Science.gov

Sample records for odd-mass hg isotopes

  1. Positive parity low spin states of odd-mass tellurium isotopes

    NASA Astrophysics Data System (ADS)

    Yazar, Harun Reşit

    2006-11-01

    In this work, we analyse the positive parity of states of odd-mass nucleus within the framework of interacting boson fermion model. The result of an IBFM-1 multilevel calculation with the lg 9/2, 2d 5/2, 2d 3/2, 3s 1/2 and one level, 1h 11/2 with negative parity, single particle orbits is reported for the positive parity states of the odd mass nucleus 123-125Te. Also, an IBM-1 calculation is presented for the low-lying states in the even-even 124-126Te core nucleus. The energy levels and B (E2) transition probabilities were calculated and compared with the experimental data. It was found that the calculated positive parity low spin state energy spectra of the odd-mass 123-125Te isotopes agree quite well with the experimental data.

  2. Theoretical study of band structure of odd-mass 115,117I isotopes

    NASA Astrophysics Data System (ADS)

    Singh, Dhanvir; Kumar, Amit; Sharma, Chetan; Singh, Suram; Bharti, Arun

    2016-05-01

    By using the microscopic approach of Projected Shell Model (PSM), negative-parity band structures of odd mass neutron-rich 115,117I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of back bending in moment of inertia is also studied in the present work.

  3. QPNM calculation for the ground state magnetic moments of odd-mass deformed nuclei: 157-167Er isotopes

    NASA Astrophysics Data System (ADS)

    Yakut, H.; Guliyev, E.; Guner, M.; Tabar, E.; Zenginerler, Z.

    2012-08-01

    A new microscopic method has been developed in the framework of the Quasiparticle-Phonon Nuclear Model (QPNM) in order to investigate spin polarization effects on the magnetic properties such as magnetic moment, intrinsic magnetic moment and effective gs factor of the ground state of odd-mass 157-167Er isotopes. The calculations were performed using both Tamm-Dancoff Approximation (TDA) and Quasiparticle Random-Phase Approximation (QRPA). Reasonably good agreement has been obtained between the QRPA results and the relevant experimental data. Furthermore the variation of the intrinsic magnetic moment gK values with the mass number A exhibits similar behavior for both theoretical and experimental results. From the compression of the calculated intrinsic magnetic moment values with the experimental data the spin-spin interaction parameter has been found as χ=(30/A) MeV for odd-mass 157-167Er isotopes. Our results clarify the possibility of using this new method to describe the magnetic properties of odd-mass deformed nuclei.

  4. Shape coexistence in neutron-rich odd-mass S isotopes

    NASA Astrophysics Data System (ADS)

    Mijatovic, Tea; Kobayashi, Nobuyuki; Iwasaki, Hiro; Loelius, Charles; Whitmore, Kenneth; Elder, Robert; Gade, Alexandra; Bazin, Daniel; Weisshaar, Dirk; Bender, Peter; Belarge, Joe; Lunderberg, Eric; Elman, Brandon; Longfellow, Brenden; Dewald, Alfred; Haylett, Thoryn; Mathry, Michael; Heil, Sebastian

    2017-01-01

    Collective motions in atomic nuclei at low excitation energies have been characterized by the ground-state shape as a single basis. This picture can be altered in exotic nuclei with unusual proton-to-neutron ratios if the nuclear shape can change drastically at low spin. Recently, there has been an increasing interest for shape-coexistence phenomena in neutron-rich S isotopes and studies suggested fairly large collectivity in 40 , 42 , 44S isotopes. We will discuss the search for isomeric or long-lived states in 45S for which no excited states are known in the literature and the pursuit to fully characterize the band structure of the low-lying states in 43,45S, which provide key information to establish a comprehensive picture of the shape coexistence in this region. Direct model-independent measurements of the 43,45S excited states were realized by applying the Recoil Distance Method with the TRIPLEX Plunger in conjunction with GRETINA to fast rare isotope beams at the NSCL.

  5. Stable mercury isotope ratios as tracers for Hg cycling at the inoperative New Idria Hg mine, California

    NASA Astrophysics Data System (ADS)

    Wiederhold, J. G.; Jew, A. D.; Brown, G. E.; Bourdon, B.; Kretzschmar, R.

    2010-12-01

    The seven stable isotopes of Hg are fractionated in the environment as a result of mass-dependent (MDF) and mass-independent (MIF) fractionation processes that can be studied in parallel by analyzing the ratios of even and odd mass Hg isotopes. MDF and MIF Hg isotope signatures of natural samples may provide a new tool to trace sources and transformations in environmental Hg cycling. However, the mechanisms controlling the extent of kinetic and equilibrium Hg isotope fractionations are still only partially understood. Thus, development of this promising tracer requires experimental calibration of relevant fractionation factors as well as assessment of natural variations of Hg isotope ratios under different environmental conditions. The inoperative Hg mine in New Idria (California, USA) represents an ideal case study to explore Hg isotope fractionation during Hg transformation and transport processes. More than a century of Hg mining and on-site thermal refining to obtain elemental Hg until 1972 produced large volumes of contaminated mine wastes which now represent sources of Hg pollution for the surrounding ecosystems. Here, we present Hg isotope data from various materials collected at New Idria using Cold-Vapor-MC-ICPMS with a long-term δ202Hg reproducibility of ±0.1‰ (2SD). Uncalcined mine waste samples were isotopically similar to NIST-3133 and did not exhibit any MIF signatures. In contrast, calcine samples, which represent the residue of the thermal ore processing at 700°C, had significantly heavier δ202Hg values of up to +1.5‰. In addition, we observed small negative MIF anomalies of the odd-mass Hg isotopes in the calcine samples, which could be caused either by nuclear volume fractionation or a magnetic isotope effect during or after the roasting process. The mass-dependent enrichment of heavy Hg isotopes in the calcine materials indicates that light Hg isotopes were preferentially removed during the roasting process, in agreement with a previous

  6. Nuclear Volume Effects in Equilibrium Stable Isotope Fractionations of Hg, Tl and Pb Isotope Systems

    NASA Astrophysics Data System (ADS)

    Yang, S.; Liu, Y.

    2014-12-01

    Many evidences showed that heavy isotope systems could be significantly fractionated as the consequence of the nuclear volume effect (NVE) or so-called nuclear field shift effect. Here we investigate NVEs of Hg, Tl and Pb isotope systems by using quantum chemistry computational methods with careful evaluation on quantum relativistic effects via the Dirac's formalism of full-electron wavefunction. Our results generally agree with previous studies but with noticeable differences in many cases. With the unique NVE driving force, equilibrium 202Hg/198Hg and 205Tl/203Tl isotopes can be fractionated up to 3.94‰ and 2.78‰ at 0℃, respectively, showing potentially large equilibrium isotope fractionations can be expected for future studies of these two isotope systems. Moreover, the NVE causes large mass-independent fractionations (MIF) for odd-mass isotopes (e.g., ∆199NVHg and ∆201NVHg) and small MIFs for even-mass isotopes (e.g., ∆200NVHg). For Pb isotope system, NVEs induce isotope fractionations up to 1.62‰ (207Pb/206Pb) and 4.06‰ (208Pb/206Pb) at 0℃. However, contributions from classical mass-dependent driving force are small, about 0.1-0.5‰ for 207Pb/206Pb and 0.2-0.9‰ for 208Pb/206Pb. We find that Pb4+-bearing species can be significantly enriched heavy isotopes than Pb2+-bearing species. Comparing to Pb0, Pb2+-bearing species even enrich lighter Pb isotopes. A very strange and interesting thing is that the beta value of Pb2+-bearing species can be smaller than the unity (1.000). Similar thing has been found on Tl+-bearing species. This is an impossible and unexplained situation if only based on classical mass-dependent isotope fractionation theory (e.g., Bigeleisen-Mayer equation). The consequence is that the different direction of beta values of Pb2+-bearing species will let the Pb isotope fractionation even larger when they fractionate with Pb4+-bearing species. Moreover, NVEs also cause mass-independent fractionation (MIF) of odd 207Pb

  7. Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg.

    PubMed

    Wiederhold, Jan G; Cramer, Christopher J; Daniel, Kelly; Infante, Ivan; Bourdon, Bernard; Kretzschmar, Ruben

    2010-06-01

    Stable Hg isotope ratios provide a new tool to trace environmental Hg cycling. Thiols (-SH) are the dominant Hg-binding groups in natural organic matter. Here, we report experimental and computational results on equilibrium Hg isotope fractionation between dissolved Hg(II) species and thiol-bound Hg. Hg(II) chloride and nitrate solutions were equilibrated in parallel batches with varying amounts of thiol resin resulting in different fractions of thiol-bound and free Hg. Mercury isotope ratios in both fractions were analyzed by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). Theoretical equilibrium Hg isotope effects by mass-dependent fractionation (MDF) and nuclear volume fractionation (NVF) were calculated for 14 relevant Hg(II) species. The experimental data revealed that thiol-bound Hg was enriched in light Hg isotopes by 0.53 per thousand and 0.62 per thousand (delta(202)Hg) relative to HgCl(2) and Hg(OH)(2), respectively. The computational results were in excellent agreement with the experimental data indicating that a combination of MDF and NVF was responsible for the observed Hg isotope fractionation. Small mass-independent fractionation (MIF) effects (<0.1 per thousand) were observed representing one of the first experimental evidences for MIF of Hg isotopes by NVF. Our results indicate that significant equilibrium Hg isotope fractionation can occur without redox transition, and that NVF must be considered in addition to MDF to explain Hg isotope variations.

  8. Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg mine.

    PubMed

    Wiederhold, Jan G; Smith, Robin S; Siebner, Hagar; Jew, Adam D; Brown, Gordon E; Bourdon, Bernard; Kretzschmar, Ruben

    2013-06-18

    Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes provides a new tool for tracing Hg in contaminated environments such as mining sites, which represent major point sources of Hg pollution into surrounding ecosystems. Here, we present Hg isotope ratios of unroasted ore waste, calcine (roasted ore), and poplar leaves collected at a closed Hg mine (New Idria, CA, U.S.A.). Unroasted ore waste was isotopically uniform with δ(202)Hg values from -0.09 to 0.16‰ (± 0.10‰, 2 SD), close to the estimated initial composition of the HgS ore (-0.26‰). In contrast, calcine samples exhibited variable δ(202)Hg values ranging from -1.91‰ to +2.10‰. Small MIF signatures in the calcine were consistent with nuclear volume fractionation of Hg isotopes during or after the roasting process. The poplar leaves exhibited negative MDF (-3.18 to -1.22‰) and small positive MIF values (Δ(199)Hg of 0.02 to 0.21‰). Sequential extractions combined with Hg isotope analysis revealed higher δ(202)Hg values for the more soluble Hg pools in calcines compared with residual HgS phases. Our data provide novel insights into possible in situ transformations of Hg phases and suggest that isotopically heavy secondary Hg phases were formed in the calcine, which will influence the isotope composition of Hg leached from the site.

  9. Mercury isotope fractionation during precipitation of metacinnabar (β-HgS) and montroydite (HgO).

    PubMed

    Smith, Robin S; Wiederhold, Jan G; Kretzschmar, Ruben

    2015-04-07

    To utilize stable Hg isotopes as a tracer for Hg cycling and pollution sources in the environment, it is imperative that fractionation factors for important biogeochemical processes involving Hg are determined. Here, we report experimental results on Hg isotope fractionation during precipitation of metacinnabar (β-HgS) and montroydite (HgO). In both systems, we observed mass-dependent enrichments of light Hg isotopes in the precipitates relative to the dissolved Hg. Precipitation of β-HgS appeared to follow equilibrium isotope fractionation with an enrichment factor ε(202)Hg(precipitate-supernatant) of -0.63‰. Precipitation of HgO resulted in kinetic isotope fractionation, which was described by a Rayleigh model with an enrichment factor of -0.32‰. Small mass-independent fractionation was observed in the HgS system, presumably related to nuclear volume fractionation. We propose that Hg isotope fractionation in the HgS system occurred in solution during the transition of O- to S-coordination of Hg(II), consistent with theoretical predictions. In the HgO system, fractionation was presumably caused by the faster precipitation of light Hg isotopes, and no isotopic exchange between solid and solution was observed on the timescale investigated. The results of this work emphasize the importance of Hg solution speciation and suggest that bonding partners of Hg in solution complexes may control the overall isotope fractionation. The determined fractionation factor and mechanistic insights will have implications for the interpretation of Hg isotope signatures and their use as an environmental tracer.

  10. Effective field theory for vibrations in odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Coello Pérez, E. A.; Papenbrock, T.

    2016-11-01

    Heavy even-even nuclei exhibit low-energy collective excitations that are separated in scale from the microscopic (fermion) degrees of freedom. This separation of scale allows us to approach nuclear vibrations within an effective field theory (EFT). In odd-mass nuclei collective and single-particle properties compete at low energies, and this makes their description more challenging. In this article we describe spherical odd-mass nuclei with ground-state spin I =1/2 by means of an EFT that couples a fermion to the collective degrees of freedom of an even-even core. The EFT relates observables such as energy levels, electric quadrupole transition strengths, and magnetic dipole moments of the odd-mass nucleus to those of its even-even neighbor and allows us to quantify theoretical uncertainties. For isotopes of rhodium and silver the theoretical description is consistent with data within experimental and theoretical uncertainties. Several testable predictions are made.

  11. Hg stable isotope analysis by the double-spike method.

    PubMed

    Mead, Chris; Johnson, Thomas M

    2010-06-01

    Recent publications suggest great potential for analysis of Hg stable isotope abundances to elucidate sources and/or chemical processes that control the environmental impact of mercury. We have developed a new MC-ICP-MS method for analysis of mercury isotope ratios using the double-spike approach, in which a solution containing enriched (196)Hg and (204)Hg is mixed with samples and provides a means to correct for instrumental mass bias and most isotopic fractionation that may occur during sample preparation and introduction into the instrument. Large amounts of isotopic fractionation induced by sample preparation and introduction into the instrument (e.g., by batch reactors) are corrected for. This may greatly enhance various Hg pre-concentration methods by correcting for minor fractionation that may occur during preparation and removing the need to demonstrate 100% recovery. Current precision, when ratios are normalized to the daily average, is 0.06 per thousand, 0.06 per thousand, 0.05 per thousand, and 0.05 per thousand (2sigma) for (202)Hg/(198)Hg, (201)Hg/(198)Hg, (200)Hg/(198)Hg, and (199)Hg/(198)Hg, respectively. This is slightly better than previously published methods. Additionally, this precision was attained despite the presence of large amounts of other Hg isotopes (e.g., 5.0% atom percent (198)Hg) in the spike solution; substantially better precision could be achieved if purer (196)Hg were used.

  12. Unique Hg stable isotope signatures of compact fluorescent lamp-sourced Hg.

    PubMed

    Mead, Chris; Lyons, James R; Johnson, Thomas M; Anbar, Ariel D

    2013-03-19

    The recent widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Stable isotope analysis can identify the sources of environmental Hg, but the isotopic composition of Hg from CFL is not yet known. Results from analyses of CFL with a range of hours of use show that the Hg they contain is isotopically fractionated in a unique pattern during normal CFL operation. This fractionation is large by comparison to other known fractionating processes for Hg and has a distinctive, mass-independent signature, such that CFL Hg could be uniquely identified from other sources. The fractionation process described here may also explain anomalous fractionation of Hg isotopes in precipitation.

  13. Isotopic abundances of Hg in mercury stars inferred from the Hg II line at 3984 A

    NASA Technical Reports Server (NTRS)

    White, R. E.; Vaughan, A. H., Jr.; Preston, G. W.; Swings, J. P.

    1976-01-01

    Wavelengths of the Hg II absorption feature at 3984 A in 30 Hg stars are distributed uniformly from the value for the terrestrial mix to a value that corresponds to nearly pure Hg-204. The wavelengths are correlated loosely with effective temperatures inferred from Q(UBV). Relative isotopic abundances derived from partially resolved profiles of the 3984-A line in iota CrB, chi Lup, and HR 4072 suggest that mass-dependent fractionation has occurred in all three stars. It is supposed that such fractionation occurs in all Hg stars, and a scheme whereby isotopic compositions can be inferred from a comparison of stellar wavelengths and equivalent widths with those calculated for a family of fractionated isotopic mixes. Theoretical profiles calculated for the derived isotopic composition agree well with high-resolution interferometric profiles obtained for three of the stars.

  14. Mass Independent Fractionation of Hg Isotopes Preserved in the Precambrian

    NASA Astrophysics Data System (ADS)

    Thibodeau, A. M.; Bergquist, B. A.; Kah, L. C.; Ono, S.; Ghosh, S.; Hazen, R. M.

    2013-12-01

    Mercury (Hg) is a photochemically active, redox-sensitive, chalcophilic metal with complex biogeochemistry that displays a wide range of mass-dependent (MDF) and mass-independent (MIF) stable isotopic fractionation. In the past decade, Hg isotopes have emerged as important tracers of both the sources and cycling of Hg in the modern environment. However, their utility as environmental proxies in ancient rocks remains largely unexplored. The potential of Hg isotopes to inform Precambrian environments derives from the observation that Hg isotopes with odd atomic mass numbers (199Hg and 201Hg) undergo large MIF by the magnetic isotope effect (MIE) and smaller MIF through the nuclear volume effect (NVE). Small MIF produced via NVE has been observed for numerous transformations and is characterized by MIF ratios (Δ199Hg/Δ201Hg) of about 1.6. Large Hg-MIF driven by MIE has been observed during photochemical transformations and is characterized by Δ199Hg/Δ201Hg ratios between 1 and 1.3. This MIF signal is sensitive to a range of environmental conditions, including the amount and type of solar radiation, the presence and type of complexing organic ligands, and the Hg/dissolved organic carbon (DOC) ratio. Thus, it is hoped that Hg-MIF signals may indirectly record changes in atmospheric composition or seawater chemistry if preserved in marine sedimentary records. Previous work has clearly demonstrated that Hg-MIF signals are preserved in Archean and Paleoproterozoic marine shales and massive sulfide deposits. Here, we present evidence that such signals are also preserved in marine shales of mid-Proterozoic age, including the ~1.3 Ga Sulky formation (Dismal Lakes Group, NW Arctic), the ~1.45 Ga Greyson Shale (Belt Basin, Montana), and the ~1.5 Ga Katalsy formation (Kypry Group, Eastern European Platform). We observe that the Greyson shale and shales within the Sulky formation yield negative Hg-MIF with Δ199Hg/Δ201Hg ratios close to 1 and that Kaltasy group sediments

  15. Experimental identification of intruder bandheads in odd-mass {sup 187-193}Pb

    SciTech Connect

    Andreyev, A. N.; Huyse, M.; Van de Vel, K.; Van Duppen, P.; Cocks, J. F. C.; Dorvaux, O.; Greenlees, P.; Jones, P.; Julin, R.; Juutinen, S.; Helariutta, K.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Trzaska, W. H.; Eskola, K.; Wyss, R.

    1999-11-16

    Fine-structure {alpha}-decays of the odd mass {sup 191-197}Po identifying proton based intruder states in the daughter lead nuclei have been observed, leading to a systematics of intruder states in odd mass lead isotopes from {sup 197}Pb down to {sup 187}Pb. The interpretation of these states involves the coupling of the i{sub 13/2} or p{sub 3/2} odd neutron to the oblate deformed even lead core.

  16. Experimental Identification of Intruder Bandheads in Odd-Mass {sup 187-193}Pb

    SciTech Connect

    A.N. Andreyev; J.F.C. Cocks; O. Dorvaux; K. Eskola; P. Greenlees; P. Jones; R. Julin; S. Juutinen; K. Helariutta; M. Huyse; H. Kettunen; P. Kuusiniemi; M. Leino; M. Muikku; W.H. Trzaska; K. Van de Vel; P. Van Duppen; R. Wyss

    1999-12-31

    Fine-structure {alpha}-decays of the odd mass {sup 191-197}Po identifying proton based intruder states in the daughter lead nuclei have been observed, leading to a systematics of intruder states in odd mass lead isotopes from {sup 197}Pb down to {sup 187}Pb. The interpretation of these states involves the coupling of the i{sub 13/2} or p{sub 3/2} odd neutron to the oblate deformed even lead core.

  17. Mercury Isotopes in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Blum, Joel D.; Sherman, Laura S.; Johnson, Marcus W.

    2014-05-01

    Virtually all biotic, dark abiotic, and photochemical transformations of mercury (Hg) produce Hg isotope fractionation, which can be either mass dependent (MDF) or mass independent (MIF). The largest range in MDF is observed among geological materials and rainfall impacted by anthropogenic sources. The largest positive MIF of Hg isotopes (odd-mass excess) is caused by photochemical degradation of methylmercury in water. This signature is retained through the food web and measured in all freshwater and marine fish. The largest negative MIF of Hg isotopes (odd-mass deficit) is caused by photochemical reduction of inorganic Hg and has been observed in Arctic snow and plant foliage. Ratios of MDF to MIF and ratios of 199Hg MIF to 201Hg MIF are often diagnostic of biogeochemical reaction pathways. More than a decade of research demonstrates that Hg isotopes can be used to trace sources, biogeochemical cycling, and reactions involving Hg in the environment.

  18. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    SciTech Connect

    Yee, Nathan; Barkay, Tamar; Reinfelder, John

    2016-06-28

    relationship between Hg concentrations and rates of denitrification in enrichment cultures. In part III of our project, we examined in more detail the effects of microbial interactions on Hg transformations. We discovered that both sulfate reducing and iron reducing bacteria coexist in freshwater sediments and both microbial groups contribute to mercury methylation. We showed that mercury methylation by sulfate reducing and iron reducing bacteria are temporally and spatially separated processes. We also discovered that methanogens can methylate mercury. We showed that Methanospirillum hungatei JF-1 methylated Hg at comparable rates, but with higher yields, than those observed for sulfate-reducing bacteria and iron-reducing bacteria. Finally, we demonstrated that syntrophic interactions between different microbial groups increase mercury methylation rates. We showed that Hg methylation rates are stimulated via inter-species hydrogen and acetate transfer (i) from sulfate-reducing bacteria to methanogens and (ii) from fermenters to the sulfate-reducing bacteria. In part IV of the project, we studied Hg bioavailability and Hg isotope fractionation. We demonstrated that thiol-bound Hg is bioavailable to mercury resistant bacteria. We found that uptake of Hg from Hg-glutathione and Hg-cysteine complexes does not require functioning glutathione and cystine/cysteine transport systems. We demonstrated that a wide range of methylmercury complexes (e.g. MeHgOH, MeHg-cysteine, and MeHg-glutathione) are bioavailable to mercury resistant bacteria. The rate of MeHg demethylation varies more between different species of mercury resistant bacteria than among MeHg complexes. We showed that microbial demethylation of MeHg depends more on the species of microorganism than on the types and relative concentrations of thiols or other MeHg ligands present. Finally, we demonstrated that Hg methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 imparts mass

  19. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    During the past three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. As part of my startup package I received funds to construct a state-of-the-art experimental facility to study gas-solid reaction kinetics. Much of our effort was spent developing the methodology to measure the abundance and isotopic composition of Hg at ultratrace levels in solid materials. In our first study, the abundance and isotopic composition of Hg was determined in bulk samples of the Murchison (CM) and Allende (CV) carbonaceous chondrites. We have continued our study of mercury in primitive meteorites and expanded the suite of meteorites to include other members of the CM and CV chondrite group as well as CI and CO chondrites. Samples of the CI chondrite Orgueil, the CM chondrites Murray, Nogoya, and Cold Bokkeveld, the CO chondrites Kainsaz, Omans, and Isna, and the CV chondrites Vigarano, Mokoia, and Grosnaja were tested. We have developed a thermal analysis ICP-MS technique and applied it to the study of a suite of thermally labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Hg, Au, Tl, Pb, and Bi) in geologic materials as well.

  20. Decay properties of the new isotopes [sup 172]Hg and [sup 173]Hg

    SciTech Connect

    Seweryniak, D.; Uusitalo, J.; Carpenter, M.P.; Nisius, D.; Davids, C.N.; Brown, L.T.; Henderson, D.J.; Janssens, R.V. ); Seweryniak, D.; Conticchio, L.; Walters, W.B. ); Bingham, C.R.; Wauters, J. ); Woods, P.J. )

    1999-09-01

    The [alpha] decays of the two neutron-deficient nuclei [sup 172]Hg and [sup 173]Hg were observed for the first time using the [sup 78]Kr([sup 96]Ru,2n) and [sup 80]Kr([sup 96]Ru,3n) reactions, respectively. The reaction products were dispersed according to their mass-to-charge state ratios in the Argonne Fragment Mass Analyzer and implanted in a double-sided silicon strip detector, where their subsequent decays were studied using spatial and time correlations between implants and decays. A half-life of 250([sub [minus]90][sup +350]) [mu]s and an energy of 7350(12) keV were deduced for the [alpha] decay of [sup 172]Hg. In [sup 173]Hg the half-life was measured to be 0.93([sub [minus]0.26][sup +0.57]) ms and the corresponding energy is 7211(11) keV. In addition, the half-life and energy of the [alpha] decay of [sup 174]Hg were measured more precisely. The reduced widths deduced for these Hg isotopes indicate that the observed decays correspond to unhindered [Delta]l=0 transitions. The [alpha]-decay [ital Q] values are compared with the values calculated using mass tables by M[umlt o]ller and Nix, and by Liran and Zeldes. The latter mass tables show better agreement with the data. [copyright] [ital 1999] [ital The American Physical Society

  1. Hg Isotope Ratios of a Sediment Core from Plastic Lake, Ontario: Implications for Hg Cycle in Aquatic Environment

    NASA Astrophysics Data System (ADS)

    Xie, Q.; Dillon, P.; Evans, D.; Lu, S.

    2004-12-01

    Hg isotope ratios in a sediment core obtained in Plastic Lake, Ontario, Canada, have been measured by coupling a gold trap with an MC-ICP-MS. The core is about 30 cm in depth and corresponds to a time period of about 250 years, based on 210Pb dating. The samples were combusted at high temperature and the Hg collected onto a gold trap. The gold trap was subsequently heated to release Hg directly into the MC-ICP-MS. An in-house sample introduction system was employed to extend Hg signal duration in order to obtain high precision in isotope ratio measurement. The instrumental mass bias was corrected using Tl introduced simultaneously via an Aridus membrane desolvation nebulizer. Based on long term measurement of a NIST-2225 elemental Hg standard (over 120 measurements since Oct. 2002), the external reproducibility ranges from 45 ppm for 201Hg/202Hg to 100 ppm for 199Hg/202Hg (2 sigma relative standard error). Hg in the sediments shows an increase in light isotope enrichment at about 10 cm depth. The total Hg also displays an increase at the same depth. The depth corresponds to approximately the 1920s, a time period when there was a major increase in coal-burning power generation. Limited Hg isotope data for other terrestrial samples appears to indicate that Hg bound to organic carbon is enriched in light isotopes relative to elemental Hg. For example, the DOLT-3, a dogfish liver standard reference material with half of its Hg as MeHg, has the lightest Hg isotope composition among measured terrestrial samples. It is not clear at this stage whether the increase in total Hg and light Hg isotope enrichment in recent years represent a change in methylation rate of the lake, or an increase in atmospheric deposition of Hg combined with a change in source. Discussions based on available Hg isotope data of terrestrial samples together with other chemical data for the lake will be presented.

  2. Tracing historical trends of Hg in the Mississippi River using Hg concentrations and Hg isotopic compositions in a lake sediment core, Lake Whittington, Mississippi, USA

    USGS Publications Warehouse

    Gray, John E.; Van Metre, Peter C.; Pribil, Michael J.; Horowitz, Arthur J.

    2015-01-01

    Concentrations and isotopic compositions of mercury (Hg) in a sediment core collected from Lake Whittington, an oxbow lake on the Lower Mississippi River, were used to evaluate historical sources of Hg in the Mississippi River basin. Sediment Hg concentrations in the Lake Whittington core have a large 10-15 y peak centered on the 1960s, with a maximum enrichment factor relative to Hg in the core of 4.8 in 1966. The Hg concentration profile indicates a different Hg source history than seen in most historical reconstructions of Hg loading. The timing of the peak is consistent with large releases of Hg from Oak Ridge National Laboratory (ORNL), primarily in the late 1950s and 1960s. Mercury was used in a lithiumisotope separation process by ORNL and an estimated 128Mg (megagrams) of Hgwas discharged to a local stream that flows into the Tennessee River and, eventually, the Mississippi River. Mass balance analyses of Hg concentrations and isotopic compositions in the Lake Whittington core fit a binary mixing model with a Hg-rich upstream source contributing about 70% of the Hg to Lake Whittington at the height of the Hg peak in 1966. This upstream Hg source is isotopically similar to Hg isotope compositions of stream sediment collected downstream near ORNL. It is estimated that about one-half of the Hg released from the ORNL potentially reached the LowerMississippi River basin in the 1960s, suggesting considerable downstream transport of Hg. It is also possible that upstream urban and industrial sources contributed some proportion of Hg to Lake Whittington in the 1960s and 1970s.

  3. Investigation of uptake and retention of atmospheric Hg(II) by boreal forest plants using stable Hg isotopes

    USGS Publications Warehouse

    Graydon, J.A.; St. Louis, V.L.; Hintelmann, H.; Lindberg, S.E.; Sandilands, K.A.; Rudd, J.W.M.; Kelly, C.A.; Tate, M.T.; Krabbenhoft, D.P.; Lehnherr, I.

    2009-01-01

    Although there is now a general consensus among mercury (Hg) biogeochemists that increased atmospheric inputs of inorganic Hg(II) to lakes and watersheds can result in increased methylmercury (MeHg) concentrations in fish, researchers still lack kinetic data describing the movement of Hg from the atmosphere, through watershed and lake ecosystems, and into fish. The use of isotopically enriched Hg species in environmental studies now allows experimentally applied new Hg to be distinguished from ambient Hg naturally present in the system. Four different enriched stable Hg(II) isotope "spikes" were applied sequentially over four years to the ground vegetation of a microcatchment at the Experimental Lakes Area (ELA) in the remote boreal forest of Canada to examine retention of Hg(II) following deposition. Areal masses of the spikes and ambient THg (all forms of Hg in a sample) were monitored for eight years, and the pattern of spike retention was used to estimate retention of newly deposited ambient Hg within the ground vegetation pool. Fifty to eighty percent of applied spike Hg was initially retained by ground vegetation. The areal mass of spike Hg declined exponentially over time and was best described by a first-order process with constants (k) ranging between 9.7 ?? 10-4 day -1 and 11.6 ?? 10-4 day-1. Average half-life (t1/2) of spike Hg within the ground vegetation pool (??S.D.) was 704 ?? 52 days. This retention of new atmospheric Hg(II) by vegetation delays movement of new Hg(II) into soil, runoff, and finally into adjacent lakes. Ground-applied Hg(II) spikes were not detected in tree foliage and litterfall, indicating that stomatal and/or root uptake of previously deposited Hg (i.e., "recycled" from ground vegetation or soil Hg pools) were likely not large sources of foliar Hg under these experimental conditions. ?? 2009 American Chemical Society.

  4. Investigation of uptake and retention of atmospheric Hg(II) by boreal forest plants using stable Hg isotopes.

    PubMed

    Graydon, Jennifer A; St Louis, Vincent L; Hintelmann, Holger; Lindberg, Steve E; Sandilands, Ken A; Rudd, John W M; Kelly, Carol A; Tate, Michael T; Krabbenhoft, Dave P; Lehnherr, Igor

    2009-07-01

    Although there is now a general consensus among mercury (Hg) biogeochemists that increased atmospheric inputs of inorganic Hg(II) to lakes and watersheds can result in increased methylmercury (MeHg) concentrations in fish, researchers still lack kinetic data describing the movement of Hg from the atmosphere, through watershed and lake ecosystems, and into fish. The use of isotopically enriched Hg species in environmental studies now allows experimentally applied new Hg to be distinguished from ambient Hg naturally present in the system. Four different enriched stable Hg(II) isotope "spikes" were applied sequentially over four years to the ground vegetation of a microcatchment at the Experimental Lakes Area (ELA) in the remote boreal forest of Canada to examine retention of Hg(II) following deposition. Areal masses of the spikes and ambient THg (all forms of Hg in a sample) were monitored for eight years, and the pattern of spike retention was used to estimate retention of newly deposited ambient Hg within the ground vegetation pool. Fifty to eighty percent of applied spike Hg was initially retained by ground vegetation. The areal mass of spike Hg declined exponentially over time and was best described by a first-order process with constants(k) ranging between 9.7 x 10(-40 day(-1) and 11.6 x 10(-4) day(-1). Average halflife (t1/2) of spike Hg within the ground vegetation pool (+/-S.D.) was 704 +/- 52 days. This retention of new atmospheric Hg(II) by vegetation delays movement of new Hg(II) into soil, runoff, and finally into adjacent lakes. Ground-applied Hg(II) spikes were not detected in tree foliage and litterfall, indicating that stomatal and/or root uptake of previously deposited Hg (i.e., "recycled" from ground vegetation or soil Hg pools) were likely not large sources of foliar Hg under these experimental conditions.

  5. Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite.

    PubMed

    Jiskra, Martin; Wiederhold, Jan G; Bourdon, Bernard; Kretzschmar, Ruben

    2012-06-19

    The application of Hg isotope signatures as tracers for environmental Hg cycling requires the determination of isotope fractionation factors and mechanisms for individual processes. Here, we investigated Hg isotope fractionation of Hg(II) sorption to goethite in batch systems under different experimental conditions. We observed a mass-dependent enrichment of light Hg isotopes on the goethite surface relative to dissolved Hg (ε(202)Hg of -0.30‰ to -0.44‰) which was independent of the pH, chloride and sulfate concentration, type of surface complex, and equilibration time. Based on previous theoretical equilibrium fractionation factors, we propose that Hg isotope fractionation of Hg(II) sorption to goethite is controlled by an equilibrium isotope effect between Hg(II) solution species, expressed on the mineral surface by the adsorption of the cationic solution species. In contrast, the formation of outer-sphere complexes and subsequent conformation changes to different inner-sphere complexes appeared to have insignificant effects on the observed isotope fractionation. Our findings emphasize the importance of solution speciation in metal isotope sorption studies and suggest that the dissolved Hg(II) pool in soils and sediments, which is the most mobile and bioavailable, should be isotopically heavy, as light Hg isotopes are preferentially sequestered during binding to both mineral phases and natural organic matter.

  6. Isotopic Composition of Gaseous Elemental Mercury (Hg0) at Various Sites in Japan

    NASA Astrophysics Data System (ADS)

    Yamakawa, A.; Moriya, K.; Yoshinaga, J.

    2015-12-01

    Mercury (Hg) is a toxic heavy metal, which exists in various chemical forms in the environmental system. In the atmosphere, Hg exists in three forms (Hg0(g), Hg+2(g), and Hg(p)). Hg0(g) is the dominant species of atmospheric Hg, accounting for >95% of the total Hg in the atmosphere. Because Hg0(g) is highly volatile and has limited solubility in water, it cannot be easily removed by wet or dry deposition processes. Therefore, the residence time of Hg0(g) in the atmosphere is relatively long (1 to 2 years), allowing long-range transport from mercury emission source(s). Conversely, Hg+2(g) and Hg(p) are effectively removed from the atmosphere through wet and dry depositions. The determination of mercury source attribution using quantitative data is challenging because Hg0(g) may be deposited on an area upon oxidation to Hg+2(g) and associated with aerosols and particulates to form Hg(p) while the global cycling of Hg0(g). Over the last decade, the development of analytical methods of highly precise Hg isotopic measurements demonstrated mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes in environmental samples. For instance, MDF of Hg isotopes is thought to occur during various natural and industrial Hg transformations. MIF of Hg isotopes is observed during abiotic reduction, photochemical and non-photochemical, and physical and chemical processes. Such processes lead to differences in the Hg isotopic composition of different emission sources, both natural and anthropogenic, and atmospheric processes (i.e., transportation, oxidation/reduction, deposition, and reemission). Therefore, Hg isotopic compositions could be used to trace the sources and processes of atmospheric Hg. For securing the reliability and accuracy of atmospheric Hg isotope data, the methods of collection, pretreatment, and isotopic measurement for Hg0(g) were developed to obtain high recovery yield of samples with no Hg isotopic fractionation during each

  7. Signatures of shape phase transitions in odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Nikšić, T.; Vretenar, D.

    2016-12-01

    Quantum phase transitions between competing ground-state shapes of atomic nuclei with an odd number of protons or neutrons are investigated in a microscopic framework based on nuclear energy density functional theory and the particle-plus-boson-core coupling scheme. The boson-core Hamiltonian, as well as the single-particle energies and occupation probabilities of the unpaired nucleon, are completely determined by constrained self-consistent mean-field calculations for a specific choice of the energy density functional and paring interaction, and only the strength parameters of the particle-core coupling are adjusted to reproduce selected spectroscopic properties of the odd-mass system. We apply this method to odd-A Eu and Sm isotopes with neutron number N ≈90 , and explore the influence of the single unpaired fermion on the occurrence of a shape phase transition. Collective wave functions of low-energy states are used to compute quantities that can be related to quantum order parameters: deformations, excitation energies, E 2 transition rates, and separation energies, and their evolution with the control parameter (neutron number) is analyzed.

  8. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Blum, J. D.; Klaue, Bjorn

    2005-01-01

    During the three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. At the time the grant started, our collaborating PI, Dante Lauretts, was a postdoctoral research associate working with Peter Buseck at Arizona State University. The work on chondritic Hg was done in collaboration with Dante Lauretta and Peter Buseck and this study was published in Lauretta et a1 (2001a). In July, 2001 Dante Lauretta accepted a position as an Assistant Professor in the Lunar and Planetary Laboratory at the University of Arizona. His funding was transferred and this grant has supported much of his research activities during his first two years at the U of A. Several other papers are in preparation and will be published soon. We presented papers on this topic at Goldschmidt Conferences, the Lunar and Planetary Science Conferences, and the Annual Meetings of the Meteoritical Society. The work done under this grant has spurred several new directions of inquiry, which we are still pursuing. Included in this paper are the studies of bulk abundances and isotopic compositions of metreoritic Mercury, and the development of a thermal analysis ICP-MS technique applied to thermally liable elements.

  9. Isotonic similarities in isotope shifts from Hg to Ra.

    NASA Astrophysics Data System (ADS)

    Stroke, H. H.

    2003-04-01

    Isotope shifts (IS) in atomic spectra of heavy elements reflect largely the variation in of the nuclear charge distribution. Our early systematic measurements of IS for an extended range of stable and radioactive isotopes and nuclear isomers in Tl and Hg^1 showed that by displaying the relative IS, normalized to a chosen pair of isotopes, there was a striking similarity for the IS of isotones. This essentially divides out the electronic factor in the IS and allows the comparison of Δ for neighboring Z as N is varied. Following our further studies on Pb and Bi^2 and those on Fr at ISOLDE by the Orsay spectroscopy group^3, we found that the isotonic similarity extended to these elements. Since then, many additional measurements were made, principally at ISOLDE^4, extending to Ra the elements studied. The isotonic shift similarities persist from Z=80 to 88. We noted that the relative isotope and isomer shifts can be used to investigate the polarization of the nucleus by the added neutrons, a model used in a calculation by Barrett.^5 . The new data may serve further in this direction. ^1W,J.Tomlinson, H.H. Stroke, Nucl.Phys. 60, 614 (1964). ^2M. Barboza-Flores et al., Z.Phys. A 321, 85 (1985), ^3S. Liberman et al., Phys .Rev. A 22, 2732 (1980). ^4E,g. M.R. Pearson et al., J.Phys. G 26, 1829 (2000). ^5R.C. Barrett, Nucl. Phys. 88, 128 (1966).

  10. Study of nuclear structure of odd mass 119-127I nuclei in a phenomenological approach

    NASA Astrophysics Data System (ADS)

    Singh, Dhanvir; Gupta, Anuradha; Kumar, Amit; Sharma, Chetan; Singh, Suram; Bharti, Arun; Khosa, S. K.; Bhat, G. H.; Sheikh, J. A.

    2016-08-01

    By using the phenomenological approach of Projected Shell Model (PSM), the positive and negative-parity band structures of odd mass neutron-rich 119-127I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of backbending in moment of inertia is also studied in the present work. Besides this, the reduced transition probabilities, i.e. B (E 2) and B (M 1), are obtained from the PSM wavefunction for the first time for yrast bands of these isotopes.

  11. Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures.

    PubMed

    Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Hajdas, Irka; Kretzschmar, Ruben

    2015-06-16

    Soils comprise the largest terrestrial mercury (Hg) pool in exchange with the atmosphere. To predict how anthropogenic emissions affect global Hg cycling and eventually human Hg exposure, it is crucial to understand Hg deposition and re-emission of legacy Hg from soils. However, assessing Hg deposition and re-emission pathways remains difficult because of an insufficient understanding of the governing processes. We measured Hg stable isotope signatures of radiocarbon-dated boreal forest soils and modeled atmospheric Hg deposition and re-emission pathways and fluxes using a combined source and process tracing approach. Our results suggest that Hg in the soils was dominantly derived from deposition of litter (∼90% on average). The remaining fraction was attributed to precipitation-derived Hg, which showed increasing contributions in older, deeper soil horizons (up to 27%) indicative of an accumulation over decades. We provide evidence for significant Hg re-emission from organic soil horizons most likely caused by nonphotochemical abiotic reduction by natural organic matter, a process previously not observed unambiguously in nature. Our data suggest that Histosols (peat soils), which exhibit at least seasonally water-saturated conditions, have re-emitted up to one-third of previously deposited Hg back to the atmosphere. Re-emission of legacy Hg following reduction by natural organic matter may therefore be an important pathway to be considered in global models, further supporting the need for a process-based assessment of land/atmosphere Hg exchange.

  12. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, M.W.

    1991-10-08

    The present invention is directed to an apparatus for use in [sup 196]Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for [sup 196]Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems. 6 figures.

  13. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an apparatus for use in .sup.196 Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for .sup.196 Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems.

  14. Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury.

    PubMed

    Perrot, Vincent; Masbou, Jeremy; Pastukhov, Mikhail V; Epov, Vladimir N; Point, David; Bérail, Sylvain; Becker, Paul R; Sonke, Jeroen E; Amouroux, David

    2016-02-01

    In the last decade, specific attention has been paid to total mercury (HgT) stable isotopic composition, especially in natural samples such as aquatic organisms, due to its potential to track the cycle of this toxic element in the environment. Here, we investigated Hg Compound Specific stable Isotopic Composition (CSIC) of natural inorganic Hg (iHg) and methylmercury (MMHg) in various tissues of aquatic mammals (Beluga whale from the Arctic marine environment and seals from the freshwater lake Baikal, Russia). In seals' organs the variation in mass dependent fractionation (MDF, δ(202)Hg) for total Hg was significantly correlated to the respective fraction of iHg and MMHg compounds, with MMHg being enriched by ∼ 3‰ in heavier isotopes relative to iHg. On the other hand, we observe insignificant variation in Hg mass independent isotope fractionation (MIF, Δ(199)Hg) among iHg and MMHg in all organs for the same mammal species and MMHg in prey items. MIF signatures suggest that both MMHg and iHg in aquatic mammals have the same origin (i.e., MMHg from food), and are representative of Hg photochemistry in the water column of the mammal ecosystem. MDF signatures of Hg compounds indicate that MMHg is demethylated in vivo before being stored in the muscle, and the iHg formed is stored in the liver, and to a lesser extent in the kidney, before excretion. Thus, Hg CSIC analysis in mammals can be a powerful tool for tracing the metabolic response to Hg exposure.

  15. Neutron-proton pairing correlations in odd mass systems

    SciTech Connect

    Fellah, M. Allal, N. H.; Oudih, M. R.

    2015-03-30

    An expression of the ground-state which describes odd mass systems within the BCS approach in the isovector neutron-proton pairing case is proposed using the blocked level technique. The gap equations as well as the energy expression are then derived. It is shown that they exactly generalize the expressions obtained in the pairing between like-particles case. The various gap parameters and the energy are then numerically studied as a function of the pairing-strength within the schematic one-level model.

  16. Identifying the sources and processes of mercury in subtropical estuarine and ocean sediments using Hg isotopic composition.

    PubMed

    Yin, Runsheng; Feng, Xinbin; Chen, Baowei; Zhang, Junjun; Wang, Wenxiong; Li, Xiangdong

    2015-02-03

    The concentrations and isotopic compositions of mercury (Hg) in surface sediments of the Pearl River Estuary (PRE) and the South China Sea (SCS) were analyzed. The data revealed significant differences between the total Hg (THg) in fine-grained sediments collected from the PRE (8-251 μg kg(-1)) and those collected from the SCS (12-83 μg kg(-1)). Large spatial variations in Hg isotopic compositions were observed in the SCS (δ(202)Hg, from -2.82 to -2.10‰; Δ(199)Hg, from +0.21 to +0.45‰) and PRE (δ(202)Hg, from -2.80 to -0.68‰; Δ(199)Hg, from -0.15 to +0.16‰). The large positive Δ(199)Hg in the SCS indicated that a fraction of Hg has undergone Hg(2+) photoreduction processes prior to incorporation into the sediments. The relatively negative Δ(199)Hg values in the PRE indicated that photoreduction of Hg is not the primary route for the removal of Hg from the water column. The riverine input of fine particles played an important role in transporting Hg to the PRE sediments. In the deep ocean bed of the SCS, source-related signatures of Hg isotopes may have been altered by natural geochemical processes (e.g., Hg(2+) photoreduction and preferential adsorption processes). Using Hg isotope compositions, we estimate that river deliveries of Hg from industrial and urban sources and natural soils could be the main inputs of Hg to the PRE. However, the use of Hg isotopes as tracers in source attribution could be limited because of the isotope fractionation by natural processes in the SCS.

  17. Structure evolution and phase transition in odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Zamfir, N. V.

    2017-01-01

    The evolution of level structures due to the unique parity orbitals g9 /2, h11 /2, and i13 /2 in odd-mass nuclei from Zn to Am is studied within a unified framework, by correlations between ratios of excitation energies in both odd-mass nuclei and their even-even core nuclei. These plots reveal regularities that can be understood in terms of the particle-plus-rotor model, as evolutions along its three limiting coupling schemes: weak coupling, decoupling, and strong coupling, and transitions between them. Peculiar transitions between the decoupling and strong coupling schemes are found in both i13 /2 structures of neutron-odd nuclei and h11 /2 structures of proton-odd nuclei, at neutron numbers around 90 and 70, respectively. These are correlated with the critical shape phase transitions from vibrator to rotor from the even-even nuclei in the same regions and are characterized as critical phase transitions too. This behavior is corroborated with a nonmonotonic behavior of the differential variation of the two-neutron separation energies in the same nuclear regions.

  18. Food preferences and Hg distribution in Chelonia mydas assessed by stable isotopes.

    PubMed

    Bezerra, M F; Lacerda, L D; Rezende, C E; Franco, M A L; Almeida, M G; Macêdo, G R; Pires, T T; Rostán, G; Lopez, G G

    2015-11-01

    Mercury (Hg) is a highly toxic pollutant that poses in risk several marine animals, including green turtles (Chelonia mydas). Green turtles are globally endangered sea turtle species that occurs in Brazilian coastal waters as a number of life stage classes (i.e., foraging juveniles and nesting adults). We assessed total Hg concentrations and isotopic signatures ((13)C and (15)N) in muscle, kidney, liver and scute of juvenile green turtles and their food items from two foraging grounds with different urban and industrial development. We found similar food preferences in specimens from both areas but variable Hg levels in tissues reflecting the influence of local Hg backgrounds in food items. Some juvenile green turtles from the highly industrialized foraging ground presented liver Hg levels among the highest ever reported for this species. Our results suggest that juvenile foraging green turtles are exposed to Hg burdens from locally anthropogenic activities in coastal areas.

  19. Assessment of Hg Pollution Released from a WWII Submarine Wreck (U-864) by Hg Isotopic Analysis of Sediments and Cancer pagurus Tissues.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Maage, Amund; Frantzen, Sylvia; Valdersnes, Stig; Vanhaecke, Frank

    2016-10-04

    Hg pollution released from the U-864 submarine sunk during WWII and potential introduction of that Hg into the marine food chain have been studied by a combination of quantitative Hg and MeHg determination and Hg isotopic analysis via cold vapor generation multicollector inductively coupled plasma-mass spectrometry (CVG-MC-ICP-MS) in sediment and Cancer pagurus samples. The sediment pollution could be unequivocally linked with the metallic Hg present in the wreck. Crabs were collected at the wreck location and 4 nmi north and south, and their brown and claw meat were analyzed separately. For brown meat, the δ(202)Hg values of the individuals from the wreck location were shifted toward the isotopic signature of the sediment and, thus, the submarine Hg. Such differences were not found for claw meat. The isotope ratio results suggest direct ingestion of metallic Hg by C. pagurus but do not offer any proof for any other introduction of the submarine Hg into the marine food chain.

  20. Sources and cycling of mercury in the paleo Arctic Ocean from Hg stable isotope variations in Eocene and Quaternary sediments

    NASA Astrophysics Data System (ADS)

    Gleason, J. D.; Blum, J. D.; Moore, T. C.; Polyak, L.; Jakobsson, M.; Meyers, P. A.; Biswas, A.

    2017-01-01

    Mercury stable isotopic compositions were determined for marine sediments from eight locations in the Arctic Ocean Basin. Mass dependent fractionation (MDF) and mass independent fractionation (MIF) of Hg stable isotopes were recorded across a variety of depositional environments, water depths, and stratigraphic ages. δ202Hg (MDF) ranges from -2.34‰ to -0.78‰; Δ199Hg (MIF) from -0.18‰ to +0.12‰; and Δ201Hg (MIF) from -0.29‰ to +0.05‰ for the complete data set (n = 33). Holocene sediments from the Chukchi Sea and Morris Jesup Rise record the most negative Δ199Hg values, while Pleistocene sediments from the Central Arctic Ocean record the most positive Δ199Hg values. The most negative δ202Hg values are recorded in Pleistocene sediments. Eocene sediments (Lomonosov Ridge) show some overlap in their Hg isotopic compositions with Quaternary sediments, with a sample of the Arctic Ocean PETM (56 Ma) most closely matching the average Hg isotopic composition of Holocene Arctic marine sediments. Collectively, these data support a terrestrially-dominated Hg source input for Arctic Ocean sediment through time, although other sources, as well as influences of sea ice, atmospheric mercury depletion events (AMDEs), and anthropogenic Hg (in core top samples) on Hg isotopic signatures must also be considered.

  1. Tracing sources and bioaccumulation of mercury in fish of Lake Baikal--Angara River using Hg isotopic composition.

    PubMed

    Perrot, Vincent; Epov, Vladimir N; Pastukhov, Mikhail V; Grebenshchikova, Valentina I; Zouiten, Cyril; Sonke, Jeroen E; Husted, Søren; Donard, Olivier F X; Amouroux, David

    2010-11-01

    This study presents the determination and comparison of isotopic compositions of Hg in sediments, plankton, roach, and perch of two freshwater systems in the Lake Baikal-Angara River aquatic ecosystem: the man-made Bratsk Water Reservoir contaminated by Hg from a chlor-alkali factory and the noncontaminated Lake Baikal. Isotopic ratios of biota exhibit both significant mass-independent fractionation (MIF) (Δ(199)Hg from 0.20 to 1.87‰) and mass-dependent fractionation (MDF) (δ(202)Hg from -0.97 to -0.16‰), whereas sediments exhibit high MDF (δ(202)Hg from -1.99 to -0.83‰) but no MIF. δ(15)N and δ(13)C are correlated with methylmercury in organisms from both sites, indicating bioaccumulation and biomagnification through food webs of both regions. Combining this with isotopic composition of samples shows that δ(202)Hg increases with the trophic level of organisms and also with methylmercury in fish from Lake Baikal. This study demonstrates that MIF in fish samples from Bratsk Water Reservoir allow to trace anthropogenic Hg, since fish with the highest levels of Hg in muscle have the same isotopic composition as the sediment in which anthropogenic Hg was deposited. Less contaminated fish do not exhibit this anthropogenic signature accumulating relatively lower Hg amount from the contaminated sediments. This work reveals that Hg isotopic composition can be used to track the contribution of anthropogenic sources in fish from a contaminated lake.

  2. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard

    2016-06-01

    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.

  3. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA

    USGS Publications Warehouse

    Gray, John E.; Pribil, Michael J.; Van Metre, Peter C.; Borrok, David M.; Thapalia, Anita

    2013-01-01

    Concentrations and isotopic compositions of Hg and Pb were measured in a sediment core collected from Lake Ballinger, near Seattle, Washington, USA. Lake Ballinger has been affected by input of metal contaminants emitted from the Tacoma smelter, which operated from 1887 to 1986 and was located about 53 km south of the lake. Concentrations and loadings of Hg and Pb in Lake Ballinger increased by as much as three orders of magnitude during the period of smelting as compared to the pre-smelting period. Concentrations and loadings of Hg and Pb then decreased by about 55% and 75%, respectively, after smelting ended. Isotopic compositions of Hg changed considerably during the period of smelting (δ202Hg = −2.29‰ to −0.38‰, mean −1.23‰, n = 9) compared to the pre-smelting period (δ202Hg = −2.91‰ to −2.50‰, mean −2.75‰, n = 4). Variations were also observed in 206Pb/207Pb and 208Pb/207Pb isotopic compositions during these periods. Data for Δ199Hg and Δ201Hg indicate mass independent fractionation (MIF) of Hg isotopes in Lake Ballinger sediment during the smelting and post-smelting period and suggest MIF in the ore smelted, during the smelting process, or chemical modification at some point in the past. Negative values for Δ199Hg and Δ201Hg for the pre-smelting period are similar to those previously reported for soil, peat, and lichen, likely suggesting some component of atmospheric Hg. Variations in the concentrations and isotopic compositions of Hg and Pb were useful in tracing contaminant sources and the understanding of the depositional history of sedimentation in Lake Ballinger.

  4. β-decay properties of neutron-deficient Pt, Hg, and Pb isotopes

    SciTech Connect

    Sarriguren, P.; Boillos, J. M.; Moreno, O.; Moya de Guerra, E.

    2015-10-15

    Neutron-deficient isotopes in the lead region are well established examples of the shape coexistence phenomenon in nuclei. In this work, bulk and decay properties, including deformation energy curves, charge mean square radii, Gamow-Teller (GT) strength distributions, and β-decay half-lives, are studied in neutron-deficient Pt, Hg, and Pb isotopes. The nuclear structure involved is described microscopically from deformed quasiparticle random-phase approximation calculations with residual interactions in both particle-hole and particle-particle channels, performed on top of a self-consistent deformed quasiparticle Skyrme Hartree-Fock basis. The sensitivity to deformation of the GT strength distributions in those isotopes is proposed as an additional complementary signature of the nuclear shape. The β-decay half-lives resulting from the GT strength distributions are compared to experiment to demonstrate the ability of the method.

  5. Isotope tracing of Hg pollution from artisanal small scale gold mining in an aquatic ecosystem of Amapá, Brazil

    NASA Astrophysics Data System (ADS)

    Adler Miserendino, R.; Silbergeld, E. K.; Guimarães, J. D.; Ghosh, S.; Bergquist, B. A.

    2010-12-01

    Artisinal small scale gold mining (ASGM) is a central economic activity throughout the developing world. It is both a poverty driven and poverty alleviating process; however, ASGM leads to extensive pollution of waterways through the use of Hg to extract gold from deposits. There have been many studies conducted in the Amazon showing elevated levels of Hg in fish and sediment downstream of ASGM sites; however, the debate continues about the contribution of Hg from ASGM versus other potential sources of Hg. In this study, we investigate whether Hg stable isotope analysis can be used to trace mercury pollution from an ASGM site through an aquatic ecosystem in Amapá, Brazil. We measured the Hg isotopic composition of sediment cores from two lakes, only one of which was heavily impacted by the use of elemental Hg in ASGM, as well as from grab samples at the AGSM site and upstream and downstream from the AGSM site along the river which connects the polluted lake to the ASGM site. Hg from all samples were trapped via combustion using the Leeman Labs Hydra-C mercury analyzer and analyzed for both mass-independent and mass-dependent signatures using cold vapor multi-collector inductively coupled plasma mass spectrometry (CV-MC-ICP-MS). Detectable variations in the Hg isotopic signatures were apparent across our field sites, suggesting stable isotopic analysis has great potential to trace contamination pathways in waterways. Preliminary data demonstrate Hg from the ASGM site has unique isotopic signatures that are seen downstream. However, the impacted lake sediments do not have the mining signature despite having three times more Hg than the non-impacted lake. Based on this data, it may be possible to trace Hg from ASGM and assess whether it is impacting local ecosystems and food webs. Hair and soil samples will also be discussed. This demonstration is essential for the broader application of these tools for understanding and applying Hg isotopic analysis in other

  6. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution.

    PubMed

    Sherman, Laura S; Blum, Joel D; Dvonch, J Timothy; Gratz, Lynne E; Landis, Matthew S

    2015-01-01

    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) present human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it is difficult to trace emissions from point sources to impacted sites. Recent studies suggest that metal isotope ratios may be useful for distinguishing between and tracing source emissions. We measured Pb, strontium (Sr), and Hg isotope ratios in daily precipitation samples that were collected at seven sites across the Great Lakes region between 2003 and 2007. Lead isotope ratios ((207)Pb/(206)Pb=0.8062 to 0.8554) suggest that Pb deposition was influenced by coal combustion and processing of Mississippi Valley-Type Pb ore deposits. Regional differences in Sr isotope ratios ((87)Sr/(86)Sr=0.70859 to 0.71155) are likely related to coal fly ash and soil dust. Mercury isotope ratios (δ(202)Hg=-1.13 to 0.13‰) also varied among the sites, likely due to regional differences in coal isotopic composition, and fractionation occurring within industrial facilities and in the atmosphere. These data represent the first combined characterization of Pb, Sr, and Hg isotope ratios in precipitation collected across the Great Lakes region. We demonstrate the utility of multiple metal isotope ratios in parallel with traditional trace element multivariate statistical modeling to enable more complete pollution source attribution.

