sensitivity of the eye to visible rays of the solar spectrum, which allows the recording and transfer of visual information by photoelectric reaction. Any electromagnetic radiation, if sufficiently intense, may cause damages in living tissues. In a changing environment, the aim of this paper is to point out the impact of light radiation on ocular cells, with its phototoxicity potential on eye tissues. In fact, faced with light and oxygen, the eye behaves like an ephemeral aggregate of unstable molecules, like a temporary crystallization threatened with entropia.

  13. A Method to Prevent Protein Delocalization in Imaging Mass Spectrometry of Non-Adherent Tissues: Application to Small Vertebrate Lens Imaging

    PubMed Central

    Anderson, David M. G.; Floyd, Kyle A.; Barnes, Stephen; Clark, Judy M.; Clark, John I.; Mchaourab, Hassane; Schey, Kevin L.

    2015-01-01

    MALDI imaging requires careful sample preparation to obtain reliable, high quality images of small molecules, peptides, lipids, and proteins across tissue sections. Poor crystal formation, delocalization of analytes, and inadequate tissue adherence can affect the quality, reliability, and spatial resolution of MALDI images. We report a comparison of tissue mounting and washing methods that resulted in an optimized method using conductive carbon substrates that avoids thaw mounting or washing steps, minimizes protein delocalization, and prevents tissue detachment from the target surface. Application of this method to image ocular lens proteins of small vertebrate eyes demonstrates the improved methodology for imaging abundant crystallin protein products. This method was demonstrated for tissue sections from rat, mouse, and zebrafish lenses resulting in good quality MALDI images with little to no delocalization. The images indicate, for the first time in mouse and zebrafish, discrete localization of crystallin protein degradation products resulting in concentric rings of distinct protein contents that may be responsible for the refractive index gradient of vertebrate lenses. PMID:25665708

  14. PRESERVATIVES FROM THE EYE DROPS AND THE OCULAR SURFACE

    PubMed Central

    Coroi, Mihaela Cristina; Bungau, Simona; Tit, Mirela

    2015-01-01

    The use of preservatives in eye drops (eyewashes) has known glory at the beginning, but the side effects that they have on the ocular surface have led to a decrease of their popularity. Lachrymal film dysfunction, ocular hyperemia, dotted keratitis or toxic keratopathy were reported and analyzed in terms of pathophysiological mechanism of the role played by preservatives in ophthalmic drops (eyewashes). This article reviews the most common preservatives and the existing alternatives for the maintenance of the eye sterile drops. PMID:27373107

  15. The potential of nanofibers in tissue engineering and stem cell therapy.

    PubMed

    Gholizadeh-Ghaleh Aziz, Shiva; Gholizadeh-Ghaleh Aziz, Sara; Akbarzadeh, Abolfazl

    2016-08-01

    Electrospinning is a technique in which materials in solution are shaped into continuous nano- and micro-sized fibers. Combining stem cells with biomaterial scaffolds and nanofibers affords a favorable approach for bone tissue engineering, stem cell growth and transfer, ocular surface reconstruction, and treatment of congenital corneal diseases. This review seeks to describe the current examples of the use of scaffolds in stem cell therapy. Stem cells are classified as adult or embryonic stem (ES) cells, and the advantages and drawbacks of each group are detailed. The nanofibers and scaffolds are further classified in Tables I and II , which describe specific examples from the literature. Finally, the current applications of biomaterial scaffolds containing stem cells for tissue engineering applications are presented. Overall, this review seeks to give an overview of the biomaterials available for use in combination with stem cells, and the application of nanofibers in stem cell therapy.

  16. Sjögren's syndrome associated dry eye in a mouse model is ameliorated by topical application of integrin α4 antagonist GW559090.

    PubMed

    Contreras-Ruiz, Laura; Mir, Fayaz A; Turpie, Bruce; Krauss, Achim H; Masli, Sharmila

    2016-02-01

    Sjögren's syndrome is an autoimmune disease associated with inflammation of exocrine glands with clinical manifestations of dry eye and dry mouth. Dry eye in this disease involves inflammation of the ocular surface tissues - cornea and conjunctiva. While systemic blockade of adhesion molecules has been used to treat autoimmune diseases, the purpose of this study was to determine the therapeutic efficacy of topical application of an integrin α4 adhesion molecule antagonist in a mouse model of dry eye associated with Sjögren's syndrome. To assess this spontaneously developed ocular surface inflammation related to Sjögren's syndrome in TSP-1null mice (12 wks) was evaluated. Mice were treated with topical formulations containing 0.1% dexamethasone or 30 mg/ml GW559090 or vehicle control. Corneal fluorescein staining and conjunctival goblet cell density were assessed. Real-time PCR analysis was performed to assess expression of the inflammatory marker IL-1β in the cornea and Tbet and RORγt in the draining lymph nodes. Ocular surface inflammation was detectable in TSP-1null mice (≥12 wk old), which resulted in increased corneal fluorescein staining indicative of corneal barrier disruption and reduced conjunctival goblet cell density. These changes were accompanied by increased corneal expression of IL-1β as compared to WT controls and an altered balance of Th1 (Tbet) and Th17 (RORγt) markers in the draining lymph nodes. Topically applied dexamethasone and GW559090 significantly reduced corneal fluorescein staining compared to vehicle treatment (p = 0.023 and p < 0.001, respectively). This improved corneal barrier integrity upon adhesion molecule blockade was consistent with significantly reduced corneal expression of pro-inflammatory IL-1β compared to vehicle treated groups (p < 0.05 for both treatments). Significant improvement in goblet cell density was also noted in mice treated with 0.1% dexamethasone and GW559090 (p < 0.05 for both). We conclude that similar to topical dexamethasone, topically administered GW559090 successfully improved corneal barrier integrity and inflammation in an established ocular surface disease associated with Sjögren's syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development.

    PubMed

    Li, Jing; Wang, Shusheng; Anderson, Chastain; Zhao, Fangkun; Qin, Yu; Wu, Di; Wu, Xinwei; Liu, Jia; He, Xuefei; Zhao, Jiangyue; Zhang, Jinsong

    2016-01-01

    Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development.

  18. Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development

    PubMed Central

    Li, Jing; Wang, Shusheng; Anderson, Chastain; Zhao, Fangkun; Qin, Yu; Wu, Di; Wu, Xinwei; Liu, Jia; He, Xuefei; Zhao, Jiangyue; Zhang, Jinsong

    2016-01-01

    Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development. PMID:27494603

  19. The Relationship Between High-Order Aberration and Anterior Ocular Biometry During Accommodation in Young Healthy Adults

    PubMed Central

    Ke, Bilian; Mao, Xinjie; Jiang, Hong; He, Jichang; Liu, Che; Li, Min; Yuan, Ying

    2017-01-01

    Purpose This study investigated the anterior ocular anatomic origin of high-order aberration (HOA) components using optical coherence tomography and a Shack-Hartmann wavefront sensor. Methods A customized system was built to simultaneously capture images of ocular wavefront aberrations and anterior ocular biometry. Relaxed, 2-diopter (D) and 4-D accommodative states were repeatedly measured in 30 young subjects. Custom software was used to correct optical distortions and measure biometric parameters from the images. Results The anterior ocular biometry changed during 2-D accommodation, in which central lens thickness, ciliary muscle thicknesses at 1 mm posterior to the scleral spur (CMT1), and the maximum value of ciliary muscle thickness increased significantly, whereas anterior chamber depth, CMT3, radius of anterior lens surface curvature (RAL), and radius of posterior lens surface curvature (RPL) decreased significantly. The changes in the anterior ocular parameters during 4-D accommodation were similar to those for the 2-D accommodation. \\begin{document}\

  20. Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis.

    PubMed

    Chen, Wei; Zhang, Xiaobo; Liu, Mimi; Zhang, Jingna; Ye, Ya; Lin, Ying; Luyckx, Jacques; Qu, Jia

    2009-09-01

    The disaccharide trehalose is a key element involved in anhydrobiosis (the capability of surviving almost complete dehydration) in many organisms. Its presence also confers resistance to desiccation and high osmolarity in bacterial and human cells by protecting proteins and membranes from denaturation. The present study used a novel murine dry eye model induced by controlled low-humidity air velocity to determine whether topically applied trehalose could heal ocular surface epithelial disorders caused by ocular surface desiccation. In addition, the efficacy of 87.6 mM trehalose eyedrops was compared with that of 20% serum, the efficacy of which has been well documented. Mice ocular surface epithelial disorders were induced by exposure of murine eyes to continuous controlled low-humidity air velocity in an intelligently controlled environmental system (ICES) for 21 days, which accelerated the tear evaporation. The mice were then randomized into three groups: the control group received PBS (0.01 M) treatment; a second group received 87.6 mM trehalose eyedrops treatment; and the third group received mice serum eyedrops treatment. Each treatment was administered as a 10 microl dose every 6 h for 14 days. The resultant changes in corneal barrier function and histopathologic examination of cornea and conjunctiva were analyzed and the level of apoptosis on the ocular surface was assessed using active caspase-3. After 14 days of treatment, the corneal fluorescein staining area, the ruffling and desquamating cells on the apical corneal epithelium, as well as the apoptotic cells on ocular surface epithelium had significantly reduced in eyes treated with trehalose compared with those treated with serum and PBS. In contrast, after 14 days of treatment, improvements in the thickness of the corneal epithelium, the squamous metaplasia in conjunctival epithelium and the number of goblet cells of the conjunctiva were less marked in eyes treated with trehalose compared with serum. These results demonstrated that trehalose could improve the appearance of ocular surface epithelial disorders due to desiccation through suppression of apoptosis. Trehalose produces some of the same responses as serum upon topical application and can maintain corneal health.

  1. Glycobiology of the ocular surface: Mucins and lectins

    PubMed Central

    Argüeso, Pablo

    2013-01-01

    Glycosylation is an important and common form of posttranscriptional modification of proteins in cells. A vast array of biological functions has been ascribed to glycans during the last decade thanks to a rapid evolution in glycomic technologies. Glycogenes highly expressed at the human ocular surface include families of glycosyltransferases, proteoglycans, glycan degradation proteins, as well as mucins and carbohydrate-binding proteins such as the galectins. On the apical glycocalyx, mucin O-glycans promote boundary lubrication, prevent bacterial adhesion and endocytic activity, and maintain epithelial barrier function through interactions with galectins. The emerging roles attributed to glycans are contributing to the appreciation of their biological capabilities at the ocular surface. PMID:23325272

  2. Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry

    NASA Astrophysics Data System (ADS)

    Dragostinoff, Nikolaus; Werkmeister, René M.; Klaizer, József; Gröschl, Martin; Schmetterer, Leopold

    2013-12-01

    Low-coherence tissue interferometry is a technique for the depth-resolved measurement of ocular fundus pulsations. Whereas fundus pulsation amplitudes at preselected axial positions can readily be assessed by this method, coupling of the interferometer with a pulse oximeter additionally allows for the reconstruction of the time course of ocular fundus pulsation with respect to the cardiac cycle of the subject. For this purpose, the interferogram resulting from the superposition of waves reflected at the cornea and the ocular fundus is recorded synchronously with the plethysmogram. A new method for evaluating the time course of synthetic interferograms in combination with plethysmograms based on averaging several pulse periods has been developed. This technique allows for the analysis of amplitudes, time courses, and phase differences of fundus pulsations at preselected axial and transversal positions and for creating fundus pulsation movies. Measurements are performed in three healthy emmetropic subjects at angles from 0 deg to 18 deg to the axis of vision. Considerably different time courses, amplitudes, and phases with respect to the cardiac cycle are found at different angles. Data on ocular fundus pulsation obtained with this technique can-among other applications-be used to verify and to improve biomechanical models of the eye.

  3. Investigation of antioxidant systems in human meibomian gland and conjunctival tissues.

    PubMed

    Nezzar, Hachemi; Mbekeani, Joyce N; Noblanc, Anais; Chiambaretta, Frédéric; Drevet, Joël R; Kocer, Ayhan

    2017-12-01

    Oxidative stress (OS) associated with direct contact with the environment and light exposure is a very potent and continuous stressor of the ocular surface and internal structures of the eye that are required to manage its effects. Constant replenishment of tears together with the superficial lipid layer produced by the meibomian glands (MG) is one protective mechanism. The lipid-rich fraction of the tears coats the deeper aqueous fraction, preventing its evaporation. However, lipids are particularly sensitive to oxidative damage that could alter tear film quality. To counteract oxidative damage, MG along with other structures of the ocular surface use primary antioxidant (AO) systems to limit OS damage such as lipid peroxidation. Limited information concerning the primary enzymatic AO system of the human MG prompted this investigation. Using different approaches (RT-PCR, enzymatic activity assays and immuno-fluorescent microscopy), we determined the presence, distribution and subcellular locations of the major AO enzymes belonging to the classical catalytic triad (superoxide dismutase, catalase and glutathione peroxidases) in adult human MG and conjunctiva (Conj). We showed that both tissues exhibit glutathione peroxidase expression. In addition to the ubiquitous cytosolic GPx1 protein, there was significant expression of GPx2, GPx4 and GPx7. These isoforms are known to preferentially scavenge phospholipid-hydroperoxide compounds. This characterization of the primary AO system of human MG and Conj may help pave the way for the development of diagnostic procedures and have implications for treatment of common MG dysfunction (MGD) and dry eye syndrome (DES). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Photokeratitis induced by ultraviolet radiation in travelers: A major health problem

    PubMed Central

    Izadi, M; Jonaidi-Jafari, N; Pourazizi, M; Alemzadeh-Ansari, MH; Hoseinpourfard, MJ

    2018-01-01

    Ultraviolet (UV) irradiation is one of the several environmental hazards that may cause inflammatory reactions in ocular tissues, especially the cornea. One of the important factors that affect how much ultraviolet radiation (UVR) humans are exposed to is travel. Hence, traveling is considered to include a more acute UVR effect, and ophthalmologists frequently evaluate and manage the ocular manifestations of UV irradiation, including UV-induced keratitis. The purpose of this paper is to provide an evidence-based analysis of the clinical effect of UVR in ocular tissues. An extensive review of English literature was performed to gather all available articles from the National Library of Medicine PubMed database of the National Institute of Health, the Ovid MEDLINE database, Scopus, and ScienceDirect that had studied the effect of UVR on the eye and its complications, between January 1970 and June 2014. The results show that UVR at 300 nm causes apoptosis in all three layers of the cornea and induces keratitis. Apoptosis in all layers of the cornea occurs 5 h after exposure. The effect of UVR intensity on the eye can be linked to numerous factors, including solar elevation, time of day, season, hemisphere, clouds and haze, atmospheric scattering, atmospheric ozone, latitude, altitude, longitudinal changes, climate, ground reflection, and geographic directions. The most important factor affecting UVR reaching the earth's surface is solar elevation. Currently, people do not have great concern over eye protection. The methods of protection against UVR include avoiding direct sunlight exposure, using UVR-blocking eyewear (sunglasses or contact lenses), and wearing hats. Hence, by identifying UVR intensity factors, eye protection factors, and public education, especially in travelers, methods for safe traveling can be identified. PMID:29067921

  5. Photokeratitis induced by ultraviolet radiation in travelers: A major health problem.

    PubMed

    Izadi, M; Jonaidi-Jafari, N; Pourazizi, M; Alemzadeh-Ansari, M H; Hoseinpourfard, M J

    2018-01-01

    Ultraviolet (UV) irradiation is one of the several environmental hazards that may cause inflammatory reactions in ocular tissues, especially the cornea. One of the important factors that affect how much ultraviolet radiation (UVR) humans are exposed to is travel. Hence, traveling is considered to include a more acute UVR effect, and ophthalmologists frequently evaluate and manage the ocular manifestations of UV irradiation, including UV-induced keratitis. The purpose of this paper is to provide an evidence-based analysis of the clinical effect of UVR in ocular tissues. An extensive review of English literature was performed to gather all available articles from the National Library of Medicine PubMed database of the National Institute of Health, the Ovid MEDLINE database, Scopus, and ScienceDirect that had studied the effect of UVR on the eye and its complications, between January 1970 and June 2014. The results show that UVR at 300 nm causes apoptosis in all three layers of the cornea and induces keratitis. Apoptosis in all layers of the cornea occurs 5 h after exposure. The effect of UVR intensity on the eye can be linked to numerous factors, including solar elevation, time of day, season, hemisphere, clouds and haze, atmospheric scattering, atmospheric ozone, latitude, altitude, longitudinal changes, climate, ground reflection, and geographic directions. The most important factor affecting UVR reaching the earth's surface is solar elevation. Currently, people do not have great concern over eye protection. The methods of protection against UVR include avoiding direct sunlight exposure, using UVR-blocking eyewear (sunglasses or contact lenses), and wearing hats. Hence, by identifying UVR intensity factors, eye protection factors, and public education, especially in travelers, methods for safe traveling can be identified.

  6. Improvements in Signs and Symptoms of Dry Eye after Instillation of 2% Rebamipide.

    PubMed

    Igarashi, Tsutomu; Fujita, Miho; Yamada, Yumi; Kobayashi, Maika; Fujimoto, Chiaki; Takahashi, Hisatomo; Igarashi, Toru; Nakano, Yuichiro; Suzuki, Hisaharu; Takahashi, Hiroshi

    2015-01-01

    Because dry eye greatly reduces quality of life, this study aimed to examine rebamipide instillation in patients with dry eye and assess the improvement of signs and symptoms as evaluated with the Ocular Surface Disease Index, which is the most popular index and is highly reliable. From June 2013 through January 2014, we examined 50 eyes of 25 patients with dry eye (6 men and 19 woman) at our institution. Dry eye was diagnosed on the basis of the presence of symptoms, tear dynamics, and ocular surface abnormalities according to the Japanese criteria for dry eye. Before being enrolled, all patients underwent ocular surface health assessment, including history interviews, and completed the Ocular Surface Disease Index questionnaire. Patients received 2% rebamipide ophthalmic solution 4 times daily for 4 weeks. Signs and symptoms were analyzed before and 4 weeks after rebamipide administration. Tear dynamics, tear break-up time, and ocular surface abnormalities were measured and compared between before and 4 weeks after rebamipide administration. Of the 25 patients, 9 had definite dry eye and 16 had probable dry eye. Tear break-up time and the fluorescein staining score significantly improved after 4 weeks. However, no significant change was observed for the Schirmer test I and the lissamine green staining score. The administration of 2% rebamipide 4 times daily for 4 weeks improves the signs and symptoms of dry eye and improves patients' quality of life.

  7. Impact of wildfire smoke in Buenos Aires, Argentina, on ocular surface.

    PubMed

    Berra, Martin; Galperín, Gustavo; Dawidowski, Laura; Tau, Julia; Márquez, Isabel; Berra, Alejandro

    2015-01-01

    To evaluate the acute impact of the wildfire smoke episode in 2008 on the ocular surface of subjects living in the Metropolitan Area of Buenos Aires (MABA). A total of 86 subjects were evaluated: Group 1 comprised patients from a public ophthalmology hospital (N=35) and Group 2 comprised healthy volunteers (N=51). All subjects answered a questionnaire on ocular symptoms and underwent ophthalmologic examination [bulbar conjunctival hyperemia, corneal fluorescein staining, rose bengal vital staining, tear break-up time (TBUT), Schirmer I test, tear lysozyme, and impression cytology] during and after the acute episode. Concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), and particulate matter (PM) were measured before, during, and after the acute episode. Both groups showed a statically significant increase in ocular symptoms and bulbar conjunctival hyperemia and a statically significant decrease in tear break-up time during the acute episode. Group 1 showed more severe symptoms and a statistically significant increase in fluorescein and rose bengal staining intensities during the acute episode. We found a significant negative correlation between ocular symptoms and tear break-up time. During the episode, the levels of CO, NO2, and particulate matter in MABA were four times higher than the usual average levels for the same period in 2007 and 2009. Increased air pollution from the burning of biomass is associated with a decrease in the stability of the tear film (TBUT), generating areas of ocular surface exposure that may be the cause of the increased feeling of irritation. Group 1 was more affected by not having a healthy ocular surface, and thus consulted an ophthalmologist. Cytological changes in the conjunctiva were not observed, which could be due to the short duration of the episode.

  8. A methodology based on the "anterior chamber of rabbit eyes" model for noninvasively determining the biocompatibility of biomaterials in an immune privileged site.

    PubMed

    Lu, Pei-Lin; Lai, Jui-Yang; Tabata, Yasuhiko; Hsiue, Ging-Ho

    2008-07-01

    In this study, a novel methodology based on the anterior chamber of rabbit eyes model was developed to evaluate the in vivo biocompatibility of biomaterials in an immune privileged site. The 7-mm-diameter membrane implants made from either a biological tissue material (amniotic membrane, AM group) or a biomedical polymeric material (gelatin, GM group) were inserted in rabbit anterior chamber for 36 months and characterized by biomicroscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The noninvasive ophthalmic parameters were scored to provide a quantitative grading system. In this animal model, both AM and GM implants were visible in an ocular immune privileged site during clinical observations. The implants of the AM group appeared as soft tissue patches and have undergone a slow dissolution process resulting in a partial reduction of their size. Additionally, the AM implants did not induce any foreign body reaction or change in ocular tissue response for the studied period. By contrast, in the GM groups, significant corneal edema, elevated intraocular pressure, and increased corneal thickness were noted in the early postoperative phase (within 3 days), but resolved rapidly with in vivo dissolution of the gelatin. The results from the ocular grading system showed that both implants had good long-term biocompatibility in an ocular immune privileged site for up to 3 years. It is concluded that the anterior chamber of rabbit eyes model is an efficient method for noninvasively determining the immune privileged tissue/biomaterial interactions. (c) 2007 Wiley Periodicals, Inc.

  9. [Case report of osteo-odonto keratoprosthesis (Strampelli) and of Dacron keratoprosthesis (Pintucci)].

    PubMed

    Chammartin, M; Goldblum, D; Früh, B; Wilkens, L; Bosshardt, D; Sarra, G-M

    2009-03-01

    In severe forms of ocular surface disorders keratoprostheses provide the ultimate possibility to restore vision. They are made of an optical cylinder integrated with a supporting biocompatible or biological haptic. We report on two patients with different types of keratoprostheses. An 88-year-old woman with ocular pemphigoid received in 1970 a bilateral osteo-odonto-keratoprosthesis (Strampelli). A 59-year-old man with refractory corneal ulcer after corneal grafting received in 2003 a keratoprosthesis with supporting Dacron tissue (Pintucci). The course 35 years after implantation of the osteo-odonto-keratoprosthesis was uneventful. Histologically there were no signs of loosening, rejection or infection. The autologous dentin, which was used for the fixation, was still present. The eye with the Dacron fixated prosthesis (Pintucci) had to be enucleated due to a loosening with endophthalmitis one and a half year after implantation. Keratoprostheses with autologous fixation often show good long-term results. On the other hand, prostheses with synthetic material are more often complicated by dislocation and inflammation.

  10. Dental stem cells: a future asset of ocular cell therapy.

    PubMed

    Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Singhal, Shweta; Goh, Bee-Tin; Mehta, Jodhbir S

    2015-11-10

    Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.

  11. Biointegration of the osteo-odonto lamina in the modified osteo-odonto keratoprosthesis: engineering of tissue to restore lost vision.

    PubMed

    Sawatari, Yoh; Marx, Robert E; Perez, Victor L; Parel, Jean-Marie

    2013-01-01

    The modified osteo-odonto keratoprosthesis (MOOKP) is a biologic keratoprosthesis that is used to treat a severely scarred cornea. The procedure involves multiple stages, including the transplantation of buccal mucosa to the damaged ocular surface and the implantation of an osteo-odonto lamina with a mounted polymethylmethacrylate lens. Among the keratoprostheses currently available, the MOOKP has proven to be the most effective based on the number of patients who have undergone the procedure and the duration of documented follow-up. Upon successful biointegration of the osteo-odonto lamina, the keratoprosthesis is able to resist resorption, provide stability, and prevent bacterial invasion and epithelial ingrowth. The effectiveness of the MOOKP is dependent on the anatomic and physiologic characteristics of the dental tissues and periodontal ligament.

  12. High-Resolution Photoacoustic Imaging of Ocular Tissues

    PubMed Central

    Silverman, Ronald H.; Kong, Fanting; Chen, Y.C.; Lloyd, Harriet O.; Kim, Hyung Ham; Cannata, Jonathan M.; Shung, K. Kirk; Coleman, D Jackson

    2010-01-01

    Optical coherence tomography (OCT) and ultrasound (US) are methods widely used for diagnostic imaging of the eye. These techniques detect discontinuities in optical refractive index and acoustic impedance respectively. Because these both relate to variations in tissue density or composition, OCT and US images share a qualitatively similar appearance. In photoacoustic imaging (PAI), short light pulses are directed at tissues, pressure is generated due to a rapid energy deposition in the tissue volume, and thermoelastic expansion results in generation of broadband US. PAI thus depicts optical absorption, which is independent of the tissue characteristics imaged by OCT or US. Our aim was to demonstrate the application of PAI in ocular tissues and to do so with lateral resolution comparable to OCT. We developed two PAI assemblies, both of which used single-element US transducers and lasers sharing a common focus. The first assembly had optical and 35-MHz US axes offset by a 30° angle. The second assembly consisted of a 20-MHz ring transducer with a coaxial optics. The laser emitted 5-ns pulses at either 532-nm or 1064-nm, with spot sizes at the focus of 35-μm for the angled probe and 20-μm for the coaxial probe. We compared lateral resolution by scanning 12.5-μm diameter wire targets with pulse/echo US and PAI at each wavelength. We then imaged the anterior segment in whole ex vivo pig eyes and the choroid and ciliary body region in sectioned eyes. PAI data obtained at 1064 nm in the near infrared had higher penetration but reduced signal amplitude compared to that obtained using the 532-nm green wavelength. Images were obtained of the iris, choroid and ciliary processes. The zonules and anterior cornea and lens surfaces were seen at 532 nm. Because the laser spot size was significantly smaller than the US beamwidth at the focus, PAI images had superior resolution than those obtained using conventional US. PMID:20420969

  13. Association between clinical diagnostic tests and health-related quality of life surveys in patients with dry eye syndrome.

    PubMed

    Mizuno, Yoshinobu; Yamada, Masakazu; Miyake, Yozo

    2010-07-01

    This study was performed to assess the impact of dry eye on patients' quality of life (QOL) and to analyze the association between subjective symptoms and ocular surface findings of dry eye. The study population consisted of 158 patients with dry eye aged 20 years or older who visited any of the 15 medical care facilities enrolled in the study. The backgrounds and ocular findings of the patients were investigated, and their QOL was evaluated with the Japanese version of the 25-item National Eye Institute Visual Functioning Questionnaire (VFQ-25) and of the Medical Outcomes Study (MOS) 8-item Short-Form Health Survey (SF-8) to examine the association between subjective symptoms and ocular surface findings. Of the patients enrolled, 15 were men and 143 were women, and their average age was 62.5 +/- 12.6 years. Sixty patients (38.0%) had comorbid Sjögren syndrome (SS). The results of Schirmer testing, fluorescein staining, and rose bengal staining for SS patients were significantly worse than those for the non-SS patients, but the VFQ-25 and SF-8 scores were not significantly different between the SS and non-SS patients. In the ocular surface findings, a weak association between the fluorescein staining scores and general vision scores, a subscale of the VFQ-25, was found. However, the ocular surface findings and VFQ-25/SF-8 results in the simple correlation analysis as well as in the multiple linear regression analysis showed no significant associations. Ocular surface findings and QOL scores of patients with dry eye appear to disagree. Therefore, it is necessary to address subjective symptoms and QOL scores in addition to examination findings when evaluating dry eye.

  14. Contributions of ocular surface components to matrix-metalloproteinases (MMP)-2 and MMP-9 in feline tears following corneal epithelial wounding.

    PubMed

    Petznick, Andrea; Madigan, Michele C; Garrett, Qian; Sweeney, Deborah F; Evans, Margaret D M

    2013-01-01

    This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding. Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs. The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (p<0.05). Tears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining. Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study for tear-derived MMP-2 and MMP-9 following corneal wounding are the lacrimal gland and CALT. Other sources included stromal keratocytes and conjunctiva with goblet cells.

  15. The Ocular Surface Chemical Burns

    PubMed Central

    Baradaran-Rafii, Alireza; Djalilian, Ali R.

    2014-01-01

    Ocular chemical burns are common and serious ocular emergencies that require immediate and intensive evaluation and care. The victims of such incidents are usually young, and therefore loss of vision and disfigurement could dramatically affect their lives. The clinical course can be divided into immediate, acute, early, and late reparative phases. The degree of limbal, corneal, and conjunctival involvement at the time of injury is critically associated with prognosis. The treatment starts with simple but vision saving steps and is continued with complicated surgical procedures later in the course of the disease. The goal of treatment is to restore the normal ocular surface anatomy and function. Limbal stem cell transplantation, amniotic membrane transplantation, and ultimately keratoprosthesis may be indicated depending on the patients' needs. PMID:25105018

  16. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review)

    PubMed Central

    WAN, CAIFENG; LI, FENGHUA; LI, HONGLI

    2015-01-01

    The eye is an ideal target organ for gene therapy as it is easily accessible and immune-privileged. With the increasing insight into the underlying molecular mechanisms of ocular diseases, gene therapy has been proposed as an effective approach. Successful gene therapy depends on efficient gene transfer to targeted cells to prove stable and prolonged gene expression with minimal toxicity. At present, the main hindrance regarding the clinical application of gene therapy is not the lack of an ideal gene, but rather the lack of a safe and efficient method to selectively deliver genes to target cells and tissues. Ultrasound-targeted microbubble destruction (UTMD), with the advantages of high safety, repetitive applicability and tissue targeting, has become a potential strategy for gene- and drug delivery. When gene-loaded microbubbles are injected, UTMD is able to enhance the transport of the gene to the targeted cells. High-amplitude oscillations of microbubbles act as cavitation nuclei which can effectively focus ultrasound energy, produce oscillations and disruptions that increase the permeability of the cell membrane and create transient pores in the cell membrane. Thereby, the efficiency of gene therapy can be significantly improved. The UTMD-mediated gene delivery system has been widely used in pre-clinical studies to enhance gene expression in a site-specific manner in a variety of organs. With reasonable application, the effects of sonoporation can be spatially and temporally controlled to improve localized tissue deposition of gene complexes for ocular gene therapy applications. In addition, appropriately powered, focused ultrasound combined with microbubbles can induce a reversible disruption of the blood-retinal barrier with no significant side effects. The present review discusses the current status of gene therapy of ocular diseases as well as studies on gene therapy of ocular diseases meditated by UTMD. PMID:26151686

  17. Ocular static and dynamic light scattering: a noninvasive diagnostic tool for eye research and clinical practice

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.

    2004-01-01

    The noninvasive techniques of static and dynamic light scattering are emerging as valuable diagnostic tools for the early detection of ocular and systemic diseases. These include corneal abnormalities, pigmentary dispersion syndrome, glaucoma, cataract, diabetic vitreopathy, and possibly macular degeneration. Systemic conditions such as diabetes and possibly Alzheimer's disease can potentially be detected early via ocular tissues. The current state of development of these techniques for application to ophthalmic research and ultimately clinical practice is reviewed. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  18. Effect of topical rebamipide on goblet cells in the lid wiper of human conjunctiva

    PubMed Central

    Kase, Satoru; Shinohara, Toshiya; Kase, Manabu; Ishida, Susumu

    2017-01-01

    It has been demonstrated that topical administration of rebamipide, which is an antiulcer agent, increases the mucin level of the tear film and ameliorates ocular surface conditions such as lid wiper epitheliopathy. The aim of the present study was to analyze the changes in goblet cell number, cell proliferation, and epidermal growth factor receptor (EGFR) induced by topical rebamipide addition to the lid wiper of humans. A total of 30 eyelid tissue samples were obtained during involutional entropion surgeries, fixed in paraformaldehyde, embedded in paraffin and divided into two groups: Rebamipide or non-rebamipide. The tissues in the rebamipide group were obtained from patients who had a medical history of topical rebamipide use prior to surgery. The number of goblet cells was counted under light microscopy. A total of 22 eyelid tissue samples were further examined using immunohistochemistry with anti-Ki-67 and anti-EGFR antibodies to evaluate cell proliferation and EGFR expression, respectively. Histologically, the lid wiper and palpebral conjunctiva were clearly identified in the tissues. The number of goblet cells was significantly higher in the rebamipide group compared with the non-rebamipide group (P=0.0367). There was no significant difference in lid wiper cell proliferation between the rebamipide and non-rebamipide groups. Immunohistochemistry revealed that EGFR levels in the lid wiper epithelial cells were significantly higher in the rebamipide group compared with the non-rebamipide group (P=0.0237). These results suggest that topical rebamipide application increases the number of goblet cells in the lid wiper, which in turn upregulates the expression of EGFR. These findings may be clinically relevant and provide a therapeutic basis for the treatment of ocular disease such as dry eye and lid wiper epitheliopathy. PMID:28587435

  19. Effect of topical rebamipide on goblet cells in the lid wiper of human conjunctiva.

    PubMed

    Kase, Satoru; Shinohara, Toshiya; Kase, Manabu; Ishida, Susumu

    2017-06-01

    It has been demonstrated that topical administration of rebamipide, which is an antiulcer agent, increases the mucin level of the tear film and ameliorates ocular surface conditions such as lid wiper epitheliopathy. The aim of the present study was to analyze the changes in goblet cell number, cell proliferation, and epidermal growth factor receptor (EGFR) induced by topical rebamipide addition to the lid wiper of humans. A total of 30 eyelid tissue samples were obtained during involutional entropion surgeries, fixed in paraformaldehyde, embedded in paraffin and divided into two groups: Rebamipide or non-rebamipide. The tissues in the rebamipide group were obtained from patients who had a medical history of topical rebamipide use prior to surgery. The number of goblet cells was counted under light microscopy. A total of 22 eyelid tissue samples were further examined using immunohistochemistry with anti-Ki-67 and anti-EGFR antibodies to evaluate cell proliferation and EGFR expression, respectively. Histologically, the lid wiper and palpebral conjunctiva were clearly identified in the tissues. The number of goblet cells was significantly higher in the rebamipide group compared with the non-rebamipide group (P=0.0367). There was no significant difference in lid wiper cell proliferation between the rebamipide and non-rebamipide groups. Immunohistochemistry revealed that EGFR levels in the lid wiper epithelial cells were significantly higher in the rebamipide group compared with the non-rebamipide group (P=0.0237). These results suggest that topical rebamipide application increases the number of goblet cells in the lid wiper, which in turn upregulates the expression of EGFR. These findings may be clinically relevant and provide a therapeutic basis for the treatment of ocular disease such as dry eye and lid wiper epitheliopathy.

  20. Expression Profile of the Integrin Receptor Subunits in the Guinea Pig Sclera.

    PubMed

    Wang, Kevin K; Metlapally, Ravikanth; Wildsoet, Christine F

    2017-06-01

    The ocular dimensional changes in myopia reflect increased scleral remodeling, and in high myopia, loss of scleral integrity leads to biomechanical weakening and continued scleral creep. As integrins, a type of cell surface receptors, have been linked to scleral remodeling, they represent potential targets for myopia therapies. As a first step, this study aimed to characterize the integrin subunits at the messenger RNA level in the sclera of the guinea pig, a more recently added but increasingly used animal model for myopia research. Primers for α and β integrin subunits were designed using NCBI/UCSC Genome Browser and Primer3 software tools. Total RNA was extracted from normal scleral tissue and isolated cultured scleral fibroblasts, as well as liver and lung, as reference tissues, all from guinea pig. cDNA was produced by reverse transcription, PCR was used to amplify products of predetermined sizes, and products were sequenced using standard methods. Guinea pig scleral tissue expressed all known integrin alpha subunits except αD and αE. The latter integrin subunits were also not expressed by cultured guinea pig scleral fibroblasts; however, their expression was confirmed in guinea pig liver. In addition, isolated cultured fibroblasts did not express integrin subunits αL, αM, and αX. This difference between results for cultured cells and intact sclera presumably reflects the presence in the latter of additional cell types. Both guinea pig scleral tissue and isolated scleral fibroblasts expressed all known integrin beta subunits. All results were verified through sequencing. The possible contributions of integrins to scleral remodeling make them plausible targets for myopia prevention. Data from this study will help guide future ex vivo and in vitro studies directed at understanding the relationship between scleral integrins and ocular growth regulation in the guinea pig model for myopia.

  1. Efficacy and Safety of Carbomer-Based Lipid-Containing Artificial Tear Formulations in Patients With Dry Eye Syndrome.

    PubMed

    Chung, So-Hyang; Lim, Sung A; Tchach, Hungwon

    2016-02-01

    To evaluate the efficacy and safety profile of carbomer-based lipid-containing artificial tear formulations (CBLAT) in patients with dry eye syndrome. A multicenter parallel-group study was conducted in 412 patients with dry eye syndrome. Of these patients, 221 switched from using artificial tears to CBLAT (switching group) and 191 added CBLAT to their current treatment (add-on group). Ocular symptom scores, ocular staining grades, tear film breakup time (tBUT), Schirmer I test value, and Korean dry eye level (as defined by the Korean Corneal Disease Study Group guidelines) were evaluated at baseline and after 4 weeks of treatment. After 4 weeks of treatment, ocular surface staining grade, tBUT, Schirmer I value, ocular irritation symptom scores, and the positive rate of visual symptom improved significantly in both groups. Mean reductions in ocular surface staining grades (-0.8 ± 0.9) and ocular irritation symptom scores (-0.8 ± 0.8) in the add-on group were significantly higher than those (-0.5 ± 0.8 and -0.6 ± 0.8) in the switching group (P < 0.01 and P < 0.05). The positive rate of visual symptoms (44.2%) in the add-on group was significantly higher than that (26.4%) in the switching group (P < 0.01). The decrease of Korean dry eye level was 30.1% in the switching group and 51.6% in the add-on group. More patients in the add-on group had decreased dry eye levels than those in the switching group (P < 0.0001). CBLAT improves ocular surface staining grades, tBUT, Schirmer I values, and ocular symptoms in patients with dry eye syndrome.

  2. Placental amniotic membrane: the pathway to ocular transplantation.

    PubMed

    Hill, Sonia June

    2008-11-01

    Ophthalmology research has identified a relationship between human placenta and eye tissue. Placental amniotic membrane provides structural healing properties that help restore vision in patients with ocular disease that has been unresponsive to medical treatment. The pathway from donor placenta retrieval to amniotic membrane transplantation (AMT) involves perioperative nurses from obstetrics and ophthalmology departments who are well versed in federal regulations and eye or tissue bank standards. Perioperative nurses can promote recycling of placentas for preservation and facilitate optimal surgical outcomes for patients undergoing AMT, as well as provide these patients with emotional support and education.

  3. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    NASA Astrophysics Data System (ADS)

    Martínez-Pardo, M. E.; Ley-Chávez, E.; Reyes-Frías, M. L.; Rodríguez-Ferreyra, P.; Vázquez-Maya, L.; Salazar, M. A.

    2007-11-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is "Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation". At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  4. Noninvasive spectroscopic diagnosis of superficial ocular lesions and corneal infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourant, J.R.; Bigio, I.J.; Johnson, T.

    The potential of a rapid noninvasive diagnostic system to detect tissue abnormalities on the surface of the eye has been investigated. The optical scatter signal from lesions and normal areas on the conjunctival sclera of the human eye were measured in vivo. It is possible to distinguish nonpigmented pingueculas from other lesions. The ability of the system to detect malignancies could not be tested because none of the measured and biopsied lesions were malignant. Optical scatter and fluorescence spectra of bacterial and fungal suspensions, and corneal irritations were also collected. Both scattering and fluorescence show potential for diagnosing corneal infections.

  5. Osteo-odonto-keratoprosthesis: a human model of autotransplant.

    PubMed

    Pecorella, Irene; Taloni, Maurizio; Ciardi, Antonio; Alexander, Robert A; Falcinelli, Giancarlo

    2006-10-01

    We evaluated the microscopical changes that occurred when bone and dental tissue were exposed to such a foreign environment as the ocular surface and anterior chamber in 17 osteo-odonto-keratoprostheses removed from the recipient's eye after 1 to 20 years. Histochemical methods were performed to demonstrate elastic and precursor fibers, while immunohistochemical procedures were used to study the distribution of collagen types I to VI. Islands of heterotopic, newly formed bone were observed in the dentin and the periodontal space, leading to focal dentoalveolar ankylosis. Remodelling and disappearance of the periodontal ligament was never diffuse.

