Al Aïn, Syrina; Perry, Rosemarie E; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A; Sullivan, Regina M
2017-02-01
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14 C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.
Al Aïn, Syrina; Perry, Rosemarie E.; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A.; Sullivan, Regina M.
2016-01-01
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother’s social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering. PMID:26934130
Saive, Anne-Lise; Royet, Jean-Pierre; Plailly, Jane
2014-01-01
Odors are powerful cues that trigger episodic memories. However, in light of the amount of behavioral data describing the characteristics of episodic odor memory, the paucity of information available on the neural substrates of this function is startling. Furthermore, the diversity of experimental paradigms complicates the identification of a generic episodic odor memory network. We conduct a systematic review of the literature depicting the current state of the neural correlates of episodic odor memory in healthy humans by placing a focus on the experimental approaches. Functional neuroimaging data are introduced by a brief characterization of the memory processes investigated. We present and discuss laboratory-based approaches, such as odor recognition and odor associative memory, and autobiographical approaches, such as the evaluation of odor familiarity and odor-evoked autobiographical memory. We then suggest the development of new laboratory-ecological approaches allowing for the controlled encoding and retrieval of specific multidimensional events that could open up new prospects for the comprehension of episodic odor memory and its neural underpinnings. While large conceptual differences distinguish experimental approaches, the overview of the functional neuroimaging findings suggests relatively stable neural correlates of episodic odor memory. PMID:25071494
Odor Mitigation with Tree Buffers: Swine Production Case Study
USDA-ARS?s Scientific Manuscript database
Tree buffers are a potential low cost sustainable odor mitigation strategy, but there is little to no data on their effectiveness. Odor transport is thought to occur one of two ways either directly through vapor phase transport or indirectly through sorption onto particles. Consequently, monitoring...
Saive, Anne-Lise; Royet, Jean-Pierre; Ravel, Nadine; Thévenet, Marc; Garcia, Samuel; Plailly, Jane
2014-01-01
We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What) positioned at three specific locations (Where) within a visual context (Which context). During the retrieval test, which occurred 24–72 h after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors. PMID:24936176
El Haj, Mohamad; Gandolphe, Marie Charlotte; Gallouj, Karim; Kapogiannis, Dimitrios; Antoine, Pascal
2017-12-25
Research suggests that odors may serve as a potent cue for autobiographical retrieval. We tested this hypothesis in Alzheimer's disease (AD) and investigated whether odor-evoked autobiographical memory is an involuntary process that shares similarities with music-evoked autobiographical memory. Participants with mild AD and controls were asked to retrieve 2 personal memories after odor exposure, after music exposure, and in an odor-and music-free condition. AD participants showed better specificity, emotional experience, mental time travel, and retrieval time after odor and music exposure than in the control condition. Similar beneficial effects of odor and music exposure were observed for autobiographical characteristics (i.e., specificity, emotional experience, and mental time travel), except for retrieval time which was more improved after odor than after music exposure. Interestingly, regression analyses suggested executive involvement in memories evoked in the control condition but not in those evoked after music or odor exposure. These findings suggest the involuntary nature of odor-evoked autobiographical memory in AD. They also suggest that olfactory cuing could serve as a useful and ecologically valid tool to stimulate autobiographical memory, at least in the mild stage of the disease. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Feinberg, Leila M; Allen, Timothy A; Ly, Denise; Fortin, Norbert J
2012-01-01
The contributions of the hippocampus (HC) and perirhinal cortex (PER) to recognition memory are currently topics of debate in neuroscience. Here we used a rapidly-learned (seconds) spontaneous novel odor recognition paradigm to assess the effects of pre-training N-methyl-D-aspartate lesions to the HC or PER on odor recognition memory. We tested memory for both social and non-social odor stimuli. Social odors were acquired from conspecifics, while non-social odors were household spices. Conspecific odor stimuli are ethologically-relevant and have a high degree of overlapping features compared to non-social household spices. Various retention intervals (5 min, 20 min, 1h, 24h, or 48 h) were used between study and test phases, each with a unique odor pair, to assess changes in novelty preference over time. Consistent with findings in other paradigms, modalities, and species, we found that HC lesions yielded no significant recognition memory deficits. In contrast, PER lesions caused significant deficits for social odor recognition memory at long retention intervals, demonstrating a critical role for PER in long-term memory for social odors. PER lesions had no effect on memory for non-social odors. The results are consistent with a general role for PER in long-term recognition memory for stimuli that have a high degree of overlapping features, which must be distinguished by conjunctive representations. Copyright © 2011 Elsevier Inc. All rights reserved.
Odor Memory and Discrimination Covary as a Function of Delay between Encoding and Recall in Rats.
Hackett, Chelsea; Choi, Christina; O'Brien, Brenna; Shin, Philip; Linster, Christiane
2015-06-01
Nonassociative odor learning paradigms are often used to assess memory, social recognition and neuromodulation of olfactory pathways. We here use a modified object recognition paradigm to investigate how an important task parameter, delay between encoding and recall trials, affects the properties of this memory. We show that both memory for a previously investigated odorant and discrimination of a novel odorant decay with delay time and that rats can remember an odorant for up to 45min after a single trial encoding event. The number of odorants that can be encoded, as well as the specificity of the encoded memory, decrease with increased delay and also depend on stimulus concentration. Memory for an odorant and discrimination of a novel odorant decay at approximately the same rate, whereas the specificity of the formed memory decays faster than the memory itself. These results have important implications for the interpretation of behavioral data obtained with this paradigm. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Watanabe, Keiko; Masaoka, Yuri; Kawamura, Mitsuru; Yoshida, Masaki; Koiwa, Nobuyoshi; Yoshikawa, Akira; Kubota, Satomi; Ida, Masahiro; Ono, Kenjiro; Izumizaki, Masahiko
2018-01-01
Autobiographical odor memory (AM-odor) accompanied by a sense of realism of a specific memory elicits strong emotions. AM-odor differs from memory triggered by other sensory modalities, possibly because olfaction involves a unique sensory process. Here, we examined the orbitofrontal cortex (OFC), using functional magnetic resonance imaging (fMRI) to determine which OFC subregions are related to AM-odor. Both AM-odor and a control odor successively increased subjective ratings of comfortableness and pleasantness. Importantly, AM-odor also increased arousal levels and the vividness of memories, and was associated with a deep and slow breathing pattern. fMRI analysis indicated robust activation in the left posterior OFC (L-POFC). Connectivity between the POFC and whole brain regions was estimated using psychophysiological interaction analysis (PPI). We detected several trends in connectivity between L-POFC and bilateral precuneus, bilateral rostral dorsal anterior cingulate cortex (rdACC), and left parahippocampus, which will be useful for targeting our hypotheses for future investigations. The slow breathing observed in AM-odor was correlated with rdACC activation. Odor associated with emotionally significant autobiographical memories was accompanied by slow and deep breathing, possibly involving rdACC processing.
Odor-induced recall of emotional memories in PTSD-Review and new paradigm for research.
Daniels, Judith K; Vermetten, Eric
2016-10-01
It is clinically well known that olfactory intrusions in PTSD can be a disabling phenomena due to the involuntary recall of odor memories. Odorants can trigger involuntary recall of emotional memories as well have the potential to help diminishing emotional arousal as grounding stimuli. Despite major advances in our understanding of the function of olfactory system, the study of the relation of olfaction and emotional memory is still relatively scarce. Odor memory is long thought to be different than other types of memories such as verbal or visual memories, being more strongly engraved and more closely related to strong emotions. Brain areas mediating smell memory including orbitofrontal cortex and other parts of medial prefrontal cortex, hippocampus and amygdala, have been implicated in learning and memory and are part of a neural circuitry that is involved in PTSD. The olfactory cortex itself also plays an important role in emotional processing. Clinical observations support the notion that odor-evoked memories can play a role in the symptomatology of PTSD. This paper reviews a re-emerging body of science linking odor processing to emotional processing in PTSD using the calming and grounding effect of odors as well as the use of odors in augmented exposure therapy. This results in converging evidence that olfaction is an excellent model for studying many questions germane to the field of human emotional memory processing. Copyright © 2016 Elsevier Inc. All rights reserved.
Episodic Memory: Manipulation and Replay of Episodic Memories by Rats.
Wright, Anthony A
2018-06-04
Rats exposed to variable-length, unique-odor lists were tested in distinctive contexts for odors second or forth from list-end. Accurate ability to recall odors backwards from the end of lists points to their ability to manipulate and replay odor-list episodic memories. Copyright © 2018 Elsevier Ltd. All rights reserved.
Central insulin administration improves odor-cued reactivation of spatial memory in young men.
Brünner, Yvonne F; Kofoet, Anja; Benedict, Christian; Freiherr, Jessica
2015-01-01
Insulin receptors are ubiquitously found in the human brain, comprising the olfactory bulb, essential for odor processing, and the hippocampus, important for spatial memory processing. The present study aimed at examining if intranasal insulin, which is known to transiently increase brain insulin levels in humans, would improve odor-cued reactivation of spatial memory in young men. We applied a double-blind, placebo-controlled, counterbalanced within-subject design. The study was conducted at the research unit of a university hospital. Interventions/Participants/Main Outcome Measures: Following intranasal administration of either insulin (40 I.U.) or placebo, male subjects (n = 18) were exposed to eight odors. During each odor exposure, a green-colored field was presented on a 17-in. computer screen. During immediate recall (comprising 3 runs), the participants were re-exposed to each odor cue, and were asked to select the corresponding field (with visual feedback after each response). The delayed recall was scheduled ∼10 min later (without feedback). To test if insulin's putative effect on odor-place memory would be domain-specific, participants also performed a separate place and odor recognition task. Intranasal insulin improved the delayed but not immediate odor-cued recall of spatial memory. This effect was independent of odor type and in the absence of systemic side effects (eg, fasting plasma glucose levels remained unaltered). Place and odor recognition were unaffected by the insulin treatment. These findings suggest that acute intranasal insulin improves odor-cued reactivation of spatial memory in young men.
Long-Term Memory for Odors: Influences of Familiarity and Identification Across 64 Days
Jönsson, Fredrik U.; Willander, Johan; Sikström, Sverker; Larsson, Maria
2015-01-01
Few studies have investigated long-term odor recognition memory, although some early observations suggested that the forgetting rate of olfactory representations is slower than for other sensory modalities. This study investigated recognition memory across 64 days for high and low familiar odors and faces. Memory was assessed in 83 young participants at 4 occasions; immediate, 4, 16, and 64 days after encoding. The results indicated significant forgetting for odors and faces across the 64 days. The forgetting functions for the 2 modalities were not fundamentally different. Moreover, high familiar odors and faces were better remembered than low familiar ones, indicating an important role of semantic knowledge on recognition proficiency for both modalities. Although odor recognition was significantly better than chance at the 64 days testing, memory for the low familiar odors was relatively poor. Also, the results indicated that odor identification consistency across sessions, irrespective of accuracy, was positively related to successful recognition. PMID:25740304
Köster, Egon P.; Møller, Per; Mojet, Jozina
2014-01-01
Our senses have developed as an answer to the world we live in (Gibson, 1966) and so have the forms of memory that accompany them. All senses serve different purposes and do so in different ways. In vision, where orientation and object recognition are important, memory is strongly linked to identification. In olfaction, the guardian of vital functions such as breathing and food ingestion, perhaps the most important (and least noticed and researched) role of odor memory is to help us not to notice the well-known odors or flavors in our everyday surroundings, but to react immediately to the unexpected ones. At the same time it provides us with a feeling of safety when our expectancies are met. All this happens without any smelling intention or conscious knowledge of our expectations. Identification by odor naming is not involved in this and people are notoriously bad at it. Odors are usually best identified via the episodic memory of the situation in which they once occurred. Spontaneous conscious odor perception normally only occurs in situations where attention is demanded, either because the inhaled air or the food smell is particularly good or particularly bad and people search for its source or because people want to actively enjoy the healthiness and pleasantness of their surroundings or food. Odor memory is concerned with novelty detection rather than with recollection of odors. In this paper, these points are illustrated with experimental results and their consequences for doing ecologically valid odor memory research are drawn. Furthermore, suggestions for ecologically valid research on everyday odor memory and some illustrative examples are given. PMID:24575059
USDA-ARS?s Scientific Manuscript database
Scientists have investigated methods for reducing odor emissions from livestock buildings for decades, yet few technologies have proven effective. Vegetative Environmental Buffers (VEBs), which are specially designed combinations of trees, shrubs and grasses, have shown promise in recent years for ...
Test-retest reliability and validity of the Sniffin' TOM odor memory test.
Croy, Ilona; Zehner, Cora; Larsson, Maria; Zucco, Gesualdo M; Hummel, Thomas
2015-03-01
Few attempts have been made to develop an olfactory test that captures episodic retention of olfactory information. Assessment of episodic odor memory is of particular interest in aging and in the cognitively impaired as both episodic memory deficits and olfactory loss have been targeted as reliable hallmarks of cognitive decline and impending dementia. Here, 96 healthy participants (18-92 years) and an additional 19 older people with mild cognitive impairment were tested (73-82 years). Participants were presented with 8 common odors with intentional encoding instructions that were followed by a yes-no recognition test. After recognition completion, participants were asked to identify all odors by means of free or cued identification. A retest of the odor memory test (Sniffin' TOM = test of odor memory) took place 17 days later. The results revealed satisfactory test-retest reliability (0.70) of odor recognition memory. Both recognition and identification performance were negatively affected by age and more pronounced among the cognitively impaired. In conclusion, the present work presents a reliable, valid, and simple test of episodic odor recognition memory that may be used in clinical groups where both episodic memory deficits and olfactory loss are prevalent preclinically such as Alzheimer's disease. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Odors as effective retrieval cues for stressful episodes.
Wiemers, Uta S; Sauvage, Magdalena M; Wolf, Oliver T
2014-07-01
Olfactory information seems to play a special role in memory due to the fast and direct processing of olfactory information in limbic areas like the amygdala and the hippocampus. This has led to the assumption that odors can serve as effective retrieval cues for autobiographic memories, especially emotional memories. The current study sought to investigate whether an olfactory cue can serve as an effective retrieval cue for memories of a stressful episode. A total of 95 participants were exposed to a psychosocial stressor or a well matching but not stressful control condition. During both conditions were visual objects present, either bound to the situation (central objects) or not (peripheral objects). Additionally, an ambient odor was present during both conditions. The next day, participants engaged in an unexpected object recognition task either under the influence of the same odor as was present during encoding (congruent odor) or another odor (non-congruent odor). Results show that stressed participants show a better memory for all objects and especially for central visual objects if recognition took place under influence of the congruent odor. An olfactory cue thus indeed seems to be an effective retrieval cue for stressful memories. Copyright © 2013 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Scientists have investigated methods for reducing odor emissions from livestock buildings for decades, yet few technologies have proven effective. Vegetative Environmental Buffers (VEB), which are specially designed combinations of trees, shrubs and grasses, have shown promise in recent years for r...
Context odor presentation during sleep enhances memory in honeybees.
Zwaka, Hanna; Bartels, Ruth; Gora, Jacob; Franck, Vivien; Culo, Ana; Götsch, Moritz; Menzel, Randolf
2015-11-02
Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Grimes, Matthew T; Harley, Carolyn W; Darby-King, Andrea; McLean, John H
2012-02-21
Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and translation-dependent). Here, we use neonatal odor-preference learning to explore the role of olfactory bulb PKA in these three phases of mammalian memory. PKA activity increased normally in learning animals 10 min after a single training trial. Inhibition of PKA by Rp-cAMPs blocked intermediate-term and long-term memory, with no effect on short-term memory. PKA inhibition also prevented learning-associated CREB phosphorylation, a transcription factor implicated in long-term memory. When long-term memory was rescued through increased β-adrenoceptor activation, CREB phosphorylation was restored. Intermediate-term and long-term, but not short-term odor-preference memories were generated by pairing odor with direct PKA activation using intrabulbar Sp-cAMPs, which bypasses β-adrenoceptor activation. Higher levels of Sp-cAMPs enhanced memory by extending normal 24-h retention to 48-72 h. These results suggest that increased bulbar PKA is necessary and sufficient for the induction of intermediate-term and long-term odor-preference memory, and suggest that PKA activation levels also modulate memory duration. However, short-term memory appears to use molecular mechanisms other than the PKA/CREB pathway. These mechanisms, which are also recruited by β-adrenoceptor activation, must operate in parallel with PKA activation.
Mukherjee, Bandhan; Yuan, Qi
2016-10-14
The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.
ERIC Educational Resources Information Center
Grimes, Matthew T.; Harley, Carolyn W.; Darby-King, Andrea; McLean, John H.
2012-01-01
Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and…
ERIC Educational Resources Information Center
Bhattacharya, Sriya; Mukherjee, Bandhan; Doré, Jules J. E.; Yuan, Qi; Harley, Carolyn W.; McLean, John H.
2017-01-01
Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in…
Petrulis, A; Alvarez, P; Eichenbaum, H
2005-01-01
Recognition of individual conspecifics is important for social behavior and requires the formation of memories for individually distinctive social signals. Individual recognition is often mediated by olfactory cues in mammals, especially nocturnal rodents such as golden hamsters. In hamsters, this form of recognition requires main olfactory system input to the lateral entorhinal cortex (LEnt). Here, we tested whether neurons in LEnt and the nearby ventral subiculum (VS) would show cellular correlates of this natural form of recognition memory. Two hundred ninety single neurons were recorded from both superficial (SE) and deep layers of LEnt (DE) and VS while male hamsters investigated volatile odorants from female vaginal secretions. Many neurons encoded differences between female's odors with many discriminating between odors from different individual females but not between different odor samples from the same female. Other neurons discriminated between odor samples from one female and generalized across collections from other females. LEnt and VS neurons showed enhanced or suppressed cellular activity during investigation of previously presented odors and in response to novel odors. A majority of SE neurons decreased firing to odor repetition and increased activity to novel odors. In contrast, DE neurons often showed suppressed activity in response to novel odors. Thus, neurons in LEnt and VS of male hamsters encode information that is critical for the identification and recognition of individual females by odor cues. This study reveals cellular mechanisms in LEnt and VS that may mediate a natural form of recognition memory in hamsters. These neuronal responses were similar to those observed in rats and monkeys during performance in standard recognition memory tasks. Consequently, the present data extend our understanding of the cellular basis for recognition memory and suggest that individual recognition requires similar neural mechanisms as those employed in laboratory tests of recognition memory.
Sill, Orriana C; Smith, David M
2012-08-01
In recent years, many animal models of memory have focused on one or more of the various components of episodic memory. For example, the odor sequence memory task requires subjects to remember individual items and events (the odors) and the temporal aspects of the experience (the sequence of odor presentation). The well-known spatial context coding function of the hippocampus, as exemplified by place cell firing, may reflect the "where" component of episodic memory. In the present study, we added a contextual component to the odor sequence memory task by training rats to choose the earlier odor in one context and the later odor in another context and we compared the effects of temporary hippocampal lesions on performance of the original single context task and the new dual context task. Temporary lesions significantly impaired the single context task, although performance remained significantly above chance levels. In contrast, performance dropped all the way to chance when temporary lesions were used in the dual context task. These results demonstrate that rats can learn a dual context version of the odor sequence learning task that requires the use of contextual information along with the requirement to remember the "what" and "when" components of the odor sequence. Moreover, the addition of the contextual component made the task fully dependent on the hippocampus.
Kinase activity in the olfactory bulb is required for odor memory consolidation.
Tong, Michelle T; Kim, Tae-Young P; Cleland, Thomas A
2018-05-01
Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)-a process that is closely associated with BDNF signaling. We sought to elucidate the role of neurotrophin signaling within the OB on odor memory consolidation. Male mice were trained on odor-reward associative discriminations after bilateral infusion of the kinase inhibitor K252a, or vehicle control, into the OB. K252a is a partially selective inhibitor of tyrosine kinase (Trk) receptors, including the TrkB receptor for BDNF, though it also inhibits other plasticity-related kinases such as PKC and CaMKII/IV. K252a infusion into the OB did not impair odor acquisition or short-term (2 h) memory for the learned discriminations, but significantly impaired long-term (48 h) odor memory (LTM). This LTM deficit also was associated with reduced selectivity for the conditioned odorant in a reward-seeking digging task. Infusions of K252a immediately prior to testing did not impair LTM recall. These results indicate that kinase activation in the OB is required for the consolidation of odor memory of incrementally acquired information. © 2018 Tong et al.; Published by Cold Spring Harbor Laboratory Press.
Sensory Preconditioning in Newborn Rabbits: From Common to Distinct Odor Memories
ERIC Educational Resources Information Center
Coureaud, Gerard; Tourat, Audrey; Ferreira, Guillaume
2013-01-01
This study evaluated whether olfactory preconditioning is functional in newborn rabbits and based on joined or independent memory of odorants. First, after exposure to odorants A+B, the conditioning of A led to high responsiveness to odorant B. Second, responsiveness to B persisted after amnesia of A. Third, preconditioning was also functional…
Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.
Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni
2006-01-01
Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.
Sill, Orriana C.; Smith, David M.
2012-01-01
In recent years, many animal models of memory have focused on one or more of the various components of episodic memory. For example, the odor sequence memory task requires subjects to remember individual items and events (the odors) and the temporal aspects of the experience (the sequence of odor presentation). The well-known spatial context coding function of the hippocampus, as exemplified by place cell firing, may reflect the ‘where’ component of episodic memory. In the present study, we added a contextual component to the odor sequence memory task by training rats to choose the earlier odor in one context and the later odor in another context and we compared the effects of temporary hippocampal lesions on performance of the original single context task and the new dual context task. Temporary lesions significantly impaired the single context task, although performance remained significantly above chance levels. In contrast, performance dropped all the way to chance when temporary lesions were used in the dual context task. These results demonstrate that rats can learn a dual context version of the odor sequence learning task which requires the use of contextual information along with the requirement to remember the ‘what’ and ‘when’ components of the odor sequence. Moreover, the additional requirement of context-dependent expression of the ‘what-when’ memory made the task fully dependent on the hippocampus. Moreover, the addition of the contextual component made the task fully dependent on the hippocampus. PMID:22687149
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.
Lin, Andrew C; Bygrave, Alexei M; de Calignon, Alix; Lee, Tzumin; Miesenböck, Gero
2014-04-01
Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories.
Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory
2014-01-01
Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay. PMID:24719093
Odor modeling methodology for determining the odor buffer distance for sanitary landfills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Dukman.
1991-01-01
The objective of this study is to create a methodology whereby reductions in off-site odor migrations resulting from operational and design changes in new or expanded sanitary landfills can be evaluated. The Ann Arbor Sanitary Landfill was chosen as a prototype landfill to test a hypothesis for this study. This study is a unique approach to odor prediction at sanitary landfills using surface flux measurements, odor threshold panel measurements, and dispersion modeling. Flux measurements were made at open tipping face, temporary cover, final cover, vents, and composting zones of the Ann Arbor Sanitary Landfill. Surface gas velocities and in-ground concentrationsmore » were determined to allow a quantification of the total and methane gas flow rate. Odor threshold panel measurements were performed to determine the odor intensity in odor units at the corresponding sites. The used the flux and odor panel measurements in the Industrial Source Complex Terrain Model to determine the hourly averaged highest and second highest odor levels at 175 receptors placed at the property boundary and 25 nearby residential locations. Using measured values for velocity, subsurface CH{sub 4} concentration and odor intensity, it was determined that the proposed 1990 operations with a buffer distance of 600 feet provided at least a factor of five protection below 1 o.u. of the odor threshold for all receptors, and dilution protection equal to the historic 1984 operations with a 1,200 feet isolation distance.« less
Enhanced startle responsivity 24 hours after acute stress exposure.
Herten, Nadja; Otto, Tobias; Adolph, Dirk; Pause, Bettina M; Kumsta, Robert; Wolf, Oliver T
2016-10-01
Cortisol release in a stressful situation can be beneficial for memory encoding and memory consolidation. Stimuli, such as odors, related to the stressful episode may successfully cue memory contents of the stress experience. The current investigation aimed at testing the potency of stress to influence startle responsivity 24 hr later and to implicitly reactivate emotional memory traces triggered by an odor involved. Participants were assigned to either a stress (Trier Social Stress Test [TSST]) or control (friendly TSST [f-TSST]) condition featuring an ambient odor. On the next day, participants underwent an auditory startle paradigm while their eyeblink reflex was recorded by an electrooculogram. Three different olfactory stimuli were delivered, one being the target odor presented the day before. Additionally, negative, positive, and pictures of the committee members were included for comparing general startle responsivity and fear-potentiated startle. Participants of the stress group demonstrated an enhanced startle response across all stimuli compared to participants of the control group. There were no specific effects with regard to the target odor. The typical fear-potentiated startle response occurred. Stressed participants tended to rate the target odor more aversive than control participants. Odor recognition memory did not differ between the groups, suggesting an implicit effect on odor valence. Our results show that acute stress exposure enhances startle responsivity 24 hr later. This effect might be caused by a shift of amygdala function causing heightened sensitivity, but lower levels of specificity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Yuan, Qi; Harley, Carolyn W.
2012-01-01
Increased AMPA signaling is proposed to mediate long-term memory. Rat neonates acquire odor preferences in a single olfactory bulb if one nostril is occluded at training. Memory testing here confirmed that only trained bulbs support increased odor preference at 24 h. Olfactory nerve field potentials were tested at 24 h in slices from trained and…
Stevenson, Richard J; Mahmut, Mehmet K
2011-10-01
Odor "sweetness" may arise from experiencing odors and tastes together, resulting in a flavor memory that is later reaccessed by the odor. Forming a flavor memory may be impaired if the taste and odor elements are apparent during exposure, suggesting that configural processing may underpin learning. Using a new procedure, participants made actual flavor discriminations for one odor-taste pair (e.g., Taste A vs. Odor X-Taste A) and mock discriminations for another (e.g., Odor Y-Taste B vs. Odor Y-Taste B). Participants, who were successful at detecting the actual flavor discriminations, demonstrated equal amounts of learning for both odor-taste pairings. These results suggest that although a capacity to discriminate flavor into its elements may be necessary to support learning, whether participants experience a configural or elemental flavor representation may not.
Perisse, Emmanuel; Owald, David; Barnstedt, Oliver; Talbot, Clifford B; Huetteroth, Wolf; Waddell, Scott
2016-06-01
In Drosophila, negatively reinforcing dopaminergic neurons also provide the inhibitory control of satiety over appetitive memory expression. Here we show that aversive learning causes a persistent depression of the conditioned odor drive to two downstream feed-forward inhibitory GABAergic interneurons of the mushroom body, called MVP2, or mushroom body output neuron (MBON)-γ1pedc>α/β. However, MVP2 neuron output is only essential for expression of short-term aversive memory. Stimulating MVP2 neurons preferentially inhibits the odor-evoked activity of avoidance-directing MBONs and odor-driven avoidance behavior, whereas their inhibition enhances odor avoidance. In contrast, odor-evoked activity of MVP2 neurons is elevated in hungry flies, and their feed-forward inhibition is required for expression of appetitive memory at all times. Moreover, imposing MVP2 activity promotes inappropriate appetitive memory expression in food-satiated flies. Aversive learning and appetitive motivation therefore toggle alternate modes of a common feed-forward inhibitory MVP2 pathway to promote conditioned odor avoidance or approach. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Noradrenergic induction of odor-specific neural habituation and olfactory memories
Shea, Stephen D.; Katz, Lawrence C.; Mooney, Richard
2008-01-01
For many mammals, individual recognition of conspecifics relies on olfactory cues. Certain individual recognition memories are thought to be stored when conspecific odor cues coincide with surges of noradrenaline (NA) triggered by intensely arousing social events. Such familiar stimuli elicit reduced behavioral responses, a change likely related to NA-dependent plasticity in the olfactory bulb (OB). In addition to its role in these ethological memories, NA signaling in the OB appears to be relevant for the discrimination of more arbitrary odorants as well. Nonetheless, no NA-gated mechanism of long-term plasticity in the OB has ever been directly observed in vivo. Here we report that NA release from locus coeruleus (LC), when coupled to odor presentation, acts locally in the main olfactory bulb (MOB) to cause a specific long-lasting suppression of respones to paired odors. These effects were observed for both food odors and urine, an important social recognition cue. Moreover, in subsequent behavioral tests, mice exhibited habituation to paired urine stimuli, suggesting that this LC-mediated olfactory neural plasticity, induced under anesthesia, can store an individual recognition memory that is observable upon recovery. PMID:18923046
Synapsin Determines Memory Strength after Punishment- and Relief-Learning
Niewalda, Thomas; Michels, Birgit; Jungnickel, Roswitha; Diegelmann, Sören; Kleber, Jörg; Kähne, Thilo
2015-01-01
Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: “negative” memories for stimuli preceding them and “positive” memories for stimuli experienced at the moment of “relief.” Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training (“forward conditioning” of the odor), whereas after shock-odor training (“backward conditioning” of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences. PMID:25972175
Synapsin determines memory strength after punishment- and relief-learning.
Niewalda, Thomas; Michels, Birgit; Jungnickel, Roswitha; Diegelmann, Sören; Kleber, Jörg; Kähne, Thilo; Gerber, Bertram
2015-05-13
Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: "negative" memories for stimuli preceding them and "positive" memories for stimuli experienced at the moment of "relief." Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training ("forward conditioning" of the odor), whereas after shock-odor training ("backward conditioning" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences. Copyright © 2015 Niewalda et al.
DNA methylation mediates neural processing after odor learning in the honeybee
Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. Giovanni
2017-01-01
DNA methyltransferases (Dnmts) - epigenetic writers catalyzing the transfer of methyl-groups to cytosine (DNA methylation) – regulate different aspects of memory formation in many animal species. In honeybees, Dnmt activity is required to adjust the specificity of olfactory reward memories and bees’ relearning capability. The physiological relevance of Dnmt-mediated DNA methylation in neural networks, however, remains unknown. Here, we investigated how Dnmt activity impacts neuroplasticity in the bees’ primary olfactory center, the antennal lobe (AL) an equivalent of the vertebrate olfactory bulb. The AL is crucial for odor discrimination, an indispensable process in forming specific odor memories. Using pharmacological inhibition, we demonstrate that Dnmt activity influences neural network properties during memory formation in vivo. We show that Dnmt activity promotes fast odor pattern separation in trained bees. Furthermore, Dnmt activity during memory formation increases both the number of responding glomeruli and the response magnitude to a novel odor. These data suggest that Dnmt activity is necessary for a form of homoeostatic network control which might involve inhibitory interneurons in the AL network. PMID:28240742
ERIC Educational Resources Information Center
Santa, Tomofumi; Kirino, Yutaka; Watanabe, Satoshi; Shirahata, Takaaki; Tsunoda, Makoto
2006-01-01
The terrestrial slug "Limax" is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC…
Olfactory Context-Dependent Memory and the Effects of Affective Congruency.
Hackländer, Ryan P M; Bermeitinger, Christina
2017-10-31
Odors have been claimed to be particularly effective mnemonic cues, possibly because of the strong links between olfaction and emotion processing. Indeed, past research has shown that odors can bias processing towards affectively congruent material. In order to determine whether this processing bias translates to memory, we conducted 2 olfactory-enhanced-context memory experiments where we manipulated affective congruency between the olfactory context and to-be-remembered material. Given the presumed importance of valence to olfactory perception, we hypothesized that memory would be best for affectively congruent material in the olfactory enhanced context groups. Across the 2 experiments, groups which encoded and retrieved material in the presence of an odorant exhibited better memory performance than groups that did not have the added olfactory context during encoding and retrieval. While context-enhanced memory was exhibited in the presence of both pleasant and unpleasant odors, there was no indication that memory was dependent on affective congruency between the olfactory context and the to-be-remembered material. While the results provide further support for the notion that odors can act as powerful contextual mnemonic cues, they call into question the notion that affective congruency between context and focal material is important for later memory performance. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Basolateral Amygdala Is Necessary for the Encoding and the Expression of Odor Memory
ERIC Educational Resources Information Center
Sevelinges, Yannick; Desgranges, Bertrand; Ferreira, Guillaume
2009-01-01
Conditioned odor avoidance (COA) results from the association between a novel odor and a delayed visceral illness. The present experiments investigated the role of the basolateral amygdala (BLA) in acquisition and retrieval of COA memory. To address this, we used the GABAA agonist muscimol to temporarily inactivate the BLA during COA acquisition…
Preserved olfactory cuing of autobiographical memories in old age.
Maylor, Elizabeth A; Carter, Sarah M; Hallett, Emma L
2002-01-01
The authors investigated whether olfactory cues can facilitate memory retrieval and whether they retain their effectiveness in old age. In Phase 1, 57 young and 57 old adults (mean ages of 21 and 84 years, respectively) were asked to recall autobiographical memories associated with each of six cue words. In Phase 2, the same words were presented again with instructions to recall new memories; on this second occasion, half of the words were accompanied by their appropriate odors. Both age groups recalled more than twice as many memories in Phase 2 with the odor than without the odor, providing evidence for substantial olfactory cuing that is remarkably intact in old age.
ERIC Educational Resources Information Center
Roth, Tania L.; Moriceau, Stephanie; Sullivan, Regina M.
2006-01-01
Paradoxically, fear conditioning (odor-0.5 mA shock) yields a learned odor preference in the neonate, presumably due to a unique learning and memory circuit that does not include apparent amygdala participation. Post-training opioid antagonism with naltrexone (NTX) blocks consolidation of this odor preference and instead yields memory of a learned…
Emotion experienced during encoding enhances odor retrieval cue effectiveness.
Herz, R S
1997-01-01
Emotional potentiation may be a key variable in the formation of odor-associated memory. Two experiments were conducted in which a distinctive ambient odor was present or absent during encoding and retrieval sessions and subjects were in an anxious or neutral mood during encoding. Subjects' mood at retrieval was not manipulated. The laboratory mood induction used in Experiment 1 suggested that anxiety might increase the effectiveness of an odor retrieval cue. This trend was confirmed in Experiment 2 by capturing a naturally stressful situation. Subjects who had an ambient odor cue available and were in a preexam state during encoding recalled more words than subjects in any other group. These data are evidence that heightened emotion experienced during encoding with an ambient odor can enhance the effectiveness of an odor as a cue to memory.