  7. Hg Stable Isotope Time Trend in Ringed Seals Registers Decreasing Sea Ice Cover in the Alaskan Arctic.

    PubMed

    Masbou, Jérémy; Point, David; Sonke, Jeroen E; Frappart, Frédéric; Perrot, Vincent; Amouroux, David; Richard, Pierre; Becker, Paul R

    2015-08-04

    Decadal time trends of mercury (Hg) concentrations in Arctic biota suggest that anthropogenic Hg is not the single dominant factor modulating Hg exposure to Arctic wildlife. Here, we present Hg speciation (monomethyl-Hg) and stable isotopic composition (C, N, Hg) of 53 Alaskan ringed seal liver samples covering a period of 14 years (1988-2002). In vivo metabolic effects and foraging ecology explain most of the observed 1.6 ‰ variation in liver δ(202)Hg, but not Δ(199)Hg. Ringed seal habitat use and migration were the most likely factors explaining Δ(199)Hg variations. Average Δ(199)Hg in ringed seal liver samples from Barrow increased significantly from +0.38 ± 0.08‰ (±SE, n = 5) in 1988 to +0.59 ± 0.07‰ (±SE, n = 7) in 2002 (4.1 ± 1.2% per year, p < 0.001). Δ(199)Hg in marine biological tissues is thought to reflect marine Hg photochemistry before biouptake and bioaccumulation. A spatiotemporal analysis of sea ice cover that accounts for the habitat of ringed seals suggests that the observed increase in Δ(199)Hg may have been caused by the progressive summer sea ice disappearance between 1988 and 2002. While changes in seal liver Δ(199)Hg values suggests a mild sea ice control on marine MMHg breakdown, the effect is not large enough to induce measurable HgT changes in biota. This suggests that Hg trends in biota in the context of a warming Arctic are likely controlled by other processes.

  8. Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern gulf of Mexico.

    PubMed

    Senn, David B; Chesney, Edward J; Blum, Joel D; Bank, Michael S; Maage, Amund; Shine, James P

    2010-03-01

    We combined N, C, and Hg stable isotope measurements to identify the most important factors that influence MeHg accumulation in fish from the northern Gulf of Mexico (nGOM), and to determine if coastal species residing in the Mississippi River (MR) plume and migratory oceanic species derive their MeHg from the same, or different, sources. In six coastal species and two oceanic species (blackfin and yellowfin tuna), trophic position as measured by delta(15)N explained most of the variance in log[MeHg] (r(2) approximately 0.8), but coastal species and tuna fell along distinct, nearly parallel lines with significantly different intercepts. The tuna also had significantly higher delta(202)Hg (0.2-0.5 per thousand) and Delta(201)Hg ( approximately 1.5 per thousand) than the coastal fish (delta(202)Hg = 0 to -1.0 per thousand; Delta(201)Hg approximately 0.4 per thousand). The observations can be best explained by largely disconnected food webs rooted in different baseline delta(15)N signatures (MR-plume vs oceanic) and isotopically distinct MeHg sources, with oceanic MeHg having undergone substantial photodegradation ( approximately 50%) before entering the base of the food web. Given the MR's large, productive footprint in the nGOM and the potential for exporting prey and MeHg to the adjacent oligotrophic GOM, the disconnected food webs and different MeHg sources are consistent with recent evidence in other systems of important oceanic MeHg sources.

  9. Evaluating the role of re-adsorption of dissolved Hg(2+) during cinnabar dissolution using isotope tracer technique.

    PubMed

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; Yang, Guidi; Lagos, Leonel; Yin, Yongguang; Gu, Baohua; Jiang, Guibin; Cai, Yong

    2016-11-05

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked (202)Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μgL(-1), while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.

  10. Evaluating the role of re-adsorption of dissolved Hg2+ during cinnabar dissolution using isotope tracer technique

    DOE PAGES

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; ...

    2016-06-02

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbedmore » Hg on cinnabar surface via the reduction in spiked 202Hg2+. By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred g L–1, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. Lastly, these results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.« less

  11. {beta}-decay in neutron-deficient Hg, Pb, and Po isotopes

    SciTech Connect

    Moreno, O.; Sarriguren, P.; Alvarez-Rodriguez, R.; Guerra, E. Moya de

    2006-05-15

    The effect of nuclear deformation on the energy distributions of the Gamow-Teller strength is studied in neutron-deficient Hg, Pb, and Po even isotopes. The theoretical framework is based on a self-consistent deformed Skyrme Hartree-Fock mean field with pairing correlations between like nucleons in BCS approximation and residual spin-isospin interactions treated in the proton-neutron quasiparticle random-phase approximation. After a systematic study of the Gamow-Teller strength distributions in the low-excitation-energy region, relevant for {beta}{sup +} decay, we have identified the best candidates to look for deformation signatures in their {beta}{sup +}-decay patterns. {beta}{sup +} half-lives and total Gamow-Teller strengths B(GT{sup {+-}}) are analyzed as well.

  12. Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China.

    PubMed

    Yin, Runsheng; Feng, Xinbin; Zhang, Junjun; Pan, Ke; Wang, Wenxiong; Li, Xiangdong

    2016-03-01

    Coastal and estuarine regions are important areas of mercury pollution. Therefore, it is important to properly characterize the sources and bioaccumulation processes of mercury in these regions. Here, we present mercury stable isotopic compositions in 18 species of wild marine fish collected from the Pearl River Estuary (PRE), south China. Our results showed variations in mass-independent fractionation (Δ(199)Hg: +0.05 ± 0.10‰ to +0.59 ± 0.30‰) with a Δ(199)Hg/Δ(201)Hg of ∼1.26, suggesting that aqueous MeHg underwent photo-degradation prior to incorporation into the food chain. For the results, we discovered small but significant differences of Δ(199)Hg values among herbivorous, demersal, and carnivorous fish, indicating that different feeding guilds of fish may have incorporated MeHg with various degrees of photo-demethylation. The consistent mercury isotope compositions between fish feeding habitat and mercury sources in the estuary provide potentially important findings on the transformation and bioaccumulation of this toxic metal in subtropical coastal environments.

  13. Pb-Zn-Cd-Hg multi isotopic characterization of the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Widory, D.; Innocent, C.; Guerrot, C.; Bourrain, X.; Johnson, T. M.

    2012-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition (major ions and pollutants such as metals) of the dissolved load of rivers. Furthermore, this influence can also be evidenced in the suspended solid matter known to play an important role in the transport of heavy metals through river systems. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. Initially, the Loire upstream flows in a south to north direction originating in the Massif Central, and continues up to the city of Orléans, 650 km from the source. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The Loire River then follows a general east to west direction to the Atlantic Ocean. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for heavy metals Zn-Cd-Pb-Hg in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for these metals for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of

  14. Anisotropic alpha decay from oriented odd-mass isotopes of some light actinides

    SciTech Connect

    Berggren, T. )

    1994-11-01

    Half-lives and anisotropies in the [alpha] decay of [sup 205,207,209]Rn, [sup 219]Rn, [sup 221]Fr, [sup 227,229]Pa, and [sup 229]U have been calculated using the reaction-theoretical formalism proposed by Jackson and Rhoades-Brown and adapted for axially symmetric deformed nuclei by Berggren and Olanders. The possibility of octupole deformation has been taken into account. In addition, a variant of triaxial octupole deformation has been considered tentatively in the case of [sup 227]Pa and [sup 229]Pa.

  15. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the

  16. Shape coexistence in the neutron-deficient even-even (182-188)Hg isotopes studied via coulomb excitation.

    PubMed

    Bree, N; Wrzosek-Lipska, K; Petts, A; Andreyev, A; Bastin, B; Bender, M; Blazhev, A; Bruyneel, B; Butler, P A; Butterworth, J; Carpenter, M P; Cederkäll, J; Clément, E; Cocolios, T E; Deacon, A; Diriken, J; Ekström, A; Fitzpatrick, C; Fraile, L M; Fransen, Ch; Freeman, S J; Gaffney, L P; García-Ramos, J E; Geibel, K; Gernhäuser, R; Grahn, T; Guttormsen, M; Hadinia, B; Hadyńska-Kle K, K; Hass, M; Heenen, P-H; Herzberg, R-D; Hess, H; Heyde, K; Huyse, M; Ivanov, O; Jenkins, D G; Julin, R; Kesteloot, N; Kröll, Th; Krücken, R; Larsen, A C; Lutter, R; Marley, P; Napiorkowski, P J; Orlandi, R; Page, R D; Pakarinen, J; Patronis, N; Peura, P J; Piselli, E; Rahkila, P; Rapisarda, E; Reiter, P; Robinson, A P; Scheck, M; Siem, S; Singh Chakkal, K; Smith, J F; Srebrny, J; Stefanescu, I; Tveten, G M; Van Duppen, P; Van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A; Wood, J L; Zielińska, M

    2014-04-25

    Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85  MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

  17. Use of stable isotope signatures to determine mercury sources in the Great Lakes

    USGS Publications Warehouse

    Lepak, Ryan F.; Yin, Runsheng; Krabbenhoft, David P.; Ogorek, Jacob M.; DeWild, John F.; Holsen, Thomas M.; Hurley, James P.

    2015-01-01

    Sources of mercury (Hg) in Great Lakes sediments were assessed with stable Hg isotope ratios using multicollector inductively coupled plasma mass spectrometry. An isotopic mixing model based on mass-dependent (MDF) and mass-independent fractionation (MIF) (δ202Hg and Δ199Hg) identified three primary Hg sources for sediments: atmospheric, industrial, and watershed-derived. Results indicate atmospheric sources dominate in Lakes Huron, Superior, and Michigan sediments while watershed-derived and industrial sources dominate in Lakes Erie and Ontario sediments. Anomalous Δ200Hg signatures, also apparent in sediments, provided independent validation of the model. Comparison of Δ200Hg signatures in predatory fish from three lakes reveals that bioaccumulated Hg is more isotopically similar to atmospherically derived Hg than a lake’s sediment. Previous research suggests Δ200Hg is conserved during biogeochemical processing and odd mass-independent fractionation (MIF) is conserved during metabolic processing, so it is suspected even is similarly conserved. Given these assumptions, our data suggest that in some cases, atmospherically derived Hg may be a more important source of MeHg to higher trophic levels than legacy sediments in the Great Lakes.

  18. Microscopic description of low-lying M1 excitations in odd-mass actinide nuclei

    NASA Astrophysics Data System (ADS)

    Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar

    2017-01-01

    A restoration method of a broken symmetry which allows self-consistent determination of the separable effective restoration forces is now adapted to odd-mass nuclei in order to restore violated rotational invariance (RI-) of the Quasiparticle Phonon Nuclear Model (QPNM) Hamiltonian. Because of the self-consistency of the method, these effective forces contain no arbitrary parameters. Within RI-QPNM, the properties of the low-lying magnetic dipole excitations in odd-mass deformed 229-233Th and 233-239U nuclei have been investigated for the first time. It has been shown that computed fragmentation of the M1 strengths below 4 MeV in these nuclei is much stronger than that in neighboring doubly even 228-232Th and 232-238U nuclei. For 235U the summed M1 strength in the energy range 1.5-2.8 MeV is in agreement with the relevant experimental data where the missing strength was extracted by means of a fluctuation analysis.

  19. Particle-hole intruder levels in 67Cu, collectivity, monopole shifts, and the hockey-stick behaviour of ell - 1/2 5/2- levels in neutron-rich odd-mass Cu nuclei

    NASA Astrophysics Data System (ADS)

    Walters, W. B.; Chiara, C. J.

    2011-01-01

    A new sequence of gamma rays with energies of 572, 499, 585, and 674 keV has been identified in 67Cu populating the 7/2- level at 2362 keV. Owing to the strong population of the 2362-keV level via an ell = 3 proton pickup reaction, that level is assigned to be an f7/2-1 2-particle-1-hole "intruder" proton configuration, and the new levels are found to form a sequence consistent with intruder sequences in the adjacent odd-mass Cu isotopes and in the odd-mass Sb isotopes. The changing position of the intruder sequence in the odd-mass Cu isotopes is discussed and related to the onset of collectivity associated with the presence of g9/2 neutrons beyond N = 40. The increase in collectivity is also discussed for a number of isotonic and isotopic chains as more protons or neutrons, respectively, are added beyond an oscillator shell boundary. For most of these systems, the ell -1/2 levels show a systematic "hockey-stick-like" behaviour with a sharp decrease in energy with the addition of the first protons or neutrons, owing to both the added collectivity and the tensor interaction, and then a lower slope when collectivity changes are diminished and only the tensor interaction is influencing the changes in level positions.

  20. Evaluating the role of re-adsorption of dissolved Hg2+ during cinnabar dissolution using isotope tracer technique

    SciTech Connect

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; Yang, Guidi; Lagos, Leonel; Yin, Yongguang; Gu, Baohua; Jiang, Guibin; Cai, Yong

    2016-06-02

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked 202Hg2+. By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred g L–1, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. Lastly, these results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.

  1. Stellar (n ,γ ) cross sections of neutron-rich nuclei: Completing the isotope chains of Yb, Os, Pt, and Hg

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Dillmann, I.; Domingo-Pardo, C.; Käppeler, F.

    2014-12-01

    The (n ,γ ) cross sections of the most neutron-rich stable isotopes of Yb, Os, Pt, and Hg have been determined in a series of activation measurements at the Karlsruhe 3.7 MV Van de Graaff accelerator, using the quasistellar neutron spectrum for k T =25 keV that can be produced with the 7Li(p ,n ) 7Be reaction. In this way, Maxwellian averaged cross sections could be directly obtained with only minor corrections. After irradiation the induced activities were counted with a HPGe detector via the strongest γ -ray lines. The stellar neutron capture cross sections of Yb,176174, Os,192190, Pt,198196, and Hg,204202, extrapolated to k T =30 keV, were found to be 157 ±6 mb, 114 ±8 mb, 278 ±11 mb, 160 ±7 mb, 171 ±19 mb, 94 ±4 mb, 62 ±2 mb, and 32 ±15 mb, respectively. In the case of 196Pt the partial cross section to the isomeric state at 399.5 keV could be determined as well. With these results the cross section data for long isotopic chains could be completed for a discussion of the predictive power of statistical model calculations towards the neutron-rich and proton-rich sides of the stability valley.

  2. Mass-independent fractionation of mercury isotopes in compact fluorescent light bulbs

    NASA Astrophysics Data System (ADS)

    Mead, C.; Anbar, A. D.; Lyons, J. R.; Johnson, T. M.

    2010-12-01

    Compact fluorescent lightbulbs (CFLs) are a growing source of Hg pollution. The high-energy environment of the CFLs combined with the known partitioning of Hg into the bulb walls could provide an environment for unusual isotope fractionation that could be used to trace pollution from improper bulb disposal. To investigate this possibility, we analyzed the isotope composition of Hg in CFL glass, phosphor powder, and whole bulbs from CFLs of known ages. We observed large, mass-independent fractionation of Hg isotopes between Hg embedded in the bulb wall and Hg in the liquid and vapor phases, which are the initial reservoir of Hg in the bulb. This fractionation results in the bulb wall showing enrichment of 198Hg, 199Hg, 200Hg, 201Hg, and 204Hg relative to 202Hg, the most abundant isotope. Both the amount of Hg embedded in the glass and the magnitude of the isotope enrichment were found to increase with the number of hours of light bulb use. For a CFL used for 3600 hours (with a rated lifetime of 10,000 hours), the isotopic composition of the Hg in the glass was enriched by 34.5‰, 4.1‰, 6.3‰, 21.1‰, and 12.1‰ for 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg, and 204Hg/202Hg, respectively, compared to NIST SRM-3133. This pattern of isotope enrichments is not correlated with mass differences for any of the isotope ratios. In contrast, the other mass-independent effects that have recently been observed in Hg isotopes (i.e., the nuclear volume and magnetic isotope effects) resemble mass-dependent fractionation for the even mass isotopes and are anomalous only for the odd mass isotopes, 199Hg and 201Hg. First order theoretical calculations using Hg absorption and emission data for each of the hyperfine components of the 253.7 nm line have shown that similar fractionation can be produced through an optical self-shielding effect. This effect occurs because each Hg isotope has a different degree of optical saturation at their respective absorption wavelength

  3. Systematics of fine structure in the α decay of deformed odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Ren, Zhongzhou; Ni, Dongdong

    2014-12-01

    We present a detailed analysis of the a-decay fine structure in 32 deformed odd-mass nuclei from Z = 93 to Z = 102. The α-decay half-lives are systematically calculated within the multichannel cluster model (MCCM), which turns out to well reproduce the experimental data and show the neutron deformed shell structure. The branching ratios for various daughter states are investigated in the MCCM and in the WKB barrier penetration approach, respectively. It is found that the MCCM results agree well with the experimental data, while the WKB results have relatively large deviations from the experimental data for the α transitions to the high-lying members of the rotational band.

  4. Automated product recovery in a HG-196 photochemical isotope separation process

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  5. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOEpatents

    Grossman, M.W.; Speer, R.

    1992-07-21

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  6. Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach.

    PubMed

    Jiskra, Martin; Saile, Damian; Wiederhold, Jan G; Bourdon, Bernard; Björn, Erik; Kretzschmar, Ruben

    2014-11-18

    The mobility and bioavailability of toxic Hg(II) in the environment strongly depends on its interactions with natural organic matter (NOM) and mineral surfaces. Using an enriched stable isotope approach, we investigated the exchange of Hg(II) between dissolved species (inorganically complexed or cysteine-, EDTA-, or NOM-bound) and solid-bound Hg(II) (carboxyl-/thiol-resin or goethite) over 30 days under constant conditions (pH, Hg and ligand concentrations). The Hg(II)-exchange was initially fast, followed by a slower phase, and depended on the properties of the dissolved ligands and sorbents. The results were described by a kinetic model allowing the simultaneous determination of adsorption and desorption rate coefficients. The time scales required to reach equilibrium with the carboxyl-resin varied greatly from 1.2 days for Hg(OH)2 to 16 days for Hg(II)-cysteine complexes and approximately 250 days for EDTA-bound Hg(II). Other experiments could not be described by an equilibrium model, suggesting that a significant fraction of total-bound Hg was present in a non-exchangeable form (thiol-resin and NOM: 53-58%; goethite: 22-29%). Based on the slow and incomplete exchange of Hg(II) described in this study, we suggest that kinetic effects must be considered to a greater extent in the assessment of the fate of Hg in the environment and the design of experimental studies, for example, for stability constant determination or metal isotope fractionation during sorption.

  7. Mother-embryo isotope (δ¹⁵N, δ¹³C) fractionation and mercury (Hg) transfer in aplacental deep-sea sharks.

    PubMed

    Le Bourg, B; Kiszka, J; Bustamante, P

    2014-05-01

    Stable carbon (δ¹³C) and nitrogen (δ¹⁵N) isotopic values and total mercury (Hg) concentrations were analysed in muscle and liver of mothers and embryos of two aplacental shark species, Squalus megalops and Centrophorus moluccensis. Embryos of the two species had similar or lower isotopic values than their respective mothers, the only exception being for δ¹³C, which was higher in the liver of C. moluccensis embryos than in their mothers. Hg concentrations were systematically lower in embryos compared with their mothers suggesting a low transfer of this element in muscle and liver.

  8. A new approach to understand methylmercury (CH3Hg) sources and transformation pathways: Compound-specific carbon stable isotope analysis by GC-C-IRMS

    NASA Astrophysics Data System (ADS)

    Baya, P. A.; Point, D.; Amouroux, D. P.; Lebreton, B.; Guillou, G.

    2015-12-01

    Methylmercury (CH3Hg) is a potent neurotoxin which is readily assimilated by organisms and bio-accumulates in aquatic food webs. In humans, consumption of CH3Hg contaminated marine fish is the major route of mercury exposure. However, our understanding of CH3Hg transformation pathways is still incomplete. To close this knowledge gap, we propose to explore the stable carbon isotopic composition (δ13C) of the methyl group of CH3Hg for a better understanding of its sources and transformation mechanisms. The method developed for the determination of the δ13C value of CH3Hg in biological samples involves (i) CH3Hg selective extraction, (ii) derivatization, and (iii) separation by gas chromatography (GC) prior to analysis by combustion isotope ratio mass spectrometry (C-IRMS). We present the figures of merit of this novel method and the first δ13C signatures for certified materials (ERM-CE464, BCR414) and biological samples at different marine trophic levels (i.e., tuna fish, zooplankton). The implications of this new approach to trace the pathways associated with Hg methylation and the mechanisms involved will be discussed.

  9. Particle-number conservation in odd mass proton-rich nuclei in the isovector pairing case

    NASA Astrophysics Data System (ADS)

    Fellah, M.; Allal, N. H.; Oudih, M. R.

    2015-06-01

    An expression of a wave function which describes odd-even systems in the isovector pairing case is proposed within the BCS approach. It is shown that it correctly generalizes the one used in the pairing between like-particles case. It is then projected on the good proton and neutron numbers using the Sharp-BCS (SBCS) method. The expressions of the expectation values of the particle-number operator and its square, as well as the energy, are deduced in both approaches. The formalism is applied to study the isovector pairing effect and the number projection one on the ground state energy of odd mass N ≈ Z nuclei using the single-particle energies of a deformed Woods-Saxon mean-field. It is shown that both effects on energy do not exceed 2%, however, the absolute deviations may reach several MeV. Moreover, the np pairing effect rapidly diminishes as a function of (N - Z). The deformation effect is also studied. It is shown that the np pairing effect, either before or after the projection, as well as the projection effect, when including or not the isovector pairing, depends upon the deformation. However, it seems that the predicted ground state deformation will remain the same in the four approaches.

  10. Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead

    NASA Astrophysics Data System (ADS)

    Yang, Sha; Liu, Yun

    2015-07-01

    The nuclear volume effects (NVEs) of Hg, Tl and Pb isotope systems are investigated with careful evaluation on quantum relativistic effects via the Dirac’s formalism of full-electron wave function. Equilibrium 202Hg/198Hg, 205Tl/203Tl, 207Pb/206Pb and 208Pb/206Pb isotope fractionations are found can be up to 3.61‰, 2.54‰, 1.48‰ and 3.72‰ at room temperature, respectively, larger than fractionations predicted by classical mass-dependent isotope fractionations theory. Moreover, the NVE can cause mass-independent fractionations (MIF) for odd-mass isotopes and even-mass isotopes. The plot of vs. for Hg-bearing species falls into a straight line with the slope of 1.66, which is close to previous experimental results. For the first time, Pb4+-bearing species are found can enrich heavier Pb isotopes than Pb2+-bearing species to a surprising extent, e.g., the enrichment can be up to 4.34‰ in terms of 208Pb/206Pb at room temperature, due to their NVEs are in opposite directions. In contrast, fractionations among Pb2+-bearing species are trivial. Therefore, the large Pb fractionation changes provide a potential new tracer for redox conditions in young and closed geologic systems. The magnitudes of NVE-driven even-mass MIFs of Pb isotopes (i.e., ) and odd-mass MIFs (i.e., ) are almost the same but with opposite signs.

  11. Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead.

    PubMed

    Yang, Sha; Liu, Yun

    2015-07-30

    The nuclear volume effects (NVEs) of Hg, Tl and Pb isotope systems are investigated with careful evaluation on quantum relativistic effects via the Dirac's formalism of full-electron wave function. Equilibrium (202)Hg/(198)Hg, (205)Tl/(203)Tl, (207)Pb/(206)Pb and (208)Pb/(206)Pb isotope fractionations are found can be up to 3.61‰, 2.54‰, 1.48‰ and 3.72‰ at room temperature, respectively, larger than fractionations predicted by classical mass-dependent isotope fractionations theory. Moreover, the NVE can cause mass-independent fractionations (MIF) for odd-mass isotopes and even-mass isotopes. The plot of [formula in text] for Hg-bearing species falls into a straight line with the slope of 1.66, which is close to previous experimental results. For the first time, Pb(4+)-bearing species are found can enrich heavier Pb isotopes than Pb(2+)-bearing species to a surprising extent, e.g., the enrichment can be up to 4.34‰ in terms of (208)Pb/(206)Pb at room temperature, due to their NVEs are in opposite directions. In contrast, fractionations among Pb(2+)-bearing species are trivial. Therefore, the large Pb fractionation changes provide a potential new tracer for redox conditions in young and closed geologic systems. The magnitudes of NVE-driven even-mass MIFs of Pb isotopes (i.e., [formula in text]) and odd-mass MIFs (i.e., [formula in text) are almost the same but with opposite signs.

  12. Low energy E0 transitions in odd-mass nuclei of the neutron deficient 180 < A < 200 region

    SciTech Connect

    Zganjar, E.F.; Kortelahti, M.O.; Wood, J.L.; Papanicolopulos, C.D.

    1987-01-01

    The region of neutron-deficient nuclei near Z = 82 and N = 104 provides the most extensive example of low-energy shape coexistence anywhere on the mass surface. It is shown that E0 and E0 admixed transitions may be used as a fingerprint to identify shape coexistence in odd-mass nuclei. It is also shown that all the known cases of low energy E0 and E0 admixed transitions in odd-mass nuclei occur where equally low-lying O/sup +/ states occur in neighboring even-even nuclei. A discussion of these and other relevant data as well as suggestions for new studies which may help to clarify and, more importantly, quantify the connection between E0 transitions and shape coexistence are presented. 60 refs., 7 figs., 4 tabs.

  13. Schottky Mass Measurement of the {sup 208}Hg Isotope: Implication for the Proton-Neutron Interaction Strength around Doubly Magic {sup 208}Pb

    SciTech Connect

    Chen, L.; Plass, W. R.; Geissel, H.; Scheidenberger, C.; Litvinov, Yu. A.; Beckert, K.; Beller, P.; Bosch, F.; Caceres, L.; Franzke, B.; Gerl, J.; Gorska, M.; Knoebel, R.; Kozhuharov, C.; Litvinov, S. A.; Mandal, S.; Muenzenberg, G.; Nolden, F.; Saito, N.; Saito, T.

    2009-03-27

    Time-resolved Schottky mass spectrometry has been applied to uranium projectile fragments which yielded the mass value for the {sup 208}Hg (Z=80, N=128) isotope. The mass excess value of ME=-13 265(31) keV has been obtained, which has been used to determine the proton-neutron interaction strength in {sup 210}Pb, as a double difference of atomic masses. The results show a dramatic variation of the strength for lead isotopes when crossing the N=126 neutron shell closure, thus confirming the empirical predictions that this interaction strength is sensitive to the overlap of the wave functions of the last valence neutrons and protons.

  14. Hg Isotopes Reveal Importance of In-Stream Processing and Legacy Inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA.

    NASA Astrophysics Data System (ADS)

    Demers, J. D.; Blum, J. D.; Brooks, S. C.; Donovan, P. M.; Gu, B.; Riscassi, A.

    2015-12-01

    Understanding how mercury (Hg) contaminated ecosystems will recover as atmospheric emissions and industrial point source discharges are controlled has become a driving motivation of mercury research. Key to predicting recovery of mercury contaminated ecosystems is an understanding of the mobilization of legacy Hg sources, and the subsequent bioavailability and biogeochemical cycling of mobilized Hg within aquatic ecosystems. Herein, we utilize natural abundance stable Hg isotope techniques to place new constraints on mercury sources, transport, and transformations along the flow path of East Fork Poplar Creek (EFPC), Oak Ridge, Tennessee. The isotopic composition of mercury in stream water and suspended sediment along the flow path suggest that: (1) physical processes such as dilution and sedimentation cannot fully explain decreases in total mercury concentrations along the flow path and that in-stream processes may be more important than previously realized; (2) in-stream processes include photochemical transformations (~20%), but microbial reduction is likely more dominant (~80%); and (3) additional sources of mercury inputs to EFPC at base-flow may predominantly arise from the hyporheic zone during the growing season, with adjacent riparian wetlands and non-point-source impacted tributaries increasing in importance during the dormant season when the stream channel is more hydrologically connected to the watershed.

  15. Pyrogenic inputs of anthropogenic Pb and Hg to sediments of the Hood Canal, Washington, in the 20th century: source evidence from stable Pb isotopes and PAH signatures.

    PubMed

    Louchouarn, Patrick; Kuo, Li-Jung; Brandenberger, Jill M; Marcantonio, Franco; Garland, Charity; Gill, Gary A; Cullinan, Valerie

    2012-06-05

    Combustion-derived PAHs and stable Pb isotopic signatures ((206)Pb/(207)Pb) in sedimentary records assisted in reconstructing the sources of atmospheric inputs of anthropogenic Pb and Hg to the Hood Canal, Washington. The sediment-focusing corrected peak fluxes of total Pb and Hg (1960-70s) demonstrate that the watershed of Hood Canal has received greater atmospheric inputs of these metals than its mostly rural land use would predict. The tight relationships between the Pb, Hg, and organic markers in the cores indicate that these metals are derived from industrial combustion emissions. Multiple lines of evidence point to the Asarco smelter, located in the Main Basin of Puget Sound, as the major emission source of these metals to the watershed of the Hood Canal. The evidence includes (1) similar PAH isomer ratios in sediment cores from the two basins, (2) the correlations between Pb, Hg, and Cu in sediments and previously studied environmental samples including particulate matter emitted from the Asarco smelter's main stack at the peak of production, and (3) Pb isotope ratios. The natural rate of recovery in Hood Canal since the 1970s, back to preindustrial metal concentrations, was linear and contrasts with recovery rates reported for the Main Basin which slowed post late 1980s.

  16. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    SciTech Connect

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-03-15

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the {sup 125,127,129,131,133}Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J{sup (2)}, kinetic moment of inertia J{sup (1)}, the crossing of rotational bands, and backbending effects.

  17. Evolution of nuclear shapes in odd-mass yttrium and niobium isotopes from lifetime measurements following fission reactions

    NASA Astrophysics Data System (ADS)

    Hagen, T. W.; Görgen, A.; Korten, W.; Grente, L.; Salsac, M.-D.; Farget, F.; Ragnarsson, I.; Braunroth, T.; Bruyneel, B.; Celikovic, I.; Clément, E.; de France, G.; Delaune, O.; Dewald, A.; Dijon, A.; Hackstein, M.; Jacquot, B.; Litzinger, J.; Ljungvall, J.; Louchart, C.; Michelagnoli, C.; Napoli, D. R.; Recchia, F.; Rother, W.; Sahin, E.; Siem, S.; Sulignano, B.; Theisen, Ch.; Valiente-Dobon, J. J.

    2017-03-01

    Lifetimes of excited states in 99Y,101Y,101Nb,103Nb, and 105Nb were measured in an experiment using the recoil distance Doppler shift method at GANIL (Grand Accélérateur National d'Ions Lourds). The neutron-rich nuclei were produced in fission reactions between a 238U beam and a 9Be target. Prompt γ rays were measured with the EXOGAM array and correlated with fission fragments that were identified in mass and atomic number with the VAMOS++ spectrometer. The measured lifetimes, together with branching ratios, provide B (M 1 ) and B (E 2 ) values for the strongly coupled rotational bands built on the [422 ] 5 /2+ ground state in the Y and Nb nuclei with neutron number N ≥60 . The comparison of the experimental results with triaxial particle-rotor calculations provides information about the evolution of the nuclear shape in this mass region.

  18. Accumulation of methylmercury in rice and flooded soil in experiments with an enriched isotopic Hg(II) tracer

    NASA Astrophysics Data System (ADS)

    Strickman, R. J.; Mitchell, C. P. J.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxin produced in anoxic aquatic sediments. Numerous factors, including the presence of aquatic plants, alter the biogeochemistry of sediments, affecting the rate at which microorganisms transform bioavailable inorganic Hg (IHg) to MeHg. Methylmercury produced in flooded paddy soils and its transfer into rice has become an important dietary consideration. An improved understanding of how MeHg reaches the grain and the extent to which rice alters MeHg production in rhizosphere sediments could help to inform rice cultivation practices. We conducted a controlled greenhouse experiment with thirty rice plants grown in individual, flooded pots amended with enriched 200Hg. Unvegetated controls were maintained under identical conditions. At three plant growth stages (vegetative growth, flowering, and grain maturity), ten plants were sacrificed and samples collected from soil, roots, straw, panicle, and grain of vegetated and unvegetated pots, and assessed for MeHg and THg concentrations. We observed consistent ratios between ambient and tracer MeHg between soils (0.36 ±0.04 — 0.44 ± 0.09) and plant compartments (0.23 ± 0.07 -0.34 ± 0.05) indicating that plant MeHg contamination originates in the soil rather than in planta methylation. The majority of this MeHg was absorbed between the tillering (4.48 ± 2.38 ng/plant) and flowering (8.43 ± 5.12 ng/pl) phases, with a subsequent decline at maturity (2.87 ± 1.23 ng/pl) only partly explained by translocation to the developing grain, indicating that MeHg was demethylated in planta. In contrast, IHg was absorbed from both soil and air, as evidenced by the higher ambient IHg concentrations compared to tracer (3.76 ± 1.19 vs. 0.27 ± 0.40 ng/g). Surprisingly, MeHg accumulation was significantly (p= 0.042-- 0.003) lower in vegetated vs. unvegetated sediments at flowering (1.41 ± 0.26 vs. 1.57 ± 0.23) and maturity (1.27 ± 0.22 vs. 1.71 ± 0.25), suggesting that plant exudates bound Hg

  19. Metal transfer to plants grown on a dredged sediment: use of radioactive isotope 203Hg and titanium.

    PubMed

    Caille, Nathalie; Vauleon, Clotilde; Leyval, Corinne; Morel, Jean-Louis

    2005-04-01

    Improperly disposed of dredged sediments contaminated with metals may induce long-term leaching and an increase of metal concentrations in ground waters and vegetal cover plants. The objective of the study was to quantify the sediment-to-plant transfer of Cu, Pb, Hg and Zn with a particular focus on the pathway of Hg and to determine whether the establishment of vegetal cover modifies the metal availability. A pot experiment with rape (Brassica napus), cabbage (Brassica oleraccea) and red fescue (Festuca rubra) was set up using a sediment first spiked with the radioisotope 203Hg. Zinc concentrations (197-543 mg kg(-1) DM) in leaves were higher than Cu concentration (197-543 mg kg(-1) DM), Pb concentration (2.3-2.6 mg kg(-1) DM) and Hg concentration (0.9-1.7 mg kg(-1) DM). Leaves-to-sediment ratios decreased as follows: Zn > Cu > Hg > Pb. According to Ti measurements, metal contamination by dry deposition was less than 1%. Mercury concentration in plant leaves was higher than European and French thresholds. Foliar absorption of volatile Hg was a major pathway for Hg contamination with a root absorption of Hg higher in rape than in cabbage and red fescue. Growth of each species increased Cu solubility. Zinc solubility was increased only in the presence of rape. The highest increase of Cu solubility was observed for red fescue whereas this species largely decreased Zn solubility. Dissolved organic carbon (DOC) measurements suggested that Cu solubilisation could result from organic matter or release of natural plant exudates. Dissolved inorganic carbon (DIC) measures suggested that the high Zn solubility in the presence of rape could originate from a generation of acidity in rape rhizosphere and a subsequent dissolution of calcium carbonates. Consequently, emission of volatile Hg from contaminated dredged sediments and also the potential increase of metal solubility by a vegetal cover of grass when used in phytostabilisation must be taken into account by decision

  20. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Günther, Detlef; Liu, Yongsheng; Ling, Wenli; Zong, Keqing; Chen, Haihong; Gao, Shan

    2016-12-15

    In situ Pb isotope data of sulfide samples measured by LA-MC-ICP-MS provide valuable geochemical information for studies of the origin and evolution of ore deposits. However, the severe isobaric interference of (204)Hg on (204)Pb and the lack of matrix-matched sulfide reference materials limit the precision of Pb isotopic analyses for Hg-rich sulfides. In this study, we observe that Hg forms vapor and can be completely removed from sample aerosol particles produced by laser ablation using a gas exchange device. Additionally, this device does not influence the signal intensities of Pb isotopes. The within-run precision, the external reproducibility and the analytical accuracy are significantly improved for the Hg-rich sulfide samples using this mercury-vapor-removing device. Matrix effects are observed when using silicate glass reference materials as the external standards to assess the relationship of mass fractionation factors between Tl and Pb in sulfide samples, resulting in a maximum deviation of ∼0.20% for (20x)Pb/(204)Pb. Matrix-matched reference materials are therefore required for the highly precise and accurate Pb isotope analyses of sulfide samples. We investigated two sulfide samples, MASS-1 (the Unites States Geological Survey reference materials) and Sph-HYLM (a natural sphalerite), as potential candidates. Repeated analyses of the two proposed sulfide reference materials by LA-MC-ICP-MS yield good external reproducibility of <0.04% (RSD, k = 2) for (20x)Pb/(206)Pb and <0.06% (RSD, k = 2) for (20x)Pb/(204)Pb with the exception of (20x)Pb/(204)Pb in MASS-1, which provided an external reproducibility of 0.24% (RSD, k = 2). Because the concentration of Pb in MASS-1 (76 μg g(-1)) is ∼5.2 times lower than that in Sph-HYLM (394 ± 264 μg g(-1)). The in situ analytical results of MASS-1 and Sph-HYLM are consistent with the values obtained by solution MC-ICP-MS, demonstrating the reliability and robustness of our analytical protocol.

  1. Stellar (n,{gamma}) cross sections of p-process isotopes. II. {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg

    SciTech Connect

    Marganiec, J.; Dillmann, I.; Pardo, C. Domingo; Kaeppeler, F.; Walter, S.

    2010-09-15

    The neutron-capture cross sections of {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg have been measured by means of the activation technique. The samples were irradiated in a quasistellar neutron spectrum of kT=25 keV, which was produced at the Karlsruhe 3.7-MV Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. Systematic uncertainties were investigated in repeated activations with different samples and by variation of the experimental parameters, that is, irradiation times, neutron fluxes, and {gamma}-ray counting conditions. The measured data were converted into Maxwellian-averaged cross sections at kT=30 keV, yielding 1214{+-}61, 624{+-}54, 590{+-}43, 511{+-}46, and 201{+-}11 mb for {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg, respectively. The present results either represent first experimental data ({sup 168}Yb, {sup 184}Os, and {sup 196}Hg) or could be determined with significantly reduced uncertainties ({sup 180}W and {sup 190}Pt). These measurements are part of a systematic study of stellar (n,{gamma}) cross sections of the stable p isotopes.

  2. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution

    EPA Science Inventory

    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) presents human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it ...

  3. Estimation of Nuclear Volume Dependent Fractionation of Mercury Isotopes Using Octanol- Water Partitioning of Inorganic Mercury

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Bergquist, B. A.; Schauble, E. A.; Blum, J. D.

    2009-05-01

    Mercury is a globally distributed pollutant; the toxicity and biomagnifications in aquatic food chains, even in remote areas, makes it a serious worldwide problem. Similar to other stable isotope systems, the isotopic composition of environmental Hg is potentially a new tool to better understand the biogeochemical cycling, fluxes and anthropogenic impacts of Hg. The promise of Hg isotopes is even more exciting with the recent discovery of large mass independent fractionation (MIF) displayed by the odd Hg isotopes (199Hg and 201Hg). Based on current theory MIF of Hg isotopes can arise either from the non-linear scaling of nuclear volume with mass for heavy isotopes (Nuclear Volume Effect, NVE) or from the magnetic isotope effect (MIE), which is due to the non-zero nuclear spin and nuclear magnetic moments of odd-mass isotopes. In order to interpret and use Hg MIF signatures in nature, both experimental and theoretical work is needed to better understand the controls and expression of MIF along with the underlying mechanisms of MIF. The goal of the current study was to design an experiment that would express the NVE in order to confirm theoretical predictions of the isotopic signature of the NVE for Hg. Unfortunately, both NVE and MIE predict MIF for only the odd isotopes. However since MIE is a kinetic phenomenon only, MIF observed in equilibrium reactions should be attributable to the NVE only. Thus it should be possible to isolate NVE driven MIF from MIE driven MIF. A laboratory experiment was designed on equilibrium octanol-water partitioning of different Hg chloride species. Octanol-water partitioning of Hg depends on the hydrophobicity of the Hg species, so non polar lipophilic species partition into the octanol phase while polar species remain in water phase. At 25 degree Celsius, a Cl- concentration of 1 molar and pH <2, the dominant aqueous phase is HgCl42- while non polar HgCl2 will partition into the octanol phase. Since HgCl42- has a stronger ionic

  4. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  5. Microscopic description of ground state magnetic moment and low-lying magnetic dipole excitations in heavy odd-mass 181Ta nucleus

    NASA Astrophysics Data System (ADS)

    Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar

    2016-07-01

    The ground state magnetic moments and the low-lying magnetic dipole (Ml) transitions from the ground to excited states in heavy deformed odd-mass 181Ta have been microscopically investigated on the basis of the quasiparticle-phonon nuclear model (QPNM). The problem of the spurious state mixing in M1 excitations is overcome by a restoration method allowing a self-consistent determination of the separable effective restoration forces. Due to the self-consistency of the method, these effective forces contain no arbitrary parameters. The results of calculations are compared with the available experimental data, the agreement being reasonably satisfactory.

  6. Delta I = 1 staggering effect for negative parity rotational bands with K = 1/2 in W/Os/Pt odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Taha, M. M.

    2015-11-01

    The anomalous negative-parity bands of odd-mass nuclei W/Os/Pt for N = 103 isotones are studied within the framework of particle rotor model (PRM). The phenomenon of Δ I = 1 staggering or signature splitting in energies occurs as one plots the gamma transitional energy over spin (EGOS) versus spin for the 1/2-[521] band originating from N = 5 single particle orbital. The rotational band with K = 1/2 separates into two signature partners. The levels with I = 1/2, 5/2, 9/2,… are displaced relatively to the levels with I = 3/2,7/2,11/2,…. The deviations of the level energies from the rigid rotor values is described by Coriolis coupling.

  7. Identification of Atmospheric Mercury Input to Ecosystems From Precipitation Using Coupled Δ200Hg and Δ204Hg Fractionation

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Johnson, M. W.

    2015-12-01

    Mercury has seven stable isotopes, and during most biogeochemical reactions all of the isotopes fractionate mass dependently (MDF; relative to δ202/198Hg). The odd isotopes also fractionate mass independently (MIF) during reactions involving the magnetic isotope and nuclear volume effects. In 2010 we first reported MIF of 200Hg in precipitation (Gratz et al), and in 2013 we reported MIF of 204Hg in precipitation (Demers et al). Measurements of Δ200Hg are becoming more common and several studies have now used Δ200Hg as a tracer of Hg(II) deposited from the atmosphere (Chen et al, 2012; Strok et al 2015). Δ204Hg is much less commonly measured and reported, but sheds additional light on the mechanisms that might cause even isotope MIF. We observe Δ204Hg to be of opposite sign and ~2x the magnitude of Δ200Hg. The presence of coupled Δ200Hg and Δ204Hg is most useful for detecting precipitation inputs of Hg to ecosystems. We have measured Δ200Hg and Δ204Hg in hundreds of samples of precipitation, invertebrates, fish, moss, lichen, ice crystals and GEM at many locations in North America and Hawaii. When average values for each sample type at each study location are plotted as Δ200Hg versus Δ204Hg they fall on a linear array with slope=0.57 and R2=0.92. Samples of sediment, coal, various rock-types, and point-source contaminants have contrasting Δ200Hg and Δ204Hg indistinguishable from zero. We also use combined Δ200Hg and Δ204Hg to explore mechanisms leading to even isotope MIF. Ghosh et al (2012) measured nuclear volume fractionation and found even MIF to be undetectable. Mead et al (2013) calculated even mass MIF from nuclear self-shielding and it does not fit our observations of Δ200Hg/Δ204Hg in natural samples; they also measured MIF caused by implantation of Hg into glass in compact fluorescent lights (CFLs) and this is consistent with Δ200Hg/Δ204Hg in atmospheric Hg(II), suggesting the possibility of a common fractionation mechanism.

  8. Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban-industrial region near Pensacola, Florida, USA

    NASA Astrophysics Data System (ADS)

    Demers, Jason D.; Sherman, Laura S.; Blum, Joel D.; Marsik, Frank J.; Dvonch, J. Timothy

    2015-10-01

    Identifying the anthropogenic and natural sources of mercury (Hg) emissions contributing to atmospheric mercury on local, regional, and global scales continues to be a grand challenge. The relative importance of various direct anthropogenic emissions of mercury, in addition to natural geologic sources and reemission of previously released and deposited mercury, differs regionally and temporally. In this study, we used local-scale, mesoscale, and synoptic-scale meteorological analysis to couple the isotopic composition of ambient atmospheric mercury with potential sources of mercury contributing to a coastal urban-industrial setting near a coal-fired power plant in Pensacola, Florida, USA. We were able to broadly discern four influences on the isotopic composition of ambient atmospheric mercury impacting this coastal urban-industrial region: (1) local to regional urban-industrial anthropogenic emissions (mean δ202Hg = 0.44 ± 0.05‰, 1SD, n = 3), (2) marine-influenced sources derived from the Gulf of Mexico (mean δ202Hg = 0.77 ± 0.15‰, 1SD, n = 4), (3) continental sources associated with north-northwesterly flows from within the planetary boundary layer (mean δ202Hg = 0.65 ± 0.04‰, 1SD, n = 3), and (4) continental sources associated with north-northeasterly flows at higher altitudes (i.e., 2000 m above ground level; mean δ202Hg = 1.10 ± 0.21‰, 1SD, n = 8). Overall, these data, in conjunction with previous studies, suggest that the background global atmospheric mercury pool is characterized by moderately positive δ202Hg values; that urban-industrial emissions drive the isotopic composition of ambient atmospheric mercury toward lower δ202Hg values; and that air-surface exchange dynamics across vegetation and soils of terrestrial ecosystems drive the isotopic composition of ambient atmospheric mercury toward higher positive δ202Hg values. The data further suggest that mass-independent fractionation (MIF) of both even-mass- and odd-mass-number isotopes

  9. High-spin structure of sup 189 Tl: Role of h sub 9/2 protons in the prolate minimum of light Hg isotopes

    SciTech Connect

    Porquet, M.; Kreiner, A.J.; Hannachi, F.; Vanin, V.; Bastin, G.; Bourgeois, C.; Davidson, J.; Debray, M.; Falcone, G.; Korichi, A.; Mosca, H.; Perrin, N.; Sergolle, H.; Beck, F.A.; Merdinger, J. Departamento de Fisica, Comision Nacional de Energia Atomica, 1429 Buenos Aires Centre de Recherches Nucleaires, 67037 Strasbourg Instituto de Fisica, Universidade de Sao Paulo, 1000 Sao Paulo Institut de Physique Nucleaire, 91406 Orsay )

    1991-12-01

    High-spin states in {sup 189}Tl have been populated through the {sup 165}Ho({sup 28}Si,4{ital n}) reaction and studied with in-beam {gamma}-ray spectroscopy techniques. Both oblate and prolate structures associated with the {ital i}13/2 proton orbit are confirmed and extended to higher spins (19/2 and 41/2, respectively). However, only the oblate structure related to the {pi}{ital h}9/2 has been observed meaning that the associated prolate structure is nonyrast contrary to expectation. This experimental result points clearly to a large amplitude of ({pi}{ital h}9/2){sup 2} in the wave function of the prolate minimum of {sup 188}Hg.

  10. Unusual mercury isotopic compositions in aqueous environment

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hintelmann, H.; Zheng, W.; Feng, X.; Cai, H.; Wang, Z.; Yuan, S.

    2014-12-01

    Preliminary studies have demonstrated both mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes in natural samples. Laboratory experiments showed that photochemical reduction of inorganic mercury (iHg) and methylmercury (MMHg) and liquid-vapour evaporation could produce MIF of odd Hg isotopes. This was thought to cause the MIF actually observed in aquatic organisms. Although isotopic measurements of Hg in aqueous environment would give direct evidence, little data was reported for surface water samples. Recent work reported, unexpectedly, positive MIF of odd Hg isotopes in both precipitation and ambient air, in contrast with the prediction of laboratory experiments and measurements of Hg accumulated in lichens . Intriguingly, MIF of even-mass Hg isotope (200Hg) was also recently determined in the atmosphere. In contrast with the now mainstream observation of odd Hg isotope anomaly that has several theoretical explanations, the hitherto mysterious even Hg isotope anomalies were neither reported in laboratory experiments, nor predicted by isotope fractionation mechanisms, highlighting the importance of further study on Hg isotopes in variable systems. Our measurements of lichens and lake water samples from different countries show for the first time significant Δ200Hg in surface terrestrial reservoirs, realizing a direct connection of even Hg isotope anomaly in the terrestrial reservoirs to the atmospheric deposition, and fulfilling the gap of Δ200Hg between the atmosphere and the terrestrial receptors. The specific odd Hg isotope compositions determined in lake waters also support the atmosphere contribution, and may be directly linked to the high Δ199Hg values largely determined and manifested on the top of aqueous food web. Our data show that the watershed Hg input is another contributing source, rather than the in-lake processes, to explain the lacustrine Hg isotope anomalies. Interestingly, lake sediments are isotopically

  11. Elemental Mercury in Natural Waters: Occurrence and Determination of Particulate Hg(0).

    PubMed

    Wang, Yongmin; Li, Yanbin; Liu, Guangliang; Wang, Dingyong; Jiang, Guibin; Cai, Yong

    2015-08-18

    Elemental mercury, Hg(0), is ubiquitous in water and involved in key Hg biogeochemical processes. It is extensively studied as a purgeable dissolved species, termed dissolved gaseous mercury (DGM). Little information is available regarding nonpurgeable particulate Hg(0) in water, Hg(0) bound to suspended particulate matter (SPM), which is presumably present due to high affinity of Hg(0) adsorption on solids. By employing stable isotope tracer and isotope dilution (ID) techniques, we investigated the occurrence and quantification of particulate Hg(0) after Hg(0) being spiked into natural waters, aiming to provide firsthand information on particulate Hg(0) in water. A considerable fraction of (201)Hg(0) spiked in water (about 70% after 4 h equilibration) was bound to SPM and nonpurgeable, suggesting the occurrence of particulate Hg(0) in natural waters. A scheme, involving isotope dilution, purge and trap, and inductively coupled plasma mass spectrometry detection, was proposed to quantify particulate Hg(0) by the difference between DGM and total Hg(0), determined immediately and at equilibration after spiking ID Hg isotope, respectively. The application of this newly established method revealed the presence of particulate Hg(0) in Florida Everglades water, as the determined DGM levels (0.14 to 0.22 ng L(-1)) were remarkably lower than total Hg(0) (0.41 to 0.75 ng L(-1)).

  12. Mercury isotope compositions across North American forests

    NASA Astrophysics Data System (ADS)

    Zheng, Wang; Obrist, Daniel; Weis, Dominique; Bergquist, Bridget A.

    2016-10-01

    Forest biomass and soils represent some of the largest reservoirs of actively cycling mercury (Hg) on Earth, but many uncertainties exist regarding the source and fate of Hg in forest ecosystems. We systematically characterized stable isotope compositions of Hg in foliage, litter, and mineral soil horizons across 10 forest sites in the contiguous United States. The mass-independent isotope signatures in all forest depth profiles are more consistent with those of atmospheric Hg(0) than those of atmospheric Hg(II), indicating that atmospheric Hg(0) is the larger source of Hg to forest ecosystems. Within litter horizons, we observed significant enrichment in Hg concentration and heavier isotopes along the depth, which we hypothesize to result from additional deposition of atmospheric Hg(0) during litter decomposition. Furthermore, Hg isotope signatures in mineral soils closely resemble those of the overlying litter horizons suggesting incorporation of Hg from litter as a key source of soil Hg. The spatial distribution of Hg isotope compositions in mineral soils across all sites is modeled by isotopic mixing assuming atmospheric Hg(II), atmospheric Hg(0), and geogenic Hg as major sources. This model shows that northern sites with higher precipitation tend to have higher atmospheric Hg(0) deposition than other sites, whereas drier sites in the western U.S. tend to have higher atmospheric Hg(II) deposition than the rest. We attribute these differences primarily to the higher litterfall Hg input at northern wetter sites due to increased plant productivity by precipitation. These results allow for a better understanding of Hg cycling across the atmosphere-forest-soil interface.

  13. Experiments with a New 201Hg+ Ion Clock

    NASA Astrophysics Data System (ADS)

    Burt, E. A.; Taghavi-Larigani, S.; Lea, S. N.; Prestage, J. D.; Tjoelker, R. L.

    2009-04-01

    In this paper we describe a new clock based on 201Hg+. All previous mercury ion clocks have been based on 199Hg+. We have recently completed construction of the 201Hg+ clock and will describe modifications to the design of our existing 199Hg+ clocks to accommodate the new isotope. We will also describe initial spectroscopic measurements of the hyperfine manifold, and possible future experiments. One experiment could place a limit on variations in the strong interaction fundamental constant ratio mq/ΛQCD.

  14. Hyperemesis Gravidarum (HG)

    MedlinePlus

    ... Support Forums BlogHER Research Contact Us Understanding Hyperemesis Theories Diagnosis Treatments Risks Complications Impact Take a Poll ... to and worsen ongoing nausea. There are numerous theories regarding the etiology of hyperemesis gravidarum. Unfortunately, HG ...

  15. Mercury isotope compositions in North American forest soils and litters

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Obrist, D.; Bergquist, B. A.

    2013-12-01

    Soils represent one of the largest reservoirs of mercury on Earth, playing a critical role in the natural cycle of mercury by acting as both a sink and source. However, it is not well understood how soils sequestrate and remobilize Hg. Natural variations in stable Hg isotopes are being explored as a promising tool in studying the transformation and transport of Hg. However, Hg isotopic data in soils is scarce. In addition, the limited isotopic data that exists is significantly different from those of atmospheric Hg, which is one of the major sources of Hg to soils. For example, Hg mass independent fractionation (MIF, typically reported as Δ199Hg) is positive in atmospheric wet deposition, but most soils display negative Δ199Hg. MIF on 200Hg (Δ200Hg) is also observed in atmospheric wet deposition, but not in soils. The discrepancy between soils and atmospheric samples is still unexplained. In this study, we surveyed the Hg isotope compositions in soil profiles, litters and fresh vegetation from four different forest sites across United States (Thompson forest, WA, Truckee, CA, Niwot Ridge, CO and Howland, MA). The current results from the WA site show that soils primarily display negative mass dependent fractionation for the even isotopes (MDF, reported as δ202Hg) with values for δ202Hg of up to -2.0‰. Significant MIF for both odd isotopes is also observed in all WA soil samples and Δ199Hg is mostly negative (up to -0.4‰). No MIF on 200Hg is observed in these soils. The negative Δ199Hg in soils is inconsistent with the positive Δ199Hg reported in atmospheric wet deposition, suggesting that either Hg transformations within or on the surface of soils and/or plants alter its isotope composition after deposition or other types of Hg deposition (e.g., Hg(0) or Hg(II) dry deposition) is more predominant. The Δ199Hg/Δ201Hg ratio is close to 1 in the soils, which is consistent with the results of laboratory photochemical reduction of inorganic Hg

  16. A New Trapped Ion Clock Based on Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, S.; Burt, E. A.; Lea, S. N.; Prestage, J. D.; Tjoelker, R. L.

    2009-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave clock: Hg-199(+) and Hg-201(+). Virtually all trapped mercury ion clocks to date have used the 199 isotope. We have begun to investigate the viability of a trapped ion clock based on Hg-201(+). We have measured the unperturbed frequency of the (S-2)(sub 1/2) F = 1, m(sub F) = 0 to (S-2)(sub 1/2) F = 2, m(sub F) = 0 clock transition to be 29.9543658211(2) GHz. In this paper we describe initial measurements with Hg-201(+) and new applications to clocks and fundamental physics.

  17. Methylmercury (MeHg)

    Integrated Risk Information System (IRIS)

    Methylmercury ( MeHg ) ; CASRN 22967 - 92 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  18. Method of preparing mercury with an arbitrary isotopic distribution

    DOEpatents

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  19. Method of preparing mercury with an arbitrary isotopic distribution

    DOEpatents

    Grossman, Mark W.; George, William A.

    1986-01-01

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.

  20. Mercury methylation rates for geochemically relevant Hg(II) species in sediments.

    PubMed

    Jonsson, Sofi; Skyllberg, Ulf; Nilsson, Mats B; Westlund, Per-Olof; Shchukarev, Andrey; Lundberg, Erik; Björn, Erik

    2012-11-06

    Monomethylmercury (MeHg) in fish from freshwater, estuarine, and marine environments is a major global environmental issue. Mercury levels in biota are mainly controlled by the methylation of inorganic mercuric mercury (Hg(II)) to MeHg in water, sediments, and soils. There is, however, a knowledge gap concerning the mechanisms and rates of methylation of specific geochemical Hg(II) species. Such information is crucial for a better understanding of variations in MeHg concentrations among ecosystems and, in particular, for predicting the outcome of currently proposed measures to mitigate mercury emissions and reduce MeHg concentrations in fish. To fill this knowledge gap we propose an experimental approach using Hg(II) isotope tracers, with defined and geochemically important adsorbed and solid Hg(II) forms in sediments, to study MeHg formation. We report Hg(II) methylation rate constants, k(m), in estuarine sediments which span over 2 orders of magnitude depending on chemical form of added tracer: metacinnabar (β-(201)HgS(s)) < cinnabar (α-(199)HgS(s)) < Hg(II) reacted with mackinawite (≡FeS-(202)Hg(II)) < Hg(II) bonded to natural organic matter (NOM-(196)Hg(II)) < a typical aqueous tracer ((198)Hg(NO(3))(2)(aq)). We conclude that a combination of thermodynamic and kinetic effects of Hg(II) solid-phase dissolution and surface desorption control the Hg(II) methylation rate in sediments and cause the large observed differences in k(m)-values. The selection of relevant solid-phase and surface-adsorbed Hg(II) tracers will therefore be crucial to achieving biogeochemically accurate estimates of ambient Hg(II) methylation rates.

  1. Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain

    USGS Publications Warehouse

    Gray, John E.; Pribil, Michael J.; Higueras, Pablo L.

    2013-01-01

    Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg0(L)), and elemental Hg gas (Hg0(g)), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg varied from − 0.92 to 0.15‰ (mean of − 0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier and δ202Hg ranged from − 0.03‰ to 1.01‰ (mean of 0.43‰, σ = 0.44‰, n = 8). The average δ202Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass dependent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation of products generated during retorting such as calcine, Hg0(L), and Hg0(g). Calcine and Hg0(L) generated during these retorting experiments showed an enrichment in δ202Hg of as much as 1.90‰ and 0.67‰, respectively, compared to the original cinnabar ore. The δ202Hg for Hg0(g) generated during the retorting experiments was as much as 1.16‰ isotopically lighter compared to cinnabar, thus, when cinnabar ore was roasted, the resultant calcines formed were isotopically heavier, whereas the Hg0(g) generated was isotopically lighter in Hg isotopes.