  6. The role of the lacrimal functional unit in the pathophysiology of dry eye.

    PubMed

    Stern, Michael E; Gao, Jianping; Siemasko, Karyn F; Beuerman, Roger W; Pflugfelder, Stephen C

    2004-03-01

    The majority of dry eye symptoms are due to a chronic inflammation of the lacrimal functional unit resulting in a loss of tear film integrity and normal function. This leads to a reduction in the ability of the ocular surface to respond to environmental challenges. The underlying cause of tear film dysfunction is the alteration of tear aqueous, mucin, and lipid components. This may result from a systemic autoimmune disease or a local autoimmune event. A lack of systemic androgen support to the lacrimal gland has been shown to be a facilitative factor in the initiation of this type of pathophysiology. Tear secretion is controlled by the lacrimal functional unit consisting of the ocular surface (cornea, conjunctiva, accessory lacrimal glands, and meibomian glands), the main lacrimal gland and the interconnecting innervation. If any portion of this functional unit is compromised, lacrimal gland support to the ocular surface is impeded. Factors such as neurogenic inflammation and T cell involvement in the disease pathogenesis as well as newly developed animal models of ocular surface inflammation are discussed.

  7. Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation

    PubMed Central

    Ji, Yong Woo; Mittal, Sharad K.; Hwang, Ho Sik; Chang, Eun-Ju; Lee, Joon H.; Seo, Yuri; Yeo, Areum; Noh, Hyemi; Lee, Hye Sun; Chauhan, Sunil K.; Lee, Hyung Keun

    2016-01-01

    Inflammatory damage of mucosal surface of the eye is a hallmark of dry eye disease (DED), and in severe cases can lead to significant discomfort, visual impairment, and blindness. DED is a multifactorial autoimmune disorder with a largely unknown pathogenesis. Using a cross-sectional patient study and a well-characterized murine model of DED, herein we investigated the immunoregulatory function of interleukin-22 (IL-22) in the pathogenesis of DED. We found that IL-22 levels were elevated in lacrimal fluids of DED patients and inversely correlated with severity of disease. Acinar cells of the lacrimal glands, not inflammatory immune cells, are the primary source of IL-22, which suppresses inflammation in ocular surface epithelial cells upon desiccating stress. Moreover, loss of function analyses using IL-22 knock-out mice demonstrated that IL-22 is essential for suppression of ocular surface infiltration of Th17 cells and inhibition of DED induction. Our novel findings elucidate immunoregulatory function of lacrimal gland-derived IL-22 in inhibiting IL-17-mediated ocular surface epitheliopathy in DED thus making IL-22 a new relevant therapeutic target. PMID:28051088

  8. Analysis of the Pathogenic Factors and Management of Dry Eye in Ocular Surface Disorders.

    PubMed

    Nebbioso, Marcella; Del Regno, Paola; Gharbiya, Magda; Sacchetti, Marta; Plateroti, Rocco; Lambiase, Alessandro

    2017-08-13

    The tear film represents the interface between the eye and the environment. The alteration of the delicate balance that regulates the secretion and distribution of the tear film determines the dry eye (DE) syndrome. Despite having a multifactorial origin, the main risk factors are female gender and advanced age. Likewise, morphological changes in several glands and in the chemical composition of their secretions, such as proteins, mucins, lipidics, aqueous tears, and salinity, are highly relevant factors that maintain a steady ocular surface. Another key factor of recurrence and onset of the disease is the presence of local and/or systemic inflammation that involves the ocular surface. DE syndrome is one of the most commonly encountered diseases in clinical practice, and many other causes related to daily life and the increase in average life expectancy will contribute to its onset. This review will consider the disorders of the ocular surface that give rise to such a widespread pathology. At the end, the most recent therapeutic options for the management of DE will be briefly discussed according to the specific underlying pathology.

  9. Analysis of the Pathogenic Factors and Management of Dry Eye in Ocular Surface Disorders

    PubMed Central

    Del Regno, Paola; Sacchetti, Marta; Plateroti, Rocco

    2017-01-01

    The tear film represents the interface between the eye and the environment. The alteration of the delicate balance that regulates the secretion and distribution of the tear film determines the dry eye (DE) syndrome. Despite having a multifactorial origin, the main risk factors are female gender and advanced age. Likewise, morphological changes in several glands and in the chemical composition of their secretions, such as proteins, mucins, lipidics, aqueous tears, and salinity, are highly relevant factors that maintain a steady ocular surface. Another key factor of recurrence and onset of the disease is the presence of local and/or systemic inflammation that involves the ocular surface. DE syndrome is one of the most commonly encountered diseases in clinical practice, and many other causes related to daily life and the increase in average life expectancy will contribute to its onset. This review will consider the disorders of the ocular surface that give rise to such a widespread pathology. At the end, the most recent therapeutic options for the management of DE will be briefly discussed according to the specific underlying pathology. PMID:28805710

  10. The Endocytic Recycling Regulatory Protein EHD1 Is Required for Ocular Lens Development

    PubMed Central

    Arya, Priyanka; Rainey, Mark A.; Bhattacharyya, Sohinee; Mohapatra, Bhopal; George, Manju; Kuracha, Murali R; Storck, Matthew D.; Band, Vimla; Govindarajan, Venkatesh; Band, Hamid

    2015-01-01

    The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis. PMID:26455409

  11. Ocular Phenotype of Fbn2-Null Mice

    PubMed Central

    Shi, Yanrong; Tu, Yidong; Mecham, Robert P.; Bassnett, Steven

    2013-01-01

    Purpose. Fibrillin-2 (Fbn2) is the dominant fibrillin isoform expressed during development of the mouse eye. To test its role in morphogenesis, we examined the ocular phenotype of Fbn2−/− mice. Methods. Ocular morphology was assessed by confocal microscopy using antibodies against microfibril components. Results. Fbn2−/− mice had a high incidence of anterior segment dysgenesis. The iris was the most commonly affected tissue. Complete iridal coloboma was present in 37% of eyes. Dyscoria, corectopia and pseudopolycoria were also common (43% combined incidence). In wild-type (WT) mice, fibrillin-2-rich microfibrils are prominent in the pupillary membrane (PM) during development. In Fbn2-null mice, the absence of Fbn2 was partially compensated for by increased expression of fibrillin-1, although the resulting PM microfibrils were disorganized, compared with WTs. In colobomatous adult Fbn2−/− eyes, the PM failed to regress normally, especially beneath the notched region of the iris. Segments of the ciliary body were hypoplastic, and zonular fibers, although relatively plentiful, were unevenly distributed around the lens equator. In regions where the zonular fibers were particularly disturbed, the synchronous differentiation of the underlying lens fiber cells was affected. Conclusions. Fbn2 has an indispensable role in ocular morphogenesis in mice. The high incidence of iris coloboma in Fbn2-null animals implies a previously unsuspected role in optic fissure closure. The observation that fiber cell differentiation was disturbed in Fbn2−/− mice raises the possibility that the attachment of zonular fibers to the lens surface may help specify the equatorial margin of the lens epithelium. PMID:24130178

  12. Ocular surface and tear film status among contact lens wearers and non-wearers who use VDT at work: comparing three different lens types.

    PubMed

    Tauste, Ana; Ronda, Elena; Baste, Valborg; Bråtveit, Magne; Moen, Bente E; Seguí Crespo, María-Del-Mar

    2018-04-01

    To analyze differences in the ocular surface appearance and tear film status of contact lens wearers and non-wearers in a group of visual display terminals (VDT) workers and additionally to assess differences between lens materials. Cross-sectional study of 236 office workers, of whom 92 were contact lens wearers. Workers provided information on their contact lenses (conventional hydrogel, silicone hydrogel or rigid gas permeable lenses) and exposure to VDT at work. Ocular surface and tear film status were determined by the presence of bulbar, limbal and lid redness, lid roughness and corneal staining type, and by Schirmer's and tear break-up time tests (TBUT). A generalized linear model was used to calculate the crude (cRR) and age- and sex-adjusted (aRR) relative risk to measure the association between ocular surface and tear film abnormalities and contact lens use and type. The aRR of ocular surface abnormalities was higher in contact lens wearers compared to non-wearers: bulbar redness (aRR 1.69; 95% CI 1.25-2.30), limbal redness (aRR 2.87; 1.88-4.37), lid redness (aRR 2.53; 1.35-4.73) and lid roughness (aRR 7.03; 1.31-37.82). VDT exposure > 4 h/day increased wearers' risk of limbal and lid redness. Conventional hydrogel wearers had the highest risk of ocular surface abnormalities, followed by silicone hydrogel wearers. Both contact and non-contact lens wearers had a high prevalence of altered TBUT (77.3 and 75.7% respectively) and Schirmer (51.8 and 41.3%). Regular contact lens use during VDT exposure at work increases risk of bulbar, limbal and lid redness, and lid roughness, especially in soft contact lens wearers. The high prevalence of altered TBUT and Schirmer's results in all participants suggests that VDT use greatly affects tear film characteristics.

  13. Ocular surface alterations and in vivo confocal microscopic characteristics of corneas in patients with myasthenia gravis.

    PubMed

    Erkan Turan, Kadriye; Kocabeyoglu, Sibel; Bekircan-Kurt, Can Ebru; Bezci, Figen; Erdem-Ozdamar, Sevim; Irkec, Murat

    2018-03-01

    To evaluate ocular surface alterations and characteristics of corneal basal epithelium and subbasal nerves in patients with myasthenia gravis. Myasthenia gravis patients (n = 21) and healthy controls (n = 20) were enrolled. All participants underwent ocular surface testing in the following order: tear break-up time, lissamine green staining, Schirmer I test with anesthesia, and Ocular Surface Disease Index questionnaire. The Cochet-Bonnet esthesiometer was used to measure corneal sensitivity. Basal epithelial cells and subbasal nerves were evaluated using in vivo confocal microscopy. Myasthenia gravis patients had higher Ocular Surface Disease Index score (13.9 ± 15.0 vs 1.4 ± 2.2, p < 0.001) and lissamine green staining score (0.6 ± 0.4 vs 0.2 ± 0.4, p = 0.007). Break-up time score (9.3 ± 3.0 vs 9.9 ± 1.9, p = 0.481) and Schirmer I test score (16.5 ± 9.2 vs 19.3 ± 8.4, p = 0.323) did not differ significantly. Corneal sensation was 0.4 g/mm 2 in all eyes. Patients with myasthenia gravis had lower basal epithelial cell density (3775.7 ± 938.1 vs 4983.1 ± 608.5, p < 0.001) and total nerve density (1956.1 ± 373.3 vs 2277.9 ± 405.0, p = 0.012) and higher subbasal nerve tortuosity (1.9 ± 0.8 vs 1.6 ± 0.7, p = 0.007) than controls. A significant increase in Ocular Surface Disease Index scores was found with decreasing basal epithelial cell density (rho = -0.518, p = 0.001). There was a significantly moderate negative correlation between the duration of myasthenia gravis and the number of corneal nerves (rho = -0.497, p = 0.022). Significant alterations of basal epithelial cells and subbasal nerves were demonstrated in myasthenia gravis patients although there was no difference of corneal sensitivity between myasthenia gravis patients and healthy controls. Thus, it should be borne in mind that myasthenia gravis patients deserve further evaluation with regard to ocular surface disease.

  14. Ocular Tropism of Respiratory Viruses

    PubMed Central

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  15. Preservative-free treatment in glaucoma: who, when, and why.

    PubMed

    Stalmans, Ingeborg; Sunaric Mégevand, Gordana; Cordeiro, M Francesca; Hommer, Anton; Rossetti, Luca; Goñi, Francisco; Heijl, Anders; Bron, Alain

    2013-01-01

    To review and summarize the available literature on the effect of preservatives on the eye, to provide practical guidance for the clinical assessment of the ocular surface in glaucoma patients, and to define patient populations that might benefit from preservative-free topical intraocular pressure (IOP)-lowering agents. This manuscript is based on a combination of a literature review on preservatives and the eye and expert opinion from glaucoma specialists with an interest in ocular surface disease. There is an increasingly recognized association between eyedrop preservatives and ocular surface disease. Preservative-free therapy is now available for a wide range of active compounds, although there are still some misconceptions regarding their appropriate use. For patients treated topically for glaucoma or ocular hypertension, a rough estimate could be that 20% may need treatment with topical IOP-reducing agents that are free from preservatives. This review provides an up-to-date account of the literature regarding preservatives and the eye, as well as suggestions and recommendations on to when to use preservative-free antiglaucoma treatment.

  16. Therapeutic use of mini-scleral lenses in a patient with Graves' ophthalmopathy.

    PubMed

    Harthan, Jennifer S

    2014-01-01

    Patients with Graves' ophthalmopathy can be very challenging to manage secondary to the complex nature of their disease presentation. Patients may present with a variety of ocular findings including: lid retraction, periorbital and lid swelling, chemosis, conjunctival hyperemia, proptosis, optic neuropathy, restrictive myopathy, exposure keratopathy and/or keratoconjunctivitis sicca. Mini-scleral and scleral lens designs have been important in the management of irregular and regular corneas, and in the therapy of ocular surface diseases. We present here the case of a 48-year-old Caucasian male who had been diagnosed with Graves' ophthalmopathy 13 years earlier. With significant ocular surface staining and over ten diopters of astigmatism, the patient had never been able to wear contact lenses comfortably. After being fit with the Mini-Scleral Design™ lenses, his vision improved to 20/25 OU, his ocular surface improved, and overall quality of vision increased. Copyright © 2012 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  17. Alkaptonuria: A case report.

    PubMed

    Damarla, Nirupama; Linga, Prathima; Goyal, Mallika; Tadisina, Sanjay Reddy; Reddy, G Satyanarayana; Bommisetti, Hymavathi

    2017-06-01

    Alkaptonuria is a rare inborn error of metabolism with autosomal recessive inheritance with a mutation in homogentisate 1,2-dioxygenase. It results in accumulation of homogentisic acid in connective tissues (ochronosis). Most common ocular manifestations are bluish-black discoloration of the conjunctiva, cornea, and sclera. In this case report, a 39-year-old Indian male patient with additional ocular features in the retina is described.

  18. Alkaptonuria: A case report

    PubMed Central

    Damarla, Nirupama; Linga, Prathima; Goyal, Mallika; Tadisina, Sanjay Reddy; Reddy, G Satyanarayana; Bommisetti, Hymavathi

    2017-01-01

    Alkaptonuria is a rare inborn error of metabolism with autosomal recessive inheritance with a mutation in homogentisate 1,2-dioxygenase. It results in accumulation of homogentisic acid in connective tissues (ochronosis). Most common ocular manifestations are bluish-black discoloration of the conjunctiva, cornea, and sclera. In this case report, a 39-year-old Indian male patient with additional ocular features in the retina is described. PMID:28643719

  19. Integrated instrument for dynamic light scattering and natural fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Rovati, Luigi; Pollonini, Luca; Ansari, Rafat R.

    2001-06-01

    Over the past two decades, great efforts have been made in ophthalmology to use optical techniques based on dynamic light scattering and tissue natural fluorescence for early (at molecular level) diagnosis of ocular pathologies. In our previous studies, the relationship between the corneal AF and DLS decay widths of ocular tissues were established by performing measurements on diabetes mellitus patients. In those studies, corneal AF mean intensities were significantly correlated with DLS decay width measurements for each diabetic retinopathy grade in the vitreous and in the cornea. This suggested that the quality of the diagnosis could be significantly improved by properly combining these two powerful techniques into a single instrument. Our approach is based on modifying a commercial scanning ocular fluorometer (Fluorotron Master, Ocumetrics Inc., CA, USA) to include both techniques in the same scanning unit. This configuration provides both DLS and AF real time measurements from the same ocular volume: they can be located in each section of the optical axis of the eye from the cornea to the retina. In this paper, the optical setup of the new system is described and preliminary in-vitro and in-vivo measurements are presented.

  20. Preparation and evaluation of a timolol maleate drug-resin ophthalmic suspension as a sustained-release formulation in vitro and in vivo.

    PubMed

    Qin, Fuhong; Zeng, Li; Zhu, Yongtao; Cao, Jingjing; Wang, Xiaohui; Liu, Wei

    2016-01-01

    The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug-resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8 ± 1.2 μm and drug loading at 43.00 ± 0.09%. The results indicate that drug released from the drug-resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug-resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.

  1. Insects have hairy eyes that reduce particle deposition

    NASA Astrophysics Data System (ADS)

    Amador, G. J.; Durand, F.; Mao, W.; Pusulri, S.; Takahashi, H.; Nguyen, V.-T.; Shimoyama, I.; Alexeev, A.; Hu, D. L.

    2015-12-01

    An insect's eyes may make up to 40% of its body's surface, and are in danger of being coated by foreign particles such as dust and pollen. To protect them, several insect species possess an array of ocular hairs evenly spaced between each photoreceptor unit. Although these hairs have been observed for over 50 years, their purpose remains a mystery. In this study, we elucidate the function of ocular hairs using a combination of experiments, numerical simulation and micro-fabrication. We measure the eyes of 18 species of insects and find that the length of their ocular hairs is equal to their spacing. We conduct wind tunnel experiments using both an insect eye mimic and an at-scale fabricated micro-pillar array of the same dimensions as the insect eye. Our experiments and simulations show that ocular hairs reduce airflow at the eye surface by up to 90%. We conclude that ocular hairs act similarly to mammalian eyelashes: as insects fly, ocular hairs deflect incoming air and create a zone of stagnant air. Airflow and particle deposition are reduced dramatically, while light is only minimally occluded. Micro-scale ocular hairs may find application in the deployment of sensors outdoors, for which accumulation of airborne dust and pollen has no current solution.

  2. A MODEL FOR THE TEAR FILM AND OCULAR SURFACE TEMPERATURE FOR PARTIAL BLINKS

    PubMed Central

    Deng, Quan; Braun, R. J.; Driscoll, T. A.; King-Smith, P. E.

    2015-01-01

    In this paper, we investigate the dynamics of tear film and the associated temperature variation for partial blinks. We investigate the mechanism of fluid supply during partial blink cycles, and compare the film thickness with observation in vivo. We find that varying the thickness of the fluid layer beneath the moving upper lid improves the agreement for the in vivo measurement of tear film thickness after a half blink. By examining the flux of the fluid, we provide an explanation of this assumption. We also investigate the temperature dynamics both at the ocular surface and inside the simulated anterior chamber. Our simulation results suggest that the ocular surface temperature readjusts rapidly to normal temperature distribution after partial blinks. PMID:25635242

  3. [Transplantation of labial salivary glands for severe dry eye treatment].

    PubMed

    Soares, Eduardo Jorge Carneiro; França, Valênio Perez

    2005-01-01

    To study the clinical effects of the secretion of transplanted labial glands used as ocular lubricant to treat severe dry-eye cases, to evaluate the duration of the results and to simplify the surgical technique. Thirty-seven surgeries were performed in twenty-one patients during the period of July 2000 to January 2004. The graft, consisting of labial mucosa and underlying salivary glands, was transplanted to the previously prepared area in the conjunctival fornix. All procedures were recommended in severe dry-eye cases, that is, eyes with total or nearly total xerophthalmia. The preoperative and postoperative protocols are presented emphasizing the items which were used in the comparative analysis of the results as well as the technical description of the surgical procedure. The graft survival and integration into the host tissues were observed in 97.2% of the cases. The clinical improvement, demonstrated by the disappearance of the symptoms, better biomicroscopic aspect of the ocular surface, better vision and disuse of lubricant drops, was observed in 91.9% of the cases. The follow-up showed not only persistence but also stability of the results. Infection represented one case and ptosis represented three cases of the only four observed complications. The improvement of severe dry-eye cases detected after the transplantation of labial salivary glands is significant. It demonstrates that the lubricant ocular surface produced by the salivary secretion is efficient and well-tolerated. The follow-up shows that the result persists in the long term from which it is concluded that the production of the secretion is permanent. The surgical technique of transplanting the labial salivary gland to the conjunctival fornix is very simple and easily accessible to any ophthalmic surgeon.

  4. Optical coherence tomography in estimating molecular diffusion of drugs and analytes in ocular tissues

    NASA Astrophysics Data System (ADS)

    Ghosn, Mohamad G.; Tuchin, Valery V.; Larin, Kirill V.

    2009-02-01

    Aside from other ocular drug delivery methods, topical application and follow up drug diffusion through the cornea and sclera of the eye remain the favored method, as they impose the least pain and discomfort to the patient. However, this delivery route suffers from the low permeability of epithelial tissues and drug washout, thus reducing the effectiveness of the drug and ability to reach its target in effective concentrations. In order to better understand the behavioral characteristics of diffusion in ocular tissue, a method for noninvasive imaging of drug diffusion is needed. Due to its high resolution and depth-resolved imaging capabilities, optical coherence tomography (OCT) has been utilized in quantifying the molecular transport of different drugs and analytes in vitro in the sclera and the cornea. Diffusion of Metronidazole (0.5%), Dexamethasone (0.2%), Ciprofloxacin (0.3%), Mannitol (20%), and glucose solution (20%) in rabbit sclera and cornea were examined. Their permeability coefficients were calculated by using OCT signal slope and depth-resolved amplitude methods as function of time and tissue depth. For instance, mannitol was found to have a permeability coefficient of (8.99 +/- 1.43) × 10-6 cm/s in cornea (n=4) and (6.18 +/- 1.08) × 10-6 cm/s in sclera (n=5). We also demonstrate the capability of OCT technique for depth-resolved monitoring and quantifying of glucose diffusion in different layers of the sclera. We found that the glucose diffusion rate is not uniform throughout the tissue and is increased from approximately (2.39 +/- 0.73) × 10-6 cm/s at the epithelial side to (8.63 +/- 0.27) × 10-6 cm/s close to the endothelial side of the sclera. In addition, discrepancy in the permeability rates of glucose solutions with different concentrations was observed. Such diffusion studies could enhance our knowledge and potentially pave the way for advancements of therapeutic and diagnostic techniques in the treatment of ocular diseases.

  5. Conjunctiva-Associated Lymphoid Tissue (CALT) Reactions to Antiglaucoma Prostaglandins with or without BAK-Preservative in Rabbit Acute Toxicity Study

    PubMed Central

    Liang, Hong; Baudouin, Christophe; Labbe, Antoine; Riancho, Luisa; Brignole-Baudouin, Françoise

    2012-01-01

    Conjunctiva-associated lymphoid tissue (CALT) is closely associated with ocular surface immunity. This study investigated the effects of antiglaucoma prostaglandin analogs with or without benzalkonium chloride (BAK) preservative on organized CALT using an acute toxic model. A total of 48 albino rabbits were used and seven groups of treatments were constituted. Solutions (50 µl) of PBS, 0.02%BAK, 0.02%BAK+latanoprost, 0.015%BAK+travoprost, 0.005%BAK+bimatoprost, BAK-freetravoprost preserved with the SofZia® system or BAK-freetafluprost were instilled 15 times at 5-min intervals in both eyes. CALT changes were analyzed using in vivo confocal microscopy (IVCM), immunohistology in cryosections for detecting MUC-5AC+ mucocytes and CD45+ hematopoietic cells. Antiglaucoma eye drops stimulated inflammatory cell infiltration in the CALT, and seemed to be primarily related to the concentration of their BAK content. The CALT reaction after instillation of BAK-containing eye drops was characterized by inflammatory cell infiltration in the dome and intrafollicular layers and by cell circulation inside the lymph vessels. CD45 was strongly expressed in the CALT after instillation of all BAK-containing solutions at 4 h and decreased at 24 h. The number of MUC-5AC+ mucocytes around the CALT structure decreased dramatically after instillation of BAK-containing solutions. This study showed for the first time the in vivo aspect of rabbit CALT after toxic stimuli, confirming the concentration-dependent toxic effects of BAK. IVCM-CALT analysis could be a pertinent tool in the future for understanding the immunotoxicologic challenges in the ocular surface and would provide useful criteria for evaluating newly developed eye drops. PMID:22442734

  6. Quantified elasticity mapping of ocular tissue using acoustic radiation force optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao; He, Youmin; Zhang, Yi; Ma, Teng; Zhu, Jiang; Miao, Yusi; Dai, Cuixia; Silverman, Ronald; Humayun, Mark S.; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    Age-related macular degeneration and keratoconus are two ocular diseases occurring in the posterior and anterior eye, respectively. In both conditions, the mechanical elasticity of the respective tissues changes during the early onset of disease. It is necessary to detect these differences and treat the diseases in their early stages to provide proper treatment. Acoustic radiation force optical coherence elastography is a method of elasticity mapping using confocal ultrasound waves for excitation and Doppler optical coherence tomography for detection. We report on an ARF-OCE system that uses modulated compression wave based excitation signals, and detects the spatial and frequency responses of the tissue. First, all components of the system is synchronized and triggered such that the signal is consistent between frames. Next, phantom studies are performed to validate and calibrate the relationship between the resonance frequency and the Young's modulus. Then the frequency responses of the anterior and posterior eye are detected for porcine and rabbit eyes, and the results correlated to the elasticity. Finally, spatial elastograms are obtained for a porcine retina. Layer segmentation and analysis is performed and correlated to the histology of the retina, where five distinct layers are recognized. The elasticities of the tissue layers will be quantified according to the mean thickness and displacement response for the locations on the retina. This study is a stepping stone to future in-vivo animal studies, where the elastic modulus of the ocular tissue can be quantified and mapped out accordingly.

  7. On the barrier properties of the cornea: a microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein.

    PubMed

    Mun, Ellina A; Morrison, Peter W J; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2014-10-06

    Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with β-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.

  8. Caterpillar induced kerato-conjunctivitis.

    PubMed

    Vissenberg, I; Raus, P; Van Tittelboom, T; Dockx, P; Tassignon, M J

    1993-01-01

    Caterpillar hairs disseminated by the wind can cause serious ocular problems in man. Although this ocular injury was already described in the past century, caterpillar keratoconjunctivitis remains occasional. A recent case of caterpillar keratoconjunctivitis will be described. The conjunctiva as well as the surrounding skin was involved in a huge erythematous rash. Since caterpillar hairs are equipped with barbed hooks, they can easily penetrate soft tissue and thus are very difficult to remove. Recurrent inflammatory reactions lasting for months and resulting in a granulomatous disease, is the rule. The name of keratitis nodosum was given to the granulomatous reaction, secondary to the presence of caterpillar hairs in corneal tissue.

  9. The contribution of the sclera and lamina cribrosa to the pathogenesis of glaucoma: Diagnostic and treatment implications.

    PubMed

    Quigley, Harry A

    2015-01-01

    Glaucoma, the second most common cause of world blindness, results from loss of retinal ganglion cells (RGC). RGC die as a consequence of injury to their axons, as they pass through the transition between the environment within the eye and that of the retrobulbar optic nerve, as they course to central visual centers. At the optic nerve head (ONH), axonal transport becomes abnormal, at least in part due to the effect of strain induced by intraocular pressure (IOP) on the sclera and ONH. Animal glaucoma models provide the ability to study how alterations in ocular connective tissues affect this pathological process. New therapeutic interventions are being investigated to mitigate glaucoma blindness by modifying the remodeling of ocular tissues in glaucoma. Some genetically altered mice are resistant to glaucoma damage, while treatment of the sclera with cross-linking agents makes experimental mouse glaucoma damage worse. Inhibition of transforming growth factor β activity is strikingly protective. Treatments that alter the response of ocular connective tissues to IOP may be effective in protecting those with glaucoma from vision loss. © 2015 Elsevier B.V. All rights reserved.

  10. The Impact of Ocular Pressures, Material Properties and Geometry on Optic Nerve Head Deformation

    NASA Technical Reports Server (NTRS)

    Feola, Andrew J.; Myers, Jerry G.; Raykin, Julia; Nelson, Emily S.; Samuels, Brian C.; Ethier C. Ross

    2017-01-01

    Alteration in intracranial pressure (ICP) has been associated with various diseases that cause visual impairment, including glaucoma, idiopathic intracranial hypertension and Visual Impairment and Intracranial Pressure (VIIP) syndrome. However, how changes in ICP lead to vision loss is unclear, although it is hypothesized to involve deformations of the tissues in the optic nerve head (ONH). Recently, understanding the effect of ICP alterations on ocular tissues has become a major concern for NASA, where 42 of astronauts that partake in long duration space missions suffer from VIIP syndrome. Astronauts with VIIP syndrome suffer from visual impairment and changes in ocular anatomy that persist after returning to earth (1). It is hypothesized that the cephalad fluid shift that occurs upon entering microgravity increases ICP, which leads to an altered biomechanical environment in the posterior globe and optic nerve sheath, and subsequently VIIP syndrome. Our goal was to develop a finite element (FE) model to simulate the acute effects of elevated ICP on the posterior eye. Here, we simulated how inter-individual differences affect the deformation of ONH tissues. Further, we examined how several different geometries influenced deformations when exposed to elevated ICP.

  11. Microneedle-based minimally-invasive measurement of puncture resistance and fracture toughness of sclera.

    PubMed

    Park, Seung Hyun; Lee, Kang Ju; Lee, JiYong; Yoon, Jae Hyoung; Jo, Dong Hyun; Kim, Jeong Hun; Kang, Keonwook; Ryu, WonHyoung

    2016-10-15

    The sclera provides the structural support of the eye and protects the intraocular contents. Since it covers a large portion of the eye surface and has relatively high permeability for most drugs, the sclera has been used as a major pathway for drug administration. Recently, microneedle (MN) technology has shown the possibility of highly local and minimally-invasive drug delivery to the eye by MN insertion through the sclera or the suprachoroidal space. Although ocular MN needs to be inserted through the sclera, there has been no systematic study to understand the mechanical properties of the sclera, which are important to design ocular MNs. In this study, we investigated a MN-based method to measure the puncture resistance and fracture toughness of the sclera. To reflect the conditions of MN insertion into the sclera, force-displacement curves obtained from MN-insertion tests were used to estimate the puncture resistance and fracture toughness of sclera tissue. To understand the effect of the insertion conditions, dependency of the mechanical properties on insertion speeds, pre-strain of the sclera, and MN sizes were analyzed and discussed. Measurement of mechanical property of soft biological tissue is challenging due to variations between tissue samples or lack of well-defined measurement techniques. Although non-invasive measurement techniques such as nano/micro indentation were employed to locally measure the elastic modulus of soft biological materials, mechanical properties such as puncture resistance or fracture toughness, which requires "invasive" measurement and is important for the application of "microneedles or hypodermic needles", has not been well studied. In this work, we report minimally-invasive measurement of puncture resistance and fracture toughness of sclera using a double MN insertion method. Parametric studies showed that use of MN proved to be advantageous because of minimally-invasive insertion into tissue as well as higher sensitivity to sub-tissue architecture during the measurement. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Lacritin and other new proteins of the lacrimal functional unit.

    PubMed

    McKown, Robert L; Wang, Ningning; Raab, Ronald W; Karnati, Roy; Zhang, Yinghui; Williams, Patricia B; Laurie, Gordon W

    2009-05-01

    The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as 'an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them'. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over 200 new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin's low nanomolar mitogenic activity. The lacritin-binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction.

  13. Ocular surface epithelium induces expression of human mucosal lymphocyte antigen (HML-1) on peripheral blood lymphocytes

    PubMed Central

    Gomes, J A P; Dua, H S; Rizzo, L V; Nishi, M; Joseph, A; Donoso, L A

    2004-01-01

    Background/aims: Peripheral blood CD8+ lymphocytes that home to mucosal surfaces express the human mucosal lymphocyte antigen (HML-1). At mucosal surfaces, including the ocular surface, only intraepithelial CD8+ lymphocytes express HML-1. These lymphocytes are retained in the intraepithelial compartment by virtue of the interaction between HML-1 and its natural ligand, E-cadherin, which is expressed on epithelial cells. The purpose of this study was to determine whether ocular surface epithelial cells (ocular mucosa) could induce the expression of human mucosal lymphocyte antigen on peripheral blood lymphocytes. Methods: Human corneal and conjunctival epithelial cells were co-cultured with peripheral blood lymphocytes. Both non-activated and activated lymphocytes were used in the experiments. After 7 days of incubation, lymphocytes were recovered and analysed for the antigens CD8/HML-1, CD4/HML-1, CD3/CD8, CD3/CD4, CD3/CD25, CD8/CD25, and CD4/CD25 by flowcytometry. Results: Significant statistical differences were observed in the CD8/HML-1 expression when conjunctival epithelial cells were co-cultured with non-activated and activated lymphocytes (p = 0.04 for each) and when corneal epithelial cells were co-cultured with non-activated lymphocytes (p = 0.03). Significant statistical difference in CD4/HML-1 expression was observed only when conjunctival epithelial cells were co-cultured with activated lymphocytes (p = 0.02). Conclusion: Ocular surface epithelial cells can induce the expression of human mucosal lymphocyte antigen on CD8+ (and to some extent on CD4+) lymphocytes. This may allow the retention of CD8+ and CD4+ lymphocytes within the epithelial compartment of the conjunctiva and play a part in mucosal homing of lymphocytes. PMID:14736792

  14. Effect of 0.3% Hydroxypropyl Methylcellulose/Dextran Versus 0.18% Sodium Hyaluronate in the Treatment of Ocular Surface Disease in Glaucoma Patients: A Randomized, Double-Blind, and Controlled Study.

    PubMed

    Prabhasawat, Pinnita; Ruangvaravate, Ngamkae; Tesavibul, Nattaporn; Thewthong, Maneerat

    2015-01-01

    To compare the efficacy and safety of 0.3% hydroxypropyl methylcellulose/dextran (HPMC/dextran) and 0.18% sodium hyaluronate (SH) in the treatment of ocular surface disease in patients using antiglaucoma drugs containing preservatives. This was a double-blind, randomized, parallel-group study in 70 glaucoma patients with Ocular Surface Disease Index (OSDI) score greater than 20 points and/or presence of ocular signs. Patients were randomized to receive either preservative-free 0.3% HPMC/dextran (n=35) or preservative-free 0.18% SH (n=35). Treatment was 1 drop in each eye, 4 times a day. Data were collected at baseline, at day 7 and day 28. The groups were homogeneous at baseline. At day 28, both treatments showed significant improvements (P<0.05) in the mean OSDI score, lid skin and lid margin inflammation, conjunctival injection, and expressibility of meibomian glands, corneal staining score, fluorescein tear breakup time (FBUT), and Schirmer I test. However, the mean OSDI score, lid margin inflammation and conjunctival injection showed significant improvements (P<0.05) in the SH group at days 7 and 28, compared to the HPMC/dextran group. FBUT and the Schirmer I test also showed significant improvements (P<0.05) in the SH group compared to the HPMC/dextran group, at day 28. No adverse reactions were observed in either group. Preservative-free artificial tear, 0.3% HPMC/dextran, and 0.18% SH, caused a significant relief of the ocular surface disease in glaucoma patients. However, 0.18% SH led to a greater improvement in ocular signs and symptoms than 0.3% HPMC/dextran.

  15. Rebamipide protects against glaucoma eyedrop-induced ocular surface disorders in rabbits

    PubMed Central

    Kawaguchi, Ichiro; Higashide, Tomomi; Takeji, Yasuhiro; Sakurai, Kazushi; Kawaguchi, Chiaki; Sugiyama, Kazuhisa

    2017-01-01

    Purpose This study aimed to determine if rebamipide eyedrops can improve ocular surface damage caused by the use of glaucoma eyedrops. Methods Female Kbl:Dutch rabbits were used to evaluate glaucoma eyedrop-induced ocular surface damage; one eye of each rabbit was untreated and the other was administered glaucoma eyedrops for 30 days. To evaluate the effects of rebamipide on ocular surface damage, one eye of each rabbit was administered vehicle-treated glaucoma eyedrops and the other was administered rebamipide-treated glaucoma eyedrops for 30 days. Corneal and conjunctival epithelial damage was evaluated using fluorescein and rose bengal staining, respectively. Conjunctival inflammation was observed by light microscopy with hematoxylin-eosin staining. Dark cells (in which the corneal microvilli were damaged) were analyzed by scanning electron microscopy. Results There were no significant differences in fluorescein staining between the untreated and glaucoma eyedrop-treated groups; however, rose bengal staining and the number of inflammatory cells in the conjunctiva significantly increased after glaucoma eyedrop treatment. There was a four-fold increase in the number of dark cells in the glaucoma eyedrop-treated group compared to untreated. In contrast, in the conjunctiva of the rebamipide-treated glaucoma eyedrop group, rose bengal staining scores, the number of inflammatory cells, and the number of dark cells were decreased compared to the vehicle-treated glaucoma eyedrop group. Conclusions Results from our in vivo rabbit study demonstrated that short-term use of glaucoma eyedrops induces corneal epithelium disorders at the cellular level, but that simultaneous use of rebamipide has the potential to protect and repair the ocular surface. PMID:29049370

  16. Rebamipide protects against glaucoma eyedrop-induced ocular surface disorders in rabbits.

    PubMed

    Kawaguchi, Ichiro; Kobayashi, Akira; Higashide, Tomomi; Takeji, Yasuhiro; Sakurai, Kazushi; Kawaguchi, Chiaki; Sugiyama, Kazuhisa

    2017-01-01

    This study aimed to determine if rebamipide eyedrops can improve ocular surface damage caused by the use of glaucoma eyedrops. Female Kbl:Dutch rabbits were used to evaluate glaucoma eyedrop-induced ocular surface damage; one eye of each rabbit was untreated and the other was administered glaucoma eyedrops for 30 days. To evaluate the effects of rebamipide on ocular surface damage, one eye of each rabbit was administered vehicle-treated glaucoma eyedrops and the other was administered rebamipide-treated glaucoma eyedrops for 30 days. Corneal and conjunctival epithelial damage was evaluated using fluorescein and rose bengal staining, respectively. Conjunctival inflammation was observed by light microscopy with hematoxylin-eosin staining. Dark cells (in which the corneal microvilli were damaged) were analyzed by scanning electron microscopy. There were no significant differences in fluorescein staining between the untreated and glaucoma eyedrop-treated groups; however, rose bengal staining and the number of inflammatory cells in the conjunctiva significantly increased after glaucoma eyedrop treatment. There was a four-fold increase in the number of dark cells in the glaucoma eyedrop-treated group compared to untreated. In contrast, in the conjunctiva of the rebamipide-treated glaucoma eyedrop group, rose bengal staining scores, the number of inflammatory cells, and the number of dark cells were decreased compared to the vehicle-treated glaucoma eyedrop group. Results from our in vivo rabbit study demonstrated that short-term use of glaucoma eyedrops induces corneal epithelium disorders at the cellular level, but that simultaneous use of rebamipide has the potential to protect and repair the ocular surface.

  17. Tear Osmolarity and Correlation With Ocular Surface Parameters in Patients With Dry Eye.

    PubMed

    Mathews, Priya M; Karakus, Sezen; Agrawal, Devika; Hindman, Holly B; Ramulu, Pradeep Y; Akpek, Esen K

    2017-11-01

    To analyze the distribution of tear film osmolarity in patients with dry eye and its association with other ocular surface parameters. Tear osmolarity and other quantitative dry eye parameters were obtained from patients with 1) clinically significant dry eye (significant symptoms and ocular surface staining, n = 131), 2) symptoms-only dry eye (significant symptoms but no significant ocular surface staining, n = 52), and 3) controls (no significant symptoms or staining, n = 42). Tear osmolarity varied significantly across groups (P = 0.01), with patients with clinically significant dry eye having the highest tear osmolarity (312.0 ± 16.9 mOsm/L), control patients having the lowest tear osmolarity (305.6 ± 9.7 mOsm/L), and patients with symptoms-only dry eye falling in between (307.4 ± 5.6 mOsm/L). Patients with clinically significant dry eye also tended to have a greater intereye difference in osmolarity (12.0 ± 13.4) than did the individuals with symptoms-only dry eye (9.1 ± 12.4) and controls (9.0 ± 7.4) (P = 0.06). In multivariable regression models, higher tear osmolarity was associated with higher Ocular Surface Disease Index, discomfort subscore (P = 0.02), and higher corneal and conjunctival staining scores (P < 0.01 for both). Worse eye tear osmolarity was not correlated with the corresponding tear film breakup time or Schirmer test (P > 0.05 for both). Individuals with symptomatic dry eye that is not yet clinically significant seem to have higher and more variable osmolarity measurements than controls, potentially indicating that changes in osmolarity precede clinical findings.

  18. [Optimization of benzalkonium chloride concentration in 0.0015% tafluprost ophthalmic solution from the points of ocular surface safety and preservative efficacy].