Methods to measure olfactory behavior in mice
Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui
2015-01-01
Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse’s olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, to both social and nonsocial odors. PMID:25645244
Homiack, Damek; O'Cinneide, Emma; Hajmurad, Sema; Dohanich, Gary P; Schrader, Laura A
2018-06-19
Post-traumatic stress disorder (PTSD) is characterized by the development of paradoxical memory disturbances including intrusive memories and amnesia for specific details of the traumatic experience. Despite evidence that women are at higher risk to develop PTSD, most animal research has focused on the processes by which male rodents develop adaptive fear memory. As such, the mechanisms contributing to sex differences in the development of PTSD-like memory disturbances are poorly understood. In this investigation, we exposed adult male and female Wistar rats to the synthetic alarm odor 2,4,5-trimethylthiazole (TMT) to assess development of generalized fear behavior and rapid modulation of glutamate uptake and signaling cascades associated with hippocampus-dependent long-term memory. We report that female Wistar rats exposed to alarm odor exhibit context discrimination impairments relative to TMT-exposed male rats, suggesting the intriguing possibility that females are at greater risk in developing generalized fear memories. Mechanistically, alarm odor exposure rapidly modulated signaling cascades consistent with activation of the CREB shut-off cascade in the male, but not the female hippocampus. Moreover, TMT exposure dampened glutamate uptake and affected expression of the glutamate transporter, GLT-1 in the hippocampus. Taken together, these results provide evidence for rapid sex-dependent modulation of CREB signaling in the hippocampus by alarm odor exposure which may contribute to the development of generalized fear.
Inactivation of Medial Prefrontal Cortex or Acute Stress Impairs Odor Span in Rats
ERIC Educational Resources Information Center
Davies, Don A.; Molder, Joel J.; Greba, Quentin; Howland, John G.
2013-01-01
The capacity of working memory is limited and is altered in brain disorders including schizophrenia. In rodent working memory tasks, capacity is typically not measured (at least not explicitly). One task that does measure working memory capacity is the odor span task (OST) developed by Dudchenko and colleagues. In separate experiments, the effects…
No effect of odor-induced memory reactivation during REM sleep on declarative memory stability
Cordi, Maren J.; Diekelmann, Susanne; Born, Jan; Rasch, Björn
2014-01-01
Memory reactivations in hippocampal brain areas are critically involved in memory consolidation processes during sleep. In particular, specific firing patterns of hippocampal place cells observed during learning are replayed during subsequent sleep and rest in rodents. In humans, experimentally inducing hippocampal memory reactivations during slow-wave sleep (but not during wakefulness) benefits consolidation and immediately stabilizes declarative memories against future interference. Importantly, spontaneous hippocampal replay activity can also be observed during rapid eye movement (REM) sleep and some authors have suggested that replay during REM sleep is related to processes of memory consolidation. However, the functional role of reactivations during REM sleep for memory stability is still unclear. Here, we reactivated memories during REM sleep and examined its consequences for the stability of declarative memories. After 3 h of early, slow-wave sleep (SWS) rich sleep, 16 healthy young adults learned a 2-D object location task in the presence of a contextual odor. During subsequent REM sleep, participants were either re-exposed to the odor or to an odorless vehicle, in a counterbalanced within subject design. Reactivation was followed by an interference learning task to probe memory stability after awakening. We show that odor-induced memory reactivation during REM sleep does not stabilize memories against future interference. We propose that the beneficial effect of reactivation during sleep on memory stability might be critically linked to processes characterizing SWS including, e.g., slow oscillatory activity, sleep spindles, or low cholinergic tone, which are required for a successful redistribution of memories from medial temporal lobe regions to neocortical long-term stores. PMID:25225474
Rats Remember Items in Context Using Episodic Memory.
Panoz-Brown, Danielle; Corbin, Hannah E; Dalecki, Stefan J; Gentry, Meredith; Brotheridge, Sydney; Sluka, Christina M; Wu, Jie-En; Crystal, Jonathon D
2016-10-24
Vivid episodic memories in people have been characterized as the replay of unique events in sequential order [1-3]. Animal models of episodic memory have successfully documented episodic memory of a single event (e.g., [4-8]). However, a fundamental feature of episodic memory in people is that it involves multiple events, and notably, episodic memory impairments in human diseases are not limited to a single event. Critically, it is not known whether animals remember many unique events using episodic memory. Here, we show that rats remember many unique events and the contexts in which the events occurred using episodic memory. We used an olfactory memory assessment in which new (but not old) odors were rewarded using 32 items. Rats were presented with 16 odors in one context and the same odors in a second context. To attain high accuracy, the rats needed to remember item in context because each odor was rewarded as a new item in each context. The demands on item-in-context memory were varied by assessing memory with 2, 3, 5, or 15 unpredictable transitions between contexts, and item-in-context memory survived a 45 min retention interval challenge. When the memory of item in context was put in conflict with non-episodic familiarity cues, rats relied on item in context using episodic memory. Our findings suggest that rats remember multiple unique events and the contexts in which these events occurred using episodic memory and support the view that rats may be used to model fundamental aspects of human cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aversive olfactory associative memory loses odor specificity over time
König, Christian; Antwi-Adjei, Emmanuel; Ganesan, Mathangi; Kilonzo, Kasyoka; Viswanathan, Vignesh; Durairaja, Archana; Voigt, Anne
2017-01-01
ABSTRACT Avoiding associatively learned predictors of danger is crucial for survival. Aversive memories can, however, become counter-adaptive when they are overly generalized to harmless cues and contexts. In a fruit fly odor–electric shock associative memory paradigm, we found that learned avoidance lost its specificity for the trained odor and became general to novel odors within a day of training. We discuss the possible neural circuit mechanisms of this effect and highlight the parallelism to over-generalization of learned fear behavior after an incubation period in rodents and humans, with due relevance for post-traumatic stress disorder. PMID:28468811
Wang, Dangui; Zhao, Jun; Gao, Zilong; Chen, Na; Wen, Bo; Lu, Wei; Lei, Zhuofan; Chen, Changfeng; Liu, Yahui; Feng, Jing; Wang, Jin-Hui
2015-01-01
Associative learning and memory are essential to logical thinking and cognition. How the neurons are recruited as associative memory cells to encode multiple input signals for their associated storage and distinguishable retrieval remains unclear. We studied this issue in the barrel cortex by in vivo two-photon calcium imaging, electrophysiology, and neural tracing in our mouse model that the simultaneous whisker and olfaction stimulations led to odorant-induced whisker motion. After this cross-modal reflex arose, the barrel and piriform cortices connected. More than 40% of barrel cortical neurons became to encode odor signal alongside whisker signal. Some of these neurons expressed distinct activity patterns in response to acquired odor signal and innate whisker signal, and others encoded similar pattern in response to these signals. In the meantime, certain barrel cortical astrocytes encoded odorant and whisker signals. After associative learning, the neurons and astrocytes in the sensory cortices are able to store the newly learnt signal (cross-modal memory) besides the innate signal (native-modal memory). Such associative memory cells distinguish the differences of these signals by programming different codes and signify the historical associations of these signals by similar codes in information retrievals. PMID:26347609
IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning.
Liu, Zhihui; Chen, Zijun; Shang, Congping; Yan, Fei; Shi, Yingchao; Zhang, Jiajing; Qu, Baole; Han, Hailin; Wang, Yanying; Li, Dapeng; Südhof, Thomas C; Cao, Peng
2017-07-05
During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca 2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information. Copyright © 2017 Elsevier Inc. All rights reserved.
Olfactory stimuli as context cues in human memory.
Cann, A; Ross, D A
1989-01-01
Olfactory stimuli were used as context cues in a recognition memory paradigm. Male college students were exposed to 50 slides of the faces of college females while in the presence of a pleasant or an unpleasant odor. During the acquisition phase, ratings of physical attractiveness of the slides were collected. After a 48-hr delay, a recognition test was given using the original 50 slides and 50 new slides. The recognition test was conducted with either the original odor or the alternative odor present. A no-odor control group did not receive olfactory cues. The attractiveness ratings indicated that the odor variations had no effect on these social judgments. Analyses of d' scores, hits, and false alarms for the recognition performance indicated support for the predicted interaction in which presence of the same odor at both sessions led to better overall performance.
Visualizing the engram: learning stabilizes odor representations in the olfactory network.
Shakhawat, Amin M D; Gheidi, Ali; Hou, Qinlong; Dhillon, Sandeep K; Marrone, Diano F; Harley, Carolyn W; Yuan, Qi
2014-11-12
The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (∼70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component. Copyright © 2014 the authors 0270-6474/14/3415394-08$15.00/0.
Epac Activation Initiates Associative Odor Preference Memories in the Rat Pup
ERIC Educational Resources Information Center
Grimes, Matthew T.; Powell, Maria; Gutierrez, Sandra Mohammed; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.
2015-01-01
Here we examine the role of the exchange protein directly activated by cAMP (Epac) in ß-adrenergic-dependent associative odor preference learning in rat pups. Bulbar Epac agonist (8-pCPT-2-O-Me-cAMP, or 8-pCPT) infusions, paired with odor, initiated preference learning, which was selective for the paired odor. Interestingly, pairing odor with Epac…
Robin, O; Alaoui-Ismaïli, O; Dittmar, A; Vernet-Maury, E
1999-06-01
Subjective individual experiences seem to indicate that odors may form strong connections with memories, especially those charged with emotional significance. In the dental field, this could be the case with the odorant eugenol, responsible for the typical clinging odor impregnating the dental office. The odor of eugenol could evoke memories of unpleasant dental experiences and, therefore, negative feelings such as anxiety and fear, since eugenates (cements containing eugenol) are used in potentially painful restorative dentistry. This hypothesis was tested by evaluating the emotional impact of the odor of eugenol through autonomic nervous system (ANS) analysis. The simultaneous variations of six ANS parameters (two electrodermal, two thermovascular and two cardiorespiratory), induced by the inhalation of this odorant, were recorded on volunteer subjects. Vanillin (a pleasant odorant) and propionic acid (an unpleasant one) served as controls. After the experiment, subjects were asked to rate the pleasantness versus unpleasantness of each odorant on an 11-point hedonic scale. The patterns of autonomic responses, obtained for each odorant and each subject, were transcribed into one of the six basic emotions defined by Ekman et al. (happiness, surprise, sadness, fear, anger and disgust). Results were compared between two groups of subjects divided according to their dental experience (fearful and non-fearful dental care subjects) and showed significant differences only for eugenol. This odorant was rated as pleasant by non-fearful dental subjects but unpleasant by fearful dental subjects. The evoked autonomic responses were mainly associated with positive basic emotions (happiness and surprise) in non-fearful dental subjects and with negative basic emotions (fear, anger, disgust) in fearful dental subjects. These results suggest that eugenol can be responsible for different emotional states depending on the subjects' dental experience, which seems to confirm the potential role of odors as elicitors of emotional memories. This study also supports the possible influence of the ambient odor impregnating the dental office, strengthening a negative conditioning toward dental care in some anxious patients.
Wright, Geraldine A; Mustard, Julie A; Kottcamp, Sonya M; Smith, Brian H
2007-11-01
Animals possess the ability to assess food quality via taste and via changes in state that occur after ingestion. Here, we investigate the extent to which a honey bee's ability to assess food quality affected the formation of association with an odor stimulus and the retention of olfactory memories associated with reward. We used three different conditioning protocols in which the unconditioned stimulus (food) was delivered as sucrose stimulation to the proboscis (mouthparts), the antennae or to both proboscis and antennae. All means of delivery of the unconditioned stimulus produced robust associative conditioning with an odor. However, the memory of a conditioned odor decayed at a significantly greater rate for subjects experiencing antennal-only stimulation after either multiple- or single-trial conditioning. Finally, to test whether the act of feeding on a reward containing sucrose during conditioning affected olfactory memory formation, we conditioned honey bees to associate an odor with antennal stimulation with sucrose followed by feeding on a water droplet. We observed that a honey bee's ability to recall the conditioned odor was not significantly different from that of subjects conditioned with an antennal-only sucrose stimulus. Our results show that stimulation of the sensory receptors on the proboscis and/or ingestion of the sucrose reward during appetitive olfactory conditioning are necessary for long-term memory formation.
Olfactory Interference during Inhibitory Backward Pairing in Honey Bees
Dacher, Matthieu; Smith, Brian H.
2008-01-01
Background Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. Methodology/Principal Findings If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. Conclusions/Significance Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed. PMID:18946512
Rihm, Julia S.; Sollberger, Silja B.; Soravia, Leila M.; Rasch, Björn
2016-01-01
Exposure therapy induces extinction learning and is an effective treatment for specific phobias. Sleep after learning promotes extinction memory and benefits therapy success. As sleep-dependent memory-enhancing effects are based on memory reactivations during sleep, here we aimed at applying the beneficial effect of sleep on therapy success by cueing memories of subjective therapy success during non-rapid eye movement sleep after in vivo exposure-based group therapy for spider phobia. In addition, oscillatory correlates of re-presentation during sleep (i.e., sleep spindles and slow oscillations) were investigated. After exposure therapy, spider-phobic patients verbalized their subjectively experienced therapy success under presence of a contextual odor. Then, patients napped for 90 min recorded by polysomnography. Half of the sleep group received the odor during sleep while the other half was presented an odorless vehicle as control. A third group served as a wake control group without odor presentation. While exposure therapy significantly reduced spider-phobic symptoms in all subjects, these symptoms could not be further reduced by re-presenting the odor associated with therapy success, probably due to a ceiling effect of the highly effective exposure therapy. However, odor re-exposure during sleep increased left-lateralized frontal slow spindle (11.0–13.0 Hz) and right-lateralized parietal fast spindle (13.0–15.0 Hz) activity, suggesting the possibility of a successful re-presentation of therapy-related memories during sleep. Future studies need to further examine the possibility to enhance therapy success by targeted memory reactivation (TMR) during sleep. PMID:27445775
ERIC Educational Resources Information Center
Sevelinges, Yannick; Sullivan, Regina M.; Messaoudi, Belkacem; Mouly, Anne-Marie
2008-01-01
Adult learning and memory functions are strongly dependent on neonatal experiences. We recently showed that neonatal odor-shock learning attenuates later life odor fear conditioning and amygdala activity. In the present work we investigated whether changes observed in adults can also be observed in other structures normally involved, namely…
ERIC Educational Resources Information Center
Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.
2009-01-01
Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…
Independence of First- and Second-Order Memories in Newborn Rabbits
ERIC Educational Resources Information Center
Coureaud, Gerard; Languille, Solene; Joly, Virginie; Schaal, Benoist; Hars, Bernard
2011-01-01
The mammary pheromone promotes the acquisition of novel odorants (CS1) in newborn rabbits. Here, experiments pinpoint that CS1 becomes able to support neonatal learning of other odorants (CS2). We therefore evaluated whether these first- and second-order memories remained dependent after reactivation. Amnesia induced after CS2 recall selectively…
Kinase Activity in the Olfactory Bulb Is Required for Odor Memory Consolidation
ERIC Educational Resources Information Center
Tong, Michelle T.; Kim, Tae-Young P.; Cleland, Thomas A.
2018-01-01
Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)--a process that is closely associated…
Seubert, Janina; Gregory, Kristen M.; Chamberland, Jessica; Dessirier, Jean-Marc; Lundström, Johan N.
2014-01-01
Scented cosmetic products are used across cultures as a way to favorably influence one's appearance. While crossmodal effects of odor valence on perceived attractiveness of facial features have been demonstrated experimentally, it is unknown whether they represent a phenomenon specific to affective processing. In this experiment, we presented odors in the context of a face battery with systematic feature manipulations during a speeded response task. Modulatory effects of linear increases of odor valence were investigated by juxtaposing subsequent memory-based ratings tasks – one predominantly affective (attractiveness) and a second, cognitive (age). The linear modulation pattern observed for attractiveness was consistent with additive effects of face and odor appraisal. Effects of odor valence on age perception were not linearly modulated and may be the result of cognitive interference. Affective and cognitive processing of faces thus appear to differ in their susceptibility to modulation by odors, likely as a result of privileged access of olfactory stimuli to affective brain networks. These results are critically discussed with respect to potential biases introduced by the preceding speeded response task. PMID:24874703
ERIC Educational Resources Information Center
Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.
2011-01-01
An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…
Odor Emotional Quality Predicts Odor Identification.
Bestgen, Anne-Kathrin; Schulze, Patrick; Kuchinke, Lars
2015-09-01
It is commonly agreed upon a strong link between emotion and olfaction. Odor-evoked memories are experienced as more emotional compared with verbal, visual, and tactile stimuli. Moreover, the emotional quality of odor cues increases memory performance, but contrary to this, odors are poor retrieval cues for verbal labels. To examine the relation between the emotional quality of an odor and its likelihood of identification, this study evaluates how normative emotion ratings based on the 3-dimensional affective space model (that includes valence, arousal, and dominance), using the Self-Assessment Manikin by Bradley and Lang (Bradley MM, Lang PJ. 1994. Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. J Behav Ther Exp Psychiatry. 25(1):49-59.) and the Positive and Negative Affect Schedule (Watson D, Clark LA, Tellegen A. 1988. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 54(6):1063-1070.) predict the identification of odors in a multiple choice condition. The best fitting logistic regression model includes squared valence and dominance and thus, points to a significant role of specific emotional features of odors as a main clue for odor identification. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
No Sensory Compensation for Olfactory Memory: Differences between Blind and Sighted People.
Sorokowska, Agnieszka; Karwowski, Maciej
2017-01-01
Blindness can be a driving force behind a variety of changes in sensory systems. When vision is missing, other modalities and higher cognitive functions can become hyper-developed through a mechanism called sensory compensation. Overall, previous studies suggest that olfactory memory in blind people can be better than that of the sighted individuals. Better performance of blind individuals in other-sensory modalities was hypothesized to be a result of, among others, intense perceptual training. At the same time, if the superiority of blind people in olfactory abilities indeed results from training, their scores should not decrease with age to such an extent as among the sighted people. Here, this hypothesis was tested in a large sample of 94 blind individuals. Olfactory memory was assessed using the Test for Olfactory Memory, comprising episodic odor recognition (discriminating previously presented odors from new odors) and two forms of semantic memory (cued and free identification of odors). Regarding episodic olfactory memory, we observed an age-related decline in correct hits in blind participants, but an age-related increase in false alarms in sighted participants. Further, age moderated the between-group differences for correct hits, but the direction of the observed effect was contrary to our expectations. The difference between blind and sighted individuals younger than 40 years old was non-significant, but older sighted individuals outperformed their blind counterparts. In conclusion, we found no positive effect of visual impairment on olfactory memory. We suggest that daily perceptual training is not enough to increase olfactory memory function in blind people.
No Sensory Compensation for Olfactory Memory: Differences between Blind and Sighted People
Sorokowska, Agnieszka; Karwowski, Maciej
2017-01-01
Blindness can be a driving force behind a variety of changes in sensory systems. When vision is missing, other modalities and higher cognitive functions can become hyper-developed through a mechanism called sensory compensation. Overall, previous studies suggest that olfactory memory in blind people can be better than that of the sighted individuals. Better performance of blind individuals in other-sensory modalities was hypothesized to be a result of, among others, intense perceptual training. At the same time, if the superiority of blind people in olfactory abilities indeed results from training, their scores should not decrease with age to such an extent as among the sighted people. Here, this hypothesis was tested in a large sample of 94 blind individuals. Olfactory memory was assessed using the Test for Olfactory Memory, comprising episodic odor recognition (discriminating previously presented odors from new odors) and two forms of semantic memory (cued and free identification of odors). Regarding episodic olfactory memory, we observed an age-related decline in correct hits in blind participants, but an age-related increase in false alarms in sighted participants. Further, age moderated the between-group differences for correct hits, but the direction of the observed effect was contrary to our expectations. The difference between blind and sighted individuals younger than 40 years old was non-significant, but older sighted individuals outperformed their blind counterparts. In conclusion, we found no positive effect of visual impairment on olfactory memory. We suggest that daily perceptual training is not enough to increase olfactory memory function in blind people. PMID:29276494
ESTROGEN REPLACEMENT THERAPY INDUCES FUNCTIONAL ASYMMETRY ON AN ODOR MEMORY/DISCRIMINATION TEST
Doty, Richard L.; Kisat, Mehreen; Tourbier, Isabelle
2008-01-01
The secondary afferents of the olfactory system largely project to the ipsilateral cortex without synapsing in the thalamus, making unilateral olfactory testing a useful probe of ipsilateral hemispheric activity. In light of evidence that lateralized performance on some perceptual tasks may be influenced by estrogen, we assessed left:right nostril differences in two measures of olfactory function in 14 post-menopausal women receiving estrogen replacement therapy (ERT) and 48 post-menopausal women receiving no such therapy. Relative to women not taking ERT, those receiving ERT exhibited better performance in the left nostril and poorer performance in the right nostril on an odor memory/discrimination test. Similar laterality effects were not observed for an odor detection threshold test employing phenyl ethyl alcohol. These results suggest that estrogen influences the lateralization of an odor memory/discrimination task and that hormone replacement therapy in the menopause may be an excellent paradigm for understanding lateralizing effects of hormones on some sensory processes. PMID:18466883
ERIC Educational Resources Information Center
Ferry, Barbara; Duchamp-Viret, Patricia
2014-01-01
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion…
Drosophila Learn Opposing Components of a Compound Food Stimulus
Das, Gaurav; Klappenbach, Martín; Vrontou, Eleftheria; Perisse, Emmanuel; Clark, Christopher M.; Burke, Christopher J.; Waddell, Scott
2014-01-01
Summary Dopaminergic neurons provide value signals in mammals and insects [1–3]. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons [4–9]. However, it is not known how flies evaluate substances that have mixed valence. Here we show that flies form short-lived aversive olfactory memories when trained with odors and sugars that are contaminated with the common insect repellent DEET. This DEET-aversive learning required the MB-MP1 dopaminergic neurons that are also required for shock learning [7]. Moreover, differential conditioning with DEET versus shock suggests that formation of these distinct aversive olfactory memories relies on a common negatively reinforcing dopaminergic mechanism. Surprisingly, as time passed after training, the behavior of DEET-sugar-trained flies reversed from conditioned odor avoidance into odor approach. In addition, flies that were compromised for reward learning exhibited a more robust and longer-lived aversive-DEET memory. These data demonstrate that flies independently process the DEET and sugar components to form parallel aversive and appetitive olfactory memories, with distinct kinetics, that compete to guide learned behavior. PMID:25042590
Hamlet, Jason R [Albuquerque, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM; Olsberg, Ronald R [Albuquerque, NM
2012-02-28
A deflate decompressor includes at least one decompressor unit, a memory access controller, a feedback path, and an output buffer unit. The memory access controller is coupled to the decompressor unit via a data path and includes a data buffer to receive the data stream and temporarily buffer a first portion the data stream. The memory access controller transfers fixed length data units of the data stream from the data buffer to the decompressor unit with reference to a memory pointer pointing into the memory buffer. The feedback path couples the decompressor unit to the memory access controller to feed back decrement values to the memory access controller for updating the memory pointer. The decrement values each indicate a number of bits unused by the decompressor unit when decoding the fixed length data units. The output buffer unit buffers a second portion of the data stream after decompression.
ERIC Educational Resources Information Center
MacQueen, David A.; Dalrymple, Savannah R.; Drobes, David J.; Diamond, David M.
2016-01-01
Developed as a tool to assess working memory capacity in rodents, the odor span task (OST) has significant potential to advance drug discovery in animal models of psychiatric disorders. Prior investigations indicate OST performance is impaired by systemic administration of N-methyl-D-aspartate receptor (NMDA-r) antagonists and is sensitive to…
Awad, Walaa; Ferreira, Guillaume; Maroun, Mouna
2015-01-01
Medial prefrontal circuits have been reported to undergo a major reorganization over time and gradually take a more important role for remote emotional memories such as contextual fear memory or food aversion memory. The medial prefrontal cortex, and specifically its ventral subregion, the infralimbic cortex (IL), was also reported to be critical for recent memory extinction of contextual fear conditioning and conditioned odor aversion. However, its exact role in the extinction of remotely acquired information is still not clear. Using postretrieval blockade of protein synthesis or inactivation of the IL, we showed that the IL is similarly required for extinction consolidation of recent and remote fear memory. However, in odor aversion memory, the IL was only involved in extinction consolidation of recent, but not remote, memory. In contrast, only remote retrieval of aversion memory induced c-Fos activation in the IL and preretrieval inactivation of the IL with lidocaine impaired subsequent extinction of remote but not recent memory, indicating IL is necessary for extinction learning of remote aversion memory. In contrast to the effects in odor aversion, our data show that the involvement of the IL in the consolidation of fear extinction does not depend on the memory age. More importantly, our data indicate that the IL is implicated in the extinction of fear and nonfear-based associations and suggest dissociation in the engagement of the IL in the learning and consolidation of food aversion extinction over time. PMID:25872918
Ferry, Barbara; Duchamp-Viret, Patricia
2014-03-14
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor-malaise association.
Haenicke, Joachim; Yamagata, Nobuhiro; Zwaka, Hanna; Nawrot, Martin; Menzel, Randolf
2018-01-01
The mushroom body (MB) in insects is known as a major center for associative learning and memory, although exact locations for the correlating memory traces remain to be elucidated. Here, we asked whether presynaptic boutons of olfactory projection neurons (PNs) in the main input site of the MB undergo neuronal plasticity during classical odor-reward conditioning and correlate with the conditioned behavior. We simultaneously measured Ca 2+ responses in the boutons and conditioned behavioral responses to learned odors in honeybees. We found that the absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals. The temporal profile of the induced changes matched with odor response dynamics of the MB-associated inhibitory neurons, suggestive of activity modulation of boutons by this neural class. We hypothesize the circuit-specific neural plasticity relates to the learned value of the stimulus and underlies the conditioned behavior of the bees.
Effects of a Synthetic Predator Odor (TMT) on Freezing, Analgesia, Stereotypy, and Spatial Memory.
ERIC Educational Resources Information Center
Williams, Jon L.; Baez, Catherine; Hladky, Katherine J.; Camacho, Cheri A.
2005-01-01
Exposing rats to the predator odor of trimethylthiazoline (TMT), obtained from the red fox, was compared to exposure to the novel control odor of citronella. In Experiment 1, TMT produced defensive freezing and an analgesic reaction that was reversed by an opiate antagonist. In Experiment 2, TMT augmented response stereotypy induced by an…
Serial position effects in recognition memory for odors: a reexamination.
Miles, Christopher; Hodder, Kathryn
2005-10-01
Seven experiments examined recognition memory for sequentially presented odors. Following Reed (2000), participants were presented with a sequence of odors and then required to identify an odor from the sequence in a test probe comprising 2 odors. The pattern of results obtained by Reed (2000, although statistically marginal) demonstrated enhanced recognition for odors presented at the start (primacy) and end (recency) of the sequence: a result that we failed to replicate in any of the experiments reported here. Experiments 1 and 3 were designed to replicate Reed (2000), employing five-item and seven-item sequences, respectively, and each demonstrated significant recency, with evidence of primacy in Experiment 3 only. Experiment 2 replicated Experiment 1, with reduced interstimulus intervals, and produced a null effect of serial position. The ease with which the odors could be verbally labeled was manipulated in Experiments 4 and 5. Nameable odors produced a null effect of serial position (Experiment 4), and hard-to-name odors produced a pronounced recency effect (Experiment 5); nevertheless, overall rates of recognition were remarkably similar for the two experiments at around 70%. Articulatory suppression reduced recognition accuracy (Experiment 6), but recency was again present in the absence of primacy. Odor recognition performance was immune to the effects of an interleaved odor (Experiment 7), and, again, both primacy and recency effects were absent. There was no evidence of olfactory fatigue: Recognition accuracy improved across trials (Experiment 1). It is argued that the results of the experiments reported here are generally consistent with that body of work employing hard-to-name visual stimuli, where recency is obtained in the absence of primacy when the retention interval is short.
Gage, Stephanie L; Kramer, Catherine; Calle, Samantha; Carroll, Mark; Heien, Michael; DeGrandi-Hoffman, Gloria
2018-02-19
Nosema sp. is an internal parasite of the honey bee, Apis mellifera , and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae , as well as the neurochemistry of odor learning and memory under normal and parasitic conditions. © 2018. Published by The Company of Biologists Ltd.
ERIC Educational Resources Information Center
Ross, Robert S.; McGaughy, Jill; Eichenbaum, Howard
2005-01-01
The social transmission of food preference task (STFP) has been used to examine the involvement of the hippocampus in learning and memory for a natural odor-odor association. However, cortical involvement in STFP has not been extensively studied. The orbitofrontal cortex (OFC) is important in odor-guided learning, and cholinergic depletion of the…
Reprogrammable read only variable threshold transistor memory with isolated addressing buffer
Lodi, Robert J.
1976-01-01
A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.
Recollective experience in odor recognition: influences of adult age and familiarity.
Larsson, Maria; Oberg, Christina; Bäckman, Lars
2006-01-01
We examined recollective experience in odor memory as a function of age, intention to learn, and familiarity. Young and older adults studied a set of familiar and unfamiliar odors with incidental or intentional encoding instructions. At recognition, participants indicated whether their response was based on explicit recollection (remembering), a feeling of familiarity (knowing), or guessing. The results indicated no age-related differences in the distribution of experiential responses for unfamiliar odors. By contrast, for familiar odors the young demonstrated more explicit recollection than the older adults, who produced more "know" and "guess" responses. Intention to learn was unrelated to recollective experience. In addition, the observed age differences in "remember" responses for familiar odors were eliminated when odor naming was statistically controlled. This suggests that age-related deficits in activating specific odor knowledge (i.e., odor names) play an important role for age differences in recollective experience of olfactory information.
Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. G.
2016-01-01
The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., ‘correct’ (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes. PMID:27672359
Biergans, Stephanie D; Claudianos, Charles; Reinhard, Judith; Galizia, C G
2016-01-01
The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., 'correct' (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes.
ERIC Educational Resources Information Center
Sekiguchi, Tatsuhiko; Furudate, Hiroyuki; Kimura, Tetsuya
2010-01-01
The terrestrial slug "Limax" exhibits a highly developed ability to learn odors with a small nervous system. When a fluorescent dye, Lucifer Yellow (LY), is injected into the slug's body cavity after odor-taste associative conditioning, a group of neurons in the procerebral (PC) lobe, an olfactory center of the slug, is labeled by LY. We examined…
Arizono, H; Morita, N; Iizuka, S; Satoh, S; Nakatani, Y
2000-12-01
This research was based on the hypothesis that when alcohol-dependent patients describe themselves, awakening of emotion by affirmative odor stimulation may facilitate memory reframing focusing on more affirmative emotion and memories. To prove the hypothesis, physiological changes accompanied by emotional awakening were evaluated by measuring the autonomic activity. In addition, subjective evaluation by a self-report manner was examined to investigate the effectiveness of Reminiscence Therapy (RT) using odor in alcohol-dependent patients. Thirty-four patients who met the DSM-IV criteria of alcohol-related disorders and were hospitalized in a ward specialized to alcohol dependence therapy. Each patient underwent a one-to-one interview twice. For counterbalance, one interview was performed with odor stimulation using an odor with a relaxing effect that recall pleasant emotion, and the other was without odor stimulation. As the evaluation indices of physiological changes accompanied by emotional awakening, index of autonomic function (HRV; Heart rate variability) for objective evaluation and psychological indices (STAI; State-Trait Anxiety Inventory VAS; Visual Analog Scale) for subjective evaluation were measured. 1) Objective evaluation: Regarding the evaluation index of the autonomic function, the sympathetic nervous system activity (LF/HF; low frequency component/high frequency component ratio) was significantly inhibited by odor stimulation (p < 0.05). 2) Subjective evaluation: Compared to the state prior to interview, state anxiety judged by STAI was significantly decreased after interview (p < 0.01). The VAS score was significantly decreased after interview regardless of the presence or absence of odor stimulation (p < 0.0001). A reduction in state anxiety was observed. The effect of odor was not significant on the subjective evaluation, but the objective evaluation suggested that the odor inhibited the sympathetic nervous system. Thus, it was suggested that odor can be used in RT, that is, emotional changes due to stimulation of odor may be applicable in RT.
Synapsin Is Selectively Required for Anesthesia-Sensitive Memory
ERIC Educational Resources Information Center
Knapek, Stephan; Gerber, Bertram; Tanimoto, Hiromu
2010-01-01
Odor-shock memory in "Drosophila melanogaster" consists of heterogeneous components each with different dynamics. We report that a null mutant for the evolutionarily conserved synaptic protein Synapsin entails a memory deficit selectively in early memory, leaving later memory as well as sensory motor function unaffected. Notably, a consolidated…
Davies, Don A; Greba, Quentin; Howland, John G
2013-01-01
Working memory is a type of short-term memory involved in the maintenance and manipulation of information essential for complex cognition. While memory span capacity has been extensively studied in humans as a measure of working memory, it has received considerably less attention in rodents. Our aim was to examine the role of the N-methyl-D-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in odor span capacity using systemic injections or infusions of receptor antagonists into the medial prefrontal cortex (mPFC). Long Evans rats were trained on a well-characterized odor span task (OST). Initially, rats were trained to dig for a food reward in sand followed by training on a non-match to sample discrimination using sand scented with household spices. The rats were then required to perform a serial delayed non-match to sample procedure which was their odor span. Systemic injection of the broad spectrum NMDA receptor antagonist 3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) (10 mg/kg) or the GluN2B-selective antagonist Ro 25-6981 (10 mg/kg but not 6 mg/kg) significantly reduced odor span capacity. Infusions of the GluN2B- selective antagonist Ro 25-6981 (2.5 μg/hemisphere) into mPFC reduced span capacity, an effect that was nearly significant (p = 0.069). Infusions of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (1.25 μg/hemisphere) into mPFC reduced span capacity and latency for the rats to make a choice in the task. These results demonstrate span capacity in rats depends on ionotropic glutamate receptor activation in the mPFC. Further understanding of the circuitry underlying span capacity may aid in the novel therapeutic drug development for persons with working memory impairments as a result of disorders such as schizophrenia and Alzheimer's disease.
Law, L. Matthew; Smith, David M.