  2. Hg(+) Frequency Standards

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.

  3. THE DEVELOPMENT OF A PREDICTIVE TOLL USING LARGEMOUTH BASS (MICROPTERUS SALMOIDES) SCALES TO ESTIMATE MERCURY (HG) CONCENTRATIONS AND STABLE-NITROGEN (15N/14N) ISOTOPE RATIOS IN FISH MUSCLE TISSUE

    EPA Science Inventory

    Knowledge of the trophic structure of biota in aquatic sites offers potential for the construction of models to allow the prediction of contaminant bioaccumulation. Measurements of trophic position have been conducted using stable-nitrogen isotope ratios ( 15N) measured in fish m...

  4. Differing foraging strategies influence mercury (Hg) exposure in an Antarctic penguin community.

    PubMed

    Polito, Michael J; Brasso, Rebecka L; Trivelpiece, Wayne Z; Karnovsky, Nina; Patterson, William P; Emslie, Steven D

    2016-11-01

    Seabirds are ideal model organisms to track mercury (Hg) through marine food webs as they are long-lived, broadly distributed, and are susceptible to biomagnification due to foraging at relatively high trophic levels. However, using these species as biomonitors requires a solid understanding of the degree of species, sexual and age-specific variation in foraging behaviors which act to mediate their dietary exposure to Hg. We combined stomach content analysis along with Hg and stable isotope analyses of blood, feathers and common prey items to help explain inter and intra-specific patterns of dietary Hg exposure across three sympatric Pygoscelis penguin species commonly used as biomonitors of Hg availability in the Antarctic marine ecosystem. We found that penguin tissue Hg concentrations differed across species, between adults and juveniles, but not between sexes. While all three penguins species diets were dominated by Antarctic krill (Euphausia superba) and to a lesser extent fish, stable isotope based proxies of relative trophic level and krill consumption could not by itself sufficiently explain the observed patterns of inter and intra-specific variation in Hg. However, integrating isotopic approaches with stomach content analysis allowed us to identify the relatively higher risk of Hg exposure for penguins foraging on mesopelagic prey relative to congeners targeting epipelagic or benthic prey species. When possible, future seabird biomonitoring studies should seek to combine isotopic approaches with other, independent measures of foraging behavior to better account for the confounding effects of inter and intra-specific variation on dietary Hg exposure.

  5. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China.

    PubMed

    Tang, Shunlin; Feng, Chaohui; Feng, Xinbin; Zhu, Jianming; Sun, Ruoyu; Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua; Zhou, Ting

    2017-04-15

    Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ(202)Hg=-2.04±0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7-2.6‰ in δ(202)Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  6. Hg-Mask Coronagraph

    NASA Astrophysics Data System (ADS)

    Bourget, P.; Veiga, C. H.; Vieira Martins, R.; Assus, P.; Colas, F.

    In order to optimize the occulting process of a Lyot coronagraph and to provide a high dynamic range imaging, a new kind of occulting disk has been developed at the National Observatory of Rio de Janeiro. A mercury (Hg) drop glued onto an optical window by molecular cohesion and compressed by a pellicle film is used as the occulting disk. The minimum of the superficial tension potential function provides an optical precision (lambda/100) of the toric free surface of the mercury. This process provides a size control for the adaptation to the seeing conditions and to the apparent diameter of a resolved object, and in the case of adaptive optics, to the Airy diameter fraction needed. The occultation is a three dimensional process near the focal plane on the toric free surface that provides an apodization of the occultation. The Hg-Mask coronagraph has been projected for astrometric observations of faint satellites near to Jovian planets and works since 2000 at the 1.6 m telescope of the Pico dos Dias Observatory (OPD - Brazil).

  7. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    NASA Astrophysics Data System (ADS)

    Drott, A.; Skyllberg, U.

    2007-12-01

    Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (p<0.001) positive relationship between the experimentally determined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg

  8. Nuclear structure from radioactive decay. Annual progress report. [School of Physics, Georgia Inst. of Technology, Atlanta

    SciTech Connect

    Wood, J L

    1980-10-31

    Neutron-deficient nuclei around the Z-82 shell closure were studied, with special emphasis on the levels of the odd-mass Pt, Au, Hg, and Tl isotopes. References to publications reporting completed work are given. (RWR)

  9. Just passing through --- high Hg deposition to Puerto Rico forest moves quickly off the landscape

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Willenbring, J. K.; Kaste, J. M.; Occhi, M.; McDowell, W. H.

    2012-12-01

    Atmospheric mercury (Hg) in wet deposition at the Luquillo Experimental Forest in northeastern Puerto Rico, averages 28 μg m-2 yr-1, higher than any site in the USA Mercury Deposition Network. Despite the high deposition, Hg content of soils, vegetation, and biota are below global averages. The low Hg content of watershed surfaces, coupled with exceptionally high stream total Hg flux, suggest that most of the Hg passes through the watershed with minimal retention. We assessed Hg dynamics in two adjacent watersheds, Rio Icacos underlain by quartz diorite, and Rio Mameyes underlain by volcaniclastic rocks. At both sites, high-flow Hg concentrations approached 100 ng L-1, dominated by particulate Hg. In order to assess the apparent pass-through nature of Hg in this tropical forest, we measured 7Be and 10Be isotopes from natural, cosmogenic fallout adsorbed on stream suspended particles to constrain the Hg age /residence time and source (atmospheric vs. geogenic or legacy Hg from 19th century gold mining). Ubiquitous 7Be (half-life 53 days) and relatively high 7Be/10Be ratios on suspended particles suggest that stream Hg was dominated by erosion from exposed surfaces, supporting a short residence time. The low watershed retention of the high Hg throughput limits adverse biological effects in this tropical ecosystem.

  10. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

    PubMed

    Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G

    2014-07-01

    Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of δ(202)Hg, Δ(199)Hg or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).

  11. Mercury Isotopic Evidence for Contrasting Mercury Transport Pathways to Coastal versus Open Ocean Fisheries (Invited)

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Senn, D. B.; Chesney, E. J.; Bank, M. S.; Maage, A.; Shine, J. P.

    2009-12-01

    Mercury stable isotopes provide a new method for tracing the sources and chemical transformations of Hg in the environment. In this study we used Hg isotopes to investigate Hg sources to coastal versus migratory open-ocean species of fish residing in the northern Gulf of Mexico (nGOM). We report Hg isotope ratios as δ202Hg (mass dependent fractionation relative to NIST 3133) and Δ201Hg (mass independent fractionation of odd isotopes). In six coastal and two open ocean species (blackfin and yellowfin tuna), Hg isotopic compositions fell into two non-overlapping ranges. The tuna had significantly higher δ202Hg (0.1 to 0.7‰) and Δ201Hg (1.0 to 2.2‰) than the coastal fish (δ202Hg = 0 to -1.0‰; Δ201Hg = 0.4 to 0.5‰). The observations can be best explained by largely disconnected food webs with isotopically distinct MeHg sources. The ratio Δ199Hg/Δ201Hg in nGOM fish is 1.30±0.10 which is consistent with laboratory studies of photochemical MeHg degradation and with ratios measured in freshwater fish (Bergquist and Blum, 2007). The magnitude of mass independent fractionation of Hg in the open-ocean fish suggests that this source of MeHg was subjected to extensive photodegradation (~50%) before entering the base of the open-ocean food web. Given the Mississippi River’s large, productive footprint in the nGOM and the potential for exporting prey and MeHg to the adjacent oligotrophic GOM, the different MeHg sources are noteworthy and consistent with recent evidence in other systems of important open-ocean MeHg sources. Bergquist, B. A. and Blum, J. D., 2007. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318, 417-420.

  12. Mercury Stable Isotopic Composition of Monomethylmercury in Estuarine Sediments and Pure Cultures of Mercury Methylating Bacteria

    NASA Astrophysics Data System (ADS)

    Janssen, S.; Johnson, M. W.; Barkay, T.; Blum, J. D.; Reinfelder, J. R.

    2014-12-01

    Tracking monomethylmercury (MeHg) from its source in soils and sediments through various environmental compartments and transformations is critical to understanding its accumulation in aquatic and terrestrial food webs. Advances in the field of mercury (Hg) stable isotopes have allowed for the tracking of discrete Hg sources and the examination of photochemical and bacterial transformations. Despite analytical advances, measuring the Hg stable isotopic signature of MeHg in environmental samples or laboratory experiments remains challenging due to difficulties in the quantitative separation of MeHg from complex matrices with high concentrations of inorganic Hg. To address these challenges, we have developed a MeHg isolation method for sediments and bacterial cultures which involves separation by gas chromatography. The MeHg eluting from the GC is passed through a pyrolysis column and purged onto a gold amalgam trap which is then desorbed into a final oxidizing solution. A MeHg reference standard carried through our separation process retained its isotopic composition within 0.02 ‰ for δ202Hg, and for native estuarine sediments, MeHg recoveries were 80% to 100%. For sediment samples from the Hackensack and Passaic Rivers (New Jersey, USA), δ202Hg values for MeHg varied from -1.2 to +0.58 ‰ (relative to SRM 3133) and for individual samples were significantly different from that of total Hg (-0.38 ± 0.06 ‰). No mass independent fractionation was observed in MeHg or total Hg from these sediments. Pure cultures of Geobacter sulfurreducens, grown under fermentative conditions showed preferential enrichment of lighter isotopes (lower δ202Hg) during Hg methylation. The Hg stable isotope signatures of MeHg in sediments and laboratory methylation experiments will be discussed in the context of the formation and degradation of MeHg in the environment and the bioaccumulation of MeHg in estuarine food webs.

  13. Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources.

    PubMed

    Wiederhold, Jan G; Skyllberg, Ulf; Drott, Andreas; Jiskra, Martin; Jonsson, Sofi; Björn, Erik; Bourdon, Bernard; Kretzschmar, Ruben

    2015-01-06

    Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) may cause characteristic isotope signatures of different mercury (Hg) sources and help understand transformation processes at contaminated sites. Here, we present Hg isotope data of sediments collected near industrial pollution sources in Sweden contaminated with elemental liquid Hg (mainly chlor-alkali industry) or phenyl-Hg (paper industry). The sediments exhibited a wide range of total Hg concentrations from 0.86 to 99 μg g(-1), consisting dominantly of organically-bound Hg and smaller amounts of sulfide-bound Hg. The three phenyl-Hg sites showed very similar Hg isotope signatures (MDF δ(202)Hg: -0.2‰ to -0.5‰; MIF Δ(199)Hg: -0.05‰ to -0.10‰). In contrast, the four sites contaminated with elemental Hg displayed much greater variations (δ(202)Hg: -2.1‰ to 0.6‰; Δ(199)Hg: -0.19‰ to 0.03‰) but with distinct ranges for the different sites. Sequential extractions revealed that sulfide-bound Hg was in some samples up to 1‰ heavier in δ(202)Hg than organically-bound Hg. The selectivity of the sequential extraction was tested on standard materials prepared with enriched Hg isotopes, which also allowed assessing isotope exchange between different Hg pools. Our results demonstrate that different industrial pollution sources can be distinguished on the basis of Hg isotope signatures, which may additionally record fractionation processes between different Hg pools in the sediments.

  14. The Upside to Hg-DOM Associations for Water Quality: Removal of Hg from Solution Using Coagulaion with Metal-Based Salts

    NASA Astrophysics Data System (ADS)

    Henneberry, Y.; Kraus, T. E.; Fleck, J.; Krabbenhoft, D. P.; Horwath, W. R.

    2011-12-01

    This study assessed the potential use of metal-based coagulants to remove dissolved mercury (Hg) from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however those studies used high concentrations of Hg, which did not reflect naturally occurring concentrations of Hg. Filtered water collected from an agricultural drain in the Sacramento-San Joaquin Delta (Delta) was treated with three industrial-grade coagulants (ferric chloride, ferric sulfate, and polyaluminum chloride) to determine their efficacy in removing both inroganic (IHg) and methylmercury (MeHg) from the water column. The Delta suffers from elevated surface water Hg concentrations and as a result is listed as an imparied water body. Coagulants removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant concentrations. Research using isotopically labeled Hg is providing insight into whether coagulation can remove recently added Hg (e.g. atmospheric deposition) from solution and whether once formed, the floc can remove additional Hg from the water column.

  15. A new trapped ion atomic clock based on 201Hg+.

    PubMed

    Burt, Eric A; Taghavi-Larigani, Shervin; Tjoelker, Robert L

    2010-03-01

    High-resolution spectroscopy has been performed on the ground-state hyperfine transitions in trapped (201)Hg+ ions as part of a program to investigate the viability of (201)Hg+ for clock applications. Part of the spectroscopy work was directed at magnetic-field-sensitive hyperfine lines with delta m(F) = 0, which allow accurate Doppler-free measurement of the magnetic field experienced by the trapped ions. Although it is possible to measure Doppler-free magnetic-field-sensitive transitions in the commonly used clock isotope, (199)Hg+, it is more difficult. In this paper, we discuss how this (199)Hg+ feature may be exploited to produce a more stable clock or one requiring less magnetic shielding in environments with magnetic field fluctuations far in excess of what is normally found in the laboratory. We have also determined that in discharge-lamp-based trapped mercury ion clocks, the optical pumping time for (201)Hg+ is about 3 times shorter than that of (199)Hg+ This can be used to reduce dead time in the interrogation cycle for these types of clocks, thereby reducing the impact of local oscillator noise aliasing effects.

  16. Mercury isotopic evidence for multiple mercury sources in coal from the Illinois basin.

    PubMed

    Lefticariu, Liliana; Blum, Joel D; Gleason, James D

    2011-02-15

    Coal combustion is the largest source of anthropogenic mercury (Hg) emissions to the atmosphere and, thus, has vast environmental implications. Recent developments in Hg stable isotope geochemistry offer a new tool for tracing sources and chemical transformations of anthropogenic Hg in the environment. We present here the first isotopic study of mercury in organic and inorganic constituents of four Pennsylvanian-age coal seams in the Illinois Basin, one of the main coal-producing areas in the USA. We report mass dependent isotopic variations relative to the NIST 3133 standard as δ(202)Hg and mass independent fractionation as Δ(199)Hg and Δ(201)Hg values. The data for Illinois coals show a wide range of δ(202)Hg (-0.75 to -2.68‰), Δ(201)Hg (0.04 to -0.22‰), and Δ(199)Hg (0.02 to -0.23‰). In contrast, vein pyrite from two coal seams is isotopically unfractionated relative to NIST 3133. Collectively, these data suggest that isotopically distinct Hg sources contributed to the organic and inorganic fractions of Illinois coals. The Δ(201)Hg/ Δ(199)Hg ratio of Illinois coals is 1:1, consistent with isotopic fractionation by photochemical reduction of Hg(2+) prior to deposition in coal-forming environments. The isotopic composition of Hg in pyrite is more likely derived from hydrothermal fluids that precipitated reduced sulfur in Illinois coal seams. These results demonstrate, for the first time, the potential of Hg isotopes to discriminate between syngenetic (depositional) and epigenetic (hydrothermal) sources of Hg in coal. Our findings may be useful in distinguishing among various geological processes controlling the distribution of Hg in coal and monitoring the fractions of Hg in emissions associated with organic versus inorganic components of coal.

  17. Natural mercury isotope variation in coal deposits and organic soils

    SciTech Connect

    Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie

    2008-11-15

    There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

  18. Final Project Report: "Exploratory Research: Mercury Stable Isotopes as Indicators of the Biogeochemical Cycling of Mercury"

    SciTech Connect

    Johnson, Thomas M

    2012-08-01

    This is the final project report for award DE-SC0005351, which supported the research project "Exploratory Research: Mercury Stable Isotopes as Indicators of the Biogeochemical Cycling of Mercury. "This exploratory project investigated the use of mercury (Hg) stable isotope measurements as a new approach to study how Hg moves and changes its chemical form in environmental systems, with particular focus on the East Fork of Poplar Creek (EFPC) near the DOE Y-12 plant (a Hg contamination source). This study developed analytical methods and collected pilot data that have set the stage for more detailed studies and have begun to provide insights into Hg movement and chemical changes. The overall Hg stable isotope approach was effective. The Hg isotope analysis methods yielded high-precision measurements of the sediment, water, and fish samples analyzed; quality control measures demonstrated the precision. The pilot data show that the 202Hg/198Hg, 199Hg/198Hg, and 201Hg/198Hg isotope ratios vary in this system. 202Hg/198Hg ratios of the Hg released from the Y-12 plant are relatively high, and those of the regional Hg background in soils and river sediments are significantly lower. Unfortunately, 202Hg/198Hg differences that might have been useful to distinguish early Hg releases from later releases were not observed. However, 202Hg/198Hg ratios in sediments do provide insights into chemical transformations that may occur as Hg moves through the system. Furthermore, 199Hg/198Hg and 201Hg/198Hg ratio analyses of fish tissues indicate that the effects of sunlight-driven chemical reactions on the Hg that eventually ends up in EFPC fish are measureable, but small. These results provide a starting point for a more detailed study (already begun at Univ. of Michigan) that will continue Hg isotope ratio work aimed at improving understanding of how Hg moves, changes chemically, and does or does not take on more highly toxic forms in the Oak Ridge area. This work also benefits

  19. Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume

    NASA Astrophysics Data System (ADS)

    Das, R.; Odom, A. L.

    2007-12-01

    Mercury is long known as a common environmental contaminant. In methylated form it is even more toxic and the methylation process is facilitated by microbial activities. Methyl mercury easily crosses cell membrane and accumulates in soft tissues of fishes and finally biomagnifies with increasing trophic levels. Natural variations in the isotopic composition of mercury have been reported and such variations have emphasized mass dependent fractionations, while theory and laboratory experiments indicate that mass-independent isotopic fractionation (MIF) effects are likely to be found as well. This study focuses on the MIF of mercury isotopes in the soft tissues of fishes. Samples include both fresh water and marine fish, from different continents and oceans. Approximately 1 gm of fish soft tissue was dissolved in 5 ml of conc. aqua regia for 24 hrs and filtered through a ¬¬¬100 μm filter paper and diluted with DI water. Hg is measured as a gaseous phase generated by reduction of the sample with SnCl2 in a continuous- flow cold-vapor generator connected to a Thermo-Finnigan Neptune MC-ICPMS. To minimize instrumental fractionation isotope ratios were measured by sample standard bracketing and reported as δ‰ relative to NIST SRM 3133 Hg standard where δAHg = [(A Hg/202Hg)sample/(A Hg/202Hg)NIST313] -1 ×1000‰. In this study we have measured the isotope ratios 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg and 204Hg/202Hg. In all the fish samples δ198Hg, δ200Hg, δ202Hg, δ204Hg define a mass- dependent fractionation sequence, where as the δ199Hg and δ201Hg depart from the mass- dependent fractionation line and indicate an excess of the odd-N isotopes. The magnitude of the deviation (ΔAHg where A=199 or 201) as obtained by difference between the measured δ199Hg and δ201Hg of the samples and the value obtained by linear scaling defined by the even-N isotopes ranges from approximately 0.2 ‰ to 3‰. The ratios of Δ199Hg /Δ201Hg range from 0.8 to 1

  20. Historical variations of mercury stable isotope ratios in Arctic glacier firn and ice cores

    NASA Astrophysics Data System (ADS)

    Zdanowicz, C. M.; Krümmel, E. M.; Poulain, A. J.; Yumvihoze, E.; Chen, J.; Å trok, M.; Scheer, M.; Hintelmann, H.

    2016-09-01

    The concentration and isotopic composition of mercury (Hg) were determined in glacier core samples from Canadian Arctic ice caps dating from preindustrial to recent time (early 21st century). Mean Hg levels increased from ≤ 0.2 ng L-1 in preindustrial time to ~0.8-1.2 ng L-1 in the modern industrial era (last ~200 years). Hg accumulated on Arctic ice caps has Δ199Hg and Δ201Hg that are higher (~ -1 to 2.9‰) than previously reported for Arctic snow impacted by atmospheric Hg depletion events (mostly < -1‰), suggesting that these events contribute little to Hg accumulation on ice caps. The range of δ202Hg, Δ199Hg, and Δ201Hg in glacier cores overlaps with that of Arctic Hg0(g) and of seawater in Baffin Bay and also with that of midlatitude precipitation and industrial Hg sources, including coal and Hg ores. A core from Agassiz ice cap (80.7°N) shows a ~ +1‰ shift in δ202Hg over the nineteenth to twentieth centuries that could reflect changes in the isotopic composition of the atmospheric Hg pool in the High Arctic in response to growing industrial emissions at lower latitudes. This study is the first ever to report on historical variations of Hg stable isotope ratios in Arctic ice cores. Results could help constrain future modeling efforts of the global Hg biogeochemical cycle and the atmosphere's response to changing Hg emissions, past and future.

  1. HgCdTe Surface and Defect Study Program.

    DTIC Science & Technology

    1986-03-01

    LPE material. Solid state regrown (SSR) material and vertical Bridgman (VB) material exhibited lower background of most elements. The many isotopes...Sci. Technol. A 1 1735 (1983). 2. K. C. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (Betterworths, London, 1974). 3. A...34HgCdTe-SiO2 Interface Structure," 1983 U.S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride, February 8-10, 1983, Dallas, Texas. 5

  2. Isotopic composition for source identification of mercury in atmospheric fine particles

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Chen, Jiubin; Huang, Weilin; Fu, Pingqing; Guinot, Benjamin; Feng, Xinbin; Shang, Lihai; Wang, Zhuhong; Wang, Zhongwei; Yuan, Shengliu; Cai, Hongming; Wei, Lianfang; Yu, Ben

    2016-09-01

    The usefulness of mercury (Hg) isotopes for tracing the sources and pathways of Hg (and its vectors) in atmospheric fine particles (PM2.5) is uncertain. Here, we measured Hg isotopic compositions in 30 potential source materials and 23 PM2.5 samples collected in four seasons from the megacity Beijing (China) and combined the seasonal variation in both mass-dependent fractionation (represented by the ratio 202Hg / 198Hg, δ202Hg) and mass-independent fractionation of isotopes with odd and even mass numbers (represented by Δ199Hg and Δ200Hg, respectively) with geochemical parameters and meteorological data to identify the sources of PM2.5-Hg and possible atmospheric particulate Hg transformation. All PM2.5 samples were highly enriched in Hg and other heavy metals and displayed wide ranges of both δ202Hg (-2.18 to 0.51 ‰) and Δ199Hg (-0.53 to 0.57 ‰), as well as small positive Δ200Hg (0.02 to 0.17 ‰). The results indicated that the seasonal variation in Hg isotopic composition (and elemental concentrations) was likely derived from variable contributions from anthropogenic sources, with continuous input due to industrial activities (e.g., smelting, cement production and coal combustion) in all seasons, whereas coal combustion dominated in winter and biomass burning mainly found in autumn. The more positive Δ199Hg of PM2.5-Hg in spring and early summer was likely derived from long-range-transported Hg that had undergone extensive photochemical reduction. The study demonstrated that Hg isotopes may be potentially used for tracing the sources of particulate Hg and its vectors in the atmosphere.

  3. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer.

    PubMed

    Ribeiro Guevara, Sergio; Zizek, Suzana; Repinc, Urska; Pérez Catán, Soledad; Jaćimović, Radojko; Horvat, Milena

    2007-03-01

    Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T1/2=2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T1/2=46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold

  4. A review of isotopic composition as an indicator of the natural and anthropogenic behavior of mercury

    USGS Publications Warehouse

    Ridley, W.I.; Stetson, S.J.

    2006-01-01

    There are seven stable isotopes of Hg that can be fractionated as a result of inorganic and organic interactions. Important inorganic reactions involve speciation changes resulting from variations in environmental redox conditions, and phase changes resulting from variations in temperature and/or atmospheric pressure. Important organic reactions include methylation and demethylation, reactions that are bacterially mediated, and complexing with organic anions in soils. The measurement of Hg isotopes by multi-collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) is now sufficiently precise and sensitive that it is potentially possible to develop the systematics of Hg isotopic fractionation. This provides an opportunity to evaluate the utility of Hg isotopes in identifying source processes, transport mechanisms, and sinks. New values are provided for, 201Hg/198Hg, 200Hg/198Hg, 199Hg/198Hg for three standard materials (IRMM-AE639, SRM 1641c, SRM 3133) that can be used to make inter-laboratory data comparisons, and these values are tabulated with published isotopic information. Overall, the isotopic data for these standards agree to approximately 0.2???. The paper reviews Hg isotope studies that deal with hydrothermal ore deposits, sediments, coal and organic complexing. ?? 2006 Elsevier Ltd. All rights reserved.

  5. Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds.

    PubMed

    Zheng, Wang; Hintelmann, Holger

    2010-04-01

    Photochemical reduction of Hg(II) by various low-molecular-weight organic compounds (LMWOC) was investigated to evaluate the effect of specific functional groups that are typically encountered in natural dissolved organic matters (DOM) on the photoreactivity and isotope fractionation of Hg. LMWOC with reduced sulfur functional groups (e.g., cysteine, glutathione) resulted in slower photochemical reduction of Hg(II) than those without reduced sulfur groups (e.g., serine, oxalic acid). Reduction rate constants were specifically determined for two contrasting LMWOC: dl-serine (0.640 h(-1)) and l-cysteine (0.047 h(-1)). Different mass independent isotope effects of Hg were induced by the two types of LMWOC. S-containing ligands specifically enriched magnetic isotopes ((199)Hg and (201)Hg) in the product (Hg(0)) while sulfurless ligands enriched (199)Hg and (201)Hg in the reactant (Hg(II)), suggesting that opposite magnetic isotope effects were produced by different types of ligands. The nuclear field shift effect was also observed in the photochemical reduction by serine. These isotope effects are related to specific functional groups and reduction mechanisms, and may be used to distinguish between primary and secondary photochemical reduction mechanisms of Hg(II) and to explain isotope fractionation during the photochemical reduction of Hg(II) by natural DOM, which provides mixed bonding conditions.

  6. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle

    NASA Astrophysics Data System (ADS)

    Demers, Jason D.; Blum, Joel D.; Zak, Donald R.

    2013-01-01

    ABSTRACT Forests mediate the biogeochemical cycling of mercury (Hg) between the atmosphere and terrestrial ecosystems; however, there remain many gaps in our understanding of these processes. Our objectives in this study were to characterize Hg isotopic composition within forests, and use natural abundance stable Hg isotopes to track sources and reveal mechanisms underlying the cycling of Hg. We quantified the stable Hg isotopic composition of foliage, forest floor, mineral soil, precipitation, and total gaseous mercury (THg(g)) in the atmosphere and in evasion from soil, in 10-year-old aspen forests at the Rhinelander FACE experiment in northeastern Wisconsin, USA. The effect of increased atmospheric CO2 and O3 concentrations on Hg isotopic composition was small relative to differences among forest ecosystem components. Precipitation samples had δ202Hg values of -0.74 to 0.06‰ and ∆199Hg values of 0.16 to 0.82‰. Atmospheric THg(g) had δ202Hg values of 0.48 to 0.93‰ and ∆199Hg values of -0.21 to -0.15‰. Uptake of THg(g) by foliage resulted in a large (-2.89‰) shift in δ202Hg values; foliage displayed δ202Hg values of -2.53 to -1.89‰ and ∆199Hg values of -0.37 to -0.23‰. Forest floor samples had δ202Hg values of -1.88 to -1.22‰ and ∆199Hg values of -0.22 to -0.14‰. Mercury isotopes distinguished geogenic sources of Hg and atmospheric derived sources of Hg in soil, and showed that precipitation Hg only accounted for ~16% of atmospheric Hg inputs. The isotopic composition of Hg evasion from the forest floor was similar to atmospheric THg(g); however, there were systematic differences in δ202Hg values and MIF of even isotopes (∆200Hg and ∆204Hg). Mercury evasion from the forest floor may have arisen from air-surface exchange of atmospheric THg(g), but was not the emission of legacy Hg from soils, nor re-emission of wet-deposition. This implies that there was net atmospheric THg(g) deposition to the forest soils. Furthermore, MDF of

  7. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity

    USGS Publications Warehouse

    Kwon, Sae Yun; Blum, Joel D.; Carvan, Michael J.; Basu, Niladri; Head, Jessica A.; Madenjian, Charles P.; David, Solomon R.

    2012-01-01

    We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on unamended food pellets (0.1 μg/g MeHg) or was switched to food pellets with 1.0 μg/g or 4.0 μg/g of added MeHg, for a period of 2 months. The difference in δ202Hg (MDF) and Δ199Hg (MIF) between fish tissues and food pellets with added MeHg was within the analytical uncertainty (δ202Hg, 0.07 ‰; Δ199Hg, 0.06 ‰), indicating no isotope fractionation. In experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ202Hg and Δ199Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting reequilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems.

  8. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity.

    PubMed

    Kwon, Sae Yun; Blum, Joel D; Carvan, Michael J; Basu, Niladri; Head, Jessica A; Madenjian, Charles P; David, Solomon R

    2012-07-17

    We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on unamended food pellets (0.1 μg/g MeHg) or was switched to food pellets with 1.0 μg/g or 4.0 μg/g of added MeHg, for a period of 2 months. The difference in δ(202)Hg (MDF) and Δ(199)Hg (MIF) between fish tissues and food pellets with added MeHg was within the analytical uncertainty (δ(202)Hg, 0.07 ‰; Δ(199)Hg, 0.06 ‰), indicating no isotope fractionation. In experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ(202)Hg and Δ(199)Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting reequilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems.

  9. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)

    NASA Astrophysics Data System (ADS)

    Zambardi, T.; Sonke, J. E.; Toutain, J. P.; Sortino, F.; Shinohara, H.

    2009-01-01

    Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed gaseous fumarole Hg (fum)T, plume gaseous elemental Hg (g)0 and plume particulate Hg (p)II were obtained at fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on Hg T/SO 2 in condensed fumarolic gases and plumes, range from 2.5 to 10.1 kg y - 1 , in agreement with published values [Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Sci. Total Environ. 259(1-3), 115-121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO 2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg (p)II increases with distance from the fumarole vent, at the expense of Hg (g)0 and indicates significant in-plume oxidation and condensation of fumarole Hg (fum)T. Relative to the NIST SRM 3133 Hg standard, the stable isotopic compositions of Hg are δ 202Hg (fum)T = - 0.74‰ ± 0.18 (2SD, n = 4) for condensed gaseous fumarole Hg (fum)T, δ 202Hg (g)0 = - 1.74‰ ± 0.36 (2SD, n = 1) for plume gaseous elemental Hg (g)0 at the F0 fumarole, and δ 202Hg (p)II = - 0.11‰ ± 0.18 (2SD, n = 4) for plume particulate Hg (p)II. The enrichment of Hg (p)II in the heavy isotopes and Hg (g)0 in the light isotopes relative to the total condensed fumarolic Hg (fum)T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas expulsion in ambient T° atmosphere. A first order Rayleigh equilibrium condensation isotope fractionation model yields a fractionation factor α cond-gas of 1.00135 ± 0.00058.

  10. Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation.

    PubMed

    Yu, Ben; Fu, Xuewu; Yin, Runsheng; Zhang, Hui; Wang, Xun; Lin, Che-Jen; Wu, Chuansheng; Zhang, Yiping; He, Nannan; Fu, Pingqing; Wang, Zifa; Shang, Lihai; Sommar, Jonas; Sonke, Jeroen E; Maurice, Laurence; Guinot, Benjamin; Feng, Xinbin

    2016-09-06

    The isotopic composition of atmospheric total gaseous mercury (TGM) and particle-bound mercury (PBM) and mercury (Hg) in litterfall samples have been determined at urban/industrialized and rural sites distributed over mainland China for identifying Hg sources and transformation processes. TGM and PBM near anthropogenic emission sources display negative δ(202)Hg and near-zero Δ(199)Hg in contrast to relatively positive δ(202)Hg and negative Δ(199)Hg observed in remote regions, suggesting that different sources and atmospheric processes force the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) in the air samples. Both MDF and MIF occur during the uptake of atmospheric Hg by plants, resulting in negative δ(202)Hg and Δ(199)Hg observed in litter-bound Hg. The linear regression resulting from the scatter plot relating the δ(202)Hg to Δ(199)Hg data in the TGM samples indicates distinct anthropogenic or natural influences at the three study sites. A similar trend was also observed for Hg accumulated in broadleaved deciduous forest foliage grown in areas influenced by anthropogenic emissions. The relatively negative MIF in litter-bound Hg compared to TGM is likely a result of the photochemical reactions of Hg(2+) in foliage. This study demonstrates the diagnostic stable Hg isotopic composition characteristics for separating atmospheric Hg of different source origins in China and provides the isotopic fractionation clues for the study of Hg bioaccumulation.

  11. Packed bed reactor for photochemical .sup.196 Hg isotope separation

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

  12. Microscopic description of fission in nobelium isotopes with the Gogny-D1M energy density functional

    NASA Astrophysics Data System (ADS)

    Rodríguez-Guzmán, R.; Robledo, L. M.

    2016-11-01

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in the isotopes 250-260No . The even-even isotopes have been considered within the standard Hartree-Fock-Bogoliobov (HFB) framework while for the odd-mass ones the Equal Filling Approximation (HFB-EFA) has been employed. Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, inner and outer barrier heights as well as fission isomer excitation energies are given. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the systematic of the spontaneous fission half-lives t_SF both for even-even and odd-mass nuclei. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account within the self-consistent HFB-EFA blocking procedure, lead to larger t_SF values in odd-mass nuclei as compared with their even-even neighbors. Alpha decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula. The high quality of the Gogny-D1M functional regarding nuclear masses leads to a very good reproduction of Q_{α} values and consequently of lifetimes.

  13. Four new HgMn stars: HD 18104, HD 30085, HD 32867, and HD 53588

    NASA Astrophysics Data System (ADS)

    Monier, R.; Gebran, M.; Royer, F.

    2015-05-01

    Context. We have discovered four new HgMn stars while monitoring a sample of apparently slowly rotating superficially normal bright late-B and early-A stars in the northern hemisphere. Aims: Important classification lines of Hg ii and Mn ii are found as conspicuous features in the high resolution SOPHIE spectra of these stars (R = 75 000). Methods: Several lines of Hg ii, Mn ii and Fe ii were synthesized using model atmospheres and the spectrum synthesis code SYNSPEC48, including hyperfine structure of various isotopes when relevant. These synthetic spectra were compared to high-resolution observations of these stars that have a high signal-to-noise ratio to derive abundances of these key elements. Results: The four stars are found to have distinct enhancements of Hg and Mn, which shows that they are not superficially normal B and A stars, but are new HgMn stars and need to be reclassified as such.

  14. Isotopic study of mercury sources and transfer between a freshwater lake and adjacent forest food web.

    PubMed

    Kwon, Sae Yun; Blum, Joel D; Nadelhoffer, Knute J; Timothy Dvonch, J; Tsui, Martin Tsz-Ki

    2015-11-01

    Studies of monomethylmercury (MMHg) sources and biogeochemical pathways have been extensive in aquatic ecosystems, but limited in forest ecosystems. Increasing evidence suggests that there is significant mercury (Hg) exchange between aquatic and forest ecosystems. We use Hg stable isotope ratios (δ(202)Hg and Δ(199)Hg) to investigate the relative importance of MMHg sources and assess Hg transfer pathways between Douglas Lake and adjacent forests located at the University of Michigan Biological Station, USA. We characterize Hg isotopic compositions of basal resources and use linear regression of % MMHg versus δ(202)Hg and Δ(199)Hg to estimate Hg isotope values for inorganic mercury (IHg) and MMHg in the aquatic and adjacent forest food webs. In the aquatic ecosystem, we found that lake sediment represents a mixture of IHg pools deposited via watershed runoff and precipitation. The δ(202)Hg and Δ(199)Hg values estimated for IHg are consistent with other studies that measured forest floor in temperate forests. The Δ(199)Hg value estimated for MMHg in the aquatic food web indicates that MMHg is subjected to ~20% photochemical degradation prior to bioaccumulation. In the forest ecosystem, we found a significant negative relationship between total Hg and δ(202)Hg and Δ(199)Hg of soil collected at multiple distances from the lakeshore and lake sediment. This suggests that IHg input from watershed runoff provides an important Hg transfer pathway between the forest and aquatic ecosystems. We measured Δ(199)Hg values for high trophic level insects and compared these insects at multiple distances perpendicular to the lake shoreline. The Δ(199)Hg values correspond to the % canopy cover suggesting that forest MMHg is subjected to varying extents of photochemical degradation and the extent may be controlled by sunlight. Our study demonstrates that the use of Hg isotopes adds important new insight into the relative importance of MMHg sources and complex Hg transfer

  15. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China.

    PubMed

    Yin, Runsheng; Feng, Xinbin; Meng, Bo

    2013-03-05

    To study the sources and transformations of Hg in the rice plant ( Oryza sativa L.), stable Hg isotope variations in different tissues (foliage, root, stem, and seed) of rice which were collected from the Wanshan mercury mine (WSMM, Guizhou province, SW China) were investigated by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). In comparison, Hg isotope compositions of paddy soil, lichen, and direct ambient air samples in WSMM were also analyzed. We observed that mass dependent fractionation (MDF) of Hg differed by up to ∼ 3.0‰ in δ(202)Hg values and that mass independent fractionation (MIF) of Hg isotopes affected the odd Hg isotopes to produce a ∼ 0.40‰ range in Δ(199)Hg (and Δ(201)Hg) values in tissues of rice plant. The 1:1 Δ(199)Hg/Δ(201)Hg ratio in tissues of rice supported the hypothesis that a fraction of Hg in tissues of rice plants has undergone a photoreduction process prior to being accumulated by rice plants. We suggest that the variation of MIF represents a mixing between soil Hg and atmospheric Hg in rice plants. The estimated fraction of atmospheric Hg (f) in tissues of rice followed the trend of f leaf > f stem > f seed > f root. Finally, we demonstrated a significant MDF of >1.0‰ in δ(202)Hg during the processes of absorption of atmospheric Hg by leaf tissues and of absorption of soil Hg by roots. Our study demonstrated that Hg isotopes may represent an important contribution both to the study of Hg transportation in plants and to the understanding of sources of Hg contamination to critical food crops.

  16. Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures

    NASA Astrophysics Data System (ADS)

    Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben

    2014-07-01

    Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and

  17. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes

    NASA Astrophysics Data System (ADS)

    Gehrke, Gretchen E.; Blum, Joel D.; Marvin-DiPasquale, Mark

    2011-02-01

    Mercury (Hg) concentrations and isotopic compositions were examined in shallow-water surface sediment (0-2 cm) from San Francisco (SF) Bay to determine the extent to which historic Hg mining contributes to current Hg contamination in SF Bay, and to assess the use of Hg isotopes to trace sources of contamination in estuaries. Inter-tidal and wetland sediment had total Hg (Hg T) concentrations ranging from 161 to 1529 ng/g with no simple gradients of spatial variation. In contrast, inter-tidal and wetland sediment displayed a geographic gradient of δ 202Hg values, ranging from -0.30‰ in the southern-most part of SF Bay (draining the New Almaden Hg District) to -0.99‰ in the northern-most part of SF Bay near the Sacramento-San Joaquin River Delta. Similar to SF Bay inter-tidal sediment, surface sediment from the Alviso Slough channel draining into South SF Bay had a δ 202Hg value of -0.29‰, while surface sediment from the Cosumnes River and Sacramento-San Joaquin River Delta draining into north SF Bay had lower average δ 202Hg values of -0.90‰ and -0.75‰, respectively. This isotopic trend suggests that Hg-contaminated sediment from the New Almaden Hg District mixes with Hg-contaminated sediment from a low δ 202Hg source north of SF Bay. Tailings and thermally decomposed ore (calcine) from the New Idria Hg mine in the California Coast Range had average δ 202Hg values of -0.37 and +0.03‰, respectively, showing that Hg calcination fractionates Hg isotopes resulting in Hg contamination from Hg(II) mine waste products with higher δ 202Hg values than metallic Hg(0) produced from Hg mines. Thus, there is evidence for at least two distinct isotopic signals for Hg contamination in SF Bay: Hg associated with calcine waste materials at Hg mines in the Coast Range, such as New Almaden and New Idria; and Hg(0) produced from these mines and used in placer gold mines and/or in other industrial processes in the Sierra Nevada region and SF Bay area.

  18. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes

    USGS Publications Warehouse

    Gehrke, Gretchen E.; Blum, Joel D.; Marvin-DePasquale, Mark

    2011-01-01

    Mercury (Hg) concentrations and isotopic compositions were examined in shallow-water surface sediment (0–2 cm) from San Francisco (SF) Bay to determine the extent to which historic Hg mining contributes to current Hg contamination in SF Bay, and to assess the use of Hg isotopes to trace sources of contamination in estuaries. Inter-tidal and wetland sediment had total Hg (HgT) concentrations ranging from 161 to 1529 ng/g with no simple gradients of spatial variation. In contrast, inter-tidal and wetland sediment displayed a geographic gradient of δ202Hg values, ranging from -0.30% in the southern-most part of SF Bay (draining the New Almaden Hg District) to -0.99% in the northern-most part of SF Bay near the Sacramento–San Joaquin River Delta. Similar to SF Bay inter-tidal sediment, surface sediment from the Alviso Slough channel draining into South SF Bay had a δ202Hg value of -0.29%, while surface sediment from the Cosumnes River and Sacramento–San Joaquin River Delta draining into north SF Bay had lower average δ202Hg values of -0.90% and -0.75%, respectively. This isotopic trend suggests that Hg-contaminated sediment from the New Almaden Hg District mixes with Hg-contaminated sediment from a low δ202Hg source north of SF Bay. Tailings and thermally decomposed ore (calcine) from the New Idria Hg mine in the California Coast Range had average δ202Hg values of -0.37 and +0.03%, respectively, showing that Hg calcination fractionates Hg isotopes resulting in Hg contamination from Hg(II) mine waste products with higher δ202Hg values than metallic Hg(0) produced from Hg mines. Thus, there is evidence for at least two distinct isotopic signals for Hg contamination in SF Bay: Hg associated with calcine waste materials at Hg mines in the Coast Range, such as New Almaden and New Idria; and Hg(0) produced from these mines and used in placer gold mines and/or in other industrial processes in the Sierra Nevada region and SF Bay area.

  19. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    NASA Astrophysics Data System (ADS)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  20. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications.

    PubMed

    Yin, Runsheng; Feng, Xinbin; Chen, Jiubin

    2014-05-20

    Total mercury (Hg) concentrations (THg) and stable mercury isotopic compositions were measured in coal samples (n = 61) from major coal producing fields in China. The THg concentrations in coals ranged from 0.05 to 0.78 μg g(-1), with a geometric mean of 0.22 μg g(-1). Hg isotopic compositions in coals showed large variations both in mass-dependent fractionation (MDF, δ(202)Hg: -2.36 to -0.14‰) and mass-independent fractionation (MIF, Δ(199)Hg: -0.44 to +0.38‰). The MIF signatures in coals may reveal important information on the coal-forming conditions (e.g., humic and sapropelic). The Δ(199)Hg/Δ(201)Hg of ∼1 determined in coals indicated that a portion of Hg has been subjected to photoreduction process prior to being incorporated to coals. On the basis of THg, Hg isotopic signatures, and other geological factors (e.g., total ash content and total sulfur content), the potential sources of Hg in coals from different coal producing regions were estimated. The main source of Hg in coals from southwestern China and eastern part of northern China is likely geogenic Hg, whereas the source of Hg in coals from other parts of northern China is mainly biogenic Hg. Finally, we estimated that Hg emission from coal combustion in China is characterized by diagnostic Hg isotopic signatures (δ(202)Hg: ∼-0.70‰ and Δ(199)Hg: ∼-0.05‰). The present study demonstrates that Hg isotopes can serve as a tool in understanding the sources and transformation of Hg in coals and may also be used as a tracer to quantify Hg emissions from coal combustion.

  1. A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Taghavi, Shervin; Tjoelker, Robert L.

    2011-01-01

    A method has been developed for unambiguously measuring the exact magnetic field experienced by trapped mercury ions contained within an atomic clock intended for space applications. In general, atomic clocks are insensitive to external perturbations that would change the frequency at which the clocks operate. On a space platform, these perturbative effects can be much larger than they would be on the ground, especially in dealing with the magnetic field environment. The solution is to use a different isotope of mercury held within the same trap as the clock isotope. The magnetic field can be very accurately measured with a magnetic-field-sensitive atomic transition in the added isotope. Further, this measurement can be made simultaneously with normal clock operation, thereby not degrading clock performance. Instead of using a conventional magnetometer to measure ambient fields, which would necessarily be placed some distance away from the clock atoms, first order field-sensitive atomic transition frequency changes in the atoms themselves determine the variations in the magnetic field. As a result, all ambiguity over the exact field value experienced by the atoms is removed. Atoms used in atomic clocks always have an atomic transition (often referred to as the clock transition) that is sensitive to magnetic fields only in second order, and usually have one or more transitions that are first-order field sensitive. For operating parameters used in the (199)Hg(+) clock, the latter can be five orders of magnitude or more sensitive to field fluctuations than the clock transition, thereby providing an unambiguous probe of the magnetic field strength.

  2. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    SciTech Connect

    Sherman, Laura S.; Blum, Joel D.; Basu, Niladri; Rajaee, Mozhgon; Evers, David C.; Buck, David G.; Petrlik, Jindrich; DiGangi, Joseph

    2015-02-15

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ{sup 199}Hg values to Hg derived from ore deposits (mean urine Δ{sup 199}Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ{sup 199}Hg values (0.23–0.55‰, n=6) and low percentages of total Hg as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ{sup 199}Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed.

  3. Tracing mercury contamination sources in sediments using mercury isotope compositions.

    PubMed

    Feng, Xinbin; Foucher, Delphine; Hintelmann, Holger; Yan, Haiyu; He, Tianrong; Qiu, Guangle

    2010-05-01

    Mercury (Hg) isotope ratios were determined in two sediment cores collected from two adjacent reservoirs in Guizhou, China, including Hongfeng Reservoir and Baihua Reservoir. Hg isotope compositions were also analyzed in a soil sample collected from the catchment of Hongfeng Reservoir and three cinnabar samples collected from the Wanshan Hg mine. Baihua Reservoir was contaminated with runoff from Guizhou Organic Chemical Plant (GOCP) when metallic Hg was used as a catalyst to produce acetic acid. Hongfeng Reservoir, located upstream of Baihua, receives Hg from runoff and atmospheric deposition. We demonstrated that delta(202)Hg values relative to NIST 3133 of sediment in Baihua Reservoir ranging from -0.60 to -1.10 per thousand were distinctively different from those in Hongfeng Reservoir varying from -1.67 to -2.02 per thousand. While sediments from both Baihua and Hongfeng Reservoirs were characterized by mass dependent variation (MDF), only Hongfeng Reservoir sediments were characterized by mass independent variation (MIF). Moreover, by using a binary mixing model, we demonstrated the major source of Hg in sediment of Hongfeng Reservoir was from runoff due to soil erosion, which was consistent with the conclusion obtained from a previous Hg balance study. This study demonstrates Hg isotope data are valuable tracers for determining Hg contamination sources in sediments.

  4. Mercury Isotopic Composition of Young-of-Year Fish in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Gehrke, G. E.; Blum, J. D.; Slotton, D. G.; Greenfield, B. K.

    2009-12-01

    Variations in the stable isotopic composition of mercury (Hg) can provide information about sources and biogeochemical transformations of Hg in the environment. Mass-dependent fractionation of Hg isotopes, reported as δ202Hg relative to NIST 3133, has been observed during multiple processes including volatilization, diffusion, reduction and de-methylation. Large mass-independent fractionation of Hg (>0.2‰) reported as Δ199Hg, has been observed only during photochemical reduction of Hg and MeHg. In this study we analyzed the Hg isotopic composition of sediments and young (<4 months) fish from localized polyhaline habitats throughout San Francisco Bay to investigate sources of Hg to the aquatic food web and Hg cycling. Mississippi silverside have δ202Hg values ranging from -0.25 to +0.60‰, with regional variation among South and Lower South Bay (+0.10 to +0.60‰), San Pablo Bay (-0.25 to -0.03‰), and Suisun Bay (+0.13 to +0.42‰). Fish δ202Hg values roughly correlate with sediment δ202Hg values from the same sites. We suggest that each of the Guadalupe, Petaluma, and Sacaramento-San Joaquin river systems supply a distinct source of Hg to San Francisco Bay, likely associated with contaminated sediment. Mississippi silverside have Δ199Hg values ranging +0.46 to +1.55‰. Unlike the δ202Hg values, fish Δ199Hg values do not vary in a regular pattern throughout the Bay. Rather, fish from approximately one-third of sites analyzed exhibit relatively elevated Δ199Hg (> 0.8‰), possibly associated with high water clarity. In all fish analyzed, the ratio of Δ199Hg to Δ201Hg values have a narrow range of 1.19 to 1.40 (avg = 1.26 ± 0.06). These ratios in fish are consistent with laboratory studies of photochemical MeHg degradation, which yielded Δ199Hg: Δ201Hg ratios of ~1.3 (Bergquist and Blum, 2007). We suggest that Δ199Hg in fish varies with the extent of photochemical MeHg degradation prior to food web uptake. Bergquist, B. A. and Blum, J. D., 2007

  5. Exploiting Stable Mercury Isotopic Analysis to Differentiate between Mercury Sources: Gold Mining vs. Land-Use Change (Invited)

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; Adler Miserendino, R. A.; Guimarães, J. R.; Veiga, M.; Velasquez-López, P.; Lees, P. S.; Thibodeau, A. M.; Fernandez, L. E.

    2013-12-01

    In parts of the developing world, mercury (Hg) is used to extract gold by amalgamation during artisanal and small-scale gold mining (ASGM) and this can lead to contamination of downstream aquatic ecosystems. Differentiation between Hg from ASGM and from other sources of Hg, such as increased erosion from land cover and land use change (LCLUC), is challenging and has lead to heated debates over the dominant sources of elevated Hg in some ecosystems. Here, stable Hg isotopic analysis was applied in two aquatic ecosystems in South America: (1) the Amazonian aquatic ecosystem of Amapá, Brazil downstream of artisanal gold mining (AGM) and (2) the Puyango-Tumbes River ecosystem downstream of Portovelo-Zaruma, Ecuador, a large mining area where both AGM and small-scale gold mining (SGM) are in operation. The Hg isotopic analyses from Amapá, Brazil, do not support AGM as the source of elevated Hg in the downstream aquatic ecosystem. Instead, Hg isotopes are most consistent with the elevated Hg being from preferential migration of Hg from soil erosion, which is likely associated with land use change. Although soils are regarded as Hg sinks in the global Hg cycle, this work suggests that LCLUC can disrupt Hg stores with significant ecological consequences. In contrast in the Southwestern Andean region of Ecuador and Peru, analysis of Hg isotopes and other toxic metals (i.e., Pb, Zn, Cu), which are associated with the larger scale mining and cyanide used during SGM, demonstrate Hg used during gold mining is the predominant source of Hg downstream and can be traced far from the dominant mining area. Although it has been speculated that Hg from SGM in Ecuador was not that mobile or that Hg far downstream of SGM processing plants was from erosion due to LCLUC or from AGM taking place downstream, the isotopically heavy signature of Hg used during gold mining and elevated other metal concentrations were observed ~120 km downstream of Portovelo-Zaruma. Mercury isotopes appear

  6. Isotopic Composition of Gaseous Elemental Mercury in the Free Troposphere of the Pic du Midi Observatory, France.

    PubMed

    Fu, Xuewu; Marusczak, Nicolas; Wang, Xun; Gheusi, François; Sonke, Jeroen E

    2016-06-07

    Understanding the sources and transformations of mercury (Hg) in the free troposphere is a critical aspect of global Hg research. Here we present one year of observations of atmospheric Hg speciation and gaseous elemental Hg (GEM) isotopic composition at the high-altitude Pic du Midi Observatory (2860 m above sea level) in France. Biweekly integrated GEM from February 2012 to January 2013 revealed significant variations in δ(202)HgGEM (-0.04‰ to 0.52‰) but not in Δ(199)HgGEM (-0.17‰ to -0.27‰) or Δ(200)HgGEM (-0.10‰ to 0.05‰). δ(202)HgGEM was negatively correlated with CO and reflected air mass origins from Europe (high CO, low δ(202)HgGEM) and from the Atlantic Ocean (low CO, high δ(202)HgGEM). We suggest that the δ(202)HgGEM variations represent mixing of recent low δ(202)HgGEM European anthropogenic emissions with high δ(202)HgGEM northern hemispheric background GEM. In addition, Atlantic Ocean free troposphere air masses showed a positive correlation between δ(202)HgGEM and gaseous oxidized Hg (GOM) concentrations, indicative of mass-dependent Hg isotope fractionation during GEM oxidation. On the basis of atmospheric δ(202)HgGEM and speciated Hg observations, we suggest that the oceanic free troposphere is a reservoir within which GEM is readily oxidized to GOM.

  7. IBFA description of high-spin positive-parity states in Rh isotopes

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Cǎta, G.; Cutoiu, D.; Constantinescu, G.; Ivascu, M.; Zamfir, N. V.

    1985-09-01

    Properties of the odd-mass Rh isotopes are investigated in the framework of the interacting boson-fermion approximation (IBFA) model in which the odd proton movea in the 1 g{9}/{2} and 2 d{5}/{2} orbitals. Lifetimes of some high-spin positive-parity states in 99Rh obtained by the recoil-distance method with the 88Sr( 14N, 3n) reaction are also reported. Calculated excitation energies and electromagnetic properties of the high-spin positive-parity states are compared with experiment and an acceptable agreement is obtained.

  8. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  9. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation

    SciTech Connect

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.; Chen, Hongmei; Lu, Xia; Zhang, Weihua; Lin, Hui; Yu, Han-Qing; Liang, Liyuan; Sheng, Guo-Ping; Gu, Baohua

    2016-11-09

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacterium Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.

  10. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation

    DOE PAGES

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.; ...

    2016-11-09

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacteriummore » Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.« less

  11. Combined in-beam electron and {gamma}-ray spectroscopy of {sup 184,186}Hg

    SciTech Connect

    Scheck, M.; Butler, P. A.; Gaffney, L. P.; Carrol, R. J.; Cox, D.; Joss, D. T.; Herzberg, R.-D.; Page, R. D.; Papadakis, P.; Watkins, H. V.; Bree, N.; Huyse, M.; Van Duppen, P.; Grahn, T.; Greenlees, P. T.; Herzan, A.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.

    2011-03-15

    By exploiting the SAGE spectrometer a simultaneous measurement of conversion electrons and {gamma} rays emitted in the de-excitation of excited levels in the neutron-deficient nuclei {sup 184,186}Hg was performed. The light Hg isotopes under investigation were produced using the 4n channels of the fusion-evaporation reactions of {sup 40}Ar and {sup 148,150}Sm. The measured K- and L-conversion electron ratios confirmed the stretched E2 nature of several transitions of the yrast bands in {sup 184,186}Hg. Additional information on the E0 component of the 2{sub 2}{sup +}{yields}2{sub 1}{sup +} transition in {sup 186}Hg was obtained.

  12. Reporting and measurement of mass-dependent and mass-independent fractionation of mercury isotopes

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; Blum, J. D.

    2007-12-01

    Hg isotope analysis by MC-ICP-MS is an important new approach for fingerprinting Hg sources and monitoring Hg redox reactions and bioaccumulation, especially with the recent discovery of mass independent Hg isotope fractionation. Unfortunately research groups have adopted different standards, definitions of delta values, and methods of isotopic measurement. We suggest that a single standard, NIST SRM 3133, be adopted for reporting the isotopic variability of Hg isotopes. Isotope ratios should be determined by sample-standard bracketing (SSB) during analysis and reported as permil (‰) deviation from SRM 3133. For the highest precision and accuracy, a Tl internal standard along with SSB should be used to correct instrumental mass bias. Measurement routines should also include on-peak zero corrections and matching of concentration and matrix between the samples and bracketing standard. For samples that display mass-dependent fractionation (MDF), only one delta value needs to be reported (δ202/198Hg). Mass-independent fractionation (MIF) (Jackson et al., 2006; Bergquist et al., 2006; Bergquist and Blum, submitted) requires additional nomenclature, and we suggest reporting MIF as the deviation in isotope ratios from the theoretical mass dependent kinetic isotope fractionation (Δxxx/198Hg)¬. External reproducibility should be monitored by analysis of secondary standards. For studies of MDF, we use an in-house secondary standard solution made from metallic Hg mined from Almaden Spain and obtain a δ202Hg of -0.55 ±0.06‰ (2SD). For studies of MIF, we use NRCC CRM DORM-2 (dogfish muscle) and obtain a mean value of δ202Hg of +0.19 ±0.13‰ (2SD), Δ201Hg of +0.89 ±0.07‰ (2SD) , and Δ199Hg of +1.07 ±0.08‰ (2SD).

  13. Mercury stable isotopes in seabird eggs reflect a gradient from terrestrial geogenic to oceanic mercury reservoirs.

    PubMed

    Day, Rusty D; Roseneau, David G; Berail, Sylvain; Hobson, Keith A; Donard, Olivier F X; Vander Pol, Stacy S; Pugh, Rebecca S; Moors, Amanda J; Long, Stephen E; Becker, Paul R

    2012-05-15

    Elevated mercury concentrations ([Hg]) were found in Alaskan murre (Uria spp.) eggs from the coastal embayment of Norton Sound relative to insular colonies in the northern Bering Sea-Bering Strait region. Stable isotopes of Hg, carbon, and nitrogen were measured in the eggs to investigate the source of this enrichment. Lower δ(13)C values in Norton Sound eggs (-23.3‰ to -20.0‰) relative to eggs from more oceanic colonies (-20.9‰ to -18.7‰) indicated that a significant terrestrial carbon source was associated with the elevated [Hg] in Norton Sound, implicating the Yukon River and smaller Seward Peninsula watersheds as the likely Hg source. The increasing [Hg] gradient extending inshore was accompanied by strong decreasing gradients of δ(202)Hg and Δ(199)Hg in eggs, indicating lower degrees of mass-dependent (MDF) and mass-independent Hg fractionation (MIF) (respectively) in the Norton Sound food web. Negative or zero MDF and MIF signatures are typical of geological Hg sources, which suggests murres in Norton Sound integrated Hg from a more recent geological origin that has experienced a relatively limited extent of aquatic fractionation relative to more oceanic colonies. The association of low δ(202)Hg and Δ(199)Hg with elevated [Hg] and terrestrial δ(13)C values suggested that Hg stable isotopes in murre eggs effectively differentiated terrestrial/geogenic Hg sources from oceanic reservoirs.