    PubMed

    Asada, Hiroyuki; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu; Kimura, Akio

    2010-06-01

    Optimization of benzalkonium chloride (alkyl dimethylbenzylammonium chloride: BAK) concentration as preservative in 0.0015% tafluprost ophthalmic solution (Tapros 0.0015% ophthalmic solution), an anti-glaucoma medicine, was examined from the points of ocular surface safety and preservative efficacy. BAKC(12), which is dodecyl dimethylbenzylammonium chloride, and BAKmix, which is the mixture of dodecyl, tetradecyl and hexadecyl dimethylbenzylammonium chloride were used in this study. The effects of BAKC(12) concentrations and the BAK types, BAKC(12) and BAKmix, in tafluprost ophthalmic solution on ocular surface safety were evaluated using the in vitro SV 40-immobilized human corneal epithelium cell line (HCE-T). Following treatments of Tafluprost ophthalmic solutions with BAKC(12), its concentration dependency was observed on cell viability of HCE-T. The cell viability of HCE-T after treatment of these solutions with 0.001% to 0.003% BAKC(12) for 5 minutes were the same level as that after treatment of the solution without BAK. Tafluprost ophthalmic solution with 0.01% BAKC(12) was safer for the ocular surface than the same solution with 0.01% BAKmix. Preservatives-effectiveness tests of tafluprost ophthalmic solutions with various concentrations of BAKC(12) were performed according to the Japanese Pharmacopoeia (JP), and solutions with more than 0.0005% BAKC(12) conformed to JP criteria. It was concluded that 0.0005% to 0.003% of BAKC(12) in tafluprost ophthalmic solution was optimal, namely, well-balanced from the points of ocular surface safety and preservative efficacy.

  19. Anterior Corneal, Posterior Corneal, and Lenticular Contributions to Ocular Aberrations.

    PubMed

    Atchison, David A; Suheimat, Marwan; Mathur, Ankit; Lister, Lucas J; Rozema, Jos

    2016-10-01

    To determine the corneal surfaces and lens contributions to ocular aberrations. There were 61 healthy participants with ages ranging from 20 to 55 years and refractions -8.25 diopters (D) to +3.25 D. Anterior and posterior corneal topographies were obtained with an Oculus Pentacam, and ocular aberrations were obtained with an iTrace aberrometer. Raytracing through models of corneas provided total corneal and surface component aberrations for 5-mm-diameter pupils. Lenticular contributions were given as differences between ocular and corneal aberrations. Theoretical raytracing investigated influence of object distance on aberrations. Apart from defocus, the highest aberration coefficients were horizontal astigmatism, horizontal coma, and spherical aberration. Most correlations between lenticular and ocular parameters were positive and significant, with compensation of total corneal aberrations by lenticular aberrations for 5/12 coefficients. Anterior corneal aberrations were approximately three times higher than posterior corneal aberrations and usually had opposite signs. Corneal topographic centers were displaced from aberrometer pupil centers by 0.32 ± 0.19 mm nasally and 0.02 ± 0.16 mm inferiorly; disregarding corneal decentration relative to pupil center was significant for oblique astigmatism, horizontal coma, and horizontal trefoil. An object at infinity, rather than at the image in the anterior cornea, gave incorrect aberration estimates of the posterior cornea. Corneal and lenticular aberration magnitudes are similar, and aberrations of the anterior corneal surface are approximately three times those of the posterior surface. Corneal decentration relative to pupil center has significant effects on oblique astigmatism, horizontal coma, and horizontal trefoil. When estimating component aberrations, it is important to use correct object/image conjugates and heights at surfaces.

  20. Long-term outcomes after adjunctive topical 5-flurouracil or mitomycin C for the treatment of surgically excised, localized ocular surface squamous neoplasia.

    PubMed

    Bahrami, Bobak; Greenwell, Timothy; Muecke, James S

    2014-01-01

    To report rates of recurrence and complications of localized ocular surface squamous neoplasia treated with 5-fluorouracil or mitomycin C as adjunctive treatment to surgical excision. Long-term follow up of two prospective, non-comparative interventional case series. One hundred fifty-three eyes with histologically confirmed localized, non-invasive ocular surface squamous neoplasia. 89 eyes were treated with adjuvant 5-fluorouracil and 64 eyes were treated with adjuvant mitomycin C. Following surgical excision±cryotherapy patients received topical 5-fluorouracil 1% four times daily for two weeks or topical mitomycin C 0.04% four times daily for two to three 1-week cycles. Ocular surface squamous neoplasia recurrence, complications of therapy and compliance. Median follow up was 33.6 (range 12-84) months and 57.9 (range 12-160) months in 5-fluorouracil and mitomycin C groups, respectively. There was one recurrence in the 5-fluorouracil group and no recurrences in the mitomycin C group. Side-effects occurred in 69% of 5-fluorouracil patients and 41% of mitomycin C patients. Five patients (6%) required intervention for treatment-related side-effects in the 5-fluorouracil group versus 11 (17%) in the mitomycin C group. No vision-threatening complications were noted. Long-term recurrence of localised ocular surface squamous neoplasia is rare when topical 5-fluorouracil or mitomycin C are used as adjunctive treatment to surgical excision. While side-effects are common, the majority are transient and rarely limit compliance. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  1. Topically applied 1% voriconazole induces dysplastic changes on the ocular surface: animal study.

    PubMed

    Arikan, Gul; Karatas, Ezgi; Lebe, Banu; Ayhan, Ziya; Utine, Canan Asli; Kutsoylu, Oya Eren; Gunenc, Uzeyir; Yilmaz, Osman

    2018-04-26

    To identify the risk of inducing ocular surface dysplasia following topical administration of 1% voriconazole eye drop. Fourteen noninflamed healthy eyes of 14 white adult New Zealand rabbits were included in the study. The rabbits were randomly divided into two groups comprised of 7 rabbits each. Group 1 received topical 1% voriconazole and Group 2 received topical saline as the control group. In all animals, right eye was selected for the study. In Group 1 (Voriconazole Group), single drop of voriconazole was instilled every 10 min consecutively for 17 times a day for 60 days. In Group 2 (Control Group), single drop of saline was instilled every 10 min consecutively for 17 times a day for 60 days. At two months, animals were sacrificed and study eyes were enucleated with the eyelids. The specimens were stained with hematoxylin-eosin and histopathologic changes in cornea, bulbar and palpebral conjunctiva were evaluated under light microscope. There were no macroscopically visible lesions on the ocular surface of any rabbits. Histopathological evaluation showed mild to moderate dysplasia localized mainly in the limbus and extending to the adjacent cornea and bulbar conjunctiva in all rabbits in Voriconazole Group. Severe dysplasia or carcinoma in situ was not observed. In the Control Group, dysplasia was not observed, at all. This animal study provides a possible relationship between topically administered 1% voriconazole and ocular surface dysplasia. We recommend ophthalmologists to be aware of the risk of ocular surface dysplasia in patients received voriconazole eye drop.

  2. [Efficacy of fibrin tissue adhesive in the attachment of autogenous conjuntival graft on primary pterygium surgery].

    PubMed

    Rubin, Michel Risnic; Dantas, Paulo Elias C; Nishiwaki-Dantas, M Cristina; Felberg, Sergio

    2011-01-01

    To compare the efficacy of conjunctival autograft surgery with the attachment to the scleral bed using fibrin tissue adhesive or mononylon 10-0 suture after resection of primary pterygium. A comparative, prospective and randomized clinical trial was performed in 47 eyes of 47 patients with primary medial located pterygium. Group 1 (adhesive) was composed by 21 patients that underwent conjunctival autograft closure with fibrin tissue adhesive (Quixil™) and Group 2 (suture) was composed by 26 patients that underwent pterygium surgery with mononylon 10-0 (Ethicon(®)) suture (suture group) after pterygium excision. All surgeries were performed by the same surgeon. Patients were assessed on the preoperative period and on the 1(st), 14(th) and 21(st) postoperative days. They were followed-up with a questionnaire of ocular discomfort and by the surgical time spent, ocular hyperemia, complications and recurrence signals, being the recurrence also evaluated at the 6th postoperative month. Data were submitted to statistical analysis. A value of p<0.005 was considered statistically significant. The average surgical time was 19.05 ± 6.12 minutes in group 1 (glue) and 48.15 ± 7.13 minutes in the group 2 (suture) (p<0.001). The ocular discomfort scale analysis showed a lower score in the 1(st) (p<0.005), 7(th) (p<0.001) and 21(th) (p<0.001) postoperative days in group 1. Ocular hyperemia was less intense in all periods of this study in group 1 (p<0.001). Complications were one in each group and both were managed with clinical treatment until the 21(th) postoperative day. There was one recurrence in group 1 and two in group 2 until the 6(th) postoperative month. In the surgical management of primary pterygium, fibrin tissue adhesive attached the conjunctival autograft, decreased the surgical time and diminished the conjunctival hyperemia and ocular discomfort with similar recurrences on the postoperative period, compared to fixation with mononylon 10.0 suture, proving to be an excellent option for conjunctival autograft attachment in primary pterygium surgery.

  3. Relevance of Lipid-Based Products in the Management of Dry Eye Disease.

    PubMed

    Garrigue, Jean-Sébastien; Amrane, Mourad; Faure, Marie-Odile; Holopainen, Juha M; Tong, Louis

    2017-11-01

    Components of the ocular surface synergistically contribute to maintaining and protecting a smooth refractive layer to facilitate the optimal transmission of light. At the air-water interface, the tear film lipid layer (TFLL), a mixture of lipids and proteins, plays a key role in tear surface tension and is important for the physiological hydration of the ocular surface and for ocular homeostasis. Alterations in tear fluid rheology, differences in lipid composition, or downregulation of specific tear proteins are found in most types of ocular surface disease, including dry eye disease (DED). Artificial tears have long been a first line of treatment in DED and aim to replace or supplement tears. More recently, lipid-containing eye drops have been developed to more closely mimic the combination of aqueous and lipid layers of the TFLL. Over the last 2 decades, our understanding of the nature and importance of lipids in the tear film in health and disease has increased substantially. The aim of this article is to provide a brief overview of our current understanding of tear film properties and review the effectiveness of lipid-based products in the treatment of DED. Liposome lid sprays, emulsion eye drops, and other lipid-containing formulations are discussed.

  4. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging.

    PubMed

    Azharuddin, Mohammad; Bera, Sumanta Kr; Datta, Himadri; Dasgupta, Anjan Kr

    2014-03-01

    In this paper we have studied the thermal fluctuation patterns occurring at the ocular surface of the left and right eyes for aqueous deficient dry eye (ADDE) patients and control subjects by thermal imaging. We conducted our experiment on 42 patients (84 eyes) with aqueous deficient dry eyes and compared with 36 healthy volunteers (72 eyes) without any history of ocular surface disorder. Schirmer's test, Tear Break-up Time, tear Meniscus height and fluorescein staining tests were conducted. Ocular surface temperature measurement was done, using an FL-IR thermal camera and thermal fluctuation in left and right eyes was calculated and analyzed using MATLAB. The time series containing the sum of squares of the temperature fluctuation on the ocular surface were compared for aqueous deficient dry eye and control subjects. Significant statistical difference between the fluctuation patterns for control and ADDE was observed (p < 0.001 at 95% confidence interval). Thermal fluctuations in left and right eyes are significantly correlated in controls but not in ADDE subjects. The possible origin of such correlation in control and lack of correlation in the ADDE subjects is discussed in the text. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Evaluation of Dry Eye and Meibomian Gland Dysfunction in Teenagers with Myopia through Noninvasive Keratograph

    PubMed Central

    Wang, Xiu; Lu, Xiaoxiao; Yang, Jun; Wei, Ruihua; Yang, Liyuan; Zhao, Shaozhen; Wang, Xilian

    2016-01-01

    Purpose. This study aims to evaluate dry eye and ocular surface conditions of myopic teenagers by using questionnaire and clinical examinations. Methods. A total of 496 eyes from 248 myopic teenagers (7–18 years old) were studied. We administered Ocular Surface Disease Index (OSDI) questionnaire, slit-lamp examination, and Keratograph 5M. The patients were divided into 2 groups based on OSDI dry eye standard, and their ocular surfaces and meibomian gland conditions were evaluated. Results. The tear meniscus heights of the dry eye and normal groups were in normal range. Corneal fluorescein scores were significantly higher whereas noninvasive break-up time was dramatically shorter in the dry eye group than in the normal group. All three meibomian gland dysfunction parameters (i.e., meibomian gland orifice scores, meibomian gland secretion scores, and meibomian gland dropout scores) of the dry eye group were significantly higher than those of the normal group (P < 0.0001). Conclusions. The prevalence of dry eye in myopic teenagers is 18.95%. Meibomian gland dysfunction plays an important role in dry eye in myopic teenagers. The Keratograph 5M appears to provide an effective noninvasive method for assessing ocular surface situation of myopic teenagers. PMID:26881059

  6. Changes in the tear film and ocular surface from dry eye syndrome.

    PubMed

    Johnson, Michael E; Murphy, Paul J

    2004-07-01

    Dry eye syndrome (DES) refers to a spectrum of ocular surface diseases with diverse and frequently multiple aetiologies. The common feature of the various manifestations of DES is an abnormal tear film. Tear film abnormalities associated with DES are tear deficiency, owing to insufficient supply or excessive loss, and anomalous tear composition. These categorizations are artificial, as in reality both often coexist. DES disrupts the homeostasis of the tear film with its adjacent structures, and adversely affects its ability to perform essential functions such as supporting the ocular surface epithelium and preventing microbial invasion. In addition, whatever the initial trigger, moderate and severe DES is characterized by ocular surface inflammation, which in turn becomes the cause and consequence of cell damage, creating a self-perpetuating cycle of deterioration. Progress has been made in our understanding of the aetiology and pathogenesis of DES, and these advances have encouraged a proliferation of therapeutic options. This article aims to amalgamate prevailing ideas of DES development, and to assist in that, relevant aspects of the structure, function, and production of the tear film are reviewed. Additionally, a synopsis of therapeutic strategies for DES is presented, detailing treatments currently available, and those in development.

  7. Ultra High-Resolution Anterior Segment Optical Coherence Tomography in the Diagnosis and Management of Ocular Surface Squamous Neoplasia

    PubMed Central

    Thomas, Benjamin J.; Galor, Anat; Nanji, Afshan A.; Sayyad, Fouad El; Wang, Jianhua; Dubovy, Sander R.; Joag, Madhura G.; Karp, Carol L.

    2014-01-01

    The development of optical coherence tomography (OCT) technology has helped to usher in a new era of in vivo diagnostic imaging of the eye. The utilization of OCT for imaging of the anterior segment and ocular surface has evolved from time-domain devices to spectral-domain devices with greater penetrance and resolution, providing novel images of anterior segment pathology to assist in diagnosis and management of disease. Ocular surface squamous neoplasia (OSSN) is one such pathology that has proven demonstrable by certain anterior segment OCT machines, specifically the newer devices capable of performing ultra high-resolution OCT (UHR-OCT). Distinctive features of OSSN on high resolution OCT allow for diagnosis and differentiation from other ocular surface pathologies. Subtle findings on these images help to characterize the OSSN lesions beyond what is apparent with the clinical examination, providing guidance for clinical management. The purpose of this review is to examine the published literature on the utilization of UHR-OCT for the diagnosis and management of OSSN, as well as to report novel uses of this technology and potential directions for its future development. PMID:24439046

  8. Improved impression cytology techniques for the immunopathological diagnosis of superficial viral infections

    PubMed Central

    Thiel, M; Bossart, W; Bernauer, W

    1997-01-01

    BACKGROUND—For epidemiological and therapeutic reasons early diagnosis of superficial viral infections is crucial. Conventional microbiological techniques are expensive, time consuming, and not sufficiently sensitive. In this study impression cytology techniques were evaluated to analyse their diagnostic potential in viral infections of the ocular surface.
METHOD—A Biopore membrane device instead of the original impression cytology technique was used to allow better quality and handling of the specimens. The impressions were processed, using monoclonal antibodies and immunoperoxidase or immunofluorescence techniques to assess the presence of herpes simplex virus, varicella zoster virus, or adenovirus antigens. Ocular surface specimens from healthy individuals (n=10) and from patients with suspected viral surface disease (n=19) were studied. Infected and non-infected cell cultures served as controls.
RESULTS—This modified technique of impression cytology allowed the collection of large conjunctival and corneal epithelial cell layers with excellent morphology. Immunocytological staining of these samples provided diagnostic results for all three viruses in patients with viral surface disease.
CONCLUSIONS—The use of Biopore membrane devices for the collection of ocular surface epithelia offers new diagnostic possibilities for external eye diseases. Immunopathological methods that are applied directly on these membrane devices can provide virological results within 1-4 hours. This contributes considerably to the clinical management of patients with infectious diseases of the ocular surface.

 PMID:9505824

  9. Doppler Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Chen, Zhongping; Zhang, Jun

    Noninvasive techniques for imaging in vivo blood flow are of great value to biomedical research and clinical diagnostics where many diseases have a vascular etiology or component. In ophthalmology, many diseases involve disturbances in ocular blood flow, including diabetic retinopathy, low tension glaucoma, anterior ischemic optic neuritis, and macular degeneration. Simultaneous imaging of tissue structure and blood flow could provide critical information for early diagnosis of ocular diseases.

  10. Tear film aberration dynamics and vision-related quality of life in patients with dry eye disease.

    PubMed

    Denoyer, Alexandre; Rabut, Ghislaine; Baudouin, Christophe

    2012-09-01

    Corneal and ocular wavefront aberrations were recorded together with clinical examination results and patient-reported vision-related quality-of-life evaluation results to define the relevance of dynamic optical analysis of the eye in dry eye disease (DED). Prospective and comparative clinical study. Forty DED patients and 40 age- and gender-matched control subjects. Serial measurements of ocular and corneal higher-order aberrations (HOAs) after blink were performed for 10 seconds using the KR-1 aberrometer (Topcon, Clichy, France). Vision-related health-targeted quality of life was evaluated using the Ocular Surface Disease Index (OSDI) questionnaire. The clinical examination included tear film assessment (tear film break-up time and Schirmer I test), ocular surface damage assessment with the Oxford and van Bijsterveld indexes, and Meibomian dysfunction grading. Tear osmolarity also was measured. The time course of HOAs and modulation transfer function (MTF) was compared between groups and was analyzed in comparison with the OSDI and clinical data in DED patients. The root mean square of ocular and corneal total HOAs, particularly third-order aberrations, significantly increased over the 10-second period in DED patients, whereas no change occurred in controls. Analysis of MTF revealed progressive degradation of ocular optical quality resulting from loss of contrast at intermediate and high spatial frequencies in DED patients compared with controls. The progression index for corneal HOAs was correlated with the subjective index of patient-reported visual outcomes and with objective clinical findings of tear film and ocular surface damage. Objective measurement of the time course of HOAs may constitute a new single instrument to evaluate and manage patients with DED because it reliably reflects the completeness of the disease. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  11. Eye cosmetic usage and associated ocular comfort.

    PubMed

    Ng, Alison; Evans, Katharine; North, Rachel; Purslow, Christine

    2012-11-01

    Eye cosmetics usage is commonplace and whilst some products such as eyeliner are applied with close proximity to the ocular surface, there is little knowledge of the short- and long-term ocular effects of eye cosmetic formulations. This study aimed to investigate the use of eye cosmetics and identify any relationships between ocular comfort and cosmetic usage. Results were collated from an online survey comprising 23 questions that recorded demographics, Ocular Surface Disease Index (OSDI) score, extent and range of eye cosmetic use and perceived comfort differences with and without eye cosmetics. The 1360 female respondents (median age 25, interquartile range 20-34 years) completed the survey; 83% reported using eye cosmetics regularly (≥ 3 times per week) with mascara being most commonly used. Fifty three per cent used at least three different eye cosmetics products regularly. OSDI scores of cosmetics users were similar to non-users (p = 0.083), but perceived comfort was greater when cosmetics were not used (p < 0.001). In occasional cosmetics users (use of products < 3 times per week), 65% reported a reduction in comfort when cosmetics were used. Median OSDI scores suggested a trend towards reduced comfort amongst eyeliner users (p = 0.07) although frequency and type of cosmetic products used did not appear to influence OSDI scores. This study shows the use of multiple eye cosmetics is extensive and associated with the perception of ocular discomfort. With such widespread use of these products, more research is required to assess the effect on the ocular surface and tear film, which may be underestimated. Ophthalmic & Physiological Optics © 2012 The College of Optometrists.

  12. The Effect of Tear Supplementation with 0.15% Preservative-Free Zinc-Hyaluronate on Ocular Surface Sensations in Patients with Dry Eye.

    PubMed

    Perényi, Kristóf; Dienes, Lóránt; Kornafeld, Anna; Kovács, Balázs; Kiss, Huba J; Szepessy, Zsuzsanna; Nagy, Zoltán Z; Barsi, Árpád; Acosta, M Carmen; Gallar, Juana; Kovács, Illés

    To evaluate the effect of tear supplementation with preservative free 0.15% zinc-hyaluronate on ocular surface sensations and corneal sensitivity in dry eye patients. Ocular surface sensations were assessed using the ocular surface disease index (OSDI) questionnaire and by recording ocular sensations during forced blinking in parallel with noninvasive tear film breakup time measurement in 20 eyes of 20 dry eye patients. Corneal sensitivity thresholds to selective stimulation of corneal mechano-, thermal- and chemical receptors were measured using the Belmonte gas esthesiometer. All baseline measurements were repeated after 1 month of treatment with 0.15% zinc-hyaluronate. After 1 month, a significant decrease in mean OSDI score (from 35.66 ± 12.36 to 15.03 ± 11.22; P < 0.001) and a significant improvement in tear film breakup time (from 3.83 ± 0.80 to 8.67 ± 4.50 s; P < 0.001) was observed compared to baseline. Sensory responses during the interblink period also significantly decreased after 1 month (P < 0.004). Corneal sensitivity thresholds to mechanical stimulation (90.61 ± 20.35 vs. 103.92 ± 17.97 mL/min; P < 0.025) and chemical stimulation (33.21 ± 0.51 vs. 33.58% ± 0.44% CO 2 ; P < 0.025) significantly increased after 1 month, however sensitivity thresholds to thermal stimulation remained unchanged compared to baseline (P > 0.05). Prolonged use of 0.15% zinc-hyaluronate results in an improvement of tear film stability and a decrease of dry eye complaints. The decrease in corneal mechano-and polymodal receptor excitability suggests that zinc-hyaluronate helps to recover normal corneal sensitivity, and thus might have a beneficial additional effect on reducing ocular surface complaints in dry eye patients.

  13. Mucins in contact lens wear and dry eye conditions.

    PubMed

    Ramamoorthy, Padmapriya; Nichols, Jason J

    2008-08-01

    Ocular mucins are thought to play integral roles in ocular surface lubrication, anchoring of the aqueous, stabilizing the lipid components of the tear film, eliminating foreign bodies and pathogens, and with potential involvement in cell cycle mediation and apoptotic activity of ocular surface epithelia. Ocular mucins are of secreted and membrane-associated types. Secreted mucins may be of large gel-forming type or small soluble mucins (e.g., MUC5AC and MUC7). Membrane-associated mucins such as MUCs 1 and 4 are a major component of the glycocalyx. They are thought to render structural support to the microplicae and mediate epithelial cell cycle and apoptotic activity. The alterations in ocular mucins with contact lens wear are unclear. Recent work shows mucin expression may be up-regulated during the early years of contact lens wear, and with long-term lens wear, mucin expression may return to normal levels or sub-normal levels, although this is not well understood. Further, the polar nature of mucins may be associated with their affinity for contact lens surfaces making them a component of contact lens deposition. This has potential implications in the wettability and tolerability of contact lenses, and may be impacted by surface coatings, polymer characteristics, or care solutions. Conjunctival mucin gene expression and secretion may be deficient in several ocular surface disorders associated with dry eye. Deficiency and alterations in glycosylation characteristics of MUC5AC and MUC2 have been reported in both Sjögren and non-Sjögren dry eye types. Decreased binding of the membrane-associated mucin MUC16 to the conjunctival epithelium has been reported in Sjögren dry eye while MUC1 alterations have been reported in Sjögren and non-Sjögren dry eye states. In view of the mucin involvement in dry eye conditions, stimulation of mucus secretion pathways may hold promise in the pharmaceutical treatment of dry eye.

  14. Management of patients with ocular manifestations in vesiculobullous disorders affecting the mouth.

    PubMed

    Hansen, M S; Klefter, O N; Julian, H O; Lynge Pedersen, A M; Heegaard, S

    2017-10-01

    Pemphigoid and pemphigus diseases as well as Stevens-Johnson syndrome present as vesiculobullous disorders of the skin and may additionally involve both the oral cavity and the ocular surface. Ocular involvement ranges from mild irritation and dry eye disease to chronic conjunctivitis, symblepharon, eyelid malposition, ocular surface scarring and severe visual loss. In addition to diagnostic assessments, ophthalmologists must treat the dry eye and meibomian gland dysfunction components of these diseases using a stepladder approach, including eyelid hygiene and lubricants. Topical anti-inflammatory therapy is used to treat acute inflammatory exacerbations of the ocular surface, but it cannot prevent scarring alone. Intralesional antimetabolite therapy can cause regression of conjunctival pathology in selected cases. Hence, patients with vesiculobullous disorders should be managed by a multidisciplinary team representing ophthalmology, dermatology, otolaryngology, oral medicine and pathology, internal medicine and intensive care. Systemic treatments including corticosteroids, azathioprine, cyclophosphamide, cyclosporine and mycophenolate mofetil help control inflammation. Intravenous immunoglobulins, plasmapheresis and targeted antibody therapy can be used in selected, severe and treatment-resistant cases. Local surgical management may include debridement of pseudomembranes, lysis of symblepharon, amniotic and mucous membrane grafting as well as reconstructive procedures. Prospective, multicentre, international studies are recommended to further support evidence-based practice. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Pharmacokinetics of pirfenidone after topical administration in rabbit eye

    PubMed Central

    Sun, Guoying; Lin, Xianchai; Zhong, Hua; Yang, Yangfan; Qiu, Xuan; Ye, Chengtian; Wu, Kaili

    2011-01-01

    Purpose Pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) is a new, broad-spectrum agent that has an inhibition effect on the proliferation, migration, and collagen contraction of human Tenon’s fibroblasts, and thus modulating the wound healing process of glaucoma filtering surgical site. This study investigated the pharmacokinetics of topically administered pirfenidone (0.5%) in rabbit eyes. Methods Pirfenidone solution (50 μl) was instilled into the rabbit’s conjunctival sac. The rabbits were quickly sacrificed at 2, 5, 8, 10, 15, 20, 30, 60, 90, and 120 min after the administration and ocular tissues were obtained. The concentrations of pirfenidone in conjunctiva, sclera, cornea, aqueous humor, and vitreous were determined by high performance liquid chromatography. Results After topical administration, there was wide distribution and fast clearance of pirfenidone among the various ocular tissues. The mean maximum concentrations (Cmax) of pirfenidone in cornea, conjunctiva, sclera, aqueous humor, and vitreous were 9.64 mg/g, 9.62 mg/g, 2.13 mg/g, 34.88 mg/l and 0.52 mg/l, respectively. The half-life for these tissues was 18.26, 34.16, 15.71, 70.91, and 39.48 min, respectively. Conclusions Measurable concentrations of pirfenidone are achieved in ocular tissues after topical application in rabbit model. Topical administration of pirfenidone may be an effective approach for modulation of wound healing responses in glaucoma filtration surgical site. PMID:21866212

  16. Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection

    PubMed Central

    Stewart, Laurel M.; Koenig, Michelle; Semler, Matthew; Breitbach, Meghan E.; Zeng, Xiankun; Weiler, Andrea M.; Barry, Gabrielle L.; Thoong, Troy H.; Wiepz, Gregory J.; Dudley, Dawn M.; Simmons, Heather A.; Mejia, Andres; Morgan, Terry K.; Salamat, M. Shahriar; Kohn, Sarah; Antony, Kathleen M.; Mohns, Mariel S.; Hayes, Jennifer M.; Schultz-Darken, Nancy; Schotzko, Michele L.; Peterson, Eric; Capuano, Saverio; Osorio, Jorge E.; O’Connor, Shelby L.; O’Connor, David H.; Golos, Thaddeus G.

    2018-01-01

    Congenital Zika virus (ZIKV) infection impacts fetal development and pregnancy outcomes. We infected a pregnant rhesus macaque with a Puerto Rican ZIKV isolate in the first trimester. The pregnancy was complicated by preterm premature rupture of membranes (PPROM), intraamniotic bacterial infection and fetal demise 49 days post infection (gestational day 95). Significant pathology at the maternal-fetal interface included acute chorioamnionitis, placental infarcts, and leukocytoclastic vasculitis of the myometrial radial arteries. ZIKV RNA was disseminated throughout fetal tissues and maternal immune system tissues at necropsy, as assessed by quantitative RT-PCR for viral RNA. Replicating ZIKV was identified in fetal tissues, maternal uterus, and maternal spleen by fluorescent in situ hybridization for viral replication intermediates. Fetal ocular pathology included a choroidal coloboma, suspected anterior segment dysgenesis, and a dysplastic retina. This is the first report of ocular pathology and prolonged viral replication in both maternal and fetal tissues following congenital ZIKV infection in a rhesus macaque. PPROM followed by fetal demise and severe pathology of the visual system have not been described in macaque congenital ZIKV infection previously. While this case of ZIKV infection during pregnancy was complicated by bacterial infection with PPROM, the role of ZIKV on this outcome cannot be precisely defined, and further nonhuman primate studies will determine if increased risk for PPROM or other adverse pregnancy outcomes are associated with congenital ZIKV infection. PMID:29381706

  17. Oculoplastic technique of connecting a glaucoma valve shunt to extraorbital locations in cases of severe glaucoma.

    PubMed

    Rubin, Peter A D; Chang, Eli; Bernardino, Carlo Roberto; Hatton, Mark P; Dohlman, Claes H

    2004-09-01

    To describe a technique for inserting glaucoma shunts to the sinuses or the lacrimal sac as a means of lowering intraocular pressure in patients with refractory glaucoma associated with severe ocular surface disease. Nineteen patients with severe ocular surface disease necessitating a keratoprosthesis and with intractable glaucoma underwent placement of a modified Ahmed shunt to direct aqueous in the maxillary or ethmoid sinus or lacrimal sac. Intraocular pressure is presently well controlled without glaucoma medications in two thirds of patients. None of the patients had endophthalmitis. Established oculoplastic surgery techniques may be used to redirect aqueous to extraorbital locations and effectively lower intraocular pressure in patients with severe ocular surface disease and refractory glaucoma. This procedure has not been associated with endophthalmitis.

  18. Recent developments on dry eye disease treatment compounds.

    PubMed

    Colligris, Basilio; Alkozi, Hanan Awad; Pintor, Jesus

    2014-01-01

    Dry eye syndrome is a common tears and ocular surface multifactorial disease, described by changes in the ocular surface epithelia related to reduced tears quantity and ocular surface sensitivity, leading to inflammatory reaction. Managing the eye inflammation proved helpful to patients with dry eye disease and current treatment is based on the use of topically applied artificial tear products/lubricants, tear retention management, stimulation of tear secretion and using anti-inflammatory drugs. In this article we revise the corresponding literature and patents assembling the new treatment approaches of novel and future pharmaceutical compounds destined for the dry eye disease treatment. The most frequent categories of compounds presented are secretagogues and anti-inflammatory drugs. These compounds are the research outcome of novel therapeutic strategies designed to reduce key inflammatory pathways and restore healthy tear film.

  19. Retrospective study and review of ocular radiation side effects following external-beam Cobalt-60 radiation therapy in 37 dogs and 12 cats

    PubMed Central

    Pinard, Chantale L.; Mutsaers, Anthony J.; Mayer, Monique N.; Woods, J. Paul

    2012-01-01

    This retrospective study evaluated the ocular side effects of cancer-bearing dogs and cats treated with external–beam Cobalt-60 (Co-60) radiation in which one or both orbit(s) were included in the radiation field. A total of 37 dogs and 12 cats presented to the Ontario Veterinary College during the 10-year study period (1999–2009) were evaluated. The radiation protocols ranged from a maximum of 60 Gray (Gy) in 24 fractions for curative intent to a minimum of 8 Gy in 1 fraction for palliative treatment. The main ocular side effect reported in both dogs and cats was conjunctivitis (79% and 55%, respectively). Other common ocular side effects included eyelid lesions in dogs (44%), ulcerative keratitis in cats (36%), and keratoconjunctivitis sicca in both dogs and cats (44% and 27%, respectively). The high incidence of ocular side effects in both patient populations indicates a need for regular ophthalmic examinations as a component of routine follow-up for radiation therapy involving the orbit. Radiation damage to ocular tissues is also reviewed. PMID:23729828

  20. Xeroderma pigmentosum with bilateral ocular surface squamous neoplasia and review of the literature

    PubMed Central

    Kalamkar, Charudutt; Radke, Nishant; Mukherjee, Amrita; Radke, Snehal

    2016-01-01

    Xeroderma pigmentosum is a rare genetic disorder associated with various ocular malignancies. Here we report a single paediatric case of xeroderma pigmentosum with bilateral ocular surface squamous neoplasia (OSSN) presenting with diffuse lesion in one eye and a large mass in the other eye. Diffuse OSSN in one eye was treated with topical chemotherapy using mitomycin-C (0.04%) and the large OSSN in the other eye was treated with a combination of surgery and topical chemotherapy. Long-term follow-up and a multimodality treatment approach are necessary to identify and manage recurrences of OSSN in XP. PMID:27166000

  1. Periocular Reconstruction in Patients with Facial Paralysis.

    PubMed

    Joseph, Shannon S; Joseph, Andrew W; Douglas, Raymond S; Massry, Guy G

    2016-04-01

    Facial paralysis can result in serious ocular consequences. All patients with orbicularis oculi weakness in the setting of facial nerve injury should undergo a thorough ophthalmologic evaluation. The main goal of management in these patients is to protect the ocular surface and preserve visual function. Patients with expected recovery of facial nerve function may only require temporary and conservative measures to protect the ocular surface. Patients with prolonged or unlikely recovery of facial nerve function benefit from surgical rehabilitation of the periorbital complex. Current reconstructive procedures are most commonly intended to improve coverage of the eye but cannot restore blink. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Xeroderma pigmentosum with bilateral ocular surface squamous neoplasia and review of the literature.

    PubMed

    Kalamkar, Charudutt; Radke, Nishant; Mukherjee, Amrita; Radke, Snehal

    2016-05-10

    Xeroderma pigmentosum is a rare genetic disorder associated with various ocular malignancies. Here we report a single paediatric case of xeroderma pigmentosum with bilateral ocular surface squamous neoplasia (OSSN) presenting with diffuse lesion in one eye and a large mass in the other eye. Diffuse OSSN in one eye was treated with topical chemotherapy using mitomycin-C (0.04%) and the large OSSN in the other eye was treated with a combination of surgery and topical chemotherapy. Long-term follow-up and a multimodality treatment approach are necessary to identify and manage recurrences of OSSN in XP. 2016 BMJ Publishing Group Ltd.

  3. Ocular surface involvements in ectrodactyly-ectodermal dysplasia-cleft syndrome.

    PubMed

    Kennedy, David P; Chandler, John W; McCulley, James P

    2015-06-01

    To present the ocular manifestation of 2 cases of ectrodactyly-ectodermal dysplasia-cleft syndrome, a multiple congenital anomaly syndrome caused by a single point mutation of the p63 gene that controls epidermal development and homeostasis and to present treatment options. Patient 1 presented with mild signs and symptoms of dry eye and limbal stem cell deficiency with retention of 20/30 vision. Patient 2 presented with severe signs and symptoms of limbal stem cell deficiency with diffuse corneal scarring and counting fingers vision. This second patient's course was complicated by allergic conjunctivitis and advanced steroid-induced glaucoma. The cause of visual loss in ectrodactyly-ectodermal dysplasia-cleft syndrome appears to be multifactorial and likely includes inflammation of the ocular surface, tear film abnormalities, eyelid abnormalities, and limbal stem cell deficiency. Treatment modalities including lubrication, contact lenses, and limbal stem cell transplantation are reviewed. The ophthalmic conditions seen in ectrodactyly-ectodermal dysplasia-cleft syndrome frequently lead to vision loss. Early correct diagnosis and appropriate therapy are paramount because p63 gene mutations have a critical role in maintaining the integrity of the ocular surface in the setting of limbal stem cell deficiency, especially if there are other ocular surface insults such as lid disease, meibomian gland dysfunction and toxicity from topical medications. Patients should be monitored at regular, frequent intervals; and particular attention should be taken to avoid adverse secondary effects of these conditions and medications. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  4. Exploring topical anti-glaucoma medication effects on the ocular surface in the context of the current understanding of dry eye.

    PubMed

    Wong, Aaron B C; Wang, Michael T M; Liu, Kevin; Prime, Zak J; Danesh-Meyer, Helen V; Craig, Jennifer P

    2018-07-01

    To assess tear film parameters, ocular surface characteristics, and dry eye symptomology in patients receiving topical anti-glaucoma medications. Thirty-three patients with a diagnosis of open angle glaucoma or ocular hypertension, receiving unilateral topical anti-glaucoma medication for at least 6 months, were recruited in a cross-sectional, investigator-masked, paired-eye comparison study. Tear film parameters, ocular surface characteristics, and dry eye symptomology of treated and fellow eyes were evaluated and compared. The mean ± SD age of the participants was 67 ± 12 years, and the mean ± SD treatment duration was 5.3 ± 4.4 years. Treated eyes had poorer non-invasive tear film breakup time (p = 0.03), tear film osmolarity (p = 0.04), bulbar conjunctival hyperaemia (p = 0.04), eyelid margin abnormality grade (p = 0.01), tear meniscus height (p = 0.03), and anaesthetised Schirmer value (p = 0.04) than fellow eyes. There were no significant differences in dry eye symptomology, meibomian gland assessments, and ocular surface staining between treated and fellow eyes (all p > 0.05). Adverse changes in tear film stability, tear osmolarity, conjunctival hyperaemia, and eyelid margins were observed in treated eyes. This suggests that inflammatory mechanisms may be implicated in the development of dry eye in patients receiving long term topical anti-glaucoma therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Müller stem cell dependent retinal regeneration.

    PubMed

    Chohan, Annu; Singh, Usha; Kumar, Atul; Kaur, Jasbir

    2017-01-01

    Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement. Copyright © 2016. Published by Elsevier B.V.

  6. Ultraviolet laser effects on the cornea

    NASA Astrophysics Data System (ADS)

    Zuclich, Joseph A.

    1990-07-01

    Ultraviolet radiation in the ambient environment or from artificial sources may pose both acute and chronic hazards to the skin and the ocular tissues. In general terrestrial conditions have evolved such that there are only narrow safety margins between ambient UV levels and exposure levels harmful to the human. Obvious examples of acute consequences ofUV overexposure are sunburn and snowblindness as well as analogous conditions induced by artificial sources such as the welder''s arc mercury vapor lamps and UV-emitting lasers. Further chronic UV exposure is strongly implicated as a causative agent in certain types of cataract and skin cancer. This presentation will summarize a number of specific cases where UV radiation affected the primate cornea. Data presented will include the action spectra for far- and near-UV induced ocular damage the pulsewidth and total energy dependencies of ocular thresholds studies of cumulative effects of repeated UV exposures and quantitative determinations of tissue repair or recovery rates. Depending on the exposure parameters utilized photochemical thermal or photoablative damage mechanisms may prevail. 1.

  7. A reinterpretation of certain disorders affecting the eye muscles and their tissues

    PubMed Central

    Poonyathalang, Anuchit; Khanna, Sangeeta; Leigh, R John

    2007-01-01

    Recent discoveries about the orbital tissues prompt a re-evaluation of the way that clinicians think about disorders affecting the extraocular muscles, their nerves and motoneurons in the brainstem. The revolutionary discovery that the orbital layers of the extraocular muscles insert not onto the eyeball, but into fibromuscular pulleys that guide the orbital layers, provides explanations for the kinematic properties of eye rotations and clinical findings in some patients with strabismus. The demonstration that all extraocular fibers types, except pale global fibers, lack synaptic folding provides an explanation for why saccades may remain fast in patients with limited ocular mobility due to myasthenia gravis. More than one mechanism may account for the observation that patients with disorders affecting the eye muscles or their nerves can present with the appearance of central disorders of ocular motility, such as internuclear ophthalmoplegia. New approaches to analyzing saccades in patients with disjunctive eye movements provide the means to identify disorders affecting the peripheral or central components of the ocular motor system, or both. PMID:19668518

  8. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases.

    PubMed

    Bisht, Rohit; Mandal, Abhirup; Jaiswal, Jagdish K; Rupenthal, Ilva D

    2018-03-01

    Effective drug delivery to the retina still remains a challenge due to ocular elimination mechanisms and complex barriers that selectively limit the entry of drugs into the eye. To overcome these barriers, frequent intravitreal injections are currently used to achieve high drug concentrations in vitreous and retina. However, these repetitive injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery could overcome some of these unmet needs and various preclinical studies conducted to date have demonstrated promising results of nanotherapies in the treatment of retinal diseases. Compared to the majority of commercially available ocular implants, the biodegradable nature of most nanoparticles (NPs) avoids the need for surgical implantation and removal after the release of the payload. In addition, the sustained drug release from NPs over an extended period of time reduces the need for frequent intravitreal injections and the risk of associated side effects. The nanometer size and highly modifiable surface properties make NPs excellent candidates for targeted ocular drug delivery. Studies have shown that nanocarriers enhance the intravitreal half-life and thus bioavailability of a number of drugs including proteins and peptides. In addition, they have shown promising results in delivering genetic material to the retinal tissues by protecting it from possible intravitreal degradation. This review covers the various challenges associated with drug delivery to the posterior segment of the eye, particularly the retina, and highlights the application of nanocarriers to overcome these challenges in context with recent advances in preclinical studies. WIREs Nanomed Nanobiotechnol 2018, 10:e1473. doi: 10.1002/wnan.1473 This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals, Inc.