2012-01-01
The anterior thalamus (AT) is anatomically interconnected with the hippocampus and other structures known to be involved in memory, and the AT is involved in many of the same learning and memory functions as the hippocampus. For example, like the hippocampus, the AT is involved in spatial cognition and episodic memory. The hippocampus also has a well-documented role in contextual memory processes, but it is not known whether the AT is similarly involved in contextual memory. In the present study, we assessed the role of the AT in contextual memory processes by temporarily inactivating the AT and training rats on a recently developed context-based olfactory list learning task, which was designed to assess the use of contextual information to resolve interference. Rats were trained on one list of odor discrimination problems, followed by training on a second list in either the same context or a different context. In order to induce interference, some of the odors appeared on both lists with their predictive value reversed. Control rats that learned the two lists in different contexts performed significantly better than rats that learned the two lists in the same context. However, AT lesions completely abolished this contextual learning advantage, a result that is very similar to the effects of hippocampal inactivation. These findings demonstrate that the AT, like the hippocampus, is involved in contextual memory and suggest that the hippocampus and AT are part of a functional circuit involved in contextual memory. PMID:23025833
Dynamics of memory-guided choice behavior in Drosophila
ICHINOSE, Toshiharu; TANIMOTO, Hiromu
2016-01-01
Memory retrieval requires both accuracy and speed. Olfactory learning of the fruit fly Drosophila melanogaster serves as a powerful model system to identify molecular and neuronal substrates of memory and memory-guided behavior. The behavioral expression of olfactory memory has traditionally been tested as a conditioned odor response in a simple T-maze, which measures the result, but not the speed, of odor choice. Here, we developed multiplexed T-mazes that allow video recording of the choice behavior. Automatic fly counting in each arm of the maze visualizes choice dynamics. Using this setup, we show that the transient blockade of serotonergic neurons slows down the choice, while leaving the eventual choice intact. In contrast, activation of the same neurons impairs the eventual performance leaving the choice speed unchanged. Our new apparatus contributes to elucidating how the speed and the accuracy of memory retrieval are implemented in the fly brain. PMID:27725473
Dopaminergic neurons write and update memories with cell-type-specific rules
Aso, Yoshinori; Rubin, Gerald M
2016-01-01
Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. DOI: http://dx.doi.org/10.7554/eLife.16135.001 PMID:27441388
Davis, Ronald L.
2012-01-01
Summary Studies using functional cellullar imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at, or near acquisition and co-exist with short-term behavioral memory. One trace forms with a delay after learning and co-exists with intermediate-term behavioral memory. Two traces form many hours after acquisition and co-exist with long-term behavioral memory. The transient memory traces may support behavior across the time-windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for dissecting the logic by which the nervous system organizes and stores different temporal forms of memory. PMID:21482352
Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Haupt, Moritz; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel
2010-09-17
The role of olfactory bulb (OB) serotonin [5-hydroxytryptamine (5-HT)] in olfactory learning and memory was tested in the greater short-nosed fruit bat, Cynopterus sphinx (family Pteropodidae). Graded concentrations (25, 40, and 60microg) of 5,7-dihydroxytryptamine (5,7-DHT) or saline were injected into the OB of bats one day before training to the novel odor. In a behavioral test, 5,7-DHT (60microg) injected bats made significantly fewer feeding attempts and bouts when compared to saline-injected bats during learning and in the memory test. Subsequent biochemical analysis showed that 5-HT level was effectively depleted in the OB of 5,7-DHT injected bats. To test odor-induced 5-HT mediated changes in 5-HT receptors and second messenger cascade in the OB, we examined the expression of 5-HT receptors and mitogen-activated protein kinase (MAPK)/Erk cascade after training to the novel odor. We found that odor stimulation up-regulated the expression of 5-HT(1A) receptor, Erk1 and Creb1 mRNA, and phosphorylation of ERK1 and CREB1. Odor stimulation failed to induce expression in 5-HT-depleted bats, which is similar to control bats and significantly low compared to saline-treated bats. Together these data revealed that the level of 5-HT in the OB may regulate olfactory learning and memory in C. sphinx through Erk and CREB.
Wu, Jade Q; Peters, Greg J; Rittner, Pedro; Cleland, Thomas A; Smith, David M
2014-09-01
Inhibition is an important component of many cognitive functions, including memory. For example, the retrieval-induced forgetting (RIF) effect occurs when extra practice with some items from a study list inhibits the retrieval of the nonpracticed items relative to a baseline condition that does not involve extra practice. Although counterintuitive, the RIF phenomenon may be important for resolving interference by inhibiting potentially competing retrieval targets. Neuroimaging studies suggest that the hippocampus and prefrontal cortex are involved in the RIF effect, but controlled lesion studies have not yet been performed. We developed a rodent model of the RIF training procedure and trained control rats and rats with temporary inactivation of the hippocampus or medial prefrontal cortex (mPFC). Rats were trained on a list of odor cues, presented in cups of digging medium with a buried reward, followed by additional practice trials with a subset of the cues. We then tested the rats' memories for the cues and their association with reward by presenting them with unbaited cups containing the test odorants and measuring how long they persisted in digging. Control rats exhibited a robust RIF effect in which memory for the nonpracticed odors was significantly inhibited. Thus, extra practice with some odor cues inhibited memory for the others, relative to a baseline condition that involved an identical amount of training. Inactivation of either the hippocampus or the mPFC blocked the RIF effect. We also constructed a computational model of a representational learning circuit to simulate the RIF effect. We show in this model that "sideband suppression" of similar memory representations can reproduce the RIF effect and that alteration of the suppression parameters and learning rate can reproduce the lesion effects seen in our rats. Our results suggest that the RIF effect is widespread and that inhibitory processes are an important feature of memory function. © 2014 Wiley Periodicals, Inc.
Saive, Anne-Lise; Royet, Jean-Pierre; Garcia, Samuel; Thévenet, Marc; Plailly, Jane
2015-01-01
Episodic memory is defined as the conscious retrieval of specific past events. Whether accurate episodic retrieval requires a recollective experience or if a feeling of knowing is sufficient remains unresolved. We recently devised an ecological approach to investigate the controlled cued-retrieval of episodes composed of unnamable odors (What) located spatially (Where) within a visual context (Which context). By combining the Remember/Know procedure with our laboratory-ecological approach in an original way, the present study demonstrated that the accurate odor-evoked retrieval of complex and multimodal episodes overwhelmingly required conscious recollection. A feeling of knowing, even when associated with a high level of confidence, was not sufficient to generate accurate episodic retrieval. Interestingly, we demonstrated that the recollection of accurate episodic memories was promoted by odor retrieval-cue familiarity and describability. In conclusion, our study suggested that semantic knowledge about retrieval-cues increased the recollection which is the state of awareness required for the accurate retrieval of complex episodic memories. PMID:26630170
Saive, Anne-Lise; Royet, Jean-Pierre; Garcia, Samuel; Thévenet, Marc; Plailly, Jane
2015-01-01
Episodic memory is defined as the conscious retrieval of specific past events. Whether accurate episodic retrieval requires a recollective experience or if a feeling of knowing is sufficient remains unresolved. We recently devised an ecological approach to investigate the controlled cued-retrieval of episodes composed of unnamable odors (What) located spatially (Where) within a visual context (Which context). By combining the Remember/Know procedure with our laboratory-ecological approach in an original way, the present study demonstrated that the accurate odor-evoked retrieval of complex and multimodal episodes overwhelmingly required conscious recollection. A feeling of knowing, even when associated with a high level of confidence, was not sufficient to generate accurate episodic retrieval. Interestingly, we demonstrated that the recollection of accurate episodic memories was promoted by odor retrieval-cue familiarity and describability. In conclusion, our study suggested that semantic knowledge about retrieval-cues increased the recollection which is the state of awareness required for the accurate retrieval of complex episodic memories.
Harden, Maegan V; Newton, Lucy A; Lloyd, Russell C; Whitlock, Kathleen E
2006-11-01
Odors experienced as juveniles can have significant effects on the behavior of mature organisms. A dramatic example of this occurs in salmon, where the odors experienced by developing fish determine the river to which they return as adults. Further examples of olfactory memories are found in many animals including vertebrates and invertebrates. Yet, the cellular and molecular bases underlying the formation of olfactory memory are poorly understood. We have devised a series of experiments to determine whether zebrafish can form olfactory memories much like those observed in salmonids. Here we show for the first time that zebrafish form and retain olfactory memories of an artificial odorant, phenylethyl alcohol (PEA), experienced as juveniles. Furthermore, we demonstrate that exposure to PEA results in changes in gene expression within the olfactory sensory system. These changes are evident by in situ hybridization in the olfactory epithelium of the developing zebrafish. Strikingly, our analysis by in situ hybridization demonstrates that the transcription factor, otx2, is up regulated in the olfactory sensory epithelia in response to PEA. This increase is evident at 2-3 days postfertilization and is maintained in the adult animals. We propose that the changes in otx2 gene expression are manifest as an increase in the number of neuronal precursors in the cells olfactory epithelium of the odor-exposed fish. Thus, our results reveal a role for the environment in controlling gene expression in the developing peripheral nervous system. Copyright 2006 Wiley Periodicals, Inc.
Gusmão, Isabela D; Monteiro, Brisa M M; Cornélio, Guilherme O S; Fonseca, Cristina S; Moraes, Márcio F D; Pereira, Grace S
2012-03-17
Prolonged permanence of animals under social isolation (SI) arouses a variety of psychological symptoms like aggression, stress, anxiety and depression. However, short-term SI is commonly used to evaluate social memory. Interestingly, the social memory cannot be accessed with delays higher than 30min in SI mice. Our hypothesis is that SI with intermediate duration, like one week (1w), impairs the long-term storage of new social information (S-LTM), without affecting anxiety or other types of memories, because the SI compromises the olfactory function of the animal. Our results demonstrated that SI impaired S-LTM, without affecting other kinds of memory or anxiety. In addition, the SI increased the latency in the buried-food finding task, but did not affect the habituation or the discrimination of odors. Next, we postulated that if continuous input to the olfactory system is fundamental for the maintenance of the olfactory function and social memory persistence, isolated mice under odor-enriched environment (OEE) should behave like group-housed (GH) animals. In fact, the OEE prevented the S-LTM deficit imposed by the SI. However, OEE did not restore the SI mice olfaction to the GH mice level. Our results suggest that SI modulates olfaction and social memory persistence, probably, by independent mechanisms. We also showed for the first time that OEE rescued S-LTM in SI mice through a mechanism not necessarily involved with olfaction. Copyright © 2011 Elsevier B.V. All rights reserved.
Larsson, Maria; Hedner, Margareta; Papenberg, Goran; Seubert, Janina; Bäckman, Lars; Laukka, Erika J
2016-02-01
The neuroanatomical organization that underlies olfactory memory is different from that of other memory types. The present work examines olfactory memory in an elderly population-based sample (Swedish National Study on Aging and Care in Kungsholmen) aged 60-100 years (n = 2280). We used structural equation modeling to investigate whether olfactory memory in old age is best conceptualized as a distinct category, differentiated from episodic and semantic memory. Further, potential olfactory dedifferentiation and genetic associations (APOE) to olfactory function in late senescence were investigated. Results are in support of a 3-factor solution where olfactory memory, as indexed by episodic odor recognition and odor identification, is modeled separately from episodic and semantic memory for visual and verbal information. Increasing age was associated with poorer olfactory memory performance, and observed age-related deficits were further exacerbated for carriers of the APOE ε4 allele; these effects tended to be larger for olfactory memory compared to episodic and semantic memory pertaining to other sensory systems (vision, auditory). Finally, stronger correlations between olfactory and episodic memory, indicating dedifferentiation, were observed in the older age groups. Copyright © 2016 Elsevier Inc. All rights reserved.
SODR Memory Control Buffer Control ASIC
NASA Technical Reports Server (NTRS)
Hodson, Robert F.
1994-01-01
The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.
Internode data communications in a parallel computer
Archer, Charles J.; Blocksome, Michael A.; Miller, Douglas R.; Parker, Jeffrey J.; Ratterman, Joseph D.; Smith, Brian E.
2013-09-03
Internode data communications in a parallel computer that includes compute nodes that each include main memory and a messaging unit, the messaging unit including computer memory and coupling compute nodes for data communications, in which, for each compute node at compute node boot time: a messaging unit allocates, in the messaging unit's computer memory, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; receives, prior to initialization of a particular process on the compute node, a data communications message intended for the particular process; and stores the data communications message in the message buffer associated with the particular process. Upon initialization of the particular process, the process establishes a messaging buffer in main memory of the compute node and copies the data communications message from the message buffer of the messaging unit into the message buffer of main memory.
Internode data communications in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Parker, Jeffrey J; Ratterman, Joseph D; Smith, Brian E
2014-02-11
Internode data communications in a parallel computer that includes compute nodes that each include main memory and a messaging unit, the messaging unit including computer memory and coupling compute nodes for data communications, in which, for each compute node at compute node boot time: a messaging unit allocates, in the messaging unit's computer memory, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; receives, prior to initialization of a particular process on the compute node, a data communications message intended for the particular process; and stores the data communications message in the message buffer associated with the particular process. Upon initialization of the particular process, the process establishes a messaging buffer in main memory of the compute node and copies the data communications message from the message buffer of the messaging unit into the message buffer of main memory.
Working Memory Systems in the Rat.
Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D
2016-02-08
A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Distinct circuits for the formation and retrieval of an imprinted olfactory memory
Jin, Xin; Pokala, Navin; Bargmann, Cornelia I.
2016-01-01
Summary Memories formed early in life are particularly stable and influential, representing privileged experiences that shape enduring behaviors. Here we show that exposing newly-hatched C. elegans to pathogenic bacteria results in persistent aversion to those bacterial odors, whereas adult exposure generates only transient aversive memory. Long-lasting imprinted aversion has a critical period in the first larval stage, and is specific to the experienced pathogen. Distinct groups of neurons are required during formation (AIB, RIM) and retrieval (AIY, RIA) of the imprinted memory. RIM synthesizes the neuromodulator tyramine, which is required in the L1 stage for learning. AIY memory retrieval neurons sense tyramine via the SER-2 receptor, which is essential for imprinted but not for adult-learned aversion. Odor responses in several neurons, most notably RIA, are altered in imprinted animals. These findings provide insight into neuronal substrates of different forms of memory, and lay a foundation for further understanding of early learning. PMID:26871629
Cortical Odor Processing in Health and Disease
Wilson, Donald A.; Xu, Wenjin; Sadrian, Benjamin; Courtiol, Emmanuelle; Cohen, Yaniv; Barnes, Dylan C.
2014-01-01
The olfactory system has a rich cortical representation, including a large archicortical component present in most vertebrates, and in mammals neocortical components including the entorhinal and orbitofrontal cortices. Together, these cortical components contribute to normal odor perception and memory. They help transform the physicochemical features of volatile molecules inhaled or exhaled through the nose into the perception of odor objects with rich associative and hedonic aspects. This chapter focuses on how olfactory cortical areas contribute to odor perception and begins to explore why odor perception is so sensitive to disease and pathology. Odor perception is disrupted by a wide range of disorders including Alzheimer’s disease, Parkinson’s disease, schizophrenia, depression, autism, and early life exposure to toxins. This olfactory deficit often occurs despite maintained functioning in other sensory systems. Does the unusual network of olfactory cortical structures contribute to this sensitivity? PMID:24767487
ERIC Educational Resources Information Center
Coureaud, Gerard; Languille, Solene; Schaal, Benoist; Hars, Bernard
2009-01-01
Mammary pheromone (MP)-induced odor memory is a new model of appetitive memory functioning early in a mammal, the newborn rabbit. Some properties of this associative memory are analyzed by the use of anisomycin as an amnesic agent. Long-term memory (LTM) was impaired by anisomycin delivered immediately, but not 4 h after either acquisition or…
Multimodal cuing of autobiographical memory in semantic dementia.
Greenberg, Daniel L; Ogar, Jennifer M; Viskontas, Indre V; Gorno Tempini, Maria Luisa; Miller, Bruce; Knowlton, Barbara J
2011-01-01
Individuals with semantic dementia (SD) have impaired autobiographical memory (AM), but the extent of the impairment has been controversial. According to one report (Westmacott, Leach, Freedman, & Moscovitch, 2001), patient performance was better when visual cues were used instead of verbal cues; however, the visual cues used in that study (family photographs) provided more retrieval support than do the word cues that are typically used in AM studies. In the present study, we sought to disentangle the effects of retrieval support and cue modality. We cued AMs of 5 patients with SD and 5 controls with words, simple pictures, and odors. Memories were elicited from childhood, early adulthood, and recent adulthood; they were scored for level of detail and episodic specificity. The patients were impaired across all time periods and stimulus modalities. Within the patient group, words and pictures were equally effective as cues (Friedman test; χ² = 0.25, p = .61), whereas odors were less effective than both words and pictures (for words vs. odors, χ² = 7.83, p = .005; for pictures vs. odors, χ² = 6.18, p = .01). There was no evidence of a temporal gradient in either group (for patients with SD, χ² = 0.24, p = .89; for controls, χ² < 2.07, p = .35). Once the effect of retrieval support is equated across stimulus modalities, there is no evidence for an advantage of visual cues over verbal cues. The greater impairment for olfactory cues presumably reflects degeneration of anterior temporal regions that support olfactory memory. (c) 2010 APA, all rights reserved.
Managing internode data communications for an uninitialized process in a parallel computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R
2014-05-20
A parallel computer includes nodes, each having main memory and a messaging unit (MU). Each MU includes computer memory, which in turn includes, MU message buffers. Each MU message buffer is associated with an uninitialized process on the compute node. In the parallel computer, managing internode data communications for an uninitialized process includes: receiving, by an MU of a compute node, one or more data communications messages in an MU message buffer associated with an uninitialized process on the compute node; determining, by an application agent, that the MU message buffer associated with the uninitialized process is full prior tomore » initialization of the uninitialized process; establishing, by the application agent, a temporary message buffer for the uninitialized process in main computer memory; and moving, by the application agent, data communications messages from the MU message buffer associated with the uninitialized process to the temporary message buffer in main computer memory.« less
Managing internode data communications for an uninitialized process in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Parker, Jeffrey J; Ratterman, Joseph D; Smith, Brian E
2014-05-20
A parallel computer includes nodes, each having main memory and a messaging unit (MU). Each MU includes computer memory, which in turn includes, MU message buffers. Each MU message buffer is associated with an uninitialized process on the compute node. In the parallel computer, managing internode data communications for an uninitialized process includes: receiving, by an MU of a compute node, one or more data communications messages in an MU message buffer associated with an uninitialized process on the compute node; determining, by an application agent, that the MU message buffer associated with the uninitialized process is full prior to initialization of the uninitialized process; establishing, by the application agent, a temporary message buffer for the uninitialized process in main computer memory; and moving, by the application agent, data communications messages from the MU message buffer associated with the uninitialized process to the temporary message buffer in main computer memory.
Effects of MDMA on olfactory memory and reversal learning in rats
Hawkey, Andrew; April, L. Brooke; Galizio, Mark
2014-01-01
The effects of acute and sub-chronic MDMA were assessed using a procedure designed to test rodent working memory capacity: the odor span task (OST). Rats were trained to select an odor that they had not previously encountered within the current session, and the number of odors to remember was incremented up to 24 during the course of each session. In order to separate drug effects on the OST from more general performance impairment, a simple olfactory discrimination was also assessed in each session. In Experiment 1, acute doses of MDMA were administered prior to select sessions. MDMA impaired memory span in a dose-dependent fashion, but impairment was seen only at doses (1.8 and 3.0 mg/kg) that also increased response omissions on both the simple discrimination and the OST. In Experiment 2, a sub-chronic regimen of MDMA (10.0 mg/kg, twice daily over four days) was administered after OST training. There was no evidence of reduced memory span following sub-chronic MDMA, but a temporary increase in omission errors on the OST was observed. In addition, rats exposed to sub-chronic MDMA showed delayed learning when the simple discrimination was reversed. Overall, the disruptive effects of both acute and sub-chronic MDMA appeared to be due to non-mnemonic processes, rather than effects on specific memory functions. PMID:25017644
NREM2 and Sleep Spindles Are Instrumental to the Consolidation of Motor Sequence Memories
Laventure, Samuel; Fogel, Stuart; Lungu, Ovidiu; Albouy, Geneviève; Sévigny-Dupont, Pénélope; Vien, Catherine; Sayour, Chadi; Carrier, Julie; Benali, Habib; Doyon, Julien
2016-01-01
Although numerous studies have convincingly demonstrated that sleep plays a critical role in motor sequence learning (MSL) consolidation, the specific contribution of the different sleep stages in this type of memory consolidation is still contentious. To probe the role of stage 2 non-REM sleep (NREM2) in this process, we used a conditioning protocol in three different groups of participants who either received an odor during initial training on a motor sequence learning task and were re-exposed to this odor during different sleep stages of the post-training night (i.e., NREM2 sleep [Cond-NREM2], REM sleep [Cond-REM], or were not conditioned during learning but exposed to the odor during NREM2 [NoCond]). Results show that the Cond-NREM2 group had significantly higher gains in performance at retest than both the Cond-REM and NoCond groups. Also, only the Cond-NREM2 group yielded significant changes in sleep spindle characteristics during cueing. Finally, we found that a change in frequency of sleep spindles during cued-memory reactivation mediated the relationship between the experimental groups and gains in performance the next day. These findings strongly suggest that cued-memory reactivation during NREM2 sleep triggers an increase in sleep spindle activity that is then related to the consolidation of motor sequence memories. PMID:27032084
k(+)-buffer: An Efficient, Memory-Friendly and Dynamic k-buffer Framework.
Vasilakis, Andreas-Alexandros; Papaioannou, Georgios; Fudos, Ioannis
2015-06-01
Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth complexity. When low graphics memory requirements are of utmost importance, k-buffer can objectively be considered as the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments. Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced by the initial k-buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically and dynamically compute the most suitable value of k are still missing. To this end, we introduce k(+)-buffer, a fast framework that accurately simulates the behavior of k-buffer in a single rendering pass. Two memory-bounded data structures: (i) the max-array and (ii) the max-heap are developed on the GPU to concurrently maintain the k-foremost fragments per pixel by exploring pixel synchronization and fragment culling. Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of k-buffer according to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating the advantages of our work over all prior k-buffer variants in terms of memory usage, performance cost and image quality.
Locus coeruleus degeneration exacerbates olfactory deficits in APP/PS1 transgenic mice.
Rey, Nolwen L; Jardanhazi-Kurutz, Daniel; Terwel, Dick; Kummer, Markus P; Jourdan, Francois; Didier, Anne; Heneka, Michael T
2012-02-01
Neuronal loss in the locus coeruleus (LC) is 1 of the early pathological events in Alzheimer's disease (AD). Projections of noradrenergic neurons of the LC innervate the olfactory bulb (OB). Because olfactory deficits have been reported in early AD, we investigated the effect of induced LC degeneration on olfactory memory and discrimination in an AD mouse model. LC degeneration was induced by treating APP/PS1 mice with N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (DSP4) repeatedly between 3 and 12 months of age. Short term odor retention, ability for spontaneous habituation to an odor, and spontaneous odor discrimination were assessed by behavioral tests. DSP4 treatment in APP/PS1 mice resulted in an exacerbation of short term olfactory memory deficits and more discrete weakening of olfactory discrimination abilities, suggesting that LC degeneration contributes to olfactory deficits observed in AD. Importantly, DSP4 treatment also increased amyloid β (Aβ) deposition in the olfactory bulb of APP/PS1 mice, which correlated with olfactory memory, not with discrimination deficits. Copyright © 2012 Elsevier Inc. All rights reserved.
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L.; Page, Terry L.; Bhuva, Bharat; Broadie, Kendal
2016-01-01
Background Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. New Method The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. Results The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24 hours) are comparable to traditional manual experiments, while minimizing experimenter involvement. Comparison with Existing Methods The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ~$500US, making it affordable to a wide range of investigators. Conclusions This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. PMID:26703418
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal
2016-03-01
Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Weber, Eric E.
Concentrated animal feeding operations (CAFOs) have been experiencing increased resistance from surrounding residents making construction of new facilities or expansion of existing ones increasingly limited (Jacobson et al., 2002). Such concerns often include the impact of nuisance odor on peoples’ lives and on the environment (Huang and Miller, 2006). Vegetative environmental buffers (VEBs) have been suggested as a possible odor control technology. They have been found to impact odor plume dispersion and have shown the possibility of being an effective tool for odor abatement when used alone or in combination with other technologies (Lin et al., 2006). The main objective of this study was to use Gaussian-type dispersion modeling to determine the feasibility of use and the effectiveness of a VEB at controlling the spread of odor from a swine feeding operation. First, wind tunnel NH3 dispersion trends were compared to model generated dispersion trends to determine the accuracy of the model at handling VEB dispersion. Next, facility-scale (northern Missouri specific) model simulations with and without a VEB were run to determine its viability as an option for dispersion reduction. Finally, dispersion forecasts that integrated numerical weather forecasts were developed and compared to collected concentration data to determine forecast accuracy. The results of this study found that dispersion models can be used to simulate dispersion around a VEB. AERMOD-generated dispersion trends were found to follow similar patterns of decreasing downwind concentration to those of both wind tunnel simulations and previous research. This shows that a VEB can be incorporated into AERMOD and that the model can be used to determine its effectiveness as an odor control option. The results of this study also showed that a VEB has an effect on odor dispersion by reducing downwind concentrations. This was confirmed by both wind tunnel and AERMOD simulations of dispersion displaying decreased downwind concentrations from a control scenario. This shows that VEBs have the potential to act as an odor control option for CAFOs. This study also found that a forecast method that integrated numerical weather prediction into dispersion models could be developed to forecast areas of high concentration. Model-forecasted dispersion trends had a high spatial correlation with collected concentrations for days when the facility was emitting. This shows that dispersion models can accurately predict high concentration areas using forecasted weather data. The information provided by this study may ultimately prove useful for this particular facility and others and may help to lower tensions with surrounding residents.
Environmentally friendly animal litter
Chett, Boxley; McKelvie, Jessica
2013-08-20
A method of making an animal litter that includes geopolymerized ash, wherein, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control may be accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.
Honda, Takato; Lee, Chi-Yu; Honjo, Ken; Furukubo-Tokunaga, Katsuo
2016-01-01
The larval brain of Drosophila melanogaster provides an excellent system for the study of the neurocircuitry mechanism of memory. Recent development of neurogenetic techniques in fruit flies enables manipulations of neuronal activities in freely behaving animals. This protocol describes detailed steps for artificial induction of olfactory associative memory in Drosophila larvae. In this protocol, the natural reward signal is substituted by thermogenetic activation of octopaminergic neurons in the brain. In parallel, the odor signal is substituted by optogenetic activation of a specific class of olfactory receptor neurons. Association of reward and odor stimuli is achieved with the concomitant application of blue light and heat that leads to activation of both sets of neurons in living transgenic larvae. Given its operational simplicity and robustness, this method could be utilized to further our knowledge on the neurocircuitry mechanism of memory in the fly brain. PMID:27445732
Cognitive Load Alters Neuronal Processing of Food Odors.
Hoffmann-Hensel, Sonja Maria; Sijben, Rik; Rodriguez-Raecke, Rea; Freiherr, Jessica
2017-10-31
Obesity is a major health concern in modern societies. Although decreased physical activity and enhanced intake of high-caloric foods are important risk factors for developing obesity, human behavior during eating also plays a role. Previous studies have shown that distraction while eating increases food intake and leads to impaired processing of food stimuli. As olfaction is the most important sense involved in flavor perception, we used functional magnetic resonance imaging techniques to investigate the influence of cognitive memory load on olfactory perception and processing. Low- and high-caloric food odors were presented in combination with either low or high cognitive loads utilizing a memory task. The efficacy of the memory task was verified by a decrease in participant recall accuracy and an increase in skin conductance response during high cognitive load. Our behavioral data reveal a diminished perceived intensity for low- but not high-caloric food odors during high cognitive load. For low-caloric food odors, bilateral orbitofrontal (OFC) and piriform cortices (pirC) showed significantly lower activity during high compared with low cognitive load. For high-caloric food odors, a similar effect was established in pirC, but not in OFC. Insula activity correlates with higher intensity ratings found during the low cognitive load condition. We conclude lower activity in pirC and OFC to be responsible for diminished intensity perception, comparable to results in olfactory impaired patients and elderly. Further studies should investigate the influence of olfactory/gustatory intensities on food choices under distraction with special regards to low-caloric food. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Data communications in a parallel active messaging interface of a parallel computer
Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2014-09-02
Eager send data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints that specify a client, a context, and a task, including receiving an eager send data communications instruction with transfer data disposed in a send buffer characterized by a read/write send buffer memory address in a read/write virtual address space of the origin endpoint; determining for the send buffer a read-only send buffer memory address in a read-only virtual address space, the read-only virtual address space shared by both the origin endpoint and the target endpoint, with all frames of physical memory mapped to pages of virtual memory in the read-only virtual address space; and communicating by the origin endpoint to the target endpoint an eager send message header that includes the read-only send buffer memory address.
Data communications in a parallel active messaging interface of a parallel computer
Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2014-09-16
Eager send data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints that specify a client, a context, and a task, including receiving an eager send data communications instruction with transfer data disposed in a send buffer characterized by a read/write send buffer memory address in a read/write virtual address space of the origin endpoint; determining for the send buffer a read-only send buffer memory address in a read-only virtual address space, the read-only virtual address space shared by both the origin endpoint and the target endpoint, with all frames of physical memory mapped to pages of virtual memory in the read-only virtual address space; and communicating by the origin endpoint to the target endpoint an eager send message header that includes the read-only send buffer memory address.
Long-term episodic memory decline is associated with olfactory deficits only in carriers of ApoE-є4.
Olofsson, Jonas K; Josefsson, Maria; Ekström, Ingrid; Wilson, Donald; Nyberg, Lars; Nordin, Steven; Nordin Adolfsson, Annelie; Adolfsson, Rolf; Nilsson, Lars-Göran; Larsson, Maria
2016-05-01
The ɛ4 allele of the Apolipoprotein E gene is a genetic risk factor for late-onset dementia of the Alzheimers' type (DAT), which is characterized by loss of both episodic memory and olfactory functions. Little is known about the possible role of ɛ4 in the association between ongoing episodic memory decline and olfactory deficits in the general population, but such information is relevant in determining the relevance of olfaction as a marker of DAT risk. The present study was based on a large, population-based sample (n=1087, aged 45-90 years, of which 324 were ɛ4-carriers). Episodic memory change rates were established using data collected every 5 years for a 10-20 year interval leading up to an olfactory assessment using the Scandinavian Odor Identification Test at the last wave of data collection. Participants were classified according to whether or not their episodic memory ability declined more rapidly than the age-typical norm (by >1SD). Our main result is that only in ɛ4-carriers was episodic memory decline associated with odor identification impairment. In individuals without ɛ4, odor identification was unrelated to episodic memory decline status. Follow-up analyses indicated that this moderation by ɛ4 was due to the olfactory nature of the identification test, and that the effect was not caused by 63 individuals with dementia. Our results suggest that the ɛ4 determines the functional association between ongoing episodic memory decline and olfaction. These findings are consistent with the notion that ɛ4-carriers with DAT, compared to non-carriers, display a cortical atrophy pattern that is more focused on mediotemporal lobe regions supporting olfactory and episodic memory functions. Olfactory and memory assessments might provide complementary information on mediotemporal atrophy prior to clinical dementia onset, but the ɛ4 should be considered when using olfactory assessment as an early-stage indicator. Copyright © 2016. Published by Elsevier Ltd.
Performing a local reduction operation on a parallel computer
Blocksome, Michael A; Faraj, Daniel A
2013-06-04
A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.
Performing a local reduction operation on a parallel computer
Blocksome, Michael A.; Faraj, Daniel A.
2012-12-11
A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.
ERIC Educational Resources Information Center
Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.
2013-01-01
Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…
The impact of odor–reward memory on chemotaxis in larval Drosophila
Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander
2015-01-01
How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor “valence” (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior. PMID:25887280
Cognitive mechanisms of memory for order in rhesus monkeys (Macaca mulatta).
Templer, Victoria L; Hampton, Robert R
2013-03-01
One important aspect of episodic memory is the ability to remember the order in which events occurred. Memory for sequences in rats and has been shown to rely on the hippocampus and medial prefrontal cortex (DeVito and Eichenbaum (2011) J Neuro 31:3169-3175; Fortin et al. (2002) Nat Neuro 5:458-462). Rats with hippocampal lesions were impaired in selecting the odor that had appeared earlier in a sequence of five odors but were not impaired in recognition of previously sampled odors (Fortin et al., 2002; Kesner et al. (2002) Behav Neuro 116:286-290). These results suggest that order is not represented by relative familiarity or memory strength. However, the cognitive mechanisms underlying memory for order have not been determined. We presented monkeys with lists of five images drawn randomly from a pool of 6,000 images. At test, two images were presented and monkeys were rewarded for selecting the image that had appeared earlier in the studied list. Monkeys learned to discriminate the order of the images, even those that were consecutive in the studied list. In subsequent experiments, we found that discrimination of order was not controlled by list position or relative memory strength. Instead, monkeys used temporal order, a mechanism that appears to encode order of occurrence relative to other events, rather than in absolute time. We found that number of intervening images, rather than passage of time per se, most strongly determined the discriminability of order of occurrence. Better specifying the cognitive mechanisms nonhuman primates use to remember the order of events enhances this animal model of episodic memory, and may further inform our understanding of the functions of the hippocampus. Copyright © 2012 Wiley Periodicals, Inc.
Murray, Brendan G; Davies, Don A; Molder, Joel J; Howland, John G
2017-05-01
Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia in the offspring. Patients with schizophrenia display an array of cognitive symptoms, including impaired working memory capacity. Rodent models have been developed to understand the relationship between maternal immune activation and the cognitive symptoms of schizophrenia. The present experiment was designed to test whether maternal immune activation with the viral mimetic polyinosinic:polycytidylic acid (polyI:C) during pregnancy affects working memory capacity of the offspring. Pregnant Long Evans rats were treated with either saline or polyI:C (4mg/kg; i.v.) on gestational day 15. Male offspring of the litters (2-3months of age) were subsequently trained on a nonmatching-to-sample task with odors. After a criterion was met, the rats were tested on the odor span task, which requires rats to remember an increasing span of different odors to receive food reward. Rats were tested using delays of approximately 40s during the acquisition of the task. Importantly, polyI:C- and saline-treated offspring did not differ in performance of the nonmatching-to-sample task suggesting that both groups could perform a relatively simple working memory task. In contrast, polyI:C-treated offspring had reduced span capacity in the middle and late phases of odor span task acquisition. After task acquisition, the rats were tested using the 40s delay and a 10min delay. Both groups showed a delay-dependent decrease in span, although the polyI:C-treated offspring had significantly lower spans regardless of delay. Our results support the validity of the maternal immune activation model for studying the cognitive symptoms of neurodevelopmental disorders such as schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.
Rats Depend on Habit Memory for Discrimination Learning and Retention
ERIC Educational Resources Information Center
Broadbent, Nicola J.; Squire, Larry R.; Clark, Robert E.
2007-01-01
We explored the circumstances in which rats engage either declarative memory (and the hippocampus) or habit memory (and the dorsal striatum). Rats with damage to the hippocampus or dorsal striatum were given three different two-choice discrimination tasks (odor, object, and pattern). These tasks differed in the number of trials required for…
Studies on vaginal malodor. I. Study in humans.