  14. HG ion thruster component testing

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1979-01-01

    Cathodes, isolators, and vaporizers are critical components in determining the performance and lifetime of mercury ion thrusters. The results of life tests of several of these components are reported. A 30-cm thruster CIV test in a bell jar has successfully accumulated over 26,000 hours. The cathode has undergone 65 restarts during the life test without requiring any appreciable increases in starting power. Recently, all restarts have been achieved with only the 44 volt keeper supply with no change required in the starting power. Another ongoing 30-cm Hg thruster cathode test has successfully passed the 10,000 hour mark. A solid-insert, 8-cm thruster cathode has accumulated over 4,000 hours of thruster operation. All starts have been achieved without the use of a high voltage ignitor. The results of this test indicate that the solid impregnated insert is a viable neutralizer cathode for the 8-cm thruster.

  15. Isotope dilution SPME GC/MS for the determination of methylmercury in tuna fish samples.

    PubMed

    Centineo, Giuseppe; Blanco González, Elisa; García Alonso, J Ignacio; Sanz-Medel, Alfredo

    2006-01-01

    The development of a rapid, precise and accurate analytical method for the determination of methylmercury in tuna fish samples is described. The method is based on the use of isotope dilution GC/MS with electron impact ionization, a widespread technique in routine testing laboratories. A certified spike containing (202)Hg-enriched methylmercury was used for the isotope dilution of the samples. After extraction of the methylmercury from the sample, methylmercury was propylated using sodium tetrapropyl borate in SPME vials and the analytes were sampled from the headspace for 15 min. For isotope measurements, the molecular ion (MePrHg(+)) was used in the SIM mode. Five molecular ions were monitored, corresponding to the (198)Hg, (199)Hg, (200)Hg, (201)Hg and (202)Hg isotopes. The detection at masses corresponding to (198)Hg was used to correct for m + 1 contributions of (13)C from the organic groups attached to the mercury atom on the (199)Hg, (200)Hg, (201)Hg and (202)Hg masses with simple mathematical equations, and the concentration of methylmercury was calculated on the basis of the corrected (200)Hg/(202)Hg isotope ratio. The (202)Hg-enriched methylmercury spike was applied, with satisfactory results, to the determination of methylmercury in the certified reference material BCR 464. The method was successfully applied to the determination of methylmercury in tuna fish samples, and the obtained results were included in the CCQM-P39 interlaboratory exercise, organized by the Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) with excellent agreement between our results and the average obtained by the other participants.

  16. Intruder states of the odd-mass N=27 isotones

    NASA Astrophysics Data System (ADS)

    Yokoyama, Atsushi; Horie, Hisashi

    1985-03-01

    Energy levels and electromagnetic properties of the N=27 and 28 nuclei are studied systematically in terms of the shell model within the fn7/2+fn-17/2(p3/2,p1/2,f5/2)1 configurations. The effective interactons are made up of empirical matrix elements and phenomenological potentials superposed with two and three central interactions. Least-squares fitting calculations of selected energy levels are performed to fix some of the matrix elements and the strength parameters of the potentials. It is shown that some states with a collective nature appear in 51Cr and 53Fe which are connected to each other by the enhanced E2 transitions, whereas no such states appear in 47Ca and 49Ti. The anomalously large B(E2) values observed in the transitions between the intruder states can be reproduced very well. The hindrance of the E2 transitions between the intruder state and the normal fn7/2 state is obtained in the present model, being in qualitative agreement with the experiments. Both of the proton-neutron (p-n) interactions (1) among the f7/2 nucleons and (2) between the f7/2 and the other fp nucleons are very important in order to obtain proper understanding of the nuclei in this mass region.

  17. Environmental Origins of Methylmercury Accumulated in Subarctic Estuarine Fish Indicated by Mercury Stable Isotopes.

    PubMed

    Li, Miling; Schartup, Amina T; Valberg, Amelia P; Ewald, Jessica D; Krabbenhoft, David P; Yin, Runsheng; Balcom, Prentiss H; Sunderland, Elsie M

    2016-11-01

    Methylmercury (MeHg) exposure can cause adverse reproductive and neurodevelopmental health effects. Estuarine fish may be exposed to MeHg produced in rivers and their watersheds, benthic sediment, and the marine water column, but the relative importance of each source is poorly understood. We measured stable isotopes of mercury (δ(202)Hg, Δ(199)Hg, and Δ(201)Hg), carbon (δ(13)C), and nitrogen (δ(15)N) in fish with contrasting habitats from a large subarctic coastal ecosystem to better understand MeHg exposure sources. We identify two distinct food chains exposed to predominantly freshwater and marine MeHg sources but do not find evidence for a benthic marine MeHg signature. This is consistent with our previous research showing benthic sediment is a net sink for MeHg in the estuary. Marine fish display lower and less variable Δ(199)Hg values (0.78‰ to 1.77‰) than freshwater fish (0.72‰ to 3.14‰) and higher δ(202)Hg values (marine: 0.1‰ to 0.57‰; freshwater: -0.76‰ to 0.15‰). We observe a shift in the Hg isotopic composition of juvenile and adult rainbow smelt (Osmerus mordax) when they transition between the freshwater and marine environment as their dominant foraging territory. The Hg isotopic composition of Atlantic salmon (Salmo salar) indicates they receive most of their MeHg from the marine environment despite a similar or longer duration spent in freshwater regions. We conclude that stable Hg isotopes effectively track fish MeHg exposure sources across different ontogenic stages.

  18. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes.

    PubMed

    Sherman, Laura S; Blum, Joel D; Basu, Niladri; Rajaee, Mozhgon; Evers, David C; Buck, David G; Petrlik, Jindrich; DiGangi, Joseph

    2015-02-01

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ(199)Hg values to Hg derived from ore deposits (mean urine Δ(199)Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ(199)Hg values (0.23-0.55‰, n=6) and low percentages of total Hg as MeHg (7.6-29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ(199)Hg values (0.21-1.32‰, n=5) and percentages of total Hg as MeHg (32-72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption.

  19. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  20. Evasion of added isotopic mercury from a northern temperate lake

    USGS Publications Warehouse

    Southworth, G.; Lindberg, S.; Hintelmann, H.; Amyot, M.; Poulain, A.; Bogle, M.; Peterson, M.; Rudd, J.; Harris, R.; Sandilands, K.; Krabbenhoft, D.; Olsen, M.

    2007-01-01

    Isotopically enriched Hg (90% 202Hg) was added to a small lake in Ontario, Canada, at a rate equivalent to approximately threefold the annual direct atmospheric deposition rate that is typical of the northeastern United States. The Hg spike was thoroughly mixed into the epilimnion in nine separate events at two-week intervals throughout the summer growing season for three consecutive years. We measured concentrations of spike and ambient dissolved gaseous Hg (DGM) concentrations in surface water and the rate of volatilization of Hg from the lake on four separate, week-long sampling periods using floating dynamic flux chambers. The relationship between empirically measured rates of spike-Hg evasion were evaluated as functions of DGM concentration, wind velocity, and solar illumination. No individual environmental variable proved to be a strong predictor of the evasion flux. The DGM-normalized flux (expressed as the mass transfer coefficient, k) varied with wind velocity in a manner consistent with existing models of evasion of volatile solutes from natural waters but was higher than model estimates at low wind velocity. The empirical data were used to construct a description of evasion flux as a function of total dissolved Hg, wind, and solar illumination. That model was then applied to data for three summers for the experiment to generate estimates of Hg re-emission from the lake surface to the atmosphere. Based on ratios of spike Hg to ambient Hg in DGM and dissolved total Hg pools, ratios of DGM to total Hg in spike and ambient Hg pools, and flux estimates of spike and ambient Hg, we concluded that the added Hg spike was chemically indistinguishable from the ambient Hg in its behavior. Approximately 45% of Hg added to the lake over the summer was lost via volatilization. ?? 2007 SETAC.

  1. Evasion of added isotopic mercury from a northern temperate lake.

    PubMed

    Southworth, George; Lindberg, Steven; Hintelmann, Holger; Amyot, Marc; Poulain, Alexandre; Bogle, Maryanna; Peterson, Mark; Rudd, John; Harris, R; Sandilands, Kenneth; Krabbenhoft, David; Olsen, Mark

    2007-01-01

    Isotopically enriched Hg (90% 202Hg) was added to a small lake in Ontario, Canada, at a rate equivalent to approximately threefold the annual direct atmospheric deposition rate that is typical of the northeastern United States. The Hg spike was thoroughly mixed into the epilimnion in nine separate events at two-week intervals throughout the summer growing season for three consecutive years. We measured concentrations of spike and ambient dissolved gaseous Hg (DGM) concentrations in surface water and the rate of volatilization of Hg from the lake on four separate, week-long sampling periods using floating dynamic flux chambers. The relationship between empirically measured rates of spike-Hg evasion were evaluated as functions of DGM concentration, wind velocity, and solar illumination. No individual environmental variable proved to be a strong predictor of the evasion flux. The DGM-normalized flux (expressed as the mass transfer coefficient, k) varied with wind velocity in a manner consistent with existing models of evasion of volatile solutes from natural waters but was higher than model estimates at low wind velocity. The empirical data were used to construct a description of evasion flux as a function of total dissolved Hg, wind, and solar illumination. That model was then applied to data for three summers for the experiment to generate estimates of Hg re-emission from the lake surface to the atmosphere. Based on ratios of spike Hg to ambient Hg in DGM and dissolved total Hg pools, ratios of DGM to total Hg in spike and ambient Hg pools, and flux estimates of spike and ambient Hg, we concluded that the added Hg spike was chemically indistinguishable from the ambient Hg in its behavior. Approximately 45% of Hg added to the lake over the summer was lost via volatilization.

  2. Updated measurement of the permanent electric dipole moment (EDM) of 199Hg

    NASA Astrophysics Data System (ADS)

    Graner, Brent; Chen, Yi; Lindahl, Eric; Heckel, Blayne

    2016-03-01

    A permanent electric dipole moment (EDM) in an atom or particle would prove that time reversal symmetry is broken. In addition, an atomic EDM may provide evidence of new physics or CP symmetry violation in the strong sector. We have recently completed an improved measurement of the EDM of 199Hg utilizing a set of vapor cells containing isotopically-enriched 199Hg optically pumped and probed with UV laser light. I will discuss the most recent iteration of the experiment, and present unblinded results. This work was supported by NSF Grant 1306743 and DOE Award No. DE-FG02-97ER41020.

  3. 46 CFR 53.12-1 - General (modifies HG-600 through HG-640).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HEATING BOILERS Instruments, Fittings, and Controls (Article 6) § 53.12-1 General (modifies HG-600 through HG-640). (a) The instruments, fittings and controls for heating boilers shall be as indicated in HG... automatic auxiliary heating equipment, the requirements in part 63 of this subchapter govern and shall...

  4. 46 CFR 53.12-1 - General (modifies HG-600 through HG-640).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HEATING BOILERS Instruments, Fittings, and Controls (Article 6) § 53.12-1 General (modifies HG-600 through HG-640). (a) The instruments, fittings and controls for heating boilers shall be as indicated in HG... automatic auxiliary heating equipment, the requirements in part 63 of this subchapter govern and shall...

  5. 46 CFR 53.12-1 - General (modifies HG-600 through HG-640).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HEATING BOILERS Instruments, Fittings, and Controls (Article 6) § 53.12-1 General (modifies HG-600 through HG-640). (a) The instruments, fittings and controls for heating boilers shall be as indicated in HG... automatic auxiliary heating equipment, the requirements in part 63 of this subchapter govern and shall...

  6. 46 CFR 53.12-1 - General (modifies HG-600 through HG-640).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HEATING BOILERS Instruments, Fittings, and Controls (Article 6) § 53.12-1 General (modifies HG-600 through HG-640). (a) The instruments, fittings and controls for heating boilers shall be as indicated in HG... automatic auxiliary heating equipment, the requirements in part 63 of this subchapter govern and shall...

  7. 46 CFR 53.12-1 - General (modifies HG-600 through HG-640).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HEATING BOILERS Instruments, Fittings, and Controls (Article 6) § 53.12-1 General (modifies HG-600 through HG-640). (a) The instruments, fittings and controls for heating boilers shall be as indicated in HG... automatic auxiliary heating equipment, the requirements in part 63 of this subchapter govern and shall...

  8. Binding of Hg by bacterial extracellular polysaccharide: a possible role in Hg tolerance.

    PubMed

    Cruz, Kimberly; Guézennec, Jean; Barkay, Tamar

    2017-04-10

    Bacteria employ adaptive mechanisms of mercury (Hg) tolerance to survive in environments containing elevated Hg concentrations. The potential of extracellular polysaccharides (EPS) production by bacteria as a mechanism of Hg tolerance has not been previously investigated. The objectives of this study were to determine if bacterial EPS sorb Hg, and if so does sorption provide protection against Hg toxicity. Purified EPS with different chemical compositions produced by bacterial isolates from microbial mats in French Polynesian atolls and deep-sea hydrothermal vents were assessed for Hg sorption. The data showed that EPS sorbed up to 82% of Hg from solution, that this sorption was dependent on EPS composition, and that sorption was a saturable mechanism. Hg uptake capacities ranged from 0.005 to 0.454 mmol Hg/g for the different EPS. To determine if EPS production could alter bacterial Hg tolerance, Escherichia coli K-12 strains and their EPS defective mutants were tested by the disc inhibition assay. Mercury inhibited growth in a dose-dependent manner with wild-type strains having smaller (~1 mm), but statistically significant, zones of inhibition than various mutants and this difference was related to a 2-fold decline in the amount of EPS produced by the mutants relative to cell biomass. These experiments identified colanic acid and hexosamine as Hg-binding moieties in EPS. Together these data indicate that binding of Hg to EPS affords a low level of resistance to the producing bacteria.

  9. Historical Records of Mercury Stable Isotopes in Sediments of Tibetan Lakes

    PubMed Central

    Yin, Runsheng; Feng, Xinbin; Hurley, James P.; Krabbenhoft, David P.; Lepak, Ryan F.; Kang, Shichang; Yang, Handong; Li, Xiangdong

    2016-01-01

    The Tibetan Plateau (TP), known as the “Third Pole”, is a critical zone for atmospheric mercury (Hg) deposition. Increasing anthropogenic activities in the globe leads to environmental changes, which may affect the loading, transport and deposition of Hg in the environment. However, the deposition history and geochemical cycling of Hg in the TP is still uncertain. Our records of Hg and Hg isotopes in sediment profiles of the two largest lakes in the TP, Lake Qinghai and Nam Co, show increased Hg influx since last century, with the maximum Hg influx enrichment ratios of 5.4 and 3.5 in Lake Qinghai and Nam Co, respectively. Shifts in negative δ 202Hg in Lake Qinghai (−4.55 to −3.15‰) and Nam Co (−5.04 to −2.16‰) indicate increased atmospheric Hg deposition through rainfall, vegetation and runoff of soils. Mass independent fractionation of both even-Hg (∆ 200Hg: +0.05 to +0.10‰) and odd-Hg (∆ 199Hg: +0.12 to +0.31‰) isotopes were observed. Positive Δ 200Hg suggest high proportion of precipitation-derived Hg in the TP, whereas the positive Δ 199Hg results from Hg(II) photo-reduction. Both lakes show increasing Δ 199Hg since the 1900 s, and we conclude that with the decrease of ice duration, Hg(II) photo-reduction may have been accelerated in these TP lakes. PMID:26996936

  10. Investigations of the g{sub K}-factors in the {sup 175,177,179}Hf Isotopes

    SciTech Connect

    Yakut, Hakan; Kuliev, Ali; Guliyev, Ekber

    2008-11-11

    In this paper the intrinsic g{sub K} and effective spin g{sub s} factors of the odd-mass {sup 175-179}Hf isotopes have been investigated within the Tamm-Dancoff approximation by using the realistic Saxon-Woods potential. The theoretically calculated g{sub K} and g{sub s}{sup eff} values are compared with experimental data. The comparison of the measured and calculated values of the effective g{sub s} factor shows that the spin polarization explains quite well the observed reduction of g{sub s} from its free-nucleon value.

  11. The stable isotope compositions of mercury in atmospheric particles (PM10) from Paris (France) and vicinity

    NASA Astrophysics Data System (ADS)

    Widory, D.; Petelet-Giraud, E.; Johnson, T.; Quétel, C.; Snell, J.; van Bocxstaele, M.; Bullen, T. D.

    2010-12-01

    Solid mercury (Hg) in atmospheric particles in the environment can be derived from a variety of primary sources and cycled through numerous secondary processes, complicating identification of its origin. Using the PM10 fraction of aerosols from Paris and vicinity, we investigated the possibility that Hg stable isotope compositions could help identify the origins of atmospheric Hg and processes affecting the atmospheric Hg budget. Characterization of Hg isotope compositions of emissions from the different potential sources (e.g. waste incinerators, coal-fired power plants, metal refining plants, road traffic, heating sources and volcanic gases) shows that those containing Hg are clearly discriminated by specific Hg isotope signatures. PM10 were sampled in three different locations: A) downtown Paris, characterized by diffuse pollution, B) nearby suburb of the city, close to suspected Hg emitters, and C) in distant suburb of the city, having only a few industrial activities in the area. Results indicate that Hg in most of the PM10 samples is explained by binary mixings. The mixing end-members include at least two distinct sources at low Hg concentrations in the aerosols, compatible with industrial activity. At high Hg concentration in the aerosols, the isotopes may likewise indicate two distinct sources with δ202Hg compositions of -4.1 and -11.4 ‰. This range is significantly less than that measured on the potential sources of Hg pollution, and may indicate secondary processes, such as gas to solid phase transfers. The occurrence of post-emission processes is reinforced by the strong correlations existing between these low δ202Hg and MIF Δ201Hg values.

  12. Improved efficiency of selective photoionization of palladium isotopes via autoionizing Rydberg states

    NASA Astrophysics Data System (ADS)

    Locke, Clayton R.; Kobayashi, Tohru; Midorikawa, Katsumi

    2017-01-01

    Odd-mass-selective ionization of palladium for purposes of resource recycling and management of long-lived fission products can be achieved by exploiting transition selection rules in a well-established three-step excitation process. In this conventional scheme, circularly polarized lasers of the same handedness excite isotopes via two intermediate 2D5/2 core states, and a third laser is then used for ionization via autoionizing Rydberg states. We propose an alternative excitation scheme via intermediate 2D3/2 core states before the autoionizing Rydberg state, improving ionization efficiency by over 130 times. We confirm high selectivity and measure odd-mass isotopes of >99.7(3)% of the total ionized product. We have identified and measured the relative ionization efficiency of the series of Rydberg states that converge to upper ionization limit of the 4 d 9(2D3/2) level, and identify the most efficient excitation is via the Rydberg state at 67668.18(10) cm-1.

  13. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures

    PubMed Central

    Zhang, Hua; Yin, Run-sheng; Feng, Xin-bin; Sommar, Jonas; Anderson, Christopher W. N.; Sapkota, Atindra; Fu, Xue-wu; Larssen, Thorjørn

    2013-01-01

    The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ199Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude. PMID:24270081

  14. Contact Formation (Hg, CD)Te

    DTIC Science & Technology

    1989-12-01

    AD-A21 7 088 0 a CONTACT FORMATION ON (HG, CD )TE FINAL REPORT W.A. BECK AND G.D. DAVIS V C ELECTE , I DECEMBER 1989 JAN22 1990 U.S. ARMY RESEARCH...27709-2211 I N I 11. TITLE (Include Security Clasification) Contact Formation on (Hg, CD )Te (u) 12. PERSONAL AUTHOR(S) W.A. Beck and G.D. Davis 13a...whereas the 1/f noise of the Au contacts originated at th i/" Cd )Te interface or in the underlying (Hg, Cd )Te, the 1/f noise of the Al contacts orig.L

  15. Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment

    DOEpatents

    Grossman, M.W.

    1991-04-30

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

  16. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOEpatents

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  17. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    DOE PAGES

    Nishio, K.; Andreyev, A. N.; Chapman, R.; ...

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses more » $$\\overline{A}_L$$/$$\\overline{A}_H$$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$$\\overline{A}_L$$/$$\\overline{A}_H$$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.« less

  18. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-09-01

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E* (180Hg) = 33- 66 MeV and E* (190Hg) = 48- 71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses AbarL /AbarH = 79 / 101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+ / EC -delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of AbarL /AbarH = 83 / 107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  19. In Vivo Mass-independent Fractionation of Mercury Isotopes in Fish

    NASA Astrophysics Data System (ADS)

    Das, R.; Odom, L. A.

    2008-12-01

    Recent experimental work and analyses of natural samples have revealed both mass-dependent and mass- independent isotope fractionation effects in mercury. These findings portend new avenues toward understanding the global mercury cycle. It has been shown experimentally that photo reduction of Hg+2 and methylmercury in water with concomitant release of the reduced, gaseous species Hg° results in the residual methylmercury possessing a mass-independent isotope effect. This effect is a relative enrichment of isotopes 199Hg and 201Hg over the even mass number isotopes when compared to the mercury standard NIST SRM3133. Large mass independent fractionation (MIF) effects (Δ199Hg values of a few ‰) have been found in mercury in fish and interpreted as isotope effects inherited from the water. To evaluate the possibility that MIF might be produced within the fish, we have analyzed 38 samples that include zooplankton and twelve different species of fish from a single lake collected over a 2-month time period for mercury isotopic compositions. Trophic levels of the same fish specimens had previously been determined from stomach contents and nitrogen isotopes. Zooplankton in the lake contain mercury with Δ199Hg and Δ201Hg values of +0.43 (±0.07) and +0.44 (±0.07) respectively. Among the fish species there is a striking correspondence between trophic level and Δ199Hg and Δ201Hg values for primary, secondary, and tertiary consumers. The Δ199Hg values ranges over ~1‰ from ~+0.4 in zooplankton, juvenile bluegill and several other small fishes to Δ199Hg = + 1.36 for the Florida gar that is the top predator fish in the lake. These observations indicate that the MIF effect, rather than being an artifact of the water column is produced in vivo. Partial separation of 199Hg and 201Hg from isotopes of even neutron number can be achieved by the magnetic isotope effect in reactions involving sufficiently long-lived intermediate free radicals, where nuclear - electron

  20. Molecular beam photoionization study of HgBr/sub 2/ and HgI/sub 2/

    SciTech Connect

    Linn, S.H.; Tzeng, W.; Brom, J.M. Jr.; Ng, C.Y.

    1983-01-01

    Photoionization efficiency (PIE) data for HgBr/sub 2//sup +/ and HgI/sub 2//sup +/ and their fragment ions have been obtained in the region 600--1350 A using an oven-type supersonic beam source. The ionization energies (IE) for the X /sup 2/Pi/sub 3/2g/ states of HgBr/sub 2//sup +/ and HgI/sub 2//sup +/ were determined to be 10.560 +- 0.003 and 9.5088 +- 0.0022 eV, respectively. The analyses of the Rydberg series converging to the /sup 2/Pi/sub 1/2g/ states of HgBr/sub 2//sup +/ and HgI/sub 2//sup +/ yield a value of 10.8846 +- 0.0012 eV for the IE of the /sup 2/Pi/sub 1/2g/ state of HgBr/sub 2//sup +/ and 10.1953 +- 0.0025 eV for that of HgI/sub 2//sup +/. The major fragment ions from HgBr/sub 2/ were identified to be HgBr/sup +/, Hg/sup +/, Br/sub 2//sup +/, and Br/sup +/ and those from HgI/sub 2/ were found to be HgI/sup +/, I/sub 2//sup +/, and I/sup +/. The measured appearance energies for HgBr/sup +/ and HgI/sup +/ allow the calculation of the bond dissociation energies for HgBr/sup +/ and HgI/sup +/ to be 55 +- 2 and 59 +- 1 kcal/mol, respectively. Similar to the observation in the PIE curves for HgCl/sub 2//sup +/ and its fragment ions, the PIE spectra for HgBr/sub 2//sup +/, HgI/sub 2//sup +/, and their fragment ions are dominated by autoionization structures exhibiting asymmetric Beutler--Fano line profiles. The comparison of the PIE curves of HgCl/sub 2//sup +/, HgBr/sub 2//sup +/, HgI/sub 2//sup +/, and Hg/sup +/ from Hg confirms the previous conclusion that these autoionizing Rydberg series can be assigned to transitions((5d)/sup 10/sigma/sub g//sup 2/sigma/sub u//sup 2/..pi../sub u//sup 4/..pi../sub g//sup 4/) ..-->.. ((5d)/sup 9/sigma/sub g//sup 2/sigma/sub u//sup 2/..pi../sub u//sup 4/..pi../sub g//sup 4/ /sup 2/D/sub plus-or-minus5/2/)np and ((5d)/sup 10/sigma/sub g//sup 2/sigma/sub u//sup 2/..pi../sub u//sup 4/..pi../sub g//sup 4/) ..-->.. ((5d)/sup 9/sigma/sub g//sup 2/sigma/sub u//sup 2/..pi../sub u//sup 4/..pi../sub g//sup 4/ /sup 2/D/sub plus

  1. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury

    USGS Publications Warehouse

    Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.

    2009-01-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.

  2. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury.

    PubMed

    Stetson, Sarah J; Gray, John E; Wanty, Richard B; Macalady, Donald L

    2009-10-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that delta202Hg values relative to NIST 3133 of calcine (up to 1.52 per thousand) in the Terlingua district, Texas, are as much as 3.24 per thousand heavier than cinnabar (-1.72 per thousand) prior to retorting. In addition, delta202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17 per thousand heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, delta202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff.

  3. Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang, SW China

    NASA Astrophysics Data System (ADS)

    Wang, Zhuhong; Chen, Jiubin; Feng, Xinbin; Hintelmann, Holger; Yuan, Shengliu; Cai, Hongming; Huang, Qiang; Wang, Shuxiao; Wang, Fengyang

    2015-11-01

    The isotopic composition of mercury (Hg) is increasingly used to constrain the sources and pathways of this metal in the atmosphere. Though China has the highest Hg production, consumption and emission in the world, Hg isotope ratios are rarely reported for Chinese wet deposition. In this study, we examined, for the first time outside North America, both mass-dependent fractionation (MDF, expressed as δ202Hg) and mass-independent fractionation of odd (odd-MIF, Δ199Hg) and even (even-MIF, Δ200Hg) Hg isotopes in 15 precipitation samples collected from September 2012 to August 2013 in Guiyang (SW China). All samples displayed significant negative δ202Hg (-0.44 ∼ -4.27‰), positive Δ199Hg (+0.19 to +1.16‰) and slightly positive Δ200Hg (-0.01‰ to +0.20‰). Potential sources of Hg in precipitation were identified by coupling both MDF and MIF of Hg isotopes with a back-trajectory model. The results showed that local emission from coal-fired power plants and cement plants and western long-range transportation are two main contributing sources, while the contribution of Hg from south wind events would be very limited on an annual basis. The relatively lower Δ200Hg values in Guiyang precipitation may indicate a dilution effect by local sources and/or insignificant even-MIF in the tropopause contribution of this subtropical region. Our study demonstrates the usefulness of isotope fractionation, especially MIF for tracing sources and pathways of Hg in the atmosphere.

  4. Identification of in-beam gamma rays in {sup 181}Hg

    SciTech Connect

    Davids, C.N.; Janssens, R.V.F.; Penttila, H.

    1995-08-01

    The interest in studying the neutron-deficient Hg isotopes stems from the fact that they are located in a region of the nuclear landscape where shape changes occur and where very large deformations were predicted. More specifically, the investigation of odd-A nuclei enables one to identify the orbitals located in the vicinity of the Fermi surface which play a crucial role in determining global properties such as nuclear shapes. Prior to this experiment, the {sup 183}Hg nucleus studied by this collaboration was the lightest odd-A Hg isotope known. From a recent experiment performed at the FMA in conjunction with 10 Compton-suppressed Ge detectors from the Argonne Notre Dame gamma-ray facility, it was possible to identify transitions in {sup 181}Hg following the {sup 144}Sm({sup 40}Ar,3n) reaction at a beam energy of 175 MeV. A level scheme was constructed and the transitions were regrouped into three rotational bands. One of these is proposed to be built on the [521]1/2{sup -} groundstate and the two others are interpreted as signature partner bands built on the [624]9/2{sup +} configuration. The statistics in this experiments were not sufficient to obtain multipolarity information and an additional measurement was proposed.

  5. Mercury Abundances and Isotopic Compositions in the Murchison (CM) and Allende (CV)Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Klaue, B.; Blum, J. D.; Buseck, P. R.

    2001-01-01

    The abundance and isotopic composition of Hg was determined in bulk samples of both the Murchison (CM) and Allende (CV) carbonaceous chondrites using single- and multi-collector inductively coupled plasma mass spectrometry (ICP-MS). The bulk abundances of Hg are 294 6 15 ng/g in Murchison and 30.0 6 1.5 ng/g in Allende. These values are within the range of previous measurements of bulk Hg abundances by neutron activation analysis (NAA). Prior studies suggested that both meteorites contain isotopically anomalous Hg, with d l 96/202Hg values for the anomalous, thermal-release components from bulk samples ranging from 2260 %o to 1440 9/00 in Murchison and from 2620 9/00 to 1540 9/00 in Allende (Jovanovic and Reed, 1976a; 1976b; Kumar and Goel, 1992). Our multi-collector ICP-MS measurements suggest that the relative abundances of all seven stable Hg isotopes in both meteorites are identical to terrestrial values within 0.2 to 0.5 9/00m. On-line thermal-release experiments were performed by coupling a programmable oven with the singlecollector ICP-MS. Powdered aliquots of each meteorite were linearly heated from room temperature to 900 C over twenty-five minutes under an Ar atmosphere to measure the isotopic composition of Hg released fiom the meteorites as a h c t i o n of temperature. In separate experiments, the release profiles of S and Se were determined simultaneously with Hg to constrain the Hg distribution within the meteorites and to evaluate the possibility of Se interferences in previous NAA studies. The Hg-release patterns differ between Allende and Murchison. The Hg-release profile for Allende contains two distinct peaks, at 225" and 343"C, whereas the profile for Murchison has only one peak, at 344 C. No isotopically anomalous Hg was detected in the thermal-release experiments at a precision level of 5 to 30 9/00, depending on the isotope ratio. In both meteorites the Hg peak at ;340"C correlates with a peak in the S-release profile. This correlation

  6. [Effects of Hg on soil enzyme activity].

    PubMed

    Yang, Chun-Lu; Sun, Tie-Heng; He, Wen-Xiang; Chen, Su

    2007-03-01

    With simulation test, this paper studied the effects of Hg on the activities of urease, invertase and neutral phosphotase in four soils. The results showed that Hg inhibited soil urease and invertase activities markedly, but its inhibitory effect differed with test soils. There was a significant logarithmic correlation between the concentration of HgCl2 and the activities of these two enzymes (P < 0.05). In test soils, the ED50 of urease activity was 87.99, 5.47, 24.05 and 19.88 mg x kg(-1), and that of invertase activity was 76.68, 727.49, 236.52 and 316.59 mg x kg(-1), respectively. Urease was more sensitive than invertase to Hg contamination, while organic matter had a protective effect on soil enzymes. Soil neutral phosphatase was not sensitive to Hg contamination, except that it was significantly activated by Hg in the meadow brown soil applied with plenty of organic fertilizer.

  7. Hg0 absorption in potassium persulfate solution*

    PubMed Central

    Ye, Qun-feng; Wang, Cheng-yun; Wang, Da-hui; Sun, Guan; Xu, Xin-hua

    2006-01-01

    The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed. PMID:16615172

  8. Raman spectroscopic detection of the T-Hg II-T base pair and the ionic characteristics of mercury.

    PubMed

    Uchiyama, Tomomi; Miura, Takashi; Takeuchi, Hideo; Dairaku, Takenori; Komuro, Tomoyuki; Kawamura, Takuya; Kondo, Yoshinori; Benda, Ladislav; Sychrovsky, Vladimír; Bour, Petr; Okamoto, Itaru; Ono, Akira; Tanaka, Yoshiyuki

    2012-07-01

    Developing applications for metal-mediated base pairs (metallo-base-pair) has recently become a high-priority area in nucleic acid research, and physicochemical analyses are important for designing and fine-tuning molecular devices using metallo-base-pairs. In this study, we characterized the Hg(II)-mediated T-T (T-Hg(II)-T) base pair by Raman spectroscopy, which revealed the unique physical and chemical properties of Hg(II). A characteristic Raman marker band at 1586 cm(-1) was observed and assigned to the C4=O4 stretching mode. We confirmed the assignment by the isotopic shift ((18)O-labeling at O4) and density functional theory (DFT) calculations. The unusually low wavenumber of the C4=O4 stretching suggested that the bond order of the C4=O4 bond reduced from its canonical value. This reduction of the bond order can be explained if the enolate-like structure (N3=C4-O4(-)) is involved as a resonance contributor in the thymine ring of the T-Hg(II)-T pair. This resonance includes the N-Hg(II)-bonded state (Hg(II)-N3-C4=O4) and the N-Hg(II)-dissociated state (Hg(II+) N3=C4-O4(-)), and the latter contributor reduced the bond order of N-Hg(II). Consequently, the Hg(II) nucleus in the T-Hg(II)-T pair exhibited a cationic character. Natural bond orbital (NBO) analysis supports the interpretations of the Raman experiments.

  9. Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands

    NASA Astrophysics Data System (ADS)

    Shotyk, W.; Goodsite, M. E.; Roos-Barraclough, F.; Givelet, N.; Le Roux, G.; Weiss, D.; Cheburkin, A. K.; Knudsen, K.; Heinemeier, J.; van Der Knaap, W. O.; Norton, S. A.; Lohse, C.

    2005-01-01

    A monolith representing 5420 14C yr of peat accumulation was collected from a blanket bog at Myrarnar, Faroe Islands. The maximum Hg concentration (498 ng/g at a depth of 4.5 cm) coincides with the maximum concentration of anthropogenic Pb (111 μg/g). Age dating of recent peat accumulation using 210Pb (CRS model) shows that the maxima in Hg and Pb concentrations occur at AD 1954 ± 2. These results, combined with the isotopic composition of Pb in that sample ( 206Pb/ 207Pb = 1.1720 ± 0.0017), suggest that coal burning was the dominant source of both elements. From the onset of peat accumulation (ca. 4286 BC) until AD 1385, the ratios Hg/Br and Hg/Se were constant (2.2 ± 0.5 × 10 -4 and 8.5 ± 1.8 × 10 -3, respectively). Since then, Hg/Br and Hg/Se values have increased, also reaching their maxima in AD 1954. The age date of the maximum concentrations of anthropogenic Hg and Pb in the Faroe Islands is consistent with a previous study of peat cores from Greenland and Denmark (dated using the atmospheric bomb pulse curve of 14C), which showed maximum concentrations in AD 1953. The average rate of atmospheric Hg accumulation from 1520 BC to AD 1385 was 1.27 ± 0.38 μg/m 2/yr. The Br and Se concentrations and the background Hg/Br and Hg/Se ratios were used to calculate the average rate of natural Hg accumulation for the same period, 1.32 ± 0.36 μg/m 2/yr and 1.34 ± 0.29 μg/m 2/yr, respectively. These fluxes are similar to the preanthropogenic rates obtained using peat cores from Switzerland, southern Greenland, southern Ontario, Canada, and the northeastern United States. Episodic volcanic emissions and the continual supply of marine aerosols to the Faroe Islands, therefore, have not contributed significantly to the Hg inventory or the Hg accumulation rates, relative to these other areas. The maximum rate of Hg accumulation was 34 μg/m 2/yr. The greatest fluxes of anthropogenic Hg accumulation calculated using Br and Se, respectively, were 26 and 31 μg/m 2

  10. Stabilization of Nanoparticulate HgS by Thiols and Humic Substances During HgS Precipitation

    NASA Astrophysics Data System (ADS)

    Hsu-Kim, H.; Deonarine, A.

    2008-12-01

    In the aquatic environment mercury has a strong affinity for reduced sulfur-containing ligands such as inorganic sulfides and thiolate functional groups in natural organic matter (NOM). Complexation of aqueous Hg(II) is particularly important because coordination to inorganic sulfide and humic compounds governs Hg(II) speciation (and subsequent bioavailability and mobility) in contaminated water and sediment. The purpose of this study was to explore the potential for NOM-coated HgS nanoparticles in the aquatic environment. HgS precipitation experiments were conducted in the presence of natural organic acids that are prevalent in surface water and sediment porewater. Dynamic light scattering was used to the monitor the size of HgS particles precipitating over time. The results indicated that humic substances decreased growth rates of precipitating HgS particles and stabilized particles with aggregate diameters smaller than 0.2 μm for at least 8 hours. Thiol-containing low molecular weight acids such as cysteine and thioglycolate also decreased growth of HgS particles whereas the hydroxyl-containing acids (serine and glycolate) did not affect particle growth rates. As the humic and thiol concentration increased in solution, growth rates of HgS particles decreased. Growth rates of the aggregates increased in solutions with greater ionic strength. Nanoparticles of HgS would be possible in aquatic environments where HgS precipitation is possible. We conducted equilibrium speciation calculations to determine HgS(s) saturation indices under conditions typical for sediment porewater. The calculations indicated that the metacinnabar saturation index was 1 to 3 orders of magnitude above or below saturation, depending on Hg-(bi)sulfide and Hg-NOM binding constants, which vary by orders of magnitude. These insights suggest that HgS nanoparticles may exist in surface waters and porewater of contaminated sediments as a result of kinetically-hindered mineralization reactions. Hg

  11. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  12. Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea).

    PubMed

    Lapanje, A; Drobne, D; Nolde, N; Valant, J; Muscet, B; Leser, V; Rupnik, M

    2008-06-01

    The aim of our work was to assess the pollution-induced community tolerance (PICT) of isopod gut microbiota and pollution-induced isopod population tolerance (PIPT). Animals collected from a chronically Hg polluted and an unpolluted location were exposed for 14 days to 10microg Hg/g dry food under laboratory conditions. The lysosomal membrane stability, hepatopancreas epithelium thickness, feeding activity and animal bacterial gut microbiota composition were determined. The results confirm the hypothesis that the response to short-term Hg exposure differs for animals from the Hg polluted and the unpolluted field locations. The animals and their gut microbiota from the Hg polluted location were less affected by Hg in a short-term feeding experiment than those from the unpolluted environment. We discuss the pollution-induced population tolerance of isopods and their gut microbiota as a measure of effects of long-term environmental pollution. The ecological consequences of such phenomena are also discussed.

  13. Hg(II) Coordination Studies in Penicillamine Enantiomers by 199mHg-TDPAC

    NASA Astrophysics Data System (ADS)

    Tröger, W.; ISOLDE Collaboration

    2001-11-01

    In order to study the binding of the toxic heavy metal ion Hg2+ to penicillamine, complexes with the D- and L-enantiomers of penicillamine were investigated by the nuclear quadrupole interaction of 199Hg monitored by time differential perturbed angular correlation spectroscopy. It was found that bound Hg(II) occurs in two-fold, three-fold and four-fold coordinations.

  14. Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)

    2011-01-01

    Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.

  15. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  16. Mercury Isotopes as Proxies to Identify Sources and Environmental Impacts of Mercury in Sphalerites

    NASA Astrophysics Data System (ADS)

    Yin, Runsheng; Feng, Xinbin; Hurley, James P.; Krabbenhoft, David P.; Lepak, Ryan F.; Hu, Ruizhong; Zhang, Qian; Li, Zhonggen; Bi, Xianwu

    2016-01-01

    During the past few years, evidence of mass independent fractionation (MIF) for mercury (Hg) isotopes have been reported in the Earth’s surface reservoirs, mainly assumed to be formed during photochemical processes. However, the magnitude of Hg-MIF in interior pools of the crust is largely unknown. Here, we reported significant variation in Hg-MIF signature (Δ199Hg: ‑0.24 ~ + 0.18‰) in sphalerites collected from 102 zinc (Zn) deposits in China, indicating that Hg-MIF can be recorded into the Earth’s crust during geological recycling of crustal material. Changing magnitudes of Hg-MIF signals were observed in Zn deposits with different formations, evidence that Hg isotopes (especially Hg-MIF) can be a useful tracer to identify sources (syngenetic and epigenetic) of Hg in mineral deposits. The average isotopic composition in studied sphalerites (δ202Hgaverage: ‑0.58‰ Δ199Hgaverage: +0.03‰) may be used to fingerprint Zn smelting activities, one of the largest global Hg emission sources.

  17. Mercury Isotopes as Proxies to Identify Sources and Environmental Impacts of Mercury in Sphalerites

    PubMed Central

    Yin, Runsheng; Feng, Xinbin; Hurley, James P.; Krabbenhoft, David P.; Lepak, Ryan F.; Hu, Ruizhong; Zhang, Qian; Li, Zhonggen; Bi, Xianwu

    2016-01-01

    During the past few years, evidence of mass independent fractionation (MIF) for mercury (Hg) isotopes have been reported in the Earth’s surface reservoirs, mainly assumed to be formed during photochemical processes. However, the magnitude of Hg-MIF in interior pools of the crust is largely unknown. Here, we reported significant variation in Hg-MIF signature (Δ199Hg: −0.24 ~ + 0.18‰) in sphalerites collected from 102 zinc (Zn) deposits in China, indicating that Hg-MIF can be recorded into the Earth’s crust during geological recycling of crustal material. Changing magnitudes of Hg-MIF signals were observed in Zn deposits with different formations, evidence that Hg isotopes (especially Hg-MIF) can be a useful tracer to identify sources (syngenetic and epigenetic) of Hg in mineral deposits. The average isotopic composition in studied sphalerites (δ202Hgaverage: −0.58‰; Δ199Hgaverage: +0.03‰) may be used to fingerprint Zn smelting activities, one of the largest global Hg emission sources. PMID:26728705

  18. {alpha} decay studies of very neutron-deficient francium and radium isotopes

    SciTech Connect

    Uusitalo, J.; Leino, M.; Enqvist, T.; Grahn, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kettunen, H.; Koivisto, H.; Kuusiniemi, P.; Leppaenen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Scholey, C.; Eskola, K.

    2005-02-01

    Very neutron-deficient francium and radium isotopes have been produced in fusion evaporation reactions using {sup 63}Cu and {sup 65}Cu ions on {sup 141}Pr targets and {sup 36}Ar ions on {sup 170}Yb targets. The gas-filled recoil separator RITU was employed to collect the fusion products and to separate them from the scattered beam. The activities were implanted into a position-sensitive silicon detector after passing through a gas-counter system. The isotopes were identified using spatial and time correlations between the implants and decays. Two new {alpha} decaying radium isotopes, {sup 201}Ra and {sup 202}Ra, were identified. The {alpha} decay energy and half-life of {sup 203}Ra were measured with improved precision. The {alpha} decay properties measured for the francium isotopes {sup 201}Fr,{sup 202}Fr,{sup 203}Fr, and {sup 204}Fr were confirmed, in many cases with improved precision. For the first time, a ({pi}s{sub 1/2}{sup -1})1/2{sup +} proton intruder state was identified in francium isotopes, namely in {sup 201}Fr and tentatively in {sup 203}Fr. The measured decay properties for the neutron-deficient odd-mass Fr isotopes suggest an onset of substantial deformation at N=112.

  19. HgCdTe barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  20. Isotopic Fractionation of Mercury in Great Lakes Precipitation

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Keeler, G. J.; Blum, J. D.; Sherman, L. S.

    2009-12-01

    Mercury (Hg) is a hazardous bioaccumulative neurotoxin, and atmospheric deposition is a primary way in which mercury enters terrestrial and aquatic ecosystems. However, the chemical processes and transport regimes that mercury undergoes from emission to deposition are not well understood. Thus the use of mercury isotopes to characterize the biogeochemical cycling of mercury is a rapidly growing area of study. Precipitation samples were collected in Chicago, IL, Holland, MI, and Dexter, MI from April 2007 - October 2007 to begin examining the isotopic fractionation of atmospheric mercury in the Great Lakes region. Results show that mass-dependent fractionation relative to NIST-3133 (MDF - δ202Hg) ranged from -0.8‰ to 0.2‰ (±0.2‰) in precipitation samples, while mass-independent fractionation (MIF - Δ199Hg) varied from 0.1‰ to 0.6‰ (±0.1‰). Although clear urban-rural differences were not observed, this may be due to the weekly collection of precipitation samples rather than collection of individual events, making it difficult to truly characterize the meteorology and source influences associated with each sample and suggesting that event-based collection is necessary during future sampling campaigns. Additionally, total vapor phase mercury samples were collected in Dexter, MI in 2009 to examine isotopic fractionation of mercury in ambient air. In ambient samples δ202Hg ranged from 0.3‰ to 0.5‰ (±0.1‰), however Δ199Hg was not significant. Because mercury in precipitation is predominantly Hg2+, while ambient vapor phase mercury is primarily Hg0, these results may suggest the occurrence of MIF during the oxidation of Hg0 to Hg2+ prior to deposition. Furthermore, although it has not been previously reported or predicted, MIF of 200Hg was also detected. Δ200Hg ranged from 0.0‰ to 0.2‰ in precipitation and from -0.1‰ to 0.0‰ in ambient samples. This work resulted in methodological developments in the collection and processing of

  1. Modeling nuclear volume isotope effects in crystals.

    PubMed

    Schauble, Edwin A

    2013-10-29

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from (119)Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  2. Modeling nuclear volume isotope effects in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, Edwin A.

    2013-10-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac-Hartree-Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor-crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium.

  3. Modeling nuclear volume isotope effects in crystals

    PubMed Central

    Schauble, Edwin A.

    2013-01-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac–Hartree–Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor–crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium

  4. Formation of Methyl Mercury During Restoration of Forested Wetlands in Relation to Hg, S and Fe Geochemistry

    NASA Astrophysics Data System (ADS)

    Fredriksson, I.; Skyllberg, U.

    2007-12-01

    In 1999 the Swedish Parliament adopted fifteen National Environmental Quality Objectives (NEQO), one of these is the objective of "Thriving wetlands" with thee goal to restore 12 000 ha of wetlands until 2010. Given the current knowledge about methyl mercury (MeHg) production in wetlands, and subsequent bioaccumulation, the objective of thriving wetlands may be in conflict with other NEQO. In this project wetland restoration objects in different environmental settings (differing in primary productivity, climate and sulfur and iron geochemistry) are selected. After a pre-treatment period of 1-2 years, wetlands will be restored by increasing the ground water table. Methylation and demethylation rates, determined in incubation experiments using stable isotopes, will be linked to the chemical speciation of Hg, S and Fe in soil and soil solution using techniques like sulfur and iron X-ray absorption near edge spectroscopy (XANES) and Hg extended x-ray absorption fine structure (EXAFS) spectroscopy. This is done both prior to and during the restoration. Because of the strong link between Fe(II) and S(-II) geochemistry we hypothesize that net MeHg production is limited by the availability of dissolved, neutral Hg-sulfides in iron-rich environments. Preliminary data prior to restoration indeed indicate that besides primary productivity, the availability of neutral Hg-sulfides in the pore water of soils is important for the net production of MeHg.

  5. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg.

    PubMed

    Wang, Xun; Ye, Zhihong; Li, Bing; Huang, Linan; Meng, Mei; Shi, Jianbo; Jiang, Guibin

    2014-01-01

    Rice consumption represents a major route of mercury (Hg) and methylmercury (MeHg) exposure for those living in certain areas of inland China. In this study we investigated the effects of water management on bioavailable Hg, MeHg, and sulfate-reducing bacteria (SRB, abundance and community composition) in rhizosphere soil, and total Hg (THg) and MeHg in rice plants grown under glasshouse and paddy field conditions. Aerobic conditions greatly decreased the amount of THg and MeHg taken up by rice plants and affected their distribution in different plant tissues. There were positive correlations between bioavailable Hg and THg in brown rice and roots and between numbers of SRB and MeHg in brown rice, roots, and rhizosphere soil. Furthermore, the community composition of SRB was dramatically influenced by the water management regimes. Our results demonstrate that the greatly reduced bioavailability of Hg and production of MeHg are due to decreased SRB numbers and proportion of Hg methylators in the rhizosphere under aerobic conditions. These are the main reasons for the reduced Hg and MeHg accumulation in aerobically grown rice. Water management is indicated as an effective measure that can be used to reduce Hg and MeHg uptake by rice plants from Hg-contaminated paddy fields.

  6. Quasiparticle excitations in superdeformed {sup 192}Hg

    SciTech Connect

    Lauritsen, T.; Carpenter, M.P.; Janssens, R.V.F.

    1995-08-01

    The nucleus {sup 192}Hg plays a pivotal role for superdeformation in the mass 190 region, since calculations of single-particle levels show large shell-gaps for the superdeformed (SD) shape at N = 112 and Z = 80. As a result, {sup 192}Hg is referred to as the doubly magic SD nucleus for the A = 190 region. In previous studies, only one superdeformed band was observed in this nucleus, and this fact was cited as indirect evidence that large shell gaps do indeed exist at the proposed particle numbers.

  7. Quasiparticle excitations in superdeformed [sup 192]Hg

    SciTech Connect

    Fallon, P. ); Lauritsen, T.; Ahmad, I.; Carpenter, M.P. ); Cederwall, B.; Clark, R.M. ); Crowell, B. ); Deleplanque, M.A.; Diamond, R.M. ); Gall, B.; Hannachi, F. ); Henry, R.G.; Janssens, R.V.F.; Khoo, T.L. ); Korichi, A. ); Lee, I.Y.; Macchiavelli, A.O. (Nuclear Science Division, Lawrence

    1995-04-01

    For the first time, two excited superdeformed (SD) bands have been observed in the double closed shell superdeformed nucleus [sup 192]Hg. One of the SD bands exhibits a pronounced peak in the dynamic moment of inertia which is interpreted as a crossing between two excited SD configurations involving the [ital N]=7 intruder and the [512]5/2 orbitals. This is only the second occurrence of such a crossing in a SD nucleus around [ital A]=190. The second excited SD band has near identical transition energies to an excited SD band in [sup 191]Hg.

  8. Adsorption of Hg on lunar samples

    SciTech Connect

    Reed, G.W. Jr.; Jovanovic, S.

    1985-01-01

    Understanding the presence, migration mechanisms and trapping of indigneous gases and volatiles on the moon is the objective of this study. The rare gases Ar and Xe and highly volatile Hg/sup 0/ and Br/sup 0/ (and/or their compounds) have been determined to be present in the lunar regolith. Evidence for these elements in the moon was recently reviewed. Studies of the sorption behavior of Xe on lunar material have been carried out. We report here preliminary results of a study designed to rationalize the behavior of Hg in lunar material.

  9. Isotopic yield in cold binary fission of even-even 244-258Cf isotopes

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Cyriac, Annu; Krishnan, Sreejith

    2016-05-01

    The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that for 244,246,248Cf isotopes highest yield is for the fragments with isotope of Pb (Z = 82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z = 80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z = 50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favored for Cf isotopes with mass number A ≤ 250 and symmetric splitting is favored for Cf isotopes with A > 252. In the case of Cf isotope with A = 252, there is an equal probability for asymmetric and symmetric splitting. The individual yields obtained for the cold fission of 252Cf isotope are compared with the experimental data taken from the γ- γ- γ coincidences technique using Gammasphere.

  10. 40 CFR 60.45Da - Standard for mercury (Hg).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for mercury (Hg). 60.45Da... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC... gases that contain mercury (Hg) emissions in excess of each Hg emissions limit in paragraphs...

  11. 40 CFR 60.45Da - Standard for mercury (Hg).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for mercury (Hg). 60.45Da... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC... gases that contain mercury (Hg) emissions in excess of each Hg emissions limit in paragraphs...

  12. A millennial-scale record of Pb and Hg contamination in peatlands of the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Drexler, Judith; Alpers, Charles N.; Neymark, Leonid; Paces, James B.; Taylor, Howard E.; Fuller, Christopher C.

    2016-01-01

    In this paper, we provide the first record of millennial patterns of Pb and Hg concentrations on the west coast of the United States. Peat cores were collected from two micro-tidal marshes in the Sacramento-San Joaquin Delta of California. Core samples were analyzed for Pb, Hg, and Ti concentrations and dated using radiocarbon, 210Pb, and 137Cs. Pre-anthropogenic concentrations of Pb and Hg in peat ranged from 0.60 to 13.0 µg g-1and from 6.9 to 71 ng g-1, respectively. For much of the past 6000+ years, the Delta was free from anthropogenic pollution, however, beginning in ~1425 CE, Hg and Pb concentrations, Pb/Ti ratios, Pb enrichment factors (EFs), and HgEFs all increased. Pb isotope compositions of the peat suggest that this uptick was likely caused by smelting activities originating in Asia. The next increases in Pb and Hg contamination occurred during the California Gold Rush (beginning ~1850 CE), when concentrations reached their highest levels (74 µg g-1 Pb, 990 ng g-1 Hg; PbEF = 12 and HgEF = 28). Lead concentrations increased again beginning in the ~1920s with the incorporation of Pb additives in gasoline. The phase-out of lead additives in the late 1980s was reflected in Pb isotope ratios and reductions in Pb concentrations in the surface layers of the peat. The rise and fall of Hg contamination was also tracked by the peat archive, with the highest Hg concentrations occurring just before 1963 CE and then decreasing during the post-1963 period. Overall, the results show that the Delta was a pristine region for most of its ~6700-year existence; however, since ~1425 CE, it has received Pb and Hg contamination from both global and regional sources.

  13. A millennial-scale record of Pb and Hg contamination in peatlands of the Sacramento-San Joaquin Delta of California, USA.

    PubMed

    Drexler, Judith Z; Alpers, Charles N; Neymark, Leonid A; Paces, James B; Taylor, Howard E; Fuller, Christopher C

    2016-05-01

    In this paper, we provide the first record of millennial patterns of Pb and Hg concentrations on the west coast of the United States. Peat cores were collected from two micro-tidal marshes in the Sacramento-San Joaquin Delta of California. Core samples were analyzed for Pb, Hg, and Ti concentrations and dated using radiocarbon and (210)Pb. Pre-anthropogenic concentrations of Pb and Hg in peat ranged from 0.60 to 13.0μgg(-1)and from 6.9 to 71ngg(-1), respectively. For much of the past 6000+ years, the Delta was free from anthropogenic pollution, however, beginning in ~1425CE, Hg and Pb concentrations, Pb/Ti ratios, Pb enrichment factors (EFs), and HgEFs all increased. Pb isotope compositions of the peat suggest that this uptick was likely caused by smelting activities originating in Asia. The next increases in Pb and Hg contamination occurred during the California Gold Rush (beginning ~1850CE), when concentrations reached their highest levels (74μgg(-1) Pb, 990ngg(-1) Hg; PbEF=12 and HgEF=28). Lead concentrations increased again beginning in the ~1920s with the incorporation of Pb additives in gasoline. The phase-out of lead additives in the late 1980s was reflected in changes in Pb isotope ratios and reductions in Pb concentrations in the surface layers of the peat. The rise and subsequent fall of Hg contamination was also tracked by the peat archive, with the highest Hg concentrations occurring just before 1963CE and then decreasing during the post-1963 period. Overall, the results show that the Delta was a pristine region for most of its ~6700-year existence; however, since ~1425CE, it has received Pb and Hg contamination from both global and regional sources.

  14. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  15. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  16. Mercuric chloride (HgCl2)

    Integrated Risk Information System (IRIS)

    Mercuric chloride ( HgCl2 ) ; CASRN 7487 - 94 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  17. Beryllium abundances in Hg-Mn stars

    SciTech Connect

    Boesgaard, A.M.; Heacox, W.D.; Wolff, S.C.; Borsenberger, J.; Praderie, F.

    1982-08-15

    The Hg-Mn stars show anomalous line strengths of many chemical elements including Be. We have observed the Be ii resonance doublet at lambdalambda 3130, 3131 at 6.7 A mm/sup -1/ in 43 Hg-Mn stars and 10 normal stars in the same temperature range with the coude spectrograph of the 2.24 m University of Hawaii telescope at Mauna Kea. Measured equivalent widths of the two lines and/or the blend of the doublet have been compared with predictions from (1) LTE model atmospheres and (2) non-LTE line formation on non-LTE model atmospheres. (For strong Be ii lines, the LTE calculations result in more Be by factors of 2 to 4 than do the non-LTE calculations.) Overabundances of factors of 20--2 x 10/sup 4/ relative to solar have been found for 75% of the Hg-Mn stars. The 25% with little or no Be are typically among the cooler Hg-Mn stars, but for the stars with Be excesses, there is only marginal evidence for a correlationi of the size of the overabundance and temperature. It is suggested that diffusion driven by radiation pressure is responsible for the observed Be abundance anomalies.

  18. Isotopic fractionation during the uptake and elimination of inorganic mercury by a marine fish.

    PubMed

    Xu, Xiaoyu; Wang, Wen-Xiong

    2015-11-01

    This study investigated the mass dependent (MDF) and independent fractionation (MIF) of stable mercury isotopes in fish during the uptake and elimination of inorganic species. Mercury accumulation during the exposure led to re-equilibration of organ isotopic compositions with the external sources, and elimination terminated the equilibrating with isotope ratios moving back to the original values. Generally, the isotopic behaviors corresponded to the changes of Hg accumulation in the muscle and liver, causing by the internal transportation, organ redistribution, and mixing of different sources. A small degree of MDF caused by biotransformation of Hg in the liver was documented during the elimination, whereas MIF was not observed. The absence of MIF during geochemical and metabolic processes suggested that mercury isotopes can be used as source tracers. Additionally, fish liver is a more responsive organ than muscle to track Hg source when it is mainly composed of inorganic species.

  19. Evolution of collectivity in {sup 180}Hg and {sup 182}Hg

    SciTech Connect

    Grahn, T.; Petts, A.; Scheck, M.; Butler, P. A.; Page, R. D.; Dewald, A.; Jolie, J.; Melon, B.; Pissulla, Th.; Hornillos, M. B. Gomez; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Rahkila, P.; Saren, J.; Scholey, C.