  9. An update on the surgical management of pterygium and the role of loteprednol etabonate ointment

    PubMed Central

    Sheppard, John D; Mansur, Arnulfo; Comstock, Timothy L; Hovanesian, John A

    2014-01-01

    Pterygium, a sun-related eye disease, presents as wing-shaped ocular surface lesions that extend from the bulbar conjunctiva onto the cornea, most commonly on the nasal side. Pterygia show characteristic histological features that suggest that inflammation plays a prominent role in their initial pathogenesis and recurrence. Appropriate surgery is the key to successful treatment of pterygia, but there is also a rationale for the use of anti-inflammatory agents to reduce the rate of recurrence following surgery. Multiple surgical techniques have been developed over the last two millennia, but these initially had little success, due to high rates of recurrence. Current management strategies, associated with lower recurrence rates, include bare sclera excision and various types of grafts using tissue glues. Adjunctive therapies include mitomycin C and 5-fluorouracil, as well as the topical ocular steroid loteprednol etabonate, which has been shown to have a lower risk of elevated intraocular pressure than have the other topical ocular steroids. Here, the surgical management of pterygium is presented from a historical perspective, and current management techniques, including the appropriate use of various adjunctive therapies, are reviewed, along with an illustrative case presentation and a discussion of the conjunctival forceps designed to facilitate surgical management. Despite thousands of years of experience with this condition, there remains a need for a more thorough understanding of pterygium and interventions to reduce both its incidence and postsurgical recurrence. Until that time, the immediate goal is to optimize surgical practices to ensure the best possible outcomes. Loteprednol etabonate, especially the ointment formulation, appears to be a safe and effective component of the perioperative regimen for this complex ocular condition, although confirmatory prospective studies are needed. PMID:24966664

  10. Lipid nanoparticles as drug/gene delivery systems to the retina.

    PubMed

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  11. Application of Hydrogel Template Strategy in Ocular Drug Delivery.

    PubMed

    Shin, Crystal S; Marcano, Daniela C; Park, Kinam; Acharya, Ghanashyam

    2017-01-01

    The hydrogel template strategy was previously developed to fabricate homogeneous polymeric microparticles. Here, we demonstrate the versatility of the hydrogel template strategy for the development of nanowafer-based ocular drug delivery systems. We describe the fabrication of dexamethasone-loaded nanowafers using polyvinyl alcohol and the instillation of a nanowafer on a mouse eye. The nanowafer, a small circular disk, is placed on the ocular surface, and it releases a drug as it slowly dissolves over time, thus increasing ocular bioavailability and enhancing efficiency to treat eye injuries.

  12. Monopolar radiofrequency treatment of the eyelids: a safety evaluation.

    PubMed

    Biesman, Brian S; Pope, Karl

    2007-07-01

    Monopolar radiofrequency (RF) energy has been used to successfully accomplish noninvasive skin tightening of the face, abdomen, and extremities. Owing to concerns about injury to the eye itself, monopolar RF treatment of the eyelids has not been feasible. The objective was to evaluate the safety of a novel 0.25-cm(2)"shallow" treatment tip for noninvasive tightening of eyelid skin. This was a tripartite study that began with an animal model to evaluate soft tissue effects and temperature change at the ocular surface. Findings were then extrapolated to ex vivo evaluation of human eyelids and ultimately to an in vivo human eyelid safety study. The animal studies demonstrated that the 0.25-cm(2) treatment tip could be used safely on eyelids in conjunction with appropriate ocular protection. The ex vivo human eyelid studies confirmed that, at typical treatment settings, the shallow treatment tip did not produce frank eyelid injury. The in vivo human studies confirmed that, at the tested settings, the novel treatment tip did not injure the eyelids or eyes. If used properly, the 0.25-cm(2) treatment tip can be safely used on human eyelids.

  13. Severe Phenotype of Keratitis-Ichthyosis-Deafness Syndrome With Presumed Ocular Surface Squamous Neoplasia.

    PubMed

    Serrano-Ahumada, Ana Silvia; Cortes-González, Vianney; González-Huerta, Luz María; Cuevas, Sergio; Aguilar-Lozano, Luis; Villanueva-Mendoza, Cristina

    2018-02-01

    The aim of this study was to describe a case of severe keratitis-ichthyosis-deafness (KID) syndrome with ocular surface squamous neoplasia. The affected patient underwent complete ocular and systemic examinations. The molecular studies included polymerase chain reaction amplification and automated DNA sequencing of the complete gap junction beta-2 (GJB2) gene coding sequence. A 30-year-old man presented with generalized erythro-hyperkeratosis and deafness and complaints of decreased visual acuity, tearing, and photophobia. Ophthalmic examination showed corneal erosion, vascularization, and a gray gelatinous lesion partially covering the right cornea, suggestive of squamous neoplasia. The clinical features were characteristic of KID syndrome. This diagnosis was confirmed with a DNA analysis showing the pathogenic variant p.D50N in the GJB2 gene. Presumed squamous neoplasia was treated with topical interferon α2b. KID syndrome is a very rare disease that has been reported with an incremental incidence of squamous cell carcinoma of the mucous membranes and skin (12%-15%). Here, we presented a case of severe systemic KID syndrome with ocular surface squamous neoplasia.

  14. Ocular Pharmacology of Tear Film, Dry Eye, and Allergic Conjunctivitis.

    PubMed

    Gulati, Shilpa; Jain, Sandeep

    2017-01-01

    Dry Eye Disease (DED) is "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear-film instability with potential damage to the ocular surface." DED comprises two etiologic categories: aqueous-deficient dry eye (ADDE) and evaporative dry eye (EDE). Diagnostic workup of DED should include clinical history, symptom questionnaire, fluorescein TBUT, ocular surface staining grading, Schirmer I/II, lid and meibomian pathology, meibomian expression, followed by other available tests. New diagnostic tests employ the Oculus Keratograph, which performs non-invasive tear-film analysis and a bulbar redness (BR). The TearLab Osmolarity Test enables rapid clinical evaluation of tear osmolarity. Lipiview is a recently developed diagnostic tool that uses interferometry to quantitatively evaluate tear-film thickness. In DED, epithelial and inflammatory cells produce a variety of inflammatory mediators. A stagnant tear film and decreased concentration of mucin result in the accumulation of inflammatory factors that can penetrate tight junctions and cause epithelial cell death. DED treatment algorithms are based on severity of clinical signs and symptoms, and disease etiology. Therapeutic approaches include lubricating artificial tears and immunomodulatory agents.

  15. Early Changes in Ocular Surface and Tear Inflammatory Mediators after Small-Incision Lenticule Extraction and Femtosecond Laser-Assisted Laser In Situ Keratomileusis

    PubMed Central

    Gao, Shaohui; Li, Saiqun; Liu, Liangping; Wang, Yong; Ding, Hui; Li, Lili; Zhong, Xingwu

    2014-01-01

    Purpose To characterize the early ocular-surface changes or tear inflammatory-mediators levels following small-incision lenticule extraction (ReLEx smile) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). Methods Forty-seven myopic subjects were recruited for this prospective study. Fifteen underwent ReLEx smile and thirty-two underwent FS-LASIK. Corneal fluorescein (FL) staining, tear break-up time (TBUT), Schirmer I test (SIT), ocular surface disease index (OSDI) and central corneal sensitivity were evaluated in all participants. Tears were collected and analyzed for interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nerve growth factor (NGF) and intercellular adhesion molecule-1 (ICAM-1) levels using multiplex magnetic beads. All measurements were preformed preoperatively and 1 day, 1 week, 1 month and 3 months postoperatively. Results FL scores in ReLEx smile group were lower than those of FS-LASIK group 1 week postoperatively (P = 0.010). Compared to the FS-LASIK group, longer TBUT were observed in ReLEx smile group 1 month (P = 0.029) and 3 months (P = 0.045) postoperatively. No significant differences were found in tear secretion for the two groups (P>0.05). OSDI scores were higher in FS-LASIK group 1 month after surgery (P = 0.020). Higher central corneal sensitivity was observed in ReLEx smile group 1 week, 1 month and 3 months (P<0.05) postoperatively. Compared to FS-LASIK group, lower and faster recovery of IL-6 and NGF levels in tears was observed in ReLEx smile group postoperatively (P<0.05). Tears TNF-α and ICAM-1 concentrations were not significantly different between the two groups at any follow-up time (P>0.05). Moreover, IL-6 and NGF levels correlated with ocular surface changes after ReLEx smile or FS-LASIK. Conclusions In the early postoperative period, ReLEx smile results in milder ocular surface changes than FS-LASIK. Furthermore, the tear inflammatory mediators IL-6 and NGF may play a crucial role in the ocular surface healing process following ReLEx smile and FS-LASIK. PMID:25211490

  16. Early changes in ocular surface and tear inflammatory mediators after small-incision lenticule extraction and femtosecond laser-assisted laser in situ keratomileusis.

    PubMed

    Gao, Shaohui; Li, Saiqun; Liu, Liangping; Wang, Yong; Ding, Hui; Li, Lili; Zhong, Xingwu

    2014-01-01

    To characterize the early ocular-surface changes or tear inflammatory-mediators levels following small-incision lenticule extraction (ReLEx smile) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). Forty-seven myopic subjects were recruited for this prospective study. Fifteen underwent ReLEx smile and thirty-two underwent FS-LASIK. Corneal fluorescein (FL) staining, tear break-up time (TBUT), Schirmer I test (SIT), ocular surface disease index (OSDI) and central corneal sensitivity were evaluated in all participants. Tears were collected and analyzed for interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nerve growth factor (NGF) and intercellular adhesion molecule-1 (ICAM-1) levels using multiplex magnetic beads. All measurements were preformed preoperatively and 1 day, 1 week, 1 month and 3 months postoperatively. FL scores in ReLEx smile group were lower than those of FS-LASIK group 1 week postoperatively (P = 0.010). Compared to the FS-LASIK group, longer TBUT were observed in ReLEx smile group 1 month (P = 0.029) and 3 months (P = 0.045) postoperatively. No significant differences were found in tear secretion for the two groups (P>0.05). OSDI scores were higher in FS-LASIK group 1 month after surgery (P = 0.020). Higher central corneal sensitivity was observed in ReLEx smile group 1 week, 1 month and 3 months (P<0.05) postoperatively. Compared to FS-LASIK group, lower and faster recovery of IL-6 and NGF levels in tears was observed in ReLEx smile group postoperatively (P<0.05). Tears TNF-α and ICAM-1 concentrations were not significantly different between the two groups at any follow-up time (P>0.05). Moreover, IL-6 and NGF levels correlated with ocular surface changes after ReLEx smile or FS-LASIK. In the early postoperative period, ReLEx smile results in milder ocular surface changes than FS-LASIK. Furthermore, the tear inflammatory mediators IL-6 and NGF may play a crucial role in the ocular surface healing process following ReLEx smile and FS-LASIK.

  17. Eye Irritation Test (EIT) for Hazard Identification of Eye Irritating Chemicals using Reconstructed Human Cornea-like Epithelial (RhCE) Tissue Model.

    PubMed

    Kaluzhny, Yulia; Kandárová, Helena; d'Argembeau-Thornton, Laurence; Kearney, Paul; Klausner, Mitchell

    2015-08-23

    To comply with the Seventh Amendment to the EU Cosmetics Directive and EU REACH legislation, validated non-animal alternative methods for reliable and accurate assessment of ocular toxicity in man are needed. To address this need, we have developed an eye irritation test (EIT) which utilizes a three dimensional reconstructed human cornea-like epithelial (RhCE) tissue model that is based on normal human cells. The EIT is able to separate ocular irritants and corrosives (GHS Categories 1 and 2 combined) and those that do not require labeling (GHS No Category). The test utilizes two separate protocols, one designed for liquid chemicals and a second, similar protocol for solid test articles. The EIT prediction model uses a single exposure period (30 min for liquids, 6 hr for solids) and a single tissue viability cut-off (60.0% as determined by the MTT assay). Based on the results for 83 chemicals (44 liquids and 39 solids) EIT achieved 95.5/68.2/ and 81.8% sensitivity/specificity and accuracy (SS&A) for liquids, 100.0/68.4/ and 84.6% SS&A for solids, and 97.6/68.3/ and 83.1% for overall SS&A. The EIT will contribute significantly to classifying the ocular irritation potential of a wide range of liquid and solid chemicals without the use of animals to meet regulatory testing requirements. The EpiOcular EIT method was implemented in 2015 into the OECD Test Guidelines as TG 492.

  18. Eye Irritation Test (EIT) for Hazard Identification of Eye Irritating Chemicals using Reconstructed Human Cornea-like Epithelial (RhCE) Tissue Model

    PubMed Central

    Kaluzhny, Yulia; Kandárová, Helena; d’Argembeau-Thornton, Laurence; Kearney, Paul; Klausner, Mitchell

    2015-01-01

    To comply with the Seventh Amendment to the EU Cosmetics Directive and EU REACH legislation, validated non-animal alternative methods for reliable and accurate assessment of ocular toxicity in man are needed. To address this need, we have developed an eye irritation test (EIT) which utilizes a three dimensional reconstructed human cornea-like epithelial (RhCE) tissue model that is based on normal human cells. The EIT is able to separate ocular irritants and corrosives (GHS Categories 1 and 2 combined) and those that do not require labeling (GHS No Category). The test utilizes two separate protocols, one designed for liquid chemicals and a second, similar protocol for solid test articles. The EIT prediction model uses a single exposure period (30 min for liquids, 6 hr for solids) and a single tissue viability cut-off (60.0% as determined by the MTT assay). Based on the results for 83 chemicals (44 liquids and 39 solids) EIT achieved 95.5/68.2/ and 81.8% sensitivity/specificity and accuracy (SS&A) for liquids, 100.0/68.4/ and 84.6% SS&A for solids, and 97.6/68.3/ and 83.1% for overall SS&A. The EIT will contribute significantly to classifying the ocular irritation potential of a wide range of liquid and solid chemicals without the use of animals to meet regulatory testing requirements. The EpiOcular EIT method was implemented in 2015 into the OECD Test Guidelines as TG 492. PMID:26325674

  19. Measurement and quantification of fluorescent changes in ocular tissue using a novel confocal instrument

    NASA Astrophysics Data System (ADS)

    Buttenschoen, Kim K.; Girkin, John M.; Daly, Daniel J.

    2014-05-01

    Our sight is a major contributor to our quality of life. The treatment of diseases like macular degeneration and glaucoma, however, presents a challenge as the delivery of medication to ocular tissue is not well understood. The instrument described here will help quantify targeted delivery by non-invasively and simultaneously measuring light reflected from and fluorescence excited in the eye, used as position marker and to track compounds respectively. The measurement concept has been proven by monitoring the diffusion of fluorescein and a pharmaceutical compound for treating open angle glaucoma in vitro in a cuvette and in ex vivo porcine eyes. To obtain a baseline of natural fluorescence we measured the change in corneal and crystalline lens autofluorescence in volunteers over a week. We furthermore present data on 3D ocular autofluorescence. Our results demonstrate the capability to measure the location and concentration of the compound of interest with high axial and temporal resolution of 178 μm and 0.6 s respectively. The current detection limit is 2 nM for fluorescein, and compounds with a quantum yield as low as 0.01 were measured to concentrations below 1 μM. The instrument has many applications in assessing the diffusion of fluorescent compounds through the eye and skin in vitro and in vivo, measuring autofluorescence of ocular tissues and reducing the number of animals needed for research. The instrument has the capability of being used both in the clinical and home care environment opening up the possibility of measuring controlled drug release in a patient friendly manner.

  20. Algorithms and Results of Eye Tissues Differentiation Based on RF Ultrasound

    PubMed Central

    Jurkonis, R.; Janušauskas, A.; Marozas, V.; Jegelevičius, D.; Daukantas, S.; Patašius, M.; Paunksnis, A.; Lukoševičius, A.

    2012-01-01

    Algorithms and software were developed for analysis of B-scan ultrasonic signals acquired from commercial diagnostic ultrasound system. The algorithms process raw ultrasonic signals in backscattered spectrum domain, which is obtained using two time-frequency methods: short-time Fourier and Hilbert-Huang transformations. The signals from selected regions of eye tissues are characterized by parameters: B-scan envelope amplitude, approximated spectral slope, approximated spectral intercept, mean instantaneous frequency, mean instantaneous bandwidth, and parameters of Nakagami distribution characterizing Hilbert-Huang transformation output. The backscattered ultrasound signal parameters characterizing intraocular and orbit tissues were processed by decision tree data mining algorithm. The pilot trial proved that applied methods are able to correctly classify signals from corpus vitreum blood, extraocular muscle, and orbit tissues. In 26 cases of ocular tissues classification, one error occurred, when tissues were classified into classes of corpus vitreum blood, extraocular muscle, and orbit tissue. In this pilot classification parameters of spectral intercept and Nakagami parameter for instantaneous frequencies distribution of the 1st intrinsic mode function were found specific for corpus vitreum blood, orbit and extraocular muscle tissues. We conclude that ultrasound data should be further collected in clinical database to establish background for decision support system for ocular tissue noninvasive differentiation. PMID:22654643

  1. Computer vision syndrome: a review.

    PubMed

    Blehm, Clayton; Vishnu, Seema; Khattak, Ashbala; Mitra, Shrabanee; Yee, Richard W

    2005-01-01

    As computers become part of our everyday life, more and more people are experiencing a variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation, redness, blurred vision, and double vision, collectively referred to as computer vision syndrome. This article describes both the characteristics and treatment modalities that are available at this time. Computer vision syndrome symptoms may be the cause of ocular (ocular-surface abnormalities or accommodative spasms) and/or extraocular (ergonomic) etiologies. However, the major contributor to computer vision syndrome symptoms by far appears to be dry eye. The visual effects of various display characteristics such as lighting, glare, display quality, refresh rates, and radiation are also discussed. Treatment requires a multidirectional approach combining ocular therapy with adjustment of the workstation. Proper lighting, anti-glare filters, ergonomic positioning of computer monitor and regular work breaks may help improve visual comfort. Lubricating eye drops and special computer glasses help relieve ocular surface-related symptoms. More work needs to be done to specifically define the processes that cause computer vision syndrome and to develop and improve effective treatments that successfully address these causes.

  2. Ocular surface disease incidence in patients with open-angle glaucoma.

    PubMed

    Radenković, Marija; Stanković-Babić, Gordana; Jovanović, Predrag; Djordjević-Jocić, Jasmina; Trenkić-Božinović, Marija

    2016-01-01

    Ocular surface disease (OSD) is a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbances, tear film instability with potential damage to the ocular surface, accompanied by increased tear film osmolarity and inflammation of the ocular surface. It is a consequence of disrupted homeostasis of lacrimal functional unit. The main pathogenetic mechanism stems from tear hyperosmolarity and tear film instability. The etiological classification is hyposecretory (Sy-Sjögren and non-Sjögren) and evaporative (extrinsic and intrinsic) form. Delphi panel classification grades disease stages. Antiglaucoma topical therapy causes exacerbation or occurrence of symptoms of dry eye due to main ingredients or preservatives (benzalkonium chloride – BAK), which are dose- and time-dependent. BAK reduces the stability of the lipid layer of tears, the number of goblet cells, induces apoptosis and inflammatory infiltration. The aim of this study was the analysis of the OSD incidence in open-angle glaucoma patients caused by topical medicamentous therapy. Retrospective analysis of examined patients with open-angle glaucoma was used. Increased incidence of moderate and advanced OSD Index degrees in the group of primary open-angle glaucoma (POAG) and pseudoexfoliative glaucoma. According to the Delphi Panel Scale the most common grade is IIb (POAG and pseudoexfoliative glaucoma). Evaporative form of OSD prevailed in all treatment groups. High percentage of dry eye in patients with higher concentrations of preservatives applied was noticed. OSD should be timely diagnosed and treated. Dry eye has an impact on surgical outcome and postoperative visual acuity, and in order to improve patient compliance and quality of life, symptoms of dry eye should be addressed and medications with lower concentrations of preservatives should be applied.

  3. Impact of oral vitamin D supplementation on the ocular surface in people with dry eye and/or low serum vitamin D.

    PubMed

    Yang, Chih-Huang; Albietz, Julie; Harkin, Damien G; Kimlin, Michael G; Schmid, Katrina L

    2018-02-01

    To determine the possible association between serum vitamin D levels and dry eye symptoms, and the impact of an oral vitamin D supplement. Three linked studies were performed. (i) 29 older adult participants, (ii) 29 dry eyed participants, and (iii) 2-month vitamin D supplementation for 32 dry eyed/low serum vitamin D levelled participants. All participants were assessed by the Ocular Surface Diseases Index (OSDI) to determine dry eye symptoms, and the phenol red thread test (PRT) and/or Schirmer's tear test, tear meniscus height, non-invasive tear break up time, grading ocular surface redness and fluorescein staining of the cornea to detect the tear quality and ocular surface conditions. Blood samples were collected for serum vitamin D analysis and interleukin-6 (IL-6) levels. Among older adult participants, vitamin D levels were negatively correlated with dry eye symptoms, the severity of dry eye, and associated with tired eye symptom. Vitamin D levels of people with dry eye diagnosis were not correlated with OSDI scores and IL-6 levels; while IL-6 levels showed correlation with tear production. In supplement study, vitamin D levels increased by 29mol/l, while dry eye symptoms and grading of corneal staining appeared significant reductions. No significant changes in IL-6 levels. Low vitamin D levels (<50nmol/l) were associated with dry eye symptoms in older individuals but not those diagnosed with dry eye. Vitamin D supplement increased the vitamin D levels, and improved dry eye symptoms, the tear quality and ocular surface conditions. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  4. [Oral flaxseed oil (Linum usitatissimum) in the treatment for dry-eye Sjögren's syndrome patients].

    PubMed

    Pinheiro, Manuel Neuzimar; dos Santos, Procópio Miguel; dos Santos, Regina Cândido Ribeiro; Barros, Jeison de Nadai; Passos, Luiz Fernando; Cardoso Neto, José

    2007-01-01

    To evaluate if oral flaxseed oil (Linum usitatissimum), which reduces the inflammation in rheumatoid arthritis, may help keratoconjunctivitis sicca's treatment in Sjögren's syndrome patients. In a randomized clinical trial, 38 female patients with rheumatoid arthritis or systemic lupus erithematosus associated with keratoconjunctivitis sicca and Sjögren's syndrome were consecutively selected from patients of the Department of Rheumatology of the Amazonas University Hospital. Keratoconjunctivitis sicca diagnosis was based on a dry-eye symptom survey score (Ocular Surface Disease Index - OSDI), Schirmer-I test, fluorescein break-up time, 1% Rose Bengal staining of ocular surface measured by the van Bijsterveld scale. All patients had ocular surface inflammation evaluated and quantified by conjunctival impression cytology, before and after the study. The subjects were divided into three groups with 13 (Group I), 12 (Group II) and 13 (Group III) patients. Group I received flaxseed oil capsules with a final 1 g/day dosis, Group II flaxseed oil capsules with a final 2 g/day dosis and Group III - controls - placebo, for 180 days. Comparing the results at the beginning and at the end of the treatment, statistically significant changes (p<0.05) in symptoms (OSDI), ocular surface inflammation quantified by conjunctival impression cytology, Schirmer-I test and fluorescein break-up time occurred in Groups I e II when compared to controls. Therapy with oral flaxseed oil capsules 1 or 2 g/day reduces ocular surface inflammation and ameliorates the symptoms of keratoconjunctivitis sicca in Sjögren's syndrome patients. Long-term studies are needed to confirm the role of this therapy for keratoconjunctivitis sicca in Sjögren's syndrome.

  5. Corneal and conjunctival sensory function: the impact on ocular surface sensitivity of change from low to high oxygen transmissibility contact lenses.

    PubMed

    Golebiowski, Blanka; Papas, Eric B; Stapleton, Fiona

    2012-03-09

    Deprivation of oxygen to the ocular surface during contact lens wear has been implicated in the alteration of sensory function. This study investigates whether increasing oxygen availability through discontinuation of contact lens wear or transfer into highly oxygen transmissible (high Dk/t) lenses leads to a change in corneal or conjunctival sensitivity. Twenty-seven long-term extended wearers of low Dk/t soft contact lenses ceased lens wear for 1 week and were refitted with high Dk/t silicone hydrogel lenses. A control group of 25 nonwearers matched for age and sex was also recruited. Central corneal and inferior conjunctival sensitivity were measured using an air-jet aesthesiometer. Threshold was determined using a staircase technique. Measurements were taken during low Dk/t lens wear; after 1 week of no wear; and after 1, 3, 6, and 12 months of high Dk/t lens wear. Measurements were carried out on one occasion on the nonwearers. Corneal sensitivity decreased 1 week after discontinuation of low Dk/t lenses and no further change in sensitivity occurred with high Dk/t lens wear. Conjunctival sensitivity did not change over the same time frame. Ocular surface sensitivity in long-term low Dk/t soft lens wearers was similar to that of nonwearers. Sensitivity was higher in females than males in the nonwearers, but not in the lens-wearing group. An interaction of sex on change in conjunctival threshold was found in the lens wearers. These findings indicate that factors other than oxygen availability alone determine sensitivity of the ocular surface. Silicone hydrogel contact lenses appear to have only a minor impact on ocular surface sensitivity in previous lens wearers.

  6. Comparative distribution of pilocarpine in ocular tissues of the rabbit during administration by eyedrop or by membrane-controlled delivery systems.

    PubMed

    Sendelbeck, L; Moore, D; Urquhart, J

    1975-08-01

    We compared the patterns of pilocarpine distribution in the rabbit eye during two regimens that were comparably efficacious in human clinical use: an administration of 2% pilocarpine nitrate eyedrops, every six hours, for four and eight days, and a continuous delivery of pilocarpine for as long as eight days, at 20 mug/hr, from a membrane-controlled delivery system in the inferior cul-de-sac. Pilocarpine labeled with radioactive carbon (14C) was used as a tracer. With administration of eyedrops, 14C levels in ocular tissues rose and fell within each six-hour interval between eyedrops, but with the delivery system, 14C levels remained constant over the two- to eight-day period. In each tissue, the 14C level within the first hour after the most recently administered eyedrop always exceeded the constant level maintained by the delivery system. Three to six hours after eyedrop administration, the 14C levels in cornea, iris, and sclera were approximately equal to those maintained by the delivery system. However, in lens, vitreous humor, and conjunctiva, the 14C levels were always two to five times higher with eyedrop administration than with the delivery system. Only aqueous humor showed a significantly lower 14C level with eyedrops than with the delivery system, occurring late in the interval between eyedrops. Compared to eyedrop administration, the membrane-controlled delivery system produced drug levels in ocular tissues that were constant rather than variable with time, and appreciably lower in tissues where the drug made no known contribution to the reduction of pressure.

  7. Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing.

    PubMed

    Robinson, Paulette M; Smith, Tyler S; Patel, Dilan; Dave, Meera; Lewin, Alfred S; Pi, Liya; Scott, Edward W; Tuli, Sonal S; Schultz, Gregory S

    2012-12-13

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.

  8. Ocular Trauma From Dog Bites: Characterization, Associations, and Treatment Patterns at a Regional Level I Trauma Center Over 11 Years.

    PubMed

    Prendes, Mark A; Jian-Amadi, Arash; Chang, Shu-Hong; Shaftel, Solomon S

    2016-01-01

    Canine bites frequently result in periocular injury. The authors aimed to further characterize the dog breeds, types of injuries inflicted, and treatment outcomes. A retrospective chart review was performed on all dog bites recorded in the University of Washington trauma registry from 2003 to 2013. Cases involving ocular injury were further investigated to identify ocular tissues affected, treatment patterns, and outcomes. A total of 342 dog bite victims were identified, of whom 91 sustained ocular trauma (27%). The mean age of patients with ocular injuries was significantly lower than those without (14.1 ± 1.9 vs. 30.0 ± 1.3 years, p < 0.001). Children bitten by dogs were 4.2 times more likely to sustain ocular injuries than adults (45.2% vs. 10.8%). The most common breed of dog inflicting ocular injury was the pit bull (25%). Forty percent of patients with ocular trauma sustained canalicular lacerations and epiphora was noted in only 3 patients (8%) after repair. Three percent had orbital fractures and 2% sustained ruptured globes. Infections were rare, affecting only 2% of patients. To our knowledge, this study is the largest to date to report the incidence and characteristics of ocular injuries sustained from dog bites. These injuries were disproportionately more common in children and have a high incidence of canalicular laceration. Though rare, globe injuries and orbital fractures were seen in this population. Importantly, this study establishes that pit bulls are the most frequent breed associated with ocular injuries from dog bites.

  9. Corneoscleral Laceration and Ocular Burns Caused by Electronic Cigarette Explosions

    PubMed Central

    Paley, Grace L.; Echalier, Elizabeth; Eck, Thomas W.; Hong, Augustine R.; Gregory, Darren G.; Lubniewski, Anthony J.

    2016-01-01

    Purpose: To report cases of acute globe rupture and bilateral corneal burns from electronic cigarette (EC) explosions. Methods: Case series. Results: We describe a series of patients with corneal injury caused by EC explosions. Both patients suffered bilateral corneal burns and decreased visual acuity, and one patient sustained a unilateral corneoscleral laceration with prolapsed iris tissue and hyphema. A review of the scientific literature revealed no prior reported cases of ocular injury secondary to EC explosions; however, multiple media and government agency articles describe fires and explosions involving ECs, including at least 4 with ocular injuries. Conclusions: Given these cases and the number of recent media reports, ECs pose a significant public health risk. Users should be warned regarding the possibility of severe injury, including sight-threatening ocular injuries ranging from corneal burns to full-thickness corneoscleral laceration. PMID:27191672

  10. Recent developments on dry eye disease treatment compounds

    PubMed Central

    Colligris, Basilio; Alkozi, Hanan Awad; Pintor, Jesus

    2013-01-01

    Dry eye syndrome is a common tears and ocular surface multifactorial disease, described by changes in the ocular surface epithelia related to reduced tears quantity and ocular surface sensitivity, leading to inflammatory reaction. Managing the eye inflammation proved helpful to patients with dry eye disease and current treatment is based on the use of topically applied artificial tear products/lubricants, tear retention management, stimulation of tear secretion and using anti-inflammatory drugs. In this article we revise the corresponding literature and patents assembling the new treatment approaches of novel and future pharmaceutical compounds destined for the dry eye disease treatment. The most frequent categories of compounds presented are secretagogues and anti-inflammatory drugs. These compounds are the research outcome of novel therapeutic strategies designed to reduce key inflammatory pathways and restore healthy tear film. PMID:24526854

  11. Dry eyes: etiology and management.

    PubMed

    Latkany, Robert

    2008-07-01

    Until recently, the cause of dry eye syndrome was uncertain and the treatment was palliative. Since discovering that dry eyes are caused by inflammation, there has been an abundance of research focusing on anti-inflammatory therapies, other contributing causes, and better diagnostic testing. This review summarizes some of the interesting published research on ocular surface disease over the past year. The definition of dry eye now highlights the omnipresent symptom of blurry vision. The re-evaluation of ocular surface staining, tear meniscus height, and visual change will allow for a better diagnosis and understanding of dry eyes. Punctal plugs, and oral and topical anti-inflammatory use will strengthen our arsenal against ocular surface disease. Major progress has occurred in the past few years in gaining a better understanding of the etiology of dry eye syndrome, which will inevitably lead to more effective therapeutic options.

  12. Topographical Control of Ocular Cell Types for Tissue Engineering

    PubMed Central

    McHugh, Kevin J.; Saint-Geniez, Magali; Tao, Sarah L.

    2014-01-01

    Visual impairment affects over 285 million people worldwide and has a major impact on an individual’s quality of life. Tissue engineering has the potential to increase quality of life for many of these patients by preventing vision loss or restoring vision using cell-based therapies. However, these strategies will require an understanding of the microenvironmental factors that influence cell behavior. The eye is a well-organized organ whose structural complexity is essential for proper function. Interactions between ocular cells and their highly ordered extracellular matrix are necessary for maintaining key tissue properties including corneal transparency and retinal lamination. Therefore, it is not surprising that culturing these cells in vitro on traditional flat substrates result in irregular morphology. Instead, topographically patterned biomaterials better mimic native extracellular matrix and have been shown to elicit in vivo-like morphology and gene expression which is essential for tissue engineering. Herein we review multiple methods for producing well-controlled topography and discuss optimal biomaterial scaffold design for cells of the cornea, retina, and lens. PMID:23744715

  13. Expression Analysis of the Transmembrane Mucin MUC20 in Human Corneal and Conjunctival Epithelia

    PubMed Central

    Woodward, Ashley M.; Argüeso, Pablo

    2014-01-01

    Purpose. Cell surface mucins are a group of highly O-glycosylated transmembrane glycoproteins responsible for the protection of epithelial cells on mucosal surfaces. The aim of this study was to investigate the localization and regulation of mucin 20 (MUC20) at the ocular surface. Methods. Localization of MUC20 in human corneal and conjunctival epithelia was evaluated by immunofluorescence microscopy. Immortalized corneal (HCLE) and conjunctival (HCjE) cell lines were grown at different stages of differentiation and subjected to quantitative PCR and Western blot analyses. Cell surface proteins on apical cell membranes were biotinylated and isolated by neutravidin chromatography. Results. The MUC20 was detected throughout the entire human ocular surface epithelia, predominantly in cell membranes within intermediate cell layers. In conjunctiva, MUC20 also was observed in the cytoplasm of apical cells within the stratified squamous epithelium, but not in goblet cells. Quantitative PCR and immunoblotting demonstrated expression of MUC20 in HCLE and HCjE cells. Induction of differentiation with serum-containing medium resulted in upregulation of MUC20 mRNA and protein. Biotin labeling of the surface of stratified cultures revealed low levels of MUC20 protein on apical glycocalyces. Further, MUC20 was not detected in the cell culture media or in human tears, suggesting that the extracellular domain of MUC20 is not released from the ocular surface as described previously for other cell surface mucins. Conclusions. Our results indicate that MUC20 is a novel transmembrane mucin expressed by the human corneal and conjunctival epithelia, and suggest that differential expression of MUC20 during differentiation has a role in maintaining ocular surface homeostasis. PMID:25168902

  14. High-resolution photoacoustic imaging of ocular tissues.

    PubMed

    Silverman, Ronald H; Kong, Fanting; Chen, Y C; Lloyd, Harriet O; Kim, Hyung Ham; Cannata, Jonathan M; Shung, K Kirk; Coleman, D Jackson

    2010-05-01

    Optical coherence tomography (OCT) and ultrasound (US) are methods widely used for diagnostic imaging of the eye. These techniques detect discontinuities in optical refractive index and acoustic impedance, respectively. Because these both relate to variations in tissue density or composition, OCT and US images share a qualitatively similar appearance. In photoacoustic imaging (PAI), short light pulses are directed at tissues, pressure is generated due to a rapid energy deposition in the tissue volume and thermoelastic expansion results in generation of broadband US. PAI thus depicts optical absorption, which is independent of the tissue characteristics imaged by OCT or US. Our aim was to demonstrate the application of PAI in ocular tissues and to do so with lateral resolution comparable to OCT. We developed two PAI assemblies, both of which used single-element US transducers and lasers sharing a common focus. The first assembly had optical and 35-MHz US axes offset by a 30 degrees angle. The second assembly consisted of a 20-MHz ring transducer with a coaxial optics. The laser emitted 5-ns pulses at either 532 nm or 1064 nm, with spot sizes at the focus of 35 microm for the angled probe and 20 microm for the coaxial probe. We compared lateral resolution by scanning 12.5 microm diameter wire targets with pulse/echo US and PAI at each wavelength. We then imaged the anterior segment in whole ex vivo pig eyes and the choroid and ciliary body region in sectioned eyes. PAI data obtained at 1064 nm in the near infrared had higher penetration but reduced signal amplitude compared to that obtained using the 532 nm green wavelength. Images were obtained of the iris, choroid and ciliary processes. The zonules and anterior cornea and lens surfaces were seen at 532 nm. Because the laser spot size was significantly smaller than the US beamwidth at the focus, PAI images had superior resolution than those obtained using conventional US. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Expression profiles of aquaporins in rat conjunctiva, cornea, lacrimal gland and Meibomian gland.

    PubMed

    Yu, Dongfang; Thelin, William R; Randell, Scott H; Boucher, Richard C

    2012-10-01

    The aim of the study was to elucidate aquaporin (AQP) family member mRNA expression and protein expression/localization in the rat lacrimal functional unit. The mRNA expression of all rat AQPs (AQP0-9, 11-12) in palpebral, fornical, and bulbar conjunctiva, cornea, lacrimal gland, and Meibomian gland was measured by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and real time RT-PCR. Antibodies against AQP1, 3, 4, 5, 9, and 11 were used in Western blotting and immunohistochemistry to determine protein expression and distribution. Our study demonstrated characteristic AQP expression profiles in rat ocular tissues. AQP1, 3, 4, 5, 8, 9, 11, and 12 mRNA were detected in conjunctiva. AQP0, 1, 2, 3, 4, 5, 6, 11, and 12 mRNA were expressed in cornea. AQP0, 1, 2, 3, 4, 5, 7, 8, and 11 mRNA were detected in lacrimal gland. AQP1, 3, 4, 5, 7, 8, 9, 11, and 12 mRNA were identified in Meibomian gland. By Western blot, AQP1, 3, 5, and 11 were detected in conjunctiva; AQP1, 3, 5, and 11 were identified in cornea; AQP1, 3, 4, 5, and 11 were detected in lacrimal gland; and AQP1, 3, 4, 5, 9, and 11 were present in Meibomian gland. Immunohistochemistry localized AQPs to distinct sites in the various tissues. This study rigorously analyzed AQPs expression and localization in rat conjunctiva, cornea, lacrimal gland, and Meibomian gland tissues. Our findings provide a comprehensive platform for further investigation into the physiological or pathophysiological relevance of AQPs in ocular surface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Passive optical coherence elastography using a time-reversal approach (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Fink, Mathias; Catheline, Stefan; Boccara, A. Claude

    2017-02-01

    Background and motivation - Conventional Optical Coherence Elastography (OCE) methods consist in launching controlled shear waves in tissues, and measuring their propagation speed using an ultrafast imaging system. However, the use of external shear sources limits transfer to clinical practice, especially for ophthalmic applications. Here, we propose a totally passive OCE method for ocular tissues based on time-reversal of the natural vibrations. Methods - Experiments were first conducted on a tissue-mimicking phantom containing a stiff inclusion. Pulsatile motions were reproduced by stimulating the phantom surface with two piezoelectric actuators excited asynchronously at low frequencies (50-500 Hz). The resulting random displacements were tracked at 190 frames/sec using spectral-domain optical coherence tomography (SD-OCT), with a 10x5µm² resolution over a 3x2mm² field-of-view (lateral x depth). The shear wavefield was numerically refocused (i.e. time-reversed) at each pixel using noise-correlation algorithms. The focal spot size yields the shear wavelength. Results were validated by comparison with shear wave speed measurements obtained from conventional active OCE. In vivo tests were then conducted on anesthetized rats. Results - The stiff inclusion of the phantom was delineated on the wavelength map with a wavelength ratio between the inclusion and the background (1.6) consistent with the speed ratio (1.7). This validates the wavelength measurements. In vivo, natural shear waves were detected in the eye and wavelength maps of the anterior segment showed a clear elastic contrast between the cornea, the sclera and the iris. Conclusion - We validated the time-reversal approach for passive elastography using SD-OCT imaging at low frame-rate. This method could accelerate the clinical transfer of ocular elastography.

  17. Dry eye disease caused by viral infection: review.

    PubMed

    Alves, Monica; Angerami, Rodrigo Nogueira; Rocha, Eduardo Melani

    2013-01-01

    Dry eye disease and ocular surface disorders may be caused or worsened by viral agents. There are several known and suspected virus associated to ocular surface diseases. The possible pathogenic mechanisms for virus-related dry eye disease are presented herein. This review serves to reinforce the importance of ophthalmologists as one of the healthcare professional able to diagnose a potentially large number of infected patients with high prevalent viral agents.