Chvapil, M; Eskelson, C; Jacobs, S; Chvapil, T; Russell, D H
1978-07-01
Forty-two percent of collagen sponges tested as an intravaginal barrier contraceptive method developed malodor when retained for 5 days. Only 4% developed odor when the sponge was removed within 24 hours after intercourse, rinsed, and reinserted. While sexually active volunteers found odor in 37% of the sponges, odor formed only in 4% of the sponges worn by sexually inactive users. No difference in the rate of odor formation was found when neutral pH (7.0) and acid pH (3.4) collagen sponges were tested, although we believe that a pH 3.4 is too acid and promotes odor formation. The optimal pH of the sponge should be 4.5 to 5.5. Malodor was efficiently extracted from sponges by washing in acid milieu of tap water and vinegar or 0.1 M acetate buffer, pH 4.0. Alkali extraction procedures were ineffective, and lukewarm water was slightly less effective than acid extraction of odor. At the time of malodor development, the high content of polyamines (putrescine, spermine, spermidine) in the ejaculate decreased to undetectable values. We conclude that the ejaculate is the major source of malodor formation in intravaginally worn collagen sponges. Removal, rinsing optimally in vinegar solution, and reinsertion within 24 hours after intercourse reduces the chance of malodor formation.
Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response.
Horii, Yuko; Nagai, Katsuya; Nakashima, Toshihiro
2013-04-15
When mammals are exposed to an odor, that odor is expected to elicit a physiological response in the autonomic nervous system. An unpleasant aversive odor causes non-invasive stress, while a pleasant odor promotes healing and relaxation in mammals. We hypothesized that pleasant odors might reduce a stress response previously induced by an aversive predator odor. Rats were thus exposed to pleasant and unpleasant odors in different orders to determine whether the order of odor exposure had an effect on the physiological response in the autonomic nervous system. The first trial examined autonomic nerve activity via sympathetic and parasympathetic nerve response while the second trial examined body temperature response. Initial exposure to a pleasant odor elicited a positive response and secondary exposure to an unpleasant odor elicited a negative response, as expected. However, we found that while initial exposure to an unpleasant odor elicited a negative stress response, subsequent secondary exposure to a pleasant odor not only did not alleviate that negative response, but actually amplified it. These findings were consistent for both the autonomic nerve activity response trial and the body temperature response trial. The trial results suggest that exposure to specific odors does not necessarily result in the expected physiological response and that the specific order of exposure plays an important role. Our study should provide new insights into our understanding of the physiological response in the autonomic nervous system related to odor memory and discrimination and point to areas that require further research. Copyright © 2013 Elsevier B.V. All rights reserved.
Davis, Catherine M; Roma, Peter G; Armour, Elwood; Gooden, Virginia L; Brady, Joseph V; Weed, Michael R; Hienz, Robert D
2014-01-01
The present report describes an animal model for examining the effects of radiation on a range of neurocognitive functions in rodents that are similar to a number of basic human cognitive functions. Fourteen male Long-Evans rats were trained to perform an automated intra-dimensional set shifting task that consisted of their learning a basic discrimination between two stimulus shapes followed by more complex discrimination stages (e.g., a discrimination reversal, a compound discrimination, a compound reversal, a new shape discrimination, and an intra-dimensional stimulus discrimination reversal). One group of rats was exposed to head-only X-ray radiation (2.3 Gy at a dose rate of 1.9 Gy/min), while a second group received a sham-radiation exposure using the same anesthesia protocol. The irradiated group responded less, had elevated numbers of omitted trials, increased errors, and greater response latencies compared to the sham-irradiated control group. Additionally, social odor recognition memory was tested after radiation exposure by assessing the degree to which rats explored wooden beads impregnated with either their own odors or with the odors of novel, unfamiliar rats; however, no significant effects of radiation on social odor recognition memory were observed. These data suggest that rodent tasks assessing higher-level human cognitive domains are useful in examining the effects of radiation on the CNS, and may be applicable in approximating CNS risks from radiation exposure in clinical populations receiving whole brain irradiation.
Davis, Catherine M.; Roma, Peter G.; Armour, Elwood; Gooden, Virginia L.; Brady, Joseph V.; Weed, Michael R.; Hienz, Robert D.
2014-01-01
The present report describes an animal model for examining the effects of radiation on a range of neurocognitive functions in rodents that are similar to a number of basic human cognitive functions. Fourteen male Long-Evans rats were trained to perform an automated intra-dimensional set shifting task that consisted of their learning a basic discrimination between two stimulus shapes followed by more complex discrimination stages (e.g., a discrimination reversal, a compound discrimination, a compound reversal, a new shape discrimination, and an intra-dimensional stimulus discrimination reversal). One group of rats was exposed to head-only X-ray radiation (2.3 Gy at a dose rate of 1.9 Gy/min), while a second group received a sham-radiation exposure using the same anesthesia protocol. The irradiated group responded less, had elevated numbers of omitted trials, increased errors, and greater response latencies compared to the sham-irradiated control group. Additionally, social odor recognition memory was tested after radiation exposure by assessing the degree to which rats explored wooden beads impregnated with either their own odors or with the odors of novel, unfamiliar rats; however, no significant effects of radiation on social odor recognition memory were observed. These data suggest that rodent tasks assessing higher-level human cognitive domains are useful in examining the effects of radiation on the CNS, and may be applicable in approximating CNS risks from radiation exposure in clinical populations receiving whole brain irradiation. PMID:25099152
Bell, Genevieve A.; Fadool, Debra Ann
2017-01-01
Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5 μg/μl of insulin twice daily for 30 and 60 days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice performed no different from controls regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3X increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR Kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors – as reported to elicit a modulatory effect with acute administration. This leads to two alternative interpretations regarding long-term insulin IND in mice: 1) It causes an initial stage of insulin resistance to dampen the behaviors that would normally be modulated under acute insulin IND, but ability to clear a glucose challenge is still retained, or 2) There is a lack of behavioral modulation at high concentration of insulin attributed to the twice daily intervals of hyperinsulinemia caused by insulin IND administration without any insulin resistance, per se. PMID:28259806
Bell, Genevieve A; Fadool, Debra Ann
2017-05-15
Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5μg/μl of insulin twice daily for 30 and 60days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice did not perform differently than controls, regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3 fold increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors - as reported to elicit a modulatory effect with acute administration. This leads to two alternative interpretations regarding long-term insulin IND in mice: 1) It causes an initial stage of insulin resistance to dampen the behaviors that would normally be modulated under acute insulin IND, but ability to clear a glucose challenge is still retained, or 2) There is a lack of behavioral modulation at high concentration of insulin attributed to the twice daily intervals of hyperinsulinemia caused by insulin IND administration without any insulin resistance, per se. Copyright © 2017 Elsevier Inc. All rights reserved.
Environmentally-friendly animal litter
Boxley, Chett; McKelvie, Jessica
2012-08-28
An animal litter composition including geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control is accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.
Sniffing shapes the dynamics of olfactory bulb gamma oscillations in awake behaving rats.
Rosero, Mario A; Aylwin, María L
2011-09-01
Mammals actively sample the environment for relevant olfactory objects. This active sampling is revealed by rapid changes in respiratory rate that influence the olfactory input. Yet the role of sniffing in shaping the neural responses to odorants has not been elucidated. In the olfactory bulb (OB), odorant-evoked gamma oscillations reflect the synchronous activity of mitral/tufted cells, a proposed mechanism for odorant representation. Here we examined the effect of sniffing frequency on the odorant-evoked gamma oscillations in the OB. We simultaneously recorded the respiratory rate and the local field potential while rats performed a lick/no-lick olfactory discrimination task with low odorant concentrations. High-frequency sniffing (HFS) augmented the power of gamma oscillations, suggesting an increase in the sensitivity to odorants. By contrast, coupling of the gamma oscillations to the sniff cycle and the amplitude of individual bursts were not modified by the respiratory rate. However, HFS prolonged the overall response to odorants and increased the frequency of the gamma oscillations, indicating that HFS reduces the adaptation to continuous odorant stimulation. Therefore, the increase in gamma power during HFS is the result of more frequent gamma bursts and the extended response to odorants. As odorant discrimination can be performed in a single sniff, a reduction in the adaptation mediated by HFS of novel odorants may facilitate odorant memory formation for subsequent odorant identification. Finally, these results corroborate that olfactory sampling should be integrated to the study of odorant coding in behaving animals. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Semantic networks for odors and colors in Alzheimer's disease.
Razani, Jill; Chan, Agnes; Nordin, Steven; Murphy, Claire
2010-05-01
Impairment in odor-naming ability and in verbal and visual semantic networks raised the hypothesis of a breakdown in the semantic network for odors in Alzheimer's disease (AD). The current study addressed this hypothesis. Twenty-four individuals, half patients with probable AD and half control participants, performed triadic-similarity judgments for odors and colors, separately, which, utilizing the multidimensional scaling (MDS) technique of individual difference scaling analysis (INDSCAL), generated two-dimensional configurations of similarity. The abilities to match odors and colors with written name labels were assessed to investigate disease-related differences in ability to identify and conceptualize the stimuli. In addition, responses on attribute-sorting tasks, requiring the odor and color perceptions to be categorized as one polarity of a certain dimension, were obtained to allow for objective interpretation of the MDS spatial maps. Whereas comparison subjects generated spatial maps based predominantly on relatively abstract characteristics, patients with AD classified odors on perceptual characteristics. The maps for patients with AD also showed disorganized groupings and loose associations between odors. Their normal configurations for colors imply that the patients were able to comprehend the task per se. The data for label matching and for attribute sorting provide further evidence for a disturbance in semantic odor memory in AD. The patients performed poorer than controls on both these odor tasks, implying that the ability to identify and/or conceptualize odors is impaired in AD. The results provide clear evidence for deterioration of the structure of semantic knowledge for odors in AD.
MacQueen, David A; Dalrymple, Savannah R; Drobes, David J; Diamond, David M
2016-06-01
Developed as a tool to assess working memory capacity in rodents, the odor span task (OST) has significant potential to advance drug discovery in animal models of psychiatric disorders. Prior investigations indicate OST performance is impaired by systemic administration of N-methyl-d-aspartate receptor (NMDA-r) antagonists and is sensitive to cholinergic manipulations. The present study sought to determine whether an impairment in OST performance can be produced by systemic administration of the competitive NMDA-r antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP; 3, 10, 17 mg/kg i.p.) in a unique dual-component variant of the OST, and whether this impairment is ameliorated by nicotine (0.75 mg/kg i.p.). Male Sprague-Dawley rats were trained to asymptotic level of performance on a 24-trial two-comparison incrementing nonmatching to sample OST. In addition, rats were administered a two-comparison olfactory reference memory (RM) task, which was integrated into the OST. The RM task provided an assessment of the effects of drug administration on global behavioral measures, long-term memory and motivation. Several measures of working memory (span, longest run, and accuracy) were dose dependently impaired by CPP without adversely affecting RM. Analysis of drug effects across trial blocks demonstrated a significant impairment of performance even at low memory loads, suggesting a CPP-induced deficit of olfactory short-term memory that is not load-dependent. Although nicotine did not ameliorate CPP-induced impairments in span or accuracy, it did block the impairment in longest run produced by the 10 mg/kg dose of CPP. Overall, our results indicate that performance in our 24 odor two-comparison OST is capacity dependent and that CPP impaired OST working, but not reference, memory. © 2016 MacQueen et al.; Published by Cold Spring Harbor Laboratory Press.
I'm no longer torn after choice: how explicit choices implicitly shape preferences of odors.
Coppin, Géraldine; Delplanque, Sylvain; Cayeux, Isabelle; Porcherot, Christelle; Sander, David
2010-04-01
Several studies have shown that preferences can be strongly modulated by cognitive processes such as decision making and choices. However, it is still unclear whether choices can influence preferences of sensory stimuli implicitly. This question was addressed here by asking participants to evaluate odors, to choose their preferred odors within pairs, to reevaluate the odors, and to perform an unexpected memory test. Results revealed, for the first time in the study of olfaction, the existence of postchoice preference changes, in the sense of an overvaluation of chosen odors and a devaluation of rejected ones, even when choices were forgotten. These results suggest that chemosensory preferences can be modulated by explicit choices and that such modulation might rely on implicit mechanisms. This finding rules out any explanation of postchoice preference changes in terms of experimental demand and strongly challenges the classical cognitive-dissonance-reduction account of such preference changes.
A 128K-bit CCD buffer memory system
NASA Technical Reports Server (NTRS)
Siemens, K. H.; Wallace, R. W.; Robinson, C. R.
1976-01-01
A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications.
ERIC Educational Resources Information Center
Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.
2013-01-01
Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…
Krashes, Michael J.; Waddell, Scott
2008-01-01
In Drosophila, formation of aversive olfactory long-term memory (LTM) requires multiple training sessions pairing odor and electric shock punishment with rest intervals. In contrast, here we show that a single 2 min training session pairing odor with a more ethologically relevant sugar reinforcement forms long-term appetitive memory that lasts for days. Appetitive LTM has some mechanistic similarity to aversive LTM in that it can be disrupted by cycloheximide, the dCreb2-b transcriptional repressor, and the crammer and tequila LTM-specific mutations. However, appetitive LTM is completely disrupted by the radish mutation that apparently represents a distinct mechanistic phase of consolidated aversive memory. Furthermore, appetitive LTM requires activity in the dorsal paired medial neuron and mushroom body α′ β′ neuron circuit during the first hour after training and mushroom body αβ neuron output during retrieval, suggesting that appetitive middle-term memory and LTM are mechanistically linked. Last, experiments feeding and/or starving flies after training reveals a critical motivational drive that enables appetitive LTM retrieval. PMID:18354013
The impact of expertise in olfaction
Royet, Jean-Pierre; Plailly, Jane; Saive, Anne-Lise; Veyrac, Alexandra; Delon-Martin, Chantal
2013-01-01
Olfactory expertise remains poorly understood, most likely because experts in odor, such as perfumers, sommeliers, and oenologists, are much rarer than experts in other modalities, such as musicians or sportsmen. In this review, we address the specificities of odor expertise in both odor experts and in a priori untrained individuals who have undergone specific olfactory training in the frame of an experiment, such as repeated exposure to odors or associative learning. Until the 21st century, only the behavioral effects of olfactory training of untrained control individuals had been reported, revealing an improvement of olfactory performance in terms of sensitivity, discrimination, memory, and identification. Behavioral studies of odor experts have been scarce, with inconsistent or inconclusive results. Recently, the development of cerebral imaging techniques has enabled the identification of brain areas and neural networks involved in odor processing, revealing functional and structural modifications as a function of experience. The behavioral approach to odor expertise has also evolved. Researchers have particularly focused on odor mental imagery, which is characteristic of odor experts, because this ability is absent in the average person but is part of a perfumer’s professional practice. This review summarizes behavioral, functional, and structural findings on odor expertise. These data are compared with those obtained using animals subjected to prolonged olfactory exposure or to olfactory-enriched environments and are discussed in the context of functional and structural plasticity. PMID:24379793
Memory-Relevant Mushroom Body Output Synapses Are Cholinergic.
Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B; Perrat, Paola N; Waddell, Scott
2016-03-16
Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Sleep deprivation affects extinction but not acquisition memory in honeybees.
Hussaini, Syed Abid; Bogusch, Lisa; Landgraf, Tim; Menzel, Randolf
2009-11-01
Sleep-like behavior has been studied in honeybees before, but the relationship between sleep and memory formation has not been explored. Here we describe a new approach to address the question if sleep in bees, like in other animals, improves memory consolidation. Restrained bees were observed by a web camera, and their antennal activities were used as indicators of sleep. We found that the bees sleep more during the dark phase of the day compared with the light phase. Sleep phases were characterized by two distinct patterns of antennal activities: symmetrical activity, more prominent during the dark phase; and asymmetrical activity, more common during the light phase. Sleep-deprived bees showed rebound the following day, confirming effective deprivation of sleep. After appetitive conditioning of the bees to various olfactory stimuli, we observed their sleep. Bees conditioned to odor with sugar reward showed lesser sleep compared with bees that were exposed to either reward alone or air alone. Next, we asked whether sleep deprivation affects memory consolidation. While sleep deprivation had no effect on retention scores after odor acquisition, retention for extinction learning was significantly reduced, indicating that consolidation of extinction memory but not acquisition memory was affected by sleep deprivation.
Bermuda Triangle: a subsystem of the 168/E interfacing scheme used by Group B at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxoby, G.J.; Levinson, L.J.; Trang, Q.H.
1979-12-01
The Bermuda Triangle system is a method of interfacing several 168/E microprocessors to a central system for control of the processors and overlaying their memories. The system is a three-way interface with I/O ports to a large buffer memory, a PDP11 Unibus and a bus to the 168/E processors. Data may be transferred bidirectionally between any two ports. Two Bermuda Triangles are used, one for the program memory and one for the data memory. The program buffer memory stores the overlay programs for the 168/E, and the data buffer memory, the incoming raw data, the data portion of the overlays,more » and the outgoing processed events. This buffering is necessary since the memories of 168/E microprocessors are small compared to the main program and the amount of data being processed. The link to the computer facility is via a Unibus to IBM channel interface. A PDP11/04 controls the data flow. 7 figures, 4 tables. (RWR)« less
Circuit oscillations in odor perception and memory.
Kay, Leslie M
2014-01-01
Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.
Differential Odor Sensitivity in PTSD: Implications for Treatment and Future Research
Cortese, Bernadette M.; Leslie, Kimberly; Uhde, Thomas W.
2015-01-01
Background Given that odors enhance the retrieval of autobiographical memories, induce physiological arousal, and trigger trauma-related flashbacks, it is reasonable to hypothesize that odors play a significant role in the pathophysiology of posttraumatic stress disorder (PTSD). For these reasons, this preliminary study sought to examine self-reported, odor-elicited distress in PTSD. Methods Combat veterans with (N=30) and without (N=22) PTSD and healthy controls (HC: N=21), completed an olfactory questionnaire that provided information on the hedonic valence of odors as well as their ability to elicit distress or relaxation. Results Two main findings were revealed: Compared to HC, CV+PTSD, but not CV-PTSD, reported a higher prevalence of distress to a limited number of select odors that included fuel (p=.004), blood (p=.02), gunpowder (p=.03), and burning hair (p=.02). In contrast to this increased sensitivity, a blunting effect was reported by both groups of veterans compared to HC that revealed lower rates of distress and relaxation in response to negative hedonic odors (p=.03) and positive hedonic odors (p<.001), respectively. Limitations The study is limited by its use of retrospective survey methods, whereas future investigations would benefit from laboratory measures taken prior, during, and after deployment. Conclusion The present findings suggest a complex role of olfaction in the biological functions of threat detection. Several theoretical models are discussed. One possible explanation for increased sensitivity to select odors with decreased sensitivity to other odors is the co-occurrence of attentional bias toward threat odors with selective ignoring of distractor odors. Working together, these processes may optimize survival. PMID:25845746
NASA Technical Reports Server (NTRS)
Byrne, F.
1981-01-01
Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.
The hippocampus and memory for orderly stimulus relations
Dusek, Jeffery A.; Eichenbaum, Howard
1997-01-01
Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans. PMID:9192700
Yoon, Doe Hyun; Muralimanohar, Naveen; Chang, Jichuan; Ranganthan, Parthasarathy
2017-09-26
A disclosed example method involves performing simultaneous data accesses on at least first and second independently selectable logical sub-ranks to access first data via a wide internal data bus in a memory device. The memory device includes a translation buffer chip, memory chips in independently selectable logical sub-ranks, a narrow external data bus to connect the translation buffer chip to a memory controller, and the wide internal data bus between the translation buffer chip and the memory chips. A data access is performed on only the first independently selectable logical sub-rank to access second data via the wide internal data bus. The example method also involves locating a first portion of the first data, a second portion of the first data, and the second data on the narrow external data bus during separate data transfers.
Giant pandas use odor cues to discriminate kin from nonkin.
Gilad, Oranit; Swaisgood, Ronald R; Owen, Megan A; Zhou, Xiaoping
2016-08-01
Sociality is an important factor in both the mechanism and function of kin recognition, yet it is little explored in solitary species. While there may be future opportunities for nepotistic functions of kin discrimination among solitary species, the ability to discriminate kin from nonkin may still have important roles in social regulation. The solitary giant panda Ailuropoda melanoleuca offers a good model system to explore kin discrimination in a solitary mammal. As kin discrimination in many other mammals is olfactorily mediated, we investigated whether giant pandas are able to discriminate odor cues from daughters even after months and years of separation. Our results indicate that giant pandas are capable of discriminating between kin and nonkin using odor cues available in urine and body odor. Daughters preferentially investigated the odors of unrelated adult female pandas over the odors of their mothers, and mothers spent more time investigating the odors of unrelated age-matched female pandas over those from their daughters. Because these studies were conducted months or years after the mother-daughter period of dependency ended, it is still unclear what mechanism is used for recognition. Long-term olfactory memories and phenotype matching should both be considered, and further studies are required for such determination.
Olfactory systems and neural circuits that modulate predator odor fear
Takahashi, Lorey K.
2014-01-01
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear. PMID:24653685
Olfactory systems and neural circuits that modulate predator odor fear.
Takahashi, Lorey K
2014-01-01
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear.
Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales
ERIC Educational Resources Information Center
McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.
2008-01-01
Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…
Leong, Kah-Chung; Packard, Mark G
2014-03-01
In a dual-solution plus-maze task in which both hippocampus-dependent place learning and dorsolateral striatal-dependent response learning provide an adequate solution, the relative use of multiple memory systems can be influenced by emotional state. Specifically, pre-training peripheral or intra-basolateral (BLA) administration of anxiogenic drugs result in the predominant use of response learning. The present experiments were designed to extend these findings by examining whether exposure to a putatively ethologically valid stressor would also produce a predominant use of response learning. In experiment 1, adult male Long-Evans rats were exposed to either a predator odor (trimethylthiazoline [TMT], a component of fox feces) or distilled water prior to training in a dual-solution water plus maze task. On a probe trial 24h following task acquisition, rats previously exposed to TMT predominantly displayed response learning relative to control animals. In experiment 2, rats trained on a single-solution plus maze task that required the use of response learning displayed enhanced acquisition following pre-training TMT exposure. In experiment 3, rats exposed to TMT or distilled water were trained in the dual-solution task and received post-training intra-BLA injections of the sodium channel blocker bupivacaine (1.0% solution, 0.5 μl) or saline. Relative to control animals, rats exposed to TMT predominantly displayed response learning on the probe trial, and this effect was blocked by neural inactivation of the BLA. The findings indicate that (1) the use of dorsal striatal-dependent habit memory produced by emotional arousal generalizes from anxiogenic drug administration to a putatively ecologically valid stressor (i.e. predator odor), and (2) the BLA mediates the modulatory effect of exposure to predator odor on the relative use of multiple memory systems. Copyright © 2013 Elsevier Inc. All rights reserved.
Adaptive adjustment of the generalization-discrimination balance in larval Drosophila.
Mishra, Dushyant; Louis, Matthieu; Gerber, Bertram
2010-09-01
Learnt predictive behavior faces a dilemma: predictive stimuli will never 'replay' exactly as during the learning event, requiring generalization. In turn, minute differences can become meaningful, prompting discrimination. To provide a study case for an adaptive adjustment of this generalization-discrimination balance, the authors ask whether Drosophila melanogaster larvae are able to either generalize or discriminate between two odors (1-octen-3-ol and 3-octanol), depending on the task. The authors find that after discriminatively rewarding one but not the other odor, larvae show conditioned preference for the rewarded odor. On the other hand, no odor specificity is observed after nondiscriminative training, even if the test involves a choice between both odors. Thus, for this odor pair at least, discrimination training is required to confer an odor-specific memory trace. This requires that there is at least some difference in processing between the two odors already at the beginning of the training. Therefore, as a default, there is a small yet salient difference in processing between 1-octen-3-ol and 3-octanol; this difference is ignored after nondiscriminative training (generalization), whereas it is accentuated by odor-specific reinforcement (discrimination). Given that, as the authors show, both faculties are lost in anosmic Or83b(1) mutants, this indicates an adaptive adjustment of the generalization-discrimination balance in larval Drosophila, taking place downstream of Or83b-expressing sensory neurons.
ERIC Educational Resources Information Center
Davies, Don A.; Greba, Quentin; Selk, Jantz C.; Catton, Jillian K.; Baillie, Landon D.; Mulligan, Sean J.; Howland, John G.
2017-01-01
Working memory is involved in the maintenance and manipulation of information essential for complex cognition. While the neural substrates underlying working memory capacity have been studied in humans, considerably less is known about the circuitry mediating working memory capacity in rodents. Therefore, the present experiments tested the…
Designing a VMEbus FDDI adapter card
NASA Astrophysics Data System (ADS)
Venkataraman, Raman
1992-03-01
This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.
Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Balamurugan, Krishnaswamy; Ragu Varman, Durairaj; Rajan, Koilmani Emmanuvel
2012-08-30
Postsynaptic densities (PSDs) contain proteins that regulate synaptic transmission. We examined two important examples of these, calcium/calmodulin-dependent protein kinase II (CaMKII) and PSD-95, in regard to the functional role of early growth response gene-1 (egr-1) in regulation of olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx (family Pteropodidae). To test whether activation of egr-1 in the olfactory bulb (OB) is required for olfactory memory of these bats, bilaterally canulated individuals were infused with antisense (AS) or non-sense (NS)-oligodeoxynucleotides (ODN) of egr-1, or with phosphate buffer saline (PBS), 2h before the olfactory training. Our results showed that behavioral training significantly up-regulates immediate early gene (IEG) EGR-1 and key synaptic proteins Synaptotagmin-1(SYT-1), CaMKII and PSD-95, and phosphorylation of CaMKII in the OB at the protein level per se. Subsequently, we observed that egr-1 antisense-ODN infusion in the OB impaired olfactory memory and down regulates the expression of CaMKII and PSD-95, and the phosphorylation of CaMKII but not SYT-1. In contrast, NS-ODN or PBS had no effect on the expression of the PSDs CaMKII or PSD-95, or on the phosphorylation of CaMKII. When the egr-1 NS-ODN was infused in the OB after training for the novel odor there was no effect on olfactory memory. These findings suggest that egr-1 control the activation of CaMKII and PSD-95 during the process of olfactory memory formation. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hegoburu, Chloe; Sevelinges, Yannick; Thevenet, Marc; Gervais, Remi; Parrot, Sandrine; Mouly, Anne-Marie
2009-01-01
Although the amygdala seems to be essential to the formation and storage of fear memories, it might store only some aspects of the aversive event and facilitate the storage of more specific sensory aspects in cortical areas. We addressed the time course of amygdala and cortical activation in the context of odor fear conditioning in rats. Using…
Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.
Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M
2015-01-01
The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.
The influence of visual ability on learning and memory performance in 13 strains of mice.
Brown, Richard E; Wong, Aimée A
2007-03-01
We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial learning and memory, conditioned odor preference, and motor learning. Strain differences in visual acuity accounted for a significant proportion of the variance between strains in measures of learning and memory in the Morris water maze. Strain differences in motor learning performance were not influenced by visual ability. Conditioned odor preference was enhanced in mice with visual defects. These results indicate that visual ability must be accounted for when testing for strain differences in learning and memory in mice because differences in performance in many tasks may be due to visual deficits rather than differences in higher order cognitive functions. These results have significant implications for the search for the neural and genetic basis of learning and memory in mice.
The role of the episodic buffer in working memory for language processing.
Rudner, Mary; Rönnberg, Jerker
2008-03-01
A body of work has accumulated to show that the cognitive process of binding information from different mnemonic and sensory sources as well as in different linguistic modalities can be fractionated from general executive functions in working memory both functionally and neurally. This process has been defined in terms of the episodic buffer (Baddeley in Trends Cogn Sci 4(11):417-423, 2000). This paper considers behavioural, neuropsychological and neuroimaging data that elucidate the role of the episodic buffer in language processing. We argue that the episodic buffer seems to be truly multimodal in function and that while formation of unitary multidimensional representations in the episodic buffer seems to engage posterior neural networks, maintenance of such representations is supported by frontal networks. Although, the episodic buffer is not necessarily supported by executive processes and seems to be supported by different neural networks, it may operate in tandem with the central executive during effortful language processing. There is also evidence to suggest engagement of the phonological loop during buffer processing. The hippocampus seems to play a role in formation but not maintenance of representations in the episodic buffer of working memory.
Raineki, Charlis; Sarro, Emma; Rincón-Cortés, Millie; Perry, Rosemarie; Boggs, Joy; Holman, Colin J; Wilson, Donald A; Sullivan, Regina M
2015-01-01
Caregiver-associated cues, including those learned in abusive attachment, provide a sense of safety and security to the child. Here, we explore how cues associated with abusive attachment, such as maternal odor, can modify the enduring neurobehavioral effects of early-life abuse. Two early-life abuse models were used: a naturalistic paradigm, where rat pups were reared by an abusive mother; and a more controlled paradigm, where pups underwent peppermint odor-shock conditioning that produces an artificial maternal odor through engagement of the attachment circuit. Animals were tested for maternal odor preference in infancy, forced swim test (FST), social behavior, and sexual motivation in adulthood—in the presence or absence of maternal odors (natural or peppermint). Amygdala odor-evoked local field potentials (LFPs) via wireless electrodes were also examined in response to the maternal odors in adulthood. Both early-life abuse models induced preference for the maternal odors in infancy. In adulthood, these early-life abuse models produced FST deficits and decreased social behavior, but did not change sexual motivation. Presentation of the maternal odors rescued FST and social behavior deficits induced by early-life abuse and enhanced sexual motivation in all animals. In addition, amygdala LFPs from both abuse animal models showed unique activation within the gamma frequency (70–90 Hz) bands in response to the specific maternal odor present during early-life abuse. These results suggest that attachment-related cues learned during infancy have a profound ability to rescue neurobehavioral dysregulation caused by early-life abuse. Paradoxically, abuse-associated cues seem to acquire powerful and enduring antidepressive properties and alter amygdala modulation. PMID:25284320
Raineki, Charlis; Sarro, Emma; Rincón-Cortés, Millie; Perry, Rosemarie; Boggs, Joy; Holman, Colin J; Wilson, Donald A; Sullivan, Regina M
2015-03-01
Caregiver-associated cues, including those learned in abusive attachment, provide a sense of safety and security to the child. Here, we explore how cues associated with abusive attachment, such as maternal odor, can modify the enduring neurobehavioral effects of early-life abuse. Two early-life abuse models were used: a naturalistic paradigm, where rat pups were reared by an abusive mother; and a more controlled paradigm, where pups underwent peppermint odor-shock conditioning that produces an artificial maternal odor through engagement of the attachment circuit. Animals were tested for maternal odor preference in infancy, forced swim test (FST), social behavior, and sexual motivation in adulthood-in the presence or absence of maternal odors (natural or peppermint). Amygdala odor-evoked local field potentials (LFPs) via wireless electrodes were also examined in response to the maternal odors in adulthood. Both early-life abuse models induced preference for the maternal odors in infancy. In adulthood, these early-life abuse models produced FST deficits and decreased social behavior, but did not change sexual motivation. Presentation of the maternal odors rescued FST and social behavior deficits induced by early-life abuse and enhanced sexual motivation in all animals. In addition, amygdala LFPs from both abuse animal models showed unique activation within the gamma frequency (70-90 Hz) bands in response to the specific maternal odor present during early-life abuse. These results suggest that attachment-related cues learned during infancy have a profound ability to rescue neurobehavioral dysregulation caused by early-life abuse. Paradoxically, abuse-associated cues seem to acquire powerful and enduring antidepressive properties and alter amygdala modulation.
The human brain representation of odor identification.
Kjelvik, Grete; Evensmoen, Hallvard R; Brezova, Veronika; Håberg, Asta K
2012-07-01
Odor identification (OI) tests are increasingly used clinically as biomarkers for Alzheimer's disease and schizophrenia. The aim of this study was to directly compare the neuronal correlates to identified odors vs. nonidentified odors. Seventeen females with normal olfactory function underwent a functional magnetic resonance imaging (fMRI) experiment with postscanning assessment of spontaneous uncued OI. An event-related analysis was performed to compare within-subject activity to spontaneously identified vs. nonidentified odors at the whole brain level, and in anatomic and functional regions of interest (ROIs) in the medial temporal lobe (MTL). Parameter estimate values and blood oxygenated level-dependent (BOLD) signal curves for correctly identified and nonidentified odors were derived from functional ROIs in hippocampus, entorhinal, piriform, and orbitofrontal cortices. Number of activated voxels and max parameter estimate values were obtained from anatomic ROIs in the hippocampus and the entorhinal cortex. At the whole brain level the correct OI gave rise to increased activity in the left entorhinal cortex and secondary olfactory structures, including the orbitofrontal cortex. Increased activation was also observed in fusiform, primary visual, and auditory cortices, inferior frontal plus inferior temporal gyri. The anatomic MTL ROI analysis showed increased activation in the left entorhinal cortex, right hippocampus, and posterior parahippocampal gyri in correct OI. In the entorhinal cortex and hippocampus the BOLD signal increased specifically in response to identified odors and decreased for nonidentified odors. In orbitofrontal and piriform cortices both identified and nonidentified odors gave rise to an increased BOLD signal, but the response to identified odors was significantly greater than that for nonidentified odors. These results support a specific role for entorhinal cortex and hippocampus in OI, whereas piriform and orbitofrontal cortices are active in both smelling and OI. Moreover, episodic as well as semantic memory systems appeared to support OI.
A Buffer Model of Memory Encoding and Temporal Correlations in Retrieval
ERIC Educational Resources Information Center
Lehman, Melissa; Malmberg, Kenneth J.
2013-01-01
Atkinson and Shiffrin's (1968) dual-store model of memory includes structural aspects of memory along with control processes. The rehearsal buffer is a process by which items are kept in mind and long-term episodic traces are formed. The model has been both influential and controversial. Here, we describe a novel variant of Atkinson and Shiffrin's…
ERIC Educational Resources Information Center
Steidle, Johannes L. M.; Collatz, Jana; Muller, Caroline
2006-01-01
Protein synthesis-dependent long-term memory in Apis mellifera and Drosophila melanogaster is formed after multiple trainings that are spaced in time. The parasitic wasp Lariophagus distinguendus remarkably differs from these species. It significantly responds to the artificial odor furfurylheptanoate (FFH) in olfactometer experiments, when this…
Detecting and correcting hard errors in a memory array
Kalamatianos, John; John, Johnsy Kanjirapallil; Gelinas, Robert; Sridharan, Vilas K.; Nevius, Phillip E.