    2009-07-15

    Lifetimes of yrast states in {sup 180}Hg up to the 8{sup +} state and of the 9{sup -} state have been extracted from recoil-decay tagged {gamma}-ray spectra by using the recoil distance Doppler-shift method. In addition, lifetimes of yrast states up to the 10{sup +} state in {sup 182}Hg have been extracted from recoil-gated {gamma}{gamma}-coincidence spectra. The present study addresses the evolution of collectivity of two competing shapes in neutron-deficient Hg nuclei as a function of A and the configuration mixing at low spin.

  20. A Distinct Magnetic Isotope Effect Measured in Atmospheric Mercury in Epiphytes

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Odom, A. L.

    2007-12-01

    Due to the importance of Mercury as an environmental contaminant, mercury cycling in the atmosphere has been extensively studied. However, there still remain uncertainties in the relative amounts of natural and anthropogenic emissions, atmospheric deposition rates as well as the spatial variation of atmospheric mercury. Part of a study to determine the isotopic composition of mercury deposited from the atmosphere has involved the use of epiphytes as monitors. The greatest advantage of such natural monitors is that a widespread, high-density network is possible at low cost. One of the disadvantages at present is that these monitors likely contain different mercury species (for example both gaseous, elemental mercury trapped by adsorption and Hg (II) by wet deposition). The project began with the understanding that biochemical reactions involving metallothioneins within the epiphytes might have produced an isotopic effect. One such regional network was composed of samples of Tillandsia usenoides (common name: Spanish moss) collected along the eastern Coastal Plain of the U.S. from northern Florida to North Carolina. The isotopic composition of a sample is expressed as permil deviations from a standard. The deviations are defined as δAHg = \\left(\\frac{Rsample}{Rstd}-1 \\right)1000 ‰ , where A represents the atomic mass number. R=\\frac{AHg}{202Hg} were measured for the isotopes 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg relative to the mercury standard SRM NIST 3133, by a standard-sample bracketing technique. For all samples, the delta values of the even-N plotted against atomic mass numbers define a linear curve. For the odd-N isotopes, δ199Hg and δ201Hg deviate from this mass-dependent fractionation (MDF) relationship and indicate a mass-independent fractionation (MIF) effect and a negative anomaly, i.e. a depletion in 199Hg and 201Hg relative to the even-N isotopes. These deviations are expressed as Δ199Hg = δ199Hgtotal - δ199HgMDF. A Δ201Hg/Δ199Hg

  1. Compton profiles and electronic structure of HgBr(2) and HgI(2).

    PubMed

    Ahmed, G; Dashora, Alpa; Sharma, M; Ahuja, B L

    2010-02-01

    In this paper, we present the first-ever experimental Compton line shapes of HgBr(2) and HgI(2) using (137)Cs Compton spectrometer. To compare our experimental momentum densities, we have computed the Compton profiles using Hartree-Fock and density functional theory within linear combination of atomic orbitals. We have also computed the energy bands and density of states using the linear combination of atomic orbitals and full potential linearized augmented plane wave method. On the basis of equal-valence-electron-density profiles, it is seen that HgI(2) is more covalent than HgBr(2) which is in agreement with the valence charge densities. The experimental isotropic profiles are found to be relatively in better agreement with the Hartree-Fock data. We have also discussed the photoluminescence and detection properties of both the halides.

  2. Analysis of RFSA Campaign No.2 Dissolver Solution for Hg(I) and Hg(II)

    SciTech Connect

    Holcomb, H.P.

    2001-05-17

    TA 2-1083, under which RFSA processing is conducted, calls for a nominal mercuric ion concentration in the dissolver solution of 0.006M with a maximum of 0.01 M. The second RFSA campaign operated according to these guidelines with the initial Hg(II) concentration being 0.0068 M. Part of this study is to ascertain optimum excess Hg(I) for chloride removal.

  3. Pushing back the frontiers of mercury speciation using a combination of biomolecular and isotopic signatures: challenge and perspectives.

    PubMed

    Pedrero, Zoyne; Donard, Olivier F X; Amouroux, David

    2016-04-01

    Mercury (Hg) pollution is considered a major environmental problem due to the extreme toxicity of Hg. However, Hg metabolic pathways in biota remain elusive. An understanding of these pathways is crucial to elucidating the (eco)toxic effects of Hg and its biogeochemical cycle. The development of a new analytical methodology based on both speciation and natural isotopic fractionation represents a promising approach for metabolic studies of Hg and other metal(loid)s. Speciation provides valuable information about the reactivity and potential toxicity of metabolites, while the use of natural isotopic signature analysis adds a complementary dynamic dimension that allows the life history of the target element to be probed, the source of the target element (i.e., the source of pollution) to be identified, and reactions to be tracked. The resulting combined (bio)molecular and isotopic signature affords precious insight into the behavior of Hg in biota and Hg detoxification mechanisms. In the long term, this highly innovative methodology could be used in life and environmental science studies of metal(loid)s to push back the frontiers of our knowledge in this field. This paper summarizes the current status of the application of Hg speciation and the isotopic signature of Hg at the biomolecular level in living organisms, and discusses potential future uses of this combination of techniques.

  4. Magnetic fields of HgMn stars⋆

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; González, J. F.; Ilyin, I.; Korhonen, H.; Schöller, M.; Savanov, I.; Arlt, R.; Castelli, F.; Lo Curto, G.; Briquet, M.; Dall, T. H.

    2012-11-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15 G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims: We re-analyse the available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods: We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. Out of this sample, three HgMn stars belong to spectroscopic double-lined systems. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudinal magnetic field, the crossover effect, and quadratic magnetic fields. Results for the HgMn star HD 65949 and the PGa star HD 19400 are based on a linear regression analysis of low-resolution spectra obtained with FORS 2 in spectropolarimetric mode. Results: Our measurements of the magnetic field with the moment technique using spectral lines of several elements separately reveal the presence of a weak longitudinal magnetic field, a quadratic magnetic field, and the

  5. Mercury (Hg) and methyl mercury (MeHg) concentrations in fish from the coastal lagoon of Orbetello, central Italy.

    PubMed

    Miniero, R; Beccaloni, E; Carere, M; Ubaldi, A; Mancini, L; Marchegiani, S; Cicero, M R; Scenati, R; Lucchetti, D; Ziemacki, G; De Felip, E

    2013-11-15

    Total mercury (Hg tot) and methyl mercury (MeHg) were quantified in several specimens of Dicentrarchus labrax and Sparus aurata from the east basin of the Orbetello lagoon, central Italy. The size of each specimen was recorded to estimate body burdens (BBs); =Hg tot and MeHg were measured in fillets of both species. Hg tot and MeHg in S. aurata ranged between 0.355-1.58 and 0.341-1.53 μg/g wet weight (ww), respectively; in D. labrax, their ranges were 0.284-2.54 and 0.214-2.35 μg/g ww. Approximately 90% of the concentrations measured exceeded Hg tot regulatory maximum level of 0.5 μg/g ww; however, exceedance rate was different in the two species studied. No correlations between specimen size and Hg tot or MeHg BBs were detected in this study.

  6. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere.

    PubMed

    Goodsite, M E; Plane, J M C; Skov, H

    2004-03-15

    The oxidation of elemental mercury (Hg0) to the divalent gaseous mercury dibromide (HgBr2) has been proposed to account for the removal of Hg0 during depletion events in the springtime Arctic. The mechanism of this process is explored in this paper by theoretical calculations of the relevant rate coefficients. Rice-Ramsberger-Kassel-Marcus (RRKM) theory, together with ab initio quantum calculations where required, are used to estimate the following: recombination rate coefficients of Hg with Br, I, and O; the thermal dissociation rate coefficient of HgBr; and the recombination rate coefficients of HgBr with Br, I, OH, and O2. A mechanism based on the initial recombination of Hg with Br, followed by the addition of a second radical (Br, I, or OH) in competition with thermal dissociation of HgBr, is able to account for the observed rate of Hg0 removal, both in Arctic depletion events and at lower latitudes.

  7. Single particle signatures in high-spin, quasicontinuum, states in {sup 193,194}Hg from g-factor measurements.

    SciTech Connect

    Weissman, L.; Mayer, R. H.; Kumbartzki, G.; Benczer-Koller, N.; Broude, C.; Cizewski, J. A.; Hass, M.; Holden, J.; Janssens, R. V. F.; Lauritsen, T.; Lee, I. Y.; Macchiavelli, A. O.; McNabb, D. P.; Satteson, M.; Physics; Weizmann Inst. of Science; Rutgers Univ.; LBNL

    1999-01-14

    The average g factors of high spin, high-excitation energy, quasicontinuum structures in {sup 194,193}Hg were measured by observing the precessions of the angular distributions of {gamma}-ray transitions in several normal-deformation bands that coalesce in the decay of the entry distribution of states. The average g factors of the states leading to the three main bands in the {sup 193,194}Hg isotopes were: {l_angle}g({sup 193}Hg){r_angle}=+0.19(1) and {l_angle}g({sup 194}Hg){r_angle}=+0.26(1), respectively. These average g factors are smaller than the average of the g factors of the high energy states in the three superdeformed bands of {sup 194}Hg, {l_angle}g(SD; {sup 194}Hg){r_angle}=+0.41(8). While the nucleus in the superdeformed well behaves like a rigid rotor, the present results demonstrate the important role played by multiple, quasiparticle neutron configurations in the structure of normal-deformation, highly-excited nuclear states.

  8. Evidence for [gamma] vibrations and shape evolutions through the transitional [sup 184,186,188,190]Hg nuclei

    SciTech Connect

    Delaroche, J.P.; Girod, M. ); Bastin, G.; Deloncle, I.; Hannachi, F.; Libert, J.; Porquet, M.G. ); Bourgeois, C.; Hojman, D.; Kilcher, P.; Korichi, A.; Le Blanc, F.; Perrin, N.; Roussiere, B.; Sauvage, J.; Sergolle, H. )

    1994-11-01

    Constrained Hartree-Fock-Bogoliubov calculations based on Gogny's force have been performed to determine the potential energy surfaces, collective masses, and moments of inertia used to build a five-dimension collective Hamiltonian treating quadrupole motion in the [sup 184,186,188,190]Hg isotopes. Many collective states have been predicted at low excitation energy, some of them forming [gamma]-vibrational bands. To expand experimental information on [gamma] bands, high statistics measurements on the [beta][sup +] and electron capture decay of [sup 190]Tl[sup [ital g],][ital m] and [sup 186]Tl[sup [ital g],][ital m] have been performed at the ISOCELE facility. For the first time, [gamma] bands have been identified in [sup 190]Hg and [sup 186]Hg. These new results together with previous experimental information available on the ground state and [ital K]=0 excited bands in [sup 184,186,188,190]Hg form a database which has been analyzed and discussed in the present theoretical framework. It is argued that the first [ital K]=0 excited band in [sup 190]Hg is a [beta]-vibrational band, and that [sup 186]Hg is a nucleus in which shape coexistence occurs not only for the [ital K]=0 bands but also for the [gamma] bands.

  9. HgCdTe hybrid focal plane

    NASA Astrophysics Data System (ADS)

    Rode, J. P.

    1984-09-01

    Second-generation IR systems, consisting of 2-D mosaics of IR detectors, have been under intense development for the last few years. One of the most successful architectures has been a HgCdTe hybrid focal plane array (FPA), using a Si charge-coupled device (CCD) readout chip interfaced to epitaxial HgCdTe. Detection is made by backside-illuminated photovoltaic detectors with high fill factors and quantum efficiency. The detectors are coupled into the CCD by In bumps which mass bond each detector in the mosaic to a CCD input. Advances have been made in uniform, large area HgCdTe detector material that can be grown with a bandgap from less than 0.1 eV to greater than 1 eV. CCD architectures have been developed with simple, linear inputs and dynamic ranges up to 80 dB. Hybrid FPAs are currently being tested in prototype imaging systems, for detecting thermal differences as well as reflected sunlight in the IR. In the 3-5μm region, these arrays have proven capable of noise-equivalent temperature differences as low as 0.01 K, acquired at a 400 Hz frame rate. In addition to improving current imaging systems, these area arrays allow new system concepts to be brought to fruition.

  10. Mercury in a thin layer in HgMn stars - A test of a diffusion model

    NASA Technical Reports Server (NTRS)

    Megessier, C.; Michaud, G.; Weiler, E. J.

    1980-01-01

    Lines of the first three states of ionization of mercury have been observed in Mu Leporis and Chi Lupi using the Copernicus satellite. Lines of Hg II and Hg III have been observed in Alpha Andromedae. There appears to be an absorption feature at every wavelength where there is expected to be a mercury line. The presence of all three states of ionization is likely in Mu Lep and Chi Lup. The relative equivalent widths of the lines of the various states of ionization do not depend on the effective temperature of the stars, in contradiction to what is expected if mercury were uniformly distributed in the atmosphere. It is, however, expected if mercury has been concentrated, by diffusion, in a thin layer, where the radiative forces just equal the gravitational forces on mercury. That mercury should be so concentrated is also required by the explanation of the mercury isotope anomaly proposed by Michaud, Reeves, and Charland.

  11. Quasi-particle structure of proton-hole cobalt isotopes

    NASA Astrophysics Data System (ADS)

    Gupta, Anuradha; Verma, Preeti; Singh, Suram; Bharti, Arun; Khosa, S. K.; Bhat, G. H.; Sheikh, J. A.

    2015-09-01

    Projected Shell Model calculations have been employed for the description of the ground band in odd mass 57-67Co isotopes. In the present work, quadrupole and monopole pairing interactions as well as quadrupole-quadrupole interactions are effectively included in the Hamiltonian for obtaining various nuclear structure properties using the angular momentum projection technique. The yrast spectra of these isotopes are described as interplay between the angular momentum projected states around the Fermi level. The quasi-particle structure of these nuclei is found to be comprised of different intrinsic K-quantum numbers. Rotational alignments in terms of kinetic moment of inertia (ℑ (1)) have also been discussed. The electromagnetic transition probabilities [ B (E2) and B (M1)] are also obtained in the present work and are found to be in good agreement with the available experimental as well as the other theoretical data, which tests the consistency of the applied projected shell model. The present PSM calculations also report the existence of low lying deformed structure along with the spherical structure at N = 40.

  12. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  13. A physiological role for HgII during phototrophic growth

    NASA Astrophysics Data System (ADS)

    Grégoire, D. S.; Poulain, A. J.

    2016-02-01

    The bioaccumulation of toxic monomethylmercury is influenced by the redox reactions that determine the amount of mercury (Hg) substrate--HgII or Hg0 (refs ,)--that is available for methylation. Phototrophic microorganisms can reduce HgII to Hg0 (ref. ). This reduction has been linked to a mixotrophic lifestyle, in which microbes gain energy photosynthetically but acquire diverse carbon compounds for biosynthesis from the environment. Photomixotrophs must maintain redox homeostasis to disperse excess reducing power due to the accumulation of reduced enzyme cofactors. Here we report laboratory experiments in which we exposed purple bacteria growing in a bioreactor to HgII and monitored Hg0 concentrations. We show that phototrophs use HgII as an electron sink to maintain redox homeostasis. Hg0 concentrations increased only when bacteria grew phototrophically, and when bacterial enzyme cofactor ratios indicated the presence of an intracellular redox imbalance. Under such conditions, bacterial growth rates increased with increasing HgII concentrations; when alternative electron sinks were added, Hg0 production decreased. We conclude that Hg can fulfil a physiological function in bacteria, and that photomixotrophs can modify the availability of Hg to methylation sites.

  14. Sources and fate of mercury pollution in Almadén mining district (Spain): Evidences from mercury isotopic compositions in sediments and lichens.

    PubMed

    Jiménez-Moreno, María; Barre, Julien P G; Perrot, Vincent; Bérail, Sylvain; Rodríguez Martín-Doimeadios, Rosa C; Amouroux, David

    2016-03-01

    Variations in mercury (Hg) isotopic compositions have been scarcely investigated until now in the Almadén mining district (Spain), which is one of the most impacted Hg areas worldwide. In this work, we explore and compare Hg isotopic signatures in sediments and lichens from Almadén mining district and its surroundings in order to identify and trace Hg aquatic and atmospheric contamination sources. No statistically significant mass independent fractionation was observed in sediments, while negative Δ(201)Hg values from -0.12 to -0.21‰ (2SD = 0.06‰) were found in lichens. A large range of δ(202)Hg values were reported in sediments, from -1.86 ± 0.21‰ in La Serena Reservoir sites far away from the pollution sources to δ(202)Hg values close to zero in sediments directly influenced by Almadén mining district, whereas lichens presented δ(202)Hg values from -1.95 to -0.40‰ (2SD = 0.15‰). A dilution or mixing trend in Hg isotope signatures versus the distance to the mine was found in sediments along the Valdeazogues River-La Serena Reservoir system and in lichens. This suggests that Hg isotope fingerprints in these samples are providing a direct assessment of Hg inputs and exposure from the mining district, and potential information on diffuse atmospheric contamination and/or geochemical alteration processes in less contaminated sites over the entire hydrosystem. This study confirms the applicability of Hg isotope signatures in lichens and sediments as an effective and complementary tool for tracing aquatic and atmospheric Hg contamination sources and a better constraint of the spatial and temporal fate of Hg released by recent or ancient mining activities.

  15. Electromagnetic moments of odd-A Po193-203,211 isotopes

    NASA Astrophysics Data System (ADS)

    Seliverstov, M. D.; Cocolios, T. E.; Dexters, W.; Andreyev, A. N.; Antalic, S.; Barzakh, A. E.; Bastin, B.; Büscher, J.; Darby, I. G.; Fedorov, D. V.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Huber, G.; Huyse, M.; Keupers, M.; Köster, U.; Kudryavtsev, Yu.; Marsh, B. A.; Molkanov, P. L.; Page, R. D.; Sjödin, A. M.; Stefan, I.; Van Duppen, P.; Venhart, M.; Zemlyanoy, S. G.

    2014-03-01

    Hyperfine splitting parameters have been measured for the neutron-deficient odd-mass polonium isotopes and isomers Po193-203g,m, Po209,211. The measurement was performed at the ISOLDE (CERN) online mass separator using the in-source resonance ionization spectroscopy technique. The magnetic dipole moments μ and spectroscopic electric quadrupole moments QS have been deduced. Their implication for the understanding of nuclear structure in the vicinity of the closed proton shell at Z =82 and the neutron mid-shell at N =104 is discussed. For the most neutron-deficient nuclei (A =193,195,197), a deviation of μ and QS from the nearly constant values for heavier polonium nuclei was observed. Particle-plus-rotor calculations with static oblate deformation describe the electromagnetic moments for these nuclei well, provided a gradual increase of a mean deformation when going to lighter masses is assumed for the polonium nuclei with A <198.

  16. Mass-independent fractionation of mercury isotopes during photochemical reduction in freshwater systems

    NASA Astrophysics Data System (ADS)

    Rose, C. H.; Bergquist, B. A.; Blum, J. D.

    2009-12-01

    Mercury is a globally distributed environmental toxin. Both inorganic and methylated species have severe detrimental effects on humans and animals, but it is methyl mercury (MeHg) that bioaccumulates in food webs and results in significant human exposure via fish consumption. Photochemical reduction of aqueous Hg species to dissolved gaseous Hg(0) can result in a net transfer of Hg from aquatic systems to the atmosphere, making it unavailable for methylation. In addition, photo-reduction of MeHg is an alternative fate to bioaccumulation for this powerful neurotoxin. Both mass-dependent isotope fractionation (MDF) and mass-independent fractionation (MIF) are observed in natural samples. MIF is the deviation in isotope ratios from those predicted by MDF based on 202Hg/198Hg. Bergquist and Blum 2007 showed that aqueous photo-reduction of Hg2+ and MeHg in the presence of dissolved natural organic matter results not only in Rayleigh-type MDF but also significant MIF, with the odd isotopes 199Hg and 201Hg being preferentially retained in the reactant (soluble) phase. Berquist and Blum 2007 also observed that the ratio of the MIF for the odd isotopes was different for each of the photo-reduction pathways (MeHg versus Hg2+) and suggested this ratio could be unique to certain pathways, which might allow identification of photo-reduction among other pathways in natural samples. They also suggested that the magnitude of MIF might relate quantitatively to the amount of photo-reduction Hg undergoes in aqueous systems. To better understand the causes of MIF and its capacity along with MDF as a tool for tracing photo-reduction of Hg, further experiments mimicking the freshwater photo-reduction of Hg2+ and MeHg were carried out. Each species was photo-reduced in the presence of Suwannee River Fulvic Acid with different portions of the electromagnetic spectrum blocked by filters. Bergquist and Blum 2007 suggested the magnetic isotope effect (MIE) as the cause of the MIF they

  17. Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon.

    PubMed

    Laffont, Laure; Sonke, Jeroen E; Maurice, Laurence; Hintelmann, Holger; Pouilly, Marc; Sánchez Bacarreza, Yuba; Perez, Tamará; Behra, Philippe

    2009-12-01

    We report mercury (Hg) mass-dependent isotope fractionation (MDF) and mass-independent isotope fractionation (MIF) in hair samples of the Bolivian Esse Ejjas native people and in several tropical fish species that constitute their daily diet. MDF with delta(202)Hg ranging from -0.40 to -0.92 per thousand for fish and +1.04 to +1.42 per thousand for hair was observed. Hair samples of native people with a fish-dominated diet are enriched by +2.0 +/- 0.2 per thousand in delta(202)Hg relative to the fish consumed. Both odd Hg isotopes, (199)Hg and (201)Hg, display MIF in fish (from -0.14 to +0.38 per thousand for Delta(201)Hg and from -0.09 to +0.55 per thousand for Delta(199)Hg) and in hair (from +0.12 to +0.66 per thousand for Delta(201)Hg and from +0.14 to +0.81 per thousand for Delta(199)Hg). No significant difference in MIF anomalies is observed between Hg in fish and in human hair, suggesting that the anomalies act as conservative source tracers between upper trophic levels of the tropical food chain. Fish Hg MIF anomalies are 10-fold lower than those published for fish species from midlatitude lakes. Grouping all Amazonian fish species per location shows that Delta(199)Hg:Delta(201)Hg regression slopes for the clear water Itenez River basin (0.95 +/- 0.08) are significantly lower than those for the white water Beni River basin (1.28 +/- 0.12). Assuming that the observed MIF originates from aquatic photoreactions, we calculated limited photodemethylation of monomethylmercury (MMHg) in the Beni River floodplains and insignificant photodemethylation in the Itenez River floodplains. This is possibly related to lower residence times of MMHg in the Itenez compared to the Beni River floodplains. Finally, a significantly negative Delta(201)Hg of -0.14 per thousand in Beni River fish suggests that the inorganic Hg precursor to the MMHg that bioaccumulates up the food chain defines an ecosystem specific non-zero Delta(201)Hg baseline. Calculation of photodemethylation

  18. Mass spectrometric study of the mercury isotopes in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1986-01-01

    Isotopic abundance ratios for mercury were determined by mass spectrometry in six samples of bulk material and in one sample of chondrules from the Allende meteorite. A primary purpose of the work was to attempt to verify the anomalous ratios reported for Hg-196/Hg-202 by neutron activation. Measurements were made on the mercury released at temperatures of 250, 450, 600 C, and in some cases, higher temperatures. The precision of the measurements was such that if an anomaly of the magnitude reported exists, it should have been seen. The isotopic abundance ratios for the other mercury isotopes were also measured. Within the errors of measurement these agreed with normal terrestrial values.

  19. 40 CFR 60.4124 - Hg budget permit revisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Hg budget permit revisions. 60.4124... Coal-Fired Electric Steam Generating Units Permits § 60.4124 Hg budget permit revisions. Except as provided in § 60.4123(b), the permitting authority will revise the Hg Budget permit, as necessary,...

  20. 40 CFR 60.4124 - Hg budget permit revisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Hg budget permit revisions. 60.4124... Coal-Fired Electric Steam Generating Units Permits § 60.4124 Hg budget permit revisions. Except as provided in § 60.4123(b), the permitting authority will revise the Hg Budget permit, as necessary,...

  1. Process of [sup 196]Hg enrichment

    DOEpatents

    Grossman, M.W.; Mellor, C.E.

    1993-04-27

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of [sup 196]Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  2. Process of .sup.196 Hg enrichment

    DOEpatents

    Grossman, Mark W.; Mellor, Charles E.

    1993-01-01

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of .sup.196 Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  3. HgZnTe-based detectors for LWIR NASA applications

    NASA Technical Reports Server (NTRS)

    Patten, Elizabeth A.; Kalisher, Murray H.

    1990-01-01

    The initial goal was to grow and characterize HgZnTe and determine if it indeed had the advantageous properties that were predicted. Researchers grew both bulk and liquid phase epitaxial HgZnTe. It was determined that HgZnTe had the following properties: (1) microhardness at least 50 percent greater than HgCdTe of equivalent bandgap; (2) Hg annealing rates of at least 2 to 4 times longer than HgCdTe; and (3) higher Hg vacancy formation energies. This early work did not focus on one specific composition (x-value) of HgZnTe since NASA was interested in HgZnTe's potential for a variety of applications. Since the beginning of 1989, researchers have been concentrating, however, on the liquid phase growth of very long wavelength infrared (VLWIR) HgZnTe (cutoff approx. equals 17 microns at 65K) to address the requirements of the Earth Observing System (EOS). Since there are no device models to predict the advantages in reliability one can gain with increased microhardness, surface stability, etc., one must fabricate HgZnTe detectors and assess their relative bake stability (accelerated life test behavior) compared with HgCdTe devices fabricated in the same manner. Researchers chose to fabricate HIT detectors as a development vehicle for this program because high performance in the VLWIR has been demonstrated with HgCdTe HIT detectors and the HgCdTe HIT process should be applicable to HgZnTe. HIT detectors have a significant advantage for satellite applications since these devices dissipate much less power than conventional photoconductors to achieve the same responsivity.

  4. 46 CFR 53.05-1 - Safety valve requirements for steam boilers (modifies HG-400 and HG-401).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Safety valve requirements for steam boilers (modifies HG... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-1 Safety valve requirements for steam boilers (modifies HG-400 and HG-401). (a) The pressure relief valve requirements and...

  5. 46 CFR 53.05-1 - Safety valve requirements for steam boilers (modifies HG-400 and HG-401).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Safety valve requirements for steam boilers (modifies HG... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-1 Safety valve requirements for steam boilers (modifies HG-400 and HG-401). (a) The pressure relief valve requirements and...

  6. 46 CFR 53.05-1 - Safety valve requirements for steam boilers (modifies HG-400 and HG-401).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Safety valve requirements for steam boilers (modifies HG... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-1 Safety valve requirements for steam boilers (modifies HG-400 and HG-401). (a) The pressure relief valve requirements and...

  7. 46 CFR 53.05-1 - Safety valve requirements for steam boilers (modifies HG-400 and HG-401).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Safety valve requirements for steam boilers (modifies HG... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-1 Safety valve requirements for steam boilers (modifies HG-400 and HG-401). (a) The pressure relief valve requirements and...

  8. 46 CFR 53.05-1 - Safety valve requirements for steam boilers (modifies HG-400 and HG-401).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Safety valve requirements for steam boilers (modifies HG... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-1 Safety valve requirements for steam boilers (modifies HG-400 and HG-401). (a) The pressure relief valve requirements and...

  9. Quantification of Labile Soil Mercury by Stable Isotope Dilution Techniques

    NASA Astrophysics Data System (ADS)

    Shetaya, Waleed; Huang, Jen-How; Osterwalder, Stefan; Alewell, Christine

    2016-04-01

    Mercury (Hg) is a toxic element that can cause severe health problems to humans. Mercury is emitted to the atmosphere from both natural and anthropogenic sources and can be transported over long distances before it is deposited to aquatic and terrestrial environments. Aside from accumulation in soil solid phases, Hg deposited in soils may migrate to surface- and ground-water or enter the food chain, depending on its lability. There are many operationally-defined extraction methods proposed to quantify soil labile metals. However, these methods are by definition prone to inaccuracies such as non-selectivity, underestimation or overestimation of the labile metal pool. The isotopic dilution technique (ID) is currently the most promising method for discrimination between labile and non-labile metal fractions in soil with a minimum disturbance to soil-solid phases. ID assesses the reactive metal pool in soil by defining the fraction of metal both in solid and solution phases that is isotopically-exchangeable known as the 'E-value'. The 'E-value' represents the metal fraction in a dynamic equilibrium with the solution phase and is potentially accessible to plants. This is carried out by addition of an enriched metal isotope to soil suspensions and quantifying the fraction of metal that is able to freely exchange with the added isotope by measuring the equilibrium isotopic ratio by ICP-MS. E-value (mg kg-1) is then calculated as follows: E-Value = (Msoil/ W) (CspikeVspike/ Mspike) (Iso1IAspike -Iso2IAspikeRss / Iso2IAsoil Rss - Iso1IAsoil) where M is the average atomic mass of the metal in the soil or the spike, W is the mass of soil (kg), Cspike is the concentration of the metal in the spike (mg L-1), Vspike is the volume of spike (L), IA is isotopic abundance, and Rss is the equilibrium ratio of isotopic abundances (Iso1:Iso2). Isotopic dilution has been successfully applied to determine E-values for several elements. However, to our knowledge, this method has not yet

  10. The Chevrel phase HgMo6S8

    PubMed Central

    Salloum, Diala; Gougeon, Patrick; Potel, Michel

    2009-01-01

    The crystal structure of HgMo6S8, mercury(II) hexa­molybdenum octa­sulfide, is based on (Mo6S8)S6 cluster units ( symmetry) inter­connected through inter­unit Mo—S bonds. The Hg2+ cations occupy large voids between the different cluster units and are covalently bonded to two S atoms. The Hg atoms and one S atom lie on sites with crystallographic and 3 symmetry, respectively. Refinement of the occupancy factor of the Hg atom led to the composition Hg0.973 (3)Mo6S8. PMID:21583726

  11. A synthetic model of Hg(II) sequestration.

    PubMed

    Viehweg, Julie A; Stamps, Sarah M; Dertinger, Jennifer J; Green, Robert L; Harris, Katherine E; Butcher, Raymond J; Andriole, Erica J; Poutsma, J C; Berry, Steven M; Bebout, Deborah C

    2010-04-07

    Tridentate ligand N-(2-pyridylmethyl)-N-(2-(ethylthiolato)amine (L) forms the novel complex [Hg(5)(L)(6)](ClO(4))(4).toluene () with a bicyclo[3.3.3] Hg(5)S(6) core and 4-, 5- and 6-coordinate metal centers; characterization of a solution of by ESI-MS revealed elaborate speciation involving [Hg(n)L(n+1)(ClO(4))(n-2)](+), [Hg(n)L(n)(ClO(4))(n-1)](+) and [Hg(n)L(n-1)(ClO(4))(n)](+) ion families.

  12. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia).

    PubMed

    Perrot, Vincent; Pastukhov, Mikhail V; Epov, Vladimir N; Husted, Søren; Donard, Olivier F X; Amouroux, David

    2012-06-05

    Mercury undergoes several transformations that influence its stable isotope composition during a number of environmental and biological processes. Measurements of Hg isotopic mass-dependent (MDF) and mass-independent fractionation (MIF) in food webs may therefore help to identify major sources and processes leading to significant bioaccumulation of methylmercury (MeHg). In this work, δ(13)C, δ(15)N, concentration of Hg species (MeHg, inorganic Hg), and stable isotopic composition of Hg were determined at different trophic levels of the remote and pristine Lake Baikal ecosystem. Muscle of seals and different fish as well as amphipods, zooplankton, and phytoplankton were specifically investigated. MDF during trophic transfer of MeHg leading to enrichment of heavier isotopes in the predators was clearly established by δ(202)Hg measurements in the pelagic prey-predator system (carnivorous sculpins and top-predator seals). Despite the low concentrations of Hg in the ecosystem, the pelagic food web reveals very high MIF Δ(199)Hg (3.15-6.65‰) in comparison to coastal fish (0.26-1.65‰) and most previous studies in aquatic organisms. Trophic transfer does not influence MIF signature since similar Δ(199)Hg was observed in sculpins (4.59 ± 0.55‰) and seal muscles (4.62 ± 0.60‰). The MIF is suggested to be mainly controlled by specific physical and biogeochemical characteristics of the water column. The higher level of MIF in pelagic fish of Lake Baikal is mainly due to the bioaccumulation of residual MeHg that is efficiently turned over and photodemethylated in deep oligotrophic and stationary (i.e., long residence time) freshwater columns.

  13. Bioindication of volcanic mercury (Hg) deposition around Mt Etna (Sicily)

    NASA Astrophysics Data System (ADS)

    Martin, R.; Witt, M. L.; Sawyer, G. M.; Watt, S.; Bagnato, E.; Calabrese, S.; Aiuppa, A.; Delmelle, P.; Pyle, D. M.; Mather, T. A.

    2012-12-01

    Mt. Etna is a major natural source of Hg to the Mediterranean region. Total mercury concentrations, [Hg]tot, in Castanea sativa (sweet chestnut) leaves sampled 7-13 km from Etna's vents (during six campaigns in 2005-2011) were determined using atomic absorption spectroscopy. [Hg]tot in C. sativa was greatest on Etna's SE flank reflecting Hg deposition from the typically overhead volcanic plume. When adjusted for leaf age, [Hg]tot in C. sativa also increased with recent eruptive activity. [Hg]tot in C. sativa was not controlled by [Hg]tot in soils, which instead was greatest on the (upwind) NW flank and correlated strongly with soil organic matter (% Org). Our results suggest that at least ~1% of Hg emitted from Etna is deposited proximally, supporting recent measurement and model results which indicate that GEM (Hg0; the dominant form of Hg in high temperature magmatic gases) is oxidised rapidly to RGM and Hgp in ambient temperature volcanic plumes. Samples of C. sativa and soils were also collected in July and September 2012 alongside SO2 and acid gas diffusion tube samples. These new samples will enable us to investigate Hg accumulation over a single growth season with reference to the exposure of vegetation to volcanic gases and particles.

  14. Isotope fractionation

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A rash of new controversy has emerged around the subject of mass-independent isotope fractionation effects, particularly in the case of the oxygen isotopes. To be sure, the controversy has been around for awhile, but it has been given new impetus by the results of a recent study by Mark H. Thiemens and John E. Heidenreich III of the University of California, San Diego (Science, March 4, 1983).Gustav Arrhenius has been trying to convince the planetary science community that chemical effects in isotope fractionation processes could explain observations in meteorites that appear to be outside of the traditionally understood mass-dependent fractionations (G. Arrhenius, J . L. McCrumb, and N. F. Friedman, Astrophys. Space Sci, 65, 297, 1974). Robert Clayton had made the basic observations of oxygen in carbonaceous chondrites that the slope of the δ17 versus δ18 line was 1 instead of the slope of ½ characteristic of terrestrial rocks and lunar samples (Ann. Rev. Nucl. Part. Sci., 28, 501, 1978). The mass-independent effects were ascribed to the apparent contribution of an ancient presolar system component of O16.

  15. Thermodynamic assessment of Hg(II)-gibbsite interactions.

    PubMed

    Weerasooriya, Rohan; Seneviratne, Wasana; Kathriarachchi, Heasha A; Tobschall, Heinz J

    2006-09-15

    As discrete particles and/or as surface coatings on other minerals in natural systems, aluminum hydroxides are efficient sinks for Hg(II). The Hg(II) adsorption on gibbsite was determined as a function of temperature (T), pH, and the type of background electrolytes, i.e., NaNO(3), NaClO(4), and NaCl. When the equilibration time t(E) approximately 2 h, the Hg(II) retention on gibbsite was found to be a reversible process, which was ascribed to adsorption. The Hg(II) adsorption capacity, i.e., Gamma(Hg(II)), varied with the type of electrolyte used in accordance with the following order: Gamma(NO(3))(Hg(II)) > or = Gamma(ClO(4))(Hg(II)) > or = Gamma(Cl)(Hg(II)). In all cases, the estimated thermodynamic parameters showed that the Hg(II) adsorption on gibbsite was endothermic and spontaneous. The Hg(II) adsorption data were quantified with the Langmuir or Hill, and Dublin-Radushkevick (DR), isotherms at all temperatures and acidity levels examined. Always, the Hg(II) adsorption data were in compliance with the DR model. However, the Hg(II) adsorption in NaNO(3) or NaClO(4) was interpreted in terms of the Langmuir model. When NaCl was used as electrolyte, the Hg(II) adsorption was modeled well with the Hill equation. The mean free energy values calculated from DR plots concluded that Hg(II)-gibbsite interactions are a result of chemical bonding.

  16. AQUEOUS REDUCTION OF HG2+ TO HG0 BY HO2 IN THE CMAQ-MODEL

    EPA Science Inventory

    Numerical models of atmospheric mercury are formulated based on the current understanding of mercury chemistry in air and in atmospheric water. Recent evidence that significant reduction of Hg2+ by reaction with HO2 may not actually occur in natural atmospheric water has obviou...

  17. Tracing mercury pathways in Augusta Bay (southern Italy) by total concentration and isotope determination.

    PubMed

    Bonsignore, M; Tamburrino, S; Oliveri, E; Marchetti, A; Durante, C; Berni, A; Quinci, E; Sprovieri, M

    2015-10-01

    The mercury (Hg) pollution of sediments is the main carrier of Hg for the biota and, subsequently, for the local fish consumers in Augusta Bay area (SE Sicily, Italy), a coastal marine system affected by relevant sewage from an important chlor-alkali factory. This relationship was revealed by the determination of Mass Dependent (MDF) and Mass Independent Fractionation (MIF) of Hg isotopes in sediment, fish and human hair samples. Sediments showed MDF but no MIF, while fish showed MIF, possibly due to photochemical reduction in the water column and depending on the feeding habitat of the species. Benthic and demersal fish exhibited MDF similar to that of sediments in which anthropogenic Hg was deposited, while pelagic organisms evidenced higher MDF and MIF due to photoreduction. Human hair showed high values of δ(202)Hg (offset of +2.2‰ with respect to the consumed fish) and Δ(199)Hg, both associated to fish consumption.

  18. Evaluation of HgI[sub 2] detectors for lead detection in paint

    SciTech Connect

    Wang, Y.J.; Iwanczyk, J.S.; Graham, W.R. )

    1993-08-01

    The authors conducted a laboratory study of HgI[sub 2] spectrometers used for in-situ determination of lead on painted surfaces. [sup 109]Cd and [sup 57]Co isotopes have been used to excite lead characteristic x-rays from samples. The energy resolution of HgI[sub 2] detectors in the energy region corresponding to lead K x-rays has been measured. An energy resolution of 880 eV (FWHM) for the 60 keV line from an [sup 241]Am source has been obtained. Measurements using thin film standards ranging from 0.5 mg Pb/cm[sup 2] to 2 mg Pb/cm[sup 2] have been conducted. Detection limits, accuracy and precision of the measurements have been estimated. Based upon a comparison of the results that the authors have obtained with the performance of existing detector technology, the HgI[sub 2] detectors seem to be the best solution for handheld XRF lead analyzers.

  19. Mercury isotope fractionation during liquid-vapor evaporation experiments

    NASA Astrophysics Data System (ADS)

    Estrade, Nicolas; Carignan, Jean; Sonke, Jeroen E.; Donard, Olivier F. X.

    2009-05-01

    Liquid-vapor mercury isotope fractionation was investigated under equilibrium and dynamic conditions. Equilibrium evaporation experiments were performed in a closed glass system under atmospheric pressure between 0 and 22 °C, where vapor above the liquid was sampled at chemical equilibrium. Dynamic evaporation experiments were conducted in a closed glass system under 10 -5 bar vacuum conditions varying (1) the fraction of liquid Hg evaporated at 22 °C and (2) the temperature of evaporation (22-100 °C). Both, residual liquid and condensed vapor fractions were analyzed using stannous chloride CV-MC-ICP-MS. Equilibrium evaporation showed a constant liquid-vapor fractionation factor ( α202/198) of 1.00086 ± 0.00022 (2SD, n = 6) within the 0-22 °C range. The 22 °C dynamic evaporations experiments displayed Rayleigh distillation fractionation behavior with liquid-vapor α202/198 = 1.0067 ± 0.0011 (2SD), calculated from both residual and condensed vapor fractions. Our results confirm historical data (1920s) from Brönsted, Mulliken and coworkers on mercury isotopes separation using evaporation experiments, for which recalculated δ 202Hg' showed a liquid-vapor α202/198 of 1.0076 ± 0.0017 (2SD). This liquid-vapor α202/198 is significantly different from the expected kinetic α202/198 value ((202/198) 0.5 = 1.0101). A conceptual evaporation model of back condensation fluxes within a thin layer at the liquid-vapor interface was used to explain this discrepancy. The δ 202Hg' of condensed vapor fractions in the 22-100 °C temperature range experiments showed a negative linear relationship with 10 6/ T2, explained by increasing rates of exchange within the layer with the increase in temperature. Evaporation experiments also resulted in non-mass-dependent fractionation (NMF) of odd 199Hg and 201Hg isotopes, expressed as Δ 199Hg' and Δ 201Hg', the deviation in ‰ from the mass fractionation relationship with even isotopes. Liquid-vapor equilibrium yielded Δ 199Hg

  20. Superdeformation studies in {sup 191}Hg

    SciTech Connect

    Carpenter, M.P.; Janssens, R.V.F.; Crowell, B.

    1995-08-01

    Superdeformation in the A {approximately} 190 region was first observed in {sup 191}Hg from an experiment performed at ATLAS using the Argonne Notre Dame {gamma}-ray facility. We recently revisited the study of superdeformation in this nucleus using Gammasphere and the {sup 160}Gd({sup 36}S,5n) and {sup 174}Yb({sup 22}Ne,5n) reactions at 172 and 120 MeV in order to populate and measure states in the second well. The goal of the experiment was to identify new bands in the data, and thus allow us to gain understanding on the relative placement of single particle orbitals near the N = 112 SD shell gap. From an analysis of the data, the three previously identified SD bands were extended, and their feeding into the yrast states delineated. Two new SD bands were observed and preliminary evidence for a third new band was obtained as well.

  1. Coaxial HgI excimer lamps

    SciTech Connect

    Malinin, A N; Polyak, A V; Guivan, N N; Shimon, Lyudvik L; Zubrilin, N G

    2002-02-28

    The emission of coaxial HgI excimer lamps pumped by a repetitively pulsed barrier discharge is experimentally studied. The stable operation of the excimer lamps was demonstrated at pump-pulse repetition rates from 0.5 to 12 kHz, and the average emission power attained of 0.6 W at 444 nm. It was found that upon an addition of 0.8% of xenon to the mixture of helium and mercury diiodide, the pulse and average emission powers increased by 30%. The emission power reduced by 5% after 2.5 x 10{sup 6} pulses. An interpretation of the results of optimising the excimer lamp characteristics is given. (laser applications and other topics in quantum electronics)

  2. Biotransformation of Hg(II) by Cyanobacteria▿ †

    PubMed Central

    Lefebvre, Daniel D.; Kelly, David; Budd, Kenneth

    2007-01-01

    The biotransformation of Hg(II) by cyanobacteria was investigated under aerobic and pH-controlled culture conditions. Mercury was supplied as HgCl2 in amounts emulating those found under heavily impacted environmental conditions where bioremediation would be appropriate. The analytical procedures used to measure mercury within the culture solution, including that in the cyanobacterial cells, used reduction under both acid and alkaline conditions in the presence of SnCl2. Acid reduction detected free Hg(II) ions and its complexes, whereas alkaline reduction revealed that meta-cinnabar (β-HgS) constituted the major biotransformed and cellularly associated mercury pool. This was true for all investigated species of cyanobacteria: Limnothrix planctonica (Lemm.), Synechococcus leopoldiensis (Racib.) Komarek, and Phormidium limnetica (Lemm.). From the outset of mercury exposure, there was rapid synthesis of β-HgS and Hg(0); however, the production rate for the latter decreased quickly. Inhibitory studies using dimethylfumarate and iodoacetamide to modify intra- and extracellular thiols, respectively, revealed that the former thiol pool was required for the conversion of Hg(II) into β-HgS. In addition, increasing the temperature enhanced the amount of β-HgS produced, with a concomitant decrease in Hg(0) volatilization. These findings suggest that in the environment, cyanobacteria at the air-water interface could act to convert substantial amounts of Hg(II) into β-HgS. Furthermore, the efficiency of conversion into β-HgS by cyanobacteria may lead to the development of applications in the bioremediation of mercury. PMID:17071784

  3. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology.

    PubMed

    Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange

    2011-06-15

    A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively.

  4. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  5. Ruditapes philippinarum and Ruditapes decussatus under Hg environmental contamination.

    PubMed

    Velez, Cátia; Galvão, Petrus; Longo, Renan; Malm, Olaf; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa

    2015-08-01

    The native species Ruditapes decussatus and the invasive species Ruditapes philippinarum have an important ecological role and socio-economic value, from the Atlantic and Mediterranean to the Indo-Pacific region. In the aquatic environment, they are subjected to the presence of different contaminants, such as mercury (Hg) and its methylated form, methylmercury (MeHg). However, few studies have assessed the impacts of Hg on bivalves under environmental conditions, and little is known on bivalve oxidative stress patterns due to Hg contamination. Therefore, this study aims to assess the Hg contamination in sediments as well as the concentration of Hg and MeHg in R. decussatus and R. philippinarum, and to identify the detoxification strategies of both species living in sympatry, in an aquatic system with historical Hg contamination. The risk to human health due to the consumption of clams was also evaluated. The results obtained demonstrated that total Hg concentration found in sediments from the most contaminated area was higher than the maximum levels established by Sediment Quality Guidelines. This study further revealed that the total Hg and MeHg accumulation in both species was strongly correlated with the total Hg contamination of the sediments. Nonetheless, the THg concentration in both species was lower than maximum permissible limits (MPLs) of THg defined by international organizations. R. decussatus and R. philippinarum showed an increase in lipid peroxidation levels along with the increase of THg accumulation by clams. Nevertheless, for both species, no clear trend was obtained regarding the activity of antioxidant (superoxide dismutase, catalase) and biotransformation (glutathione S-transferase) enzymes and metallothioneins with the increase of THg in clams. Overall, the present work demonstrated that both species can be used as sentinel species of contamination and that the consumption of these clams does not constitute a risk for human health.

  6. Lithography process for patterning HgI2 photonic devices

    DOEpatents

    Mescher, Mark J.; James, Ralph B.; Hermon, Haim

    2004-11-23

    A photolithographic process forms patterns on HgI.sub.2 surfaces and defines metal sublimation masks and electrodes to substantially improve device performance by increasing the realizable design space. Techniques for smoothing HgI.sub.2 surfaces and for producing trenches in HgI.sub.2 are provided. A sublimation process is described which produces etched-trench devices with enhanced electron-transport-only behavior.

  7. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo; Aschner, Michael; Rocha, Joao B.T.

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  8. Modeling Mercury Cadmium Telluride (HgCdTe) Photodiodes

    DTIC Science & Technology

    2009-11-01

    and Electron Devices Directorate, ARL and Dragica Vasileska Arizona State University, Tempe AZ 85287-5706...coefficient of Hg1–xCdxTe as a function of composition x (4). ......3 Figure 3. Comparison of the bandgap vs. lattice constant variation with alloy...proceeded deliberately and steadily for four decades in spite of the high vapor pressure of Hg at the melting point of HgCdTe and the known toxicity

  9. Modeling interactions of Hg(II) and bauxitic soils.

    PubMed

    Weerasooriya, Rohan; Tobschall, Heinz J; Bandara, Atula

    2007-11-01

    The adsorptive interactions of Hg(II) with gibbsite-rich soils (hereafter SOIL-g) were modeled by 1-pK surface complexation theory using charge distribution multi-site ion competition model (CD MUSIC) incorporating basic Stern layer model (BSM) to account for electrostatic effects. The model calibrations were performed for the experimental data of synthetic gibbsite-Hg(II) adsorption. When [NaNO(3)] > or = 0.01M, the Hg(II) adsorption density values, of gibbsite, Gamma(Hg(II)), showed a negligible variation with ionic strength. However, Gamma(Hg(II)) values show a marked variation with the [Cl(-)]. When [Cl(-)] > or = 0.01M, the Gamma(Hg(II)) values showed a significant reduction with the pH. The Hg(II) adsorption behavior in NaNO(3) was modeled assuming homogeneous solid surface. The introduction of high affinity sites, i.e., >Al(s)OH at a low concentration (typically about 0.045 sites nm(-2)) is required to model Hg(II) adsorption in NaCl. According to IR spectroscopic data, the bauxitic soil (SOIL-g) is characterized by gibbsite and bayerite. These mineral phases were not treated discretely in modeling of Hg(II) and soil interactions. The CD MUSIC/BSM model combination can be used to model Hg(II) adsorption on bauxitic soil. The role of organic matter seems to play a role on Hg(II) binding when pH>8. The Hg(II) adsorption in the presence of excess Cl(-) ions required the selection of high affinity sites in modeling.

  10. Liquidus temperatures of Hg-rich Hg-Cd-Te alloys

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Lehoczky, S. L.

    1983-01-01

    Measurements are made of the liquidus temperatures for ten (Hg/1-x/Cd)Te/1-y/ compositions in which x ranges from 0.091 to 0.401 and y ranges from 0.544 to 0.952. It is found that for metal-rich melts with the same x value, the liquidus temperature increases with y when y is in the range 0.5-0.7. This behavior is explained by the higher degree of association between Cd and Te than between Hg and Te in the melts. It is noted that recent calculated values of the liquidus isotherms by Tung et al. (1982) are in fair to good agreement with the experimental results obtained here.

  11. Detailed study of the neutral-current neutrino-nucleus scattering off the stable Mo isotopes

    NASA Astrophysics Data System (ADS)

    Ydrefors, E.; Balasi, K. G.; Kosmas, T. S.; Suhonen, J.

    2012-12-01

    For neutrino detection and for various applications in astrophysics the knowledge of the nuclear responses to astrophysical neutrinos is crucial. Recent studies of neutrino interactions with the 100Mo nucleus and the other stable molybdenum isotopes are important for the planned MOON (Mo Observatory of Neutrinos) detector. To this aim, in the present work we perform detailed nuclear structure calculations for the neutral-current neutrino-nucleus scattering off the stable molybdenum isotopes. We focus on the differential and total neutrino-nucleus cross sections as well as on flux averaged cross sections to various supernova neutrino spectra. We also propose a more efficient method for the computations of the corresponding nuclear matrix elements. By employing this method we extend our previous calculations for the odd isotopes (95Mo and 97Mo) where also couplings to high-lying QRPA (quasiparticle random-phase approximation) phonons are included in the quasiparticle-phonon basis. It is established in this work that the inclusion of high-lying QRPA excitations are essential for the description of the neutrino-nucleus scattering off open-shell odd-mass nuclei.

  12. Dual Hg-Rb magneto-optical trap.

    PubMed

    Witkowski, Marcin; Nagórny, Bartłomiej; Munoz-Rodriguez, Rodolfo; Ciuryło, Roman; Żuchowski, Piotr Szymon; Bilicki, Sławomir; Piotrowski, Marcin; Morzyński, Piotr; Zawada, Michał

    2017-02-20

    We present a two-species laser cooling apparatus capable of simultaneously collecting Rb and Hg atomic gases into a magneto-optical trap (MOT). The atomic sources, laser system, and vacuum set-up are described. While there is a loss of Rb atoms in the MOT due to photoionization by the Hg cooling laser, we show that it does not prevent simultaneous trapping of Rb and Hg. We also demonstrate interspecies collision-induced losses in the 87Rb-202Hg system.

  13. HD 30963: a new HgMn star

    NASA Astrophysics Data System (ADS)

    Monier, R.; Gebran, M.; Royer, F.

    2016-12-01

    Using high dispersion high quality spectra of HD 30963 obtained with the echelle spectrograph SOPHIE at Observatoire de Haute Provence in November 2015, we show that this star, hitherto classified as a B9 III superficially normal star, is actually a new Chemically Peculiar star of the HgMn type. Spectrum synthesis reveals large overabundances of Mn, Sr, Y, Zr , Pt and Hg and pronounced underabundances of He and Ni which are characteristic of HgMn stars. We therefore propose that this interesting object be reclassified as a B9 HgMn star.

  14. Dual Hg-Rb magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Nagórny, Bartłomiej; Munoz-Rodriguez, Rodolfo; Ciuryło, Roman; Żuchowski, Piotr Szymon; Bilicki, Sławomir; Piotrowski, Marcin; Morzyński, Piotr; Zawada, Michał

    2017-02-01

    We present a two-species laser cooling apparatus capable of simultaneously collecting Rb and Hg atomic gases into a magneto-optical trap (MOT). The atomic sources, laser system, and vacuum set-up are described. While there is a loss of Rb atoms in the MOT due to photoionization by the Hg cooling laser, we show that it does not prevent simultaneous trapping of Rb and Hg. We also demonstrate interspecies collision-induced losses in the ${}^{87}$Rb-${}^{202}$Hg system.

  15. Shock-induced defects in HgO

    SciTech Connect

    Morosin, B.; Venturini, E.L.; Holman, G.T.; Newcomer, P.N.; Dunn, R.G.; Graham, R.A.

    1995-09-01

    Powder compacts of HgO have been subjected to shock-loading and preserved for postshock analysis to understand its reactivity and stability under transient temperature-pressure excursions. Recovered samples indicate several solid state reactions which are dependent on shock conditions. Metallic Hg is recovered in small amounts in the HgO compact as well as an as-yet unidentified ferromagnetic impurity not present in the as-received HgO powder. Further, there is evidence of reaction with the Cu capsule, forming an intermetallic alloy.

  16. Seasonal and Diurnal Variations of Hg(0) Over New England

    NASA Astrophysics Data System (ADS)

    Mao, H.; Talbot, R.; Sigler, J.; Sive, B.; Hegarty, J.

    2007-12-01

    Diurnal to interannual variability of Hg° over New England was investigated using multiple years of Hg° measurements at two inland sites, Thompson Farm (TF, 43.11° N, 70.95° W, 24 m, 25 km inland) and Pac Monadnock (PM, 42.86° N, 71.88° W, 700 m, 180 km inland), and one summer of measurements from a marine site, Appledore Island (AI, 42.97° N, 70.62° W, sea level), from the University of New Hampshire AIRMAP observing network. Possible sources were identified via a thorough examination of relationships between Hg° and a number of trace gases, e.g., CO, CO2, CH4, NOy, NO, SO2, and VOCs. The measurements of Hg at TF showed distinct seasonality with an annual maxima in late winter - early spring and a minima in early fall, with large day-to-day variation. A decreasing trend in the mixing ratio of Hg over the time period of March - September occurred at a rate of 0.5 - 0.6 ppqv d-1 for all years except 2004 (0.3 ppqv d-1). Measurements of Hg° at the elevated site PM exhibited much smaller daily and annual variation, particularly reflected in the slower warm season decline (relative to TF) of 0.2 and 0.3 ppqv d-1 in 2005 and 2006 respectively. The AI data appeared to track the variation observed at TF albeit with much higher minima. Hg° was correlated most strongly with CO and NOy in winter suggesting that anthropogenic emissions were the primary source of Hg° . Applying the Hg° - CO relationship, we found that the seasonally averaged Hg° mixing ratio of ~160 ppqv at PM can be considered the regional background level. The positive Hg° -NOy correlation along the lower boundary of all data points indicated dry deposition as a stronger sink for Hg° than suggested by previous studies. We estimated a dry deposition velocity for Hg° of 0.17 - 0.20 cm s-1, and a lifetime of ~11 days in the local PBL at TF. Correlation between Hg° and CHBr3 at both TF and AI suggested a role of the oceanic source influencing the ambient levels of Hg° in the marine and coastal

  17. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers

    PubMed Central

    Xu, Xiaoyu; Zhang, Qianggong; Wang, Wen-Xiong

    2016-01-01

    Tibetan Plateau is located at a mountain region isolated from direct anthropogenic sources. Mercury concentrations and stable isotopes of carbon, nitrogen, and mercury were analyzed in sediment and biota for Nam Co and Yamdrok Lake. Biotic mercury concentrations and high food web magnification factors suggested that Tibetan Plateau is no longer a pristine site. The primary source of methylmercury was microbial production in local sediment despite the lack of direct methylmercury input. Strong ultraviolet intensity led to extensive photochemical reactions and up to 65% of methylmercury in water was photo-demethylated before entering the food webs. Biota displayed very high Δ199Hg signatures, with some highest value (8.6%) ever in living organisms. The δ202Hg and Δ199Hg in sediment and biotic samples increased with trophic positions (δ15N) and %methylmercury. Fish total length closely correlated to δ13C and Δ199Hg values due to dissimilar carbon sources and methylmercury pools in different living waters. This is the first mercury isotope study on high altitude lake ecosystems that demonstrated specific isotope fractionations of mercury under extreme environmental conditions. PMID:27151563

  18. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyu; Zhang, Qianggong; Wang, Wen-Xiong

    2016-05-01

    Tibetan Plateau is located at a mountain region isolated from direct anthropogenic sources. Mercury concentrations and stable isotopes of carbon, nitrogen, and mercury were analyzed in sediment and biota for Nam Co and Yamdrok Lake. Biotic mercury concentrations and high food web magnification factors suggested that Tibetan Plateau is no longer a pristine site. The primary source of methylmercury was microbial production in local sediment despite the lack of direct methylmercury input. Strong ultraviolet intensity led to extensive photochemical reactions and up to 65% of methylmercury in water was photo-demethylated before entering the food webs. Biota displayed very high Δ199Hg signatures, with some highest value (8.6%) ever in living organisms. The δ202Hg and Δ199Hg in sediment and biotic samples increased with trophic positions (δ15N) and %methylmercury. Fish total length closely correlated to δ13C and Δ199Hg values due to dissimilar carbon sources and methylmercury pools in different living waters. This is the first mercury isotope study on high altitude lake ecosystems that demonstrated specific isotope fractionations of mercury under extreme environmental conditions.

  19. The role of terrestrial vegetation in mercury deposition: fate of stable mercury isotopes applied to upland and wetland forest canopies during the METAALICUS experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Graydon, J. A.; St. Louis, V. L.; Lindberg, S. E.; Sandilands, K.; Krabbenhoft, D. P.; Tate, M. T.; Harris, R.; Emmerton, C. A.; Richardson, M.; Asmath, H.