  18. Relevance of Lipid-Based Products in the Management of Dry Eye Disease

    PubMed Central

    Amrane, Mourad; Faure, Marie-Odile; Holopainen, Juha M.; Tong, Louis

    2017-01-01

    Abstract Components of the ocular surface synergistically contribute to maintaining and protecting a smooth refractive layer to facilitate the optimal transmission of light. At the air–water interface, the tear film lipid layer (TFLL), a mixture of lipids and proteins, plays a key role in tear surface tension and is important for the physiological hydration of the ocular surface and for ocular homeostasis. Alterations in tear fluid rheology, differences in lipid composition, or downregulation of specific tear proteins are found in most types of ocular surface disease, including dry eye disease (DED). Artificial tears have long been a first line of treatment in DED and aim to replace or supplement tears. More recently, lipid-containing eye drops have been developed to more closely mimic the combination of aqueous and lipid layers of the TFLL. Over the last 2 decades, our understanding of the nature and importance of lipids in the tear film in health and disease has increased substantially. The aim of this article is to provide a brief overview of our current understanding of tear film properties and review the effectiveness of lipid-based products in the treatment of DED. Liposome lid sprays, emulsion eye drops, and other lipid-containing formulations are discussed. PMID:28956698

  19. [Application of ultrasound-enhanced gene and drug delivery to the ocular tissue].

    PubMed

    Sonoda, Shozo; Yamashita, Toshifumi; Suzuki, Ryo; Maruyama, Kazuo; Sakamoto, Taiji

    2013-01-01

    Visual images provide an immensely rich source of information about the external world. Eye has characteristic structure sensory cells are arranged along the eye wall, and is filled inside with vitreous body. In recent years, intravitreal injection of anti-vascular endothelial growth factor (VEGF) agent had widely spread, and numerous number of patients who suffered ocular angiogenic disease such as diabetic retinopathy, age-related macular degeneration and retinal vascular occlusion for the disease, were treated and spared the blindness. Vitreous cavity was regarded as reservoir of drug, intravitreal injection is thought a sort of drug delivery. However, with regard to the administration of a selective drug deliver, it has not yet been solved. Our aim is to establish a new method of gene transfer, drug delivery using low-energy ultrasound to the eye, to date, we confirmed drug and gene deliver to the ocular tissue such as cornea, conjunctiva and retina with high efficiency. In addition, tissue damage was minimal. We have also shown that ultrasound irradiation with combination of a microbubbles or bubble liposome could be introduced drug and gene more effectively. Based on these knowledge, we will focus on development of a new device for intraocular ultrasound exposure and potential for therapeutic application of ultrasound to humans retinal disease such as retinal artery obstruction.

  20. Regulating temporospatial dynamics of morphogen for structure formation of the lacrimal gland by chitosan biomaterials.

    PubMed

    Hsiao, Ya-Chuan; Yang, Tsung-Lin

    2017-01-01

    The lacrimal gland is an important organ responsible for regulating tear synthesis and secretion. The major work of lacrimal gland (LG) is to lubricate the ocular surface and maintain the health of eyes. Functional deterioration of the lacrimal gland happens because of aging, diseases, or therapeutic complications, but without effective treatments till now. The LG originates from the epithelium of ocular surface and develops by branching morphogenesis. To regenerate functional LGs, it is required to explore the way of recapitulating and facilitating the organ to establish the intricate and ramified structure. In this study, we proposed an approach using chitosan biomaterials to create a biomimetic environment beneficial to the branching structure formation of developing LG. The morphogenetic effect of chitosan was specific and optimized to promote LG branching. With chitosan, increase in temporal expression and local concentration of endogenous HGF-related molecules creates an environment around the emerging tip of LG epithelia. By efficiently enhancing downstream signaling of HGF pathways, the cellular activities and behaviors were activated to contribute to LG branching morphogenesis. The morphogenetic effect of chitosan was abolished by either ligand or receptor deprivation, or inhibition of downstream signaling transduction. Our results elucidated the underlying mechanism accounting for chitosan morphogenetic effects on LG, and also proposed promising approaches with chitosan to assist tissue structure formation of the LG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Investigational and experimental drugs for intraocular pressure reduction in ocular hypertension and glaucoma.

    PubMed

    Lusthaus, Jed Asher; Goldberg, Ivan

    2016-10-01

    Intraocular pressure (IOP) is the most significant modifiable risk factor to prevent onset or progression of glaucoma. Glaucoma prevalence continues to increase, emphasizing the need for improved ocular hypotensive treatment options. To try to improve on both tolerance and IOP control of currently available therapies, different receptors or mechanisms are being explored to reduce IOP more effectively and to improve tolerance. We review synthetic topical and oral drugs in early development for the management of ocular hypertension and glaucoma. New therapeutic agents for IOP control have been discovered; some appear to be reasonably tolerated. IOP reduction may be limited with some agents, but other benefits although unproven may compensate for this, such as less ocular surface disease, enhanced neuro-protection or increased ocular blood flow. Further product development promises improved treatment options for ocular hypertensives and glaucoma sufferers.

  2. Ocular surface disease in patients with glaucoma or ocular hypertension treated with either BAK-preserved latanoprost or BAK-free travoprost

    PubMed Central

    Katz, Gregory; Springs, Clark L; Craven, E Randy; Montecchi-Palmer, Michela

    2010-01-01

    Purpose The preservative benzalkonium chloride (BAK) may adversely affect ocular surface health. This study evaluated symptoms of ocular surface disease (OSD) in patients previously treated with a BAK-preserved therapy to lower their intraocular pressure, who either continued that therapy or switched to a BAK-free therapy. Methods Eligible adult patients with ocular hypertension or open-angle glaucoma that had been controlled with BAK-preserved latanoprost 0.005% monotherapy (Xalatan®) for at least one month and had a score of ≥ 13 (0 = none, 100 = most severe) on the Ocular Surface Disease Index (OSDI) questionnaire were entered into this prospective, double-masked, randomized, active-controlled, multicenter trial. By random assignment, patients either continued with BAK-preserved latanoprost 0.005% or transitioned to BAK-free travoprost 0.004% (Travatan Z® ophthalmic solution). OSDI scores were assessed again after six and 12 weeks. Results For the 678 evaluable patients, mean change in OSDI score from baseline to week 12 favored the travoprost 0.004% BAK-free group, but was not statistically different between groups (P = 0.10). When patients with mild OSD at baseline were assessed after 12 weeks, the mean OSDI score was significantly lower (P = 0.04) in the BAK-free travoprost 0.004% group (score = 11.6 ± 10.8 units) than in the BAK-preserved latanoprost 0.005% group (score = 14.4 ± 11.9 units), and a significantly larger percentage (P < 0.01) improved to normal OSDI scores in the BAK-free travoprost 0.004% group (62.9% of group) than in the BAK-preserved latanoprost 0.005% group (47.0% of group). Patients pretreated with BAK-preserved latanoprost 0.005% for >24 months were significantly more likely (P = 0.03) to improve to a normal OSDI score after 12 weeks if they were switched to BAK-free travoprost 0.004% (47.9% of group) than if they remained on BAK-preserved latanoprost 0.005% (33.9% of group). Conclusions Switching from BAK-preserved latanoprost 0.005% to BAK-free travoprost 0.004% yielded significant improvements in symptoms of OSD in patients with glaucoma or ocular hypertension. PMID:21151330

  3. Randomised masked trial of the clinical safety and tolerability of MGO Manuka Honey eye cream for the management of blepharitis

    PubMed Central

    Craig, Jennifer P; Wang, Michael T M; Ganesalingam, Kalaivarny; Rupenthal, Ilva D; Swift, Simon; Loh, Chee Seang; Te Weehi, Leah; Cheung, Isabella M Y; Watters, Grant A

    2017-01-01

    Objective To assess the clinical safety and tolerability of a novel MGO Manuka Honey microemulsion (MHME) eye cream for the management of blepharitis in human subjects. Methods and analysis Twenty-five healthy subjects were enrolled in a prospective, randomised, paired-eye, investigator-masked trial. The MHME eye cream (Manuka Health New Zealand) was applied to the closed eyelids of one eye (randomised) overnight for 2 weeks. LogMAR visual acuity, eyelid irritation symptoms, ocular surface characteristics and tear film parameters were assessed at baseline, day 7 and day 14. Expression of markers of ocular surface inflammation (matrix metalloproteinase-9 and interleukin-6) and goblet cell function (MUC5AC) were quantified using impression cytology at baseline and day 14. Results There were no significant changes in visual acuity, eyelid irritation symptoms, ocular surface characteristics, tear film parameters and inflammatory marker expression during the 2-week treatment period in treated and control eyes (all p>0.05), and measurements did not differ significantly between eyes (all p>0.05). No major adverse events were reported. Two subjects experienced transient ocular stinging, presumably due to migration of the product into the eye, which resolved following aqueous irrigation. Conclusion The MHME eye cream application was found to be well tolerated in healthy human subjects and was not associated with changes in visual acuity, ocular surface characteristics, tear film parameters, expression of markers of inflammation or goblet cell function. The findings support future clinical efficacy trials in patients with blepharitis. Trial registration number ACTRN12616000540415 PMID:29354710

  4. Analysis of Factors Associated With the Tear Film Lipid Layer Thickness in Normal Eyes and Patients With Dry Eye Syndrome.

    PubMed

    Jung, Ji Won; Park, Si Yoon; Kim, Jin Sun; Kim, Eung Kweon; Seo, Kyoung Yul; Kim, Tae-Im

    2016-08-01

    To determine the effects of clinical variables, including age, sex, history of refractive or cataract surgery, contact lens use, and ocular surface and meibomian gland parameters on the lipid layer thickness (LLT) in normal subjects and patients with dry eye syndrome (DES). A total of 64 normal subjects and 326 patients with DES were enrolled, and they underwent measurements of LLT with a LipiView interferometer and tear meniscus height using optical coherence tomography, tear film break-up time (TBUT) determination, ocular surface staining, Schirmer's test, examination of the lid margins and meibomian glands, and assessment using the Ocular Surface Disease Index (OSDI). In normal subjects, the median (range) LLT was 67 (33-100) nm, and age was the only factor that was significantly associated with LLT (β = 0.678, P = 0.028). In patients with DES, the median (range) LLT was 84 (20-100) nm, and 79.0% of the participants fulfilled the diagnostic criteria for meibomian gland dysfunction (MGD). In a multivariate analysis, increased age and female sex were significantly related to increased LLT (β = 0.282, P = 0.005 and β = 11.493, P < 0.001), and hypersecretory MGD and lid margin inflammation were independently associated with increased LLT (β = 11.299, P = 0.001 and β = 12.747, P = 0.001). Lipid layer thickness measurements using a new interferometer are significantly affected by demographic factors such as age, sex, ocular surgical history, and MGD type. Therefore, all of these factors must be considered in the diagnosis of ocular surface diseases.

  5. Ocular surface temperature in patients with evaporative and aqueous-deficient dry eyes: a thermographic approach.

    PubMed

    Matteoli, S; Favuzza, E; Mazzantini, L; Aragona, P; Cappelli, S; Corvi, A; Mencucci, R

    2017-07-26

    In recent decades infrared thermography (IRT) has facilitated accurate quantitative measurements of the ocular surface temperature (OST), applying a non-invasive procedure. The objective of this work was to develop a procedure based on IRT, which allows characterizing of the cooling of the ocular surface of patients suffering from dry eye syndrome, and distinguishing among patients suffering from aqueous deficient dry eye (ADDE) and evaporative dry eyes (EDE). All patients examined (34 females and 4 males, 23-84 years) were divided into two groups according to their Schirmer I result (⩽ 7 mm for ADDE and  >  7 mm for EDE), and the OST was recorded for 7 s at 30 Hz. For each acquisition, the temperatures of the central cornea (CC) as well as those of both temporal and nasal canthi were investigated. Findings showed that the maximum temperature variation (up to 0.75  ±  0.29 °C) was at the CC for both groups. Furthermore, patients suffering from EDE tended to have a higher initial OST than those with ADDE, explained by the greater quantity of the tear film, evenly distributed over the entire ocular surface, keeping the OST higher initially. Results also showed that EDE patients had an average cooling rate higher than those suffering from ADDE, confirming the excessive evaporation of the tear film. Ocular thermography paves the way to become an effective tool for differentiating between the two different etiologies of dry eye syndrome.

  6. The cellular mechanisms of dry eye: from pathogenesis to treatment.

    PubMed

    Mantelli, Flavio; Massaro-Giordano, Mina; Macchi, Ilaria; Lambiase, Alessandro; Bonini, Stefano

    2013-12-01

    Dry eye is a complex disease characterized by changes in the ocular surface epithelia related to reduced quality and/or quantity of tears, inflammatory reaction, and impairment of ocular surface sensitivity. It has recently been proposed that increased tear osmolarity represents a main trigger to the altered cellular mechanisms leading to epithelial damage in dry eye. However, dry eye pathogenesis is multifactorial, with cytotoxic inflammatory mediators, altered lacrimal gland secretion and nerve function, squamous metaplasia of the conjunctival epithelium and decrease of goblet cells density, all playing a role in a detrimental loop that perpetuates and worsens damage to the corneal and conjunctival epithelia. Current topical treatments for dry eye patients include the use of lubricants and anti-inflammatory drugs. However, lubricants only improve symptoms temporarily, and chronic use of topical steroids is associated to severe ocular side effects such as cataract and glaucoma. The deeper understanding of the cellular mechanisms that are altered in dry eye is opening novel perspectives for patients and physicians, who are seeking treatments capable not only of improving symptoms but also of restoring the homeostasis of the ocular surface. In this review, we will focus on novel anti-inflammatory agents and on nerve growth factor, a neurotrophin that is altered in dry eye and has been suggested as a main player in the neuroimmune cross-talk of the ocular surface as well as in the stimulation of corneal sensitivity, epithelial proliferation and differentiation, and stimulation of mucin production by goblet cells. J. Cell. Physiol. 228: 2253-2256, 2013. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  7. Ocular complications of diabetes mellitus

    PubMed Central

    Sayin, Nihat; Kara, Necip; Pekel, Gökhan

    2015-01-01

    Diabetes mellitus (DM) is a important health problem that induces ernestful complications and it causes significant morbidity owing to specific microvascular complications such as, retinopathy, nephropathy and neuropathy, and macrovascular complications such as, ischaemic heart disease, and peripheral vasculopathy. It can affect children, young people and adults and is becoming more common. Ocular complications associated with DM are progressive and rapidly becoming the world’s most significant cause of morbidity and are preventable with early detection and timely treatment. This review provides an overview of five main ocular complications associated with DM, diabetic retinopathy and papillopathy, cataract, glaucoma, and ocular surface diseases. PMID:25685281

  8. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study.

    PubMed

    Bhatti, Mehwish Saba; Tang, Tong Boon; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma.

  9. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study

    PubMed Central

    Bhatti, Mehwish Saba; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma. PMID:28742142

  10. Evaluation of Ocular Surface Disease in Patients with Glaucoma

    PubMed Central

    Mathews, Priya M.; Ramulu, Pradeep Y.; Friedman, David S.; Utine, Canan A.; Akpek, Esen K.

    2013-01-01

    Purpose To evaluate the subjective and objective measures of ocular surface disease in patients with glaucoma. Design Cross-sectional study. Participants Sixty-four glaucoma subjects with bilateral visual field (VF) loss and 59 glaucoma suspects with normal VFs. Methods Consecutive patients were recruited prospectively from the Wilmer Eye Institute Glaucoma Clinic. Main Outcome Measures Tear film breakup time (TBUT), corneal staining score (0–15), and Schirmer’s test results were included as objective metrics, whereas the Ocular Surface Disease Index (OSDI) questionnaire was administered to assess symptoms. Total OSDI score, vision-related subscore (derived from questions about vision and task performance), and discomfort-related subscore (derived from questions about ocular surface discomfort) were calculated for each subject. Results Seventy-five percent (48/64) of glaucoma subjects and 41% (24/59) of glaucoma suspects were receiving topical medications. The corneal staining grade was greater in glaucoma subjects than in glaucoma suspects (6.4 vs. 4.1; P<0.001), but groups did not differ with regard to TBUT or Schirmer’s results (P>0.20 for both). Multivariate regression models showed that topical glaucoma therapy burden was associated with a significantly higher total corneal staining grade (β, +0.9 for each additional glaucoma drop; 95% confidence interval [CI], 0.5–1.3; P<0.001), but not with TBUT or Schirmer’s results (P>0.20 for both). Glaucoma subjects had significantly higher total OSDI scores than glaucoma suspects (16.7 vs. 7.9; P<0.001). This largely was the result of higher vision-related subscores in the glaucoma group (11.1 vs. 3.3; P<0.001). Ocular discomfort–related subscores, however, were similar in both groups (5.7 vs. 4.6; P = 0.30). In multivariate analyses, each 5-decibel decrement in better-eye VF mean deviation was associated with a 4.7-point increase in total OSDI score (95% CI, 1.9–7.5; P = 0.001) and a 3.7-point increase in the vision-related subscore (95% CI, 1.7–5.6; P<0.001) but did not predict a higher discomfort-related subscore (β, 1.1 point; P = 0.07). Topical glaucoma therapy burden was not associated with higher total OSDI score or vision- or discomfort-related subscore (P>0.20 for all). Conclusions Glaucoma is associated with significant ocular surface disease, and topical glaucoma therapy burden seems predictive of corneal staining severity. However, OSDI is a poor metric for capturing ocular surface disease in glaucoma because symptoms seem to be related largely to VF loss. PMID:23714318

  11. Detection of Leptospira interrogans DNA and antigen in fixed equine eyes affected with end-stage equine recurrent uveitis.

    PubMed

    Pearce, Jacqueline W; Galle, Laurence E; Kleiboeker, Steve B; Turk, James R; Schommer, Susan K; Dubielizig, Richard R; Mitchell, William J; Moore, Cecil P; Giuliano, Elizabeth A

    2007-11-01

    Equine recurrent uveitis (ERU) is the most frequent cause of blindness in horses worldwide. Leptospira has been implicated as an etiologic agent in some cases of ERU and has been detected in fresh ocular tissues of affected horses. The objective of this study was to determine the presence of Leptospira antigen and DNA in fixed equine ocular tissues affected with end-stage ERU. Sections of eyes from 30 horses were obtained. Controls included 1) 10 normal equine eyes and 2) 10 equine eyes with a nonrecurrent form of uveitis. The experimental group consisted of 10 eyes diagnosed with ERU based on clinical signs and histologic lesions. Sections were subjected to immunohistochemical staining with an array of rabbit anti-Leptospira polyclonal antibodies. DNA extractions were performed by using a commercial kit designed for fixed tissue. Real-time PCR analysis was completed on extracted DNA. The target sequence for PCR was designed from alignments of available Leptospira 16S rDNA partial sequences obtained from GenBank. Two of 10 test samples were positive for Leptospira antigen by immunohistochemical assay. Zero of 20 controls were positive for Leptospira antigen. All test samples and controls were negative for Leptospira DNA by real-time PCR analysis. Leptospira was detected at a lower frequency than that previously reported for fresh ERU-affected aqueous humor and vitreous samples. Leptospira is not frequently detectable in fixed ocular tissues of horses affected with ERU when using traditional immunohistochemical and real-time PCR techniques.

  12. Digital-holographic analysis of femtosecond laser-induced photodisruption in ocular tissue

    NASA Astrophysics Data System (ADS)

    Saerchen, Emanuel; Biessy, Kevin; Kemper, Björn; Lubatschowski, Holger

    2014-02-01

    High repetition rated femtosecond laser oscillator systems with low pulse energy are more often applied for precise and safer eye surgery. Especially, the cutting procedure in the crystalline lens is of high important for presbyopia treatment. Nevertheless, the fundamental laser tissue interaction process is not completely understood, because apparently a self-induced process takes place, were one modified region changes the focusing behavior of following laser pulses. We used a MHz repetition rate femtosecond laser system with nJ-pulse energy which were focused inside an ocular-tissue-phantom (Hydroxy-ethylmethacrylat - HEMA) to induce photodisruption. The material change, caused by the fs-pulses was measured simultaneously with a compact digital-holographic microscope. To investigate the material manipulation at different time scales, we used a continuously illuminating light source. The holographic images provide quantitative values for optical path length difference (OPL), which is equivalent to a refractive index change. This change of the optical properties may cause following pulses to obtain different focusing conditions. Time lapse measurements during the laser application were performed, which show the temporal evolution of OPL. An increase of OPL during the laser application was measured, which was followed by a decrease in OPL after laser processing. Furthermore, similar experiments were performed in distilled water and in native porcine crystalline lenses. The fs-laser cutting effects in HEMA and crystalline lens were transferable. Simultaneous measurements of the material modification during the cutting process give rise to better knowledge of treatment modalities during ocular tissue processing.

  13. Multigene methylation analysis of ocular adnexal MALT lymphoma and their relationship to Chlamydophila psittaci infection and clinical characteristics in South Korea.

    PubMed

    Choung, Ho-Kyung; Kim, Young A; Lee, Min Joung; Kim, Namju; Khwarg, Sang In

    2012-04-06

    We investigated the aberrant promoter methylation status of known or suspected tumor suppressor genes in ocular adnexal lymphoma (OAL) and the possible association with clinical characteristics and Chlamydophila psittaci infection. Thirty-five cases of ocular adnexal mucosa-associated lymphoid tissue (MALT) lymphoma cases were examined for the methylation status of nine genes using methylation-specific PCR and for the detection of C. psittaci DNA using PCR. The medical records were reviewed retrospectively. Patient demographics, clinical characteristics including the response of the lymphoma to the therapy, and C. psittaci infection status were evaluated for possible association with methylation frequencies. CpG island methylation in nine genes was variously found as follows; DAPK (94.3%), ECAD (77.1%), MT1G (48.6%), THBS1 (37.1%), RAR-β (31.4%), p16 (20%), MGMT (5.7%), p14 (0%), and RASSF1A (0%). Methylation was not observed in any of 13 control cases. C. psittaci DNA was observed in 25 (75.8%) of 33 patients with available tumor tissues, and ECAD hypermethylation was significantly higher in C. psittaci-positive cases (P = 0.041). Promoter hypermethylation status was not correlated with clinical characteristics. Aberrant CpG island methylation of tumor suppressor genes is a frequent event in ocular adnexal MALT lymphoma. In particular, high frequencies of DAPK and ECAD methylation may be strongly correlated with ocular adnexal MALT lymphomagenesis in South Korea. Furthermore, ECAD hypermethylation is closely associated with C. psittaci infection, which may shed light on the mechanisms of bacterium-induced oncogenesis.

  14. A UK scheme for reporting serious adverse events and reactions associated with ocular tissue transplantation.

    PubMed

    Kaye, Stephen; Baddon, Andrew; Jones, Mark; Armitage, W John; Fehily, Deirdre; Warwick, Ruth M

    2010-02-01

    Reporting and investigation of serious adverse events and reactions associated with tissue and cell transplantation is a fundamental aspect of ensuring adequate levels of safety and quality and is a requirement of the European Union Directives on tissues and cells. In the UK, a system for the reporting and analysis of events and reactions associated with ocular tissue transplantation is well established. It is operated by a network of individuals and organisations, each with clearly defined roles and responsibilities, following written procedures for reporting and investigation. Analysis of reports indicates that the most important adverse reactions associated with this type of tissue transplantation are endophthalmitis (0.58%) and primary graft failure (0.3%). This system allows the analysis of all types of events and reactions by the professionals involved so that trends can be identified and services improved. Tools to evaluate the severity and imputability of individual events or reactions, such as those developed by the EUSTITE project, can be utilised to facilitate the selection of those cases meeting the criteria for reporting to the Competent Authority. This vigilance model has been shown to be effective and could be applied in other fields of tissue or cell transplantation.

  15. Microbial Keratitis: Could Contact Lens Material Affect Disease Pathogenesis?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2012-01-01

    Microbial keratitis is a sight-threatening complication associated with contact lenses. The introduction of silicone hydrogel lens materials with increased oxygen transmission to the ocular surface has not significantly altered the incidence of microbial keratitis. These data suggest that alternate, or additional, predisposing factors involving lens wear must be addressed to reduce or eliminate these infections. The contact lens can provide a surface for microbial growth in situ, and can also influence ocular surface homeostasis through effects on the tear fluid and corneal epithelium. Thus, it is intuitive that future contact lens materials could make a significant contribution to preventing microbial keratitis. Design of the “right” material to prevent microbial keratitis requires understanding the effects of current materials on bacterial virulence in the cornea, and on ocular surface innate defenses. Current knowledge in each of these areas will be presented, with a discussion of future directions needed to understand the influence of lens material on the pathogenesis of microbial keratitis. PMID:23266587

  16. Lacritin and Other New Proteins of the Lacrimal Functional Unit

    PubMed Central

    McKown, Robert L.; Wang, Ningning; Raab, Ronald W.; Karnati, Roy; Zhang, Yinghui; Williams, Patricia B.; Laurie, Gordon W.

    2009-01-01

    The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as ‘an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them’. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over two hundred new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin’s low nanomolar mitogenic activity. The lacritin binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction. PMID:18840430

  17. Comparison of efficacy and ocular surface toxicity of topical preservative-free methylprednisolone and preserved prednisolone in the treatment of acute anterior uveitis.

    PubMed

    Hedayatfar, Alireza; Hashemi, Hassan; Asgari, Soheila; Chee, Soon-Phaik

    2014-04-01

    The aim of this study was to compare the antiinflammatory effect and ocular surface toxicity of topical nonpreserved methylprednisolone sodium succinate 1% and preserved prednisolone acetate suspension 1% for the management of acute anterior uveitis (AAU). In this prospective, randomized, investigator-masked, comparative clinical trial, patients with mild-to-moderate noninfectious AAU were assigned randomly to receive either hourly nonpreserved methylprednisolone 1% (group A) or preserved prednisolone 1% (group B) eye drops followed by a 2-week tapering regimen. Anterior chamber cells and flare were clinically evaluated for the objective comparison of the antiinflammatory effect. The main outcome measure was the percentage of patients with a resolution of inflammation (anterior chamber cells <1+) on day 14. Ocular surface toxicity was assessed by means of the corneal fluorescein staining score, tear breakup time, Schirmer I test, and questionnaire-based grading of ocular discomfort parameters. Seventy-two eyes of 68 patients were studied, of which 38 eyes were enrolled in group A and 34 eyes were enrolled in group B. On day 14, 76.3% of the patients in group A had resolution of inflammation compared with 70.6% of the patients in group B, proving noninferiority (χ = 0.303, P = 0.582). The mean anterior chamber cell grade reduction for patients in group A was similar to that in group B (2.52 vs. 2.86, respectively; P = 0.92). Group A patients showed significantly lower corneal fluorescein staining scores (P < 0.001) and reported milder subjective ocular discomfort (0.55 vs. 1.43, P = 0.01) as compared with group B. Both preparations demonstrated equal antiinflammatory effects for the treatment of AAU. Nonpreserved methylprednisolone eye drops exhibited a significantly lower ocular surface toxicity profile and milder subjective discomfort when compared with that exhibited by preserved prednisolone.

  18. Cyclosporine A delivery to the eye: A comprehensive review of academic and industrial efforts.

    PubMed

    Lallemand, Frédéric; Schmitt, Mathieu; Bourges, Jean-Louis; Gurny, Robert; Benita, Simon; Garrigue, Jean-Sébastien

    2017-08-01

    Local ocular delivery of cyclosporine A (CsA) is the preferred method for CsA delivery as a treatment for ocular inflammatory diseases such as uveitis, corneal healing, vernal keratoconjunctivitis and dry eye disease. However, due to the large molecular weight and hydrophobic nature of CsA and the natural protective mechanisms of the eye, achieving therapeutic levels of CsA in ocular tissues can be difficult. This review gives a comprehensive overview of the current products available to clinicians as well as emerging drug delivery solutions that have been developed at both the academic and industry levels. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. The zebrafish eye—a paradigm for investigating human ocular genetics

    PubMed Central

    Richardson, R; Tracey-White, D; Webster, A; Moosajee, M

    2017-01-01

    Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future. PMID:27612182

  20. Development of infrared thermal imager for dry eye diagnosis

    NASA Astrophysics Data System (ADS)

    Chiang, Huihua Kenny; Chen, Chih Yen; Cheng, Hung You; Chen, Ko-Hua; Chang, David O.

    2006-08-01

    This study aims at the development of non-contact dry eye diagnosis based on an infrared thermal imager system, which was used to measure the cooling of the ocular surface temperature of normal and dry eye patients. A total of 108 subjects were measured, including 26 normal and 82 dry eye patients. We have observed that the dry eye patients have a fast cooling of the ocular surface temperature than the normal control group. We have developed a simplified algorithm for calculating the temperature decay constant of the ocular surface for discriminating between normal and dry eye. This study shows the diagnostic of dry eye syndrome by the infrared thermal imager system has reached a sensitivity of 79.3%, a specificity of 75%, and the area under the ROC curve 0.841. The infrared thermal imager system has a great potential to be developed for dry eye screening with the advantages of non-contact, fast, and convenient implementation.

  1. Ocular fibropapillomas of green turtles (Chelonia mydas).

    PubMed

    Brooks, D E; Ginn, P E; Miller, T R; Bramson, L; Jacobson, E R

    1994-05-01

    Histologic evaluation of four eyes from three stranded juvenile green turtles (Chelonia mydas) from Florida, USA revealed ocular fibropapillomas composed of an overlying hyperplastic epithelium, various amounts of a thickened, well vascularized, collagenous stroma, and a moderate-to-dense population of reactive fibroblasts. The histologic morphology of the ocular fibropapillomas varied depending on whether the eyelid, conjunctiva, limbus, or cornea was the primary site of tumor origin. Fibropapillomas arising from the limbus, conjunctiva, or eyelid tended to be polyploid or pedunculated with a high degree of arborization. They often filled the conjunctival fornices and extended externally to be ulcerated on the distal aspects. Corneal fibropapillomas were more sessile and multinodular with less arborization. Some corneal tumors consisted primarily of a broad fibrovascular stroma and mild epithelial hyperplasia, whereas others had a markedly hyperplastic epithelium supported by stalks of fibrovascular stromal tissue. In green turtles ocular fibropapillomas may be locally invasive and associated with severe blindness and systemic debilitation.

  2. Proteomics Analysis of Molecular Risk Factors in the Ocular Hypertensive Human Retina

    PubMed Central

    Yang, Xiangjun; Hondur, Gözde; Li, Ming; Cai, Jian; Klein, Jon B.; Kuehn, Markus H.; Tezel, Gülgün

    2015-01-01

    Purpose To better understand ocular hypertension–induced early molecular alterations that may determine the initiation of neurodegeneration in human glaucoma, this study analyzed retinal proteomic alterations in the ocular hypertensive human retina. Methods Retina samples were obtained from six human donors with ocular hypertension (without glaucomatous injury) and six age- and sex-matched normotensive controls. Retinal proteins were analyzed by two-dimensional LC-MS/MS (liquid chromatography and linear ion trap mass spectrometry) using oxygen isotope labeling for relative quantification of protein expression. Proteomics data were validated by Western blot and immunohistochemical analyses of selected proteins. Results Out of over 2000 retinal proteins quantified, hundreds exhibited over 2-fold increased or decreased expression in ocular hypertensive samples relative to normotensive controls. Bioinformatics linked the proteomics datasets to various pathways important for maintenance of cellular homeostasis in the ocular hypertensive retina. Upregulated proteins included various heat shock proteins, ubiquitin proteasome pathway components, antioxidants, and DNA repair enzymes, while many proteins involved in mitochondrial oxidative phosphorylation exhibited downregulation in the ocular hypertensive retina. Despite the altered protein expression reflecting intrinsic adaptive/protective responses against mitochondrial energy failure, oxidative stress, and unfolded proteins, no alterations suggestive of an ongoing cell death process or neuroinflammation were detectable. Conclusions This study provides information about ocular hypertension–related molecular risk factors for glaucoma development. Molecular alterations detected in the ocular hypertensive human retina as opposed to previously detected alterations in human donor retinas with clinically manifest glaucoma suggest that proteome alterations determine the individual threshold to tolerate the ocular hypertension–induced tissue stress or convert to glaucomatous neurodegeneration when intrinsic adaptive/protective responses are overwhelmed. PMID:26348630

  3. Pharmacodynamic effects of pilocarpine eye drop enhanced by decreasing its volume of instillation.

    PubMed

    Lal, A; Kataria, V; Rajpal, A; Khanna, N

    1995-07-01

    Previous studies have proved that as the volume of the drug solution instilled into the eye is decreased, the fraction of the dose absorbed into the ocular tissue is increased and the adverse drug reactions lowered. The present study investigated the acute effects of different drop volumes (10 microliters, 20 microliters, 40 microliters, and 80 microliters) of pilocarpine nitrate (2%) on pupil diameter, heart rate, and adverse reaction profile, in 12 healthy human volunteers. The drop volumes of 10 microliters and 20 microliters produced more miosis and less side effects than 40 microliters and 80 microliters drop volumes. This may be due to more penetration of the drug into the ocular tissue and less drainage into the nasolacrimal system.

  4. Evolving Knowledge in Pharmacologic Treatments of Age-Related Macular Degeneration.

    PubMed

    Soubrane Daguet, Gisèle; Risard-Gasiorowski, Sarah; Massamba, Nathalie

    2016-01-01

    Modern retinal drug therapy is a result of the recent challenges and breakthroughs in chemistry, physics, genetics, cell biology and biotechnologies. Specific pharmaceutical and pharmacokinetic characteristics of a drug are of major importance and contribute to its ability to penetrate targeted ocular tissues in order to result in effective therapeutic concentrations. In addition, the drugs should maintain a prolonged time of activity and be safe with minimal local and systemic toxicity. The transporter vehicle or drug delivery system is crucial in order to enhance ocular tissue penetration and establish controlled drug release. Administration methods should be local, thereby reducing systemic side effects, and, ideally, treatment should be noninvasive. Within the group of so-called classic therapies, the use of pharmacologic treatments has become widespread for most severe retinal diseases. Thereby, ocular therapy of diseases like exudative age-related macular degeneration has improved markedly. Moreover, new metabolic pathways have been identified, new molecules have emerged, new synthesis technologies have been discovered, and new formulae conceived. These developments have opened new avenues for limiting disease progression. © 2016 S. Karger AG, Basel.

  5. Chronic dry eye in PRK and LASIK: manifestations, incidence and predictive factors

    PubMed Central

    Bower, Kraig S.; Sia, Rose K.; Ryan, Denise S.; Mines, Michael J.; Dartt, Darlene A.

    2017-01-01

    Purpose To evaluate dry eye manifestations following photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) and determine the incidence and predictive factors of chronic dry eye using a set of dry eye criteria. Setting Walter Reed Army Medical Center, Washington, DC, USA Methods This is a prospective non-randomized clinical study of 143 active duty U.S. Army personnel aged 29.9±5.2 years with myopia or myopic astigmatism (manifest spherical equivalent −3.83±1.96 diopters) undergoing either PRK or LASIK. Dry eye evaluation was performed pre- and postoperatively. Main outcome measures included dry eye manifestations, incidence, and predictive factors of chronic dry eye. Results Schirmer scores, corneal sensitivity, ocular surface staining, surface regularity index (SRI), and responses to dry eye questionnaire significantly changed over time after PRK. After LASIK, significant changes were observed in tear breakup time, corneal sensitivity, ocular surface staining, and responses to questionnaire. At twelve months postoperatively, 5.0% of PRK and 0.8% of LASIK participants developed chronic dry eye. Regression analysis showed preoperatively lower Schirmer score will significantly influence development of chronic dry eye after PRK whereas preoperatively lower Schirmer score or higher ocular surface staining score will significantly influence the occurrence of chronic dry eye after LASIK. Conclusions Chronic dry eye is uncommon after PRK and LASIK. Ocular surface and tear film characteristics during preoperative examination may help predict chronic dry eye development in PRK and LASIK. PMID:26796443

  6. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    PubMed

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  7. Conference Scene: nanomedicine kindles the development of the 'elixir of life'.

    PubMed

    Jain, Sanyog; Das, Manasmita

    2011-06-01

    For the seventh time, nanomedicine experts from around the globe congregated in SAS Nagar, Punjab, for the Fourth Winter School on Nanotechnology in Advanced Drug Delivery, organized by the National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India. The program covered almost all the scintillating areas of nanomedicine, including novel nanosystems for oral, ocular and transdermal drug delivery, nanostructured surfaces for medical applications, 'smart' nanobullets for site-specific drug and gene delivery, designer nanoparticles for therapeutic delivery, tissue engineering and nanobiocomposites, cancer nanotherapy, and novel analytical and diagnostic tools. Special emphasis was given to the commercialization of nanomedical products, including issues related to intellectual property and risk management.

  8. Alkali Burn of the Ocular Surface Associated With a Commonly Used Antifog Agent for Eyewear: Two Cases and a Review of Previous Reports.

    PubMed

    Welling, John D; Pike, Evan C; Mauger, Thomas F

    2016-02-01

    To report 2 cases of ocular chemical burns associated with the use of a swim goggle antifog agent and to review the literature for this and similar antifog products. Case reports and systematic review of the medical literature, material safety data, product safety reports, and consumer reviews. Two males, one 46 years and the other 41 years, were referred to our clinic with chemical burns of the ocular surface after using the same goggle antifog agent while swimming in a triathlon. Both sustained significant epithelial defects. Fortunately, with prompt treatment, both of our patients returned to their baseline vision within a few weeks without suffering sight-threatening complications. These are the first cases of ocular chemical burn secondary to use of an eyewear antifog agent to be reported in the medical literature. Similar reports found in consumer forums suggest that our cases are not isolated and these products may have the potential to cause vision-threatening chemical burns.

  9. Ocular chemical injuries and their management.

    PubMed

    Singh, Parul; Tyagi, Manoj; Kumar, Yogesh; Gupta, K K; Sharma, P D

    2013-05-01

    Chemical burns represent potentially blinding ocular injuries and constitute a true ocular emergency requiring immediate assessment and initiation of treatment. The majority of victims are young and exposure occurs at home, work place and in association with criminal assaults. Alkali injuries occur more frequently than acid injuries. Chemical injuries of the eye produce extensive damage to the ocular surface epithelium, cornea, anterior segment and limbal stem cells resulting in permanent unilateral or bilateral visual impairment. Emergency management if appropriate may be single most important factor in determining visual outcome. This article reviews the emergency management and newer techniques to improve the prognosis of patients with chemical injuries.

  10. Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular.

    PubMed

    Li, Jinyu; Tan, Guoxin; Cheng, Bingchao; Liu, Dandan; Pan, Weisan

    2017-11-01

    To facilitate the hydrophobic drugs modeled by coumarin-6 (Cou-6) acrossing the cornea to the anterior chamber of the rabbit eye, chitosan (CS) derivatives including chitosan-N-acetyl-l-cysteine (CS-NAC), chitosan oligosaccharides (COS) and carboxymethyl chitosan (CMCS) modified nanostructured lipid carriers (NLCs) were designed and characterized. We found that, with similar size distribution and positivecharges, different CS derivatives based on NLCs led to distinctive delivery performance. In vivo precorneal retention study on rabbits revealed that these CS derivatives coating exhibited a stronger resistant effect than Cou-6 eye drops and Cou-6-NLC (P<0.05), moreover, the AUC (0-∞) , C max and MRT (0-∞) of them followed the sequence of CMCS-Cou-6-NLC

  11. In Vivo Confocal Microscopy of the Ocular Surface: From Bench to Bedside

    PubMed Central

    Villani, Edoardo; Baudouin, Christophe; Efron, Nathan; Hamrah, Pedram; Kojima, Takashi; Patel, Sanjay V.; Pflugfelder, Stephen C.; Zhivov, Andrey; Dogru, Murat

    2014-01-01

    In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis. PMID:24215436

  12. Sleep and mood disorders in dry eye disease and allied irritating ocular diseases.

    PubMed

    Ayaki, Masahiko; Kawashima, Motoko; Negishi, Kazuno; Kishimoto, Taishiro; Mimura, Masaru; Tsubota, Kazuo

    2016-03-01

    The aim of the present study was to evaluate sleep and mood disorders in patients with irritating ocular diseases. The study design was a cross-sectional/case-control study conducted in six eye clinics. Out of 715 outpatients diagnosed with irritating ocular surface diseases and initially enrolled, 301 patients with dry eye disease (DED) and 202 age-matched control participants with other ocular surface diseases were analyzed. The mean Pittsburgh Sleep Quality Index (PSQI) and Hospital Anxiety and Depression Scale (HADS) scores were 6.4 ± 3.2 and 11.1 ± 5.7 for severe DED (n = 146), 5.5 ± 3.3 and 9.8 ± 4.0 for mild DED (n = 155), 5.5 ± 3.1 and 9.5 ± 6.6 for chronic conjunctivitis (n = 124), and 5.0 ± 3.3 and 8.9 ± 5.3 for allergic conjunctivitis (n = 78). There were significant differences among these diagnostic groups for PSQI (P < 0.05). Regression analysis of patients with DED revealed the PSQI and HADS scores were significantly correlated with the severity of DED (P < 0.05). Our results demonstrate that sleep quality in patients with DED is significantly worse than in patients with other irritating ocular surface diseases and it is correlated with the severity of DED.