2015-11-19
Hard errors in the memory array can be detected and corrected in real-time using reusable entries in an error status buffer. Data may be rewritten to a portion of a memory array and a register in response to a first error in data read from the portion of the memory array. The rewritten data may then be written from the register to an entry of an error status buffer in response to the rewritten data read from the register differing from the rewritten data read from the portion of the memory array.
Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.
Islam, Saiful; Ueda, Masashi; Nishida, Emika; Wang, Miao-Xing; Osawa, Masatake; Lee, Dongsoo; Itoh, Masanori; Nakagawa, Kiyomi; Tana; Nakagawa, Toshiyuki
2018-06-01
Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2 Ex16-/- ; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory. Copyright © 2018 Elsevier B.V. All rights reserved.
Janitzky, K; Peine, A; Kröber, A; Yanagawa, Y; Schwegler, H; Roskoden, T
2014-10-01
The bed nucleus of the stria terminalis (BNST) is an important region for 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) predator odor-induced stress responses in mice. It is sexually dimorphic and a region for corticotropin-releasing factor (CRF)-enhanced stress responses. Dense GABAergic and CRF input from the amygdala to the BNST gives point to relevant interactions between CRF and GABA activity in these brain regions. Hence, to investigate sexual dimorphism of stress-induced neuronal changes, we studied effects of acute TMT exposure on CRF mRNA expression in stress-related brain regions in male and female GAD67 mice and their wild-type littermates. In GAD67 mice, heterozygous knock-in of GFP in GABAergic neurons caused a 50% decrease of GAD67 protein level in the brain [91,99]. Results show higher CRF mRNA levels in the BNST of male but not female GAD67 mice after TMT and control odor exposure. While CRF neurons in the BNST are predominantly GABAergic and CRF enhances GABAergic transmission in the BNST [20,51], the deficit in GABAergic transmission in GAD67 mice could induce a compensatory CRF increase. Sexual dimorphism of the BNST with greater density of GABA-ir neurons in females could explain the differences in CRF mRNA levels between male and female GAD67 mice. Effects of odor exposure were studied in a radial arm maze (RAM) task. Results show impaired retrieval of spatial memory after acute TMT exposure in both sexes and genotypes. However, only GAD67 mice show increased working memory errors after control odor exposure. Our work elicits GAD67 mice as a model to further study interactions of GABA and CRF in the BNST for a better understanding of how sex-specific characteristics of the brain may contribute to differences in anxiety- and stress-related psychological disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Learning non-local dependencies.
Kuhn, Gustav; Dienes, Zoltán
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., and Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. Journal of Experimental Psychology-Learning Memory and Cognition, 31(6) 1417-1432] showed that people could implicitly learn a musical rule that was solely based on non-local dependencies. These results seriously challenge models of implicit learning that assume knowledge merely takes the form of linking adjacent elements (chunking). We compare two models that use a buffer to allow learning of long distance dependencies, the Simple Recurrent Network (SRN) and the memory buffer model. We argue that these models - as models of the mind - should not be evaluated simply by fitting them to human data but by determining the characteristic behaviour of each model. Simulations showed for the first time that the SRN could rapidly learn non-local dependencies. However, the characteristic performance of the memory buffer model rather than SRN more closely matched how people came to like different musical structures. We conclude that the SRN is more powerful than previous demonstrations have shown, but it's flexible learned buffer does not explain people's implicit learning (at least, the affective learning of musical structures) as well as fixed memory buffer models do.
A buffer model of memory encoding and temporal correlations in retrieval.
Lehman, Melissa; Malmberg, Kenneth J
2013-01-01
Atkinson and Shiffrin's (1968) dual-store model of memory includes structural aspects of memory along with control processes. The rehearsal buffer is a process by which items are kept in mind and long-term episodic traces are formed. The model has been both influential and controversial. Here, we describe a novel variant of Atkinson and Shiffrin's buffer model within the framework of the retrieving effectively from memory theory (REM; Shiffrin & Steyvers, 1997) that accounts for findings previously thought to be difficult for such models to explain. This model assumes a limited-capacity buffer where information is stored about items, along with information about associations between items and between items and the context in which they are studied. The strength of association between items and context is limited by the number of items simultaneously occupying the buffer (Lehman & Malmberg, 2009). The contents of the buffer are managed by complementary processes of rehearsal and compartmentalization (Lehman & Malmberg, 2011). New findings that directly test a priori predictions of the model are reported, including serial position effects and conditional and first recall probabilities in immediate and delayed free recall, in a continuous distractor paradigm, and in experiments using list-length manipulations of single-item and paired-item study lists.
Piquado, Tepring; Cousins, Katheryn A Q; Wingfield, Arthur; Miller, Paul
2010-12-13
Poor hearing acuity reduces memory for spoken words, even when the words are presented with enough clarity for correct recognition. An "effortful hypothesis" suggests that the perceptual effort needed for recognition draws from resources that would otherwise be available for encoding the word in memory. To assess this hypothesis, we conducted a behavioral task requiring immediate free recall of word-lists, some of which contained an acoustically masked word that was just above perceptual threshold. Results show that masking a word reduces the recall of that word and words prior to it, as well as weakening the linking associations between the masked and prior words. In contrast, recall probabilities of words following the masked word are not affected. To account for this effect we conducted computational simulations testing two classes of models: Associative Linking Models and Short-Term Memory Buffer Models. Only a model that integrated both contextual linking and buffer components matched all of the effects of masking observed in our behavioral data. In this Linking-Buffer Model, the masked word disrupts a short-term memory buffer, causing associative links of words in the buffer to be weakened, affecting memory for the masked word and the word prior to it, while allowing links of words following the masked word to be spared. We suggest that these data account for the so-called "effortful hypothesis", where distorted input has a detrimental impact on prior information stored in short-term memory. Copyright © 2010 Elsevier B.V. All rights reserved.
Ferry, Barbara; Herbeaux, Karin; Cosquer, Brigitte; Traissard, Natalia; Galani, Rodrigue; Cassel, Jean-Christophe
2007-07-01
Conditioned odor aversion (COA) corresponds to the avoidance of an odorized-tasteless solution (conditioned stimulus, CS) previously paired with toxicosis. COA occurs only when the interstimulus interval (ISI) is kept short, suggesting that the memory trace of the odor is subject to rapid decay. Previous experiments have shown that the entorhinal cortex (EC) is involved in the acquisition of COA, since lesion of the EC rendered COA tolerant to long ISI. Because EC lesions induce a septo-hippocampal cholinergic sprouting, the present experiment investigated whether COA tolerance to long ISI may be linked to this sprouting reaction. In a first experiment, male Long-Evans rats subjected to bilateral excitotoxic EC lesions combined to intracerebroventricular infusions of the selective cholinergic immunotoxin 192 IgG-saporin were exposed to odor-toxicosis pairing using a long ISI (120 min). Results showed that EC-lesioned rats displayed COA with the long ISI but not the control groups. In rats with EC combined to 192 IgG-saporin lesions, histological analysis demonstrated no evidence for cholinergic septo-hippocampal sprouting. In a second experiment, animals with 192-IgG saporin lesion showed a marked COA with a short ISI (5 min). These results suggest that the COA with the long ISI found in rats with EC lesions might involve a functional activity related to the EC lesion-induced hippocampal cholinergic sprouting. As the injection of 192 IgG-saporin alone did not affect COA with a short ISI, our data also point to a possible role of hippocampal cholinergic neurons in the modulation of memory processes underlying COA.
Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila
Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.
2015-01-01
The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118
Galizio, Mark; April, Brooke; Deal, Melissa; Hawkey, Andrew; Panoz-Brown, Danielle; Prichard, Ashley; Bruce, Katherine
2018-01-01
The Odor Span Task is an incrementing non-matching-to-sample procedure that permits the study of behavior under the control of multiple stimuli. Rats are exposed to a series of odor stimuli and selection of new stimuli is reinforced. Successful performance thus requires remembering which stimuli have previously been presented during a given session. This procedure has been frequently used in neurobiological studies as a rodent model of working memory; however, only a few studies have examined the effects of drugs on performance in this task. The present experiments explored the behavioral pharmacology of a modified version of the Odor Span Task by determining the effects of stimulant drugs methylphenidate and methamphetamine, NMDA antagonist ketamine, and positive GABAA modulator flunitrazepam. All four drugs produced dose-dependent impairment of performances on the Odor Span Task, but for methylphenidate and methamphetamine, these occurred only at doses that had similar effects on performance of a simple odor discrimination. Generally, these disruptions were based on omission of responding at the effective doses. The effects of ketamine and flunitrazepam were more selective in some rats. That is, some rats tested under flunitrazepam and ketamine showed decreases in accuracy on the Odor Span Task at doses that did not affect simple discrimination performance. These selective effects indicate disruption of within-session stimulus control. Overall, these findings support the potential of the Odor Span Task as a baseline for the behavioral pharmacological analysis of remembering. PMID:27747877
ERIC Educational Resources Information Center
Jannati, Ali; Spalek, Thomas M.; Di Lollo, Vincent
2011-01-01
Report of a second target (T2) is impaired when presented within 500 ms of the first (T1). This attentional blink (AB) is known to cause a delay in T2 processing during which T2 must be stored in a labile memory buffer. We explored the buffer's characteristics using different types of masks after T2. These characteristics were inferred by…
Selective attention to affective value alters how the brain processes olfactory stimuli.
Rolls, Edmund T; Grabenhorst, Fabian; Margot, Christian; da Silva, Maria A A P; Velazco, Maria Ines
2008-10-01
How does selective attention to affect influence sensory processing? In a functional magnetic resonance imaging investigation, when subjects were instructed to remember and rate the pleasantness of a jasmine odor, activations were greater in the medial orbito-frontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the odor. When the subjects were instructed to remember and rate the intensity, activations were greater in the inferior frontal gyrus. These top-down effects occurred not only during odor delivery but started in a preparation period after the instruction before odor delivery, and continued after termination of the odor in a short-term memory period. Thus, depending on the context in which odors are presented and whether affect is relevant, the brain prepares itself, responds to, and remembers an odor differently. These findings show that when attention is paid to affective value, the brain systems engaged to prepare for, represent, and remember a sensory stimulus are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus depending on whether the cognitive demand is for affect-related versus more sensory-related processing may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of olfactory but also of other sensory stimuli.
ERIC Educational Resources Information Center
April, L. Brooke; Bruce, Katherine; Galizio, Mark
2013-01-01
The olfactory span task (OST) uses an incrementing non-matching to sample procedure such that the number of stimuli to remember increases during the session. The number of consecutive correct responses (span length) and percent correct as a function of the memory load have been viewed as defining rodent working memory capacity limitations in…
ERIC Educational Resources Information Center
Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie
2014-01-01
Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…
The Episodic Buffer in Children with Intellectual Disabilities: An Exploratory Study
ERIC Educational Resources Information Center
Henry, Lucy A.
2010-01-01
Performance on three verbal measures (story recall, paired associated learning, category fluency) designed to assess the integration of long-term semantic and linguistic knowledge, phonological working memory and executive resources within the proposed "episodic buffer" of working memory (Baddeley, 2007) was assessed in children with intellectual…
Floral odor learning within the hive affects honeybees' foraging decisions
NASA Astrophysics Data System (ADS)
Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.
2007-03-01
Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.
Ku, Shih-pi; Nakamura, Nozomu H.; Maingret, Nicolas; Mahnke, Liv; Yoshida, Motoharu; Sauvage, Magdalena M.
2017-01-01
The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear. Comparatively, the involvement of the LEC in non-spatial information processing is quite well known. However, very few studies have investigated its role within the frame of memory function. Thus, it is not known whether its contribution depends on memory load. In addition, the deep layers of the EC have been shown to be predictive of subsequent memory performance, but not its superficial layers. Hence, here we tested the extent to which the proximal part of the subiculum and the superficial and deep layers of the LEC contribute to non-spatial memory, and whether this contribution depends on the memory load of the task. To do so, we imaged brain activity at cellular resolution in these areas in rats performing a delayed nonmatch to sample task based on odors with two different memory loads (5 or 10 odors). This imaging technique is based on the detection of the RNA of the immediate-early gene Arc, which is especially tied to synaptic plasticity and behavioral demands, and is commonly used to map activity in the medial temporal lobe. We report for the first time that the proximal part of the subiculum is recruited in a memory-load dependent manner and the deep layers of the LEC engaged under high memory load conditions during the retrieval of non-spatial memory, thus shedding light on the specific networks contributing to non-spatial memory retrieval. PMID:28790897
Ku, Shih-Pi; Nakamura, Nozomu H; Maingret, Nicolas; Mahnke, Liv; Yoshida, Motoharu; Sauvage, Magdalena M
2017-01-01
The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear. Comparatively, the involvement of the LEC in non-spatial information processing is quite well known. However, very few studies have investigated its role within the frame of memory function. Thus, it is not known whether its contribution depends on memory load. In addition, the deep layers of the EC have been shown to be predictive of subsequent memory performance, but not its superficial layers. Hence, here we tested the extent to which the proximal part of the subiculum and the superficial and deep layers of the LEC contribute to non-spatial memory, and whether this contribution depends on the memory load of the task. To do so, we imaged brain activity at cellular resolution in these areas in rats performing a delayed nonmatch to sample task based on odors with two different memory loads (5 or 10 odors). This imaging technique is based on the detection of the RNA of the immediate-early gene Arc , which is especially tied to synaptic plasticity and behavioral demands, and is commonly used to map activity in the medial temporal lobe. We report for the first time that the proximal part of the subiculum is recruited in a memory-load dependent manner and the deep layers of the LEC engaged under high memory load conditions during the retrieval of non-spatial memory, thus shedding light on the specific networks contributing to non-spatial memory retrieval.
History dependence in insect flight decisions during odor tracking.
Pang, Rich; van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A; Fairhall, Adrienne
2018-02-01
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, "infotaxis", in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking.
History dependence in insect flight decisions during odor tracking
van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A.; Fairhall, Adrienne
2018-01-01
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, “infotaxis”, in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking. PMID:29432454
Cellular registration without behavioral recall of olfactory sensory input under general anesthesia.
Samuelsson, Andrew R; Brandon, Nicole R; Tang, Pei; Xu, Yan
2014-04-01
Previous studies suggest that sensory information is "received" but not "perceived" under general anesthesia. Whether and to what extent the brain continues to process sensory inputs in a drug-induced unconscious state remain unclear. One hundred seven rats were randomly assigned to 12 different anesthesia and odor exposure paradigms. The immunoreactivities of the immediate early gene products c-Fos and Egr1 as neural activity markers were combined with behavioral tests to assess the integrity and relationship of cellular and behavioral responsiveness to olfactory stimuli under a surgical plane of ketamine-xylazine general anesthesia. The olfactory sensory processing centers could distinguish the presence or absence of experimental odorants even when animals were fully anesthetized. In the anesthetized state, the c-Fos immunoreactivity in the higher olfactory cortices revealed a difference between novel and familiar odorants similar to that seen in the awake state, suggesting that the anesthetized brain functions beyond simply receiving external stimulation. Reexposing animals to odorants previously experienced only under anesthesia resulted in c-Fos immunoreactivity, which was similar to that elicited by familiar odorants, indicating that previous registration had occurred in the anesthetized brain. Despite the "cellular memory," however, odor discrimination and forced-choice odor-recognition tests showed absence of behavioral recall of the registered sensations, except for a longer latency in odor recognition tests. Histologically distinguishable registration of sensory processing continues to occur at the cellular level under ketamine-xylazine general anesthesia despite the absence of behavioral recognition, consistent with the notion that general anesthesia causes disintegration of information processing without completely blocking cellular communications.
Cellular Registration Without Behavioral Recall Of Olfactory Sensory Input Under General Anesthesia
Samuelsson, Andrew R.; Brandon, Nicole R.; Tang, Pei; Xu, Yan
2014-01-01
Background Previous studies suggest that sensory information is “received” but not “perceived” under general anesthesia. Whether and to what extent the brain continues to process sensory inputs in a drug-induced unconscious state remain unclear. Methods 107 rats were randomly assigned to 12 different anesthesia and odor exposure paradigms. The immunoreactivities of the immediate early gene products c-Fos and Egr1 as neural activity markers were combined with behavioral tests to assess the integrity and relationship of cellular and behavioral responsiveness to olfactory stimuli under a surgical plane of ketamine-xylazine general anesthesia. Results The olfactory sensory processing centers can distinguish the presence or absence of experimental odorants even when animals were fully anesthetized. In the anesthetized state, the c-Fos immunoreactivity in the higher olfactory cortices revealed a difference between novel and familiar odorants similar to that seen in the awake state, suggesting that the anesthetized brain functions beyond simply receiving external stimulation. Re-exposing animals to odorants previously experienced only under anesthesia resulted in c-Fos immunoreactivity similar to that elicited by familiar odorants, indicating that previous registration had occurred in the anesthetized brain. Despite the “cellular memory,” however, odor discrimination and forced-choice odor-recognition tests showed absence of behavioral recall of the registered sensations, except for a longer latency in odor recognition tests. Conclusions Histologically distinguishable registration of sensory process continues to occur at cellular level under ketamine-xylazine general anesthesia despite the absence of behavioral recognition, consistent with the notion that general anesthesia causes disintegration of information processing without completely blocking cellular communications. PMID:24694846
Veyrac, Alexandra; Allerborn, Marina; Gros, Alexandra; Michon, Frederic; Raguet, Louise; Kenney, Jana; Godinot, Florette; Thevenet, Marc; Garcia, Samuel; Messaoudi, Belkacem; Laroche, Serge; Ravel, Nadine
2015-05-13
In search for the mechanisms underlying complex forms of human memory, such as episodic recollection, a primary challenge is to develop adequate animal models amenable to neurobiological investigation. Here, we proposed a novel framework and paradigm that provides means to quantitatively evaluate the ability of rats to form and recollect a combined knowledge of what happened, where it happened, and when or in which context it happened (referred to as episodic-like memory) after a few specific episodes in situations as close as possible to a paradigm we recently developed to study episodic memory in humans. In this task, rats have to remember two odor-drink associations (what happened) encountered in distinct locations (where it happened) within two different multisensory enriched environments (in which context/occasion it happened), each characterized by a particular combination of odors and places. By analyzing licking behavior on each drinking port, we characterized quantitatively individual recollection profiles and showed that rats are able to incidentally form and recollect an accurate, long-term integrated episodic-like memory that can last ≥ 24 d after limited exposure to the episodes. Placing rats in a contextually challenging recollection situation at recall reveals the ability for flexible use of episodic memory as described in humans. We further report that reversible inactivation of the dorsal hippocampus during recall disrupts the animal's capacity to recollect the complete episodic memory. Cellular imaging of c-Fos and Zif268 brain activation reveals that episodic memory recollection recruits a specific, distributed network of hippocampal-prefrontal cortex structures that correlates with the accuracy of the integrated recollection performance. Copyright © 2015 the authors 0270-6474/15/337575-12$15.00/0.
Visual working memory buffers information retrieved from visual long-term memory.
Fukuda, Keisuke; Woodman, Geoffrey F
2017-05-16
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.
Visual working memory buffers information retrieved from visual long-term memory
Fukuda, Keisuke; Woodman, Geoffrey F.
2017-01-01
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects’ worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved. PMID:28461479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, D.; Black, D.; Slimmer, D.
1994-04-01
The DART Data Flow Manager (dfm) integrates a buffer manager with a requester/provider model for scheduling work on buffers. Buffer lists, representing built events or other data, are queued by service requesters to service providers. Buffers may be either internal (reside on the local node), or external (located elsewhere, e.g., dual ported memory). Internal buffers are managed locally. Wherever possible, dfm moves only addresses of buffers rather than buffers themselves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, D.; Black, D.; Slimmer, D.
1994-12-31
The DART Data Flow Manager (dfm) integrates a buffer manager with a requester/provider model for scheduling work on buffers. Buffer lists, representing built events or other data, are queued by service requesters to service providers. Buffers may be either internal (reside on the local node), or external (located elsewhere, e.g., dual ported memory). Internal buffers are managed locally. Wherever possible, dfm moves only addresses of buffers rather than buffers themselves.
Nosewitness Identification: Effects of Lineup Size and Retention Interval.
Alho, Laura; Soares, Sandra C; Costa, Liliana P; Pinto, Elisa; Ferreira, Jacqueline H T; Sorjonen, Kimmo; Silva, Carlos F; Olsson, Mats J
2016-01-01
Although canine identification of body odor (BO) has been widely used as forensic evidence, the concept of nosewitness identification by human observers was only recently put to the test. The results indicated that BOs associated with male characters in authentic crime videos could later be identified in BO lineup tests well above chance. To further evaluate nosewitness memory, we assessed the effects of lineup size (Experiment 1) and retention interval (Experiment 2), using a forced-choice memory test. The results showed that nosewitness identification works for all lineup sizes (3, 5, and 8 BOs), but that larger lineups compromise identification performance in similarity to observations from eye- and earwitness studies. Also in line with previous eye- and earwitness studies, but in disagreement with some studies on odor memory, Experiment 2 showed significant forgetting between shorter retention intervals (15 min) and longer retention intervals (1-week) using lineups of five BOs. Altogether this study shows that identification of BO in a forensic setting is possible and has limits and characteristics in line with witness identification through other sensory modalities.
Nosewitness Identification: Effects of Lineup Size and Retention Interval
Alho, Laura; Soares, Sandra C.; Costa, Liliana P.; Pinto, Elisa; Ferreira, Jacqueline H. T.; Sorjonen, Kimmo; Silva, Carlos F.; Olsson, Mats J.
2016-01-01
Although canine identification of body odor (BO) has been widely used as forensic evidence, the concept of nosewitness identification by human observers was only recently put to the test. The results indicated that BOs associated with male characters in authentic crime videos could later be identified in BO lineup tests well above chance. To further evaluate nosewitness memory, we assessed the effects of lineup size (Experiment 1) and retention interval (Experiment 2), using a forced-choice memory test. The results showed that nosewitness identification works for all lineup sizes (3, 5, and 8 BOs), but that larger lineups compromise identification performance in similarity to observations from eye- and earwitness studies. Also in line with previous eye- and earwitness studies, but in disagreement with some studies on odor memory, Experiment 2 showed significant forgetting between shorter retention intervals (15 min) and longer retention intervals (1-week) using lineups of five BOs. Altogether this study shows that identification of BO in a forensic setting is possible and has limits and characteristics in line with witness identification through other sensory modalities. PMID:27303317
A Cognitive Model for Exposition of Human Deception and Counterdeception
1987-10-01
for understanding deception and counterdeceptlon, for developing related tactics, and for stimulating research in cognitive processes. Further...Processing Resources; Attention) BUFFER MEMORY MANAGER (Local) (Problem Solving; Learning; Procedures) BUFFER MEMORY SENSORS Visual, Auditory ...Perception and Misperception in International Politics, Princeton University Press, Princeton, NJ, 1976. Key, W.B., Subliminal Seduction. New
Power impact of loop buffer schemes for biomedical wireless sensor nodes.
Artes, Antonio; Ayala, Jose L; Catthoor, Francky
2012-11-06
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application.
Tucker, Kristal R.; Godbey, Steven J.; Thiebaud, Nicolas; Fadool, Debra Ann
2012-01-01
Physiological and nutritional state can modify sensory ability and perception through hormone signaling. Obesity and related metabolic disorders present a chronic imbalance in hormonal signaling that could impact sensory systems. In the olfactory system, external chemical cues are transduced into electrical signals to encode information. It is becoming evident that this system can also detect internal chemical cues in the form of molecules of energy homeostasis and endocrine hormones, whereby neurons of the olfactory system are modulated to change animal behavior towards olfactory cues. We hypothesized that chronic imbalance in hormonal signaling and energy homeostasis due to obesity would thereby disrupt olfactory behaviors in mice. To test this idea, we utilized three mouse models of varying body weight, metabolic hormones, and visceral adiposity – 1) C57BL6/J mice maintained on a condensed-milk based, moderately high-fat diet (MHF) of 32% fat for 6 months as the diet-induced obesity model, 2) an obesity-resistant, lean line of mice due to a gene-targeted deletion of a voltage-dependent potassium channel (Kv1.3-null), and 3) a genetic model of obesity as a result of a gene-targeted deletion of the melanocortin 4 receptor (MC4R-null). Diet-induced obese (DIO) mice failed to find fatty-scented hidden peanut butter cracker, based solely on olfactory cues, any faster than an unscented hidden marble, initially suggesting general anosmia. However, when these DIO mice were challenged to find a sweet-scented hidden chocolate candy, they had no difficulty. Furthermore, DIO mice were able to discriminate between fatty acids that differ by a single double bond and are components of the MHF diet (linoleic and oleic acid) in a habituation-dishabituation paradigm. Obesity-resistant, Kv1.3-null mice exhibited no change in scented object retrieval when placed on the MHF-diet, nor did they perform differently than wild-type mice in parallel habituation-dishabituation paradigms of fatty food-related odor components. Genetically obese, MC4R-null mice successfully found hidden scented objects, but did so more slowly than lean, wild-type mice, in an object-dependent fashion. In habituation-dishabituation trials of general odorants, MC4R-null mice failed to discriminate a novel odor, but were able to distinguish two fatty acids. Object memory recognition tests for short- and long-term memory retention demonstrated that maintenance on the MHF diet did not modify ability to perform these tasks independent of whether mice became obese or were resistant to weight gain (Kv1.3-null), however, the genetically predisposed obese mice (MC4R-null) failed the long-term object memory recognition performed at 24 hours. These results demonstrate that even though both the DIO mice and genetically predisposed obese mice are obese, they vary in the degree to which they exhibit behavioral deficits in odor detection, odor discrimination, and long-term memory. PMID:22995978
A User Oriented Microcomputer and Monitor System.
1981-02-15
inhibit signal is generated by the Monitor to (1) prevent microcomputer bus timeout, and (2) suspend the micro- computer interval timers while the...PDPll is prevented until the user sets the BIT flag for the associated buffer memory. Completion of a buffer memory transfer generates monitor source...1553 NUX PIOU PRGRAMMED 10 IRECT MEMORY MONITOR 0I INTERAC JI LMEMOR COR POWER I J SUPPLIES 4 FIGURE 15. MICROCOMPUTER MAJOR AREAS 64 a uIu 1 ta 0 W o
Side-Specificity of Olfactory Learning in the Honeybee: Generalization between Odors and Sides
Sandoz, Jean-Christophe; Menzel, Randolf
2001-01-01
Honeybees (Apis mellifera) can be trained to associate an odor stimulus with a sucrose reward. The neural structures involved in the detection and integration of olfactory stimuli are represented bilaterally in the brain. Little is known about the respective roles of the two sides of the brain in olfactory learning. Does each side learn independently of the other, or do they communicate, and if so, to what extent and at what level of neural integration? We addressed these questions using the proboscis extension response (PER) conditioning paradigm applied in a preparation that allows the separation of the two input sides during olfactory stimulations. Bees conditioned to two odorants A and B, one being learned on each side (A+/B+ training), showed in extinction tests rather unspecific responses: They responded to both odorants on both sides. This could be attributable to either a transfer of the learned information between sides, or to a generalization between odorants on each side. By subjecting bees to conditioning on one side only (A+/0 training), we found that the learned information is indeed transferred between sides. However, when bees were trained explicitly to give opposite values to the two odorants on the two sides (A+B−/B+A− training), they showed clear side-specific response patterns to these odorants. These results are used in the elaboration of a functional model of laterality of olfactory learning and memory processing in the honeybee brain. PMID:11584076
Phenotypic transformation affects associative learning in the desert locust.
Simões, Patrício M V; Niven, Jeremy E; Ott, Swidbert R
2013-12-02
In desert locusts, increased population densities drive phenotypic transformation from the solitarious to the gregarious phase within a generation [1-4]. Here we show that when presented with odor-food associations, the two extreme phases differ in aversive but not appetitive associative learning, with solitarious locusts showing a conditioned aversion more quickly than gregarious locusts. The acquisition of new learned aversions was blocked entirely in acutely crowded solitarious (transiens) locusts, whereas appetitive learning and prior learned associations were unaffected. These differences in aversive learning support phase-specific feeding strategies. Associative training with hyoscyamine, a plant alkaloid found in the locusts' habitat [5, 6], elicits a phase-dependent odor preference: solitarious locusts avoid an odor associated with hyoscyamine, whereas gregarious locusts do not. Remarkably, when solitarious locusts are crowded and then reconditioned with the odor-hyoscyamine pairing as transiens, the specific blockade of aversive acquisition enables them to override their prior aversive memory with an appetitive one. Under fierce food competition, as occurs during crowding in the field, this provides a neuroecological mechanism enabling locusts to reassign an appetitive value to an odor that they learned previously to avoid. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Habituation/Cross-Habituation Test Revisited: Guidance from Sniffing and Video Tracking
Coronas-Samano, G.; Ivanova, A. V.
2016-01-01
The habituation/cross-habituation test (HaXha) is a spontaneous odor discrimination task that has been used for many decades to evaluate olfactory function in animals. Animals are presented repeatedly with the same odorant after which a new odorant is introduced. The time the animal explores the odor object is measured. An animal is considered to cross-habituate during the novel stimulus trial when the exploration time is higher than the prior trial and indicates the degree of olfactory patency. On the other hand, habituation across the repeated trials involves decreased exploration time and is related to memory patency, especially at long intervals. Classically exploration is timed using a stopwatch when the animal is within 2 cm of the object and aimed toward it. These criteria are intuitive, but it is unclear how they relate to olfactory exploration, that is, sniffing. We used video tracking combined with plethysmography to improve accuracy, avoid observer bias, and propose more robust criteria for exploratory scoring when sniff measures are not available. We also demonstrate that sniff rate combined with proximity is the most direct measure of odorant exploration and provide a robust and sensitive criterion. PMID:27516910
Smitka, M; Puschmann, S; Buschhueter, D; Gerber, J C; Witt, M; Honeycutt, N; Abolmaali, N; Hummel, T
2012-01-16
Both amygdala (AG) and hippocampus (HC) are integral parts of the olfactory system. The present study, including a large number of healthy subjects, was performed to compare HC and AG volumes, measured by manual tracing, in relation to specific olfactory functions, including odor threshold, discrimination, identification, and odor memory tasks. It also aimed to provide age-related normative data about the volume of the HC and AG. A total of 117 healthy volunteers participated (age range 19-77 years, mean age 37 years; 62 women, 55 men). Using the "Sniffin' Sticks", subjects received lateralized tests for odor threshold, and odor discrimination. In addition, an odor memory and an odor identification task were performed bilaterally. A Mini-Mental-State test excluded dementia. MR scans were performed using a 1.5 T scanner for later manual volumetric measurements. Volumetric measurements exhibited a good reproducibility. The average volume for the right HC was 3.29 cm(3) (SD 0.47), for the left HC it was 3.15 cm(3) (SD 0.47). The average right AG had a volume of 1.60 cm(3) (SD 0.31), left 1.59 cm(3) (SD 0.3). Increasing age was accompanied by a decrease of HC and AG volumes, which were much more pronounced for the right compared to the left side. Only the volume of the right HC showed a small but significant correlation with odor threshold (r(117)=0.21; p=0.02). Importantly, this correlation was not mediated by age as indicated by the significant partial correlation when controlling for age (r(114)=0.18; p=0.049). In conclusion, the present data obtained in a relatively large group of subjects demonstrates a small correlation between the volume of the HC, as an integral part of the olfactory system, and smell function. In addition, these data can be used as the basis for normative values of HC and AG volumes, separately for men, women and different age groups. This is of potential interest in diseases with acute or chronic impairment of olfactory function, in metabolic or neurodegenerative diseases or in disorders with damage of areas involved in adult neurogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
Martin, Claire; Ravel, Nadine
2014-01-01
Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory. PMID:25002840
Ghrelin, leptin and adiponectin as possible predictors of the hedonic value of odors.
Trellakis, Sokratis; Tagay, Sefik; Fischer, Cornelia; Rydleuskaya, Alena; Scherag, André; Bruderek, Kirsten; Schlegl, Sandra; Greve, Jens; Canbay, Ali E; Lang, Stephan; Brandau, Sven
2011-02-25
Several lines of evidence point to a close relationship between the hormones of energy homeostasis and the olfactory system. Examples are the localization of leptin and adiponectin receptors in the olfactory system or increased activation of brain regions related to the palatability and the hedonic value of food in response to food pictures after application of ghrelin. In this preliminary study, we tested in 31 subjects (17 male and 14 female) if and to what extent the peripheral blood concentrations of "satiety" hormones, such as leptin, adiponectin, and ghrelin (acyl and total), are correlated with the self-ratings of odor pleasantness and with the objective olfactory and gustatory ability. The hedonic values of some odors were found to be differently rated between donors depending on gender and body weight. The concentrations of leptin, adiponectin and total ghrelin were significantly associated with the hedonic value of pepper black oil, but failed to show significant correlations for 5 other odors tested. Except for a significant association between leptin and odor identification, hormone concentrations were not linked to the abilities of smell and taste. Peripheral adipokines and gut hormones may alter the perception and pleasantness of specific odors, presumably either directly through their receptors in the olfactory system or indirectly through central interfaces between the regulation systems of olfaction, appetite control, memory and motivation. Copyright © 2010 Elsevier B.V. All rights reserved.
SEX DIFFERENCES AND REPRODUCTIVE HORMONE INFLUENCES ON HUMAN ODOR PERCEPTION
Doty, Richard L.; Cameron, E. Leslie
2009-01-01
The question of whether men and women differ in their ability to smell has been the topic of scientific investigation for over a hundred years. Although conflicting findings abound, most studies suggest that, for at least some odorants, women outperform men on tests of odor detection, identification, discrimination, and memory. Most functional imaging and electrophysiological studies similarly imply that, when sex differences are present, they favor women. In this review we examine what is known about sex-related alterations in human smell function, including influences of the menstrual cycle, pregnancy, gonadectomy, and hormone replacement therapy on a range of olfactory measures. We conclude that the relationship between reproductive hormones and human olfactory function is complex and that simple associations between circulating levels of gonadal hormones and measures of olfactory function are rarely present. PMID:19272398
Wang, Shinmin; Allen, Richard J; Lee, Jun Ren; Hsieh, Chia-En
2015-05-01
The creation of temporary bound representation of information from different sources is one of the key abilities attributed to the episodic buffer component of working memory. Whereas the role of working memory in word learning has received substantial attention, very little is known about the link between the development of word recognition skills and the ability to bind information in the episodic buffer of working memory and how it may develop with age. This study examined the performance of Grade 2 children (8 years old), Grade 3 children (9 years old), and young adults on a task designed to measure their ability to bind visual and auditory-verbal information in working memory. Children's performance on this task significantly correlated with their word recognition skills even when chronological age, memory for individual elements, and other possible reading-related factors were taken into account. In addition, clear developmental trajectories were observed, with improvements in the ability to hold temporary bound information in working memory between Grades 2 and 3, and between the child and adult groups, that were independent from memory for the individual elements. These findings suggest that the capacity to temporarily bind novel auditory-verbal information to visual form in working memory is linked to the development of word recognition in children and improves with age. Copyright © 2015 Elsevier Inc. All rights reserved.