    2009-12-01

    Methylmercury (MeHg) is an organic, neurotoxic form of mercury (Hg) that is responsible for fish consumption advisories in North American freshwaters. It is generally believed that increases in anthropogenic Hg emissions have resulted in high MeHg concentrations of fish. However, a direct relationship between deposition of inorganic Hg(II) and concentrations of MeHg in fish has been difficult to demonstrate because of our inability to distinguish newly-deposited Hg from Hg accumulated historically in ecosystems. The Mercury Experiment to Assess Atmospheric Loading In Canada and the US (METAALICUS) increased atmospheric inputs of mercury (Hg) to a small lake and its watershed to levels comparable to those in more industrialized regions. Between 2001 and 2006, three different enriched stable isotopes of Hg (spikes) were loaded to the watershed, one each to the surface of the lake (200Hg), the wetland (198Hg) and the forested upland (202Hg) areas of the catchment to determine the relative contribution of these sources to fish MeHg concentrations. Terrestrial vegetation often represents the first landscape compartment that new atmospheric Hg contacts upon deposition, and plants act as conduits of atmospheric Hg to the landscape. We will present pools and fluxes of spike Hg within upland and wetland canopy and ground vegetation compartments. Our Geographical Information Systems-based modeling approach to calculating spike pools used aircraft spray tracks, regressions between spike application rate and concentrations of spike in vegetation, a LiDAR-derived Leaf Area Index (LAI) map and relationships between LAI and canopy biomass. We observed that 30-50% of spike Hg applied to the upland and wetland was initially intercepted by the forest canopy. Average half lives of spike Hg on deciduous (110±30 days) and coniferous (180±40 days) forest canopy and ground vegetation (890±620 days) indicated that retention of new atmospheric Hg(II) on terrestrial vegetation delays

  20. The influence of intruder states in even-even Po isotopes

    SciTech Connect

    García-Ramos, J. E.; Heyde, K.

    2015-10-15

    We study the role of intruder states and shape coexistence in the even-even {sup 190–206}Po isotopes, through an interacting boson model with configuration mixing calculation. We analyzed the results in the light of known systematics on various observable in the Pb region, paying special attention to the unperturbed energy systematics and quadrupole deformation. We find that shape coexistence in the Po isotopes behaves in very much the same way as in the Pt isotopes, i.e., it is somehow hidden, contrary to the situation in the Pb and the Hg isotopes.

  1. Anadromous char as an alternate food choice to marine animals: a synthesis of Hg concentrations, population features and other influencing factors.

    PubMed

    Evans, Marlene S; Muir, Derek C G; Keating, Jonathan; Wang, Xiaowa

    2015-03-15

    This study was conducted to confirm sporadic measurements made over the late 1970s to the early 1990 s which determined that mercury (Hg) concentrations were low in anadromous char across Arctic and subarctic Canada including northern Québec and Labrador. Over 2004-2013, anadromous char populations across northern Canada were investigated at 20 sites for Hg concentrations and life history characteristics. Hg concentrations were extremely low in anadromous char muscle, typically <0.05 μg/g (wet weight) and, at each location, generally increased with fish length, age and nitrogen isotope (δ(15)N) ratio and decreased with condition factor and %lipid; correlations with carbon isotope (δ(13)C) ratio were inconsistent. Location and year were significant variables influencing Hg concentrations over the study area; longitude and latitude also were significant influencing variables. Char length, weight, age, condition factor and lipid content explained additional variance. A tendency towards higher Hg concentrations with increasing latitude may be partially related to decreasing growth of char towards the north. However, Hg concentrations in char were positively correlated with growth rates suggesting that Hg concentrations in char also were higher in the more productive study areas, including to the west where mainland riverine inputs of terrestrial carbon, nutrients, and Hg were greater. The data base for assessing time trends in char was limited by the small number of years investigated at most locations, variable fish size across years, small sample size, etc. Where temporal trends were detected, they were of increase on the long term (1970s, 1980s or early 1990 s to the present) but of decrease on the short term (early 2000s to present) with Nain (Labrador) showing the converse pattern. Higher Hg concentrations were also related to lower condition factor and cooler springs. Hg concentrations in anadromous char are compared with other terrestrial, aquatic and marine

  2. Isotopic compositions of bismuth, lead, thallium, and mercury from mini r-processing

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Liffman, K.

    1986-01-01

    The yields of stable isotopes of Bi, Pb, Tl and Hg as well as yields of Pb-205 are calculated with a parametrized model for 'mini r-processing' in the Ne, O, C-rich zones of explosive burning in massive stars. The Pb isotopic compositions stand out by their comparatively low Pb-207 yields and by the fact that this r-process variant yields Pb-204 quite abundantly. The average Pb-205/Pb-204 yield ratio of 6.1 is the same order of magnitude as yield ratios deduced for s-processing. The Hg from this mini r-process looks like normal solar-system mercury, but with Hg-196 missing and the light s-isotopes A = 198, 199, 200 and 201 depleted (especially the odd-A species).

  3. Isotopic compositions of bismuth, lead, thallium, and mercury from mini r-processing

    NASA Astrophysics Data System (ADS)

    Heymann, D.; Liffman, K.

    1986-03-01

    The yields of stable isotopes of Bi, Pb, Tl and Hg as well as yields of Pb-205 are calculated with a parametrized model for 'mini r-processing' in the Ne, O, C-rich zones of explosive burning in massive stars. The Pb isotopic compositions stand out by their comparatively low Pb-207 yields and by the fact that this r-process variant yields Pb-204 quite abundantly. The average Pb-205/Pb-204 yield ratio of 6.1 is the same order of magnitude as yield ratios deduced for s-processing. The Hg from this mini r-process looks like normal solar-system mercury, but with Hg-196 missing and the light s-isotopes A = 198, 199, 200 and 201 depleted (especially the odd-A species).

  4. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  5. First results from the Goddard High-Resolution spectrograph - High-resolution observations of the 1942 A resonance line of HG II in the chemically peculiar B star, Chi Lupi

    NASA Technical Reports Server (NTRS)

    Leckrone, David S.; Wahlgren, Glenn M.; Johansson, Sveneric G.

    1991-01-01

    The Goddard High-Resolution Spectrograph on the HST has been used to obtain high S/N observations of the sharp-lined, Hg- and Pt-rich B-type star, Chi Lupi, with a resolving power of 87,000. The observations reveal a level of spectroscopic detail never before observed at ultraviolet wavelengths for any star other than the sun. Concentrating on the region around the resonance line of Hg II at 1942 A, the profile and central position of this line confirm beyond doubt that the Hg isotope anomaly in Chi Lupi is real and extreme, with Hg being heavily concentrated in the form of Hg-204. The problems in atomic physics which impair the accurate analysis of spectra of this quality are emphasized.

  6. 40 CFR 60.4142 - Hg allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coal-Fired Electric Steam Generating Units Hg Allowance Allocations § 60.4142 Hg allowance allocations... from the unit's combustion of lignite, multiplied by 3.0; (B) Any portion of the unit's control period... boiler and has equipment used to produce electricity and useful thermal energy for industrial,...

  7. 40 CFR 60.4142 - Hg allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Coal-Fired Electric Steam Generating Units Hg Allowance Allocations § 60.4142 Hg allowance allocations... from the unit's combustion of lignite, multiplied by 3.0; (B) Any portion of the unit's control period... boiler and has equipment used to produce electricity and useful thermal energy for industrial,...

  8. Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor

    NASA Astrophysics Data System (ADS)

    Amado Filho, G. M.; Andrade, L. R.; Farina, M.; Malm, O.

    The Spanish moss, Tillandsia usneoides, has been applied as an atmospheric biomonitor of Hg contamination, although the mechanism of metal plant accumulation has not been understood until now. In the present work, analytical scanning electron microscopy (SEM) was used to localize Hg in T. usneoides exposed to a Hg-air-contaminated area during 15 days. After this period, Hg was determined by the flow injection mercury system, and plants were prepared for SEM observation and energy-dispersive X-ray analysis. A concentration of 2702±318 μg Hg g -1 was determined in exposed plants. The presented microanalytical results demonstrated that Hg was partly associated with atmospheric particles deposited upon the plant surface, but it was highly absorbed by the scales, stem and leaves surfaces and less absorbed by epidermal cells of T. usneoides. No Hg was detected in mesophyll parenchyma or in vascular system cells. The great surface adsorption area provided by the scales, in addition to the characteristics of T. usneoides morphology, especially of the node region, are suggested to confer the great capability of T. usneoides in Hg holding.

  9. Diel variations in photoinduced oxidation of Hg0 in freshwater.

    PubMed

    Garcia, Edenise; Poulain, Alexandre J; Amyot, Marc; Ariya, Parisa A

    2005-05-01

    Experiments have been conducted to determine diel variations in photoinduced Hg0 oxidation in lake water under natural Hg0(aq) concentrations. Pseudo-first-order rates of photooxidation (k') were calculated for water freshly collected in a Canadian Shield lake, Lake Croche (45 degrees 56' N, 74 degrees 00' W), at different periods of the day and subsequently incubated in the dark. Hg0 oxidation rates ranged from 0.02 to 0.07 h(-1), increasing from sunrise to noon and then decreasing throughout the remainder of the day. These changes paralleled those in sunlight intensity integrated over 1 h preceding water collection, and suggested that the water freshly collected in daylight was rich in photochemically produced Hg0 oxidants. It was also estimated that under intense solar radiation, even if oxidation rates reached a peak, reduction of Hg(II) was the prevalent redox process. Inversely, Hg0 oxidation overcame DGM production during the night or at periods of weaker light intensity. Overall, these findings explain the decreases in the DGM pool generally observed overnight. They also support previous reports that, during summer days, volatilization of Hg0 from water represent an important step in the Hg cycle in freshwater systems.

  10. Synthesis and crystal structures of HgFAsF6, Hg(HF)2(AsF6)2, Hg(HF)(AsF6)2 and Hg(AsF6)(SO3F)

    NASA Astrophysics Data System (ADS)

    Mazej, Zoran; Goreshnik, Evgeny A.

    2015-08-01

    The colourless HgFAsF6 was synthesized by oxidation of Hg2(AsF6)2 with elemental fluorine in anhydrous hydrogen fluoride. It crystallizes in the monoclinic space group P21/c with a=7.0645(3) Å, b=9.9023(3) Å, c=7.8686(3) Å, β=102.960(4)° V=536.43(3) Å3, and Z=4 at 150 K. The structure of HgFAsF6 consists of infinite zig-zag -[Hg-F-Hg]- chains oriented parallel to each other along the b axis and interconected by AsF6 groups. Hg(HF)2(AsF6)2 crystallizes in the triclinic space group P 1 bar with a=5.0781(3) Å, b=6.6907(5) Å, c=7.7135(5) Å, α=84.045(5), β=79.277(5)°, γ=80.612(6), V=253.32(3) Å3, and Z=1 at 150 K. The crystal structure is composed of infinite columns of Hg atoms linked by AsF6 groups. Each pair of adjacent Hg atoms is bridged by two AsF6 groups. The coordination of Hg is completed by two F atoms provided by HF molecules. Hg(HF)(AsF6)2 crystallizes in the monoclinic space group P21/c with a=9.4921(8) Å, b=9.2834(6) Å, c=10.5448(7) Å, β=103.795(7)°, V=902.53(12) Å3, and Z=4 at 150 K and it is isotypic to Cd(HF)(AsF6)2. The new mixed-anion compound Hg(AsF6)(SO3F) crystallizes in the monoclinic space group P21/c with a=5.1975(8) Å, b=18.046(3) Å, c=15.873(5) Å, β=93.614(13)°, V=1485.9(6) Å3, and Z=4 at 200 K. All three oxygen atoms from each SO3F group utilize for bonding with three Hg atoms. The Hg1 (Hg2) atoms are coordinated by two (four) oxygen atoms from two (four) SO3F groups and by six (three) fluorine atoms from AsF6 groups forming on that way tridimensional framework.

  11. Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy

    USGS Publications Warehouse

    Gray, John E.; Rimondi, Valentina; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco

    2014-01-01

    Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0–6.2 μg/L) and Sb (<0.20–0.37 μg/L) below international drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle

  12. Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy.

    PubMed

    Gray, John E; Rimondi, Valentina; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco

    2014-02-01

    Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0-6.2 μg/L) and Sb (<0.20-0.37 μg/L) below international drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052-0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30

  13. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  14. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  15. Tracking the fate of mercury in the fish and bottom sediments of Minamata Bay, Japan, using stable mercury isotopes.

    PubMed

    Balogh, Steven J; Tsui, Martin Tsz-Ki; Blum, Joel D; Matsuyama, Akito; Woerndle, Glenn E; Yano, Shinichiro; Tada, Akihide

    2015-05-05

    Between 1932 and 1968, industrial wastewater containing methylmercury (MeHg) and other mercury (Hg) compounds was discharged directly into Minamata Bay, Japan, seriously contaminating the fishery. Thousands of people who consumed tainted fish and shellfish developed a neurological disorder now known as Minamata disease. Concentrations of total mercury (THg) in recent fish and sediment samples from Minamata Bay remain higher than those in other Japanese coastal waters, and elevated concentrations of THg in sediments in the greater Yatsushiro Sea suggest that Hg has moved beyond the bay. We measured stable Hg isotope ratios in sediment cores from Minamata Bay and the southern Yatsushiro Sea and in archived fish from Minamata Bay dating from 1978 to 2013. Values of δ(202)Hg and Δ(199)Hg in Yatsushiro Sea surface sediments were indistinguishable from those in highly contaminated Minamata Bay sediments but distinct from and nonoverlapping with values in background (noncontaminated) sediments. We conclude that stable Hg isotope data can be used to track Minamata Bay Hg as it moves into the greater Yatsushiro Sea. In addition, our data suggest that MeHg is produced in bottom sediments and enters the food web without substantial prior photodegradation, possibly in sediment porewaters or near the sediment-water interface.

  16. Apparatus for isotopic alteration of mercury vapor

    DOEpatents

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  17. Isotopic Composition of Inorganic Mercury and Methylmercury Downstream of a Historical Gold Mining Region.

    PubMed

    Donovan, Patrick M; Blum, Joel D; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T K

    2016-02-16

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ(202)Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ(202)Hg = -0.38 ± 0.17‰ and Δ(199)Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ(202)Hg of MMHg prior to photodegradation (-1.29 to -1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to -0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  18. Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region

    USGS Publications Warehouse

    Donovan, Patrick M.; Blum, Joel D.; Singer, Michael B.; Marvin-DiPasquale, Mark C.; Tsui, Martin T.K.

    2016-01-01

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ202Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ202Hg = −0.38 ± 0.17‰ and Δ199Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ202Hg of MMHg prior to photodegradation (−1.29 to −1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to −0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  19. Tracing Fluxes Of Aquatic Production And Contaminants Into Terrestrial Food Webs With Nitrogen Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Rivard, A.; Cabana, G.; Rainey, W.; Power, M.

    2005-05-01

    Biomagnifying contaminants such as mercury can be transported and redistributed across the watershed by streams and rivers. Their fate and effects on consumers depend on food web transfer both within and between aquatic and terrestrial ecosystems. The Truckee River (Ca/Ne) is heavily contaminated by Hg originating from century-old upstream mining operations. We used nitrogen stable isotope analysis to trace the incorporation of Hg transported by the Truckee and transferred by emerging aquatic insects into the riparian food web. N-isotope ratios and Hg of aquatic primary consumers were significantly elevated compared to that of terrestrial arthropods (13.3 vs 5.6 % and 110 vs 17 ngg-1). Estimates of dependence on aquatics in 16 riparian passerine bird species based on blood delta 15N ranged between 0.0 and 0.95 and were significantly related to Hg in blood. Similar correlations between Hg and delta 15N measured in tail tips of western fence lizard (Sceloporus occidentalis) collected at increasing distances from the river were observed. High inter-individual variation in bird Hg was highly correlated with delta 15N. These results show how stable isotopes and contaminant fluxes can reveal important food web linkages across aquatic/terrestrial ecotones.

  20. Discrete-line transitions from superdeformed to yrast states in {sup 194}Hg and {sup 192}Hg

    SciTech Connect

    Hackman, G.; Khoo, T.L.; Ackermann, D.

    1996-12-31

    Discrete-line {gamma}-ray decay from superdeformed (SD) to yrast states in {sup 194,192}Hg has been studied with the Gammasphere spectrometer. The previously established decay for the yrast SD band of {sup 194}Hg has been characterized further. In addition, one-step decays have been observed for {sup 194}Hg SD band 3, which fixes the excitation energy and spin of the last observed level of this band at E* = 7.455 MeV, J = 11{Dirac_h}. So far no direct decays from superdeformed to yrast states have been observed in {sup 192}Hg or in {sup 194}Hg band 2, a result which is consistent with fluctuations of the transition strengths.

  1. Size quantization in layered HgI/sub 2/ colloids

    SciTech Connect

    Peterson, M.W.; Micic, O.I.; Nozik, A.J.

    1988-07-14

    Colloidal particles of HgI/sub 2/ with a particle size less than about 25 /angstrom/ are formed by the reaction of HgCl/sub 2/ with NaI in acetonitrile. The particles are charged with Cl/sup -/ ions that fill normally empty tetrahedral coordination sites at the edges; therefore they have an empirical formula HgI/sub 2/Cl/sub 0.6//sup 0.6-/. About 40% of the mercury in the colloidal solution is in the form of the ionic complex HgI/sub 2/Cl/sup -/. These conclusions are based on extensive spectroscopic studies of various Hg-I-Cl species and experiments involving ultracentifugation, ultrafiltration, and treatment of the colloids with ion-exchange resins. The absorption spectrum of the colloidal HgI/sub 2/ consists of three peaks at 4.26, 4.94, and 6.04 eV, and is attributed to size quantization effects. This spectrum is consistent with the first three allowed transitions in a simple particle-in-a-box model with infinite potential barriers in which the colloidal particles have the usual tetrahedral, layered structure of red HgI/sub 2/, with dimensions of 26.1 /angstrom/ perpendicular to the layer plane (four layers thick) and 13.3 /angstrom/ in the direction parallel to the layer plane.

  2. Mercury isotope fractionation during aqueous photoreduction of monomethylmercury in the presence of dissolved organic matter.

    PubMed

    Chandan, Priyanka; Ghosh, Sanghamitra; Bergquist, Bridget A

    2015-01-06

    Monomethylmercury (MMHg) is a toxic pollutant that bioaccumulates in aquatic food webs. A major mechanism that limits MMHg uptake by biota is photodemethylation in surface waters. Recently, the extent of mass-independent fractionation (MIF) of Hg isotopes preserved in fish is being used to quantify this MMHg sink. Here, the effects of different types and amounts of DOM on Hg MIF during MMHg photodemethylation were investigated to assess how variable MIF enrichment factors may be with respect to changing DOM binding sites. From experiments conducted with varying amounts of reduced organic sulfur (S(red)-DOM), the extent and signature of MIF is likely dependent on whether MMHg is dominantly bound to S(red)-DOM. Similar enrichment factors were observed for low MMHg:S(red)-DOM experiments, where S(red)-DOM was in far excess of MMHg. In contrast, significantly lower and variable enrichment factors were observed for experiments with higher MMHg:S(red)-DOM ratios. Additionally the relationship between the two odd Hg isotopes that display MIF (Δ(199)Hg/Δ(201)Hg) was consistent for the low MMHg:S(red)-DOM experiments, while lower Δ(199)Hg/Δ(201)Hg relationships were observed for the higher MMHg:S(red)-DOM experiments. These results suggest that both the extent and signature of MMHg MIF are sensitive to different ligands that bind MMHg in nature.

  3. Growth of HgZnTe Layers by LPE Technique

    DTIC Science & Technology

    1988-03-01

    Solid solution mixtures of a wide band gap II-VI compound with one constituent being the semimetal HgTe may be tuned to yield narrow gap...experimental research into the narrow band gap range of this solid solution . In the present work the LPE of Hg1-xZnxTe was studied, focusing on the...evaluation of this technique as a tool for achieving epitaxial layers of the ’new material’, the solid solution Hg1-xZnxTe, with morphological, crystalline

  4. Results Of Hg Speciation Testing On DWPF SMECT-1, SMECT-3, And SMECT-5 Samples

    SciTech Connect

    Bannochie, C.

    2016-01-07

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The thirteenth shipment of samples was designated to include Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) from Sludge Receipt and Adjustment Tank (SRAT) Batch 736 and 738 samples. Triplicate samples of each material were prepared for this shipment. Each replicate was analyzed for seven Hg species: total Hg, total soluble (dissolved) Hg, elemental Hg [Hg(0)], ionic (inorganic) Hg [Hg(I) and Hg(II)], methyl Hg [CH3Hg-X, where X is a counter anion], ethyl Hg [CH3CH2-Hg-X, where X is a counter anion], and dimethyl Hg [(CH3)2Hg]. The difference between the total Hg and total soluble Hg measurements gives the particulate Hg concentration, i.e. Hg adsorbed to the surface of particulate matter in the sample but without resolution of the specific adsorbed species. The average concentrations of Hg species in the aqueous samples derived from Eurofins reported data corrected for dilutions performed by SRNL are tabulated.

  5. Trace elements (Cu, Zn, and Hg) and δ13C/δ15N in seabird subfossils from three islands of the South China Sea and its implications.

    PubMed

    Xu, Liqiang; Liu, Xiaodong; Nie, Yaguang

    2016-05-01

    Seabird subfossils were collected on three islands of the Xisha Archipelago, South China Sea. Via elemental analysis, we identified that bird guano was a significant source for heavy metals Cu, Zn, and Hg. Cu and Zn levels in these guano samples are comparable to their levels in wildbird feces, but guano Hg was lower than previously reported. Trophic positions significantly impacted transfer efficiency of heavy metals by seabirds. Despite of a common source, trace elements, as well as stable isotopes (i.e., guano δ(13)C and collagen δ(15)N), showed island-specific characteristics. Bird subfossils on larger island had relatively greater metal concentrations and revealed higher trophic positions. Partition of element and isotope levels among the islands suggested that transfer efficacy of seabirds on different islands was different, and bird species were probably unevenly distributed among the islets. Island area is possibly a driving factor for distributions of seabird species.

  6. Isotope cisternography in patients with intracranial hypertension

    SciTech Connect

    Hayashi, M.; Kobayashi, H.; Kawano, H.; Handa, Y.; Kabuto, M.; Noguchi, Y.; Shirasaki, H.

    1986-04-01

    Cerebrospinal fluid flow (CSF) was studied using isotope cisternography in 52 patients with increased intracranial pressure (ICP), all of whom showed acute transient rises of ICP, i.e., plateau waves, in their continuous ICP recordings. The patients were assigned to two groups. Group I was comprised of 23 patients without hydrocephalus and high ICP resulting from brain tumors, benign intracranial hypertension, and superior sagittal sinus thrombosis. Group II included 29 patients with either communicating hydrocephalus or high ICP resulting from rupture of intracranial aneurysm. Plateau waves were frequently observed in patients with baseline pressures ranging from 21 to 40 mmHg in both groups. The isotope cisternographic pattern in the Group I patients showed a large accumulation of radioactivity over the cerebral convexities, while that in the Group II patients revealed a complete obstruction of the subarachnoid space over both cerebral convexities. The isotope clearance from the intracranial CSF showed a marked delay in both groups of patients with one exception. The results suggest that, in the limited range of increased ICP caused by delayed CSF absorption, plateau waves are most evident regardless of the isotope cisternographic pattern.

  7. Magnetotransport in double quantum well with inverted energy spectrum: HgTe/CdHgTe

    NASA Astrophysics Data System (ADS)

    Yakunin, M. V.; Suslov, A. V.; Popov, M. R.; Novik, E. G.; Dvoretsky, S. A.; Mikhailov, N. N.

    2016-02-01

    We present an experimental study of the double-quantum-well (DQW) system made of two-dimensional layers with inverted energy band spectrum: HgTe. The magnetotransport reveals a considerably larger overlap of the conduction and valence subbands than in known HgTe single quantum wells (QW), which may be regulated here by an applied gate voltage Vg. This large overlap manifests itself in a much higher critical field Bc separating the range above it with a plain behavior of the Hall magnetoresistance ρx y(B ) , where the quantum peculiarities shift linearly with Vg, and the range below with a complicated behavior. In the latter case, specific structures in ρx y(B ) are formed like a double-N -shaped ρx y(B ) , reentrant sign-alternating quantum Hall effect with transitions into a zero-filling-factor state, etc., which are clearly manifested here due to better magnetic quantization at high fields, as compared to the features seen earlier in a single HgTe QW. The coexisting electrons and holes were found in the whole investigated range of positive and negative Vg as revealed (i) from fits to the low-field N -shaped ρx y(B ) , (ii) from the Fourier analysis of oscillations in ρx x(B ) , and (iii) from a specific behavior of ρx y(B ) at high positive Vg. A peculiar feature here is that the found electron density n remains almost constant in the whole range of investigated Vg while the hole density p drops down from the value a factor of 6 larger than n at extreme negative Vg to almost zero at extreme positive Vg passing through the charge-neutrality point. We show that this difference between n and p stems from an order of magnitude larger density of states for holes in the lateral valence subband maxima than for electrons in the conduction subband minimum. We analyze our observations on the basis of a calculated picture of magnetic levels in a DQW and suggest that their specificity is due to (i) a nonmonotonic course of the valence subband magnetic levels and an

  8. Mercury stable isotope fractionation in a tropical ecosystem including human hair: New insights for an isotope balance

    NASA Astrophysics Data System (ADS)

    Laffont, Laure; Sonke, Jeroen; Maurice, Laurence; Behra, Philippe

    2010-05-01

    Mercury contamination is an environmental problem in the Amazon basin still relevant today as impacts on human health are poorly studied. In Bolivia, indigenous people have elevated methylmercury concentrations (between 2719 and 23701 ng.g-1) in their hair. This highly toxic molecule is formed after methylation of inorganic Hg released by chemical and physical weathering and from human activities. The aim of our study is to propose a first isotope balance in a Bolivian Amazon ecosystem, through variations in Hg isotopic compositions. The discovery of mass-independent fracionation (MIF) of odd-isotopes in our organic samples (fish and human hair) opened a new way of research in tracing the sources and the processes involved in the cycle of Hg. Four types of samples are studied: liquid Hg0 from gold mining, sediment samples, fish coming from the Beni River basin (from the main channel and an associated floodplain lake) and hair from gold miners and fish-eating native populations. Hg isotopic compositions were analyzed on a Thermo-Finnigan Neptune MC-ICP-MS at the LMTG after sample digestion by HCl/HNO3 or by H2O2/HNO3 for fish samples, at 120°C. The δ202Hg values (relative to NIST 3133) are signicantly different with respect to the external precision on UM-Almaden#2 of 0.18 ‰ (2σ, n = 42): -0.34 ± 0.02 ‰ for liquid mercury, between -1.33 and -0.81 ‰ for bottom and floodplain sediments (n=18), between -0.87 and 2.22 ‰ for miners hair (n=26), +1.29 ± 0.41 ‰ for native hair (n=13) and between -0.91 and -0.21 ‰ for fish samples (n=53). A large mass-independent isotope fractionation (MIF) was observed for odd isotope ratios in all hair samples and fish samples whereas weak anomalies were measured for sediment samples: - ∆199Hg anomaly: -0.12 to -0.04 ‰ for sediment, -0.22 to +0.63 ‰ for fish samples and +0.13 to +1.63 ‰ for hair - ∆201Hg anomaly: -0.12 to -0.02 ‰ for sediment, -0.21 to +0.43 ‰ for fish samples and +0.06 to +1.25 ‰ for hair

  9. Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production

    NASA Astrophysics Data System (ADS)

    Skyllberg, Ulf

    2008-12-01

    Current research focus in mercury biogeochemistry is on the net production and accumulation of methyl mercury (MeHg) in organisms. The activity of iron- and sulfate-reducing bacteria (FeRB and SRB) has been identified as important for MeHg production. There are indications of a passive uptake of neutral Hg-sulfides by SRB, as well as of a facilitated bacterial uptake of Hg complexed by small organic molecules. In order to understand these processes, the chemical speciation of Hg and MeHg, and most important, the competition among organic thiols and inorganic sulfides and polysulfides, needs to be clarified under suboxic conditions (nM to low μM range of total sulfide concentrations) in wetland soils and sediments. In this paper the chemical speciation of Hg and MeHg is modeled at pH 4.0 and 7.0 in a conceptual wetland soil/sediment with typical concentrations of thiols, sulfides, Hg, and MeHg. Effects of precipitated HgS(s), the formation of Hg-polysulfides, and the size of the controversial stability constant for the formation of HOHgSH0 (aq) are emphasized. The outcome of the modeling is discussed in light of chosen stability constants for Hg complexes with thiols, sulfides, and polysulfides. It is concluded that organic thiols are competitive with inorganic sulfides in the approximate total sulfide concentration range 0-1 μm. It is also concluded that increases in absolute aqueous concentrations of MeHg, or the molar ratio of dissolved MeHg/Hg, are not appropriate as indirect measures of MeHg net production, unless changes and differences in solubility of MeHg and Hg are corrected for.

  10. Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina cordgrass.

    PubMed

    Patty, Cynthia; Barnett, Brandy; Mooney, Bridget; Kahn, Amanda; Levy, Silvio; Liu, Yijin; Pianetta, Piero; Andrews, Joy C

    2009-10-01

    San Francisco Bay has been contaminated historically by mercury from mine tailings as well as contemporary industrial sources. Native Spartina foliosa and non-native S. alterniflora-hybrid cordgrasses are dominant florae within the SF Bay estuary environment. Understanding mercury uptake and transformations in these plants will help to characterize the significance of their roles in mercury biogeochemical cycling in the estuarine environment. Methylated mercury can be biomagnified up the food web, resulting in levels in sport fish up to 1 million times greater than in surrounding waters and resulting in advisories to limit fish intake. Understanding the uptake and methylation of mercury in the plant rhizosphere can yield insight into ways to manage mercury contamination. The transmission X-ray microscope on beamline 6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) was used to obtain absorption contrast images and 3D tomography of Spartina foliosa roots that were exposed to 1 ppm Hg (as HgCl2) hydroponically for 1 week. Absorption contrast images of micrometer-sized roots from S. foliosa revealed dark particles, and dark channels within the root, due to Hg absorption. 3D tomography showed that the particles are on the root surface, and slices from the tomographic reconstruction revealed that the particles are hollow, consistent with microorganisms with a thin layer of Hg on the surface. Hg L3 XANES of ground-up plant roots and Hg L3 micro-XANES from microprobe analysis of micrometer-sized roots (60-120 microm in size) revealed three main types of speciation in both Spartina species: Hg-S ligation in a form similar to Hg(II) cysteine, Hg-S bonding as in cinnabar and metacinnabar, and methylmercury-carboxyl bonding in a form similar to methylmercury acetate. These results are interpreted within the context of obtaining a "snapshot" of mercury methylation in progress.

  11. Using X-ray Microscopy and Hg L3 XANES to study Hg Binding in the Rhizosphere of Spartina Cordgrass

    PubMed Central

    Patty, Cynthia; Barnett, Brandy; Mooney, Bridget; Kahn, Amanda; Levy, Silvio; Liu, Yijin; Pianetta, Piero; Andrews, Joy C

    2009-01-01

    San Francisco Bay has been contaminated historically by mercury from mine tailings as well as contemporary industrial sources. Native Spartina foliosa and non-native S. alterniflora-hybrid cordgrasses are dominant florae within the SF Bay estuary environment. Understanding mercury uptake and transformations in these plants will help to characterize the significance of their roles in mercury biogeochemical cycling in the estuarine environment. Methylated mercury can be biomagnified up the food web, resulting in levels in sport fish up to one million times greater than in surrounding waters and resulting in advisories to limit fish intake. Understanding the uptake and methylation of mercury in the plant rhizosphere can yield insight into ways to manage mercury contamination. The transmission x-ray microscope on beamline 6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) was used to obtain absorption contrast images and 3D tomography of Spartina foliosa roots that were exposed to 1 ppm Hg (as HgCl2) hydroponically for one week. Absorption contrast images of micron-sized roots from S. foliosa revealed dark particles, and dark channels within the root, due to Hg absorption. 3D tomography showed that the particles are on the root surface, and slices from the tomographic reconstruction revealed that the particles are hollow, consistent with microorganisms with a thin layer of Hg on the surface. Hg L3 XANES of ground-up plant roots and Hg L3 micro-XANES from microprobe analysis of micron-sized roots (60–120 microns in size) revealed three main types of speciation in both Spartina species: Hg-S ligation in a form similar to Hg(II) cysteine, Hg-S bonding as in cinnabar and metacinnabar, and methylmercury-carboxyl bonding in a form similar to methylmercury acetate. These results are interpreted within the context of obtaining a “snapshot” of mercury methylation in progress. PMID:19848152

  12. Photogalvanic Effects in HgTe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Wittmann, B.; Danilov, S. N.; Kwon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.; Ravash, R.; Prettl, W.; Ganichev, S. D.

    We report on the observation of the terahertz radiation induced circular (CPGE) and linear (LPGE) photogalvanic effects in HgTe quantum wells. The current response is well described by the phenomenological theory of CPGE and LPGE.

  13. MBE Growth, Characterization and Electronic Device Processing of HgCdTe, HgZnTe, Related Heterojunctions and HgCdTe-CdTe Superlattices

    DTIC Science & Technology

    1987-12-31

    and 3. T. NI. Wotherspoon. J. Phys. D 12, LI 117 (1979). ( 100) orientation, whereas p-type Hg, - Cd.Te layers are T~ P. Faune . J1. Reno, S...parameters are well con- ’J. P. Faune and A. Million. ]. Cryst. Growth 54. 582 (198 1) trolled, the quality of Hg1 - Cd.Te grown in both the ’J. P... Faune and A. Million. AppI. Phys. Lett- 41, 264 (1982). ( Ill ) B and the ( 100) orientations is comparable, thus giv- J P. Faurie. S. Sivananthan. NI

  14. High-resolution laser spectroscopy of long-lived plutonium isotopes

    NASA Astrophysics Data System (ADS)

    Voss, A.; Sonnenschein, V.; Campbell, P.; Cheal, B.; Kron, T.; Moore, I. D.; Pohjalainen, I.; Raeder, S.; Trautmann, N.; Wendt, K.

    2017-03-01

    Long-lived isotopes of plutonium were studied using two complementary techniques, high-resolution resonance ionization spectroscopy (HR-RIS) and collinear laser spectroscopy (CLS). Isotope shifts have been measured on the 5 f67 s27F0→5 f56 d27 s (J =1 ) and 5 f67 s27F1→5 f67 s 7 p (J =2 ) atomic transitions using the HR-RIS method and the hyperfine factors have been extracted for the odd mass nuclei Pu,241239. CLS was performed on the 5 f67 s 8F1 /2→J =1 /2 (27 523.61 cm-1) ionic transition with the hyperfine A factors measured for 239Pu. Changes in mean-squared charge radii have been extracted and show a good agreement with previous nonoptical methods, with an uncertainty improvement by approximately one order of magnitude. Plutonium represents the heaviest element studied to date using collinear laser spectroscopy.

  15. Theoretical study of neutron-rich 107,109,111,113Rh isotopes

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Singh, Suram; Khosa, S. K.; Bharti, Arun; Bhat, G. H.; Sheikh, J. A.

    2015-10-01

    A theoretical study of the structure of some odd mass Rh nuclei in the A 100 mass region is carried out by using the angular momentum projection technique implemented in the projected shell model (PSM). The influence of the high-j orbitals (h11/2 for neutrons and g9/2 for protons) on the structure of 107-113Rh isotopes is investigated in the present case by assuming an axial symmetry in the deformed basis. For these isotopes, the structure of multi-quasi-particle qp bands is studied along the yrast line in detail. Further, the phenomenon of back-bending is also studied theoretically and is found to be in agreement with the experimental data. The reduced transition probabilities, i.e., B(E2) and B(M1) for the yrast band are also obtained from the PSM wave functions for the first time, thereby providing an opportunity for the experimentalists to work for this data.

  16. Variations in the isotopic composition of stable mercury isotopes in typical mangrove plants of the Jiulong estuary, SE China.

    PubMed

    Sun, Lumin; Lu, Bingyan; Yuan, Dongxing; Hao, Wenbo; Zheng, Ying

    2017-01-01

    Variations in the composition of stable isotopes of mercury contained in tissues (root, stem, leaf, and hypocotyl or flower) of three typical mangrove plants (Kandelia candel, Aegiceras corniculata, and Bruguiera gymnorhiza), collected from the mangrove wetland of Jiulong estuary, SE China, were used to investigate the sources and transformation of mercury in the mangrove plants. Tissue samples from the plants were digested and mercury in the solution was pre-concentrated with purge-trap method and then analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The results showed that the mass dependent fractionation (MDF) of mercury ranged from -2.67 to -0.87 ‰ for δ (202)Hg while the mass independent fractionation (MIF) of mercury isotopes ranged from -0.16 to 0.09 and -0.19 to 0.05 ‰ for Δ(199)Hg and Δ(201)Hg, respectively, relative to the standard NIST SRM 3133. The ratio of Δ(199)Hg/Δ(201)Hg was 0.991, indicating that the mercury had been photo-reduced before being accumulated in mangrove plants. Analyses of the data from MIF studies revealed that the major portion of the mercury measured in leaves (∼90 %) originated from the atmosphere while the source of over half of the mercury present in roots was the surficial sediment. This study, the first of its kind investigating the variations in isotopic composition of mercury in the tissues of mangrove plants, could be helpful to identify the source of mercury contamination in mangroves and understand the biogeochemical cycle of mercury in the estuarine mangrove wetlands.

  17. Lifetime Measurement of HgCdTe Semiconductor Material

    DTIC Science & Technology

    2012-03-01

    measurement of minority carrier lifetime using the photoconductive decay method. This experiment was conducted to analyze the minority carrier lifetime of...lifetime, photoconductive decay. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 18 19a. NAME OF...the photoconductive decay method was used. To measure the lifetime of the HgCdTe samples using the photoconductive decay method, samples of HgCdTe

  18. HgI sub 2 low energy beta particle detector

    SciTech Connect

    Shah, K.S.; Squillante, M.R.; Entine, G. )

    1990-04-01

    This paper reports on a HgI{sub 2} device structure designed and tested which allows HgI{sub 2} to be used to make low energy beta particle detectors. The devices detected tritium beta particles with about a 25% efficiency. In addition, an encapsulation scheme was identified which has the potential to protect the devices while permitting most of the beta particles to reach the active region.

  19. Transient and diffusion analysis of HgCdTe

    NASA Technical Reports Server (NTRS)

    Clayton, J. C.

    1982-01-01

    Solute redistribution during directional solidification of HgCdTe is addressed. Both one-dimensional and two-dimensional models for solute redistribution are treated and model results compared to experiment. The central problem studied is the cause of radial inhomogeneities found in directionally solidified HgCdTe. A large scale gravity-driven interface instability, termed shape instability, is postulated to be the cause of radial inhomogeneities. Recommendations for future work, along with appropriate computer programs, are included.

  20. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    SciTech Connect

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses $\\overline{A}_L$/$\\overline{A}_H$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$\\overline{A}_L$/$\\overline{A}_H$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  1. Direct detection of the mercury-nitrogen bond in the thymine-Hg(II)-thymine base-pair with (199)Hg NMR spectroscopy.

    PubMed

    Dairaku, Takenori; Furuita, Kyoko; Sato, Hajime; Šebera, Jakub; Yamanaka, Daichi; Otaki, Hiroyuki; Kikkawa, Shoko; Kondo, Yoshinori; Katahira, Ritsuko; Matthias Bickelhaupt, F; Fonseca Guerra, Célia; Ono, Akira; Sychrovský, Vladimír; Kojima, Chojiro; Tanaka, Yoshiyuki

    2015-05-18

    We have observed the 1-bond (199)Hg-(15)N J-coupling ((1)J((199)Hg,(15)N) = 1050 Hz) within the Hg(II)-mediated thymine-thymine base pair (T-Hg(II)-T). This strikingly large (1)J((199)Hg,(15)N) is the first one for canonical sp(2)-nitrogen atoms, which can be a sensitive structure-probe of N-mercurated compounds and a direct evidence for N-mercuration.

  2. A 3500-year record of Hg and Pb contamination in a mediterranean sedimentary archive (the Pierre Blanche Lagoon, France).

    PubMed

    Elbaz-Poulichet, F; Dezileau, L; Freydier, R; Cossa, D; Sabatier, P

    2011-10-15

    A sediment core encompassing 3500 years of continuous sedimentation has been collected from a coastal lagoon located on the southwestern French Mediterranean coast. Lead concentrations and stable isotopes show that the sediments have recorded the three major periods of Pb pollution: the Etruscan-Greek-Roman period (650 BC to AD 50), the medieval period (AD 650 to AD 1450), and the modern period (from around AD 1850 to the present). These periods were separated by low pollution periods during the Dark Ages (between AD 50 and 650) and during the 16th century. From the end of the 19th century to the 1960s, Pb pollution increased exponentially. Coal combustion was the major source of Pb in the lagoon in the second half of the 20th century. Both the decrease in coal consumption and the ban on leaded gasoline resulted in a decrease in Pb pollution by a factor of 1.5 between 1973 and 1995. From 1991, sewage treatment plants and incinerators could be the major source of Pb. The average baseline Hg concentration from 1525 BC to AD 900 was 0.017 ± 0.003 μg g⁻¹ (n = 54). The Hg concentrations profile shows three major peaks: in AD 1150, AD 1660, and AD 1969, with the concentrations being respectively 8, 5, and 34 times higher than the baseline levels. The medieval peak (AD 1150) is attributed the medical use of Hg in the town of Montpellier and/or the burning of soil and vegetation. Noticeable Hg pollution was also detected during the 17th century in relation to gold and silver amalgamation in Europe. From the end of the 19th century, Hg concentrations increased exponentially until 1969. This modern pollution is attributed to the burning of coal.

  3. Crystal structure of K[Hg(SCN)3] - a redetermination.

    PubMed

    Weil, Matthias; Häusler, Thomas

    2014-09-01

    The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium tri-thio-cyanato-mercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952 ▶). Zh. Fiz. Khim. 26, 469-478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg-S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg(2+) cation is surrounded by four S atoms in a seesaw shape [S-Hg-S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4 polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting (1) ∞[HgS2/1S2/2] chains are also part of SCN(-) anions that link these chains with the K(+) cations into a three-dimensional network. The K-N bond lengths of the distorted KN7 polyhedra lie between 2.926 (2) and 3.051 (3) Å.

  4. Metal stable isotope signatures as tracers in environmental geochemistry.

    PubMed

    Wiederhold, Jan G

    2015-03-03

    The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented.

  5. Mercury speciation in seafood using isotope dilution analysis: a review.

    PubMed

    Clémens, Stéphanie; Monperrus, Mathilde; Donard, Olivier F X; Amouroux, David; Guérin, Thierry

    2012-01-30

    Mercury is a toxic compound that can contaminate humans through food and especially via fish consumption. Mercury's toxicity depends on the species, with methylmercury being the most hazardous form for humans. Hg speciation analysis has been and remains a widely studied subject because of the potential difficulty of preserving the initial distribution of mercury species in the analysed sample. Accordingly, many analytical methods have been developed and most of them incur significant loss and/or cross-species transformations during sample preparation. Therefore, to monitor and correct artefact formations, quantification by isotope dilution is increasingly used and provides significant added value for analytical quality assurance and quality control. This review presents and discusses the two different modes of application of isotope dilution analysis for elemental speciation (i.e. species-unspecific isotope dilution analysis and species-specific isotope dilution analysis) and the different quantification techniques (i.e. classical and multiple spike isotope dilution analyses). Isotope tracers are thus used at different stages of sample preparation to determine the extent of inter-species transformations and correct such analytical artefacts. Finally, a synthesis of the principal methods used for mercury speciation in seafood using isotope dilution analysis is presented.

  6. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  7. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  8. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  9. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  10. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA

    USGS Publications Warehouse

    Smith, C.N.; Kesler, S.E.; Blum, J.D.; Rytuba, J.J.

    2008-01-01

    We present here the first study of the isotopic composition of mercury in rocks, ore deposits, and active spring deposits from the California Coast Ranges, a part of Earth's crust with unusually extensive evidence of mercury mobility and enrichment. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of mercury deposits, hot-spring deposits that form at shallow depths (< 300??m) and silica-carbonate deposits that extend to depths of 1000??m. Active springs and geothermal areas continue to precipitate Hg and Au and are modern analogues to the fossil hydrothermal systems preserved in the ore deposits. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake Volcanic Field. Mean mercury isotopic compositions (??202Hg) for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have similar average mercury isotopic compositions that are indistinguishable from averages for the three rock units, although ??202Hg values for the mercury deposits have a greater variance than the country rocks. Precipitates from spring and geothermal waters in the area have similarly large variance and a mean ??202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate that there is little or no isotopic fractionation (< ?? 0.5???) during release of mercury from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of mercury in deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids, separation of a mercury-bearing CO2 vapor

  11. Mercury contamination and stable isotopes reveal variability in foraging ecology of generalist California gulls

    USGS Publications Warehouse

    Peterson, Sarah; Ackerman, Josh; Eagles-Smith, Collin A.

    2017-01-01

    Environmental contaminants are a concern for animal health, but contaminant exposure can also be used as a tracer of foraging ecology. In particular, mercury (Hg) concentrations are highly variable among aquatic and terrestrial food webs as a result of habitat- and site-specific biogeochemical processes that produce the bioaccumulative form, methylmercury (MeHg). We used stable isotopes and total Hg (THg) concentrations of a generalist consumer, the California gull (Larus californicus), to examine foraging ecology and illustrate the utility of using Hg contamination as an ecological tracer under certain conditions. We identified four main foraging clusters of gulls during pre-breeding and breeding, using a traditional approach based on light stable isotopes. The foraging cluster with the highest δ15N and δ34S values in gulls (cluster 4) had mean blood THg concentrations 614% (pre-breeding) and 250% (breeding) higher than gulls with the lowest isotope values (cluster 1). Using a traditional approach of stable-isotope mixing models, we showed that breeding birds with a higher proportion of garbage in their diet (cluster 2: 63–82% garbage) corresponded to lower THg concentrations and lower δ15N and δ34S values. In contrast, gull clusters with higher THg concentrations, which were more enriched in 15N and 34S isotopes, consumed a higher proportion of more natural, estuarine prey. δ34S values, which change markedly across the terrestrial to marine habitat gradient, were positively correlated with blood THg concentrations in gulls. The linkage we observed between stable isotopes and THg concentrations suggests that Hg contamination can be used as an additional tool for understanding animal foraging across coastal habitat gradients.

  12. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The optical absorption spectra of the vapor phase over HgI2(s,l) were measured for wavelengths between 200 and 600 nm. The spectra show that the sample sublimed congruently into HgI2 with no Hg or I2 absorption spectrum observed. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were determined. From these constants the vapor pressure of H912, P, was established as a function of temperatures for the liquid and the solid Beta-phases. The expressions correspond to the enthalpies of vaporization and sublimation of 15.30 and 20.17 Kcal/mole, respectively, for the liquid and the Beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 Kcal/mole and the intersection of the two expressions gives a melting point of 537 K.

  13. Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed by stable mercury isotopes.

    PubMed

    Tsui, Martin Tsz-Ki; Blum, Joel D; Finlay, Jacques C; Balogh, Steven J; Nollet, Yabing H; Palen, Wendy J; Power, Mary E

    2014-09-02

    Mercury (Hg) is widely distributed in the environment, and its organic form, methylmercury (MeHg), can extensively bioaccumulate and biomagnify in aquatic and terrestrial food webs. Concentrations of MeHg in organisms are highly variable, and the sources in natural food webs are often not well understood. This study examined stable isotope ratios of MeHg (mass-dependent fractionation, as δ(202)HgMeHg; and mass-independent fractionation, as Δ(199)HgMeHg) in benthic invertebrates, juvenile steelhead trout (Oncorhynchus mykiss), and water striders (Gerris remigis) along a stream productivity gradient, as well as carnivorous terrestrial invertebrates, in a forested watershed at the headwater of South Fork Eel River in northern California. Throughout the sampling sites, δ(202)HgMeHg (after correction due to the effect of MeHg photodegradation) was significantly different between benthic (median = -1.40‰; range, -2.34 to -0.78‰; total number of samples = 29) and terrestrial invertebrates (median = +0.51‰; range, -0.37 to +1.40‰; total number of samples = 9), but no major difference between these two groups was found for Δ(199)HgMeHg. Steelhead trout (52 individual fishes) have MeHg of predominantly aquatic origins, with a few exceptions at the upstream locations (e.g., 1 fish collected in a tributary had a purely terrestrial MeHg source and 4 fishes had mixed aquatic and terrestrial MeHg sources). Water striders (seven pooled samples) derive MeHg largely from terrestrial sources throughout headwater sections. These data suggest that direct terrestrial subsidy (e.g., terrestrial invertebrates falling into water) can be important for some stream predators in headwater streams and could represent an important means of transfer of terrestrially derived MeHg (e.g., in situ methylation within forests, atmospheric sources) to aquatic ecosystems. Moreover, these findings show that terrestrial subsidies can enhance MeHg bioaccumulation of consumers in headwater

  14. Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii.

    PubMed

    Bravo, Andrea Garcia; Le Faucheur, Séverine; Monperrus, Mathilde; Amouroux, David; Slaveykova, Vera I

    2014-09-01

    The present study demonstrates that species-specific isotope tracing is an useful tool to precisely measure Hg accumulation and transformations capabilities of living organisms at concentrations naturally encountered in the environment. To that end, a phytoplanktonic green alga Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) was exposed to mixtures of (199)-isotopically enriched inorganic mercury ((199)IHg) and of (201)-isotopically enriched monomethylmercury ((201)CH3Hg) at a concentration range between less than 1 pM to 4 nM. Additionally, one exposure concentration of both mercury species was also studied separately to evaluate possible interactive effects. No difference in the intracellular contents was observed for algae exposed to (199)IHg and (201)CH3Hg alone or in their mixture, suggesting similar accumulation capacity for both species at the studied concentrations. Demethylation of (201)CH3Hg was observed at the highest exposure concentrations, whereas no methylation was detected.

  15. A universal sensor for mercury (Hg, Hg(I), Hg(II)) based on silver nanoparticle-embedded polymer thin film.

    PubMed

    Ramesh, G V; Radhakrishnan, T P

    2011-04-01

    Detection of mercury at concentration levels down to parts-per-billion is a problem of fundamental and practical interest due to the high toxicity of the metal and its role in environmental pollution. The extensive research in this area has been focused primarily on specific sensing of mercuric (Hg(2+)) ion. As mercury exists in the oxidation states, +2, +1 and 0 all of which are highly toxic, a universal sensor covering all the three while ensuring high sensitivity, selectivity, and linearity of response, and facilitating in situ as well as ex situ deployment, would be very valuable. Silver nanoparticle-embedded poly(vinyl alcohol) (Ag-PVA) thin film fabricated through a facile protocol is shown to be a fast, efficient and selective sensor for Hg(2+), Hg(2)(2+) and Hg in aqueous medium with a detection limit of 1 ppb. The sensor response is linear in the 10 ppb to 1 ppm concentration regime. A unique characteristic of the thin film based sensor is the blue shift occurring concomitantly with the decrease in the surface plasmon resonance absorption upon interaction with mercury, making the sensing highly selective. Unlike the majority of known sensors that work only in situ, the thin film sensor can be used ex situ as well. Examination of the thin film using microscopy and spectroscopy through the sensing process provides detailed insight into the sensing event.

  16. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    DOE PAGES

    Li, Jin; He, Chaoyu; Meng, Lijun; ...

    2015-09-14

    Here, we report that two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tunedmore » up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.« less

  17. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    SciTech Connect

    Li, Jin; He, Chaoyu; Meng, Lijun; Xiao, Huaping; Tang, Chao; Wei, Xiaolin; Kim, Jinwoong; Kioussis, Nicholas; Stocks, G. Malcolm; Zhong, Jianxin

    2015-09-14

    Here, we report that two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tuned up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.

  18. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    PubMed Central

    Li, Jin; He, Chaoyu; Meng, Lijun; Xiao, Huaping; Tang, Chao; Wei, Xiaolin; Kim, Jinwoong; Kioussis, Nicholas; Malcolm Stocks, G.; Zhong, Jianxin

    2015-01-01

    Two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tuned up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature. PMID:26365502

  19. Where does the mercury in gaseous fluxes from soil come from? An applied stable isotope experiment

    NASA Astrophysics Data System (ADS)

    Mazur, Maxwell; Eckley, Chris; Mitchell, Carl

    2013-04-01

    The flux of gaseous mercury from soils is controlled by a number of physico-chemical factors including temperature, soil mercury concentration, boundary layer conditions, soil moisture, and often most notably, solar radiation. It has been presumed that the shallowest soils constitute the main source of Hg for evasion since this Hg is closer to the surface and since the organic horizon and shallow A-horizon soils generally have the most organic matter, where Hg is sorbed and accumulated. The evidence for the predominance of near surface soil as the principal source of Hg for evasion has generally been correlational in nature however and no direct experimental evidence currently exists. This experimental laboratory study directly assessed the depth from which Hg evades by labeling different soil layers (1cm in thickness) with an enriched Hg stable isotope and measuring Hg fluxes under constant, but relatively low light conditions. Fluxes were measured using a dynamic flux chamber coupled to high-precision air pumps and gold traps. The gold traps were thermally desorbed and Hg isotopes were measured by ICP-MS. Under dry soil conditions, we found that most labeled Hg fluxes were very low, with no discernible pattern in relation to tracer depth. In some dry condition measurements where tracer fluxes were significant (up to 69 ng/m2 h), they were four or more times less than measurements made with wetter soils. When soils were wetted to field capacity and then allowed to dry over time, measured surface fluxes peaked approximately 24 hours after wetting and quickly declined. The largest fluxes (270 ng/m2 h) measured after wetting were observed when the isotope enriched layer constituted the surface layer. Significant fluxes were measured after wetting when the enriched layer was at 0, 1 and 2 cm, and fluxes generally decreased exponentially with depth. Fluxes after wetting, when the enriched layer was 5cm below the surface, were non-significant. Our data provide direct

  20. Generation of Radixenon Isotopes

    SciTech Connect

    McIntyre, Justin I.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Panisko, Mark E.; Pitts, W. K.; Pratt, Sharon L.; Reeder, Paul L.; Thomas, Charles W.

    2003-06-30

    Pacific Northwest National Laboratory has developed an automated system for separating Xe from air and can detect the following radioxenon isotopes, 131mXe, 133mXe, 133Xe, and 135Xe. This report details the techniques used to generate the various radioxenon isotopes that are used for the calibration of the detector as well as other isotopes that have the potential to interfere with the fission produced radioxenon isotopes. Fission production is covered first using highly enriched uranium followed by a description and results from an experiment to produce radioxenon isotopes from neutron activation of ambient xenon.

  1. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  2. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    PubMed

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area.

  3. DoE optimization of a mercury isotope ratio determination method for environmental studies.

    PubMed

    Berni, Alex; Baschieri, Carlo; Covelli, Stefano; Emili, Andrea; Marchetti, Andrea; Manzini, Daniela; Berto, Daniela; Rampazzo, Federico

    2016-05-15

    By using the experimental design (DoE) technique, we optimized an analytical method for the determination of mercury isotope ratios by means of cold-vapor multicollector ICP-MS (CV-MC-ICP-MS) to provide absolute Hg isotopic ratio measurements with a suitable internal precision. By running 32 experiments, the influence of mercury and thallium internal standard concentrations, total measuring time and sample flow rate was evaluated. Method was optimized varying Hg concentration between 2 and 20 ng g(-1). The model finds out some correlations within the parameters affect the measurements precision and predicts suitable sample measurement precisions for Hg concentrations from 5 ng g(-1) Hg upwards. The method was successfully applied to samples of Manila clams (Ruditapes philippinarum) coming from the Marano and Grado lagoon (NE Italy), a coastal environment affected by long term mercury contamination mainly due to mining activity. Results show different extents of both mass dependent fractionation (MDF) and mass independent fractionation (MIF) phenomena in clams according to their size and sampling sites in the lagoon. The method is fit for determinations on real samples, allowing for the use of Hg isotopic ratios to study mercury biogeochemical cycles in complex ecosystems.

  4. Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry.

    PubMed

    Tai, Chia-Yi; Jiang, Shiuh-Jen; Sahayam, A C

    2016-02-01

    Analysis of herbs for As, Hg and Pb has been carried out using slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) with flow injection vapor generation. Slurry containing 0.5% m/v herbal powder, 0.1% m/v citric acid and 2% v/v HCl was injected into the VG-ICP-MS system for the determination of As, Hg and Pb that obviate dissolution and mineralization. Standard addition and isotope dilution methods were used for quantifications in selected herbal powders. This method has been validated by the determination of As, Hg and Pb in NIST standard reference materials SRM 1547 Peach Leaves and SRM 1573a Tomato Leaves. The As, Hg and Pb analysis results of the reference materials agreed with the certified values. The precision obtained by the reported procedure was better than 7% for all determinations. The detection limit estimated from standard addition curve was 0.008, 0.003, and 0.007 ng mL(-1) for As, Hg and Pb, respectively.

  5. Reaction Hg+I/sub 2/. -->. HgI+I revisited

    SciTech Connect

    Oprysko, M.M.; Aoiz, F.J.; McMahan, M.A.; Bernstein, R.B.

    1983-03-15

    The crossed molecular beam study of Mayer et al. (1977) on the subject reaction is revisited. The present work employs a different beam configuration and thus kinematic framework, and a larger range of relative translational energies is covered (i.e., from the threshold of 1.15 to 3.75 eV). Measurements include in-plane angular distributions and relative values of integral reaction cross sections as a function of energy. At low energies, the results of the present experiments are in good agreement with the previous work. Starting at the threshold, the reaction proceeds through the formation of a long-lived complex, presumed to be IHgI. At higher energies, the c.m. angular distributions show a gradual increase of the so-called ''backscattered component.'' This is interpreted as the opening of a new reaction path: the direct-mode abstraction of I via collinear approach of the Hg atom to the I/sub 2/ molecule. The overall dynamics of this reaction are interpreted in the context of the semiempirical potential energy surfaces and electronic state correlation diagrams of Muckerman et al. (1977). From the present experimental results, the height of the barrier in the exit channel for the collinear configuration can be estimated to be in the range 2.0--2.3 eV. The excitation function rises from threshold and reaches a maximum at collision energy of 2.6 eV, falling off monotonically thereafter.