  13. Episcleral, intrascleral, and suprachoroidal routes of ocular drug delivery - recent research advances and patents.

    PubMed

    Gilger, Brian C; Mandal, Abhirup; Shah, Sujay; Mitra, Ashim K

    2014-01-01

    Subconjunctival/episcleral, intrascleral, and suprachoroidal routes of drug delivery for treatment of posterior segment eye diseases have become more feasible and popular in the past few years. These routes have the advantage of bypassing the main barriers to topical drug penetration, the ocular surface epithelium, the conjunctivallymphatics, and in the case of deep intrascleral and suprachoroidial delivery, the sclera barrier. Many ocular drug delivery application devices, drug delivery methods, and therapeutics that have been developed for intravitreal use can also be used subconjunctivally, intrasclerally, and in the suprachoroidal space. Alternatively, site-specific devices, such microneedles, and therapeutics, such as hydrogel matrices, have been developed to enhance ocular drug delivery. This manuscript will review the recent research advances and patents on episcleral, intrascleral, and suprachoroidal routes of ocular drug delivery.

  14. Nontuberculous Mycobacterial Ocular Infections: A Systematic Review of the Literature

    PubMed Central

    Kheir, Wajiha J.; Sheheitli, Huda; Abdul Fattah, Maamoun; Hamam, Rola N.

    2015-01-01

    Nontuberculous or atypical mycobacterial ocular infections have been increasing in prevalence over the past few decades. They are known to cause periocular, adnexal, ocular surface and intraocular infections and are often recalcitrant to medical therapy. These infections can potentially cause detrimental outcomes, in part due to a delay in diagnosis. We review 174 case reports and series on nontuberculous mycobacterial (NTM) ocular infections and discuss etiology, microbiology, risk factors, diagnosis, clinical presentation, and treatment of these infections. History of interventions, trauma, foreign bodies, implants, contact lenses, and steroids are linked to NTM ocular infections. Steroid use may prolong the duration of the infection and cause poorer visual outcomes. Early diagnosis and initiation of treatment with multiple antibiotics are necessary to achieve the best visual outcome. PMID:26106601

  15. Corneal Epitheliopathy After Trauma by Fake Snow Powder in a 7-year-old Child

    PubMed Central

    Al-Amry, Mohammad A.; Al-Ghadeer, Huda A.

    2016-01-01

    Fake snow is a polymer of sodium polyacrylates used in games and celebrations. Despite the product leaflet that indicates safety, contact with the ocular surface can cause injury. We report a case of a child with corneal epitheliopathy due to a chemical burn injury after ocular surface contact with fake snow. The case was managed with epithelial debridement and a bandage contact lenses and topical antibiotics with complete resolution. PMID:27555717

  16. Subepithelial corneal fibrosis partially due to epithelial-mesenchymal transition of ocular surface epithelium

    PubMed Central

    Kawashima, Motoko; Higa, Kazunari; Satake, Yoshiyuki; Omoto, Masahiro; Tsubota, Kazuo; Shimmura, Shigeto; Shimazaki, Jun

    2010-01-01

    Purpose To determine whether epithelial-mesenchymal transition is involved in the development of corneal subepithelial fibrosis (pannus). Methods Frozen samples of pannus tissue removed from human corneas with a diagnosis of total limbal stem cell deficiency were characterized by immunostaining for both epithelial and mesenchymal markers. We selected transformation-related protein 63 (p63) and pancytokeratin as epithelial markers and vimentin and α-smooth muscle actin (α-SMA) as mesenchymal markers. Immunostaining for β-catenin and E-cadherin was performed to determine wingless-Int (Wnt)-pathway activation. RT–PCR analysis was also performed on epithelial tissue obtained from pannus samples after dispase digestion. Results Immunohistochemistry revealed strong nuclear expression of p63 and weak intercellular expression of E-cadherin in epithelial basal cells of pannus tissue. Furthermore, translocation of β-catenin from intercellular junctions to the nucleus and cytoplasm was also observed. Double-positive cells for both p63 and α-SMA were observed in the subepithelial stroma of pannus tissue, which was supported by RT–PCR and cytospin analysis. Conclusions Epithelial-mesenchymal transition may be partially involved in the development of subepithelial corneal fibrosis due to total limbal stem cell deficiency. PMID:21179238

  17. α-Melanocyte-stimulating hormone ameliorates ocular surface dysfunctions and lesions in a scopolamine-induced dry eye model via PKA-CREB and MEK-Erk pathways.

    PubMed

    Ru, Yusha; Huang, Yue; Liu, Huijuan; Du, Juan; Meng, Zhu; Dou, Zexia; Liu, Xun; Wei, Rui Hua; Zhang, Yan; Zhao, Shaozhen

    2015-12-21

    Dry eye is a highly prevalent, chronic, and multifactorial disease that compromises quality of life and generates socioeconomic burdens. The pathogenic factors of dry eye disease (DED) include tear secretion abnormalities, tear film instability, and ocular surface inflammation. An effective intervention targeting the pathogenic factors is needed to control this disease. Here we applied α-Melanocyte-stimulating hormone (α-MSH) twice a day to the ocular surface of a scopolamine-induced dry eye rat model. The results showed that α-MSH at different doses ameliorated tear secretion, tear film stability, and corneal integrity, and corrected overexpression of proinflammatory factors, TNF-α, IL-1β, and IFN-γ, in ocular surface of the dry eye rats. Moreover, α-MSH, at 10(-4) μg/μl, maintained corneal morphology, inhibited apoptosis, and restored the number and size of conjunctival goblet cells in the dry eye rats. Mechanistically, α-MSH activated both PKA-CREB and MEK-Erk pathways in the dry eye corneas and conjunctivas; pharmacological blockade of either pathway abolished α-MSH's protective effects, suggesting that both pathways are necessary for α-MSH's protection under dry eye condition. The peliotropic protective functions and explicit signaling mechanism of α-MSH warrant translation of the α-MSH-containing eye drop into a novel and effective intervention to DED.

  18. α-Melanocyte-stimulating hormone ameliorates ocular surface dysfunctions and lesions in a scopolamine-induced dry eye model via PKA-CREB and MEK-Erk pathways

    PubMed Central

    Ru, Yusha; Huang, Yue; Liu, Huijuan; Du, Juan; Meng, Zhu; Dou, Zexia; Liu, Xun; Wei, Rui Hua; Zhang, Yan; Zhao, Shaozhen

    2015-01-01

    Dry eye is a highly prevalent, chronic, and multifactorial disease that compromises quality of life and generates socioeconomic burdens. The pathogenic factors of dry eye disease (DED) include tear secretion abnormalities, tear film instability, and ocular surface inflammation. An effective intervention targeting the pathogenic factors is needed to control this disease. Here we applied α-Melanocyte-stimulating hormone (α-MSH) twice a day to the ocular surface of a scopolamine-induced dry eye rat model. The results showed that α-MSH at different doses ameliorated tear secretion, tear film stability, and corneal integrity, and corrected overexpression of proinflammatory factors, TNF-α, IL-1β, and IFN-γ, in ocular surface of the dry eye rats. Moreover, α-MSH, at 10−4 μg/μl, maintained corneal morphology, inhibited apoptosis, and restored the number and size of conjunctival goblet cells in the dry eye rats. Mechanistically, α-MSH activated both PKA-CREB and MEK-Erk pathways in the dry eye corneas and conjunctivas; pharmacological blockade of either pathway abolished α-MSH’s protective effects, suggesting that both pathways are necessary for α-MSH’s protection under dry eye condition. The peliotropic protective functions and explicit signaling mechanism of α-MSH warrant translation of the α-MSH-containing eye drop into a novel and effective intervention to DED. PMID:26685899

  19. Effects of the rigid gas permeable contact lense use on tear and ocular surface among keratoconus patients.

    PubMed

    Yuksel Elgin, Cansu; Iskeleli, Guzin; Aydin, Ovgu

    2018-06-01

    To investigate changes in tear and ocular surface of patients with keratoconus using rigid gas permeable contact lenses (RGPCL) and compare them against keratoconus patients who were not using lenses as well as a control group of healthy subjects. 24 keratoconus patients using RGPCL (Group 1) 22 patients who were not using lenses (Group 3) and 21 healthy subjects (Group 3) were included in the study. Subjective complaints about the subjects' eyes have been investigated using the ocular-surface disease index (OSDI). After the control of best-corrected visual acuity, anterior chamber and fundus examinations were performed. Schirmer (p-value=0.01) and tear break up mean comparison tests (p-value=0.002) revealed significant differences across different groups but tear osmolarity analysis did not (p-value >0.05). Oxford and OSDI scores were compatible with Schirmer and tear break up test comparisons. (for both p-value=0.001) Moreover, no statistical differences were seen in impression cytology measures between groups. (p-value >0.05) CONCLUSIONS: The erosion in the tear film stability is in line with the erosion in the ocular surface epithelium. Taking into account the statistical indifference between the impression cytology measures across groups, the break up time differences may be attributed to the collagen destruction in tear. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  20. Treatment of ocular rosacea: comparative study of topical cyclosporine and oral doxycycline.

    PubMed

    Arman, Aysegul; Demirseren, Duriye Deniz; Takmaz, Tamer

    2015-01-01

    To compare the effectiveness of topical cyclosporine A emulsion with that of oral doxycycline for rosacea associated ocular changes and dry eye complaints. One hundred and ten patients with rosacea were screened. Thirty-eight patients having rosacea associated eyelid and ocular surface changes and dry eye complaints were included in the study. Patients were randomly divided into two groups: nineteen patients were given topical cyclosporine twice daily and nineteen patients were given oral doxycycline 100 mg twice daily for the first month and once daily for the following two months. Symptom and sign scores, ocular surface disease index questionnarie and tear function tests were evaluated at baseline and monthly for 3mo. Three months after results were compared with that of baseline. Mean values of symptom, eyelid sign and corneal/conjunctival sign scores of each treatment group at baseline and 3mo after treatments were compared and both drugs were found to be effective on rosacea associated ocular changes (P<0.001). Cyclosporine was more effective in symptomatic relief and in the treatment of eyelid signs (P=0.01). There was statistically significant increase in the mean Schirmer score with anesthesia and tear break up time scores in the cyclosporine treatment group compared to the doxycycline treatment group (P<0.05). Cyclosporine as a topical drug can be used in the treatment of rosacea associated ocular complications because it is more effective than doxycycline. In addition ocular rosacea as a chronic disease requires long term treatment and doxycycline has various side effects limiting its long term usage.

  1. Supply of human allograft tissue in Canada.

    PubMed

    Lakey, Jonathan R T; Mirbolooki, Mohammadreza; Rogers, Christina; Mohr, Jim

    2007-01-01

    There is relatively little known about the supply for allograft tissues in Canada. The major aim of this study is to quantify the current or "Known Supply" of human allograft tissue (bone, tendons, soft tissue, cardiovascular, ocular and skin) from known tissue banks in Canada, to estimate the "Unknown Supply" of human allograft tissue available to Canadian users from other sources, and to investigate the nature and source of these tissue products. Two surveys were developed; one for tissue banks processing one or more tissue types and the other specific to eye banks. Thirty nine sites were initially identified as potential tissue bank respondent sites. Of the 39 sites, 29 sites indicated that they were interested in participating or would consider completing the survey. A survey package and a self-addressed courier envelope were couriered to each of 29 sites. A three week response time was indicated. The project consultants conducted telephone and email follow-up for incomplete data. Unknown supply was estimated by 5 methods. Twenty-eight of 29 sites (97%) completed and returned surveys. Over the past year, respondents reported a total of 5,691 donors (1,550 living and 4,141 cadaveric donors). Including cancellous ground bone, there were 10,729 tissue products produced by the respondent banks. Of these, 71% were produced by accredited banks and 32% were ocular tissues. Total predicted shortfall of allograft tissues was 31,860-66,481 grafts. Through estimating Current supply, and compiling additional qualitative information, this study has provided a snapshot of the current Canadian supply and shortfall of allograft tissue grafts.

  2. Mucoadhesive drug delivery systems

    PubMed Central

    Shaikh, Rahamatullah; Raj Singh, Thakur Raghu; Garland, Martin James; Woolfson, A David; Donnelly, Ryan F.

    2011-01-01

    Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal). PMID:21430958

  3. The liquid biopsy: a tool for a combined diagnostic and theranostic approach for care of a patient with late-stage lung carcinoma presenting with bilateral ocular metastases.

    PubMed

    Bouhlel, Linda; Hofman, Véronique; Maschi, Célia; Ilié, Marius; Allégra, Maryline; Marquette, Charles-Hugo; Audigier-Valette, Clarisse; Thariat, Juliette; Hofman, Paul

    2017-12-01

    Liquid biopsies (LB) are used routinely in clinical practice in two situations for late stage non-small-cell lung cancer (NSCLC) patients, (i) at the initial diagnosis when looking for activating mutations in EGFR in the absence of analyzable tissue DNA and, (ii) during tumor progression on a tyrosine kinase inhibitor treatment to look for the resistance mutation T790M in EGFR. LB is not presently recommended in daily practice for the diagnosis of NSCLC. Areas covered: We report the diagnosis of a NSCLC in a patient with bilateral ocular metastases after detection of a deletion in exon 19 of EGFR when using plasma DNA. Without histological analysis, the origin of the primary ocular metastasis was uncertain. In this context, a LB showing an activating mutation in EGFR and circulating tumor cells positive for TTF1 led to the diagnosis of NSCLC and targeted therapy. Expert commentary: When no tumor tissue sample is available a LB can be used to diagnose for metastatic NSCLC, when a mutation in EGFR is identified. While a tissue biopsy is the gold standard approach for the diagnosis of a NSCLC and for identification of activating mutations, LB can exceptionally provide both a diagnosis of the primitive tumor and indicate appropriate therapy based on a molecular analysis.

  4. Lacrimal drainage-associated lymphoid tissue (LDALT): a part of the human mucosal immune system.

    PubMed

    Knop, E; Knop, N

    2001-03-01

    Mucosa-associated lymphoid tissue (MALT) specifically protects mucosal surfaces. In a previous study of the human conjunctiva, evidence was also found for the presence of MALT in the lacrimal sac. The present study, therefore, aims to investigate its morphology and topographical distribution in the human lacrimal drainage system. Lacrimal drainage systems (n = 51) obtained from human cadavers were investigated by clearing flat wholemounts or by serial sections of tissue embedded in paraffin, OCT compound, or epoxy resin. These were further analyzed by histology, immunohistochemistry, and electron microscopy. All specimens showed the presence of lymphocytes and plasma cells as a diffuse lymphoid tissue in the lamina propria, together with intraepithelial lymphocytes and occasional high endothelial venules (HEV). It formed a narrow layer along the canaliculi that became thicker in the cavernous parts. The majority of lymphocytes were T cells, whereas B cells were interspersed individually or formed follicular centers. T cells were positive for CD8 and the human mucosa lymphocyte antigen (HML-1). Most plasma cells were positive for IgA and the overlying epithelium expressed its transporter molecule secretory component (SC). Basal mucous glands were present in the lacrimal canaliculi and in the other parts accompanied by alveolar and acinar glands, all producing IgA-rich secretions. Primary and secondary lymphoid follicles possessing HEV were present in about half of the specimens. The term lacrimal drainage-associated lymphoid tissue (LDALT) is proposed here to describe the lymphoid tissue that is regularly present and belongs to the common mucosal immune system and to the secretory immune system. It is suggested that it may form a functional unit together with the lacrimal gland and conjunctiva, connected by tear flow, lymphocyte recirculation, and probably the neural reflex arc, and play a major role in preserving ocular surface integrity.

  5. A new safety concern for glaucoma treatment demonstrated by mass spectrometry imaging of benzalkonium chloride distribution in the eye, an experimental study in rabbits.

    PubMed

    Brignole-Baudouin, Françoise; Desbenoit, Nicolas; Hamm, Gregory; Liang, Hong; Both, Jean-Pierre; Brunelle, Alain; Fournier, Isabelle; Guerineau, Vincent; Legouffe, Raphael; Stauber, Jonathan; Touboul, David; Wisztorski, Maxence; Salzet, Michel; Laprevote, Olivier; Baudouin, Christophe

    2012-01-01

    We investigated in a rabbit model, the eye distribution of topically instilled benzalkonium_(BAK) chloride a commonly used preservative in eye drops using mass spectrometry imaging. Three groups of three New Zealand rabbits each were used: a control one without instillation, one receiving 0.01%BAK twice a day for 5 months and one with 0.2%BAK one drop a day for 1 month. After sacrifice, eyes were embedded and frozen in tragacanth gum. Serial cryosections were alternately deposited on glass slides for histological (hematoxylin-eosin staining) and immunohistological controls (CD45, RLA-DR and vimentin for inflammatory cell infiltration as well as vimentin for Müller glial cell activation) and ITO or stainless steel plates for MSI experiments using Matrix-assisted laser desorption ionization time-of-flight. The MSI results were confirmed by a round-robin study on several adjacent sections conducted in two different laboratories using different sample preparation methods, mass spectrometers and data analysis softwares. BAK was shown to penetrate healthy eyes even after a short duration and was not only detected on the ocular surface structures, but also in deeper tissues, especially in sensitive areas involved in glaucoma pathophysiology, such as the trabecular meshwork and the optic nerve areas, as confirmed by images with histological stainings. CD45-, RLA-DR- and vimentin-positive cells increased in treated eyes. Vimentin was found only in the inner layer of retina in normal eyes and increased in all retinal layers in treated eyes, confirming an activation response to a cell stress. This ocular toxicological study confirms the presence of BAK preservative in ocular surface structures as well as in deeper structures involved in glaucoma disease. The inflammatory cell infiltration and Müller glial cell activation confirmed the deleterious effect of BAK. Although these results were obtained in animals, they highlight the importance of the safety-first principle for the treatment of glaucoma patients.

  6. A New Safety Concern for Glaucoma Treatment Demonstrated by Mass Spectrometry Imaging of Benzalkonium Chloride Distribution in the Eye, an Experimental Study in Rabbits

    PubMed Central

    Brignole-Baudouin, Françoise; Desbenoit, Nicolas; Hamm, Gregory; Liang, Hong; Both, Jean-Pierre; Brunelle, Alain; Fournier, Isabelle; Guerineau, Vincent; Legouffe, Raphael; Stauber, Jonathan; Touboul, David; Wisztorski, Maxence; Salzet, Michel; Laprevote, Olivier; Baudouin, Christophe

    2012-01-01

    We investigated in a rabbit model, the eye distribution of topically instilled benzalkonium_(BAK) chloride a commonly used preservative in eye drops using mass spectrometry imaging. Three groups of three New Zealand rabbits each were used: a control one without instillation, one receiving 0.01%BAK twice a day for 5 months and one with 0.2%BAK one drop a day for 1 month. After sacrifice, eyes were embedded and frozen in tragacanth gum. Serial cryosections were alternately deposited on glass slides for histological (hematoxylin-eosin staining) and immunohistological controls (CD45, RLA-DR and vimentin for inflammatory cell infiltration as well as vimentin for Müller glial cell activation) and ITO or stainless steel plates for MSI experiments using Matrix-assisted laser desorption ionization time-of-flight. The MSI results were confirmed by a round-robin study on several adjacent sections conducted in two different laboratories using different sample preparation methods, mass spectrometers and data analysis softwares. BAK was shown to penetrate healthy eyes even after a short duration and was not only detected on the ocular surface structures, but also in deeper tissues, especially in sensitive areas involved in glaucoma pathophysiology, such as the trabecular meshwork and the optic nerve areas, as confirmed by images with histological stainings. CD45-, RLA-DR- and vimentin-positive cells increased in treated eyes. Vimentin was found only in the inner layer of retina in normal eyes and increased in all retinal layers in treated eyes, confirming an activation response to a cell stress. This ocular toxicological study confirms the presence of BAK preservative in ocular surface structures as well as in deeper structures involved in glaucoma disease. The inflammatory cell infiltration and Müller glial cell activation confirmed the deleterious effect of BAK. Although these results were obtained in animals, they highlight the importance of the safety-first principle for the treatment of glaucoma patients. PMID:23209668

  7. Differentiation of ocular fundus fluorophores by fluorescence lifetime imaging using multiple excitation and emission wavelengths

    NASA Astrophysics Data System (ADS)

    Hammer, M.; Schweitzer, D.; Schenke, S.; Becker, W.; Bergmann, A.

    2006-10-01

    Ocular fundus autofluorescence imaging has been introduced into clinical diagnostics recently. It is in use for the observation of the age pigment lipofuscin, a precursor of age - related macular degeneration (AMD). But other fluorophores may be of interest too: The redox pair FAD - FADH II provides information on the retinal energy metabolism, advanced glycation end products (AGE) indicate protein glycation associated with pathologic processes in diabetes as well as AMD, and alterations in the fluorescence of collagen and elastin in connective tissue give us the opportunity to observe fibrosis by fluorescence imaging. This, however, needs techniques able to differentiate particular fluorophores despite limited permissible ocular exposure as well as excitation wavelength (limited by the transmission of the human ocular lens to >400 nm). We present an ophthalmic laser scanning system (SLO), equipped with picosecond laser diodes (FWHM 100 ps, 446 nm or 468 nm respectively) and time correlated single photon counting (TCSPC) in two emission bands (500 - 560 nm and 560 - 700 nm). The decays were fitted by a bi-exponential model. Fluorescence spectra were measured by a fluorescence spectrometer fluorolog. Upon excitation at 446 nm, the fluorescence of AGE, FAD, and lipofuscin were found to peak at 503 nm, 525 nm, and 600 nm respectively. Accordingly, the statistical distribution of the fluorescence decay times was found to depend on the different excitation wavelengths and emission bands used. The use of multiple excitation and emission wavelengths in conjunction with fluorescence lifetime imaging allows us to discriminate between intrinsic fluorophores of the ocular fundus. Taken together with our knowledge on the anatomical structure of the fundus, these findings suggest an association of the short, middle and long fluorescence decay time to the retinal pigment epithelium, the retina, and connective tissue respectively.

  8. What is the Main Potential Factor Influencing Ocular Protrusion?

    PubMed

    Li, Yinwei; Su, Yun; Song, Xuefei; Zhou, Huifang; Fan, Xianqun

    2017-01-05

    BACKGROUND The aim of the present study was to establish the normal-range orbital parameters and to explore the relationships between ocular protrusion and various orbital morphological factors. MATERIAL AND METHODS A retrospective, non-comparative case series was conducted from January 2014 to December 2015. We recruited 56 subjects (112 orbits), including 27 males (21 to 87 years of age) and 29 females (22 to 88 years of age) in this study. Nine length measurements, 2 angle measurements, and 2 volume measurements of various aspects of the orbit were obtained using Mimics v18.0 software. The data were collected manually using a 3D measurement technique. Statistical analyses using t tests and Pearson's correlation analyses were performed to evaluate the differences and relationships between the parameters, respectively. RESULTS Ocular protrusion in both sexes was closely related to the following values: orbital soft tissue volume (OSTV) (males: r=0.61, p<0.001; females: r=0.39, p=0.003), orbital soft tissue volume/bony orbital volume (OSTV/BOV) (males: r=0.90, p<0.001; females: r=0.87, p<0.001), orbital width (males: r=0.40, p=0.003; females: r=0.53, p<0.001), orbital height (males: r=0.29, p=0.038; females: r=0.45, p<0.001), and globe diameter (males: r=0.52, p<0.001; females: r=0.48, p<0.001). No differences were found between the right and left orbits. CONCLUSIONS The study provides insight into the potential factors that influence ocular protrusion, which include the OSTV/BOV ratio, the shape of the orbital aperture, and the ocular axial length. The results of orbital surgery can be made more predictable by accounting for these 3 factors. The database and regression formula might provide support for surgical planning in the future.

  9. An animal model (guinea pig) of ocular siderosis: histopathology, pharmacology, and electrophysiology.

    PubMed

    Mumcuoglu, Tarkan; Ozge, Gokhan; Soykut, Bugra; Erdem, Onur; Gunal, Armagan; Acikel, Cengizhan

    2015-03-01

    Ocular siderosis is a rare sight-threatening complication that occurs after a penetrating ocular injury by an iron-containing foreign body. The purposes of this study were to (i) investigate the histopathology, electrophysiology and iron levels/accumulation in ocular siderosis using an animal (Guinea pig) model and (ii) determine the appropriate timing for follow-up foreign body-removal surgery. Thirty guinea pigs were divided into five groups (n = 6 animals/group). On day-1, an iron body was inserted into the vitreous of the right eye of all animals; the left eyes were left undisturbed and were used as controls. At the end of each week during the 5-week study period, electroretinography (ERG) was performed on all animals in one of the five groups. Each animal in that group was sacrificed, after which both eyes were enucleated for histopathological and pharmacological evaluation of intraocular iron. Accumulated iron levels of study eyes were significantly higher than those of control eyes (135.13 and 13.55 μg/g, respectively, p < 0.01). In addition, there was a significant decrease in electrophysiological responses of study eyes. During the first week, iron levels were higher in study eyes than control eyes, but neither histological iron accumulation nor decreased electrophysiological responses could be detected. By the end of the second week, increased iron accumulation was observed histologically in intraocular tissues, along with signs of retinal toxicity, as verified by decreased electrophysiological responses. The present study indicates that the 14th day after a penetrating eye injury by an iron-containing intraocular foreign body represents a clinically critical threshold, after which structural damage to and functional alterations in ocular tissues occur.

  10. The effects of 2% rebamipide ophthalmic solution on the tear functions and ocular surface of the superoxide dismutase-1 (sod1) knockout mice.

    PubMed

    Ohguchi, Takeshi; Kojima, Takashi; Ibrahim, Osama M; Nagata, Taeko; Shimizu, Takahiko; Shirasawa, Takuji; Kawakita, Tetsuya; Satake, Yoshiyuki; Tsubota, Kazuo; Shimazaki, Jun; Ishida, Susumu

    2013-11-21

    To investigate the efficacy of 2% rebamipide ophthalmic solution on the tear functions and ocular surface status of the superoxide dismutase-1(Sod1(-/-)) mice. Two percent Rebamipide ophthalmic solution was applied to 40-week-old male Sod1(-/-) and wild-type (WT) mice four times a day for 2 weeks. We examined the cytokine concentrations in the tear fluid (by CytoBead assay), tear film break-up time, amount of tear production, and expressions of mucins 1, 4, and 5AC, by RT-PCR. We also performed vital staining of the ocular surface, PAS staining for muc5AC, and immunohistochemical stainings for 4-hydroxy-2-nonenal (4-HNE), 8-hydroxy-2'-deoxyguanosine (8-OHdG), in the conjunctiva to compare the results before and after rebamipide instillations. The tear functions and ocular surface epithelial damage scores were significantly worse in the Sod1(-/-) than in the WT mice. Application of 2% rebamipide for 2 weeks significantly improved the tear film break-up time, the amount of tear production, and the corneal epithelial damage scores, which also significantly increased the conjunctival goblet cell density and muc5 mRNA expression, in the Sod1(-/-) mice. The mean IL-6, IL-17, TNF-α, and IFN-γ levels in the tear fluid were reduced significantly along with a significant decrease in the density of cells positive for 4-HNE and 8-OHdG in the conjunctiva. Two percent Rebamipide ophthalmic solution significantly improved the tear stability and corneal epithelial damage, and enhanced the expression of muc5 mRNA on the ocular surface. We also observed anti-inflammatory effects in the tear film together with antioxidative effects in the conjunctiva, suggesting the efficacy of rebamipide in age-related dry eye disease attributable to SOD1 knockout.

  11. Expression of Lipid Peroxidation Markers in the Tear Film and Ocular Surface of Patients with Non-Sjogren Syndrome: Potential Biomarkers for Dry Eye Disease.

    PubMed

    Choi, Won; Lian, Cui; Ying, Li; Kim, Ga Eon; You, In Cheon; Park, Soo Hyun; Yoon, Kyung Chul

    2016-09-01

    To investigate the expression of lipid peroxidation markers in the tear film and ocular surface and their correlation with disease severity in patients with dry eye disease. The concentrations of hexanoyl-lysine (HEL), 4-hydroxy-2-nonenal (HNE), and malondialdehyde (MDA) were measured with enzyme-linked immunosorbent assays in tears obtained from 44 patients with non-Sjogren syndrome dry eye and 33 control subjects. The correlations between the marker levels and the tear film and ocular surface parameters, including tear film break-up time (BUT), Schirmer tear value, tear clearance rate, keratoepitheliopathy scores, corneal sensitivity, conjunctival goblet cell density, and symptom score, were analyzed. The expression of the lipid peroxidation markers HEL, 4-HNE, and MDA in the conjunctiva was evaluated using immunohistochemistry. The concentrations of HEL, 4-HNE, and MDA were 279.84 ± 69.98 nmol/L, 0.02 ± 0.01 μg/mL, and 3.80 ± 1.05 pmol/mg in control subjects and 283.21 ± 89.67 nmol/L (p = 0.97), 0.20 ± 0.03 μg/mL (p < 0.01), and 13.32 ± 4.03 pmol/mg (p < 0.01) in dry eye patients. 4-HNE and MDA levels significantly correlated with BUT, Schirmer tear value, tear clearance rate, keratoepitheliopathy scores, conjunctival goblet cell density, and symptom score (p < 0.05), whereas HEL levels did not correlate with these parameters. Staining intensities for 4-HNE and MDA increased in dry eye patients. The expression of late lipid peroxidation markers, 4-HNE and MDA, increases in the tear film and ocular surface of patients with dry eye. The levels correlate with various tear film and ocular surface parameters and may reflect the severity of dry eye disease.

  12. Corneal Expression of SLURP-1 by Age, Sex, Genetic Strain, and Ocular Surface Health

    PubMed Central

    Swamynathan, Sudha; Delp, Emili E.; Harvey, Stephen A. K.; Loughner, Chelsea L.; Raju, Leela; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose Although secreted Ly6/urokinase-type plasminogen activator receptor–related protein-1 (Slurp1) transcript is highly abundant in the mouse cornea, corresponding protein expression remains uncharacterized. Also, SLURP1 was undetected in previous tear proteomics studies, resulting in ambiguity about its baseline levels. Here, we examine mouse corneal Slurp1 expression in different sexes, age groups, strains, and health conditions, and quantify SLURP1 in human tears from healthy or inflamed ocular surfaces. Methods Expression of Slurp1 in embryonic day-13 (E13), E16, postnatal day-1 (PN1), PN10, PN20, and PN70 Balb/C, FVBN, C57Bl/6, and DBA/2J mouse corneas, Klf4Δ/ΔCE corneas with corneal epithelial–specific ablation of Klf4, migrating cells in wild-type corneal epithelial wound edge, and in corneas exposed to pathogen-associated molecular patterns (PAMPs) poly(I:C), zymosan-A, or Pam3Csk4 was examined by QPCR, immunoblots, and immunofluorescent staining. Human SLURP1 levels were quantified by ELISA in tears from 34 men and women aged 18 to 80 years. Results Expression of Slurp1, comparable in different strains and sexes, was low in E13, E16, PN1, and PN10 mouse corneas, and increased rapidly after eyelid opening in a Klf4-dependent manner. We found Slurp1 was downregulated in corneas exposed to PAMPs, and in migrating cells at the wound edge. Human SLURP1 expression, comparable in different sexes and age groups, was significantly decreased in tears from inflamed ocular surfaces (0.34%) than those from healthy individuals (0.77%). Conclusions These data describe the influence of age, sex, genetic background, and ocular surface health on mouse corneal expression of Slurp1, establish the baseline for human tear SLURP1 expression, and identify SLURP1 as a useful diagnostic and/or therapeutic target for inflammatory ocular surface disorders. PMID:26670825

  13. Comparative effect of lens care solutions on blink rate, ocular discomfort and visual performance.

    PubMed

    Yang, Shun-nan; Tai, Yu-chi; Sheedy, James E; Kinoshita, Beth; Lampa, Matthew; Kern, Jami R

    2012-09-01

    To help maintain clear vision and ocular surface health, eye blinks occur to distribute natural tears over the ocular surface, especially the corneal surface. Contact lens wearers may suffer from poor vision and dry eye symptoms due to difficulty in lens surface wetting and reduced tear production. Sustained viewing of a computer screen reduces eye blinks and exacerbates such difficulties. The present study evaluated the wetting effect of lens care solutions (LCSs) on blink rate, dry eye symptoms, and vision performance. Sixty-five adult habitual soft contact lens wearers were recruited to adapt to different LCSs (Opti-free, ReNu, and ClearCare) in a cross-over design. Blink rate in pictorial viewing and reading (measured with an eyetracker), dry eye symptoms (measured with the Ocular Surface Disease Index questionnaire), and visual discrimination (identifying tumbling E) immediately before and after eye blinks were measured after 2 weeks of adaption to LCS. Repeated measures anova and mixed model ancova were conducted to evaluate effects of LCS on blink rate, symptom score, and discrimination accuracy. Opti-Free resulted in lower dry eye symptoms (p = 0.018) than ClearCare, and lower spontaneous blink rate (measured in picture viewing) than ClearCare (p = 0.014) and ReNu (p = 0.041). In reading, blink rate was higher for ClearCare compared to ReNu (p = 0.026) and control (p = 0.024). Visual discrimination time was longer for the control (daily disposable lens) than for Opti-Free (p = 0.007), ReNu (p = 0.009), and ClearCare (0.013) immediately before the blink. LCSs differently affected blink rate, subjective dry eye symptoms, and visual discrimination speed. Those with wetting agents led to significantly fewer eye blinks while affording better ocular comfort for contact lens wearers, compared to that without. LCSs with wetting agents also resulted in better visual performance compared to wearing daily disposable contact lenses. These presumably are because of improved tear film quality. © 2012 The College of Optometrists.

  14. Gene Therapy Targeting Glaucoma: Where Are We?

    PubMed Central

    Liu, Xuyang; Rasmussen, Carol A.; Gabelt, B’Ann T.; Brandt, Curtis R.; Kaufman, Paul L.

    2010-01-01

    In a chronic disease such as glaucoma, a therapy that provides a long lasting local effect, with minimal systemic side effects, while circumventing the issue of patient compliance, is very attractive. The field of gene therapy is growing rapidly and ocular applications are expanding. Our understanding of the molecular pathogenesis of glaucoma is leading to greater specificity in ocular tissue targeting. Improvements in gene delivery techniques, refinement of vector construction methods, and development of better animal models combine to bring this potential therapy closer to reality. PMID:19539835

  15. Bioengineered Lacrimal Gland Organ Regeneration in Vivo

    PubMed Central

    Hirayama, Masatoshi; Tsubota, Kazuo; Tsuji, Takashi

    2015-01-01

    The lacrimal gland plays an important role in maintaining a homeostatic environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and causes ocular discomfort, significant visual disturbances, and a reduced quality of life. Current therapies for dry eye disease, including artificial tear eye drops, are transient and palliative. The lacrimal gland, which consists of acini, ducts, and myoepithelial cells, develops from its organ germ via reciprocal epithelial-mesenchymal interactions during embryogenesis. Lacrimal tissue stem cells have been identified for use in regenerative therapeutic approaches aimed at restoring lacrimal gland functions. Fully functional organ replacement, such as for tooth and hair follicles, has also been developed via a novel three-dimensional stem cell manipulation, designated the Organ Germ Method, as a next-generation regenerative medicine. Recently, we successfully developed fully functional bioengineered lacrimal gland replacements after transplanting a bioengineered organ germ using this method. This study represented a significant advance in potential lacrimal gland organ replacement as a novel regenerative therapy for dry eye disease. In this review, we will summarize recent progress in lacrimal regeneration research and the development of bioengineered lacrimal gland organ replacement therapy. PMID:26264034

  16. Controlled release of betamethasone from vitamin E-loaded silicone-based soft contact lenses.

    PubMed

    Rad, Maryam Shayani; Sajadi Tabassi, Sayyed Abolghasem; Moghadam, Maryam Hassanpour; Mohajeri, Seyed Ahmad

    2016-11-01

    Betamethasone (BMZ) is an effective drug which is commonly used as an eye drop for the management of ophthalmic inflammations. Due to low ocular bioavailability, it is necessary to prepare and optimize an ocular drug delivery system for BMZ. In this study we tried to use vitamin E diffusion barrier for sustaining BMZ release. Three commercial contact lenses were soaked in vitamin E solutions and swelling percentage, diameter, transmittance, binding capacity and release amount and time were evaluated in comparison with non-vitamin E-loaded pure lenses. The results showed that vitamin E significantly decreased water content of contact lenses whereas, increased the lens diameter in both dry and wet states. It effectively blocked UV radiation which is harmful for the eye surface while had no significant effect on visible transmittance. BMZ loading capacity enhanced and release rate remarkably decreased after using vitamin E as a hydrophobic diffusion barrier. This study revealed that vitamin E can be applied as a hydrophobic diffusion barrier for controlling and sustaining BMZ release from silicone-based soft contact lenses into the lachrymal fluid. It can also protect eye tissues as an antioxidant by blocking the UV radiation.

  17. Restoration of Corneal Transparency by Mesenchymal Stem Cells.

    PubMed

    Mittal, Sharad K; Omoto, Masahiro; Amouzegar, Afsaneh; Sahu, Anuradha; Rezazadeh, Alexandra; Katikireddy, Kishore R; Shah, Dhvanit I; Sahu, Srikant K; Chauhan, Sunil K

    2016-10-11

    Transparency of the cornea is indispensable for optimal vision. Ocular trauma is a leading cause of corneal opacity, leading to 25 million cases of blindness annually. Recently, mesenchymal stem cells (MSCs) have gained prominence due to their inflammation-suppressing and tissue repair functions. Here, we investigate the potential of MSCs to restore corneal transparency following ocular injury. Using an in vivo mouse model of ocular injury, we report that MSCs have the capacity to restore corneal transparency by secreting high levels of hepatocyte growth factor (HGF). Interestingly, our data also show that HGF alone can restore corneal transparency, an observation that has translational implications for the development of HGF-based therapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Genome-Wide Association Study of Entropion Eyelid in Multiple Breeds of Sheep

    USDA-ARS?s Scientific Manuscript database

    Entropion is an inversion of the eyelid margin causing lashes or external hairs to rub against the ocular surface. If uncorrected, discomfort, ocular damage, increased eye infection rates, and potential blindness can occur. Entropion affects many mammalian species, can be expressed in both upper and...

  19. Experimental toxoplasmosis in rats induced orally with eleven strains of Toxoplasma gondii of seven genotypes: Tissue tropism, tissue cyst size, neural lesions, tissue cyst rupture without reactivation, and ocular lesions

    USDA-ARS?s Scientific Manuscript database

    The protozoan parasite Toxoplasma gondii is one of the most widely distributed and most successful microorganism. Of all warm blooded hosts, only cats can excrete the environmentally resistant stage, the oocyst. T. gondii manipulates rodent behavior so that infected rodents are losing fear of the ca...

  20. Dry eye disease: pathophysiology, classification, and diagnosis.

    PubMed

    Perry, Henry D

    2008-04-01

    Dry eye disease (DED) is a multifactorial disorder of the tear film and ocular surface that results in eye discomfort, visual disturbance, and often ocular surface damage. Although recent research has made progress in elucidating DED pathophysiology, currently there are no uniform diagnostic criteria. This article discusses the normal anatomy and physiology of the lacrimal functional unit and the tear film; the pathophysiology of DED; DED etiology, classification, and risk factors; and DED diagnosis, including symptom assessment and the roles of selected diagnostic tests.

  1. A Framework for Modelling Connective Tissue Changes in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Ethier, C. R.; Best, L.; Gleason, R.; Mulugeta, L.; Myers, J. G.; Nelson, E. S.; Samuels, B. C.

    2014-01-01

    Insertion of astronauts into microgravity induces a cascade of physiological adaptations, notably including a cephalad fluid shift. Longer-duration flights carry an increased risk of developing Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. The slow onset of changes in VIIP, their chronic nature, and the similarity of certain clinical features of VIIP to ophthalmic findings in patients with raised intracranial pressure strongly suggest that: (i) biomechanical factors play a role in VIIP, and (ii) connective tissue remodeling must be accounted for if we wish to understand the pathology of VIIP. Our goal is to elucidate the pathophysiology of VIIP and suggest countermeasures based on biomechanical modeling of ocular tissues, suitably informed by experimental data, and followed by validation and verification. We specifically seek to understand the quasi-homeostatic state that evolves over weeks to months in space, during which ocular tissue remodeling occurs. This effort is informed by three bodies of work: (i) modeling of cephalad fluid shifts; (ii) modeling of ophthalmic tissue biomechanics in glaucoma; and (iii) modeling of connective tissue changes in response to biomechanical loading.