Power Impact of Loop Buffer Schemes for Biomedical Wireless Sensor Nodes
Artes, Antonio; Ayala, Jose L.; Catthoor, Francky
2012-01-01
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application. PMID:23202202
Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex.
Frick, K M; Burlingame, L A; Arters, J A; Berger-Sweeney, J
2000-01-01
Age-related changes in learning and memory are common in rodents. However, direct comparisons of the effects of aging on learning and memory in both males and females are lacking. The present study examined whether memory deteriorates with increasing age in C57BL/6NIA mice, and whether age-related changes in learning and memory are similar in both sexes. Male and female mice (five, 17 and 25 months of age) were tested in a battery of behavioral tasks including the Morris water maze (spatial and non-spatial reference memory), simple odor discrimination (olfactory reference memory), plus maze (anxiety/exploration), locomotor activity, and basic reflexes. Five-month-old mice learned the water maze and odor discrimination tasks rapidly. Relative to five-month-old mice, 25-month-old mice exhibited impaired spatial and olfactory reference memory, but intact non-spatial reference memory. The spatial reference memory of 17-month-old mice was also impaired, but less so than 25-month mice. Seventeen-month-old mice exhibited intact non-spatial (visual and olfactory) reference memory. Five and 25-month-old mice had similar levels of plus maze exploration and locomotor activity, whereas 17-month-old mice were more active than both groups and were slightly less exploratory than five-month-old mice. Although sex differences were not observed in the five- and 25-month groups, 17-month-old females exhibited more impaired spatial reference memory and increased anxiety relative to 17-month-old males. Estrous cycling in females deteriorated significantly with increased age; all 25-month-old females had ceased cycling and 80% of 17-month-old females displayed either irregular or absent estrous cycling. This study is the first to directly compare age-related mnemonic decline in male and female mice. The results suggest that: (i) aged mice exhibit significant deficits in spatial and olfactory reference memory relative to young mice, whereas middle-aged mice exhibit only a moderate spatial memory deficit and; (ii) spatial reference memory decline begins at an earlier age in females than in males, a finding that may be related to the cessation of estrous cycling.
C. elegans positive butanone learning, short-term, and long-term associative memory assays.
Kauffman, Amanda; Parsons, Lance; Stein, Geneva; Wills, Airon; Kaletsky, Rachel; Murphy, Coleen
2011-03-11
The memory of experiences and learned information is critical for organisms to make choices that aid their survival. C. elegans navigates its environment through neuron-specific detection of food and chemical odors, and can associate nutritive states with chemical odors, temperature, and the pathogenicity of a food source. Here, we describe assays of C. elegans associative learning and short- and long-term associative memory. We modified an aversive olfactory learning paradigm to instead produce a positive response; the assay involves starving ~400 worms, then feeding the worms in the presence of the AWC neuron-sensed volatile chemoattractant butanone at a concentration that elicits a low chemotactic index (similar to Toroyama et al.). A standard population chemotaxis assay1 tests the worms' attraction to the odorant immediately or minutes to hours after conditioning. After conditioning, wild-type animals' chemotaxis to butanone increases ~0.6 Chemotaxis Index units, its "Learning Index". Associative learning is dependent on the presence of both food and butanone during training. Pairing food and butanone for a single conditioning period ("massed training") produces short-term associative memory that lasts ~2 hours. Multiple conditioning periods with rest periods between ("spaced training") yields long-term associative memory (<40 hours), and is dependent on the cAMP Response Element Binding protein (CREB), a transcription factor required for long-term memory across species. Our protocol also includes image analysis methods for quick and accurate determination of chemotaxis indices. High-contrast images of animals on chemotaxis assay plates are captured and analyzed by worm counting software in MatLab. The software corrects for uneven background using a morphological tophat transformation. Otsu's method is then used to determine a threshold to separate worms from the background. Very small particles are removed automatically and larger non-worm regions (plate edges or agar punches) are removed by manual selection. The software then estimates the size of single worm by ignoring regions that are above a specified maximum size and taking the median size of the remaining regions. The number of worms is then estimated by dividing the total area identified as occupied by worms by the estimated size of a single worm. We have found that learning and short- and long-term memory can be distinguished, and that these processes share similar key molecules with higher organisms. Our assays can quickly test novel candidate genes or molecules that affect learning and short- or long-term memory in C. elegans that are relevant across species.
NASA Technical Reports Server (NTRS)
Lim, R. S.
1974-01-01
The first-in-first-out memory buffer (FIFO), is an elastic digital memory whose main application is in data buffering between devices operating at different rates. Data written into the top is moved autonomously down toward the bottom of the FIFO to the lowest unoccupied location, and data read from the bottom of the FIFO will cause data from the top to move autonomously down toward the bottom. The FIFO is available in MOS LSI asynchronous form with data rate in the 1 MHz region. The FIFO described yields a simple high-speed iterative implementation, either synchronous of asynchronous. Because of this simple iterative structure, the FIFO is expandable in both number of words and bits per word, and it is attractive from the viewpoint of integrated-circuit production. For the synchronous FIFO, a model was built and successfully used in the controller for the UNICON laser memory. For the asynchronous FIFO, a model was built and also successfully used in a high-performance magnetic tape controller.
NPY2-receptor variation modulates iconic memory processes.
Arning, Larissa; Stock, Ann-Kathrin; Kloster, Eugen; Epplen, Jörg T; Beste, Christian
2014-08-01
Sensory memory systems are modality-specific buffers that comprise information about external stimuli, which represent the earliest stage of information processing. While these systems have been the subject of cognitive neuroscience research for decades, little is known about the neurobiological basis of sensory memory. However, accumulating evidence suggests that the glutamatergic system and systems influencing glutamatergic neural transmission are important. In the current study we examine if functional promoter variations in neuropeptide Y (NPY) and its receptor gene NPY2R affect iconic memory processes using a partial report paradigm. We found that iconic memory decayed much faster in individuals carrying the rare promoter NPY2R G allele which is associated with increased expression of the Y2 receptor. Possibly this effect is due to altered presynaptic inhibition of glutamate release, known to be modulated by Y2 receptors. Altogether, our results provide evidence that the functionally relevant single nucleotide polymorphism (SNP) in the NPY2R promoter gene affect circumscribed processes of early sensory processing, i.e. only the stability of information in sensory memory buffers. This leads us to suggest that especially the stability of information in sensory memory buffers depends on glutamatergic neural transmission and factors modulating glutamatergic turnover. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Graziano, Martin; Sigman, Mariano
2008-05-23
When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.
Validation of the human odor span task: effects of nicotine.
MacQueen, David A; Drobes, David J
2017-10-01
Amongst non-smokers, nicotine generally enhances performance on tasks of attention, with limited effect on working memory. In contrast, nicotine has been shown to produce robust enhancements of working memory in non-humans. To address this gap, the present study investigated the effects of nicotine on the performance of non-smokers on a cognitive battery which included a working memory task reverse-translated from use with rodents (the odor span task, OST). Nicotine has been reported to enhance OST performance in rats and the present study assessed whether this effect generalizes to human performance. Thirty non-smokers were tested on three occasions after consuming either placebo, 2 mg, or 4 mg nicotine gum. On each occasion, participants completed a battery of clinical and experimental tasks of working memory and attention. Nicotine was associated with dose-dependent enhancements in sustained attention, as evidenced by increased hit accuracy on the rapid visual information processing (RVIP) task. However, nicotine failed to produce main effects on OST performance or on alternative measures of working memory (digit span, spatial span, letter-number sequencing, 2-back) or attention (digits forward, 0-back). Interestingly, enhancement of RVIP performance occurred concomitant to significant reductions in self-reported attention/concentration. Human OST performance was significantly related to N-back performance, and as in rodents, OST accuracy declined with increasing memory load. Given the similarity of human and rodent OST performance under baseline conditions and the strong association between OST and visual 0-back accuracy, the OST may be particular useful in the study of conditions characterized by inattention.
Mc Cabe, Sofía I; Farina, Walter M
2009-02-01
A recent study showed that the stingless bee Melipona quadrifasciata could learn to discriminate odors in a classical conditioning of proboscis extension response (PER). Here we used this protocol to investigate the ability of these bees to use olfactory information obtained within the colony in an experimental context: the PER paradigm. We compared their success in solving a classical differential conditioning depending on the previous olfactory experiences received inside the nest. We found that M. quadrifasciata bees are capable of transferring the food-odor information acquired in the colony to a differential conditioning in the PER paradigm. Bees attained higher discrimination levels when they had previously encountered the rewarded odor associated to food inside the hive. The increase in the discrimination levels, however, was in some cases unspecific to the odor used indicating a certain degree of generalization. The influence of the food scent offered at a field feeder 24 h before the classical conditioning could also be seen in the discrimination attained by the foragers in the PER setup, detecting the presence of long-term memory. Moreover, the improved performance of recruited bees in the PER paradigm suggests the occurrence of social learning of nectar scents inside the stingless bees' hives.
Bonnafé, Elsa; Alayrangues, Julie; Hotier, Lucie; Massou, Isabelle; Renom, Allan; Souesme, Guillaume; Marty, Pierre; Allaoua, Marion; Treilhou, Michel; Armengaud, Catherine
2017-02-01
Bees are exposed in their environment to contaminants that can weaken the colony and contribute to bee declines. Monoterpenoid-based preparations can be introduced into hives to control the parasitic mite Varroa destructor. The long-term effects of monoterpenoids are poorly investigated. Olfactory conditioning of the proboscis extension reflex (PER) has been used to evaluate the impact of stressors on cognitive functions of the honeybee such as learning and memory. The authors tested the PER to odorants on bees after exposure to monoterpenoids in hives. Octopamine receptors, transient receptor potential-like (TRPL), and γ-aminobutyric acid channels are thought to play a critical role in the memory of food experience. Gene expression levels of Amoa1, Rdl, and trpl were evaluated in parallel in the bee brain because these genes code for the cellular targets of monoterpenoids and some pesticides and neural circuits of memory require their expression. The miticide impaired the PER to odors in the 3 wk following treatment. Short-term and long-term olfactory memories were improved months after introduction of the monoterpenoids into the beehives. Chronic exposure to the miticide had significant effects on Amoa1, Rdl, and trpl gene expressions and modified seasonal changes in the expression of these genes in the brain. The decrease of expression of these genes in winter could partly explain the improvement of memory. The present study has led to new insights into alternative treatments, especially on their effects on memory and expression of selected genes involved in this cognitive function. Environ Toxicol Chem 2017;36:337-345. © 2016 SETAC. © 2016 SETAC.
Quantum memory in warm rubidium vapor with buffer gas.
Bashkansky, Mark; Fatemi, Fredrik K; Vurgaftman, Igor
2012-01-15
The realization of quantum memory using warm atomic vapor cells is appealing because of their commercial availability and the perceived reduction in experimental complexity. In spite of the ambiguous results reported in the literature, we demonstrate that quantum memory can be implemented in a single cell with buffer gas using the geometry where the write and read beams are nearly copropagating. The emitted Stokes and anti-Stokes photons display cross-correlation values greater than 2, characteristic of quantum states, for delay times up to 4 μs.
Direct memory access transfer completion notification
Chen, Dong; Giampapa, Mark E.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos
2010-07-27
Methods, compute nodes, and computer program products are provided for direct memory access (`DMA`) transfer completion notification. Embodiments include determining, by an origin DMA engine on an origin compute node, whether a data descriptor for an application message to be sent to a target compute node is currently in an injection first-in-first-out (`FIFO`) buffer in dependence upon a sequence number previously associated with the data descriptor, the total number of descriptors currently in the injection FIFO buffer, and the current sequence number for the newest data descriptor stored in the injection FIFO buffer; and notifying a processor core on the origin DMA engine that the message has been sent if the data descriptor for the message is not currently in the injection FIFO buffer.
VIRTUAL FRAME BUFFER INTERFACE
NASA Technical Reports Server (NTRS)
Wolfe, T. L.
1994-01-01
Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.
Fast Pixel Buffer For Processing With Lookup Tables
NASA Technical Reports Server (NTRS)
Fisher, Timothy E.
1992-01-01
Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.
Self-grounding visual, auditory and olfactory autobiographical memories.
Knez, Igor; Ljunglöf, Louise; Arshamian, Artin; Willander, Johan
2017-07-01
Given that autobiographical memory provides a cognitive foundation for the self, we investigated the relative importance of visual, auditory and olfactory autobiographical memories for the self. Thirty subjects, with a mean age of 35.4years, participated in a study involving a three×three within-subject design containing nine different types of autobiographical memory cues: pictures, sounds and odors presented with neutral, positive and negative valences. It was shown that visual compared to auditory and olfactory autobiographical memories involved higher cognitive and emotional constituents for the self. Furthermore, there was a trend showing positive autobiographical memories to increase their proportion to both cognitive and emotional components of the self, from olfactory to auditory to visually cued autobiographical memories; but, yielding a reverse trend for negative autobiographical memories. Finally, and independently of modality, positive affective states were shown to be more involved in autobiographical memory than negative ones. Copyright © 2017 Elsevier Inc. All rights reserved.
A wide bandwidth CCD buffer memory system
NASA Technical Reports Server (NTRS)
Siemens, K.; Wallace, R. W.; Robinson, C. R.
1978-01-01
A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. CCD shift register memories (8K bit) were used to construct a feasibility model 128 K-bit buffer memory system. Serial data that can have rates between 150 kHz and 4.0 MHz can be stored in 4K-bit, randomly-accessible memory blocks. Peak power dissipation during a data transfer is less than 7 W, while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. System expansion to accommodate parallel inputs or a greater number of memory blocks can be performed in a modular fashion. Since the control logic does not increase proportionally to increase in memory capacity, the power requirements per bit of storage can be reduced significantly in a larger system.
Mossaheb, Nilufar; Kaufmann, Rainer M; Schlögelhofer, Monika; Aninilkumparambil, Thushara; Himmelbauer, Claudia; Gold, Anna; Zehetmayer, Sonja; Hoffmann, Holger; Traue, Harald C; Aschauer, Harald
2018-01-01
Social interactive functions such as facial emotion recognition and smell identification have been shown to differ between women and men. However, little is known about how these differences are mirrored in patients with schizophrenia and how these abilities interact with each other and with other clinical variables in patients vs. healthy controls. Standardized instruments were used to assess facial emotion recognition [Facially Expressed Emotion Labelling (FEEL)] and smell identification [University of Pennsylvania Smell Identification Test (UPSIT)] in 51 patients with schizophrenia spectrum disorders and 79 healthy controls; furthermore, working memory functions and clinical variables were assessed. In both the univariate and the multivariate results, illness showed a significant influence on UPSIT and FEEL. The inclusion of age and working memory in the MANOVA resulted in a differential effect with sex and working memory as remaining significant factors. Duration of illness was correlated with both emotion recognition and smell identification in men only, whereas immediate general psychopathology and negative symptoms were associated with emotion recognition only in women. Being affected by schizophrenia spectrum disorder impacts one's ability to correctly recognize facial affects and identify odors. Converging evidence suggests a link between the investigated basic and social cognitive abilities in patients with schizophrenia spectrum disorders with a strong contribution of working memory and differential effects of modulators in women vs. men.
Circuit Analysis of a Drosophila Dopamine Type 2 Receptor That Supports Anesthesia-Resistant Memory.
Scholz-Kornehl, Sabrina; Schwärzel, Martin
2016-07-27
Dopamine is central to reinforcement processing and exerts this function in species ranging from humans to fruit flies. It can do so via two different types of receptors (i.e., D1 or D2) that mediate either augmentation or abatement of cellular cAMP levels. Whereas D1 receptors are known to contribute to Drosophila aversive odor learning per se, we here show that D2 receptors are specific for support of a consolidated form of odor memory known as anesthesia-resistant memory. By means of genetic mosaicism, we localize this function to Kenyon cells, the mushroom body intrinsic neurons, as well as GABAergic APL neurons and local interneurons of the antennal lobes, suggesting that consolidated anesthesia-resistant memory requires widespread dopaminergic modulation within the olfactory circuit. Additionally, dopaminergic neurons themselves require D2R, suggesting a critical role in dopamine release via its recognized autoreceptor function. Considering the dual role of dopamine in balancing memory acquisition (proactive function of dopamine) and its "forgetting" (retroactive function of dopamine), our analysis suggests D2R as central player of either process. Dopamine provides different information; while it mediates reinforcement during the learning act (proactive function), it balances memory performance between two antithetic processes thereafter (retroactive function) (i.e., forgetting and augmentation). Such bidirectional design can also be found at level of dopamine receptors, where augmenting D1 and abating D2 receptors are engaged to balance cellular cAMP levels. Here, we report that consolidated anesthesia-resistant memory (ARM), but not other concomitant memory phases, are sensitive to bidirectional dopaminergic signals. By means of genetic mosaicism, we identified widespread dopaminergic modulation within the olfactory circuit that suggests nonredundant and reiterating functions of D2R in support of ARM. Our results oppose ARM to its concomitant memory phases that localize to mushroom bodies and propose a decentralized organization of consolidated ARM. Copyright © 2016 the authors 0270-6474/16/367936-10$15.00/0.
High speed, very large (8 megabyte) first in/first out buffer memory (FIFO)
Baumbaugh, Alan E.; Knickerbocker, Kelly L.
1989-01-01
A fast FIFO (First In First Out) memory buffer capable of storing data at rates of 100 megabytes per second. The invention includes a data packer which concatenates small bit data words into large bit data words, a memory array having individual data storage addresses adapted to store the large bit data words, a data unpacker into which large bit data words from the array can be read and reconstructed into small bit data words, and a controller to control and keep track of the individual data storage addresses in the memory array into which data from the packer is being written and data to the unpacker is being read.
Second-Order Conditioning in "Drosophila"
ERIC Educational Resources Information Center
Tabone, Christopher J.; de Belle, J. Steven
2011-01-01
Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…
APIS—a novel approach for conditioning honey bees
Kirkerud, Nicholas H.; Wehmann, Henja-Niniane; Galizia, C. Giovanni; Gustav, David
2013-01-01
Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior. PMID:23616753
APIS-a novel approach for conditioning honey bees.
Kirkerud, Nicholas H; Wehmann, Henja-Niniane; Galizia, C Giovanni; Gustav, David
2013-01-01
Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior.
Rhythmic coordination of hippocampal neurons during associative memory processing
Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard
2016-01-01
Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus. DOI: http://dx.doi.org/10.7554/eLife.09849.001 PMID:26751780
Role of Self-Generated Odor Cues in Contextual Representation
Aikath, Devdeep; Weible, Aldis P; Rowland, David C; Kentros, Clifford G
2014-01-01
As first demonstrated in the patient H.M., the hippocampus is critically involved in forming episodic memories, the recall of “what” happened “where” and “when.” In rodents, the clearest functional correlate of hippocampal primary neurons is the place field: a cell fires predominantly when the animal is in a specific part of the environment, typically defined relative to the available visuospatial cues. However, rodents have relatively poor visual acuity. Furthermore, they are highly adept at navigating in total darkness. This raises the question of how other sensory modalities might contribute to a hippocampal representation of an environment. Rodents have a highly developed olfactory system, suggesting that cues such as odor trails may be important. To test this, we familiarized mice to a visually cued environment over a number of days while maintaining odor cues. During familiarization, self-generated odor cues unique to each animal were collected by re-using absorbent paperboard flooring from one session to the next. Visual and odor cues were then put in conflict by counter-rotating the recording arena and the flooring. Perhaps surprisingly, place fields seemed to follow the visual cue rotation exclusively, raising the question of whether olfactory cues have any influence at all on a hippocampal spatial representation. However, subsequent removal of the familiar, self-generated odor cues severely disrupted both long-term stability and rotation to visual cues in a novel environment. Our data suggest that odor cues, in the absence of additional rule learning, do not provide a discriminative spatial signal that anchors place fields. Such cues do, however, become integral to the context over time and exert a powerful influence on the stability of its hippocampal representation. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:24753119
Alderson, R Matt; Kasper, Lisa J; Patros, Connor H G; Hudec, Kristen L; Tarle, Stephanie J; Lea, Sarah E
2015-01-01
The episodic buffer component of working memory was examined in children with attention deficit/hyperactivity disorder (ADHD) and typically developing peers (TD). Thirty-two children (ADHD = 16, TD = 16) completed three versions of a phonological working memory task that varied with regard to stimulus presentation modality (auditory, visual, or dual auditory and visual), as well as a visuospatial task. Children with ADHD experienced the largest magnitude working memory deficits when phonological stimuli were presented via a unimodal, auditory format. Their performance improved during visual and dual modality conditions but remained significantly below the performance of children in the TD group. In contrast, the TD group did not exhibit performance differences between the auditory- and visual-phonological conditions but recalled significantly more stimuli during the dual-phonological condition. Furthermore, relative to TD children, children with ADHD recalled disproportionately fewer phonological stimuli as set sizes increased, regardless of presentation modality. Finally, an examination of working memory components indicated that the largest magnitude between-group difference was associated with the central executive. Collectively, these findings suggest that ADHD-related working memory deficits reflect a combination of impaired central executive and phonological storage/rehearsal processes, as well as an impaired ability to benefit from bound multimodal information processed by the episodic buffer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, E.S.; Ivoilov, N.G.
A buffer memory unit and an interface for the UNO-4096-90 accumulator with an Elektronika D3-28 microcomputer are described that allow simultaneous recording of four Moessbauer spectra with zero dead time. For complete elimination of dead time, the pulses from each detector are fed to two buffer counters units, which operate alternately in the write and interrogate modes. This organization of the buffer memory also completely eliminates the effect of the sensors on one another. The use of these circuits does not require any modifications of the computer or accumulator.
Wei, Kun; Zhong, Suchuan
2017-08-01
Phenomenologically inspired by dolphins' unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker's risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.
Fortes-Marco, Lluís; Lanuza, Enrique; Martínez-García, Fernando; Agustín-Pavón, Carmen
2015-01-01
Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP), a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT), a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA), unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively) than 2-HP (35 μmol). All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation-dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT) or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g., hormonal levels) or neural measures (e.g., immediate early gene expression) to establish the ethological significance of odorants.
Fortes-Marco, Lluís; Lanuza, Enrique; Martínez-García, Fernando; Agustín-Pavón, Carmen
2015-01-01
Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP), a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT), a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA), unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively) than 2-HP (35 μmol). All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation–dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT) or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g., hormonal levels) or neural measures (e.g., immediate early gene expression) to establish the ethological significance of odorants. PMID:26500474
Digitally programmable signal generator and method
Priatko, G.J.; Kaskey, J.A.
1989-11-14
Disclosed is a digitally programmable waveform generator for generating completely arbitrary digital or analog waveforms from very low frequencies to frequencies in the gigasample per second range. A memory array with multiple parallel outputs is addressed; then the parallel output data is latched into buffer storage from which it is serially multiplexed out at a data rate many times faster than the access time of the memory array itself. While data is being multiplexed out serially, the memory array is accessed with the next required address and presents its data to the buffer storage before the serial multiplexing of the last group of data is completed, allowing this new data to then be latched into the buffer storage for smooth continuous serial data output. In a preferred implementation, a plurality of these serial data outputs are paralleled to form the input to a digital to analog converter, providing a programmable analog output. 6 figs.
Digitally programmable signal generator and method
Priatko, Gordon J.; Kaskey, Jeffrey A.
1989-01-01
A digitally programmable waveform generator for generating completely arbitrary digital or analog waveforms from very low frequencies to frequencies in the gigasample per second range. A memory array with multiple parallel outputs is addressed; then the parallel output data is latched into buffer storage from which it is serially multiplexed out at a data rate many times faster than the access time of the memory array itself. While data is being multiplexed out serially, the memory array is accessed with the next required address and presents its data to the buffer storage before the serial multiplexing of the last group of data is completed, allowing this new data to then be latched into the buffer storage for smooth continuous serial data output. In a preferred implementation, a plurality of these serial data outputs are paralleled to form the input to a digital to analog converter, providing a programmable analog output.
ERIC Educational Resources Information Center
Nevo, Einat; Bar-Kochva, Irit
2015-01-01
This study investigated the relations of early working-memory abilities (phonological and visual-spatial short-term memory [STM] and complex memory and episodic buffer memory) and later developing reading skills. Sixty Hebrew-speaking children were followed from kindergarten through Grade 5. Working memory was tested in kindergarten and reading in…
Dere, E; Zheng-Fischhöfer, Q; Viggiano, D; Gironi Carnevale, U A; Ruocco, L A; Zlomuzica, A; Schnichels, M; Willecke, K; Huston, J P; Sadile, A G
2008-05-02
Neuronal gap junctions in the brain, providing intercellular electrotonic signal transfer, have been implicated in physiological and behavioral correlates of learning and memory. In connexin31.1 (Cx31.1) knockout (KO) mice the coding region of the Cx31.1 gene was replaced by a LacZ reporter gene. We investigated the impact of Cx31.1 deficiency on open-field exploration, the behavioral response to an odor, non-selective attention, learning and memory performance, and the levels of memory-related proteins in the hippocampus, striatum and the piriform cortex. In terms of behavior, the deletion of the Cx31.1 coding DNA in the mouse led to increased exploratory behaviors in a novel environment, and impaired one-trial object recognition at all delays tested. Despite strong Cx31.1 expression in the peripheral and central olfactory system, Cx31.1 KO mice exhibited normal behavioral responses to an odor. We found increased levels of acetylcholine esterase (AChE) and cAMP response element-binding protein (CREB) in the striatum of Cx31.1 KO mice. In the piriform cortex the Cx31.1 KO mice had an increased heterogeneity of CREB expression among neurons. In conclusion, gap-junctions featuring the Cx31.1 protein might be involved in open-field exploration as well as object memory and modulate levels of AChE and CREB in the striatum and piriform cortex.
NASA Technical Reports Server (NTRS)
1981-01-01
The current status of semiconductor, magnetic, and optical memory technologies is described. Projections based on these research activities planned for the shot term are presented. Conceptual designs of specific memory buffer pplications employing bipola, CMOS, GaAs, and Magnetic Bubble devices are discussed.
The Maintenance of Cross-Domain Associations in the Episodic Buffer
ERIC Educational Resources Information Center
Langerock, Naomi; Vergauwe, Evie; Barrouillet, Pierre
2014-01-01
The episodic buffer has been described as a structure of working memory capable of maintaining multimodal information in an integrated format. Although the role of the episodic buffer in binding features into objects has received considerable attention, several of its characteristics have remained rather underexplored. This is the case for its…
A multiresolution halftoning algorithm for progressive display
NASA Astrophysics Data System (ADS)
Mukherjee, Mithun; Sharma, Gaurav
2005-01-01
We describe and implement an algorithmic framework for memory efficient, 'on-the-fly' halftoning in a progressive transmission environment. Instead of a conventional approach which repeatedly recalls the continuous tone image from memory and subsequently halftones it for display, the proposed method achieves significant memory efficiency by storing only the halftoned image and updating it in response to additional information received through progressive transmission. Thus the method requires only a single frame-buffer of bits for storage of the displayed binary image and no additional storage is required for the contone data. The additional image data received through progressive transmission is accommodated through in-place updates of the buffer. The method is thus particularly advantageous for high resolution bi-level displays where it can result in significant savings in memory. The proposed framework is implemented using a suitable multi-resolution, multi-level modification of error diffusion that is motivated by the presence of a single binary frame-buffer. Aggregates of individual display bits constitute the multiple output levels at a given resolution. This creates a natural progression of increasing resolution with decreasing bit-depth.
ACS Science Data Buffer Check/Self-Tests for CS Buffer RAM and MIE RAM
NASA Astrophysics Data System (ADS)
Balzano, V.
2001-07-01
The ACS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for MIE RAM. The MIE must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.
COS Side 2 Science Data Buffer Check/Self-Tests for CS Buffer RAM and DIB RAM
NASA Astrophysics Data System (ADS)
Bacinski, John
2013-10-01
The COS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for DIB RAM. The DIB must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.
ACS Science Data Buffer Check/Self-Tests for CS Buffer RAM and MIE RAM
NASA Astrophysics Data System (ADS)
Welty, Alan
2005-07-01
The ACS Science Buffer RAM is checked for bit flips during SAA passages. Thisis followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for MIE RAM. The MIE must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.
There is no capacity limited buffer in the Murdock (1962) free recall data
2010-01-01
Theories of short term memory often include a limited capacity “buffer”. Such a buffer contains items which do not decay at all but are overwritten by new data. I show that one of the experiments that fueled the buffer concept, the free recall experiments by Murdock (J Exp Psychol 64(5):482–488, 1962), does not contain such a buffer. PMID:22132047
Resistance to Interference of Olfactory Perceptual Learning
ERIC Educational Resources Information Center
Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline
2007-01-01
Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…
A memory module for experimental data handling
NASA Astrophysics Data System (ADS)
De Blois, J.
1985-02-01
A compact CAMAC memory module for experimental data handling was developed to eliminate the need of direct memory access in computer controlled measurements. When using autonomous controllers it also makes measurements more independent of the program and enlarges the available space for programs in the memory of the micro-computer. The memory module has three modes of operation: an increment-, a list- and a fifo mode. This is achieved by connecting the main parts, being: the memory (MEM), the fifo buffer (FIFO), the address buffer (BUF), two counters (AUX and ADDR) and a readout register (ROR), by an internal 24-bit databus. The time needed for databus operations is 1 μs, for measuring cycles as well as for CAMAC cycles. The FIFO provides temporary data storage during CAMAC cycles and separates the memory part from the application part. The memory is variable from 1 to 64K (24 bits) by using different types of memory chips. The application part, which forms 1/3 of the module, will be specially designed for each application and is added to the memory chian internal connector. The memory unit will be used in Mössbauer experiments and in thermal neutron scattering experiments.
Shaping memory consolidation via targeted memory reactivation during sleep.
Cellini, Nicola; Capuozzo, Alessandra
2018-05-15
Recent studies have shown that the reactivation of specific memories during sleep can be modulated using external stimulation. Specifically, it has been reported that matching a sensory stimulus (e.g., odor or sound cue) with target information (e.g., pairs of words, pictures, and motor sequences) during wakefulness, and then presenting the cue alone during sleep, facilitates memory of the target information. Thus, presenting learned cues while asleep may reactivate related declarative, procedural, and emotional material, and facilitate the neurophysiological processes underpinning memory consolidation in humans. This paradigm, which has been named targeted memory reactivation, has been successfully used to improve visuospatial and verbal memories, strengthen motor skills, modify implicit social biases, and enhance fear extinction. However, these studies also show that results depend on the type of memory investigated, the task employed, the sensory cue used, and the specific sleep stage of stimulation. Here, we present a review of how memory consolidation may be shaped using noninvasive sensory stimulation during sleep. © 2018 New York Academy of Sciences.
Rapport, Mark D; Alderson, R Matt; Kofler, Michael J; Sarver, Dustin E; Bolden, Jennifer; Sims, Valerie
2008-08-01
The current study investigated contradictory findings from recent experimental and meta-analytic studies concerning working memory deficits in ADHD. Working memory refers to the cognitive ability to temporarily store and mentally manipulate limited amounts of information for use in guiding behavior. Phonological (verbal) and visuospatial (nonverbal) working memory were assessed across four memory load conditions in 23 boys (12 ADHD, 11 typically developing) using tasks based on Baddeley's (Working memory, thought, and action, Oxford University Press, New York, 2007) working memory model. The model posits separate phonological and visuospatial storage and rehearsal components that are controlled by a single attentional controller (CE: central executive). A latent variable approach was used to partial task performance related to three variables of interest: phonological buffer/rehearsal loop, visuospatial buffer/rehearsal loop, and the CE attentional controller. ADHD-related working memory deficits were apparent across all three cognitive systems--with the largest magnitude of deficits apparent in the CE--even after controlling for reading speed, nonverbal visual encoding, age, IQ, and SES.
Normalization for sparse encoding of odors by a wide-field interneuron.
Papadopoulou, Maria; Cassenaer, Stijn; Nowotny, Thomas; Laurent, Gilles
2011-05-06
Sparse coding presents practical advantages for sensory representations and memory storage. In the insect olfactory system, the representation of general odors is dense in the antennal lobes but sparse in the mushroom bodies, only one synapse downstream. In locusts, this transformation relies on the oscillatory structure of antennal lobe output, feed-forward inhibitory circuits, intrinsic properties of mushroom body neurons, and connectivity between antennal lobe and mushroom bodies. Here we show the existence of a normalizing negative-feedback loop within the mushroom body to maintain sparse output over a wide range of input conditions. This loop consists of an identifiable "giant" nonspiking inhibitory interneuron with ubiquitous connectivity and graded release properties.
2013-09-01
nearly identical responses to the chemically similar odorants 2-heptanone and n-amyl acetate. The molecules differ only by a single oxygen atom in...briefly bathed in activation buffer and placed in a solution of 11.3 mM NR,NR-bis(carboxymethyl)-L-lysine hydrate (NTA- NH2) prepared with PBS (0.1 M...purity nitrogen or argon gas. A solution containing mORs in digitonin micelles or nanodiscs, prepared as described above, was de- posited on the
Direct memory access transfer completion notification
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Parker, Jeffrey J [Rochester, MN
2011-02-15
DMA transfer completion notification includes: inserting, by an origin DMA engine on an origin node in an injection first-in-first-out (`FIFO`) buffer, a data descriptor for an application message to be transferred to a target node on behalf of an application on the origin node; inserting, by the origin DMA engine, a completion notification descriptor in the injection FIFO buffer after the data descriptor for the message, the completion notification descriptor specifying a packet header for a completion notification packet; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; sending, by the origin DMA engine, the completion notification packet to a local reception FIFO buffer using a local memory FIFO transfer operation; and notifying, by the origin DMA engine, the application that transfer of the message is complete in response to receiving the completion notification packet in the local reception FIFO buffer.