  6. Overcoming phytoremediation limitations. A case study of Hg contaminated soil

    NASA Astrophysics Data System (ADS)

    Barbafieri, Meri

    2013-04-01

    Phytoremediation is a broad term that comprises several technologies to clean up water and soil. Despite the numerous articles appearing in scientific journals, very few field applications of phytoextraction have been successfully realized. The research here reported on Phytoextraction, the use the plant to "extract" metals from contaminated soil, is focused on implementations to overcome two main drawbacks: the survival of plants in unfavorable environmental conditions (contaminant toxicity, low fertility, etc.) and the often lengthy time it takes to reduce contaminants to the requested level. Moreover, to overcome the imbalance between the technology's potential and its drawbacks, there is growing interest in the use of plants to reduce only the fraction that is the most hazardous to the environment and human health, that is to target the bioavailable fractions of metals in soil. Bioavailable Contaminant Stripping (BCS) would be a remediation approach focused to remove the bioavailable metal fractions. BCS have been used in a mercury contaminated soil from Italian industrial site. Bioavailable fractions were determined by sequential extraction with H2O and NH4Cl.Combined treatments of plant hormone and thioligand to strength Hg uptake by crop plants (Brassica juncea and Helianthus annuus) were tested. Plant biomass, evapotranspiration, Hg uptake and distribution following treatments were compared. Results indicate the plant hormone, cytokinine (CK) foliar treatment, increased evapotranspiration rate in both tested plants. The Hg uptake and translocation in both tested plants increased with simultaneous addition of CK and TS treatments. B. juncea was the most effective in Hg uptake. Application of CK to plants grown in TS-treated soil lead to an increase in Hg concentration of 232% in shoots and 39% in roots with respect to control. While H. annuus gave a better response in plant biomass production, the application of CK to plants grown in TS-treated soil lead to

  7. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2016-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  8. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus

    SciTech Connect

    Bressa, G.; Cima, L.; Costa, P.

    1988-10-01

    The possibility of utilizing industrial, urban, and other wastes for the growth of a product which is directly edible by humans is fascinating. However, it is possible that many wastes containing toxic substances, for example, heavy metals, could reach the food chain and produce adverse effects on human health. To this end, we studied the possibility of bioaccumulation of Hg by a mushroom, Pleurotus ostreatus, grown on an artificial compost containing this element. Concentrations of 0.05, 0.1, and 0.2 mg/kg of Hg as Hg(NO/sub 3/)/sub 2/.H/sub 2/O were added to three groups of the same compost, successively inoculated with the mycelia of the mushroom. Higher concentrations strongly reduced the growth of the mycelia and therefore were not utilized. The concentrations of Hg in the substrate and in the mushroom were evaluated by AAS. The range of the accumulation factor was found to be 65-140, i.e., very marked. This finding suggests that the cultivation of P. ostreatus on substrates containing Hg from industrial and urban wastes could involve possible risks to human health.

  9. Defect chemistry and characterization of (Hg, Cd)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1981-01-01

    Single crystal samples of phosphorus doped Hg sub 0.8 Cd sub 0.2 Te were anneald at temperatures varying from 450 C to 600 C in various Hg atmospheres. The samples were quenched to room temperature from the annealing temperatures. Hall effect and mobility measurements were performed at 77 K on all these samples. The results indicate the crystals to be p type for a total phosphorus concentration of 10 to the 19th power/cu cm in all the samples. The hole concentration at 77 K increases with increasing Hg pressures at 450 C and 500 C contrary to the observation in undoped crystals. Also, at low Hg pressures the concentration of holes in the phosphorus doped crystals is lower than in the undoped crystals. The hole concentration in all the samples is lower than the intrinsic carrier concentration at the annealing temperatures. The hole mobility in the doped crystals is similar to that in the undoped crystals. A defect model according to which phosphorus behaves as a single acceptor interstitially, occupying Te lattice sites while it acts as a single donor occupying Hg lattice sites was established. Equilibrum constants established for the incorporation of all the phosphorus species explain the experimental results

  10. Crystal structure of Hg2SO4 – a redetermination

    PubMed Central

    Weil, Matthias

    2014-01-01

    The crystal structure of mercury(I) sulfate (or mercurous sulfate), Hg2SO4, was re-determined based on modern CCD data. In comparison with the previous determination from Weissenberg film data [Dorm (1969 ▶). Acta Chem. Scand. 23, 1607–1615], all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles [e.g. Hg—Hg = 2.5031 (7) compared to 2.500 (3)Å]. The structure consists of alternating rows along [001] of Hg2 2+ dumbbells (generated by inversion symmetry) and SO4 2− tetra­hedra (symmetry 2). The dumbbells are linked via short O—Hg—Hg—O bonds to the sulfate tetra­hedra into chains extending parallel to [20-1]. More remote O—Hg—Hg—O bonds connect these chains into a three-dimensional framework. PMID:25309168

  11. Observation of Broadband Ultraviolet Emission from Hg3*

    NASA Astrophysics Data System (ADS)

    Chen, Wenting Wendy; Galvin, Thomas C.; Eden, J. Gary

    2016-06-01

    A previously-unobserved emission continuum, peaking at ˜ 380 nm, has been observed when Hg vapor is photoexcited at 248 nm (KrF laser). Attributed to the mercury trimer, Hg3, this emission continuum has a spectral breadth (FWHM) increased from ˜ 65 to ˜ 90 nm and a decay rate growed from ˜ 6 × 10^3 to ˜ 7 × 10^3 second-1, corresponding to Hg vapor density rising from ˜ 1016 to ˜ 2 × 1019 cm-3. Comparisons of the observed spectra with theory suggest that continuum arises from transitions of the molecule of D∞ h symmetrical linear, D3h equilateral triangular and C2h equilateral triangular configurations. Kitamura, Hikaru. "Theoretical potential energy surfaces for excited mercury trimers." Chemical physics 325.2 (2006): 207-219

  12. Effect of doping on electronic properties of HgSe

    NASA Astrophysics Data System (ADS)

    Nag, Abhinav; Sastri, O. S. K. S.; Kumar, Jagdish

    2016-05-01

    First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% of electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point D. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.

  13. Molecular structure of mercurous halides: Hg/sub 2/F/sub 2/ and Hg/sub 2/Cl/sub 2/

    SciTech Connect

    Kleier, D.A.; Wadt, W.R.

    1980-11-05

    Ab initio generalized valence bond calculations using effective core potentials are presented for the ground state of (HgF)/sub 2/ and (HgCl)/sub 2/. Extensive calculations are also reported for HgF and compared with previous literature results for HgCl. In spite of the polar nature of the Hg-X bond in the monomer, which would favor a head-to-tail orientation of the dipoles in the dimer, a moderately strong covalent bond between the mercury atoms dictates a linear structure (X-Hg-Hg-X) for both fluoride and chloride. Comparison with solid-state data suggests that the Hg-X bonds shorten upon entering the gas phase. Stability toward disproportionation is problematical. Simple calculations predict the chloride to be about 0.6 eV more stable than Hg + HgCl/sub 2/, while the disproportionation of Hg/sub 2/F/sub 2/ is predicted to be nearly thermoneutral. Improved calculations shed some doubt on the stability of Hg/sub 2/Cl/sub 2/. An improved virtual orbital calculation has been performed to estimate where spectral evidence for the existence of Hg/sub 2/Cl/sub 2/ in the gas phase might be found. 5 tables. 2 figures.

  14. [Experimental Research of Hg (II) Removal from Aqueous Solutions of HgCl2 with Nano-TiO2].

    PubMed

    Zhou, Xiong; Zhang, Jin-yang; Wang, Ding-yong; Qin, Cai-qing; Xu, Feng; Luo Cheng-zhong; Yang, Xi

    2016-01-15

    Mercury removal from aqueous solutions of HgCl2 was studied by indoor simulation experiments, and the effects of three different diameter of particles of Nano-TiO2 ( Nano-Titanium Dioxide) at different dosage, pH, adsorption time and the initial concentration of Hg2+ on the mercury adsorption from simulated wastewater were investigated. The single factor experiments showed that the optimal conditions were: 7.5 g x L(-1) of 5 nm TiO2 or 2.0 g x L(-1) of 100 nm TiO2, pH 8.0, initial concentration of Hg2+ 15 x mg x L(-1) adsorption time 5 min, and under these conditions the adsorption rates reached 99.5% and 99.3%, relatively. When the content of 25 nm TiO2 was 10 g x L(-1), and the other conditions were pH 8.0, initial concentration of Hg2+ 15 mg x L(-1), adsorption time 60 min, the adsorption rate was 62.8%. The Hg(II) removal effects of the TiO2 particles with different diameters followed the order of 100 nm TiO2 > 5 nm TiO2 > 25 nm TiO2. Component adsorption results showed that the 5 nm TiO2 component adsorption effect was superior to its single adsorption effect, while there was little difference between 100 nm TiO2 component adsorption effect and its single adsorption effect. The results of orthogonal experiments indicated that the influencing factors of the adsorption rate followed the order of pH > the initial concentration of Hg2+ > time > dosage. The optimal experiment scheme was: pH 8.0, a dosage of 100 nm Nano-TiO2 of 2.0 g x L(-1) an initial Hg2+ concentration of 25 mg x L(-1) and adsorption time of 10 min. Under the experimental conditions, the maximum adsorption rate reached 99.9%, at the same time, the equilibrium concentration of Hg(II) was 0.033 mg x L(-1) < 0.05 mg x L(-1), below the current enterprise rules of water pollutants in mercury emissions limits. In addition, the maximum adsorptive capacity was 26.95 mg x g(-1). The adsorption isotherm was in line with the Langmuir isotherm equation, indicating that the Hg(II) uptake by 100 nm Nano-TiO2

  15. Hydrothermal synthesis of alpha- and beta-HgS nanostructures

    NASA Astrophysics Data System (ADS)

    Galain, Isabel; María, Pérez Barthaburu; Ivana, Aguiar; Laura, Fornaro

    2017-01-01

    We synthesized HgS nanostructures by the hydrothermal method in order to use them as electron acceptors in hybrid organic-inorganic solar cells. We employed different mercury sources (HgO and Hg(CH3COO)2) and polyvinylpyrrolidone (PVP) or hexadecanethiol (HDT) as stabilizing/capping agent for controlling size, crystallinity, morphology and stability of the obtained nanostructures. We also used thiourea as sulfur source, and a temperature of 180 °C during 6 h. Synthesized nanostructures were characterized by powder X-Ray Diffraction, Diffuse Reflectance Infrared Fourier Transform and Transmission Electron Microscopy. When PVP acts as stabilizing agent, the mercury source has influence on the size -but not in morphology- of the beta-HgS obtained nansostructures. HDT has control over nanostructures' size and depending on the relation Hg:HDT, we obtained a mixture of alpha and beta HgS which can be advantageous in the application in solar cells, due their absorption in different spectral regions. The smallest nanostructures obtained have a mean diameter of 20 nm when using HDT as capping agent. Also, we deposited the aforementioned nanostructures onto flat glass substrates by the spin coating technique as a first approach of an active layer of a solar cell. The depositions were characterized by atomic force microscopy. We obtained smaller particle deposition and higher particle density -but a lower area coverage (5%) - in samples with HDT as capping agent. This work presents promising results on nanostructures for future application on hybrid solar cells. Further efforts will be focused on the deposition of organic-inorganic layers.

  16. Raman spectroscopic investigations of Hg-Cd-Te melts

    NASA Technical Reports Server (NTRS)

    Morrobel-Sosa, Anny

    1987-01-01

    Raman scattering measurements are reported for a series of Hg sub1-xCd subxTe (with x less than or =0.2) materials from 295 K (room temperature) to 1126K (up to and above their liquidus temperatures), and for Hg sub1-xCd subxTe (x=0.3) at 285K. The samples were contained in high-temperature optically-flat fused silica cell. Variable temperature measurements were effected in a three-zone, high-temperature furnace equipped with optical windows, and monitored externally by three independently programmable temperature controllers. All studies were made in the backscattering geometry using the 5145 A line of an Ar+ ion laser, with incident power less than 250 mW, as the excitiation source. An intensity enhancement is observed for a mode in each of the compositions studied. The frequency of this mode varies with composition, 142/cm for HgTe, and 128/cm for both the Hg sub1-xCd subxTe (x=0.053 and 0.204) samples. In addition, a shift to lower frequency as a function of temperature is observed in all samples. This shift is most prominent for the x=0.053 sample. The temperature dependence of these modes as the liquidus temperatures are achieved and surpassed for these samples is presented as being associated with a structural transition in the Hg-rich compositions of the Hg sub1-xCd subxTe series. To our knowledge, this is the first reported study of Raman scattering by phonons in the melts of these materials.

  17. Molecular Beam Epitaxial Growth, Characterization and Electronic Device Processing of HgCdTe, HgZnTe, Related Heterojunctions and HgCdTe-CdTe Superlattices

    DTIC Science & Technology

    1989-11-13

    xI011 40 41 24.4 5 0. 1 0 C1" 166 2.7 x 1016 8.3X 101* 1.5 ... ... 36 27.6 3 3, 10 N. Vde . TomiaL A, VNL , Me. L MAN IM 313 b3oultercthe ofal...growth by molecular beam epitaxy of twin-free CdTe(111)B and HgCdTe(111)B epitaxial layers. HgCdTe( 1 11)B twin-free layers exhibit very different...OCT. 1 , 1987 - SEPT. 30, 1989 DARPA CONTRACT MONITORED BY AFOSR #F49620-87-C-0021 Acesion For 77 FINAL REPORT ?JI R& )TIC TAB J :-"tiicatiuf, 1 Jean

  18. HgI2 low energy beta particle detector

    NASA Technical Reports Server (NTRS)

    Shah, K. S.; Squillante, M. R.; Entine, G.

    1990-01-01

    An HgI2 device structure was designed and tested which allows HgI2 to be used to make low-energy beta-particle detectors. The devices detected tritium beta particles with an efficiency of about 25 percent. A protective encapsulant has been developed which should protect the devices for up to 20 years and will attenuate only a small fraction of the beta particles. It is noted that the devices hold significant promise to provide a practical alternative to liquid scintillation counters and gas flow-through proportional counters.

  19. A new HgMn star HD 196821

    NASA Astrophysics Data System (ADS)

    Ćalışkan, Şeyma; Ünal, Özge

    2017-02-01

    In this study, we present the chemical abundance analysis of HD 196821. The spectra of HD 196821 was obtained at the TÜBİTAK National Observatory using the Coudé Echelle spectrograph attached to the 1.5 m telescope. We determined the atmospheric parameters of HD 196821: Teff=10600K, log g=3.6, vmic=0 km/s, and [Fe/H]=0.16 dex. HD 196821 shows an overabundance of 85 times solar for Mn and 208,930 times solar for Hg. This strongly suggests that the star should be classified as an HgMn star.

  20. Increased capabilities of the 30-cm diameter Hg ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Hawkins, C. E.

    1979-01-01

    Some space flight missions require advanced ion thrusters which operate at conditions much different than those for which the baseline 30-cm Hg thruster was developed. Results of initial tests of a 30-cm Hg thruster with two and three grid ion accelerating systems, operated at higher values of both thrust and power and over a greater range of specific impulse than the baseline conditions are presented. Thruster lifetime at increased input power was evaluated both by extended tests and real time spectroscopic measurements.

  1. Crystal Growth of Solid Solution HgCdTe Alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.

    1997-01-01

    The growth of homogenous crystals of HgCdTe alloys is complicated by the large separation between their liquidus and solidus temperatures. Hg(1-x)Cd(x)Te is representative of several alloys which have electrical and optical properties that can be compositionally tuned for a number of applications. Limitations imposed by gravity during growth and results from growth under reduced conditions are described. The importance of residual accelerations was demonstrated by dramatic differences in compositional distribution observed for different attitudes of the space shuttle that resulted in different steady acceleration components.

  2. 40 CFR 60.4122 - Information requirements for Hg budget permit applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Information requirements for Hg budget... requirements for Hg budget permit applications. A complete Hg Budget permit application shall include the following elements concerning the Hg Budget source for which the application is submitted, in a...

  3. 40 CFR 60.4121 - Submission of Hg budget permit applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Submission of Hg budget permit... Times for Coal-Fired Electric Steam Generating Units Permits § 60.4121 Submission of Hg budget permit applications. (a) Duty to apply. The Hg designated representative of any Hg Budget source required to have...

  4. Purification of HgI.sub.2 for nuclear detector fabrication

    DOEpatents

    Schieber, Michael M.

    1978-01-01

    A process for purification of mercuric iodide (HgI.sub.2) to be used as a source material for the growth of detector quality crystals. The high purity HgI.sub.2 raw material is produced by a combination of three stages: synthesis of HgI.sub.2 from Hg and I.sub.2, repeated sublimation, and zone refining.

  5. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Hg mass emissions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.83 Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass...

  6. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  7. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  8. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  9. Thermodynamics limits the reactivity of BrHg radical with volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Dibble, Theodore S.; Schwid, Abraham C.

    2016-08-01

    Mercury emissions to the atmosphere primarily consist of Hg(0), which tends not to enter ecosystems until it is oxidized. Atomic bromine initiates oxidation of Hg(0) via the BrHg intermediate, but the further reactions of BrHg are just beginning to be explored. Here we use quantum chemistry to determine that hydrogen abstraction from hydrocarbons by BrHg is so endothermic as to be irrelevant. Bonds between BrHg and carbon atoms are so weak that BrHg addition to carbon-carbon double bonds atoms will be somewhat ineffective in leading to further reactions.

  10. Concentrations and isotope ratios of mercury in sediments from shelf and continental slope at Campos Basin near Rio de Janeiro, Brazil.

    PubMed

    Araujo, Beatriz Ferreira; Hintelmann, Holger; Dimock, Brian; Almeida, Marcelo Gomes; Rezende, Carlos Eduardo

    2017-07-01

    Mercury (Hg) may originate from both anthropogenic and natural sources. The measurement of spatial and temporal variations of Hg isotope ratios in sediments may enable source identification and tracking of environmental processes. In this study we establish the distribution of mercury concentrations and mercury isotope ratios in surface sediments of three transects along the continental shelf and slope in Campos Basin-RJ-Brazil. The shelf showed on average lower total Hg concentrations (9.2 ± 5.3 ng g(-1)) than the slope (24.6 ± 8.8 ng g(-1)). MMHg average concentrations of shelf 0.15 ± 0.12 ng g(-1) and slope 0.13 ± 0.06 ng g(-1) were not significantly different. Distinct differences in Hg isotope ratio signatures were observed, suggesting that the two regions were impacted by different sources of Hg. The shelf showed more negative δ(202)Hg and Δ(199)Hg values ranging from -0.59 to -2.19‰ and from -0.76 to 0.08‰, respectively. In contrast, the slope exhibited δ(202)Hg values from -0.29 to -1.82‰ and Δ(199)Hg values from -0.23 to 0.09‰. Mercury found on the shelf, especially along the "D" and "I" transects, is depleted in heavy isotopes resulting in more negative δ(202)Hg compared to the slope. Isotope ratios observed in the "D" and "I" shelf region are similar to Hg ratios commonly associated with plants and vegetation and very comparable to those detected in the estuary and adjoining mangrove forest, which suggests that Hg exported from rivers may be the dominating source of Hg in near coastal regions along the northern part of the shelf.

  11. Decay from the superdeformed bands in {sup 194}Hg

    SciTech Connect

    Henry, R.G.; Khoo, T.L.; Carpenter, M.P.

    1995-08-01

    Superdeformed bands in {sup 194}H g were studied using the early implementation of Gammasphere. The response functions for the Ge detectors were measured for the first time as part of this experiment. Experiments were performed with both a backed target (where the residue stopped in the Au backing) and a thin target (where the residue recoiled into vacuum). This will permit measurements of the decay times of the quasicontinuum {gamma}rays. The spectrum in coincidence with the yrast SD band in {sup 194}Hg reveals the same features as found in the quasicontinuum structure in {sup 192}Hg. These features include: statistical {gamma}rays feeding the SD band, a pronounced E2 peak from transitions feeding the SD band, a Ml/E2 bump at low energies that is associated with the last stages of feeding of the superdeformed band, and a quasicontinuous distribution from {gamma}rays linking SD and normal states, including a sizable clustering of strength around 1.7 MeV. The remarkable similarity of the spectra coincident with SD bands in {sup 192,194}Hg provides additional support for a statistical process for decay out of the SD states. This similarity contrasts with differences observed in the spectrum coincident with the SD band in the odd-even {sup 191}Hg, confirming the predictions about the role of pairing (in normal states) in influencing the shape of the decay-out spectrum.

  12. 46 CFR 53.01-5 - Scope (modifies HG-100).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Scope (modifies HG-100). 53.01-5 Section 53.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS... heating boilers, hot water boilers (which include hot water heating boilers and hot water supply...

  13. 46 CFR 53.01-5 - Scope (modifies HG-100).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Scope (modifies HG-100). 53.01-5 Section 53.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS... heating boilers, hot water boilers (which include hot water heating boilers and hot water supply...

  14. 46 CFR 53.01-5 - Scope (modifies HG-100).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scope (modifies HG-100). 53.01-5 Section 53.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS... heating boilers, hot water boilers (which include hot water heating boilers and hot water supply...

  15. 46 CFR 53.01-5 - Scope (modifies HG-100).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Scope (modifies HG-100). 53.01-5 Section 53.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS... heating boilers, hot water boilers (which include hot water heating boilers and hot water supply...

  16. 46 CFR 53.01-5 - Scope (modifies HG-100).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Scope (modifies HG-100). 53.01-5 Section 53.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS... heating boilers, hot water boilers (which include hot water heating boilers and hot water supply...

  17. Frequency Comparison of Al+ and Hg+ Optical Standards

    NASA Astrophysics Data System (ADS)

    Rosenband, T.; Hume, D. B.; Brusch, A.; Lorini, L.; Schmidt, P. O.; Fortier, T. M.; Stalnaker, J. E.; Diddams, S. A.; Newbury, N. R.; Swann, W. C.; Oskay, W. H.; Itano, W. M.; Wineland, D. J.; Bergquist, J. C.

    2008-04-01

    We compare the frequencies of two single ion frequency standards: 27Al+ and 199Hg+. Systematic fractional frequency uncertainties of both standards are below 10-16, and the statistical measurement uncertainty is below 5 × 10-17. Recent ratio measurements show a reproducibility that is better than 10-16.

  18. Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs.

    PubMed

    Clayden, Meredith G; Lescord, Gretchen L; Kidd, Karen A; Wang, Xiaowa; Muir, Derek C G; O'Driscoll, Nelson J

    2017-03-01

    Nitrogen and carbon stable isotopes (δ(15) N, δ(13) C) are commonly used to understand mercury (Hg) bioaccumulation and biomagnification in freshwater food webs. Though sulfur isotopes (δ(34) S) can distinguish between energy sources from the water column (aqueous sulfate) and from sediments to freshwater organisms, little is known about whether δ(34) S can help interpret variable Hg concentrations in aquatic species or food webs. Seven acidic lakes in Kejimkujik National Park (Nova Scotia, Canada) were sampled for biota, water, and sediments in 2009 and 2010. Fishes, zooplankton, and macroinvertebrates were analyzed for δ(34) S, δ(15) N, δ(13) C, and Hg (methyl Hg in invertebrates, total Hg in fishes); aqueous sulfate and profundal sediments were analyzed for δ(34) S. Within lakes, mean δ(34) S values in sediments and sulfate differed between 0.53‰ and 1.98‰, limiting their use as tracers of energy sources to the food webs. However, log-Hg and δ(34) S values were negatively related (slopes -0.14 to -0.35, R(2) 0.20-0.39, p < 0.001-0.01) through each food web, and slopes were significantly different among lakes (analysis of covariance, lake × δ(34) S interaction term p = 0.04). Despite these relationships, multiple regression analyses within each taxon showed that biotic Hg concentrations were generally better predicted by δ(15) N and/or δ(13) C. The results indicate that δ(34) S values are predictive of Hg concentrations in these food webs, although the mechanisms underlying these relationships warrant further study. Environ Toxicol Chem 2017;36:661-670. © 2016 SETAC.

  19. Growth, properties and applications of HgCdTe

    NASA Astrophysics Data System (ADS)

    Schmit, J. L.

    1983-12-01

    This paper provides primarily a review of the methods used to grow HgCdTe with a summary of some of its basic properties and applications. Methods of crystal growth fall generally into three classes: growth from the melt, from solution and from the vapor phase. All three methods have been and are being used to grow HgCdTe. The high vapor pressure of HgCdTe at the melting point, combined with a large segregation coefficient, have effectively limited the use of Czochralski or zone melting techniques, but two melt growth techniques have survived: (1) a variation of Bridgman growth called quench-anneal wherein a dendritic crystal is formed by quenching the melt and is homogenized by solid state recrystallization below the melting point, (2) a variation of freezing from a large volume called slush-growth wherein a melt is held in a temperature gradient for several weeks while a crystal grows. Growth from solution has taken the form of liquid phase epitaxy (LPE) on CdTe with the LPE systems including growth from Hg-rich, HgTe-rich and Te-rich solutions and using tipping, vertical dipping, vertical sliding and horizontal sliding. Vapor phase growth is very promising but is not yet in production. Techniques include growth by isothermal close spaced epitaxy in which HgTe is transported isothermally by chemical potential onto CdTe, molecular beam epitaxy (MBE) in which elements are evaporated in a high vacuum, and metal organic chemical vapor deposition (MOCVD) in which some of the metal atoms are carried to the substrate bound to organic radicals before being freed by pyrolysis. In all these methods, control of Hg pressure is a major concern. The fundamental properties discussed briefly are those of prime interest to detector manufacturers: energy gap ( Eg), intrinsic carrier concentration ( ni), and electrical activity of dopants. A reasonable fit to the Eg data from ˜ 20 papers is given by Eg = -0.302+1.93x+5.35×10 -4T(1-2x)-0.810x 2+0.832x 3. This gap, combined with k

  20. Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon.

    PubMed

    Xu, Xiaoyun; Schierz, Ariette; Xu, Nan; Cao, Xinde

    2016-02-01

    Two biochars were produced from bagasse and hickory chips (referred to as BB and HCB, respectively) and evaluated for their sorption ability of Hg(II) in aqueous solution. A commercial activated carbon (AC) which is commonly used for Hg(II) removal was included for comparison. Both biochars showed higher sorption capacities than AC, following the trend of BB>HCB>AC. The sorption of Hg(II) by BB and AC was mainly attributed to the formation of (COO)2Hg(II) and (O)2Hg(II). As a result, the adsorption capacity of Hg(II) by BB decreased 17.6% and 37.6% after COOH and OH were blocked, respectively and that of Hg(II) by AC decreased 6.63% and 62.2% for COOH and OH hindered, respectively. However, blocking the function groups had little effect on the Hg removal by HCB since sorption of Hg(II) by HCB was mainly resulted from the π electrons of CC and CO induced Hg-π binding. Further X-ray photoelectron spectroscopy analysis indicated the possibility of reduction of the Hg(II) to Hg(I) by phenol groups or π electrons during the removal of Hg(II) by both biochars. In conclusion, biochar is more effective than activated carbon in removing Hg(II) and there exists a high potential that biochar can be a substitute of activated carbon for removal of Hg(II) from wastewater.

  1. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  3. The new barium zinc mercurides Ba3ZnHg10 and BaZn0.6Hg3.4 - Synthesis, crystal and electronic structure

    NASA Astrophysics Data System (ADS)

    Schwarz, Michael; Wendorff, Marco; Röhr, Caroline

    2012-12-01

    The title compounds Ba3ZnHg10 and BaZn0.6Hg3.4 were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba3ZnHg10 (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 44 Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl4. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn0.6Hg3.4 (cubic, cI320, space group I4bar3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba3ZnHg10, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4×4×4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6)4 with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4)2 dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb3Hg20 applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations relate the two title compounds.

  4. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.

    2002-01-01

    Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.

  5. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  6. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  7. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  8. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  9. High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass.

    PubMed

    Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Mat, Hanapi

    2017-03-01

    An effective organoalkoxysilanes-grafted lignocellulosic waste biomass (OS-LWB) adsorbent aiming for high removal towards inorganic and organic mercury (Hg(II) and MeHg(II)) ions was prepared. Organoalkoxysilanes (OS) namely mercaptoproyltriethoxylsilane (MPTES), aminopropyltriethoxylsilane (APTES), aminoethylaminopropyltriethoxylsilane (AEPTES), bis(triethoxysilylpropyl) tetrasulfide (BTESPT), methacrylopropyltrimethoxylsilane (MPS) and ureidopropyltriethoxylsilane (URS) were grafted onto the LWB using the same conditions. The MPTES grafted lignocellulosic waste biomass (MPTES-LWB) showed the highest adsorption capacity towards both mercury ions. The adsorption behavior of inorganic and organic mercury ions (Hg(II) and MeHg(II)) in batch adsorption studies shows that it was independent with pH of the solutions and dependent on initial concentration, temperature and contact time. The maximum adsorption capacity of Hg(II) was greater than MeHg(II) which respectively followed the Temkin and Langmuir models. The kinetic data analysis showed that the adsorptions of Hg(II) and MeHg(II) onto MPTES-LWB were respectively controlled by the physical process of film diffusion and the chemical process of physisorption interactions. The overall mechanism of Hg(II) and MeHg(II) adsorption was a combination of diffusion and chemical interaction mechanisms. Regeneration results were very encouraging especially for the Hg(II); this therefore further demonstrated the potential application of organosilane-grafted lignocellulosic waste biomass as low-cost adsorbents for mercury removal process.

  10. Multicollector ICPMS and TIMS as tools for isotopic fingerprinting

    NASA Astrophysics Data System (ADS)

    Bouman, C.; Schwieters, J. B.; Lloyd, N. S.; Trinquier, A.

    2012-04-01

    Elements such as C, N, O and S are essential for chemical and biological processes in nature and very small shifts in the isotopic composition of these elements are important tracers to explore complex processes in nature. During the last few years, stable isotopes of elements as Cl, Ca, Fe, Cu, Zn, Sr, Hg and Pb are getting more and more attention as tracer to study biomedical and environmental processes, as well as forensics and archaeometry. Multi-collector ICPMS and TIMS enable high-precision isotopic analysis of these so-called non-traditional stable isotope systems. MC-ICPMS is a powerful technique for the isotopic analysis of most elements, with the exception of light elements such as H, C, N and O and the noble gases. Various inlet systems can be used to introduce samples into the mass spectrometer, for instance gas chromatography (GC), liquid chromatography (LC) ) for compound-specific isotope analysis, laser ablation for direct analysis of solids, or conventional liquid nebulization for liquid samples. The aerosol is transported by an Ar and/or He gas flow into the ICP source where it is effectively ionized and introduced into the mass analyzer through a differential pumping system. Molecular interferences as carbides, nitrides, oxides, argides or doubly-charged species can show up in the mass spectrum and interfere with the elemental isotope peaks. High mass resolution is needed to effectively discriminate against these interferences. The NEPTUNE Plus is specially designed to meet this requirement and expand the power of isotope ratio measurements even to elements where previously isobaric interferences were the limit. For some specific isotope systems, such as Ca, Sr and Pb, the thermal ionization technique may have advantages, due to the potentially lower backgrounds and higher sensitivity. Prior to the TIMS analysis, the sample is chemically purified, loaded on a filament and introduced into the mass spectrometer. With the introduction of the TRITON

  11. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  12. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  13. In vivo formation and binding of SeHg complexes to the erythrocyte surface.

    PubMed

    Cherdwongcharoensuk, Duangrudee; Oliveira, Maria João; Aguas, Artur Perez

    2010-08-01

    The in vivo dynamics of selenium (Se) and mercury (Hg) interaction was studied in mouse tissues using direct visualization of individual Se, Hg, and SeHg particles on the surface of circulating erythrocytes. This high-resolution detection of Se and Hg was obtained by scanning electron microscopy coupled to X-ray microanalysis. BALB/c mice were injected in the peritoneal cavity with Se and Hg salts, and the animals were sacrificed 3 min after the Hg injection. Only a minority (9%) of the metal dots seen on mouse liver erythrocytes were SeHg complexes when Se and Hg salts were mixed together before injection. In contrast, the majority (73%) of metal dots on liver erythrocytes were SeHg complexes if Se was injected at least 5 min before Hg injection. All metal dots on liver erythrocytes were of SeHg complexes if Se was injected 9 or 12 min before the Hg injection. We conclude that the formation of stable in vivo SeHg complexes requires preliminary interaction of Se with a putative serum factor before complexes between Se and Hg are formed and are bound to the erythrocyte cell surface.

  14. Immobilization of Hg(II) by Coprecipitation in Sulfate-Cement Systems

    PubMed Central

    2012-01-01

    Uptake and molecular speciation of dissolved Hg during formation of Al- or Fe-ettringite-type and high-pH phases were investigated in coprecipitation and sorption experiments of sulfate-cement treatments used for soil and sediment remediation. Ettringite and minor gypsum were identified by XRD as primary phases in Al systems, whereas gypsum and ferrihydrite were the main products in Hg–Fe precipitates. Characterization of Hg–Al solids by bulk Hg EXAFS, electron microprobe, and microfocused-XRF mapping indicated coordination of Hg by Cl ligands, multiple Hg and Cl backscattering atoms, and concentration of Hg as small particles. Thermodynamic predictions agreed with experimental observations for bulk phases, but Hg speciation indicated lack of equilibration with the final solution. Results suggest physical encapsulation of Hg as a polynuclear chloromercury(II) salt in ettringite as the primary immobilization mechanism. In Hg–Fe solids, structural characterization indicated Hg coordination by O atoms only and Fe backscattering atoms that is consistent with inner-sphere complexation of Hg(OH)20 coprecipitated with ferrihydrite. Precipitation of ferrihydrite removed Hg from solution, but the resulting solid was sufficiently hydrated to allow equilibration of sorbed Hg species with the aqueous solution. Electron microprobe XRF characterization of sorption samples with low Hg concentration reacted with cement and FeSO4 amendment indicated correlation of Hg and Fe, supporting the interpretation of Hg removal by precipitation of an Fe(III) oxide phase. PMID:22594782

  15. Mercury Isotope Constraints on Depth of Methylation and Degree of Photo-Degradation of Methylmercury in the Central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Popp, B. N.; Johnson, M. W.; Drazen, J. C.; Choy, C. A.

    2012-12-01

    Mercury emissions from coal combustion are increasing globally and research is needed to better understand the consequences of increased deposition on Hg levels in fish caught in the open oceans. Central to this issue is understanding how and where Hg in the ocean is transformed from inorganic Hg(II) deposited from the atmosphere to monomethylmercury (MMHg), which is biomagnified in marine food webs. We measured Hg stable isotope values in nine species of pelagic fish caught in the Hawaiian Islands and we use Δ199Hg and δ202Hg as a monitor of the chemical pathways of MMHg prior to incorporation into the marine food web. We observe a decrease in Δ199Hg and δ202Hg and an increase in total Hg concentration of fish with mean depth of occurrence from the surface to 650 m. MMHg concentrations in the ocean are thought to largely represent a balance between rates of MMHg production by bacteria and degradation by photochemical reactions. Photochemical degradation of MMHg imparts a distinct Hg isotopic composition on the remaining MMHg and thus the isotopic composition of MMHg in fish can be used to estimate the proportion of MMHg that has been degraded. We interpret decreasing Δ199Hg values (5.3 permil to 1.3 permil) with increasing depth (25 m to 650 m) to indicate that MMHg in deep-feeding fish is formed at depth in the oxygen minimum zone. We suggest that MMHg advected upward into the photic zone undergoes extensive (~80%) photodegradation prior to entering the surface ocean food web. Although the Δ199Hg values at depth are much lower than at the surface, they are not zero. This suggests that some MMHg that was previously in the photic zone was transferred to depth and incorporated in the deeper ocean food web. The Δ199Hg value of 1.3 permil at 650 m depth could be explained by about 25% MMHg transported from the photic zone (Δ199Hg=5.3 permil) with 75% MMHg produced at depth (Δ199Hg=0 permil). At 100 m depth fish have Δ199Hg=2.8 permil, which is consistent

  16. Frequency Measurements of Al+ and Hg+ Optical Standards

    NASA Astrophysics Data System (ADS)

    Itano, W. M.; Bergquist, J. C.; Rosenband, T.; Wineland, D. J.; Hume, D.; Chou, C.-W.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Diddams, S. A.; Fortier, T. M.

    2010-02-01

    Frequency standards based on narrow optical transitions in 27Al+ and 199Hg+ ions have been developed at NIST. Both standards have absolute reproducibilities of a few parts in 1017. This is about an order of magnitude better than the fractional uncertainty of the SI second, which is based on the 133Cs hyperfine frequency. Use of femtosecond laser frequency combs makes it possible to compare the optical frequency standards to microwave frequency standards or to each other. The ratio of the Al+ and Hg+ frequencies can be measured more accurately than the reproducibility of the primary cesium frequency standards. Frequency measurements made over time can be used to set limits on the time variation of fundamental constants, such as the fine structure constant α or the quark masses.

  17. A high-performance Hg(+) trapped ion frequency standard

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.

    1992-01-01

    A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.

  18. Measurement of linear stark interference in 199Hg.

    PubMed

    Loftus, T H; Swallows, M D; Griffith, W C; Romalis, M V; Heckel, B R; Fortson, E N

    2011-06-24

    We present measurements of Stark interference in the (61)S(0)→6(3)P(1) transition in (199)Hg, a process whereby a static electric field E mixes magnetic dipole and electric quadrupole couplings into an electric dipole transition, leading to E-linear energy shifts similar to those produced by a permanent atomic electric dipole moment (EDM). The measured interference amplitude, a(SI) = (a(M1) + a(E2)) = (5.8 ± 1.5) × 10(-9) (kV / cm)(-1), agrees with relativistic, many-body predictions and confirms that earlier central-field estimates are a factor of 10 too large. More importantly, this study validates the capability of the (199)Hg EDM search apparatus to resolve nontrivial, controlled, and sub-nHz Larmor frequency shifts with EDM-like characteristics.

  19. Measurement of Linear Stark Interference in {sup 199}Hg

    SciTech Connect

    Loftus, T. H.; Swallows, M. D.; Griffith, W. C.; Romalis, M. V.; Heckel, B. R.; Fortson, E. N.

    2011-06-24

    We present measurements of Stark interference in the 6{sup 1}S{sub 0}{yields}6{sup 3}P{sub 1} transition in {sup 199}Hg, a process whereby a static electric field E mixes magnetic dipole and electric quadrupole couplings into an electric dipole transition, leading to E-linear energy shifts similar to those produced by a permanent atomic electric dipole moment (EDM). The measured interference amplitude, a{sub SI}=(a{sub M1}+a{sub E2})=(5.8{+-}1.5)x10{sup -9} (kV/cm){sup -1}, agrees with relativistic, many-body predictions and confirms that earlier central-field estimates are a factor of 10 too large. More importantly, this study validates the capability of the {sup 199}Hg EDM search apparatus to resolve nontrivial, controlled, and sub-nHz Larmor frequency shifts with EDM-like characteristics.

  20. Electrical Conductivity of HgTe at High Temperatures

    NASA Technical Reports Server (NTRS)

    Li, C.; Lehoczky, S. L.; Su, C.-H.; Scripa, R. N.

    2004-01-01

    The electrical conductivity of HgTe was measured using a rotating magnetic field method from 300 K to the melting point (943 K). A microscopic theory for electrical conduction was used to calculate the expected temperature dependence of the HgTe conductivity. A comparison between the measured and calculated conductivities was used to obtain the estimates of the temperature dependence of Gamma(sub 6)-Gamma(sub 8) energy gap from 300 K to 943 K. The estimated temperature coefficient for the energy gap was comparable to the previous results at lower temperatures (less than or equal to 300 K). A rapid increase in the conductivity just above 300 K and a subsequent decrease at 500 K is attributed to band crossover effects. This paper describes the experimental approach and some of the theoretical calculation details.

  1. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  2. Femtosecond laser-drilling-induced HgCdTe photodiodes.

    PubMed

    Zha, F-X; Li, M S; Shao, J; Yin, W T; Zhou, S M; Lu, X; Guo, Q T; Ye, Z H; Li, T X; Ma, H L; Zhang, B; Shen, X C

    2010-04-01

    Femtosecond-laser drilling may induce holes in HgCdTe with morphology similar to that induced by ion-milling in loophole technique. So-formed hole structures are proven to be pn junction diodes by the laser beam induced current characterization as well as the conductivity measurement. Transmission and photoluminescence spectral measurements on a n-type dominated hole-array structure give rise to different results from those of an ion-milled sample.

  3. HgCdTe Fabrication Using Directed Energy Techniques

    DTIC Science & Technology

    1982-04-01

    HgCdTE Pulsed electron beam processing Mercury Cadmium Teluride Hot wall epitaxy CdTe Heteroepitaxyj Cadmium Teluride Thin Films 20. ABSTRACT...control. Existing CdTe films show extensive twinning and poor surface morphology. Improvements are expected with a shift to sapphire substrates and the...Sample size is currently 0.5 inch square. These films were not twinned and had better surface morphology than the joriginal CdTe substrates. Good

  4. Monolithically integrated HgCdTe focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, Silviu; Lee, Tae-Seok; Ashokan, Renganathan; Grein, Christoph H.; Boieriu, Paul; Chen, Y. P.; Dinan, John H.; Lianos, Dimitrios

    2003-12-01

    The cost and performance of hybrid HgCdTe infrared focal plane arrays are constrained by the necessity of fabricating the detector arrays on a CdZnTe substrate. These substrates are expensive, fragile, are available only in small rectangular formats, and are not a good thermal expansion match to the silicon readout integrated circuit. We discuss in this paper an infrared sensor technology based on monolithically integrated infrared focal plane arrays that could replace the conventional hybrid focal plane array technology. We have investigated the critical issues related to the growth of HgCdTe on Si read-out integrated circuits and the fabrication of monolithic focal plane arrays: (1) the design of Si read-out integrated circuits and focal plane array layouts, (2) the low temperature cleaning of Si(001) wafers, (3) growth of CdTe and HgCdTe layers on read-out integrated circuits, (4) array fabrication, interconnection between focal plane array and read-out integrated circuit input nodes and demonstration of the photovoltaic operation, and (5) maintenance of the read-out integrated circuit characteristics after substrate cleaning, molecular beam epitaxy growth and device fabrication. Crystallographic, optical and electrical properties of the grown layers are presented. Electrical properties for diodes fabricated on misoriented Si and read-out integrated circuit substrates are discussed. The fabrication of arrays with demonstrated I-V properties show that monolithic integration of HgCdTe-based infrared focal plane arrays on Si read-out integrated circuits is feasible and could be implemented in the 3rd generation of infrared systems.

  5. Mercury concentrations, speciation, and isotopic composition in sediment from a cold seep in the northern Gulf of Mexico.

    PubMed

    Brown, Garry; Sleeper, Kenneth; Johnson, Marcus W; Blum, Joel D; Cizdziel, James V

    2013-12-15

    Total-Hg, monomethylmercury (MMHg), and mercury isotopic composition was determined in sediment from a cold seep and background sites in the northern Gulf of Mexico (nGoM). Total-Hg averaged 50 ng/g (n=28), ranged from 31 to 67 ng/g, and decreased with depth (0-15 cm). MMHg averaged 0.91 ng/g (n=18), and ranged from 0.2 to 1.9 ng/g. There was no significant difference for total-Hg or MMHg between cold seep and background sites. δ(202)Hg ranged from -0.5 to -0.8‰ and becomes more negative with depth (r=0.989). Mass independent fractionation (Δ(199)Hg) was small but consistently positive (0.04-0.12‰); there was no difference between cold seeps (Δ(199)Hg = +0.09±0.03; n=7, 1SD) and background sites (Δ(199)Hg=+0.07±0.02; n=5, 1SD). This suggests that releases of hydrocarbons at the cold seep do not significantly alter Hg levels, and that cold seeps are likely not major sources of MMHg to nGoM waters.

  6. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  7. EDTA and urease effects on Hg accumulation by Lepidium sativum.

    PubMed

    Smolińska, Beata; Cedzyńska, Krystyna

    2007-11-01

    The phytoextraction process was conducted under laboratory conditions with the use of garden cress plants (Lepidium sativum). The experiment was carried out in a model soil, which was characterized before conducting the process. Inorganic forms of mercury (HgCl(2), HgSO(4), Hg(NO(3))(2)) were used for contamination of the soil. The phytoextraction process was conducted after EDTA application to the soil and after urease application. Also the influence of simultaneous addition of ethylenediaminetetraacetic acid (EDTA) and urease into the soil on phytoextraction process was measured. In all variants of phytoextraction process the total mercury concentrations in roots, stems and leaves of garden cress were determined. The result showed that garden cress accumulated mercury from soil. The overall maximum concentration of mercury in its compounds was found in roots of the plant. In all cases, before addition of urease and EDTA, the translocation process and distribution of mercury in the plant tissues were limited. The addition of urease caused an increase of enzyme activity in the soil and at the same time caused an increase of mercury concentration in plant tissues. Application of EDTA increased solubility of mercury and caused an increase of metal accumulation by plants. After simultaneous addition of EDTA and urease into the soil garden cress accumulated about 20% of total mercury concentration in the soil. Most of mercury compounds were accumulated in leaves and stems of the plants (46.0-56.9% of total mercury concentration in the plant tissues).

  8. Collective and quasiparticle excitations in superdeformed {sup 190}Hg

    SciTech Connect

    Wilson, A.N.; Timar, J.; Sharpey-Schafer, J.F.; Crowell, B.; Carpenter, M.P.; Janssens, R.V.; Blumenthal, D.J.; Ahmad, I.; Astier, A.; Azaiez, F.; Bergstroem, M.; Ducroux, L.; Gall, B.J.; Hannachi, F.; Khoo, T.L.; Korichi, A.; Lauritsen, T.; Lopez-Martens, A.; Meyer, M.; Nisius, D.; Paul, E.S.; Porquet, M.G.; Redon, N.; Wilson, J.N.; Nakatsukasa, T. ||||||

    1996-08-01

    Superdeformed (SD) states of {sup 190}Hg have been studied with the Eurogam Phase 2 {gamma}-ray spectrometer using the {sup 160}Gd({sup 34}S,4{ital n}) reaction. Two new excited SD bands have been found and identified as belonging to this nucleus, bringing the total number of SD bands in {sup 190}Hg to 4. One of the new bands has a dynamic moment of inertia that is very similar to that of the yrast SD band of {sup 190}Hg and most other SD bands in the {ital A}{approximately}190 region. In contrast, the other band has a dynamic moment of inertia which is mainly constant as a function of rotational frequency and exhibits a dramatic increase at the lowest frequencies. The observed dynamic moments of inertia are compared with the results of random phase approximation calculations based on the cranked shell model. Finally, the known excited SD band has been extended towards lower frequencies and new transitions have been found linking this band to the yrast SD band. The extracted {ital B}({ital E}1) values of the new linking transitions give further support for the possible octupole vibrational character of this band. {copyright} {ital 1996 The American Physical Society.}

  9. Collective and quasiparticle excitations in superformed Hg-190.

    SciTech Connect

    Wilson, A. N.; Timar, J.; Sharpey-Schafer, J. F.; Crowell, B.; Carpenter, M. P.; Janssens, R. V. F.; Blumenthal, D. J.; Ahmad, I.; Astier, A.; Azaiez, F.; Bergstrom, M.; Ducroux, L.; Gall, B. J. P.; Hannachi, F.; Khoo, T. L.; Korichi, A.; Lauritsen, T.; Lopez-Martens, A.; Meyer, M.; Nisius, D.; Paul, E. S.; Porquet, M. G.; Redon, N.; Wilson, J. N.; Nakatsukasa, T.; Physics; Univ. of Liverpool; Univ. of Liverpool; Centre de Recherches Nucleaires; Inst. de Physique Nucleaire Lyon; I.P.N.; Inst. of Physique Nucleaire Lyon; C.S.N.S.M.; AECL

    1996-08-01

    Superdeformed (SD) states of {sup 190}Hg have been studied with the Eurogam Phase 2 {gamma}-ray spectrometer using the {sup 160}Gd({sup 34}S,4n) reaction. Two new excited SD bands have been found and identified as belonging to this nucleus, bringing the total number of SD bands in {sup 190}Hg to 4. One of the new bands has a dynamic moment of inertia that is very similar to that of the yrast SD band of {sup 190}Hg and most other SD bands in the A{approx}190 region. In contrast, the other band has a dynamic moment of inertia which is mainly constant as a function of rotational frequency and exhibits a dramatic increase at the lowest frequencies. The observed dynamic moments of inertia are compared with the results of random phase approximation calculations based on the cranked shell model. Finally, the known excited SD band has been extended towards lower frequencies and new transitions have been found linking this band to the yrast SD band. The extracted B(E1) values of the new linking transitions give further support for the possible octupole vibrational character of this band.

  10. Massless Dirac fermions in semimetal HgCdTe

    NASA Astrophysics Data System (ADS)

    Marchewka, M.; Grendysa, J.; Żak, D.; Tomaka, G.; Śliż, P.; Sheregii, E. M.

    2017-01-01

    Magneto-transport results obtained for the strained 100 nm thick Hg1-x CdxTe (x=0.135) layer grown by MBE on the CdTe/GaAs substrate are interpreted by the 8×8 kp model with the in-plane tensile strain. The dispersion relation for the investigated structure proves that the Dirac point is located in the gap caused by the strain. It is also shown that the fan of the Landau Levels (LL's) energy calculated for topological protected surface states for the studied HgCdTe alloy corresponds to the fan of the LL's calculated using the graphen-like Hamiltonian which gives excellent agreement with the experimental data for velocity on the Fermi level equal to vf ≈ 0.85×106 m/s. That characterized strained Hg1-x CdxTe layers (0.13 < x < 0.14) are a perfect Topological Insulator with good perspectives of further applications.

  11. HgCdTe APDs for free space optical communications

    NASA Astrophysics Data System (ADS)

    Rothman, J.; Lasfargues, G.; Abergel, J.

    2015-10-01

    HgCdTe avalanche photodiode single element detectors have been developed for a large scope of photon starved applications. The present communication is dedicated to use of these detectors for free space optical communications. In this perspective we present and discuss the sensitivity and bandwidth that has been measured directly on HgCdTe APDs and on detector modules. In particular, we report on the performance of TEC cooled large area detectors with sensitive diameters ranging from 30- 200 μm, characterised by detector gains of 2- 20 V/μW and noise equivalent input power of 0.1-1 nW for bandwidths ranging from 20 to 400 MHz. One of these detectors has been used during the lunar laser communication demonstration (LLCD) and the results The perspectives for high data rate transmission is estimated from the results of impulse response measurements on HgCdTe APDs. These results indicate that bandwidths close to 10 GHz can be achieved in these devices. The associated sensitivity at an APD gain of 100 is estimated to be below 4 photons rms (NEP<10 nW) for APDs operated at 300 K.

  12. Assembly and Study of Different Mercury Cells with Known Impurity Content and Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Del Campo, D.; Chimenti, V.; Reyes, J.; Castrillón, J. A. Rodríguez; Moldovan, M.; Alonso, J. I. García

    2008-02-01

    The “Centro Español de Metrología” is carrying out a project to improve the knowledge of the influence of impurities and isotopic composition on the temperature of the mercury triple point. High-purity mercury from the Almaden mine (stated purity of 99.9998%) was further purified by vacuum distillation. Three mercury fractions, the original mercury from Almaden and two distilled fractions, were characterized in terms of both impurities and isotopic composition and used to measure the mercury triple point. The original mercury sample contained silver at 560 ng · g-1 as the main impurity while the impurity levels were much lower (silver < 1 ng · g-1) in the two distilled fractions. The isotopic composition of the distilled fractions showed delta values, expressed as 1,000×(^{198/202}Hg_sample-^{198/202} Hg_reference)/^{198/202}Hg_reference, of 1.37±0.07 (1 σ) for the first distilled sample and -1.55±0.03 (1 σ) for the second distilled sample with reference to the original Almaden mercury. For the measurement of the mercury triple point, an alcohol stirred bath was used that allowed two cells to be compared nearly simultaneously. It was observed that the presence of the silver impurities in the high-purity mercury modified slightly the mercury triple point while the effect of variations in the isotopic composition can be considered negligible.

  13. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  14. Determination of Mercury Content in a Shallow Firn Core from Summit, Greenland by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mann, Jacqueline L.; Long, Stephen E.; Shuman, Christopher A.; Kelly, W. Robert

    2003-01-01

    The total mercury Hg content was determined in 6 cm sections of a near-surface 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58 N, 38.53 W) in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICPMS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched Hg-201 isotopic spike is added to approximately 10 ml melted core and thoroughly mixed. The Hg(+2) in the sample is reduced on line with tin (II) chloride (SnCl2) and the elemental Hg (Hg(0)) vapor pre-concentrated on to gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank corrected Hg concentrations determined for all samples ranged from 0.25 ng/L to 1.74 ng/L (ppt) (average 0.59 ng/L plus or minus 0.28 ng/L) and fall within the range of those previously determined by Boutron et al., 1998 (less than or equal to 0.05 ng/L to 2.0 ng/L) for the Summit site. The average blank value was 0.19 ng/L plus or minus 0.045 ng/L (n=6). The Hg values specifically for the firn core range from 0.25 ng/L to 0.87 ng/L (average 0.51 ng/L plus or minus 0.13 ng/L) and show both values declining with time and larger variability in concentration in the top 1.8 m.

  15. Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) by hydrolyzed acrylamide-grafted PET films.

    PubMed

    Rahman, Nazia; Sato, Nobuhiro; Sugiyama, Masaaki; Hidaka, Yoshiki; Okabe, Hirotaka; Hara, Kazuhiro

    2014-01-01

    Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) using hydrolyzed acrylamide (AAm)-grafted polyethylene terephthalate (PET) films was examined to explore the potential reuse of waste PET materials. Selective recovery of Hg(II) from a mixture of soft acids with similar structure, such as Hg(II) and Pb(II), is important to allow the reuse of recovered Hg(II). An adsorbent for selective Hg(II) adsorption was prepared by γ-ray-induced grafting of AAm onto PET films followed by partial hydrolysis through KOH treatment. The adsorption capacity of the AAm-grafted PET films for Hg(II) ions increased from 15 to 70 mg/g after partial hydrolysis because of the reduction of hydrogen bonding between -CONH2 groups and the corresponding improved access of metal ions to the amide groups. The prepared adsorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The absorbent film showed high selectivity for the adsorption of Hg(II) over Pb(II) throughout the entire initial metal concentration range (100-500 mg/L) and pH range (2.2-5.6) studied. The high selectivity is attributed to the ability of Hg(II) ions to form covalent bonds with the amide groups. The calculated selectivity coefficient for the adsorbent binding Hg(II) over Pb(II) was 19.2 at pH 4.5 with an initial metal concentration of 100 mg/L. Selective Hg(II) adsorption equilibrium data followed the Langmuir model and kinetic data were well fitted by a pseudo-second-order equation. The adsorbed Hg(II) and Pb(II) ions were effectively desorbed from the adsorbent film by acid treatment, and the regenerated film showed no marked loss of adsorption capacity upon reuse for selective Hg(II) adsorption.

  16. First Measurement of Several β -Delayed Neutron Emitting Isotopes Beyond N =126

    NASA Astrophysics Data System (ADS)

    Caballero-Folch, R.; Domingo-Pardo, C.; Agramunt, J.; Algora, A.; Ameil, F.; Arcones, A.; Ayyad, Y.; Benlliure, J.; Borzov, I. N.; Bowry, M.; Calviño, F.; Cano-Ott, D.; Cortés, G.; Davinson, T.; Dillmann, I.; Estrade, A.; Evdokimov, A.; Faestermann, T.; Farinon, F.; Galaviz, D.; García, A. R.; Geissel, H.; Gelletly, W.; Gernhäuser, R.; Gómez-Hornillos, M. B.; Guerrero, C.; Heil, M.; Hinke, C.; Knöbel, R.; Kojouharov, I.; Kurcewicz, J.; Kurz, N.; Litvinov, Yu. A.; Maier, L.; Marganiec, J.; Marketin, T.; Marta, M.; Martínez, T.; Martínez-Pinedo, G.; Montes, F.; Mukha, I.; Napoli, D. R.; Nociforo, C.; Paradela, C.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Rice, S.; Riego, A.; Rubio, B.; Schaffner, H.; Scheidenberger, Ch.; Smith, K.; Sokol, E.; Steiger, K.; Sun, B.; Taín, J. L.; Takechi, M.; Testov, D.; Weick, H.; Wilson, E.; Winfield, J. S.; Wood, R.; Woods, P.; Yeremin, A.

    2016-07-01

    The β -delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β -decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N ≳126 . These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β -decay strength distribution. This provides important constraints on global theoretical models currently used in r -process nucleosynthesis.

  17. Unusual speciation and retention of Hg at a coal-fired power plant.

    PubMed

    Córdoba, Patricia; Maroto-Valer, M; Ayora, Carlos; Perry, Ron; Rallo, Manuela; Font, Oriol; Izquierdo, Maria; Querol, Xavier

    2012-07-17

    An unusual and different speciation of Hg in the outgoing gaseous stream of the flue gas desulfurization (OUT-FGD) system was revealed at two Spanish power plants (PP1 and PP2) equipped with a forced oxidation wet FGD system with water recirculation to the scrubber. At PP1 and PP2, a high proportion of Hg escapes from the electrostatic precipitator in gaseous form, Hg(2+) (75-86%) being the species that enters the FGD. At PP1 Hg(0) (71%) was the prevalent Hg OUT-FGD species, whereas at PP2 Hg(2+) was the prevalent Hg OUT-FGD species in 2007 (66%) and 2008 (87%). The unusual speciation of gaseous Hg OUT-FGD and the different Hg retentions between 2007 and 2008 at PP2 were attributable to the evaporation of HgCl(2) particles from the aqueous phase of gypsum slurry in the OUT-FGD gas and the Al additive used at PP2, respectively. The Al additive induced the retention of Hg as HgS in the 2007 FGD gypsum, thus reducing gaseous emissions of Hg in the OUT-FGD gas.

  18. Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors.