  2. The Role of Medications in Causing Dry Eye

    PubMed Central

    Fraunfelder, Frederick T.; Sciubba, James J.; Mathers, William D.

    2012-01-01

    The purpose of this paper is to review the possible role of polypharmacy in causing dry eye disease (DED), reflecting the complex interactions and complications associated with the use of multiple systemic and topical ocular medications. The pharmacological, physiological, anatomical, and histological mechanisms causing dry mouth differ little from those causing dry eye. Oral polypharmacy is the most common cause of dry mouth, but has not been investigated as a cause of dry eye. Topical ocular polypharmacy has been shown to cause DED. Information on drugs that likely cause or aggravate DED and the controversial role of preservatives in topical ocular medications are examined. Systemic or topical ocular medications and preservatives used in topical ocular drugs may cause dry eye through the drug's therapeutic action, ocular surface effects, or preservatives, and the effects probably are additive. Long-term use of topical ocular medications, especially those containing preservatives such as BAK, may play an important role in DED and the role of polypharmacy needs further study. We review possible ways to decrease the risk of medication-related dry eye. PMID:23050121

  3. Public data mining plus domestic experimental study defined involvement of the old-yet-uncharacterized gene matrix-remodeling associated 7 (MXRA7) in physiopathology of the eye.

    PubMed

    Jia, Changkai; Zhang, Feng; Zhu, Ying; Qi, Xia; Wang, Yiqiang

    2017-10-20

    Matrix-remodeling associated 7 (MXRA7) gene was first reported in 2002 and named so for its co-expression with several genes known to relate with matrix-remodeling. However, not any studies had been intentionally performed to characterize this gene. We started defining the functions of MXRA7 by integrating bioinformatics analysis and experimental study. Data mining of MXRA7 expression in BioGPS, Gene Expression Omnibus and EurExpress platforms highlighted high level expression of Mxra7 in murine ocular tissues. Real-time PCR was employed to measure Mxra7 mRNA in tissues of adult C57BL/6 mice and demonstrated that Mxra7 was preferentially expressed at higher level in retina, corneas and lens than in other tissues. Then the inflammatory corneal neovascularization (CorNV) model and fungal corneal infections were induced in Balb/c mice, and mRNA levels of Mxra7 as well as several matrix-remodeling related genes (Mmp3, Mmp13, Ecm1, Timp1) were monitored with RT-PCR. The results demonstrated a time-dependent Mxra7 under-expression pattern (U-shape curve along timeline), while all other matrix-remodeling related genes manifested an opposite changes pattern (dome-shape curve). When limited data from BioGPS concerning human MXRA7 gene expression in human tissues were looked at, it was found that ocular tissue was also the one expressing highest level of MXRA7. To conclude, integrative assay of MXRA7 gene expression in public databank as well as domestic animal models revealed a selective high expression MXRA7 in murine and human ocular tissues, and its change patterns in two corneal disease models implied that MXRA7 might play a role in pathological processes or diseases involving injury, neovascularization and would healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Epithelioid haemangiosarcoma in the ocular tissue of horses.

    PubMed

    Arenas-Gamboa, A M; Mansell, J

    2011-05-01

    Haemangiosarcomas (HSAs) are malignant tumours of endothelial cell origin. Epithelioid HSA is a variant of the histologically conventional HSA that has little or no morphological evidence of a vascular origin and has been reported rarely in domestic animals. The following report documents six cases of equine epithelioid HSA occurring in the ocular tissues of horses with a mean age of 19.8 years at the time of diagnosis. Microscopically, all of the lesions consisted of solid sheets or cords of epithelioid cells with rare narrow clefts or small spaces containing erythrocytes that were often the only feature indicating a vascular origin. On immunohistochemistry, the neoplastic cells expressed vimentin, CD31 and factor VIII-related antigen, but not cytokeratin, indicating an endothelial nature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Differential effect of rebamipide on transmembrane mucin biosynthesis in stratified ocular surface epithelial cells.

    PubMed

    Uchino, Yuichi; Woodward, Ashley M; Argüeso, Pablo

    2016-12-01

    Mucins are a group of highly glycosylated glycoproteins responsible for the protection of wet-surfaced epithelia. Recent data indicate that transmembrane mucins differ in their contribution to the protective function of the ocular surface, with MUC16 being the most effective barrier on the apical surface glycocalyx. Here, we investigated the role of the mucoprotective drug rebamipide in the regulation of transmembrane mucin biosynthesis using stratified cultures of human corneal and conjunctival epithelial cells. We find that the addition of rebamipide to corneal, but not conjunctival, epithelial cells increased MUC16 protein biosynthesis. Rebamipide did not affect the levels of MUC1, 4 and 20 compared to control. In these experiments, rebamipide had no effect on the expression levels of Notch intracellular domains, suggesting that the rebamipide-induced increase in MUC16 biosynthesis in differentiated corneal cultures is not regulated by Notch signaling. Overall these findings indicate that rebamipide induces the differential upregulation of MUC16 in stratified cultures of human corneal epithelial cells, which may have implications to the proper restoration of barrier function in ocular surface disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.

    PubMed

    Erb-Eigner, K; Warmuth, C; Taupitz, M; Willerding, G; Bertelmann, E; Asbach, P

    2013-09-01

    Generally, high-resolution MRI of the eye is performed with small loop surface coils. The purpose of this phantom and patient study was to investigate the influence of magnetic field strength and receiver coils on image quality in ocular MRI. The eyeball and the complex geometry of the facial bone were simulated by a skull phantom with swine eyes. MR images were acquired with two small loop surface coils with diameters of 4 cm and 7 cm and with a multi-channel head coil at 1.5 and 3 Tesla, respectively. Furthermore, MRI of the eye was performed prospectively in 20 patients at 1.5 Tesla (7 cm loop surface coil) and 3 Tesla (head coil). These images were analysed qualitatively and quantitatively and statistical significance was tested using the Wilcoxon-signed-rank test (a p-value of less than 0.05 was considered to indicate statistical significance). The analysis of the phantom images yielded the highest mean signal-to-noise ratio (SNR) at 3 Tesla with the use of the 4 cm loop surface coil. In the phantom experiment as well as in the patient studies the SNR was higher at 1.5 Tesla by applying the 7 cm surface coil than at 3 Tesla by applying the head coil. Concerning the delineation of anatomic structures no statistically significant differences were found. Our results show that the influence of small loop surface coils on image quality (expressed in SNR) in ocular MRI is higher than the influence of the magnetic field strength. The similar visibility of detailed anatomy leads to the conclusion that the image quality of ocular MRI at 3 Tesla remains acceptable by applying the head coil as a receiver coil. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Chronic dry eye in photorefractive keratectomy and laser in situ keratomileusis: Manifestations, incidence, and predictive factors.

    PubMed

    Bower, Kraig S; Sia, Rose K; Ryan, Denise S; Mines, Michael J; Dartt, Darlene A

    2015-12-01

    To evaluate dry-eye manifestations after photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) and determine the incidence and predictive factors of chronic dry eye using a set of dry-eye criteria. Walter Reed Army Medical Center, Washington, DC, USA. Prospective, non-randomized clinical study. Dry-eye evaluation was performed before and after surgery. Main outcome measures included dry-eye manifestations, incidence, and predictive factors of chronic dry eye. This study comprised 143 active-duty U.S. Army personnel, ages 29.9 ± 5.2 years, with myopia or myopic astigmatism (manifest spherical equivalent -3.83 ± 1.96 diopters) having PRK or LASIK. Schirmer scores, corneal sensitivity, ocular surface staining, surface regularity index, and responses to dry-eye questionnaire significantly changed over time after PRK. After LASIK, significant changes were observed in tear breakup time, corneal sensitivity, ocular surface staining, and responses to questionnaire. Twelve months postoperatively, 5.0% of PRK and 0.8% of LASIK participants developed chronic dry eye. Regression analysis showed that pre-operatively lower Schirmer score will significantly influence development of chronic dry eye after PRK, whereas preoperatively, lower Schirmer score or higher ocular surface staining score will significantly influence the occurrence of chronic dry eye after LASIK. Chronic dry eye was uncommon after PRK and LASIK. Ocular surface and tear-film characteristics during pre-operative examination might help to predict chronic dry-eye development in PRK and LASIK. The authors have no financial interest in any product, drug, instrument, or equipment discussed in this manuscript. Copyright © 2015 ASCRS and ESCRS. All rights reserved.

  8. Feasibility of quantitatively diagnosing cornea infection using Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bai, Yanru; Chen, Keren; Mishra, Arti; Beuerman, Roger; Liu, Quan

    2017-02-01

    Ocular infection is a serious eye disease that could lead to blindness without prompt and proper treatment. In pathology, ocular infection is caused by microorganisms such as bacteria, fungi or viruses. The essential prerequisite for the optimal treatment of ocular infection is to identify the microorganism causing infection early as each type of microorganism requires a different therapeutic approach. The clinical procedure for identifying the microorganism species causing ocular infection includes Gram staining (for bacteria)/microscopy (for fungi) and the culture of corneal surface scraping, or aqueous and vitreous smear samples taken from the surface of infected eyes. The culture procedure is labor intensive and expensive. Moreover, culturing is time consuming, which usually takes a few days or even weeks. Such a long delay in diagnosis could result in the exacerbation of patients' symptoms, the missing of the optimal time frame for initiating treatment and subsequently the rising cost for disease management. Raman spectroscopy has been shown highly effective for non-invasive identification of both fungi and bacteria qualitatively. In this study, we investigate the feasibility of identifying the microorganisms of ocular infection and quantifying the concentrations using Raman spectroscopy by measuring not only gram negative and gram positive bacteria but also infected cornea. By applying a modified orthogonal projection approach, the relative concentration of each bacteria species could be quantified. Our results indicate the great potential of Raman spectroscopy as an alternative tool for non-invasive diagnosis of ocular infection and could play a significantly role in future ophthalmology.

  9. Chemical Sympathectomy Increases Susceptibility to Ocular Herpes Simplex Virus Type 1 Infection

    PubMed Central

    Templeton, Amanda; Nguyen, Gabrielle; Ash, John D.; Straub, Rainer H.; Carr, Daniel J. J.

    2008-01-01

    The cornea is one of the most highly innervated tissues in the mammalian host. We hypothesized changes to cornea innervation through chemical sympathectomy would significantly alter the host response to the neurotropic viral pathogen, herpes simplex virus type 1 (HSV-1) following ocular infection. Mice treated with 6-hydroxydopamine hydrobromide displayed reduced tyrosine hydroxylase-positive fibers residing in the cornea. Sympathectomized mice were also found to show a transient rise in virus recovered in infected tissues and succumbed to infection in greater numbers. Whereas there were no differences in infiltrating leukocyte populations including HSV-1-specific cytotoxic T lymphocytes in the infected tissue, an increase in substance P and a decrease in IFN-γ levels in the trigeminal ganglion but not brain stem of sympathectomized mice were noted. Sympathectomized mice treated with the neurokinin-1 receptor antagonist L703,606 had delayed mortality implicating the involvement of substance P in HSV-1-mediated death. PMID:18495255

  10. Ocular squamous cell carcinoma in Holstein cows from the South of Brazil

    PubMed Central

    Fornazari, Gabrielle A.; Kravetz, Juliana; Kiupel, Matti; Sledge, Dodd; Filho, Ivan Roque De Barros; Montiani-Ferreira, Fabiano

    2017-01-01

    Aim: The aim of this study was to investigate 10 cases of bovine ocular squamous cell carcinoma (OSCC) diagnosed in Holstein or Holstein-crosses cows. Materials and Methods: The investigation was performed exclusively in OSCC cases diagnosed in the State of Paraná and Santa Catarina. A combination of two previously existing histopathological classifications systems was used. The tissue samples were tested for immunoexpression of p53 and p16 and polymerase chain reaction (PCR) for bovine herpesvirus and papillomavirus. Results: A positive correlation between number of mitotic figures and tissue invasion was found. Anaplasia parameters did not correlate well with tumor invasion of deeper tissues and mitotic counts. Six of 10 OSCC cases were in animals with heavily pigmented eyes. Immunoexpression of p53 and p16 was observed in 3 cases each. Bovine herpesvirus and papillomavirus were not detected by PCR. Conclusions: Our results indicate that OSCC occurrence is most likely multifactorial with genetic, phenotypic, and environmental influences contributing to the pathogenesis of the disease. PMID:29391681

  11. Comparing goblet cell densities in patients wearing disposable hydrogel contact lenses versus silicone hydrogel contact lenses in an extended-wear modality.

    PubMed

    Lievens, Christopher W; Connor, Charles G; Murphy, Heather

    2003-10-01

    The current study evaluates the response of the ocular surface to extended contact lens wear by comparing a new silicone hydrogel lens to an ACUVUE 2 lens. Twenty subjects with an average age of 28 years were randomly assigned to a fitting with ACUVUE 2 or PureVision lenses. Ocular surface assessment by impression cytology was performed at baseline and for the 6 months after initiation of lens wear. Although goblet cell density significantly increased with wear time, no statistically significant difference was observed between the contact lens groups. The average baseline goblet cell percentages were as follows: ACUVUE 2 group, 1.44; PureVision group, 1.11. The 6-month averages were as follows: ACUVUE 2 group, 3.16; PureVision group, 2.22. It appears that silicone hydrogel lenses may be slightly less irritating to the ocular surface than lenses not containing silicone. This could be a promising indicator for successful 30-day continuous wear.

  12. Prevalencia de síntomas de enfermedad de la superficie ocular en pacientes que acuden a consulta oftalmológica.

    PubMed

    Garza-León, Manuel; Hernández-Quintela, Everardo; Cámara-Castillo, Héctor G; Parra-Collin, Paola de la; Covarrubias-Espinosa, Paola; Sánchez-Huerta, Valeria; Castillo-Ruiz, Alejandro Del; Rodríguez-Sixtos, Fernando; Pacheco-Patrón, Jorge; Ochoa-Tabares, Juan Carlos; Soto-Ortiz, Karina; Hernández-Olguin, Karen

    2017-01-01

    To determine the prevalence of symptoms of ocular surface disease (OSDI) surface disease and its relationship with associated risk factors in patients of ophthalmic practices using OSDI questionnaire. A cross-sectional survey was conducted Between September and December 2014 to assess the prevalence and risk factors for OSDI. The OSDI average value was 40.46 ± 23.62 points, with 86.4% of patients (1967) having a OSDI score higher than 12 points. Women had OSDI symptoms more frequently than men (odds ratio: 1.17; 95% confidence interval: 1.08-1.28) and higher OSDI score (42.12 ± 24.03 vs. 38.01 ± 22.81 points). Patients without disease were younger than the patients with severe disease (45.30 ± 18.32 vs. 50.62 ± 18.86). Ophthalmological patients have a prevalence of 80.4% of OSDI. Female and older age was associated with ocular surface disease. Copyright: © 2017 SecretarÍa de Salud

  13. Efficacy and safety of two new formulations of artificial tears in subjects with dry eye disease: a 3-month, multicenter, active-controlled, randomized trial

    PubMed Central

    Simmons, Peter A; Liu, Haixia; Carlisle-Wilcox, Cindy; Vehige, Joseph G

    2015-01-01

    Purpose To evaluate and compare the efficacy and safety of two investigational artificial tear formulations (CHO-1 and CHO-2) containing carmellose sodium, hyaluronic acid at different concentrations, and osmoprotectants, with a standard carmellose sodium-containing formulation (Refresh Tears [RT]) in the treatment of dry eye disease. Subjects and methods In this 3-month, double-masked, multicenter study, subjects (n=305) were randomized 1:1:1 to receive CHO-1, CHO-2, or RT, used as needed but at least twice daily. The primary endpoint was change in ocular surface disease index (OSDI) score from baseline to day 90. Other key outcomes included symptoms evaluated on a visual analog scale, corneal and conjunctival staining, and adverse events. Results OSDI scores and dry eye symptoms showed a rapid and sustained reduction from baseline in each group. Both CHO-1 and CHO-2 met the primary efficacy endpoint of noninferiority to RT in day 90 OSDI score change from baseline. OSDI ocular symptoms subscale improved more with CHO-1 than CHO-2 (P=0.048). In subjects with clinically relevant baseline ocular surface staining (>14 total score of a maximum of 55), day 90 improvements were greater with CHO-1 and CHO-2 than RT (P≤0.044). Day 90 improvements in OSDI ocular symptoms subscale scores were also greater with CHO-1 than RT (P<0.007) in subjects with clinically relevant ocular staining. All treatments were well tolerated. Conclusion Both combination artificial tear formulations were efficacious and well tolerated in subjects with dry eye. CHO-1 demonstrated the best performance in improving ocular symptoms and reducing ocular staining in this heterogeneous study population. PMID:25931807

  14. Regulation of ocular surface inflammation by prostaglandin E receptor subtype EP3.

    PubMed

    Ueta, Mayumi

    2010-11-01

    We first investigated whether the prostaglandin (PG) E2-PGE receptor subtype EP3 axis regulates the development of murine experimental allergic conjunctivitis because it has been reported that this pathway negatively regulates allergic reactions in a murine allergic asthma model. We observed that EP3 is constitutively expressed in mice conjunctival epithelium. EP3 knockout mice demonstrated significantly increased eosinophil infiltration in conjunctiva after ragweed challenge compared with wild-type mice. Consistently, significantly higher expression of eotaxin-1 messenger RNA was observed in Ptger3-/- mice. Conversely, treatment of wild-type mice with an EP3-selective agonist significantly decreased eosinophil infiltration, which was blunted in Ptger3-/- mice. Expression of cyclooxygenase-2 and PGE synthases was upregulated and PGE2 content increased in the eyelids after ragweed challenge. These data suggest that PGE2 acts on EP3 in the conjunctival epithelium and downregulates the progression of experimental allergic conjunctivitis. We next examined and compared the expression of EP3 in human conjunctival epithelium in various ocular surface diseases. Human conjunctival epithelium expressed EP3-specific messenger RNA and EP3 protein. Although we could clearly find positive signals in the conjunctival epithelium from patients with noninflammatory ocular surface diseases such as conjunctivochalasis and pterygium, we could not find positive signals in that from those with inflammatory disorders such as Stevens-Johnson syndrome and ocular cicatricial pemphigoid. Likewise, expression of the PGE receptor subtype EP4 was clearly found in the conjunctival epithelium from patients with conjunctivochalasis and pterygium but not from patients with Stevens-Johnson syndrome and ocular cicatricial pemphigoid.

  15. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  16. Ocular anatomy of the black pacu (Colossoma macropomum): gross, histologic, and diagnostic imaging.

    PubMed

    Gustavsen, Kate A; Paul-Murphy, Joanne R; Weber, Ernest Scott; Zwingenberger, Allison L; Dunker, Freeland H; Dubielzig, Richard R; Reilly, Christopher M; Murphy, Christopher J

    2018-01-30

    To describe the ocular anatomy of the black pacu (Colossoma macropomum), a freshwater teleost fish of the Amazon River basin, including an unusual choroid laden with adipose tissue. Three adult black pacu were anesthetized and examined clinically and with ocular ultrasonography, then euthanized. Three fish were euthanized and their heads imaged immediately postmortem using computed tomography. One fish was euthanized and its exenterated eyes imaged by high-resolution magnetic resonance imaging. The exenterated eyes of all seven fish were fixed in formalin; eyes from three fish were examined grossly and histologically. Additionally, archived histologic sections from two smaller black pacu specimens were examined. Findings were consistent among the ocular imaging modalities used. Intrinsic to the sclera were circumferential ossicles and scleral cartilage. The lens was spherical and protruded through the ovoid pupil with an aphakic space inferiorly when the accommodative mechanism was relaxed under anesthesia. Both a small falciform process and epiretinal vasculature were present in the posterior segment. The retina was cone-rich, and processes of the retinal pigment epithelium enveloped the photoreceptor outer segments. Remarkably, the choroid occupied one-third of the anteroposterior length of the globe; histology confirmed that the bulk of the choroid was composed of adipose tissue. The eye of the pacu overall is typical of teleosts but has the notable and consistent finding of a substantive store of choroidal fat of unknown function. © 2018 American College of Veterinary Ophthalmologists.

  17. Ocular surface changes following oral anticholinergic use for overactive bladder.

    PubMed

    Sekeroglu, Mehmet Ali; Hekimoglu, Emre; Tasci, Yasemin; Dolen, Ismail; Arslan, Umut

    2016-09-01

    To investigate the effect of oral solifenacin succinate on Schirmer I test results, tear break-up time (TBUT) and Ocular Surface Disease Index (OSDI) scores in overactive bladder (OAB) patients and to compare these results with those of healthy control subjects. The female OAB patients who were prescribed oral solifenacin succinate 5 mg/day (Group I, N = 80) and age-matched healthy female subjects (Group II, N = 40) were recruited for the study and underwent ophthalmological examination prior to oral treatment and after 4 weeks. They completed the OSDI questionnaire and underwent ocular surface tests including Schirmer I test and TBUT. The statistical analysis of the Schirmer I test and TBUT revealed no significant difference between the baseline and 4th week values in both groups (Group I, p = 0.506 and p = 0.070 consecutively) (Group II, p = 0.810 and p = 0.823 consecutively). OSDI scores were found to be significantly increased in group I (21.8 ± 4.2 vs 23.1 ± 4.6, p = 0.020) and remained unchanged in group II (20.5 ± 7.0 vs 20.7 ± 7.0, p = 0.805). Short-term solifenacin succinate treatment has no effect on the Schirmer I test results and TBUT, but ocular surface symptoms appeared to be exacerbated in respect with increased OSDI scores. However, the clinical significance needs to be further evaluated with larger studies.

  18. Ocular Surface Disease in Glaucoma: Effect of Polypharmacy and Preservatives.

    PubMed

    Ramli, Norlina; Supramaniam, Gowri; Samsudin, Amir; Juana, Azida; Zahari, Mimiwati; Choo, May May

    2015-09-01

    To evaluate the prevalence of ocular surface disease (OSD) in glaucoma and nonglaucoma subjects using different clinical tests and to determine the effect of number of antiglaucoma medications and preservatives on OSD. This is a cross-sectional, case-comparison study at the Eye Clinic of the University of Malaya Medical Centre, Malaysia, between June 2012 and January 2013. Glaucoma subjects (n = 105) using topical antiglaucoma medications were compared with control subjects (n = 102) who were not on any topical medications. The presence of OSD was assessed using the tear film breakup time (TBUT) test, corneal staining, Schirmer test, and Ocular Surface Disease Index (OSDI) questionnaire grading. The prevalence of OSD varied from 37 to 91% in the glaucoma group, depending on the type of clinical test. More subjects in the glaucoma group had corneal staining (63% vs. 36%, p = 0.004), abnormal Schirmer tests (39% vs. 25%, p = 0.049), and moderate OSDI symptoms (17% vs. 7%, p = 0.028). The percentage with abnormal TBUT increased with higher numbers of topical medications and was high with both benzalkonium chloride-containing and preservative-free eye drops (90% and 94%, respectively, both p < 0.001). Benzalkonium chloride was associated with a nearly three times higher odds ratio of showing abnormal OSDI. Ocular surface disease is common in those using topical antiglaucoma medications. Abnormal TBUT is associated with increasing number of eye drops and benzalkonium chloride-containing eye drops, although this also occurs with the use of preservative-free eye drops.

  19. Ocular surface infections in northeastern state of malaysia: a 10-year review of bacterial isolates and antimicrobial susceptibility.

    PubMed

    Rahman, Zaidah A; Harun, Azian; Hasan, Habsah; Mohamed, Zeehaida; Noor, Siti S Md; Deris, Zakuan Z; Ismail, Nabilah; Hassan, Asma S; Ahmad, Fadzhilah; Yaakub, Azhany

    2013-09-01

    Ocular surface infections that include infections of conjunctiva, adnexa, and cornea have the potential risk of causing blindness within a given population. Empirical antibiotic therapy is usually initiated based on epidemiological data of common causative agents. Thus, the aims of this study were to determine the bacterial agents and their susceptibility patterns of isolates from ocular surface specimens in our hospital. This is a retrospective analysis and records of bacterial isolates from ocular surface specimens in Hospital Universiti Sains Malaysia from January 2001 to December 2010 were examined. Specimens were processed according to standard laboratory procedures. Antimicrobial susceptibility testing was conducted based on Clinical and Laboratory Standards Institute recommendations. Only single, nonrepetitive isolates were included in the analysis. A total of 1,267 isolates were obtained during the study period, which comprised Staphylococcus aureus (n = 299, 23.6%), Pseudomonas aeruginosa (n = 194, 15.3%), Streptococcus pneumoniae (n = 108, 8.5%), Haemophilus influenzae (n = 100, 7.9%), Haemophilus parainfluenzae (n = 84, 6.6%), and Enterobacter spp. (n = 81, 6.4%). Fungi contributed to 4.4% of the total isolates. The antimicrobial susceptibility testing demonstrated that gram-positive bacteria were generally resistant to gentamicin (19%-57%), whereas gram-negative bacteria were resistant to chloramphenicol (27%-58%). Based on the above results, knowledge of the initial Gram stain findings is imperative before the commencement of empirical antibiotic therapy. Therefore, a simple Gram staining for all eye specimens is highly recommended.

  20. Ocular surface and tear functions after topical cyclosporine treatment in dry eye patients with chronic graft-versus-host disease.

    PubMed

    Wang, Y; Ogawa, Y; Dogru, M; Kawai, M; Tatematsu, Y; Uchino, M; Okada, N; Igarashi, A; Kujira, A; Fujishima, H; Okamoto, S; Shimazaki, J; Tsubota, K

    2008-02-01

    We investigated the effect of 0.05% topical cyclosporine (Cys) on the ocular surface and tear functions in dry eye patients with chronic GVHD (cGVHD) in a prospective comparative study. Thirty eyes of 15 patients refractory to baseline treatment were recruited and the patients assigned for topical Cys treatment group (14 eyes of 7 patients) and control group (12 eyes of 6 patients) respectively. Two patients dropped out because of intolerable irritation while using topical Cys eye drops. Visual analog scale symptom scores, corneal sensitivity, Schirmer I test value, tear film break-up time (TBUT), tear evaporation rate and ocular surface vital staining scores were recorded at baseline and at the end of the following one month. Conjunctival impression and brush cytology were performed before and after the treatment. After topical Cys treatment, significant improvements were found in symptom scores, corneal sensitivity, tear evaporation rate, TBUT, vital staining scores, goblet cells density, conjunctival squamous metaplasia grade, inflammatory cell numbers and the MUC5AC expression. Our study suggests that 0.05% topical Cys may be an effective treatment for dry eye patients with cGVHD. The improvements in the ocular surface and tear functions resulted presumably from the decreased inflammation, increased goblet cell density and MUC5AC mRNA expression. Bone Marrow Transplantation (2008) 41, 293-302; doi:10.1038/sj.bmt.1705900; published online 5 November 2007.

  1. Biofilms and Physical Deposits on Nasolacrimal Silastic Stents Following Dacryocystorhinostomy: Is There a Difference Between Ocular and Nasal Segments?

    PubMed

    Ali, Mohammad Javed; Baig, Farhana; Lakshman, Mekala; Naik, Milind N

    2015-01-01

    The aims of this study were to examine the presence of biofilms and physical deposits on ocular and nasal segments of silastic nasolacrimal duct stents inserted after dacryocystorhinostomy and to document any differences. A prospective interventional study was performed on a series of patients undergoing dacryocystorhinostomy with Crawford stent insertion. All the patient samples were retrieved 4 weeks after an endoscopic dacryocystorhinostomy. None of the patients had any evidence of postoperative infection. The ocular and nasal segments were separated during retrieval. After removal, the stent segments were subjected to biofilm and physical deposit analysis using standard protocols of scanning electron microscopy. These stent segments were compared against sterile stents which acted as controls. A total of 11 stents were studied. Nine were consecutive patient samples and 2 were sterile stents. The ocular and nasal segments of all the stents demonstrated evidence of biofilm formation and physical deposits. However, the deposits and biofilms were thicker and extensive in the ocular segment, although more focal in nature. In contrast, the nasal segments showed thinner biofilms and sparser deposits but were more diffuse in nature. The presence of different-sized organisms within the exopolysaccharide matrix and in between the deposits suggests the existence of polymicrobial communities. This is the first study to report the differences between ocular and nasal segments of lacrimal stents. These differences could propel further studies on stent biomechanics and their interactions with ocular and nasal tissues, following a dacryocystorhinostomy.

  2. Intraocular distribution of topically applied hydrophilic and lipophilic substances in rat eyes.

    PubMed

    Abdul Nasir, Nurul Alimah; Agarwal, Puneet; Agarwal, Renu; Iezhitsa, Igor; Alyautdin, Renad; Nukolova, Natalia N; Chekhonin, Vladimir P; Mohd Ismail, Nafeeza

    2016-10-01

    Topical administration is the preferred route of drug delivery for ophthalmic ailments. However, poor permeation through ocular surface and significant systemic absorption, makes the topical drug delivery challenging. Furthermore, distribution of topically delivered drugs varies with their physicochemical properties and the type of formulation used. Hence, this study was done to understand the pattern of ocular drug distribution of topically applied hydrophilic and lipophilic substances in two different formulations. 5-Carboxyfluorescein and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate were used as representative candidates for hydrophilic and lipophilic substances, respectively. They were formulated in solution and liposomes. Single drop of either formulation containing hydrophilic or lipophilic substance was instilled topically, unilaterally to rat eyes. Subsequently, rats were sacrificed at 10, 30 and 120 min post-instillation. Eyes were cryosectioned and examined under confocal microscope to determine the fluorescence intensity in ocular tissues. Corneal permeation of hydrophilic and lipophilic substances in both formulations peaked at 30 min post-instillation. Liposomal-lipophilic dye and non-liposomal-hydrophilic dye showed better corneal distribution. Fluorescence was absent in contralateral eyes of non-liposomal-hydrophilic dye-treated animals but was present in contralateral eyes of liposomal-hydrophilic dye-treated animals. Fluorescence in contralateral eyes of liposomal-lipophilic dye-treated animals was significantly higher compared to non-liposomal-lipophilic dye-treated animals. Topically applied liposomal formulation of lipophilic substance provides higher corneal concentration of drug with lesser systemic absorption compared to its solution. For hydrophilic substance, topical use of solution provides greater corneal concentration compared to liposomes which is more likely to be absorbed systemically.

  3. Ultraviolet radiation exposure triggers neurokinin-1 receptor upregulation in ocular tissues in vivo.

    PubMed

    Gross, Janine; Wegener, Alfred R; Kronschlaeger, Martin; Holz, Frank G; Schönfeld, Carl-Ludwig; Meyer, Linda M

    2018-04-26

    The purpose of this study was to investigate the neurokinin receptor-1 (NKR-1) protein expression in ocular tissues before and after supra-cataract threshold ultraviolet radiation (UVR-B peak at 312 nm) exposure in vivo in a mouse model. Six-week-old C57Bl/6 mice were unilaterally exposed to a single (2.9 kJ/m 2 ) and an above 3-fold UVR-B cataract threshold dose (9.4 kJ/m 2 ) of UVR. UVR-exposure (λpeak = 312 nm) was performed in mydriasis using a Bio-Spectra exposure system. After latency periods of 3 and 7 days, eyes were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned and stained with fluorescence coupled antibody for NKR-1 and DAPI for cell nuclei staining. Control animals received only anesthesia but no UVR-exposure. Cataract development was documented with a Leica dark-field microscope and quantified as integrated optical density (IOD). NKR-1 is ubiquitously present in ocular tissues. An above 3-fold cataract threshold dose of UV-radiation induced NKR-1 upregulation after days 3 and 7 in the epithelium and endothelium of the cornea, the endothelial cells of the iris vessels, the pigmented epithelium/stroma of the ciliary body, the lens epithelium, pronounced in the nuclear bow region and the inner plexiform layer of the retina. A significant upregulation of NKR-1 could not be provoked with a single cataract threshold dose (2.9 kJ/m 2 UVR-B) ultraviolet irradiation. All exposed eyes developed anterior subcapsular cataracts. Neurokinin-1 receptor is present ubiquitously in ocular tissues including the lens epithelium and the nuclear bow region of the lens. UV-radiation exposure to an above 3-fold UVR-B cataract threshold dose triggers NKR-1 upregulation in the eye in vivo. The involvement of inflammation in ultraviolet radiation induced cataract and the role of neuroinflammatory peptides such as substance P and its receptor, NKR-1, might have been underestimated to date. Copyright © 2018. Published by Elsevier Ltd.

  4. Ophthalmic applications of confocal microscopy: diagnostics, refractive surgery, and eye banking

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1990-11-01

    Confocal microscopy of ocular tissue provides two advantages over traditional imaging techniques: increased range and transverse resolution and increased contrast. The semitransparent cornea and ocular lens in the living eye can be optically sectioned and observed by reflected light confocal microscopy. Within the cornea we observed various cell components nerve fibers nerve cell bodies and fibrous networks. The confocal microscopic images from the in-situ ocular lens show the lens capsule the lens epithelium and the individual lens fibrils. All of the reflected light confocal microscopic images have high contrast and high resolution. Some of the applications of confocal imaging in ophthalmology include: diagnostics of the cornea and the ocular lens examination prior to and after refractive surgery examination of intraocular lenses (IOL) and examination of eye bank material. Other ophthalmic uses of confocal imaging include: studies of wound healing therapeutics and the effects of contact lenses on the cornea. The proposed features of a clinical confocal microscope are reviewed. 2.

  5. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions.

    PubMed

    Delplace, Vianney; Payne, Samantha; Shoichet, Molly

    2015-12-10

    Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Emerging Role of Antioxidants in the Protection of Uveitis Complications

    PubMed Central

    Yadav, Umesh C S; Kalariya, Nilesh M; Ramana, Kota V

    2011-01-01

    Current understanding of the role of oxidative stress in ocular inflammatory diseases indicates that antioxidant therapy may be important to optimize the treatment. Recently investigated antioxidant therapies for ocular inflammatory diseases include various vitamins, plant products and reactive oxygen species scavengers. Oxidative stress plays a causative role in both non-infectious and infectious uveitis complications, and novel strategies to diminish tissue damage and dysfunction with antioxidant therapy may ameliorate visual complications. Preclinical studies with experimental animals and cell culture demonstrate significance of anti-inflammatory effects of a number of promising antioxidant agents. Many of these antioxidants are under clinical trial for various inflammatory diseases other than uveitis such as cardiovascular, rheumatoid arthritis and cancer. Well planned interventional clinical studies of the ocular inflammation will be necessary to sufficiently investigate the potential medical benefits of antioxidant therapies for uveitis. This review summarizes the recent investigation of novel antioxidant agents for ocular inflammation, with selected studies focused on uveitis. PMID:21182473

  7. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    NASA Technical Reports Server (NTRS)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  8. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies.

    PubMed

    Di Tommaso, Claudia; Bourges, Jean-Louis; Valamanesh, Fatemeh; Trubitsyn, Gregory; Torriglia, Alicia; Jeanny, Jean-Claude; Behar-Cohen, Francine; Gurny, Robert; Möller, Michael

    2012-06-01

    Cornea transplantation is one of the most performed graft procedures worldwide with an impressive success rate of 90%. However, for "high-risk" patients with particular ocular diseases in addition to the required surgery, the success rate is drastically reduced to 50%. In these cases, cyclosporin A (CsA) is frequently used to prevent the cornea rejection by a systemic treatment with possible systemic side effects for the patients. To overcome these problems, it is a challenge to prepare well-tolerated topical CsA formulations. Normally high amounts of oils or surfactants are needed for the solubilization of the very hydrophobic CsA. Furthermore, it is in general difficult to obtain ocular therapeutic drug levels with topical instillations due to the corneal barriers that efficiently protect the intraocular structures from foreign substances thus also from drugs. The aim of this study was to investigate in vivo the effects of a novel CsA topical aqueous formulation. This formulation was based on nanosized polymeric micelles as drug carriers. An established rat model for the prevention of cornea graft rejection after a keratoplasty procedure was used. After instillation of the novel formulation with fluorescent labeled micelles, confocal analysis of flat-mounted corneas clearly showed that the nanosized carriers were able to penetrate into all corneal layers. The efficacy of a 0.5% CsA micelle formulation was tested and compared to a physiological saline solution and to a systemic administration of CsA. In our studies, the topical CsA treatment was carried out for 14 days, and the three parameters (a) cornea transparency, (b) edema, and (c) neovascularization were evaluated by clinical observation and scoring. Compared to the control group, the treated group showed a significant higher cornea transparency and significant lower edema after 7 and 13 days of the surgery. At the end point of the study, the neovascularization was reduced by 50% in the CsA-micelle treated animals. The success rate of cornea graft transplantation was 73% in treated animals against 25% for the control group. This result was as good as observed for a systemic CsA treatment in the same animal model. This new formulation has the same efficacy like a systemic treatment but without the serious CsA systemic side effects. Ocular drug levels of transplanted and healthy rat eyes were dosed by UPLC/MS and showed a high CsA value in the cornea (11710 ± 7530 ng(CsA)/g(tissue) and 6470 ± 1730 ng(CsA)/g(tissue), respectively). In conclusion, the applied formulation has the capacity to overcome the ocular surface barriers, the micelles formed a drug reservoir in the cornea from, where a sustained release of CsA can take place. This novel formulation for topical application of CsA is clearly an effective and well-tolerated alternative to the systemic treatment for the prevention of corneal graft rejection. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Ocular Involvement of Behçet's Syndrome: a Comprehensive Review.

    PubMed

    Ozyazgan, Yilmaz; Ucar, Didar; Hatemi, Gulen; Yazici, Yusuf

    2015-12-01

    Behçet's syndrome (BS) is a vasculitis involving several organ systems including the eyes. Ocular involvement is one of the most disabling complications of BS, causing loss of vision that may progress to blindness if left untreated. The typical form of ocular involvement is a relapsing and remitting panuveitis and retinal vasculitis. Initial attacks may spontaneously improve and subsequently disappear in a few weeks but tend to recur if left untreated. Destructive and recurrent attacks, especially with posterior segment and retina involvement, may cause irreversible ocular structural changes and permanent damage in sensory retina, resulting in loss of vision. The risk of irreversible damage to ocular tissue which may result in loss of vision warrants early and intensive treatment especially in patients at high risk such as young men who tend to follow an aggressive disease course. The management strategy involves rapid suppression of inflammation during the attacks and prevention of recurrent attacks. Local and systemic measures including immunosuppressives, corticosteroids, and biologic agents are used for this purpose. Surgery may be required in selected cases. The prognosis of eye involvement has greatly improved over the last decades with the effective use of immunosuppressives.

  10. Ocular localization of mycobacterial lesions in tank-reared juvenile cobia, Rachycentron canadum.

    PubMed

    Phillips, A C N; Suepaul, R; Soto, E

    2017-12-01

    Severe clinical mycobacteriosis with consistent ocular lesion localization was diagnosed in a population of 800 juvenile tank-reared Cobia (Rachycentron canadum) which experienced a sudden increase in mortality approximately 5 months after arriving into Trinidad and Tobago from Florida, USA. Moderate daily mortality (15-20 animals per day) persisted for just over 1 month. Moribund fish displayed circling behaviour and had an open-mouth gape upon death. Fish consistently presented with bilateral exophthalmia, corneal cloudiness and hyphema. Non-branching acid-fast rods were detected in aqueous humour touch preparations. Histological analysis revealed severe bilateral intra-ocular granulomatous responses in all specimens. Mycobacterium sp. was identified using a real-time PCR assay detecting the RNA polymerase β-subunit (rpoB) gene in different tissue samples. Specimens did not present with characteristic granulomatous responses usually seen in viscera. To the best of our knowledge, this represents only the third documentation of piscine mycobacterial infection presenting with only localized ocular lesions, and the second documented case of mycobacteriosis in cobia. It is, however, the first documentation of an ocular presentation of mycobacteriosis in a marine species and is the first documentation of such a presentation in cobia. © 2017 John Wiley & Sons Ltd.

  11. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium

    PubMed Central

    Ouyang, Hong; Goldberg, Jeffrey L.; Chen, Shuyi; Li, Wei; Xu, Guo-Tong; Li, Wei; Zhang, Kang; Nussenblatt, Robert B.; Liu, Yizhi; Xie, Ting; Chan, Chi-Chao; Zack, Donald J.