An Experimental Investigation of the Boundary Layer under Pack Ice
1975-01-01
current-meter interface ( CMIF ) consists of a very stable, 20-Kllz crystal oscillator and counter, a master memory-address buffer, and a buffer for each...data channel to a specific location in the computer’s memory, The CMIF also generates computer interrupts at a rate determined by the program (12.8... CMIF can handle up to 128 channels and is designed so that even if all channels have simultaneous dipulses, the processing delay is less than .05 msec
Plaçais, Pierre-Yves; Trannoy, Séverine; Friedrich, Anja B; Tanimoto, Hiromu; Preat, Thomas
2013-11-14
One of the challenges facing memory research is to combine network- and cellular-level descriptions of memory encoding. In this context, Drosophila offers the opportunity to decipher, down to single-cell resolution, memory-relevant circuits in connection with the mushroom bodies (MBs), prominent structures for olfactory learning and memory. Although the MB-afferent circuits involved in appetitive learning were recently described, the circuits underlying appetitive memory retrieval remain unknown. We identified two pairs of cholinergic neurons efferent from the MB α vertical lobes, named MB-V3, that are necessary for the retrieval of appetitive long-term memory (LTM). Furthermore, LTM retrieval was correlated to an enhanced response to the rewarded odor in these neurons. Strikingly, though, silencing the MB-V3 neurons did not affect short-term memory (STM) retrieval. This finding supports a scheme of parallel appetitive STM and LTM processing. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
COS Science Data Buffer Check/Self-Tests for CS Buffer RAM and DIB RAM
NASA Astrophysics Data System (ADS)
Welty, Alan
2009-07-01
The COS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for DIB RAM. The DIB must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.Supports Activity COS-03
Both odor identification and ApoE-ε4 contribute to normative cognitive aging.
Finkel, Deborah; Reynolds, Chandra A; Larsson, Maria; Gatz, Margaret; Pedersen, Nancy L
2011-12-01
Research indicates that apoliprotein E (ApoE) plays a role in the development of Alzheimer's disease (AD) and possibly in the cognitive decline associated with normative aging. More recently, researchers have shown that ApoE is expressed in olfactory brain structures, and a relationship among ApoE, AD, and olfactory function has been proposed. In the current analyses, we investigated the contribution of ApoE and odor identification in decline trajectories associated with normative cognitive aging in various domains, using longitudinal data on cognitive performance available from the Swedish Adoption/Twin Study of Aging. Data on both ApoE status and olfactory functioning were available from 455 individuals ranging in age from 50 to 88 years at the first measurement occasion. Odor identification was measured via a mailed survey. Cognitive performance was assessed in up to 5 waves of in-person testing covering a period of 16 years. Latent growth curve analyses incorporating odor identification and ApoE status indicated a main effect of odor identification on the performance level in three cognitive domains: verbal, memory, and speed. A main effect of ApoE on rates of decline after age 65 was found for verbal, spatial, and speed factors. The consistency of results across cognitive domains provides support for theories that posit central nervous system-wide origins of the olfaction-cognition-ApoE relationship; however, olfactory errors and APOE ε4 show unique and differential effects on cognitive trajectory features.
Gourévitch, Boris; Kay, Leslie M; Martin, Claire
2010-05-01
The hippocampus and olfactory regions are anatomically close, and both play a major role in memory formation. However, the way they interact during odor processing is still unclear. In both areas, strong oscillations of the local field potential (LFP) can be recorded, and are modulated by behavior. In particular, in the olfactory system, the beta rhythm (15-35 Hz) is associated with cognitive processing of an olfactory stimulus. Using LFP recordings in the olfactory bulb and dorsal and ventral hippocampus during performance of an olfactory go/no-go task in rats, we previously showed that beta oscillations are also present in the hippocampus, coherent with those in the olfactory bulb, during odor sampling. In this study, we provide further insight into information transfer in the olfacto-hippocampal network by using directional coherence (DCOH estimate), a method based on the temporal relation between two or more signals in the frequency domain. In the theta band (6-12 Hz), coherence between the olfactory bulb (OB) and the hippocampus (HPC) is weak and can be both in the feedback and feedforward directions. However, at this frequency, modulation of the coupling between the dorsal and ventral hippocampus is seen during stimulus expectation versus odor processing. In the beta frequency band (15-35 Hz), analysis showed a strong unidirectional coupling from the OB to dorsal and ventral HPC, indicating that, during odor processing, beta oscillations in the hippocampus are driven by the olfactory bulb.
Odor Experiences during Preimaginal Stages Cause Behavioral and Neural Plasticity in Adult Honeybees
Ramírez, Gabriela; Fagundez, Carol; Grosso, Juan P.; Argibay, Pablo; Arenas, Andrés; Farina, Walter M.
2016-01-01
In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3–5- and 17–19 day-old bees, in the regulation of their expression of synaptic-related genes and in the perception and morphology of their antennae. Three-five day old bees that experienced 1-hexanol (1-HEX) as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e., bees reared in colonies fed unscented food). Higher levels of proboscis extension response (PER) to 1-HEX in this group also extended to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins (NRXs) and neuroligins (Nlgs) expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects. PMID:27375445
Ramírez, Gabriela; Fagundez, Carol; Grosso, Juan P; Argibay, Pablo; Arenas, Andrés; Farina, Walter M
2016-01-01
In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3-5- and 17-19 day-old bees, in the regulation of their expression of synaptic-related genes and in the perception and morphology of their antennae. Three-five day old bees that experienced 1-hexanol (1-HEX) as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e., bees reared in colonies fed unscented food). Higher levels of proboscis extension response (PER) to 1-HEX in this group also extended to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins (NRXs) and neuroligins (Nlgs) expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects.
Debiec, Jacek; Sullivan, Regina Marie
2014-01-01
Emotional trauma is transmitted across generations. For example, children witnessing their parent expressing fear to specific sounds or images begin to express fear to those cues. Within normal range, this is adaptive, although pathological fear, such as occurs in posttraumatic stress disorder or specific phobias, is also socially transmitted to children and is thus of clinical concern. Here, using a rodent model, we report a mother-to-infant transfer of fear to a novel peppermint odor, which is dependent on the mother expressing fear to that smell in pups’ presence. Examination of pups’ neural activity using c-Fos early gene expression and 14C 2-deoxyglucose autoradiography during mother-to-infant fear transmission revealed lateral and basal amygdala nuclei activity, with a causal role highlighted by pharmacological inactivation of pups’ amygdala preventing the fear transmission. Maternal presence was not needed for fear transmission, because an elevation of pups’ corticosterone induced by the odor of the frightened mother along with a novel peppermint odor was sufficient to produce pups’ subsequent aversion to that odor. Disruption of axonal tracts from the Grueneberg ganglion, a structure implicated in alarm chemosignaling, or blockade of pups’ alarm odor-induced corticosterone increase prevented transfer of fear. These memories are acquired at younger ages compared with amygdala-dependent odor-shock conditioning and are more enduring following minimal conditioning. Our results provide clues to understanding transmission of specific fears across generations and its dependence upon maternal induction of pups’ stress response paired with the cue to induce amygdala-dependent learning plasticity. Results are discussed within the context of caregiver emotional responses and adaptive vs. pathological fears social transmission. PMID:25071168
Is the Binding of Visual Features in Working Memory Resource-Demanding?
ERIC Educational Resources Information Center
Allen, Richard J.; Baddeley, Alan D.; Hitch, Graham J.
2006-01-01
The episodic buffer component of working memory is assumed to play a role in the binding of features into chunks. A series of experiments compared memory for arrays of colors or shapes with memory for bound combinations of these features. Demanding concurrent verbal tasks were used to investigate the role of general attentional processes,…
Muroy, Sandra E; Long, Kimberly L P; Kaufer, Daniela; Kirby, Elizabeth D
2016-01-01
In times of stress, social support can serve as a potent buffering mechanism that enhances resilience. In humans, stress can promote protective affiliative interactions and prosocial behavior. Yet, stress also precipitates psychopathologies characterized by social withdrawal such as post-traumatic stress disorder (PTSD) and depression. The factors that drive adaptive vs maladaptive social responses to stress are not yet clear. Rodent studies have focused on pair-bonded, opposite-sex mates and suggest that a variety of stressors can induce social support-like behaviors. However, between same-sex conspecifics—particularly males—stress effects on social bonding are less understood and often associated with aggression and social unrest. We thus sought to investigate if a moderate stressor—3 h of acute immobilization—impacts social-support behaviors differently when experienced in a neutral vs more innately threatening context (ie, paired with predator odor). We found that moderate stress increased social support-seeking behavior in rat cagemates and facilitated long-term sharing of a limited water resource, decreased aggression, and strongly defined dominance ranks (an indicator of home cage stability). In contrast, experiencing the same stressor in the presence of predator odor eliminated the positive behavioral effects of moderate stress. Importantly, hypothalamic oxytocin (OT) signaling increased coincident with stress in a neutral—but not a predator odor—context. Our results define a novel rodent model of divergent stress effects on social affiliation and OT signaling dependent on odor context with particularly strong relevance to stress-related disorders such as PTSD, which are characterized by a disrupted ability to seek and maintain social bonds. PMID:26830961
Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A
2017-02-20
While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
An Early Sensitive Period Induces Long-Lasting Plasticity in the Honeybee Nervous System
Grosso, Juan P.; Barneto, Jesica A.; Velarde, Rodrigo A.; Pagano, Eduardo A.; Zavala, Jorge A.; Farina, Walter M.
2018-01-01
The effect of early experiences on the brain during a sensitive period exerts a long-lasting influence on the mature individual. Despite behavioral and neural plasticity caused by early experiences having been reported in the honeybee Apis mellifera, the presence of a sensitive period in which associative experiences lead to pronounced modifications in the adult nervous system is still unclear. Laboratory-reared bees were fed with scented food within specific temporal windows and were assessed for memory retention, in the regulation of gene expression related to the synaptic formation and in the olfactory perception of their antennae at 17 days of age. Bees were able to retain a food-odor association acquired 5–8 days after emergence, but not before, and showed better retention than those exposed to an odor at 9–12 days. In the brain, the odor-rewarded experiences that occurred at 5–8 days of age boosted the expression levels of the cell adhesion proteins neurexin 1 (Nrx1) and neuroligin 2 (Nlg2) involved in synaptic strength. At the antennae, the experiences increased the electrical response to a novel odor but not to the one experienced. Therefore, a sensitive period that induces long-lasting behavioral, functional and structural changes is found in adult honeybees. PMID:29449804
An Early Sensitive Period Induces Long-Lasting Plasticity in the Honeybee Nervous System.
Grosso, Juan P; Barneto, Jesica A; Velarde, Rodrigo A; Pagano, Eduardo A; Zavala, Jorge A; Farina, Walter M
2018-01-01
The effect of early experiences on the brain during a sensitive period exerts a long-lasting influence on the mature individual. Despite behavioral and neural plasticity caused by early experiences having been reported in the honeybee Apis mellifera , the presence of a sensitive period in which associative experiences lead to pronounced modifications in the adult nervous system is still unclear. Laboratory-reared bees were fed with scented food within specific temporal windows and were assessed for memory retention, in the regulation of gene expression related to the synaptic formation and in the olfactory perception of their antennae at 17 days of age. Bees were able to retain a food-odor association acquired 5-8 days after emergence, but not before, and showed better retention than those exposed to an odor at 9-12 days. In the brain, the odor-rewarded experiences that occurred at 5-8 days of age boosted the expression levels of the cell adhesion proteins neurexin 1 ( Nrx1 ) and neuroligin 2 ( Nlg2 ) involved in synaptic strength. At the antennae, the experiences increased the electrical response to a novel odor but not to the one experienced. Therefore, a sensitive period that induces long-lasting behavioral, functional and structural changes is found in adult honeybees.
Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus.
Arvidsson, Josefin; Amundin, Mats; Laska, Matthias
2012-02-01
The present study demonstrates that Asian elephants, Elephas maximus, can successfully be trained to cooperate in an olfactory discrimination test based on a food-rewarded two-alternative instrumental conditioning procedure. The animals learned the basic principle of the test within only 60 trials and readily mastered intramodal stimulus transfer tasks. Further, they were capable of distinguishing between structurally related odor stimuli and remembered the reward value of previously learned odor stimuli after 2, 4, 8, and 16 weeks of recess without any signs of forgetting. The precision and consistency of the elephants' performance in tests of odor discrimination ability and long-term odor memory demonstrate the suitability of this method for assessing olfactory function in this proboscid species. An across-species comparison of several measures of olfactory learning capabilities such as speed of initial task acquisition and ability to master intramodal stimulus transfer tasks shows that Asian elephants are at least as good in their performance as mice, rats, and dogs, and clearly superior to nonhuman primates and fur seals. The results support the notion that Asian elephants may use olfactory cues for social communication and food selection and that the sense of smell may play an important role in the control of their behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
Serial-data correlator/code translator
NASA Technical Reports Server (NTRS)
Morgan, L. E.
1977-01-01
System, consisting of sampling flip flop, memory (either RAM or ROM), and memory buffer, correlates sampled data with predetermined acceptance code patterns, translates acceptable code patterns to nonreturn-to-zero code, and identifies data dropouts.
Koppel, Jonathan; Rubin, David C.
2016-01-01
The reminiscence bump is the increased proportion of autobiographical memories from youth and early adulthood observed in adults over 40. It is one of the most robust findings in autobiographical memory research. Although described as a single period of increased memories, a recent meta-analysis which reported the beginning and ending ages of the bump from individual studies found that different classes of cues produce distinct bumps that vary in size and temporal location. The bump obtained in response to cue words is both smaller and located earlier in the lifespan than the bump obtained when important memories are requested. The bump obtained in response to odor cues is even earlier. This variation in the size and location of the reminiscence bump argues for theories based primarily on retrieval rather than encoding and retention, which most current theories stress. Furthermore, it points to the need to develop theories of autobiographical memory that account for this flexibility in the memories retrieved. PMID:27141156
Does Proactive Interference Play a Significant Role in Visual Working Memory Tasks?
ERIC Educational Resources Information Center
Makovski, Tal
2016-01-01
Visual working memory (VWM) is an online memory buffer that is typically assumed to be immune to source memory confusions. Accordingly, the few studies that have investigated the role of proactive interference (PI) in VWM tasks found only a modest PI effect at best. In contrast, a recent study has found a substantial PI effect in that performance…
Nosewitness Identification: Effects of Negative Emotion
Ferreira, Jacqueline; Rocha, Marta; Silva, Carlos F.; Olsson, Mats J.
2015-01-01
Every individual has a unique body odor (BO), similar to a fingerprint. In forensic research, identification of culprit BOs has been performed by trained dogs, but not by humans. We introduce the concept of nosewitness identification and present the first experimental results on BO memory in witness situations involving violent crimes. Two experiments indicated that BO associated with male characters in authentic videos could later be identified in BO lineup tests well above chance. Moreover, culprit BO in emotional crime videos could be identified considerably better than the BO of a male person in neutral videos. This indicates that nosewitness identification benefits from emotional encoding. Altogether, the study testifies to the virtue of body odor as a cue to identify individuals observed under negative emotion. PMID:25612211
Spacecraft optical disk recorder memory buffer control
NASA Technical Reports Server (NTRS)
Hodson, Robert F.
1992-01-01
The goal of this project is to develop an Application Specific Integrated Circuit (ASIC) for use in the control electronics of the Spacecraft Optical Disk Recorder (SODR). Specifically, this project is to design an extendable memory buffer controller ASIC for rate matching between a system Input/Output port and the SODR's device interface. The aforementioned goal can be partitioned into the following sub-goals: (1) completion of ASIC design and simulation (on-going via ASEE fellowship); (2) ASIC Fabrication (at ASIC manufacturer); and (3) ASIC Testing (NASA/LaRC, Christopher Newport University).
Video Guidance Sensor System With Integrated Rangefinding
NASA Technical Reports Server (NTRS)
Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Howard, Richard T. (Inventor); Roe, Fred Davis, Jr. (Inventor); Bell, Joseph L. (Inventor)
2006-01-01
A video guidance sensor system for use, p.g., in automated docking of a chase vehicle with a target vehicle. The system includes an integrated rangefinder sub-system that uses time of flight measurements to measure range. The rangefinder sub-system includes a pair of matched photodetectors for respectively detecting an output laser beam and return laser beam, a buffer memory for storing the photodetector outputs, and a digitizer connected to the buffer memory and including dual amplifiers and analog-to-digital converters. A digital signal processor processes the digitized output to produce a range measurement.
The Impact of Odor--Reward Memory on Chemotaxis in Larval "Drosophila"
ERIC Educational Resources Information Center
Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander; Gerber, Bertram; Louis, Matthieu
2015-01-01
How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the "Drosophila" larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii)…
Spacecraft optical disk recorder memory buffer control
NASA Technical Reports Server (NTRS)
Hodson, Robert F.
1993-01-01
This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.
Darling, Stephen; Parker, Mary-Jane; Goodall, Karen E; Havelka, Jelena; Allen, Richard J
2014-03-01
When participants carry out visually presented digit serial recall, their performance is better if they are given the opportunity to encode extra visuospatial information at encoding-a phenomenon that has been termed visuospatial bootstrapping. This bootstrapping is the result of integration of information from different modality-specific short-term memory systems and visuospatial knowledge in long term memory, and it can be understood in the context of recent models of working memory that address multimodal binding (e.g., models incorporating an episodic buffer). Here we report a cross-sectional developmental study that demonstrated visuospatial bootstrapping in adults (n=18) and 9-year-old children (n=15) but not in 6-year-old children (n=18). This is the first developmental study addressing visuospatial bootstrapping, and results demonstrate that the developmental trajectory of bootstrapping is different from that of basic verbal and visuospatial working memory. This pattern suggests that bootstrapping (and hence integrative functions such as those associated with the episodic buffer) emerge independent of the development of basic working memory slave systems during childhood. Copyright © 2013 Elsevier Inc. All rights reserved.
Woodward, Matthew R; Hafeez, Muhammad Ubaid; Qi, Qianya; Riaz, Ahmed; Benedict, Ralph H B; Yan, Li; Szigeti, Kinga
2018-04-19
To explore whether the ability to recognize specific odorant items is differentially affected in aging versus Alzheimer disease (AD); to refine olfactory identification deficit (OID) as a biomarker of prodromal and early AD. Prospective multicenter cross-sectional study with a longitudinal arm. Outpatient memory diagnostic clinics in New York and Texas. Adults aged 65 and older with amnestic mild cognitive impairment (aMCI) and AD and healthy aging (HA) subjects in the comparison group. Participants completed the University of Pennsylvania Smell Identification Test (UPSIT) and neuropsychological testing. AD-associated odorants (AD-10) were selected based on a model of ordinal logistic regression. Age-associated odorants (Age-10) were identified using a linear model. For the 841 participants (234 HA, 192 aMCI, 415 AD), AD-10 was superior to Age-10 in separating HA and AD. AD-10 was associated with a more widespread cognitive deficit across multiple domains, in contrast to Age-10. The disease- and age-associated odorants clustered separately in age and AD. AD-10 predicted conversion from aMCI to AD. Nonoverlapping UPSIT items were identified that were individually associated with age and disease. Despite a modest predictive value of the AD-specific items for conversion to AD, the AD-specific items may be useful in enriching samples to better identify those at risk for AD. Further studies are needed with monomolecular and unilateral stimulation and orthogonal biomarker validation to further refine disease- and age-associated signals. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
The Effects of Emotional Visual Context on the Encoding and Retrieval of Body Odor Information.
Parma, Valentina; Macedo, Stephanie; Rocha, Marta; Alho, Laura; Ferreira, Jacqueline; Soares, Sandra C
2018-04-01
Conditions during information encoding and retrieval are known to influence the sensory material stored and its recapitulation. However, little is known about such processes in olfaction. Here, we capitalized on the uniqueness of body odors (BOs) which, similar to fingerprints, allow for the identification of a specific person, by associating their presentation to a negative or a neutral emotional context. One hundred twenty-five receivers (68 F) were exposed to a male BO while watching either criminal or neutral videos (encoding phase) and were subsequently asked to recognize the target BO within either a congruent or an incongruent visual context (retrieval phase). The results showed that criminal videos were rated as more vivid, unpleasant, and arousing than neutral videos both at encoding and retrieval. Moreover, in terms of BO ratings, we found that odor intensity and arousal allow to distinguish the target from the foils when congruent criminal information is presented at encoding and retrieval. Finally, the accuracy performance was not significantly different from chance level for either condition. These findings provide insights on how olfactory memories are processed in emotional situations.
Lu, Yuyun; Fong, Alicia Sarah Yoke Ling; Chua, Jian-Yong; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan
2018-06-15
Durian fruit is rich in volatile sulfur compounds (VSCs), especially thiols and disulfides, which contribute to its onion-like odor. After fermentation, these VSCs were reduced to trace or undetectable levels in durian wine. The possible reduction mechanism of these VSCs (especially diethyl disulfide and ethanethiol) was investigated in a modified buffer in the presence of sulfite at different pH. An interconversion between diethyl disulfide and ethanethiol was found to be dependent on the pH: the higher the pH, the higher production of ethanethiol. It is suggested that, during durian wine fermentation, disulfides endogenous to durian pulp might be firstly converted into their corresponding thiols in the presence of reductant sulfite formed by yeast. The produced thiols as well as the thiols endogenous to the durian pulp were then removed by the mannoproteins of yeast lees.
Zhang, Wei; Zhu, Guangjian; Tan, Liangjing; Yang, Jian; Chen, Yi; Liu, Qi; Shen, Qiqi; Chen, Jinping; Zhang, Libiao
2014-03-01
We observed the foraging behavior of short-nosed fruit bats, Cynopterus sphinx, in captivity. The role of olfaction in their foraging behavior was examined using real fruit, mimetic fruit, and mimetic fruit soaked in the juice of real fruit. The results showed that C. sphinx visited the real fruit more often than the mimetic fruit, but they had no preference between real fruit and treated mimetic fruit. Our experiment indicates that this bat has the ability to find and identify fruit by olfaction. We also tested for behavior of trial-and-error learning. Our observations revealed that the bats could form a sensory memory of the olfactory cue (cedar wood oil) after five days of training because they responded to the olfactory cues. Our results provide the evidence that C. sphinx can establish the connection between the fruit and a non-natural odor through learning and memory with the assistance of olfaction, and can thus recognize a variety of odors by trial-and-error learning. This behavioral flexibility based on olfactory cues will be beneficial for the short-nosed fruit bat in foraging. Copyright © 2013 Elsevier B.V. All rights reserved.
Autistic behavior in Scn1a+/− mice and rescue by enhanced GABAergic transmission
Han, Sung; Tai, Chao; Westenbroek, Ruth E.; Yu, Frank H.; Cheah, Christine S.; Potter, Gregory B.; Rubenstein, John L.; Scheuer, Todd; de la Iglesia, Horacio O; Catterall, William A
2012-01-01
Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel NaV1.1 causes Dravet Syndrome (DS), a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit, and autism-spectrum behaviors. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviors in DS are poorly understood. Here we show that mice with Scn1a haploinsufficiency display hyperactivity, stereotyped behaviors, social interaction deficits, and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odors and social odors are aversive to Scn1a+/− mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of NaV1.1 channels in forebrain interneurons is sufficient to cause these behavioral and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABAA receptors, completely rescued the abnormal social behaviors and deficits in fear memory in DS mice, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for NaV1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviors in DS. PMID:22914087
A computational model of conditioning inspired by Drosophila olfactory system.
Faghihi, Faramarz; Moustafa, Ahmed A; Heinrich, Ralf; Wörgötter, Florentin
2017-03-01
Recent studies have demonstrated that Drosophila melanogaster (briefly Drosophila) can successfully perform higher cognitive processes including second order olfactory conditioning. Understanding the neural mechanism of this behavior can help neuroscientists to unravel the principles of information processing in complex neural systems (e.g. the human brain) and to create efficient and robust robotic systems. In this work, we have developed a biologically-inspired spiking neural network which is able to execute both first and second order conditioning. Experimental studies demonstrated that volume signaling (e.g. by the gaseous transmitter nitric oxide) contributes to memory formation in vertebrates and invertebrates including insects. Based on the existing knowledge of odor encoding in Drosophila, the role of retrograde signaling in memory function, and the integration of synaptic and non-synaptic neural signaling, a neural system is implemented as Simulated fly. Simulated fly navigates in a two-dimensional environment in which it receives odors and electric shocks as sensory stimuli. The model suggests some experimental research on retrograde signaling to investigate neural mechanisms of conditioning in insects and other animals. Moreover, it illustrates a simple strategy to implement higher cognitive capabilities in machines including robots. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonspatial Sequence Coding in CA1 Neurons
Allen, Timothy A.; Salz, Daniel M.; McKenzie, Sam
2016-01-01
The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can represent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequence-memory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each item as “in sequence” or “out of sequence”. We report that, while the animals' location and behavior remained constant, hippocampal activity differed depending on the temporal context of items—in this case, whether they were presented in or out of sequence. Some neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles, that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscillations (20–40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4–12 Hz). These findings provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function of the hippocampus. SIGNIFICANCE STATEMENT The ability to remember the order of life events depends on the hippocampus, but the underlying neural mechanisms remain poorly understood. Here we addressed this issue by recording neural activity in hippocampal region CA1 while rats performed a nonspatial sequence memory task. We found that hippocampal neurons code for the temporal context of items (whether odors were presented in the correct or incorrect sequential position) and that this activity is linked with memory performance. The discovery of this novel form of temporal coding in hippocampal neurons advances our fundamental understanding of the neurobiology of episodic memory and will serve as a foundation for our cross-species, multitechnique approach aimed at elucidating the neural mechanisms underlying memory impairments in aging and dementia. PMID:26843637
De Bruijn, Paulien J. A.; Sabelis, Maurice W.
2008-01-01
Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey-associated mixtures of volatiles and, thus, to odor blends as a whole. PMID:18521678
Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H
2016-05-01
A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony. Copyright © 2016. Published by Elsevier Inc.
Social contact patterns can buffer costs of forgetting in the evolution of cooperation.
Stevens, Jeffrey R; Woike, Jan K; Schooler, Lael J; Lindner, Stefan; Pachur, Thorsten
2018-06-13
Analyses of the evolution of cooperation often rely on two simplifying assumptions: (i) individuals interact equally frequently with all social network members and (ii) they accurately remember each partner's past cooperation or defection. Here, we examine how more realistic, skewed patterns of contact-in which individuals interact primarily with only a subset of their network's members-influence cooperation. In addition, we test whether skewed contact patterns can counteract the decrease in cooperation caused by memory errors (i.e. forgetting). Finally, we compare two types of memory error that vary in whether forgotten interactions are replaced with random actions or with actions from previous encounters. We use evolutionary simulations of repeated prisoner's dilemma games that vary agents' contact patterns, forgetting rates and types of memory error. We find that highly skewed contact patterns foster cooperation and also buffer the detrimental effects of forgetting. The type of memory error used also influences cooperation rates. Our findings reveal previously neglected but important roles of contact pattern, type of memory error and the interaction of contact pattern and memory on cooperation. Although cognitive limitations may constrain the evolution of cooperation, social contact patterns can counteract some of these constraints. © 2018 The Author(s).
Feature binding and attention in working memory: a resolution of previous contradictory findings.
Allen, Richard J; Hitch, Graham J; Mate, Judit; Baddeley, Alan D
2012-01-01
We aimed to resolve an apparent contradiction between previous experiments from different laboratories, using dual-task methodology to compare effects of a concurrent executive load on immediate recognition memory for colours or shapes of items or their colour-shape combinations. Results of two experiments confirmed previous evidence that an irrelevant attentional load interferes equally with memory for features and memory for feature bindings. Detailed analyses suggested that previous contradictory evidence arose from limitations in the way recognition memory was measured. The present findings are inconsistent with an earlier suggestion that feature binding takes place within a multimodal episodic buffer Baddeley, ( 2000 ) and support a subsequent account in which binding takes place automatically prior to information entering the episodic buffer Baddeley, Allen, & Hitch, ( 2011 ). Methodologically, the results suggest that different measures of recognition memory performance (A', d', corrected recognition) give a converging picture of main effects, but are less consistent in detecting interactions. We suggest that this limitation on the reliability of measuring recognition should be taken into account in future research so as to avoid problems of replication that turn out to be more apparent than real.
Toshiba TDF-500 High Resolution Viewing And Analysis System
NASA Astrophysics Data System (ADS)
Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.
1988-06-01
A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.
An Investigation of Memory Latency Reduction Using an Address Prediction Buffer
1992-12-01
McGraw-Hill Inc.. London, England, 1991. [GAJSKI87] Gajski , D.D. et al, Computer Architecture, IEEE Computer Society Press, Washington, D.C., 1987...California, (vol 19 no 3), 1991. [NOWICK92] Nowicki, G ., "Design and Implementation of a Read Prediction Buffer", Master’s Thesis, Naval Postgraduate School
A Core Knowledge Architecture of Visual Working Memory
ERIC Educational Resources Information Center
Wood, Justin N.
2011-01-01
Visual working memory (VWM) is widely thought to contain specialized buffers for retaining spatial and object information: a "spatial-object architecture." However, studies of adults, infants, and nonhuman animals show that visual cognition builds on core knowledge systems that retain more specialized representations: (1) spatiotemporal…
Subvocal articulatory rehearsal during verbal working memory in multiple sclerosis.
Sweet, Lawrence H; Vanderhill, Susan D; Jerskey, Beth A; Gordon, Norman M; Paul, Robert H; Cohen, Ronald A
2010-10-01
This study was designed to examine verbal working memory (VWM) components among multiple sclerosis (MS) patients and determine the influence of information processing speed. Of two frequently studied VWM sub-components, subvocal rehearsal was expected to be more affected by MS than short-term memory buffering. Furthermore, worse subvocal rehearsal was predicted to be specifically related to slower cognitive processing. Fifteen MS patients were administered a neuropsychological battery assessing VWM, processing speed, mood, fatigue, and disability. Participants performed a 2-Back VWM task with modified nested conditions designed to increase subvocal rehearsal (via inter-stimulus interval) and short-term memory buffering demands (via phonological similarity). Performance during these 2-Back conditions did not significantly differ and both exhibited strong positive correlations with disability. However, only scores on the subvocal rehearsal 2-Back were significantly related to performance on the remaining test battery, including processing speed and depressive symptoms. Findings suggest that performance during increased subvocal rehearsal demands is specifically influenced by cognitive processing speed and depressive symptoms.
Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine
NASA Astrophysics Data System (ADS)
Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.
2013-02-01
Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.
Aviators intoxicated by inhalation of JP-5 fuel vapors.
Porter, H O
1990-07-01
This case of intoxication of two aviators by inhalation of JP-5 fuel vapors emphasizes a dangerous safety hazard. One or both aviators experienced burning eyes, nausea, fatigue, impairment of eye-hand coordination, euphoria, and memory defects when their cockpit became overwhelmed with the odor of JP-5 fuel. Physical and laboratory examinations were normal except for their ill appearance, conjunctivitis, and mild hypertension, which resolved without sequelae. Exposure to JP-5 fuel vapor occurs frequently, particularly after acrobatic flight in some aircraft. The neurologic effects and insidious nature of intoxication makes continued operation under such conditions extremely hazardous. The following is recommended: in the event the odor of JP-5 or any noxious or irritating substance is detected in the cockpit, serious consideration should be given to terminating the flight, using precautionary emergency landing procedures and 100% O2.
Protocol for buffer space negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nessett, D.
There are at least two ways to manage the buffer memory of a communications node. On etechnique veiws the buffer as a single resource that is to be reserved and released as a unit for a particular communication transaction. A more common approach treats the node's buffer space as a collection of resources (e.g., bytes, words, packet slots) capable of being allocated among multiple concurrent conversations. To achieve buffer space multiplexing, some sort of negotiation for buffer space must take place between source and sink nodes before a transaction can commence. Results are presented which indicate that, for an applicationmore » involving a CSMA broadcast network, buffer space multiplexing offers better performance than buffer reservation. To achieve this improvement, a simple protocol is presented that features flow-control information traveling both from source to sink as well as from sink to source. It is argued that this bidirectionality allows the sink to allocate buffer space among its active communication paths more effectively. 13 figures.« less
ERIC Educational Resources Information Center
Farvardin, Mohammad Taghi; Afghari, Akbar; Koosha, Mansour
2014-01-01
One of the most influential models of working memory (WM) is the one developed by Baddeley (1986, 2000, 2003) which views WM comprising several components--a central executive, an episodic buffer, the visuo-spatial sketchpad, and the phonological loop. The phonological loop or phonological memory (PM) deals with the temporary storage of verbal and…
Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons
Brunert, Daniela; Kurtenbach, Stefan; Isik, Sonnur; Benecke, Heike; Gisselmann, Günter; Schuhmann, Wolfgang; Hatt, Hanns; Wetzel, Christian H.
2009-01-01
The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis. PMID:19430528
Akers, Katherine G; Kushner, Steven A; Leslie, Ana T; Clarke, Laura; van der Kooy, Derek; Lerch, Jason P; Frankland, Paul W
2011-07-07
Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development.
Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source.
Liberzon, Alexander; Harrington, Kyra; Daniel, Nimrod; Gurka, Roi; Harari, Ally; Zilman, Gregory
2018-01-01
Some female moths attract male moths by emitting series of pulses of pheromone filaments propagating downwind. The turbulent nature of the wind creates a complex flow environment, and causes the filaments to propagate in the form of patches with varying concentration distributions. Inspired by moth navigation capabilities, we propose a navigation strategy that enables a flier to locate an upwind pulsating odor source in a windy environment using a single threshold-based detection sensor. This optomotor anemotaxis strategy is constructed based on the physical properties of the turbulent flow carrying discrete puffs of odor and does not involve learning, memory, complex decision making or statistical methods. We suggest that in turbulent plumes from a pulsating point source, an instantaneously measurable quantity referred as a "puff crossing time", improves the success rate as compared to the navigation strategies based on temporally regular zigzags due to intermittent contact, or an "internal counter", that do not use this information. Using computer simulations of fliers navigating in turbulent plumes of the pulsating point source for varying flow parameters such as turbulent intensities, plume meandering and wind gusts, we obtained statistics of navigation paths towards the pheromone sources. We quantified the probability of a successful navigation as well as the flight parameters such as the time spent searching and the total flight time, with respect to different turbulent intensities, meandering or gusts. The concepts learned using this model may help to design odor-based navigation of miniature airborne autonomous vehicles.
Effects of polychlorinated biphenyls on maternal odor conditioning in rat pups.