    PubMed

    Wo, Jingjing; Zhang, Meng; Cheng, Xiaoya; Zhong, Xiaohang; Xu, Jiang; Xu, Xinhua

    2009-12-30

    In this study, considering that Hg(2+) in wet flue gas desulfurization (FGD) systems can easily be reduced and then released into atmosphere, causing secondary pollution, the researches about Hg(2+) reduction and Hg(0) re-emission mechanism were carried out. The effects of several experimental parameters on the reduction were studied, including initial pH, temperature, and concentrations of Cl(-) and S(IV). Our experimental results indicated that Cl(-) had a restraining effect on the Hg(2+) reduction and Hg(0) re-emission, after 24h reaction, only 20.5% of Hg(2+) was reduced with 100mM Cl(-) in simulated desulfurization solution. Cl(-) can slow Hg(2+) reduction and Hg(0) re-emissions dramatically through changing reaction mechanism, with formation of new intermediate: ClHgSO(3)(-), which can decompose to Hg(0), but much more slowly than Hg(SO(3))(2)(2-) or HgSO(3). Simulating the conditions of the practical application (initial pH 5, T=50 degrees C, S(IV)=5 mM, Cl(-)=100 mM), we also found that Ca(2+), NO(3)(-), F(-), etc. all had obvious effects on reduction rates. Based on the material balance and characteristic of the reactants, the reduction emission mechanism of Hg(2+) has been established, providing theoretical basis for industrial application of mercury control in wet FGD systems.

  19. Maternal-fetal distribution of mercury ( sup 203 Hg) released from dental amalgam fillings

    SciTech Connect

    Vimy, M.J.; Takahashi, Y.; Lorscheider, F.L. )

    1990-04-01

    In humans, the continuous release of Hg vapor from dental amalgam tooth restorations is markedly increased for prolonged periods after chewing. The present study establishes a time-course distribution for amalgam Hg in body tissues of adult and fetal sheep. Under general anesthesia, five pregnant ewes had twelve occlusal amalgam fillings containing radioactive 203Hg placed in teeth at 112 days gestation. Blood, amniotic fluid, feces, and urine specimens were collected at 1- to 3-day intervals for 16 days. From days 16-140 after amalgam placement (16-41 days for fetal lambs), tissue specimens were analyzed for radioactivity, and total Hg concentrations were calculated. Results demonstrate that Hg from dental amalgam will appear in maternal and fetal blood and amniotic fluid within 2 days after placement of amalgam tooth restorations. Excretion of some of this Hg will also commence within 2 days. All tissues examined displayed Hg accumulation. Highest concentrations of Hg from amalgam in the adult occurred in kidney and liver, whereas in the fetus the highest amalgam Hg concentrations appeared in liver and pituitary gland. The placenta progressively concentrated Hg as gestation advanced to term, and milk concentration of amalgam Hg postpartum provides a potential source of Hg exposure to the newborn. It is concluded that accumulation of amalgam Hg progresses in maternal and fetal tissues to a steady state with advancing gestation and is maintained. Dental amalgam usage as a tooth restorative material in pregnant women and children should be reconsidered.

  20. Shape-coexisting rotation in neutron-deficient Hg and Pb nuclei

    NASA Astrophysics Data System (ADS)

    Jiao, C. F.; Shi, Yue; Liu, H. L.; Xu, F. R.; Walker, P. M.

    2015-03-01

    For a shape-soft nucleus, the deformation change with increasing angular momentum of rotation can be significant. Total-Routhian-surface (TRS) calculations include the shape changes, but angular momentum is not conserved (neither is it a good quantum number, nor is it kept unchanged in the whole TRS mesh). In the projected shell model (PSM), the angular momentum appears as a good quantum number, but calculations have usually been performed with fixed deformation. In the present work, by performing angular-momentum projection on the mean-field potential-energy surface (PES), we can obtain an angular-momentum-conserved PES which gives deformation for a rotational state at a given spin. In order to investigate the shape-changing effect, we have chosen neutron-deficient Hg and Pb isotopes in which shape coexistence occurs. We interpret the irregular rotational behavior of the oblate bands at low spin as arising from deformation changes which are induced by collective rotation. At higher spin, the oblate rotational spectrum can also be influenced by the crossing between the K =0 ground-state band and a low-K two-quasineutron band. Calculated g factors for the states of oblate bands are given for future experimental testing, and the intrinsic structures of high-K oblate states are investigated.

  1. Isotopic Variations of Mercury Emitted by Coal Fired Power Plant Gases

    NASA Astrophysics Data System (ADS)

    Khawaja, S. N.; Odom, L.; Landing, W.

    2010-12-01

    Emission of mercury from the burning of coal is considered one of the important anthropogenic sources of atmospheric mercury. Along with current measurements of the isotopic composition of atmospheric mercury being conducted in our laboratory, we have analyzed mercury emitted from a coal fired power plant. Previously Biswas and others (2008) had reported variations in the isotopic composition of mercury in a number of samples of coal deposits. Since the combustion of coal is expected to release virtually all of its mercury, we anticipated comparable isotopc patterns in coal and total emmited mercury. The emitted mercury exists in various physical and chemical forms, each possessing distinct properties that affect atmospheric transport, and sampling methods. Flue gas has been sampled in the stack of a coal fired electric power plant. The Ontario Hydro method was used to trap mercury in flue gases. The method uses oxidant solutions (KCl, H2O2-HNO3 and KMnO4-H2SO4) in its sampling train. This method is the modification of EPA method 29 with the use of KCl in the sampling train. Hg (II) is captured in the KCl impingers, while Hg (0) is captured in H2O2-HNO3 and KMnO4-H2SO4 impingers that oxidize elemental to Hg (ll) (EPA Draft, 1999). In addition gaseous reactive mercury was sampled downwind in large volume rain samples. Mercury (Hg+2) in sample solutions was reduced with SnCl2, and the generated Hg(0) vapor carried by Ar gas into the source of a NEPTUNE ICPMS-MC. Isotope ratios were measured by standard-sample bracketing and reported as permil deviations from the SRM NIST-3133 values. The measurement shows a small range of values of odd isotopes for mass independent fractionation which is negligible, However it displays the wide range of mass dependent fractionation (δ198 Hg -1.239 to 2.294). We found that samples in KCl impingers are light isotope enriched and depleted in heavy isotopes, while in KMnO4 impingers these are reverse.

  2. Experimental evidence for the third level (А+) of Hg vacancy in Hg1-xCdxTe

    NASA Astrophysics Data System (ADS)

    Shepelskii, G. A.; Strikha, M. V.; Gassan-zade, S. G.

    2012-11-01

    Mercury vacancy in Hg1-xCdxTe is not a two-level (as it was supposed until now), but a three-level acceptor. A third, most shallow (1-1.5 meV) level (А+ state) appears due to a capture of a third hole by a neutral acceptor, after the two deeper vacancy levels (A- and А0 states) are already occupied by holes. Due to a capture of nonequilibrium holes by neutral mercury vacancies (under radiation) a positive space charge region arises near an irradiated surface. This causes the anomalies of photoelectromagnetic effect, observed in р-Hg1-xCdxTe at T < 10-12 K.

  3. Phase diagrams and microscopic structures of (Hg,Cd)Te, (Hg,Zn)Te, and (Cd,Zn)Te alloys

    NASA Technical Reports Server (NTRS)

    Patrick, R. S.; Chen, A.-B.; Sher, A.; Berding, M. A.

    1988-01-01

    A cluster theory based on the quasi-chemical approximation has been applied to study the local correlation bond-length distribution, and phase diagrams of the II-VI pseudobinary alloys Hg(1 - x)Cd(x)Te, Hg(1 - x)Zn(x)Te, and Cd(1 - x)Zn(x)Te. The cluster energy is calculated by letting it relax in some effective alloy medium and then considering the contributions from the strain and chemical energies. Two different models are presented to simulate the alloy medium. While both models show that all three alloys have nearly random distributions, the signs of the local correlation prove to be sensitive to the alloy medium chosen for the energy calculation. Good agreement is found between experiment and the bond lengths and phase diagrams in both models.

  4. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  5. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  6. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  7. On-line method of determining utilization factor in Hg-196 photochemical separation process

    DOEpatents

    Grossman, Mark W.; Moskowitz, Philip E.

    1992-01-01

    The present invention is directed to a method for determining the utilization factor [U] in a photochemical mercury enrichment process (.sup.196 Hg) by measuring relative .sup.196 Hg densities using absorption spectroscopy.

  8. Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2014-04-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.

  9. Trophic dynamics of U, Ni, Hg and other contaminants of potential concern on the Department of Energy's Savannah River Site.

    PubMed

    Edwards, Paul G; Gaines, Karen F; Bryan, A Lawrence; Novak, James M; Blas, Susan A

    2014-01-01

    The Department of Energy's Savannah River Site is a former nuclear weapon material production and current research facility located in South Carolina, USA. Wastewater discharges from a fuel and nuclear reactor target manufacturing facility released depleted and natural U, as well as other metals into the Tims Branch-Steed Pond water system. We investigated the current dynamics of this system for the purposes of environmental monitoring and assessment by examining metal concentrations, bioavailability, and trophic transfer of contaminants in seven ponds. Biofilm, detritus, and Anuran and Anisopteran larvae were collected and analyzed for stable isotopes (δ (15)N, δ (13)C) and contaminants of potential concern (COPC) with a focus on Ni, U, and Hg, to examine metal mobility. Highest levels of Ni and U were found in biofilms U (147 and 332 mg kg(-1) DW, respectively), while highest Hg levels were found in tadpoles (1.1 mg kg(-1) DW). We found intraspecific biomagnification of COPCs as expressed through stable isotope analysis. Biofilms were the best indicators for contamination and Anuran larvae with the digestive tract removed were the best indicators of the specific bioavailability of the focal metals. Monitoring data showed that baseline δ (15)N values differed between ponds, but within a pond, values were stable throughout tadpole Gosner stage, strengthening the case to use this species for monitoring purposes. It is likely that there still is risk to ecosystem integrity as COPC metals are being assimilated into lower trophic organisms and even low levels of this mixture has shown to produce deleterious effects to some wildlife species.

  10. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    DOEpatents

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  11. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    DOEpatents

    Grossman, Mark W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  12. Fertilizer nitrogen isotope signatures.

    PubMed

    Bateman, Alison S; Kelly, Simon D

    2007-09-01

    There has been considerable recent interest in the potential application of nitrogen isotope analysis in discriminating between organically and conventionally grown crops. A prerequisite of this approach is that there is a difference in the nitrogen isotope compositions of the fertilizers used in organic and conventional agriculture. We report new measurements of delta15N values for synthetic nitrogen fertilizers and present a compilation of the new data with existing literature nitrogen isotope data. Nitrogen isotope values for fertilizers that may be permitted in organic cultivation systems are also reported (manures, composts, bloodmeal, bonemeal, hoof and horn, fishmeal and seaweed based fertilizers). The delta15N values of the synthetic fertilizers in the compiled dataset fall within a narrow range close to 0 per thousand with 80% of samples lying between-2 and 2 per thousand and 98.5% of the data having delta15N values of less than 4 per thousand (mean=0.2 per thousand n=153). The fertilizers that may be permitted in organic systems have a higher mean delta15N value of 8.5 per thousand and exhibit a broader range in delta15N values from 0.6 to 36.7 per thousand (n=83). The possible application of the nitrogen isotope approach in discriminating between organically and conventionally grown crops is discussed in light of the fertilizer data presented here and with regard to other factors that are also important in determining crop nitrogen isotope values.

  13. Sensitive naked-eye detection of Hg2+ based on the aggregation and filtration of thymine functionalized vesicles caused by selective interaction between thymine and Hg2+.

    PubMed

    Ma, Xue; Sheng, Zhonghan; Jiang, Long

    2014-07-07

    We report a sensitive, selective and low-cost method for the naked-eye detection of Hg(2+). The principle is based on rapid interaction between functionalized PDA vesicles and Hg(2+), which leads to obvious aggregation of vesicles. Furthermore, using only a simple filtration process, without using any other color indicator or specialized equipment, a higher detection sensitivity for Hg(2+) (0.1 μM) than chromophoric colorimetric sensors (approximately 1-100 μM) was obtained.

  14. Impacts of forest harvesting on mobilization of Hg and MeHg in drained peatland forests on black schist or felsic bedrock.

    PubMed

    Ukonmaanaho, Liisa; Starr, Mike; Kantola, Marjatta; Laurén, Ari; Piispanen, Juha; Pietilä, Heidi; Perämäki, Paavo; Merilä, Päivi; Fritze, Hannu; Tuomivirta, Tero; Heikkinen, Juha; Mäkinen, Jari; Nieminen, Tiina M

    2016-04-01

    Forest harvesting, especially when intensified harvesting method as whole-tree harvesting with stump lifting (WTHs) are used, may increase mercury (Hg) and methylmercury (MeHg) leaching to recipient water courses. The effect can be enhanced if the underlying bedrock and overburden soil contain Hg. The impact of stem-only harvesting (SOH) and WTHs on the concentrations of Hg and MeHg as well as several other variables in the ditch water was studied using a paired catchment approach in eight drained peatland-dominated catchments in Finland (2008-2012). Four of the catchments were on felsic bedrock and four on black schist bedrock containing heavy metals. Although both Hg and MeHg concentrations increased after harvesting in all treated sites according to the randomized intervention analyses (RIAs), there was only a weak indication of a harvest-induced mobilization of Hg and MeHg into the ditches. Furthermore, no clear differences between WTHs and SOH were found, although MeHg showed a nearly significant difference (p = 0.06) between the harvesting regimes. However, there was a clear bedrock effect, since the MeHg concentrations in the ditch water were higher at catchments on black schist than at those on felsic bedrock. The pH, suspended solid matter (SSM), dissolved organic carbon (DOC), and iron (Fe) concentrations increased after harvest while the sulfate (SO4-S) concentration decreased. The highest abundances of sulfate-reducing bacteria (SRB) were found on the sites with high MeHg concentrations. The biggest changes in ditch water concentrations occurred first 2 years after harvesting.

  15. Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues

    SciTech Connect

    Baldi, Franco; Gallo, Michele; Marchetto, Davide; Faleri, Claudia; Maida, Isabel; Fani, Renato

    2013-08-15

    A mechanism of mercury detoxification has been suggested by a previous study on Hg bioaccumulation in Manila clams (Ruditapes philippinarum) in the polluted Marano and Grado lagoons and in this study we demonstrate that this event could be partly related to the detoxifying activities of Hg-resistant bacteria (MRB) harbored in clam soft tissues. Therefore, natural clams were collected in six stations during two different periods (winter and spring) from Marano and Grado Lagoons. Siphons, gills and hepatopancreas from acclimatized clams were sterile dissected to isolate MRB. These anatomical parts were glass homogenized or used for whole, and they were lying on a solid medium containing 5 mg l{sup −1} HgCl{sub 2} and incubated at 30 °C. A total of fourteen bacterial strains were isolated and were identified by 16S rDNA sequencing and analysis, revealing that strains were representative of eight bacterial genera, four of which were Gram-positive (Enterococcus, Bacillus, Jeotgalicoccus and Staphylococcus) and other four were Gram-negative (Stenotrophomonas, Vibrio, Raoultella and Enterobacter). Plasmids and merA genes were found and their sequences determined. Fluorescence in situ hybridization (FISH) technique shows the presence of Firmicutes, Actinobacteria and Gammaproteobacteria by using different molecular probes in siphon and gills. Bacterial clumps inside clam flesh were observed and even a Gram-negative endosymbiont was disclosed by transmission electronic microscope inside clam cells. Bacteria harbored in cavities of soft tissue have mercury detoxifying activity. This feature was confirmed by the determination of mercuric reductase in glass-homogenized siphons and gills. -- Highlights: ► We isolated Gram-positive and Gram-negative Hg resistant strains from soft tissues of Ruditapes philippinarum. ► We identify 14 mercury resistant strains by 16S rRNA gene sequences. ► Bacteria in siphon and gill tissues of clams were observed by TEM and identified

  16. Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes

    NASA Astrophysics Data System (ADS)

    Mao, Xianglei; Bol'shakov, Alexander A.; Choi, Inhee; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman; Russo, Richard E.

    2011-11-01

    The experimental details are reported of Laser Ablation Molecular Isotopic Spectrometry (LAMIS) and its application for performing optical isotopic analysis of solid strontium-containing samples in ambient atmospheric air at normal pressure. The LAMIS detection method is described for strontium isotopes from samples of various chemical and isotopic compositions. The results demonstrate spectrally resolved measurements of the three individual 86Sr, 87Sr, and 88Sr isotopes that are quantified using multivariate calibration of spectra. The observed isotopic shifts are consistent with those calculated theoretically. The measured spectra of diatomic oxide and halides of strontium generated in laser ablation plasmas demonstrate the isotopic resolution and capability of LAMIS. In particular, emission spectra of SrO and SrF molecular radicals provided clean and well resolved spectral signatures for the naturally occurring strontium isotopes. A possibility is discussed of using LAMIS of strontium isotopes for radiogenic age determination.

  17. STATUS OF EPA/DOE MOU TECHNICAL WORKGROUP ACTIVITIES: HG WASTE TREATMENT

    EPA Science Inventory

    EPA's Land Disposal Restrictions program currently has technology-specific treatment standards for hazardous wastes containing greater than or equal to 260ppm total mercury (Hg) (i.e., high Hg subcategory wastes). The treatment standards specify RMERC for high Hg subcategory wast...

  18. 40 CFR 60.4120 - General Hg budget trading program permit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false General Hg budget trading program... budget trading program permit requirements. (a) For each Hg Budget source required to have a title V operating permit, such permit shall include a Hg Budget permit administered by the permitting authority...

  19. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses.

    PubMed

    Bibi, Asma; Farooq, Umar; Naz, Sadia; Khan, Afsar; Khan, Sara; Sarwar, Rizwana; Mahmood, Qaisar; Alam, Arif; Mirza, Nosheen

    2016-01-01

    The effect of mercury (Hg) on the growth and survival of parsley (Petroselinum crispum) was explored at various treatments. The plants were grown in pots having Hoagland's solution to which various Hg treatments were applied and placed under greenhouse conditions. The treatments were: no metal applied (control) and six doses of Hg as mercuric chloride for 15 days. Linear trend of Hg accumulation was noted in roots, stems, and leaves with increasing Hg treatments. The maximum Hg concentration in root, stem and leaf was 8.92, 8.27, and 7.88 at Hg treatments of 25 mg l(-1), respectively. On the whole, Hg accumulation in different plant parts was in the following order: leaves > stem > roots. Linear trend was also observed for Bioaccumulation Factor (BF) and Translocation Factor (TF) with increasing Hg concentrations in the growth medium. The highest respective BFHg and TFHg values were 9.32 and 2.02 for the Hg treatments of 25 and 50 mg l(-1). In spite of the reduced growth in the presence of Hg, the plant has phytoremediation potential. It is recommended that parsley should not be cultivated in Hg contaminated sites in order to avoid dietary toxicity.

  20. Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa.

    PubMed

    Liu, Bing; Wang, Chaogang; Liu, Danxia; He, Ning; Deng, Xu

    2017-01-01

    A pigmented yeast R1 with strong tolerance to Hg2+ was isolated. Phylogenetic identification based on the analysis of 26S rDNA and ITS revealed R1 is a Rhodotorula mucilaginosa species. R1 was able to grow in the presence of 80 mg/L Hg2+, but the lag phase was much prolonged compared to its growth in the absence of Hg2+. The maximum Hg2+ binding capacity of R1 was 69.9 mg/g, and dead cells could bind 15% more Hg2+ than living cells. Presence of organic substances drastically reduced bioavailability of Hg2+ and subsequently decreased Hg2+ removal ratio from aqueous solution, but this adverse effect could be remarkably alleviated by the simultaneous process of cell propagation and Hg2+ biouptake with actively growing R1. Furthermore, among the functional groups involved in Hg2+ binding, carboxyl group contributed the most, followed by amino & hydroxyl group and phosphate group. XPS analysis disclosed the mercury species bound on yeast cells was HgCl2 rather than HgO or Hg0.

  1. 48 CFR 752.231-71 - Salary supplements for HG employees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Salary supplements for HG....231-71 Salary supplements for HG employees. As prescribed in 731.205-71, for use in all contracts with... sub-contracts. Salary Supplements for HG Employees (OCT 1998) (a) Salary supplements are payments...

  2. 48 CFR 752.231-71 - Salary supplements for HG employees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Salary supplements for HG....231-71 Salary supplements for HG employees. As prescribed in 731.205-71, for use in all contracts with... sub-contracts. Salary Supplements for HG Employees (OCT 1998) (a) Salary supplements are payments...

  3. 48 CFR 752.231-71 - Salary supplements for HG employees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Salary supplements for HG....231-71 Salary supplements for HG employees. As prescribed in 731.205-71, for use in all contracts with... sub-contracts. Salary Supplements for HG Employees (OCT 1998) (a) Salary supplements are payments...

  4. 48 CFR 752.231-71 - Salary supplements for HG employees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Salary supplements for HG....231-71 Salary supplements for HG employees. As prescribed in 731.205-71, for use in all contracts with... sub-contracts. Salary Supplements for HG Employees (OCT 1998) (a) Salary supplements are payments...

  5. 48 CFR 752.231-71 - Salary supplements for HG employees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Salary supplements for HG....231-71 Salary supplements for HG employees. As prescribed in 731.205-71, for use in all contracts with... sub-contracts. Salary Supplements for HG Employees (OCT 1998) (a) Salary supplements are payments...

  6. Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa

    PubMed Central

    Liu, Bing; Wang, Chaogang; Liu, Danxia; He, Ning; Deng, Xu

    2017-01-01

    A pigmented yeast R1 with strong tolerance to Hg2+ was isolated. Phylogenetic identification based on the analysis of 26S rDNA and ITS revealed R1 is a Rhodotorula mucilaginosa species. R1 was able to grow in the presence of 80 mg/L Hg2+, but the lag phase was much prolonged compared to its growth in the absence of Hg2+. The maximum Hg2+ binding capacity of R1 was 69.9 mg/g, and dead cells could bind 15% more Hg2+ than living cells. Presence of organic substances drastically reduced bioavailability of Hg2+ and subsequently decreased Hg2+ removal ratio from aqueous solution, but this adverse effect could be remarkably alleviated by the simultaneous process of cell propagation and Hg2+ biouptake with actively growing R1. Furthermore, among the functional groups involved in Hg2+ binding, carboxyl group contributed the most, followed by amino & hydroxyl group and phosphate group. XPS analysis disclosed the mercury species bound on yeast cells was HgCl2 rather than HgO or Hg0. PMID:28253367

  7. Characteristics of Hg-resistant bacteria isolated from Minamata Bay sediment

    SciTech Connect

    Nakamura, K.; Fujisaki, T.; Tamashiro, H.

    1986-06-01

    Seventy-two strains of Hg-resistant bacteria (Pseudomonas) were isolated on agar plates containing 40 micrograms/ml of HgCl2 from Minamata Bay sediment, which was heavily polluted with mercury (45.8 micrograms/g). The minimal inhibitory concentrations (MICs) of mercurial compounds were determined for the Hg-resistant pseudomonads and 65 strains (Pseudomonas sp., Bacillus sp., Vibrio sp., and Corynebacterium sp.) isolated from Sendai Bay sediment (1 microgram/g of mercury) as control. The MICs to HgCl/sub 2/, CH/sub 3/HgCl, C/sub 2/H/sub 5/HgCl, C/sub 3/H/sub 7/HgCl, and C/sub 6/H/sub 5/HgOCOCH/sub 3/ for the Hg-resistant pseudomonads from Minamata Bay were significantly higher than those of strains from Sendai Bay. The volatilization from liquid culture containing 20 micrograms/ml of HgCl2 was observed in all of the Hg-resistant pseudomonads from Minamata Bay (70 strains). The mean loss of mercury from liquid culture was 60.4 +/- 17.3%. Further study is warranted to determine what role the Hg-resistant bacteria, particularly the Pseudomonas species, play in the mercury cycle in Minamata Bay.

  8. A solid-state 199Hg NMR study of mercury halides

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Bai, Shi; Dybowski, C.

    2011-02-01

    The principal elements of the 199Hg chemical-shift (CS) tensors of the mercuric halides (HgX 2, X = F, Cl, Br, and I) and the mercurous halides (Hg 2X 2, X = F and Cl) were determined from spectra of static polycrystalline powders and from magic-angle spinning (MAS) spectra. The CS tensors of both HgCl 2 and Hg 2Cl 2 are axially symmetric ( η = 0) within experimental error, differing from literature reports of η = 0.12 and η = 0.14, respectively. The principal elements of the axially symmetric CS tensor in HgBr 2 were also measured using a static sample, and the wideline spectra of HgF 2 and HgI 2 (red polymorph) give chemical-shift tensors that suggest, within experimental error, that the mercury sits in sites of cubic symmetry. The 199Hg CS tensor for Hg 2F 2 is asymmetric. Experiments with static polycrystalline samples may allow the determination of the elements of the 199Hg CS tensors even when MAS fails to completely average the dipolar coupling of the spin-½ 199Hg and the quadrupolar halide nucleus.

  9. Dimercaptopropane Sulfonate Chelation Affects In Vivo Hg and MeHg Distribution in Tissues and Urine of Prairie Voles (Microtus ochrogaster).

    PubMed

    Cobb, G P; Moore, A W; Rummel, K T; McMurry, S T

    2015-12-01

    Methyl mercury cation (MeHg(+)) and divalent mercury (Hg(2+)) were quantified in urine, liver, kidney, and brain of prairie voles (Microtus ochrogaster) during a 12 week exposure to aqueous MeHg(+) at concentrations of 10, 100, and 1000 ng MeHg(+)/mL. Aqueous MeHg(+) exposures increased mercury accumulation in tissues of voles from each exposure group. Accumulation was greater within the higher two exposure groups. Similar [Hg(2+)] and [MeHg(+)] were determined within a given organ type before and after 2,3-dimercapto-1-propane sulfonate (DMPS) chelation. Similar correlations were seen for Hg(2+) and MeHg(+) concentrations in pre and post chelation urine. Post chelation urine more reliably predicted mercury species concentrations in tissues than did urine collected before chelation. These data demonstrate the utility of DMPS in noninvasive assessment of wildlife exposure to mercury, which may have utility in evaluating meta-population level exposure to hazardous wastes.

  10. Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg(2+)-thymine base pairs for Hg(2+) detection.

    PubMed

    Zeng, Guangming; Zhang, Chen; Huang, Danlian; Lai, Cui; Tang, Lin; Zhou, Yaoyu; Xu, Piao; Wang, Hou; Qin, Lei; Cheng, Min

    2017-04-15

    A simple, practical and reusable electrochemical aptasensor, based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and nanoporous gold (NPG) for signal amplification, was designed for sensitive and selective detection of mercury ions (Hg(2+)). The thiol modified T-rich hairpin capture probe was self-assembled onto the surface of the NPG modified electrode for hybridizing with ferrocene-labeled T-rich probe in the presence of Hg(2+) via T-Hg(2+)-T coordination chemistry. As a result, the hairpin capture probe was opened, and the ferrocene tags were close to the NPG modified electrode. Taking advantage of the amplification effect of NPG electrode for increasing the reaction sites of thiol modified capture probe, the proposed electrochemical aptasensor could detect Hg(2+) quantitatively in the range of 0.01-5000nM, with a detection limit as low as 0.0036nM which is much lower than the maximum contamination level for Hg(2+) in drinking water defined by the U.S. Environmental Protection Agency. Moreover, the proposed electrochemical aptasensor can be regenerated by adding cysteine and Mg(2+). The aptasensor was also used to detect Hg(2+) from real water samples, and the results showed excellent agreement with the values determined by atomic fluorescence spectrometer. This aptasensor showed a promising potential for on-site detecting Hg(2+) in drinking water.

  11. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

    SciTech Connect

    Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.; LaVoie, Stephen P.; Lipton, Mary S.; Summers, Anne O.; Miller, Susan M.

    2011-08-01

    The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate, we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.

  12. The new Hg-rich barium indium mercurides BaInxHg7-x (x=3.1) and BaInxHg11-x (x=0-2.8). Synthesis, crystal and electronic structure

    NASA Astrophysics Data System (ADS)

    Wendorff, Marco; Schwarz, Michael; Röhr, Caroline

    2013-07-01

    The title compounds BaInxHg7-x (x=3.1(1)) and BaInxHg11-x (x=0-2.8) were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures have been determined using single crystal X-ray data. BaInxHg7-x (x=3.1(1)) crystallizes in a new structure type (orthorhombic, oC16, space group Cmmm: a=512.02(1), b=1227.68(3), c=668.61(2) pm, Z=2, R1=0.0311). In the structure, the atoms of the three crystallographically different mixed In/Hg positions form planar nets of four-, six- and eight-membered rings. These nets are shifted against each other such that the four-membered rings form empty distorted cubes. The cubes are connected via common edges, corners and folded ladders, which are also found in BaIn2/BaHg2 (KHg2 structure type) and BaIn (α-NaHg type). The Ba atoms are centered in the eight-membered rings and exhibit an overall coordination number of 20. The [BaM20] polyhedra and twice as many distorted [M8] cubes tesselate the space. BaIn2.8Hg8.2 (cubic, cP36, space group Pm3barm, a=961.83(1) pm, Z=3, R1=0.0243) is the border compound of the phase width BaInxHg11-x of the rare BaHg11 structure type. In the structure, ideal [M8] cubes (at the corners of the unit cell) and BaM20 polyhedra (at the edges of the unit cell) represent the building blocks comparable to the other new In mercuride. In accordance with the increased In/Hg content, additional M-pure regions appear: the center of the unit cell contains a huge [Hg(1)M(2)12M(3,4)32] polyhedron, a Hg-centered cuboctahedron of In/Hg atoms surrounded by a capped cantellated cube of 32 additional M atoms. For both structure types, the bonding situation and the ‘coloring’, i.e. the In/Hg distribution of the polyanionic network, are discussed considering the different sizes of the atoms and the charge distribution (Bader AIM charges), which have been calculated within the framework of FP-LAPW density functional theory.

  13. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (<8 solar masses), and 18O coming primarily from high-mass stars (Prantzos et al., 1996). These differences in type of stellar source result in large observable variations in stellar isotopic abundances as functions of age, size, metallicity, and galactic location ( Prantzos

  14. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions.

    PubMed

    Chen, Wei-Ni; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A C

    2015-02-20

    A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL(-1) Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g(-1) for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.

  15. Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Schauble, Edwin A.

    2016-06-01

    Isotopic variations usually follow mass-dependent fractionation, meaning that the relative variations in isotopic ratios scale with the difference in mass of the isotopes involved (e.g., δ17O ≈ 0.5×δ18O). In detail, however, the mass dependence of isotopic variations is not always the same, and different natural processes can define distinct slopes in three-isotope diagrams. These variations are subtle, but improvements in analytical capabilities now allow precise measurement of these effects and make it possible to draw inferences about the natural processes that caused them (e.g., reaction kinetics versus equilibrium isotope exchange). Some elements, in some sample types, do not conform to the regularities of mass-dependent fractionation. Oxygen and sulfur display a rich phenomenology of mass-independent fractionation, documented in the laboratory, in the rock record, and in the modern atmosphere. Oxygen in meteorites shows isotopic variations that follow a slope-one line (δ17O ≈ δ18O) whose origin may be associated with CO photodissociation. Sulfur mass-independent fractionation in ancient sediments provides the tightest constraint on the oxygen partial pressure in the Archean and the timing of Earth's surface oxygenation. Heavier elements also show departures from mass fractionation that can be ascribed to exotic effects associated with chemical reactions such as magnetic effects (e.g., Hg) or the nuclear field shift effect (e.g., U or Tl). Some isotopic variations in meteorites and their constituents cannot be related to the terrestrial composition by any known process, including radiogenic, nucleogenic, and cosmogenic effects. Those variations have a nucleosynthetic origin, reflecting the fact that the products of stellar nucleosynthesis were not fully homogenized when the Solar System formed. Those anomalies are found at all scales, from nanometer-sized presolar grains to bulk terrestrial planets. They can be used to learn about stellar

  16. Apparatus for growing HgI.sub.2 crystals

    DOEpatents

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1978-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  17. Interface Chemistry of Hg(1-x)Cd(x)Te.

    DTIC Science & Technology

    1985-05-08

    8217.’ * . ." ’C . -2- Mercury- Cadmium -Telluride is probably the most studied ternary semiconductor in recent years because of its widespread application for...grown at McDonnell Douglas Research Laboratories using a modified Bridgman method. The bulk crystals exhibited a band gap of 0.175±0.01 eV and p-type...Sulphides, Selenides and Tellurides, Butterworths, London, 1974. Therefore, the formation of Cr-Te phases at the HgCdTe-Cr interface should be

  18. HgCdTe Surface and Defect Study Program.

    DTIC Science & Technology

    1983-07-01

    as "independent" entities as is the case (to the first approximation) with all other semiconductors studied to date. These results have given rise to...all cases but one (Prof. Walter Harrison’s invited paper on the theory of bonding in MCT) have been written up as full articles for the conference...properties. In the case of PhotoxT Si0 2 on HgCdTe, the inter- face state structure which is controlled by the details of the bonding at the interface

  19. Lattice-Matched HgZnTe Epitaxy Development.

    DTIC Science & Technology

    1988-04-01

    7 D- 193 6?? LATTICE- ATCHED HGZNTE EPITRXY DEVELOPMENT(U) MERCURY 1/1 UNCRSIFI3 ?? F33615-86-C-5185 AFWL-TR-S?-4133 Uw : AS ID F/C 20/2 NL...8217"., + ._ _ N A. AFWAL-TR-87-4133 QLATTICE-MATCHED HgZnTe EPITAXY DEVELOPMENT 0David G. Ryding Mercury L.P.E. Company, Inc. Pittsburg, PA 15238 April 1988...6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Mercury L.P.E. Company, Inc. (Ifapplicable) Air Force Wright

  20. MOS structures based on epitaxial HgCdTe layers

    SciTech Connect

    Antonov, V.V.; Belashov, Y.G.; Kazak, E.P.; Mezentseva, M.P.; Voitsekhovskii, A.V.

    1985-08-01

    The authors present the results of a study of the dependence of the surface photoelectromotive force at wavelengths of 3.39 and 10.6 micrometers on the field electrode for MOS structures prepared from epitaxial Hg /SUB 1-x/ Cd /SUB x/ Te layers (x=0.20-0.25). They analyze the nature of the inhomogeneities in the region near the surface of semiconducting samples prepared under various heat treatment conditions and present their findings in a series of three charts.

  1. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  2. HCN Producing Bacteria Enable Sensing Of Non-Bioavailable Hg Species by the Whole Cell Biosensor

    NASA Astrophysics Data System (ADS)

    Horvat, M.; Rijavec, T.; Koron, N.; Lapanje, A.

    2015-12-01

    Bacteria play an important role in Hg transformation reactions. The production of cyanide (HCN) and other secondary metabolites seems to be key elements involved in these transformations. Current hypotheses link the role of HCN production to growth inhibition of nonHCN producing competitor organisms (role of an antimicrobial agent). Our past investigations showed that HCN production did not correlate with antimicrobial activity and since pK value of HCN is very high (pK = 9,21), it can be expected that most of the produced HCN is removed from the microenvironment. This way, the expected inhibitory concentrations can hardly be reached. Accordingly, we proposed a new concept, where the ability of complexation of transient metals by HCN served as a regulation process for the accessibility of micro-elements. In our study, we focused on the presence of HCN producing bacteria and carried it out in the Hg contaminated environment connected to the Idrija Mercury Mine, Slovenia. We characterised the isolates according to the presence of Hg resistance (HgR), level of HCN production and genetic similarities. In laboratory setups, using our merR whole cell based biosensor, we determined the transformation of low bioavailable Hg0 and HgS forms into bioavailable Hg by these HCN producing bacteria. We observed that HgR strains producing HCN had the highest impact on increased Hg bioavailability. In the proposed ecological strategy HgR HCN producing bacteria increase their competitive edge over non-HgR competitors through the increase of Hg toxicity. Due to their activity, Hg is made available to other organisms as well and thus enters into the ecosystem. Finally, using some of the characteristics of bacteria (e.g. Hg resistance genetic elements), we developed a fully automated sensing approach, combining biosensorics and mechatronics, to measure the bioavailability of Hg in situ.

  3. Identification of proteins involved in Hg-Se antagonism in water hyacinth (Eichhornia crassipes).

    PubMed

    Pacheco, Pablo; Hanley, Traci; Figueroa, Julio A Landero

    2014-03-01

    Different studies have established the presence of a proteinaceus complex involved in Hg-Se agonism/antagonism in plants. In order to identify proteins involved in this mechanism, water hyacinth plants were divided into groups and supplemented with Hg, Se and a Hg-Se mixture. Proteins involved were identified through a screening separation by SEC-ICPMS followed by SAX-ICPMS and then peptide mapping of selected fractions by nanoLC-ESI-ITMS(2). Determination of total metal concentration showed that Se inhibits Hg translocation from roots to aerial compartments of the plant and that Se and Hg are antagonists to each other in terms of plant toxicity. In roots, stems and leaves Se was distributed mainly in two molecular mass fractions <670 kDa and ∼40 kDa, however, the proportion between these two fractions was inverted when Hg was co-administered. Hg throughout the plant was distributed in high and medium molecular mass compounds. Hg associated with molecules, ranging from <1.5 kDa to 15 kDa, was found in the root extract of Hg(ii) supplemented plants, but was absent in the root extract of Se(iv) and Hg(ii) supplemented plants. SAX showed that Hg and Se were mostly not associated with the same entity, since the complete overlapping of Hg and Se signals in all the peaks of SEC chromatograms was not observed. Changes in Se and Hg levels in water hyacinth were more evident in leaves in contrast to other compartments. Several proteins, possibly associated with either Se or Hg, were identified in roots, stems and leaves. Most of the identified proteins were associated with Hg and located in leaves, and these are associated specifically with chloroplast and mitochondria proteins, related to essential mechanisms in plants such as photosynthesis, carbon fixation and the electron transport chain.

  4. Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing

    DTIC Science & Technology

    2016-06-07

    REPORT Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Current growth methods of HgCdTe/Cd(Se...Z39.18 - Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing Report Title ABSTRACT Current growth methods of HgCdTe/Cd(Se)Te/Si by molecular... growth methods of HgCdTe/Cd(Se)Te/Si by molecular-beam epitaxy (MBE) result in a dislocation density of mid 106 cm2 to low 107 cm2. Although the exact

  5. Lifetime measurements of yrast and excited superdeformed bands in {sup 192,193}Hg

    SciTech Connect

    Busse, B.C.; Fallon, P.; Kruecken, R.; Asztalos, S.J.; Clark, R.M.; Deleplanque, M.A.; Diamond, R.M.; Lee, I.Y.; Macchiavelli, A.O.; MacLeod, R.W.; Schmid, G.; Stephens, F.S.; Vetter, K.; Ackermann, D.; Ahmad, I.; Blumenthal, D.J.; Carpenter, M.P.; Fischer, S.M.; Janssens, R.V.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Seweryniak, D.; Moore, E.F.; Hannachi, F.; Lopez-Martens, A.; Korichi, A.

    1998-03-01

    Quadrupole moments of the six known superdeformed (SD) bands of {sup 193}Hg and the yrast SD band of {sup 192}Hg have been determined by a Doppler-shift-attenuation-method measurement utilizing the gammasphere array. The quadrupole moments of all {sup 193}Hg SD bands were found to be similar, suggesting the active single-particle orbitals in the mass-190 region exhibit only small shape-driving effects. Additionally, there is evidence for an unexpected difference in the quadrupole moments of SD bands in {sup 192}Hg and {sup 193}Hg. {copyright} {ital 1998} {ital The American Physical Society}

  6. Differential lifetime measurements and identical superdeformed bands in {sup 192,194}Hg

    SciTech Connect

    Moore, E.F.; Amro, H.; Lauritsen, T.; Janssens, R.V.; Khoo, T.L.; Ackermann, D.; Ahmad, I.; Amro, H.; Blumenthal, D.; Carpenter, M.P.; Fischer, S.M.; Hackman, G.; Nisius, D.; Hannachi, F.; Lopez-Martens, A.; Korichi, A.; Asztalos, S.; Clark, R.M.; Deleplanque, M.A.; Diamond, R.M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Stephens, F.S.; Becker, J.A.; Bernstein, L.; Farris, L.P.; Henry, E.A.

    1997-05-01

    High-precision lifetime measurements have been performed in superdeformed (SD) bands of {sup 192,194}Hg with the Doppler-shift attenuation method. Intrinsic quadrupole moments Q{sub 0} were extracted for three SD bands in {sup 194}Hg and for the yrast SD band in {sup 192}Hg. Within experimental uncertainties, all four SD bands have equal Q{sub 0} values. These results provide constraints on differences in Q{sub 0} values between the {open_quotes}identical{close_quotes} SD bands {sup 194}Hg(3) and {sup 192}Hg(1). {copyright} {ital 1997} {ital The American Physical Society}

  7. Synthesis and growth of HgI{sub 2} nanocrystals in a glass matrix: Heat treatment

    SciTech Connect

    Condeles, J. F. E-mail: ricssilva@yahoo.com.br; Silva, R. S. E-mail: ricssilva@yahoo.com.br; Silva, A. C. A.; Dantas, N. O.

    2014-08-14

    Mercury iodide (HgI{sub 2}) nanocrystals (NCs) were successfully grown in a barium phosphate glass matrix synthesized by fusion. Growth control of HgI{sub 2} NCs was investigated by Atomic Force Microscopy (AFM), Optical Absorption (OA), Fluorescence (FL), and X-ray diffraction (XRD). AFM images reveal the formation of HgI{sub 2} nanocrystals in host glass matrix. HgI{sub 2} NCs growth was evidenced by an OA and FL band red-shift with increasing annealing time. XRD measurements revealed the β crystalline phase of the HgI{sub 2} nanocrystals.

  8. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  9. Characterization of Electronic Materials HgZnSe and HgZnTe Using Innovative and Conventional Techniques

    NASA Technical Reports Server (NTRS)

    Tanton, George; Kesmodel, Roy; Burden, Judy; Su, Ching-Hua; Cobb, Sharon D.; Lehoczky, S. L.

    2000-01-01

    HgZnSe and HgZnTe are electronic materials of interest for potential IR detector and focal plane array applications due to their improved strength and compositional stability over HgCdTe, but they are difficult to grow on Earth and to fully characterize. Conventional contact methods of characterization, such as Hall and van der Paw, although adequate for many situations are typically labor intensive and not entirely suitable where only very small samples are available. To adequately characterize and compare properties of electronic materials grown in low earth orbit with those grown on Earth, innovative techniques are needed that complement existing methods. This paper describes the implementation and test results of a unique non-contact method of characterizing uniformity, mobility, and carrier concentration together with results from conventional methods applied to HgZnSe and HgZnTe. The innovative method has advantages over conventional contact methods since it circumvents problems of possible contamination from alloying electrical contacts to a sample and also has the capability to map a sample. Non- destructive mapping, the determination of the carrier concentration and mobility at each place on a sample, provides a means to quantitatively compare, at high spatial resolution, effects of microgravity on electronic properties and uniformity of electronic materials grown in low-Earth orbit with Earth grown materials. The mapping technique described here uses a 1mm diameter polarized beam of radiation to probe the sample. Activation of a magnetic field, in which the sample is placed, causes the plane of polarization of the probe beam to rotate. This Faraday rotation is a function of the free carrier concentration and the band parameters of the material. Maps of carrier concentration, mobility, and transmission generated from measurements of the Faraday rotation angles over the temperature range from 300K to 77K will be presented. New information on band parameters

  10. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  11. Transportation of medical isotopes

    SciTech Connect

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  12. KEY COMPARISON: CCQM-K43: As, Hg, Pb, Se and methylmercury in salmon

    NASA Astrophysics Data System (ADS)

    Aregbe, Y.; Taylor, P. D. P.

    2006-01-01

    CCQM-K43 was organized as a follow-up key comparison to the previous pilot study on tuna fish. CCQM-K43 was an activity of the Inorganic Analysis Working Group (IAWG) of CCQM and was coordinated by the Joint Research Centre-Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) of the European Commission (EC). In CCQM-K43 the amount contents of As, Hg, Pb, Se and methylmercury (CH3Hg) in salmon (muscle and skin) were the measurands under investigation. Results were reported by 12 national metrology institutes (NMIs). During the CCQM-IAWG autumn meeting in Berlin, October 2005, it was agreed that in CCQM-K43 the KCRV is calculated as the mixture model median (MM-median) of all reported results. The reported results of the NMIs fall within a range of +/-5% for arsenic and of +/-2% for lead and mercury relative to the KCRV. For selenium the spread of all laboratories but one is +/-8%. Also, for methlymercury four of the five participating NMIs reported results within 4% deviation from the KCRV. The methods applied were isotope dilution mass spectrometry (IDMS) using sector field or quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS), external calibration using ICP-MS or atomic absorption spectrometry (AAS). Instrumental neutron activation analysis (INAA) and k0-neutron activation analysis (k0-NAA) were also used as analytical techniques. This report presents the participants' results in CCQM-K43 for all analytes under investigation. In Annex 1, the results with the KCRV, the equivalence statements and the results sorted according to analytical technique applied are presented. In Annex 2, the different approaches for methlymercury measurements are presented in more detail. In Annex 3, the questionnaire data are presented. Annex 4 compiles all the CCQM-K43 information documents. The pilot study CCQM-P39.1 was carried out in parallel to this key comparison for the same measurands in the same

  13. Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues.

    PubMed

    Baldi, Franco; Gallo, Michele; Marchetto, Davide; Faleri, Claudia; Maida, Isabel; Fani, Renato

    2013-08-01

    A mechanism of mercury detoxification has been suggested by a previous study on Hg bioaccumulation in Manila clams (Ruditapes philippinarum) in the polluted Marano and Grado lagoons and in this study we demonstrate that this event could be partly related to the detoxifying activities of Hg-resistant bacteria (MRB) harbored in clam soft tissues. Therefore, natural clams were collected in six stations during two different periods (winter and spring) from Marano and Grado Lagoons. Siphons, gills and hepatopancreas from acclimatized clams were sterile dissected to isolate MRB. These anatomical parts were glass homogenized or used for whole, and they were lying on a solid medium containing 5mgl(-1) HgCl2 and incubated at 30°C. A total of fourteen bacterial strains were isolated and were identified by 16S rDNA sequencing and analysis, revealing that strains were representative of eight bacterial genera, four of which were Gram-positive (Enterococcus, Bacillus, Jeotgalicoccus and Staphylococcus) and other four were Gram-negative (Stenotrophomonas, Vibrio, Raoultella and Enterobacter). Plasmids and merA genes were found and their sequences determined. Fluorescence in situ hybridization (FISH) technique shows the presence of Firmicutes, Actinobacteria and Gammaproteobacteria by using different molecular probes in siphon and gills. Bacterial clumps inside clam flesh were observed and even a Gram-negative endosymbiont was disclosed by transmission electronic microscope inside clam cells. Bacteria harbored in cavities of soft tissue have mercury detoxifying activity. This feature was confirmed by the determination of mercuric reductase in glass-homogenized siphons and gills.

  14. Certification of methylmercury in cod fish tissue certified reference material by species-specific isotope dilution mass spectrometric analysis.

    PubMed

    Inagaki, Kazumi; Kuroiwa, Takayoshi; Narukawa, Tomohiro; Yarita, Takashi; Takatsu, Akiko; Okamoto, Kensaku; Chiba, Koichi

    2008-07-01

    A new cod fish tissue certified reference material, NMIJ CRM 7402-a, for methylmercury analysis was certified by the National Metrological Institute of Japan in the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). Cod fish was collected from the sea close to Japan. The cod muscle was powdered by freeze-pulverization and was placed into 600 glass bottles (10 g each), which were sterilized with gamma-ray irradiation. The certification was carried out using species-specific isotope dilution gas chromatography inductively coupled plasma mass spectrometry (SSID-GC-ICPMS), where (202)Hg-enriched methylmercury (MeHg) was used as the spike compound. In order to avoid any possible analytical biases caused by nonquantitative extraction, degradation and/or formation of MeHg in sample preparations, two different extraction methods (KOH/methanol and HCl/methanol extractions) were performed, and one of these extraction methods utilized two different derivatization methods (ethylation and phenylation). A double ID method was adopted to minimize the uncertainty arising from the analyses. In order to ensure not only the reliability of the analytical results but also traceability to SI units, the standard solution of MeHg used for the reverse-ID was prepared from high-purity MeHg chloride and was carefully assayed as follows: the total mercury was determined by ID-ICPMS following aqua regia digestion, and the ratio of Hg as MeHg to the total Hg content was estimated by GC-ICPMS. The certified value given for MeHg is 0.58 +/- 0.02 mg kg(-1) as Hg.

  15. Thomson scattering on high pressure Hg discharge lamps

    NASA Astrophysics Data System (ADS)

    Zhu, X.; de Vries, N.; Kieft, E. R.; van der Mullen, J. J. A. M.; Haverlag, M.

    2005-06-01

    Thomson scattering (TS) experiments have been performed on high-pressure Hg discharge lamps. These lamps were filled with different amounts of Hg (15, 30, 50 and 70 mg) and were operating at different powers (150, 200 and 240 W) with a square-wave ballast. As in the previous studies (Zhu X et al 2004 J. Phys. D: Appl. Phys. 37 736-43) a triple grating spectrograph was used to suppress the false stray light and Rayleigh scattered photons. This set-up had to be modified for this special application. The collective TS spectra have been fitted using both a calibration using Raman scattering and a form fitting procedure. It was found that the electron temperature fluctuates around a certain value that seems rather constant in the central region. The value of electron temperature (Te) varies between 5500 and 7600 K in the central region (r <= 0.3 R). The spatial-averaged Te value increases with the lamp power. The electron density was found to be of the order of 1021 m-3 which is high at the centre and decreases as r increases. The ne value also increases with the lamp power. Moreover the results of TS are compared with those from x-ray absorption measurement. The comparison shows that the plasmas in such lamps are not in local thermal equilibrium in the sense that T_e\

  16. New features of superdeformed bands in {sup 194}Hg

    SciTech Connect

    Janssens, R.V.F.; Ahmad, I.; Carpenter, M.P.

    1995-08-01

    A striking difference between superdeformed (SD) nuclei near A = 190 and those in the other regions is the behavior of the dynamic moment of inertia (lm) with the rotational frequency h{omega}. While the (lm) patterns of the SD bands near A = 130 and A = 150 show pronounced variations, the majority of the SD bands near A = 190 display the same large, smooth increase of (lm) within the frequency range 0.15 < {h_bar}{omega} < 0.40 MeV. Current interpretations of this rise of (lm) within mean field theories invoke the gradual alignment of quasiparticles occupying high-N intruder orbitals in the presence of pair correlations. It is a direct consequence of these interpretations that, after the quasiparticle alignments take place, (lm) will exhibit a downturn with increasing {h_bar}{omega} toward the rigid-body value. Up to now, no downturn in (lm) for the SD bands in the A = 190 mass region was observed, raising some doubt as to our understanding of pair correlations and alignment effects at these large deformations. An experiment was carried out at the 88-Inch Cyclotron facility of the Lawrence Berkeley Laboratory where excited states in {sup 194}Hg were populated with the reaction {sup 150}Nd({sup 48}Ca,4n) {sup 194}Hg at a beam energy of 206 MeV. The gamma rays emitted in the reaction were detected with the Gammasphere detector array (32 detectors for this experiment).

  17. Contrasting Food Web Factor and Body Size Relationships with Hg and Se Concentrations in Marine Biota

    PubMed Central

    Karimi, Roxanne; Frisk, Michael; Fisher, Nicholas S.

    2013-01-01

    Marine fish and shellfish are primary sources of human exposure to mercury, a potentially toxic metal, and selenium, an essential element that may protect against mercury bioaccumulation and toxicity. Yet we lack a thorough understanding of Hg and Se patterns in common marine taxa, particularly those that are commercially important, and how food web and body size factors differ in their influence on Hg and Se patterns. We compared Hg and Se content among marine fish and invertebrate taxa collected from Long Island, NY, and examined associations between Hg, Se, body length, trophic level (measured by δ15N) and degree of pelagic feeding (measured by δ13C). Finfish, particularly shark, had high Hg content whereas bivalves generally had high Se content. Both taxonomic differences and variability were larger for Hg than Se, and Hg content explained most of the variation in Hg:Se molar ratios among taxa. Finally, Hg was more strongly associated with length and trophic level across taxa than Se, consistent with a greater degree of Hg bioaccumulation in the body over time, and biomagnification through the food web, respectively. Overall, our findings indicate distinct taxonomic and ecological Hg and Se patterns in commercially important marine biota, and these patterns have nutritional and toxicological implications for seafood-consuming wildlife and humans. PMID:24019976

  18. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  19. Biosorption of Hg(II) onto goethite with extracellular polymeric substances.

    PubMed

    Song, Wenjuan; Pan, Xiangliang; Mu, Shuyong; Zhang, Daoyong; Yang, Xue; Lee, Duu-Jong

    2014-05-01

    This study characterized the interactions of goethite, EPS from cyanobacterium Chroococcus sp. and Hg(II) using excitation emission matrix (EEM) spectra and adsorption isotherms. Three protein-like fluorescence peaks were noted to quench in the presence of Hg(II). The estimated conditional stability constant (logKa) and the binding constant (logKb) of the studied EPS-Hg(II) systems ranged 3.84-4.24 and 6.99-7.69, respectively. The proteins in EPS formed stable complex with Hg(II). The presence of proteins of Chroococcus sp. enhanced the adsorption capacity of Hg(II) on goethite; therefore, the goethite-EPS soil is a larger Hg(II) sink than goethite alone soil. Biosorption significantly affects the mobility of Hg(II) in goethite soils.

  20. No increased risk of psychological/behavioral disorders in siblings of women with hyperemesis gravidarum (HG) unless their mother had HG.

    PubMed

    Mullin, P M; Bray, A; Vu, V; Schoenberg-Paik, F; MacGibbon, K; Romero, R; Goodwin, T M; Fejzo, M S

    2012-10-01

    Hyperemesis gravidarum (HG), severe nausea and vomiting of pregnancy, is characterized by prolonged maternal stress, undernutrition and dehydration. Maternal stress and malnutrition of pregnancy are linked to poor neonatal outcome and associated with poor adult health, and we recently showed that in utero exposure to HG may lead to increased risks of psychological and behavioral disorders in the offspring. In addition, we have shown familial aggregation of HG, which is strong evidence for a genetic component to the disease. In this study, we compare the rates of psychological and behavioral disorders in 172 adults with and 101 adults without a sibling with HG. The rate of emotional/behavioral disorders is identical (15%) in both groups. The results suggest that the etiology of HG is not likely to include genetic factors associated with emotional and behavioral disorders. In addition, this study provides evidence that the increased incidence of psychological/behavioral disorders among offspring of women with HG is attributable to the HG pregnancy itself, rather than to confounding genetic factors linked to HG.

  1. Mercury concentrations in fish from forest harvesting and fire-impacted Canadian Boreal lakes compared using stable isotopes of nitrogen.

    PubMed

    Garcia, Edenise; Carignan, Richard

    2005-03-01

    Total mercury (Hg) concentration was determined in several piscivorous and nonpiscivorous species of fish from 38 drainage lakes with clear-cut, burnt, or undisturbed catchments located in the Canadian Boreal Shield. Mercury concentrations increased with increasing fish trophic position as estimated using stable isotopes of nitrogen (N; r2 = 0.52, 0.49, and 0.30 for cut, reference, and burnt lakes, respectively; p < 0.01). Mercury biomagnification per thousand delta15N varied from 22 to 29% in the three groups of lakes. Mercury availability to organisms at the base of the food chain in lakes with cut catchments was higher than that in reference lakes. In cut lakes, Hg concentrations in fish were significantly related to ratio of the clear-cut area to lake area (or lake volume; r = +0.82 and +0.74, respectively, p < 0.01). Both impact ratios were, in turn, significantly correlated with dissolved organic carbon. These findings suggest that differential loading of organic matter-bound Hg to lakes can affect Hg cycling. In addition, Hg concentrations exceeded the advisory limit for human consumption (0.5 microg/g wet wt) from the World Health Organization in all top predatory species (northern pike, walleye, and burbot) found in cut and in two partially burnt lakes. Thus, high Hg concentrations in fish from forest-harvested and partially burnt lakes may reflect increased exposure to Hg relative to that in lakes not having these watershed disturbances.

  2. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 1. Source apportionment using mercury stable isotopes.

    PubMed

    Bartov, Gideon; Deonarine, Amrika; Johnson, Thomas M; Ruhl, Laura; Vengosh, Avner; Hsu-Kim, Heileen

    2013-02-19

    Mercury stable isotope abundances were used to trace transport of Hg-impacted river sediment near a coal ash spill at Harriman, Tennessee, USA. δ(202)Hg values for Kingston coal ash released into the Emory River in 2008 are significantly negative (-1.78 ± 0.35‰), whereas sediments of the Clinch River, into which the Emory River flows, are contaminated by an additional Hg source (potentially from the Y-12 complex near Oak Ridge, Tennessee) with near-zero values (-0.23 ± 0.16‰). Nominally uncontaminated Emory River sediments (12 miles upstream from the Emory-Clinch confluence) have intermediate values (-1.17 ± 0.13‰) and contain lower Hg concentrations. Emory River mile 10 sediments, possibly impacted by an old paper mill has δ(202)Hg values of -0.47 ± 0.04‰. A mixing model, using δ(202)Hg values and Hg concentrations, yielded estimates of the relative contributions of coal ash, Clinch River, and Emory River sediments for a suite of 71 sediment samples taken over a 30 month time period from 13 locations. Emory River samples, with two exceptions, are unaffected by Clinch River sediment, despite occasional upstream flow from the Clinch River. As expected, Clinch River sediment below its confluence with the Emory River are affected by Kingston coal ash; however, the relative contribution of the coal ash varies among sampling sites.

  3. Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter.

    PubMed

    Wu, Qingru; Wang, Shuxiao; Wang, Long; Liu, Fang; Lin, Che-Jen; Zhang, Lei; Wang, Fengyang

    2014-10-15

    Nonferrous metal smelting is an important atmospheric mercury (Hg) emission source that has significant local and global impacts. To quantify the impact of Hg emission from non-ferrous metal smelter on the surrounding soil, an integrated model parameterizing the processes of smelter emission, air dispersion, atmospheric deposition and Hg accumulation in soil was developed. The concentrations of gase