    2016-01-01

    Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases. PMID:27102165

  12. Meibomian gland dysfunction and ocular discomfort in video display terminal workers.

    PubMed

    Fenga, C; Aragona, P; Cacciola, A; Spinella, R; Di Nola, C; Ferreri, F; Rania, L

    2008-01-01

    Meibomian gland dysfunction (MGD) is one of the most common ocular disorders encountered in clinical practice. The clinical manifestations of MGD are related to the changes in the tear film and ocular surface with symptoms of ocular discomfort. In recent years, many surveys have evaluated symptoms associated with the use of Video Display Terminals (VDT), and VDT use is recognized as a risk factor for eye discomfort. The aim of the present study was to determine if the presence of MGD contributes to the signs and symptoms of ocular discomfort during the use of VDT. In course of a routine health surveillance programme, a group of 70 subjects fulfilled the inclusion criteria and responded to a questionnaire about symptoms of ocular discomfort. The following ocular tests were performed: tear break-up time, fluorescein corneal stain, and basal tear secretion test. A total of 52 subjects out of 70 (74.3%) had MGD. A statistically significant correlation between the symptoms of ocular discomfort and hours spent on VDT work was observed in the total population (r=0.358; P=0.002; 95% CI 0.13-0.54) and in the group of subjects with MGD (r=0.365; P=0.009; 95% CI 0.103-0.58). Such correlation was not shown in subjects without MGD. The high prevalence of MGD among the subjects with symptoms of ocular discomfort suggests that this diagnosis should be considered when occupational health practitioners encounter ocular complaints among VDT operators. It appears that MGD can contribute to the development of ocular discomfort in VDT operators.

  13. In vivo THz sensing of the cornea of the eye

    NASA Astrophysics Data System (ADS)

    Ozheredov, Ilya; Prokopchuk, Mikhail; Mischenko, Mikhail; Safonova, Tatiana; Solyankin, Petr; Larichev, Andrey; Angeluts, Andrey; Balakin, Alexei; Shkurinov, Alexander

    2018-05-01

    Measurement of the absolute value of the humidity of the cornea of the human eye and its dynamics is of paramount importance for the preservation of eyesight. In the present paper we have demonstrated that terahertz technologies can be practically applied for quantitative measurement of the physiological dynamics of tear film and sensing of corneal tissue hydration. We suggest uses of the equipment for application in clinics and a method for absolute calibration of the values for measurement. The proposed method is fundamentally different from existing and currently available methods of ophthalmological diagnosis. This suggests that the developed technique may have high diagnostic significance and can be used in the study and treatment of several diseases of the ocular surface.

  14. Keratoprosthesis in Ectodermal Dysplasia.

    PubMed

    Wozniak, Rachel A F; Gonzalez, Mithra; Aquavella, James V

    2016-07-01

    To describe the complex surgical management and novel medical approach for a keratoprosthesis (KPro Boston type I) in a monocular, 73-year-old patient with ectodermal dysplasia and chronic, noninfectious corneal necrosis. Best-corrected visual acuity (BCVA) was measured with Snellen letters. Surgical intervention included an amniotic membrane graft, complete replacement of the KPro, conjunctival flap graft, corneal donor tissue grafts combined with inferior rectus muscle advancement, periosteal tissue graft, tarso-conjunctival flap construction, and symblepharolysis. Infliximab was used as a medical adjunctive therapy. Initial KPro placement provided a BCVA of 20/25 and long-term stability. Subsequent chronic melting at the optic border necessitated numerous surgeries to prevent extrusion and failure. Ultimate fistulization was addressed with the formation of a surgical pocket. The addition of infliximab promoted ocular surface stability, and the patient has maintained a BCVA of 20/80. Ectodermal dysplasia can result in eyelid and corneal abnormalities, requiring a KPro for visual restoration. In the setting of chronic, sterile corneal melt, novel surgical approaches and the off-label use of infliximab allowed for visual rehabilitation.

  15. Bilateral Malar Reconstruction Using Patient-Specific Polyether Ether Ketone Implants in Treacher-Collins Syndrome Patients With Absent Zygomas.

    PubMed

    Sainsbury, David C G; George, Alan; Forrest, Christopher R; Phillips, John H

    2017-03-01

    The authors performed bilateral malar reconstruction using polyether ether ketone implants in 3 patients with Treacher-Collins syndrome with absent, as opposed to hypoplastic, zygomata. These patient-specific implants were fabricated using computed-aided design software reformatted from three-dimensional bony preoperative computed tomography images. The first time the authors performed this procedure the implant compressed the globe resulting in temporary anisocoria that was quickly recognized intraoperatively. The implant was immediately removed and the patient made a full-recovery with no ocular disturbance. The computer-aided design and manufacturing process was adjusted to include periorbital soft-tissue boundaries to aid in contouring the new implants. The same patient, and 2 further patients, subsequently underwent malar reconstruction using this soft tissue periorbital boundary fabrication process with an additional 2 mm relief removed from the implant's orbital surface. These subsequent procedures were performed without complication and with pleasing aesthetic results. The authors describe their experience and the salutary lessons learnt.

  16. [Novel current and future therapy options for treatment of dry eye disease].

    PubMed

    Messmer, E M

    2018-02-01

    Dry eye disease was redefined by the dry eye workshop (DEWS II) in May 2017. According to the new definition "dry eye is a multifactorial disease of the ocular surface characterized by a loss of homeostasis of the tear film and accompanied by ocular symptoms". The current definition encompasses etiological factors, such as instability and hyperosmolarity of the tear film, ocular surface inflammation and damage as well as a new aspect compared to the former definition, neurosensory abnormalities. Recent and future therapeutic options for dry eye focus on treatment of the aforementioned pathogenetic events. New tear substitutes, medications and devices to stimulate tear production, innovative anti-inflammatory treatment, medications to influence corneal innervation and new methods for treatment of Meibomian gland dysfunction are already available or will be available in the near future.

  17. Ocular manifestations of rheumatoid arthritis and their correlation with anti-cyclic citrullinated peptide antibodies.

    PubMed

    Vignesh, Ammapati Paul Pandian; Srinivasan, Renuka

    2015-01-01

    To study the ocular manifestations of rheumatoid arthritis and to correlate the role of anti-cyclic citrullinated peptide antibody (anti-CCP antibody) with the ocular manifestations. Three-hundred and ninety-two eyes of the 196 rheumatoid arthritis patients who attended the ophthalmology outpatient department underwent a detailed ocular examination using slit lamp biomicroscopy and ophthalmoscopy. The tear function of all the patients was assessed using Schirmer's test, tear film break-up time and ocular surface staining. The anti-CCP antibody titers for all the rheumatoid arthritis patients were estimated using enzyme-linked immunosorbent assay tests. Seventy-seven patients (135 eyes, 39%) out of the 196 patients studied had ocular manifestations typical of rheumatoid arthritis. Dry eye was the most common manifestation (28%, 54 patients). Of the patients, 78% was females (60 patients). The mean duration of rheumatoid arthritis in patients with ocular manifestations was 5.4±2.7 years and without ocular manifestations was 2.1±1.6years. Three percent of the patients had episcleritis (six patients). Scleritis was present in 2% of the patients (four patients). Peripheral ulcerative keratitis and sclerosing keratitis was present in 1% of the population each (two patients each). Eighty-five percent (66 patients) had bilateral manifestations 15% (eleven patients) had unilateral manifestations. There was a strong association between the presence of anti-CCP antibodies and ocular manifestations of rheumatoid arthritis which was shown by the statistically significant P-value of <0.0001. Ocular manifestations are a significant part of the extra-articular manifestation of rheumatoid arthritis. Dry eye was the most common ocular manifestation. There was a statistically significant association between the presence of anti-CCP antibodies specific to rheumatoid arthritis and the ocular manifestations.

  18. Ultrasound and photoacoustic imaging to monitor ocular stem cell delivery and tissue regeneration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kubelick, Kelsey; Snider, Eric; Yoon, Heechul; Ethier, C. Ross; Emelianov, Stanislav Y.

    2017-03-01

    Glaucoma is associated with dysfunction of the trabecular meshwork (TM), a fluid drainage tissue in the anterior eye. A promising treatment involves delivery of stem cells to the TM to restore tissue function. Currently histology is the gold standard for tracking stem cell delivery and differentiation. To expedite clinical translation, non-invasive longitudinal monitoring in vivo is desired. Our current research explores a technique combining ultrasound (US) and photoacoustic (PA) imaging to track mesenchymal stem cells (MSCs) after intraocular injection. Adipose-derived MSCs were incubated with gold nanospheres to label cells (AuNS-MSCs) for PA imaging. Successful labeling was first verified with in vitro phantom studies. Next, MSC delivery was imaged ex vivo in porcine eyes, while intraocular pressure was hydrostatically clamped to maintain a physiological flow rate through the TM. US/PA imaging was performed before, during, and after AuNS-MSC delivery. Additionally, spectroscopic PA imaging was implemented to isolate PA signals from AuNS-MSCs. In vitro cell imaging showed AuNS-MSCs produce strong PA signals, suggesting that MSCs can be tracked using PA imaging. While the cornea, sclera, iris, and TM region can be visualized with US imaging, pigmented tissues also produce PA signals. Both modalities provide valuable anatomical landmarks for MSC localization. During delivery, PA imaging can visualize AuNS-MSC motion and location, creating a unique opportunity to guide ocular cell delivery. Lastly, distinct spectral signatures of AuNS-MSCs allow unmixing, with potential for quantitative PA imaging. In conclusion, results show proof-of-concept for monitoring MSC ocular delivery, raising opportunities for in vivo image-guided cell delivery.

  19. Therapeutic uses of drug-carrier systems for imidazole-containing dipeptide compounds that act as pharmacological chaperones and have significant impact on the treatment of chronic diseases associated with increased oxidative stress and the formation of advanced glycation end products.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2010-01-01

    The purpose of this study was to determine how the naturally occurring molecules N-acetylcarnosine, L-carnosine, and carcinine, which are chemical or pharmacological chaperones, affect the cells and biomolecules of patients with skin diseases, cosmetic skin lesions, or underlying clinically significant visual impairment such as age-related cataracts, age-related retinal degeneration, and ocular complications of diabetes. We evaluated and characterized the effects of cited pharmacological chaperones on enzyme activity, protein structure in tissues, and other biomarkers of diseases in skin cells and tissues or in ocular tissues (human cataractous and normal lenses) derived from ophthalmic patients or age-matched donors. The samples were used to test imidazole-containing peptidomimetic chemical/pharmacological chaperones in relation to oxidative stress induced by reaction with lipid peroxides or advanced non-enzymatic glycation processes. Chaperone function is characterized by interaction with other proteins, mediating their folding, transport, and interaction with other molecules, lipid peroxidation products, and membranes. Although these therapies remain on hold pending further investigation, we present growing evidence demonstrating the ability of N-acetylcarnosine (lubricant eye drops) or carcinine pharmacological chaperone therapy to act as novel treatments for age-related cataracts, age-related macular degeneration, and ocular complications of diabetes. Finally, we examine strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone and transglycating (de-glycation) types of activity in in vitro and in vivo models of human age-related eye diseases, such as cataracts, and advanced glycation tissue protein-engineered systems.

  20. Olfactomedin-like 2 A and B (OLFML2A and OLFML2B) expression profile in primates (human and baboon).

    PubMed

    Pérez-Ibave, Diana Cristina; González-Alvarez, Rafael; de La Luz Martinez-Fierro, Margarita; Ruiz-Ayma, Gabriel; Luna-Muñoz, Maricela; Martínez-De-Villarreal, Laura Elia; De Lourdes Garza-Rodríguez, María; Reséndez-Pérez, Diana; Mohamed-Noriega, Jibran; Garza-Guajardo, Raquel; Bautista-De-Lucío, Víctor Manuel; Mohamed-Noriega, Karim; Barboza-Quintana, Oralia; Arámburo-De-La-Hoz, Carlos; Barrera-Saldaña, Hugo Alberto; Rodríguez-Sánchez, Irám Pablo

    2016-11-08

    The olfactomedin-like domain (OLFML) is present in at least four families of proteins, including OLFML2A and OLFML2B, which are expressed in adult rat retina cells. However, no expression of their orthologous has ever been reported in human and baboon. The aim of this study was to investigate the expression of OLFML2A and OLFML2B in ocular tissues of baboons (Papio hamadryas) and humans, as a key to elucidate OLFML function in eye physiology. OLFML2A and OLFML2B cDNA detection in ocular tissues of these species was performed by RT-PCR. The amplicons were cloned and sequenced, phylogenetically analyzed and their proteins products were confirmed by immunofluorescence assays. OLFML2A and OLFML2B transcripts were found in human cornea, lens and retina and in baboon cornea, lens, iris and retina. The baboon OLFML2A and OLFML2B ORF sequences have 96% similarity with their human's orthologous. OLFML2A and OLFML2B evolution fits the hypothesis of purifying selection. Phylogenetic analysis shows clear orthology in OLFML2A genes, while OLFML2B orthology is not clear. Expression of OLFML2A and OLFML2B in human and baboon ocular tissues, including their high similarity, make the baboon a powerful model to deduce the physiological and/or metabolic function of these proteins in the eye.

  1. Cytokine profiling reveals decreased serum levels of CCL2 in active ocular toxoplasmosis.

    PubMed

    Rey, Amanda; Molins, Blanca; Llorenç, Victor; Pelegrín, Laura; Mesquida, Marina; Adán, Alfredo

    2013-10-01

    Toxoplasma gondii infection is an important cause of ocular disease. Although parasite-mediated host cell lysis is probably the principal cause of tissue destruction in immunodeficiency states, hypersensitivity and inflammatory responses may underlie severe disease in otherwise immunocompetent individuals. The purpose of the current investigation was to study the cytokine profiles in serum from patients with ocular toxoplasmosis and to compare them with those obtained from healthy control subjects. Using a multiplex assay, we determined the serum concentration of granulocyte colony-stimulating factor (GCSF), interferon γ (IFNγ), interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, chemokine (C-C motif) ligand 2 (CCL2) and tumour necrosis factor α (TNFα) in patients with inactive ocular toxoplasmosis (n=48), active ocular toxoplasmosis (n=21), and an age-matched and sex-matched healthy control group (n=25). In a subgroup of 17 patients with active disease, a second serum sample was obtained when the disease was inactive. Cytokine profiles were correlated with disease activity, severity and visual outcome. Levels of CCL2 were significantly reduced in patients with active ocular toxoplasmosis compared to the control group (564 ± 42 pg/mL vs 455 ± 35 pg/mL, p<0.05). Moreover, CCL2 levels were significantly lower during active ocular toxoplasmosis compared to inactive disease (569 ± 32 pg/mL vs 433 ± 32 pg/mL, p<0.01). GCSF and TNFα were elevated in patients with toxoplasmosis with poor visual outcome. No significant correlations were found with specific cytokine profiles and disease severity. Decreased serum levels of CCL2 may be associated with active ocular toxoplasmosis and could therefore serve as a marker of disease activity.

  2. Overexpression of the anti-apoptotic protein BAG3 in human choroidal melanoma: A case report.

    PubMed

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Kondo, Takashi; Ishii, Yoko; Hayashi, Atsushi

    2017-06-01

    Bcl-2-associated athanogene 3 (BAG3), a co-chaperone of heat shock protein 70 (HSP70), exerts anti-apoptotic effects in various malignant tumors. However, relationships between choroidal melanoma and BAG3 are poorly studied. This study investigated the expression of BAG3 in a case of human choroidal melanoma. Funduscopy, computed tomography, and single-photon emission computed tomography with the intravenous injection of N-isopropyl-p-[ 123 I] iodoamphetamine strongly indicated choroidal melanoma in a 68-year-old woman. Accordingly, we carried out an enucleation and pathological diagnosis. Proteins and total RNA were extracted from normal retinochoroidal and tumor tissues. Proteins were also extracted from ocular nevus tissues of other patients. We examined the expression of BAG3 protein and mRNA using Western blotting and the real-time quantitative polymerase chain reaction, respectively. Immunohistochemical stains were positive for melan-A, HMB-45, and S-100. Histopathology confirmed a choroidal melanoma. The expression of BAG3 protein and mRNA in the choroidal melanoma tissue was upregulated with respect to both normal retinochoroidal tissue and ocular nevus tissues from other patients. Because BAG3 may inhibit apoptosis of choroidal melanoma and facilitate its survival, overexpression of this gene product may be a prognostic marker and therapeutic target.

  3. IL-33/ST2 involves the immunopathology of ocular toxoplasmosis in murine model.

    PubMed

    Tong, Xinxin; Lu, Fangli

    2015-05-01

    Ocular toxoplasmosis (OT) is the major cause of infective uveitis. Since the eye is a special organ protected by immune privilege, its immune response is different from general organs with Toxoplasma gondii infection. Here, we used Kunming outbred mice to establish OT by intravitreal injection of T. gondii RH strain tachyzoites, IL-33 expression in the eyes was localized by immunostaining, the levels of interleukin (IL)-33 and ST2 (IL-33 receptor) and T-helper (Th)1 and Th2-associated cytokines in the eye and cervical lymph nodes (CLNs) of infected mice were measured, and their correlations were analyzed. Our results showed that the pathologies of the eye and CLN tissues and the IL-33 positive cells in the eye tissues of ocular T. gondii-infected mice were all increased at days 2, 6, and 9 postinfection (p.i.), accompanied with significantly increased transcript levels of IL-33, ST2, IL-1β, IFN-γ, IL-12p40, IL-10, and IL-13 in both the eyes and CLNs, and increased IL-4 expressions in the eyes of T. gondii-infected mice. There were significant correlations between the levels of IFN-γ and ST2, IL-4 and ST2, and IL-13 and ST2 in the eye tissues (P < 0.001), significant correlations between the levels of IFN-γ and ST2 (P < 0.001) as well as between IL-13 and ST2 (P < 0.05) in the CLNs, and significant correlations between the levels of IL-1β and IL-33 in the eyes (P < 0.05) and between IL-1β and IL-33/ST2 in the CLNs (P < 0.001 and P < 0.01, respectively). Our data indicated that IL-33/ST2 may involve the regulation of ocular immunopathology induced by T. gondii infection.

  4. Transport and interaction of cosmetic product material within the ocular surface: beauty and the beastly symptoms of toxic tears.

    PubMed

    Malik, Adeela; Claoué, Charles

    2012-12-01

    Eye cosmetics such as mascara, eye shadow and eyeliner are used extensively to highlight the eyes, and are normally applied external to the ocular surface. Adverse reactions of cosmetics within the ocular surface include mild discomfort, eyelid dermatitis, pre-corneal tear film instability, and keratitis. These are attributed mainly to the preservative (benzalkonium chloride (BAC)) constituent of cosmetic product material (CPM). Transport of CPM from an external environment to any location on the ocular surface, essentially precedes the adverse interactions occurring at the location, and the control of these transport modes is therefore of clinical relevance. The inter-transport of CPM across the TF occurs due to both diffusion and drift processes. Diffusion of neutral species is driven by concentration gradients, and the drift of cationic BAC is influenced by the inherent electric field; determined by the distribution of the various ions secreted into the aqueous layer, and the negative glycocalyx charge at the mucin layer. In the presence of mucin deficiency, the corneal epithelium is exposed to invasion by both incident BAC and lipophilic species. The transport of cationic BAC across the TF may be controlled by regulating the secretion of various electrolytes at the lacrimal gland. This is of clinical significance in reducing corneal epithelial adverse effects. However, the risks of adverse effects at the corneal surface due to invasion by the lipophilic species remain. Patients with mucin deficiency, and especially those on eye ointment/drops medication, should be discouraged from using cosmetics in a way likely to contaminate the TF. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  5. An impression cytology based study of ocular surface in an urban population.

    PubMed

    Mukhopadhyay, Somnath; Dutta, Jayanta; Mitra, Jayati; Prakash, Ratnesh; Datta, Himadri

    2013-04-01

    To assess the health of ocular surface in a defined urban population, conjunctival goblet cell density and degree of surface squamous metaplasia were utilized as study tools. Two thousand names of those aged between 20 and 79 years from the 2006 electoral register in ward number 63 of Kolkata Corporation area were initially selected. Normal healthy human volunteers without any history of ocular surface disorder were recruited and divided into five age-groups. Impression cytology samples were obtained from interpalpebral part of bulbar conjunctiva from all the participants fixated and stained by a single observer. A stratified, clustered, disproportionate, random sampling method was used. The software used in the statistical analysis was EPI Info. The tests applied were t test and ANOVA. A variation in the number of goblet cells according to gender (women having less cells) and age (20-30 years group having the highest number of cells) was found. Those working outdoors were found to have fewer goblet cells compared to those who stay indoors. The majority of the people had grade 1 cytological appearance in both males and females. There was no statistically significant difference in Nelson's grading with age. People using coal and kerosene to cook were found to have a smaller goblet cell density than those who cooked on LPG or those who did not cook at all. Besides age and sex, environmental factors like the method of cooking and occupational variables (like outdoor activity, prolonged period of computer use, etc.) modify the health of the ocular surface. The results of this study will help put these findings into perspective as public health problems.

  6. Case control study of dry eye and related ocular surface abnormalities in Ibadan, Nigeria.

    PubMed

    Bekibele, C O; Baiyeroju, A M; Ajaiyeoba, A; Akang, E E U; Ajayi, B G K

    2010-02-01

    Tear instability is associated with symptoms of ocular discomfort and irritation. Many patients with dry eyes remain untreated due to improper diagnoses. To identify symptoms and surface abnormalities associated with dry eyes. One hundred and fifty-six eyes of 78 subjects attending the Eye Clinic of the University College Hospital Ibadan were screened for dry eyes/tear instability using rose Bengal stain (graded 0-9), tear break-up time (TBUT), Schirmer's 1 tests, tear meniscus height and a standardised symptoms questionnaire. Grades 4-9 rose Bengal staining were considered as positive dry eye and were compared with grades 0-3 staining eyes as negative controls. Mean tear meniscus height, Schirmer's test and TBUT were lower among cases than their corresponding control eyes. The difference between the mean Schirmer's test values of cases and their controls were statistically significant (P = 0.00 for right eyes and P = 0.002 for left eyes). Rose Bengal grades were inversely correlated with the mean Schirmer's values (Pearson correlation -0.429, P = 0.05 for right eyes and -0.335, P = 0.03 for left eyes) and TBUT (Pearson correlation -0.316, P = 0.05 for right eyes and -0.212, P = 0.06 for left eyes). About 95.8% of the cases were symptomatic, as opposed to 70.4% of the controls (P = 0.01, Fisher's exact test) and 95.8% of dry right eyes compared to 61.1% of their controls had ocular surface abnormalities (P = 0.001), while 89.5% of dry left eyes compared to 62.7% of controls had surface abnormalities (P = 0.07). A close relationship exists between ocular irritation symptoms, surface abnormalities and functional evidence of tear instability. Such patients should be treated empirically or screened for dry eyes.

  7. The Effects of Increasing Ocular Surface Stimulation on Blinking and Sensation

    PubMed Central

    Wu, Ziwei; Begley, Carolyn G.; Situ, Ping; Simpson, Trefford

    2014-01-01

    Purpose. The purpose of this study was to determine how increasing ocular surface stimulation affected blinking and sensation, while controlling task concentration. Methods. Ten healthy subjects concentrated on a task while a custom pneumatic device generated air flow toward the central cornea. Six flow rates (FRs) were randomly presented three times each and subjects used visual analog scales to record their sensory responses. The interblink interval (IBI) and the FR were recorded simultaneously and the IBI, sensory response, and corresponding FR were determined for each trial. The FR associated with a statistically significant decrease in IBI, the blink increase threshold (BIT), was calculated for each subject. Results. Both the mean and SD of IBI were decreased with increasing stimulation, from 5.69 ± 3.96 seconds at baseline to 1.02 ± 0.37 seconds at maximum stimulation. The average BIT was 129 ± 20 mL/min flow rate with an IBI of 2.33 ± 1.10 seconds (permutation test, P < 0.001). After log transformation, there was a significant linear function between increasing FR and decreasing IBI within each subject (Pearson's r ≤ −0.859, P < 0.05). The IBI was highly correlated with wateriness, discomfort, and cooling ratings (Pearson's r ≤ −0.606, P < 0.001). Conclusions. There was a dose-response–like relationship between increased surface stimulation and blinking in healthy subjects, presumably for protection of the ocular surface. The blink response was highly correlated with ocular surface sensation, which is not surprising given their common origins. The BIT, a novel metric, may provide an additional end point for studies on dry eye or other conditions. PMID:24557346

  8. A Novel Combination Therapy for Patients With Dry Eye Disease: A Pilot Study.

    PubMed

    Smith, Will; McMahon, David; Nymark, Maria

    2018-05-01

    Context • Approximately 25% of the US population suffers from dry eyes or some abnormality of the exposed ocular surface. Investigation of effective modalities for their management is needed. Objective • The study intended to examine the efficacy of a proprietary, daily, Dry Eye Protocol consisting of daily use of a moist, heated, ocular compress and intake of an omega-3 dietary supplement in treatment of ocular surface disease. Design • The research team designed a 4-wk, clinically based, open-label, multicenter cohort study. Setting • The study took place at 6 private eye care practices throughout the United States: Beverly Hills, CA, USA; San Diego, CA, USA; Sunnyvale, CA, USA; Park City, UT, USA; Tarpon Spring, FL, USA; and Kennewick, WA, USA. Participants • Participants were adults between 18 and 75 y of age who had established ocular surface disease based on clinical findings and the results of testing using the ocular surface disease index (OSDI). Intervention • For period of 30 d, participants used a combined daily protocol that included (1) application of a moist, heated, eye compress and (2) a nutritional therapy via an omega-3 supplement in an oral triglyceride form. Outcome Measures • Measures included the OSDI and a test of tear break-up time (TBUT). Results • Of the original 35 participants, 33 completed the 4-wk protocol. The participants using the proprietary Dry Eye Protocol showed significant improvements from baseline, demonstrated by a 49% decrease in OSDI scores (P = .0015); and 46% of participants reported becoming asymptomatic of dry eye symptoms. A significant improvement was also observed in TBUT, increasing from 3.0 to 5.4 s. Conclusions • Daily use of the proprietary Dry Eye Protocol that included a high dosage of triglyceride omega-3 and use of a moist, heated, compress daily showed significant improvement for participants in OSDI and TBUT and should be considered to be a first-line therapy for patients with dry eye disease.

  9. Post DSAEK Optical Changes: A Comprehensive Prospective Analysis on the Role of Ocular Wavefront Aberrations, Haze, and Corneal Thickness

    PubMed Central

    Hindman, Holly B.; Huxlin, Krystel R.; Pantanelli, Seth M.; Callan, Christine L.; Sabesan, Ramkumar; Ching, Steven S.T.; Miller, Brooke E.; Martin, Tim; Yoon, Geunyoung

    2014-01-01

    Purpose To assess the visual impact of ocular wavefront aberrations, corneal thickness, and corneal light scatter prospectively after Descemet’s Stripping Automated Endothelial Keratoplasty (DSAEK) in humans. Methods Data were obtained prospectively from 20 eyes pre-operatively and at 1, 3, 6, and 12 months post- DSAEK. At each visit, best spectacle corrected visual acuity (BSCVA) and visual acuity with glare (Brightness Acuity Testing - BAT) were recorded and ocular wavefront measurements and corneal Optical Coherence Tomography (OCT) performed. Magnitude and sign of individual Zernike terms (higher order aberrations HOA) were determined. Epithelial, host stromal, donor stromal, and total corneal thickness were quantified. Brightness, intensity profiles of OCT images were generated to quantify light scatter in the whole cornea, subepithelial region, anterior and posterior host stroma, interface, and donor stroma. Results Mean BSCVA and glare disability at low light levels improved from 1 to 12 months post-DSAEK. All corneal thicknesses and ocular lower- and HOAs were stable from 1 through 12 months, whereas total corneal, host stromal, and interface brightness intensities decreased significantly over the same period. A repeated measures ANOVA across the follow up period found that the change in scatter, but not the change in higher order aberrations, could account for the variability occurring in acuity from 1 to 12 months post-DSAEK. Conclusions While ocular HOAs and scatter are both elevated over normal post-DSAEK, our results demonstrate that improvements in visual performance occurring over the first year post-DSAEK are associated with decreasing light scatter. In contrast, there were no significant changes in ocular HOAs during this time. Because corneal light scatter decreased between 1 and 12 months despite stable corneal thicknesses over the same period, we conclude that factors that induced light scatter, other than tissue thickness or swelling (corneal edema), significantly impacted the visual improvements that occurred over time post-DSAEK. A better understanding of the cellular and extracellular matrix changes of the subepithelial region and interface, incurred by the surgical creation of a lamellar host -graft interface, and the subsequent healing of these tissues, is warranted. PMID:24162748

  10. Neural Responses to Injury: Prevention, Protection and Repair; Volume 3: The Neuro-Immunology of Stress, Injury and Infection

    DTIC Science & Technology

    1996-10-01

    thermal stress (10 minutes at 43 °C) and restraint stress (60 minutes) as indirect mediators of HSV-1 reactivation from neural tissues . These experiments...between the reactivation of infectious virus in the tears, ocular tissue , and trigeminal ganglia of infected, stressed animals was significantly...and nervous tissues of latently infected, stressed animals. The overall goal of the experiments conducted as part of this specific aim are to

  11. Antimicrobial role of human meibomian lipids at the ocular surface.

    PubMed

    Mudgil, Poonam

    2014-10-14

    Human meibomian lipids form the outermost lipid layer of the tear film and serve many important functions to maintain its integrity. Although not investigated earlier, these lipids may have antimicrobial properties that help in strengthening the innate host defense of tears at the ocular surface. The aim of this study was to investigate the antimicrobial role of human meibomian lipids. Ocular pathogenic bacteria, Staphylococcus aureus 31, Pseudomonas aeruginosa 19, Pseudomonas aeruginosa 20, and Serratia marcescens 35, were grown in the presence and absence of human meibomian lipids in an artificial tear solution at the physiological temperature. Viable counts were obtained to note the number of bacteria surviving the treatment with meibomian lipids. Bacterial cells were imaged using scanning electron microscopy to observe the damages caused by meibomian lipids. Viable count results showed that in the presence of meibomian lipids, growth of all bacteria was considerably lower. Scanning electron microscopy showed that meibomian lipids caused extensive cellular damage to bacteria as manifested in smaller size, loss of aggregation, abnormal phenotype, cellular distortion, damaged cell wall, and cell lysis. This is the first-ever report of the antimicrobial role of human meibomian lipids. These lipids possess antimicrobial properties against both Gram-positive and Gram-negative bacteria and are involved in the innate host defense of tears in protecting the ocular surface against microbial pathogens. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye.

    PubMed

    Guzmán, Mauricio; Keitelman, Irene; Sabbione, Florencia; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G

    2016-10-01

    Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A comparative study of tissue glue and vicryl suture for conjunctival and scleral closure in conventional 20-gauge vitrectomy.

    PubMed

    Batman, C; Ozdamar, Y; Mutevelli, S; Sonmez, K; Zilelioglu, G; Karakaya, J

    2009-06-01

    To describe the use of tissue glue to close scleral and conjunctival wounds, and to compare the clinical outcomes using tissue glue and vicryl suture for closing these areas in conventional 20-gauge (G) vitrectomy. Thirty eyes of 30 patients were included in this study. The indications for vitreoretinal surgery were diabetic vitreous haemorrhage with severe vitreoretinal traction in 10 eyes, retinal detachment and proliferative vitreoretinopathy in 14 eyes, and vitreous opacity in 6 eyes. Tissue glue (Tisseel, Baxter AG Industries, Vienna, Austria) was used to attach scleral and conjunctival wounds in 15 eyes and vicryl sutures in 15 eyes. The patients were allotted into two subgroups as tissue glue group (TG) and vicryl suture group (VG). The sclerotomy sites were evaluated with ultrasound biomicroscopy (UBM) postoperatively in TG. Follow-up period was 2 months. The groups were statistically compared for ocular signs and symptoms by Mann-Whitney U-test. No scleral wound leakage and conjunctival reattachment were observed at the end of the surgical procedure and during the follow-up period. No adverse effects were seen in TG. Abnormal fibrous ingrowth was not detected at the sclerotomy sites by means of UBM in TG. Patient comfort was significantly higher in TG than VG (P<0.05). Tissue glue has no adverse effects on ocular tissue and can be used as a substitute for suture materials, and the use of tissue glue decreases patient symptoms during the postoperative period after 20-G vitrectomy. Tissue glue can enable to perform sutureless surgery in the conventional 20-G vitrectomy.

  14. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure.

    PubMed

    Massie, Isobel; Dale, Sarah B; Daniels, Julie T

    2015-06-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE- RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP.

  15. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure

    PubMed Central

    Dale, Sarah B.; Daniels, Julie T.

    2015-01-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE− RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP. PMID:25380529

  16. Effect of bilastine upon the ocular symptoms of allergic rhinoconjunctivitis.

    PubMed

    Bartra, J; Mullol, J; Montoro, J; Jáuregui, I; del Cuvillos, A; Dávila, I; Ferrer, M; Sastre, J; Valero, A

    2011-01-01

    Ocular symptoms often accompany allergic rhinitis and can be as or even more bothersome for the patient than the actual nasal symptoms. Ocular manifestations of allergic rhinoconjunctivitis may result from both direct allergen-mediated mast cell stimulation on the surface of the eye and naso-ocular reflexes--histamine being one of the mediators of symptoms onset. An H1 antihistamine would be the first line treatment for allergic conjunctivitis. Since allergic conjunctivitis is always (or almost always) accompanied by nasal symptoms, a second-generation H1 antihistamine administered via oral route is the drug of choice for jointly managing both the nasal and the ocular symptoms--minimizing the impact of the effects inherent to first-generation H, antihistamine, including particularly drowsiness. Bilastine is a new H1 antihistamine with an excellent safety profile, developed for the treatment of allergic rhinoconjunctivitis and urticaria, with potency similar to that of cetirizine and desloratadine, and superior to that of fexofenadine. This new drug has been shown to be effective in controlling the ocular symptoms of allergic rhinoconjunctivitis.

  17. Incomplete response to artificial tears is associated with features of neuropathic ocular pain.

    PubMed

    Galor, Anat; Batawi, Hatim; Felix, Elizabeth R; Margolis, Todd P; Sarantopoulos, Konstantinos D; Martin, Eden R; Levitt, Roy C

    2016-06-01

    Artificial tears are first-line therapy for patients with dry eye symptoms. It is not known, however, which patient factors associate with a positive response to therapy. The purpose of this study was to evaluate whether certain ocular and systemic findings are associated with a differential subjective response to artificial tears. Cross-sectional study of 118 individuals reporting artificial tears use (hypromellose 0.4%) to treat dry eye-associated ocular pain. An evaluation was performed to assess dry eye symptoms (via the dry eye questionnaire 5 and ocular surface disease index), ocular and systemic (non-ocular) pain complaints and ocular signs (tear osmolarity, tear breakup time, corneal staining, Schirmer testing with anaesthesia, and eyelid and meibomian gland assessment). The main outcome measures were factors associated with differential subjective response to artificial tears. By self-report, 23 patients reported no improvement, 73 partial improvement and 22 complete improvement in ocular pain with artificial tears. Patients who reported no or partial improvement in pain with artificial tears reported higher levels of hot-burning ocular pain and sensitivity to wind compared with those with complete improvement. Patients were also asked to rate the intensity of systemic pain elsewhere in the body (other than the eye). Patients who reported no or incomplete improvement with artificial tears had higher systemic pain scores compared with those with complete improvement. Both ocular and systemic (non-ocular) pain complaints are associated with a differential subjective response to artificial tears. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Vision-Related Quality of Life in Patients with Ocular Graft-versus-Host Disease.

    PubMed

    Saboo, Ujwala S; Amparo, Francisco; Abud, Tulio B; Schaumberg, Debra A; Dana, Reza

    2015-08-01

    To assess the vision-related quality of life (QOL) in a cohort of patients with ocular graft-versus-host disease (GVHD). Prospective study. Eighty-four patients diagnosed with chronic ocular GVHD. We assessed the vision-related QOL with the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25). The symptoms of ocular GVHD were assessed using the Ocular Surface Disease Index (OSDI) and Symptom Assessment in Dry Eye (SANDE) questionnaires. We assessed vision-related QOL with the NEI-VFQ-25 and compared the scores obtained from patients with ocular GVHD with those from a healthy population. In the ocular GVHD population, we also evaluated the associations between the NEI-VFQ-25 and the dry eye symptoms measured by the OSDI and SANDE questionnaires, age, duration of disease, best-corrected visual acuity (BCVA), corneal fluorescein staining (CFS), tear break-up time, and Schirmer test. The mean composite NEI-VFQ-25 score in patients with ocular GVHD was 76.5±17. Compared with healthy subjects, patients with ocular GVHD reported reduced scores on all NEI-VFQ-25 subscales (each P < 0.001) with the exception of color vision (P = 0.11). The NEI-VFQ-25 composite scores significantly correlated with OSDI (R = -0.81, P < 0.001), SANDE (R = -0.56, P < 0.001), CFS (R = -0.36, P = 0.001), and BCVA (R = -0.30, P = 0.004). Patients with ocular GVHD experience measurable impairment of vision-related QOL. This study highlights the impact of ocular GVHD on the vision-related QOL, and thus the importance of comprehensive diagnosis and treatment of this condition. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  19. Vision-Related Quality of Life in Patients with Ocular Graft-versus-host Disease

    PubMed Central

    Saboo, Ujwala S; Amparo, Francisco; Abud, Tulio B; Schaumberg, Debra A; Dana, Reza

    2015-01-01

    Objective To assess the vision-related quality of life in a cohort of patients with ocular graft-versus-host disease (GVHD). Design Prospective study. Participants Eighty-four patients diagnosed with chronic ocular GVHD Methods We assessed the vision-related quality of life with the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25). The symptoms of ocular GVHD were assessed using the Ocular Surface Disease Index (OSDI) and Symptom Assessment in Dry Eye (SANDE) questionnaires. Main outcome measures We assessed vision-related quality of life with NEI-VFQ-25 and compared the scores obtained from patients with ocular GVHD to those from a healthy population. In the ocular GVHD population, we also evaluated the associations between the NEI-VFQ-25 and dry eye symptoms measured by OSDI and SANDE questionnaires, age, duration of disease, best-corrected visual acuity, corneal fluorescein staining, tear break-up time, and Schirmer test. Results The mean composite NEI-VFQ-25 score in patients with ocular GVHD was 76.5 ± 17. Compared to healthy subjects, ocular GVHD patients reported reduced scores on all NEI-VFQ-25 subscales (each P < 0.001) with exception of color vision (P = 0.11). The NEI-VFQ-25 composite scores significantly correlated with OSDI (R = −0.81, P < 0.001), SANDE (R = −0.56, P < 0.001), corneal fluorescein staining (R = −0.36, P = 0.001) and best-corrected visual acuity (R = −0.30, P = 0.004). Conclusion Patients with ocular GVHD experience measurable impairment of vision-related quality of life. This study highlights the impact of ocular GVHD on the vision-related quality of life, and hence the importance of comprehensive diagnosis and treatment of this condition. PMID:26001816

  20. Long-term ocular consequences of sulfur mustard in seriously eye-injured war veterans.

    PubMed

    Ghasemi, Hassan; Ghazanfari, Tooba; Ghassemi-Broumand, Mohammad; Javadi, Mohammad Ali; Babaei, Mahmoud; Soroush, Mohammad Reza; Yaraee, Roya; Faghihzadeh, Soghrat; Poorfarzam, Shahriar; Owlia, Parviz; Naghizadeh, Mohammad Mehdi; Etezad-Razavi, Mohammad; Jadidi, Khosro; Naderi, Mostafa; Hassan, Zuhair Mohammad

    2009-01-01

    Sulfur mustard (SM) has been used as a dangerous chemical warfare agent since the early 20th century. Although many descriptive studies about SM-induced ocular injuries are present in the medical literature, few of them have been conducted over a large group with serious ocular involvement. This descriptive study was conducted on 149 severe SM-intoxicated war veterans. Ocular history, anterior and posterior segment findings using a slit lamp, and direct and indirect ophthalmoscopic findings were recorded. Severity of the disease was also recorded based on a chart of the Foundation of Martyrs and Veterans Affairs. Ocular complains included photophobia (73.2%), sense of decreased vision (72.5%), dry eye sensation (66.4%), foreign body sensation (61.1%), tearing (46.3%), and pain (43.0%). Slit lamp findings were meibomian gland dysfunction (MGD; 96%), blepharitis, punctal closure, trichiasis, tear break-up time, and tear meniscus layer abnormality (80% to 90%). Conjunctival disturbances included vascular abnormality, ischemia, hyperemia, subconjunctival fibrosis, and pterygium. Limbal changes were abnormal vessels, limbal tissue loss and pigment loss, and pannus formation. Corneal problems included epithelial and stromal disturbances, calcium deposition, and melting. The most frequent previous surgeries were punctal closure, lamellar keratoplasty (LK), and stem cell allograft. Severity of intoxication included mild (17%), moderate (25%), and severe (57%). Chronic blepharitis and decreased tear secretion are the 2 most important and influencing factors in progression of ocular problems in SM injuries. The more severe the initial exposure, percentage of disability, and duration of ocular involvement, the higher the likelihood of mustard gas keratopathy.

Top