Cromwell, Howard C; Johnson, Asia; McKnight, Logan; Horinek, Maegan; Asbrock, Christina; Burt, Shannon; Jolous-Jamshidi, Banafsheh; Meserve, Lee A
2007-08-15
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants that can have damaging effects on physiologic, motoric and cognitive function. Results from studies on PCBs and behavior have shown that exposure can alter learning and memory processes and that these shifts in cognitive abilities can be related to changes in hormonal and neural function. Little experimentation has been done on the impact of exposure to PCBs on social and emotional development. Previous work has shown that exposure to PCBs in children can alter play behavior. Importantly, exposure to PCBs has been found to change aspects of maternal-offspring interactions in rodents. The present study examined the impact of PCBs on maternal odor conditioning in rat pups 12-14 days of age. A modified version of the conditioned place preference paradigm was used that incorporated a maternal-associated odor cue (lemon scent) as the conditioned stimulus. PCBs significantly depressed the preference for the maternal-associated cue but did not impair discrimination for a novel odor. These effects could arise due to changes in the social dynamics between the dam and offspring after co-exposure to PCBs. For example, dams exposed to PCBs during gestation have been found to show elevated grooming directed towards pups exposed to PCBs. This change in maternal care can have dramatic effects on behavioral and hormonal systems in the developing rat pup. In conclusion, perinatal PCBs alter important social behaviors of both the mother and pup, and these alterations could have long-lasting effects on behavioral, cognitive and emotional development.
Method of pedestal and common-mode noise correction for switched-capacitor analog memories
Britton, Charles L.
1997-01-01
A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.
Method of pedestal and common-mode noise correction for switched-capacitor analog memories
Britton, Charles L.
1996-01-01
A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.
Urgent Virtual Machine Eviction with Enlightened Post-Copy
2015-12-01
memory is in use, almost all of which is by Memcached. MySQL : The VMs run MySQL 5.6, and the clients execute OLTPBenchmark [3] using the Twitter...workload with scale factor of 960. The VMs are each allocated 16 cores and 30 GB of memory, and MySQL is configured with a 16 GB buffer pool in memory. The...operation mix for 5 minutes as a warm-up. At the time of migration, MySQL uses approximately 17 GB of memory, and almost all of the 30 GB memory is
Method of data communications with reduced latency
Blocksome, Michael A; Parker, Jeffrey J
2013-11-05
Data communications with reduced latency, including: writing, by a producer, a descriptor and message data into at least two descriptor slots of a descriptor buffer, the descriptor buffer comprising allocated computer memory segmented into descriptor slots, each descriptor slot having a fixed size, the descriptor buffer having a header pointer that identifies a next descriptor slot to be processed by a DMA controller, the descriptor buffer having a tail pointer that identifies a descriptor slot for entry of a next descriptor in the descriptor buffer; recording, by the producer, in the descriptor a value signifying that message data has been written into descriptor slots; and setting, by the producer, in dependence upon the recorded value, a tail pointer to point to a next open descriptor slot.
Misunderstanding Jung: the afterlife of legends.
Shamdasani, S
2000-07-01
F. X. Charet's article, 'Understanding Jung: recent biographies and scholarship', is full of errors and legends. In this article, I demonstrate the tendentiousness of his criticisms of the historical work of Eugene Taylor and myself concerning Jung's linkages with the subliminal psychology of Théodore Flournoy, William James, and F. W. H. Myers, and the fallaciousness of his criticism of my claim that Memories, Dreams, Reflections was not Jung's autobiography.
Olfactory recognition memory is disrupted in young mice with chronic low-level lead exposure
Flores-Montoya, Mayra Gisel; Alvarez, Juan Manuel; Sobin, Christina
2015-01-01
Chronic developmental lead exposure yielding very low blood lead burden is an unresolved child public health problem. Few studies have attempted to model neurobehavioral changes in young animals following very low level exposure, and studies are needed to identify tests that are sensitive to the neurobehavioral changes that may occur. Mechanisms of action are not yet known however results have suggested that hippocampus/dentate gyrus may be uniquely vulnerable to early chronic low-level lead exposure. This study examined the sensitivity of a novel odor recognition task to differences in pre-adolescent C57BL/6J mice chronically exposed from birth to PND 28, to 0 ppm (control), 30 ppm (low-dose), or 330 ppm (higher-dose) lead acetate (N = 33). Blood lead levels (BLLs) determined by ICP-MS ranged from 0.02 to 20.31 µg/dL. Generalized linear mixed model analyses with litter as a random effect showed a significant interaction of BLL × sex. As BLLs increased olfactory recognition memory decreased in males. Among females, non-linear effects were observed at lower but not higher levels of lead exposure. The novel odor detection task is sensitive to effects associated with early chronic low-level lead exposure in young C57BL/6J mice. PMID:25936521
NASA Technical Reports Server (NTRS)
Batcher, K. E.; Eddey, E. E.; Faiss, R. O.; Gilmore, P. A.
1981-01-01
The processing of synthetic aperture radar (SAR) signals using the massively parallel processor (MPP) is discussed. The fast Fourier transform convolution procedures employed in the algorithms are described. The MPP architecture comprises an array unit (ARU) which processes arrays of data; an array control unit which controls the operation of the ARU and performs scalar arithmetic; a program and data management unit which controls the flow of data; and a unique staging memory (SM) which buffers and permutes data. The ARU contains a 128 by 128 array of bit-serial processing elements (PE). Two-by-four surarrays of PE's are packaged in a custom VLSI HCMOS chip. The staging memory is a large multidimensional-access memory which buffers and permutes data flowing with the system. Efficient SAR processing is achieved via ARU communication paths and SM data manipulation. Real time processing capability can be realized via a multiple ARU, multiple SM configuration.
Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective.
Vilberg, Kaia L; Rugg, Michael D
2008-01-01
Although regions of the parietal cortex have been consistently implicated in episodic memory retrieval, the functional roles of these regions remain poorly understood. The present review presents a meta-analysis of findings from event-related fMRI studies reporting the loci of retrieval effects associated with familiarity- and recollection-related recognition judgments. The results of this analysis support previous suggestions that retrieval-related activity in lateral parietal cortex dissociates between superior regions, where activity likely reflects the task relevance of different classes of recognition test items, and more inferior regions where retrieval-related activity appears closely linked to successful recollection. It is proposed that inferior lateral parietal cortex forms part of a neural network supporting the 'episodic buffer' [Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423].
A Layered Solution for Supercomputing Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grider, Gary
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storage—based on inexpensive, failure-prone disk drives—between disk drives and tape archives.
Ferry, Barbara; Duchamp-Viret, Patricia
2014-01-01
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor–malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor–malaise association. PMID:24634353
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.
Sundermann, Erin Elizabeth; Wang, Cuiling; Katz, Mindy; Zimmerman, Molly E; Derby, Carol A; Hall, Charles B; Ozelius, Laurie J; Lipton, Richard B
2016-05-01
Apolipoprotein ε4 (ApoE4) is a strong genetic risk factor for sporadic Alzheimer's disease and memory decline in older adults. A single-nucleotide polymorphism in the cholesteryl ester transfer protein (CETP) gene (isoleucine to valine; V405) is associated with slower memory decline and a lower risk of Alzheimer's disease. As both genes regulate cholesterol, we hypothesized that the favorable CETPV405 allele may buffer the effect of ApoE4 on memory decline in older adults. Using linear regression, we examined the interactive effect of ApoE4 by CETPV405 on memory decline among 909 community-dwelling, nondemented, older adults (≥70 years) from the Einstein Aging Study. Episodic memory was measured using the picture version of the Free and Cued Selective Reminding Test with immediate recall (pFCSRT+IR). There was a significant ApoE × CETP interaction on decline in pFCSRT+IR scores (p = 0.01). ApoE4 carriers experienced faster decline than noncarriers among CETPI405I homozygotes (p = 0.007) and in CETPI405V heterozygotes (p = 0.015) but not in CETPV405V homozygotes (p = 0.614). Results suggest that the CETPV405 allele buffers ApoE4-associated memory decline in a gene dose-dependent manner. Copyright © 2016 Elsevier Inc. All rights reserved.
Shared filtering processes link attentional and visual short-term memory capacity limits.
Bettencourt, Katherine C; Michalka, Samantha W; Somers, David C
2011-09-30
Both visual attention and visual short-term memory (VSTM) have been shown to have capacity limits of 4 ± 1 objects, driving the hypothesis that they share a visual processing buffer. However, these capacity limitations also show strong individual differences, making the degree to which these capacities are related unclear. Moreover, other research has suggested a distinction between attention and VSTM buffers. To explore the degree to which capacity limitations reflect the use of a shared visual processing buffer, we compared individual subject's capacities on attentional and VSTM tasks completed in the same testing session. We used a multiple object tracking (MOT) and a VSTM change detection task, with varying levels of distractors, to measure capacity. Significant correlations in capacity were not observed between the MOT and VSTM tasks when distractor filtering demands differed between the tasks. Instead, significant correlations were seen when the tasks shared spatial filtering demands. Moreover, these filtering demands impacted capacity similarly in both attention and VSTM tasks. These observations fail to support the view that visual attention and VSTM capacity limits result from a shared buffer but instead highlight the role of the resource demands of underlying processes in limiting capacity.
NASA Astrophysics Data System (ADS)
Lapshev, Stepan; Hasan, S. M. Rezaul
2017-04-01
This paper presents the approach of using complex multiplier-accumulators (CMACs) with multiple accumulators to reduce the total number of memory operations in an input-buffered architecture for the X part of an FX correlator. A processing unit of this architecture uses an array of CMACs that are reused for different groups of baselines. The disadvantage of processing correlations in this way is that each input data sample has to be read multiple times from the memory because each input signal is used in many of these baseline groups. While a one-accumulator CMAC cannot switch to a different baseline until it is finished integrating the current one, a multiple-accumulator CMAC can. Thus, the array of multiple-accumulator CMACs can switch between processing different baselines that share some input signals at any moment to reuse the current data in the processing buffers. In this way significant reductions in the number of memory read operations are achieved with only a few accumulators per CMAC. For example, for a large number of input signals three-accumulator CMACs reduce the total number of memory operations by more than a third. Simulated energy measurements of four VLSI designs in a high-performance 28 nm CMOS technology are presented in this paper to demonstrate that using multiple accumulators can also lead to reduced power dissipation of the processing array. Using three accumulators as opposed to one has been found to reduce the overall energy of 8-bit CMACs by 1.4% through the reduction of the switching activity within their circuits, which is in addition to a more than 30% reduction in the memory.
Selective Short-Term Memory Deficits Arise from Impaired Domain-General Semantic Control Mechanisms
ERIC Educational Resources Information Center
Hoffman, Paul; Jefferies, Elizabeth; Ehsan, Sheeba; Hopper, Samantha; Lambon Ralph, Matthew A.
2009-01-01
Semantic short-term memory (STM) patients have a reduced ability to retain semantic information over brief delays but perform well on other semantic tasks; this pattern suggests damage to a dedicated buffer for semantic information. Alternatively, these difficulties may arise from mild disruption to domain-general semantic processes that have…
Automatic and Controlled Processing in Sentence Recall: The Role of Long-Term and Working Memory
ERIC Educational Resources Information Center
Jefferies, E.; Lambon Ralph, M.A.; Baddeley, A.D.
2004-01-01
Immediate serial recall is better for sentences than word lists presumably because of the additional support that meaningful material receives from long-term memory. This may occur automatically, without the involvement of attention, or may require additional attentionally demanding processing. For example, the episodic buffer model (Baddeley,…
Method of pedestal and common-mode noise correction for switched-capacitor analog memories
Britton, C.L.
1997-09-23
A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.
Method of pedestal and common-mode noise correction for switched-capacitor analog memories
Britton, C.L.
1996-12-31
A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.
A Layered Solution for Supercomputing Storage
Grider, Gary
2018-06-13
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storageâbased on inexpensive, failure-prone disk drivesâbetween disk drives and tape archives.
Replenishing data descriptors in a DMA injection FIFO buffer
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Cernohous, Bob R [Rochester, MN; Heidelberger, Philip [Cortlandt Manor, NY; Kumar, Sameer [White Plains, NY; Parker, Jeffrey J [Rochester, MN
2011-10-11
Methods, apparatus, and products are disclosed for replenishing data descriptors in a Direct Memory Access (`DMA`) injection first-in-first-out (`FIFO`) buffer that include: determining, by a messaging module on an origin compute node, whether a number of data descriptors in a DMA injection FIFO buffer exceeds a predetermined threshold, each data descriptor specifying an application message for transmission to a target compute node; queuing, by the messaging module, a plurality of new data descriptors in a pending descriptor queue if the number of the data descriptors in the DMA injection FIFO buffer exceeds the predetermined threshold; establishing, by the messaging module, interrupt criteria that specify when to replenish the injection FIFO buffer with the plurality of new data descriptors in the pending descriptor queue; and injecting, by the messaging module, the plurality of new data descriptors into the injection FIFO buffer in dependence upon the interrupt criteria.
Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae
Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S.
2016-01-01
Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. PMID:27768692
Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.
Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Peters, Christina; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S
2016-10-01
Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.
2011-01-01
Background Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Results Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Conclusions Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development. PMID:21736737
Mustard, Julie A; Wright, Geraldine A; Edgar, Elaina A; Mazade, Reece E.; Wu, Chen; Lillvis, Joshua L
2008-01-01
Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5, 5, 10 or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24 h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee. PMID:18723103
Direct neural pathways convey distinct visual information to Drosophila mushroom bodies
Vogt, Katrin; Aso, Yoshinori; Hige, Toshihide; Knapek, Stephan; Ichinose, Toshiharu; Friedrich, Anja B; Turner, Glenn C; Rubin, Gerald M; Tanimoto, Hiromu
2016-01-01
Previously, we demonstrated that visual and olfactory associative memories of Drosophila share mushroom body (MB) circuits (Vogt et al., 2014). Unlike for odor representation, the MB circuit for visual information has not been characterized. Here, we show that a small subset of MB Kenyon cells (KCs) selectively responds to visual but not olfactory stimulation. The dendrites of these atypical KCs form a ventral accessory calyx (vAC), distinct from the main calyx that receives olfactory input. We identified two types of visual projection neurons (VPNs) directly connecting the optic lobes and the vAC. Strikingly, these VPNs are differentially required for visual memories of color and brightness. The segregation of visual and olfactory domains in the MB allows independent processing of distinct sensory memories and may be a conserved form of sensory representations among insects. DOI: http://dx.doi.org/10.7554/eLife.14009.001 PMID:27083044
Splitting Attention across the Two Visual Fields in Visual Short-Term Memory
ERIC Educational Resources Information Center
Delvenne, Jean-Francois; Holt, Jessica L.
2012-01-01
Humans have the ability to attentionally select the most relevant visual information from their extrapersonal world and to retain it in a temporary buffer, known as visual short-term memory (VSTM). Research suggests that at least two non-contiguous items can be selected simultaneously when they are distributed across the two visual hemifields. In…
Interactive communication channel
NASA Astrophysics Data System (ADS)
Chan, R. H.; Mann, M. R.; Ciarrocchi, J. A.
1985-10-01
Discussed is an interactive communications channel (ICC) for providing a digital computer with high-performance multi-channel interfaces. Sixteen full duplex channels can be serviced in the ICC with the sequence or scan pattern being programmable and dependent upon the number or channels and their speed. A channel buffer system is used for line interface, and character exchange. The channel buffer system is on a byte basis. The ICC performs frame start and frame end functions, bit stripping and bit stuffing. Data is stored in a memory in block format (256 bytes maximum) by a program control and the ICC maintains byte address information and a block byte count. Data exchange with a memory is made by cycle steals. Error detection is also provided for using a cyclic redundancy check technique.
Modular structure of functional networks in olfactory memory.
Meunier, David; Fonlupt, Pierre; Saive, Anne-Lise; Plailly, Jane; Ravel, Nadine; Royet, Jean-Pierre
2014-07-15
Graph theory enables the study of systems by describing those systems as a set of nodes and edges. Graph theory has been widely applied to characterize the overall structure of data sets in the social, technological, and biological sciences, including neuroscience. Modular structure decomposition enables the definition of sub-networks whose components are gathered in the same module and work together closely, while working weakly with components from other modules. This processing is of interest for studying memory, a cognitive process that is widely distributed. We propose a new method to identify modular structure in task-related functional magnetic resonance imaging (fMRI) networks. The modular structure was obtained directly from correlation coefficients and thus retained information about both signs and weights. The method was applied to functional data acquired during a yes-no odor recognition memory task performed by young and elderly adults. Four response categories were explored: correct (Hit) and incorrect (False alarm, FA) recognition and correct and incorrect rejection. We extracted time series data for 36 areas as a function of response categories and age groups and calculated condition-based weighted correlation matrices. Overall, condition-based modular partitions were more homogeneous in young than elderly subjects. Using partition similarity-based statistics and a posteriori statistical analyses, we demonstrated that several areas, including the hippocampus, caudate nucleus, and anterior cingulate gyrus, belonged to the same module more frequently during Hit than during all other conditions. Modularity values were negatively correlated with memory scores in the Hit condition and positively correlated with bias scores (liberal/conservative attitude) in the Hit and FA conditions. We further demonstrated that the proportion of positive and negative links between areas of different modules (i.e., the proportion of correlated and anti-correlated areas) accounted for most of the observed differences in signed modularity. Taken together, our results provided some evidence that the neural networks involved in odor recognition memory are organized into modules and that these modular partitions are linked to behavioral performance and individual strategies. Copyright © 2014 Elsevier Inc. All rights reserved.
SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, K; Chen, D. Z; Hu, X. S
Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this proceduremore » into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF-1217906, and also in part by a research contract from the Sandia National Laboratories.« less
Intranode data communications in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E
2014-01-07
Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a computer node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.
Intranode data communications in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E
2013-07-23
Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a compute node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.
Initial Performance Results on IBM POWER6
NASA Technical Reports Server (NTRS)
Saini, Subbash; Talcott, Dale; Jespersen, Dennis; Djomehri, Jahed; Jin, Haoqiang; Mehrotra, Piysuh
2008-01-01
The POWER5+ processor has a faster memory bus than that of the previous generation POWER5 processor (533 MHz vs. 400 MHz), but the measured per-core memory bandwidth of the latter is better than that of the former (5.7 GB/s vs. 4.3 GB/s). The reason for this is that in the POWER5+, the two cores on the chip share the L2 cache, L3 cache and memory bus. The memory controller is also on the chip and is shared by the two cores. This serializes the path to memory. For consistently good performance on a wide range of applications, the performance of the processor, the memory subsystem, and the interconnects (both latency and bandwidth) should be balanced. Recognizing this, IBM has designed the Power6 processor so as to avoid the bottlenecks due to the L2 cache, memory controller and buffer chips of the POWER5+. Unlike the POWER5+, each core in the POWER6 has its own L2 cache (4 MB - double that of the Power5+), memory controller and buffer chips. Each core in the POWER6 runs at 4.7 GHz instead of 1.9 GHz in POWER5+. In this paper, we evaluate the performance of a dual-core Power6 based IBM p6-570 system, and we compare its performance with that of a dual-core Power5+ based IBM p575+ system. In this evaluation, we have used the High- Performance Computing Challenge (HPCC) benchmarks, NAS Parallel Benchmarks (NPB), and four real-world applications--three from computational fluid dynamics and one from climate modeling.
Associative Learning during Early Adulthood Enhances Later Memory Retention in Honeybees
Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.
2009-01-01
Background Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. Methodology Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i) a rewarded experience through the offering of scented food, or (ii) a non-rewarded experience with a pure volatile compound in the rearing environment. Principal Findings Early rewarded experiences (either at 1–4 or 5–8 days of adult age) enhanced retention performance in 9–12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5–8 days of adult age. Associative memories acquired at 9–12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. Conclusions The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees. PMID:19956575
Regenerative memory in time-delayed neuromorphic photonic resonators
NASA Astrophysics Data System (ADS)
Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.
2016-01-01
We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.
Olfactory recognition memory is disrupted in young mice with chronic low-level lead exposure.
Flores-Montoya, Mayra Gisel; Alvarez, Juan Manuel; Sobin, Christina
2015-07-02
Chronic developmental lead exposure yielding very low blood lead burden is an unresolved child public health problem. Few studies have attempted to model neurobehavioral changes in young animals following very low level exposure, and studies are needed to identify tests that are sensitive to the neurobehavioral changes that may occur. Mechanisms of action are not yet known however results have suggested that hippocampus/dentate gyrus may be uniquely vulnerable to early chronic low-level lead exposure. This study examined the sensitivity of a novel odor recognition task to differences in pre-adolescent C57BL/6J mice chronically exposed from birth to PND 28, to 0 ppm (control), 30 ppm (low-dose), or 330 ppm (higher-dose) lead acetate (N=33). Blood lead levels (BLLs) determined by ICP-MS ranged from 0.02 to 20.31 μg/dL. Generalized linear mixed model analyses with litter as a random effect showed a significant interaction of BLL×sex. As BLLs increased olfactory recognition memory decreased in males. Among females, non-linear effects were observed at lower but not higher levels of lead exposure. The novel odor detection task is sensitive to effects associated with early chronic low-level lead exposure in young C57BL/6J mice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernier, Jean D.
1991-09-01
The imaging in real time of infrared background scenes with the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) System was achieved through extensive software developments in protected mode assembly language on an Intel 80386 33 MHz computer. The new software processes the 512 by 480 pixel images directly in the extended memory area of the computer where the DT-2861 frame grabber memory buffers are mapped. Direct interfacing, through a JDR-PR10 prototype card, between the frame grabber and the host computer AT bus enables each load of the frame grabber memory buffers to be effected under software control. The protected mode assembly language program can refresh the display of a six degree pseudo-color sector in the scanner rotation within the two second period of the scanner. A study of the imaging properties of the NPS-IRSTD is presented with preliminary work on image analysis and contrast enhancement of infrared background scenes.
Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik
2017-09-15
The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.
Neurophysiological bases of exponential sensory decay and top-down memory retrieval: a model.
Zylberberg, Ariel; Dehaene, Stanislas; Mindlin, Gabriel B; Sigman, Mariano
2009-01-01
Behavioral observations suggest that multiple sensory elements can be maintained for a short time, forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this perceptual buffer can be accessed under top-down control and broadcasted to working memory and consciousness. In turn, single-cell studies in awake-behaving monkeys have identified two distinct waves of response to a sensory stimulus: a first transient response largely determined by stimulus properties and a second wave dependent on behavioral relevance, context and learning. Here we propose a simple biophysical scheme which bridges these observations and establishes concrete predictions for neurophsyiological experiments in which the temporal interval between stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell observations, the model involves a first transient response and a second stage of amplification and retrieval, which are implemented biophysically by distinct operational modes of the same circuit, regulated by external currents. We explicitly investigated the neuronal dynamics, the memory trace of a presented stimulus and the probability of correct retrieval, when these two stages were bracketed by a temporal gap. The model predicts correctly the dependence of performance with response times in interference experiments suggesting that sensory buffering does not require a specific dedicated mechanism and establishing a direct link between biophysical manipulations and behavioral observations leading to concrete predictions.
Real-Time Data Processing in the muon system of the D0 detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeti Parashar et al.
2001-07-03
This paper presents a real-time application of the 16-bit fixed point Digital Signal Processors (DSPs), in the Muon System of the D0 detector located at the Fermilab Tevatron, presently the world's highest-energy hadron collider. As part of the Upgrade for a run beginning in the year 2000, the system is required to process data at an input event rate of 10 KHz without incurring significant deadtime in readout. The ADSP21csp01 processor has high I/O bandwidth, single cycle instruction execution and fast task switching support to provide efficient multisignal processing. The processor's internal memory consists of 4K words of Program Memorymore » and 4K words of Data Memory. In addition there is an external memory of 32K words for general event buffering and 16K words of Dual port Memory for input data queuing. This DSP fulfills the requirement of the Muon subdetector systems for data readout. All error handling, buffering, formatting and transferring of the data to the various trigger levels of the data acquisition system is done in software. The algorithms developed for the system complete these tasks in about 20 {micro}s per event.« less
Takahashi, Hiroo; Ogawa, Yoichi; Yoshihara, Sei-Ichi; Asahina, Ryo; Kinoshita, Masahito; Kitano, Tatsuro; Kitsuki, Michiko; Tatsumi, Kana; Okuda, Mamiko; Tatsumi, Kouko; Wanaka, Akio; Hirai, Hirokazu; Stern, Peter L; Tsuboi, Akio
2016-08-03
Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, brain function may be damaged, leading to behavior disorder. The olfactory bulb (OB) possesses various types of interneurons, including granule cells (GCs); however, the contribution that each type of interneuron makes to the control of olfactory behavior remains unknown. Here, we analyzed electrophysiologically and behaviorally the function of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic branching in OB GCs. We found that, among the various types of OB interneuron, the 5T4 GC subtype is required for odor detection and odor discrimination behaviors. Copyright © 2016 the authors 0270-6474/16/368211-18$15.00/0.
Cue-Induced Ethanol Seeking in Drosophila melanogaster Is Dose-Dependent
Nunez, Kavin M.; Azanchi, Reza; Kaun, Karla R.
2018-01-01
Alcohol use disorder generates devastating social, medical and economic burdens, making it a major global health issue. The persistent nature of memories associated with intoxication experiences often induces cravings and triggers relapse in recovering individuals. Despite recent advances, the neural and molecular mechanisms underlying these memories are complex and not well understood. This makes finding effective pharmacological targets challenging. The investigation of persistent alcohol-associated memories in the fruit fly, Drosophila melanogaster, presents a unique opportunity to gain a comprehensive understanding of the memories for ethanol reward at the level of genes, molecules, neurons and circuits. Here we characterize the dose-dependent nature of ethanol on the expression of memory for an intoxication experience. We report that the concentration of ethanol, number of ethanol exposures, length of ethanol exposures, and timing between ethanol exposures are critical in determining whether ethanol is perceived as aversive or appetitive, and in how long the memory for the intoxicating properties of ethanol last. Our study highlights that fruit flies display both acute and persistent memories for ethanol-conditioned odor cues, and that a combination of parameters that determine the intoxication state of the fly influence the seemingly complex retention and expression of memories associated with intoxication. Our thorough behavioral characterization provides the opportunity to interrogate the biological underpinnings of these observed preference differences in future studies. PMID:29740347
Hoedjes, K M; Steidle, J L M; Werren, J H; Vet, L E M; Smid, H M
2012-01-01
Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high-throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T-maze olfactometer facilitates high-throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species-specific differences in ecological factors, for example, host preference. The high-throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species. PMID:22804968
How incorporation of scents could enhance immersive virtual experiences
Ischer, Matthieu; Baron, Naëm; Mermoud, Christophe; Cayeux, Isabelle; Porcherot, Christelle; Sander, David; Delplanque, Sylvain
2014-01-01
Under normal everyday conditions, senses all work together to create experiences that fill a typical person's life. Unfortunately for behavioral and cognitive researchers who investigate such experiences, standard laboratory tests are usually conducted in a nondescript room in front of a computer screen. They are very far from replicating the complexity of real world experiences. Recently, immersive virtual reality (IVR) environments became promising methods to immerse people into an almost real environment that involves more senses. IVR environments provide many similarities to the complexity of the real world and at the same time allow experimenters to constrain experimental parameters to obtain empirical data. This can eventually lead to better treatment options and/or new mechanistic hypotheses. The idea that increasing sensory modalities improve the realism of IVR environments has been empirically supported, but the senses used did not usually include olfaction. In this technology report, we will present an odor delivery system applied to a state-of-the-art IVR technology. The platform provides a three-dimensional, immersive, and fully interactive visualization environment called “Brain and Behavioral Laboratory—Immersive System” (BBL-IS). The solution we propose can reliably deliver various complex scents during different virtual scenarios, at a precise time and space and without contamination of the environment. The main features of this platform are: (i) the limited cross-contamination between odorant streams with a fast odor delivery (< 500 ms), (ii) the ease of use and control, and (iii) the possibility to synchronize the delivery of the odorant with pictures, videos or sounds. How this unique technology could be used to investigate typical research questions in olfaction (e.g., emotional elicitation, memory encoding or attentional capture by scents) will also be addressed. PMID:25101017
Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform
NASA Technical Reports Server (NTRS)
Brown, R. D.
1992-01-01
Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.
Key Odorants Regulate Food Attraction in Drosophila melanogaster
Giang, Thomas; He, Jianzheng; Belaidi, Safaa; Scholz, Henrike
2017-01-01
In insects, the search for food is highly dependent on olfactory sensory input. Here, we investigated whether a single key odorant within an odor blend or the complexity of the odor blend influences the attraction of Drosophila melanogaster to a food source. A key odorant is defined as an odorant that elicits a difference in the behavioral response when two similar complex odor blends are offered. To validate that the observed behavioral responses were elicited by olfactory stimuli, we used olfactory co-receptor Orco mutants. We show that within a food odor blend, ethanol functions as a key odorant. In addition to ethanol other odorants might serve as key odorants at specific concentrations. However, not all odorants are key odorants. The intensity of the odor background influences the attractiveness of the key odorants. Increased complexity is only more attractive in a concentration-dependent range for single compounds in a blend. Orco is necessary to discriminate between two similarly attractive odorants when offered as single odorants and in food odor blends, supporting the importance of single odorant recognition in odor blends. These data strongly indicate that flies use more than one strategy to navigate to a food odor source, depending on the availability of key odorants in the odor blend and the alternative odor offered. PMID:28928642
Assessment of Appetitive Behavior in Honey Bee Dance Followers.
Moauro, Mariel A; Balbuena, M Sol; Farina, Walter M
2018-01-01
Honey bees transfer different informational components of the discovered feeding source to their nestmates during the waggle dance. To decode the multicomponent information of this complex behavior, dance followers have to attend to the most relevant signal elements while filtering out less relevant ones. To achieve that, dance followers should present improved abilities to acquire information compared with those bees not engaged in this behavior. Through proboscis extension response assays, sensory and cognitive abilities were tested in follower and non-follower bees. Individuals were captured within the hive, immediately after following waggle runs or a bit further from the dancer. Both behavioral categories present low and similar spontaneous odor responses (SORs). However, followers exhibit differences in responsiveness to sucrose and odor discrimination: followers showed increased gustatory responsiveness and, after olfactory differential conditioning, better memory retention than non-followers. Thus, the abilities of the dance followers related to appetitive behavior would allow them to improve the acquisition of the dance surrounding information.
Assessment of Appetitive Behavior in Honey Bee Dance Followers
Moauro, Mariel A.; Balbuena, M. Sol; Farina, Walter M.
2018-01-01
Honey bees transfer different informational components of the discovered feeding source to their nestmates during the waggle dance. To decode the multicomponent information of this complex behavior, dance followers have to attend to the most relevant signal elements while filtering out less relevant ones. To achieve that, dance followers should present improved abilities to acquire information compared with those bees not engaged in this behavior. Through proboscis extension response assays, sensory and cognitive abilities were tested in follower and non-follower bees. Individuals were captured within the hive, immediately after following waggle runs or a bit further from the dancer. Both behavioral categories present low and similar spontaneous odor responses (SORs). However, followers exhibit differences in responsiveness to sucrose and odor discrimination: followers showed increased gustatory responsiveness and, after olfactory differential conditioning, better memory retention than non-followers. Thus, the abilities of the dance followers related to appetitive behavior would allow them to improve the acquisition of the dance surrounding information. PMID:29755329
Whitehead, Terence R; Spence, Cheryl; Cotta, Michael A
2013-09-01
Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 % w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage.
Anxiety, cognition, and habit: a multiple memory systems perspective.
Packard, Mark G
2009-10-13
Consistent with a multiple systems approach to memory organization in the mammalian brain, numerous studies have differentiated the roles of the hippocampus and dorsal striatum in "cognitive" and "habit" learning and memory, respectively. Additional research indicates that activation of efferent projections of the basolateral amygdala (BLA), a brain region implicated in mammalian emotion, modulates memory processes occurring in other brain structures. The present brief review describes research designed to link these general concepts by examining the manner in which emotional state may influence the relative use of multiple memory systems. In a dual-solution plus-maze task that can be acquired using either hippocampus-dependent or dorsal striatal-dependent learning, acute pre-training or pre-retrieval emotional arousal (restraint stress/inescapable foot shock, exposure to the predator odor TMT, or peripheral injection of anixogenic drugs) biases rats towards the use of habit memory. Moreover, intra-BLA injection of anxiogenic drugs is sufficient to bias rats towards the use of dorsal striatal-dependent habit memory. In single-solution plus-maze tasks that require the use of either cognitive or habit learning, intra-BLA infusions of anxiogenic drugs result in a behavioral profile indicating an impairing effect on hippocampus-dependent memory that effectively produces enhanced habit learning by eliminating competitive interference between cognitive and habit memory systems. It is speculated that the predominant use of habit memory that can be produced by anxious and/or stressful emotional states may have implications for understanding the role of learning and memory processes in various human psychopathologies, including for example post-traumatic stress disorder and drug addiction.
Bogaarts, J G; Hilkman, D M W; Gommer, E D; van Kranen-Mastenbroek, V H J M; Reulen, J P H
2016-12-01
Continuous electroencephalographic monitoring of critically ill patients is an established procedure in intensive care units. Seizure detection algorithms, such as support vector machines (SVM), play a prominent role in this procedure. To correct for inter-human differences in EEG characteristics, as well as for intra-human EEG variability over time, dynamic EEG feature normalization is essential. Recently, the median decaying memory (MDM) approach was determined to be the best method of normalization. MDM uses a sliding baseline buffer of EEG epochs to calculate feature normalization constants. However, while this method does include non-seizure EEG epochs, it also includes EEG activity that can have a detrimental effect on the normalization and subsequent seizure detection performance. In this study, EEG data that is to be incorporated into the baseline buffer are automatically selected based on a novelty detection algorithm (Novelty-MDM). Performance of an SVM-based seizure detection framework is evaluated in 17 long-term ICU registrations using the area under the sensitivity-specificity ROC curve. This evaluation compares three different EEG normalization methods, namely a fixed baseline buffer (FB), the median decaying memory (MDM) approach, and our novelty median decaying memory (Novelty-MDM) method. It is demonstrated that MDM did not improve overall performance compared to FB (p < 0.27), partly because seizure like episodes were included in the baseline. More importantly, Novelty-MDM significantly outperforms both FB (p = 0.015) and MDM (p = 0.0065).
Hahn, Elizabeth A.; Lachman, Margie E.
2014-01-01
The present study examined the role of long-term working memory decline in the relationship between everyday experiences of memory problems and perceived control, and we also considered whether the use of accommodative strategies [selective optimization with compensation (SOC)] would be adaptive. The study included Boston-area participants (n=103) from the Midlife in the United States study (MIDUS) who completed two working memory assessments over ten years and weekly diaries following Time 2. In adjusted multi-level analyses, greater memory decline and lower general perceived control were associated with more everyday memory problems. Low perceived control reported in a weekly diary was associated with more everyday memory problems among those with greater memory decline and low SOC strategy use (Est.=−0.28, SE=0.13, p=.036). These results suggest that the use of SOC strategies in the context of declining memory may help to buffer the negative effects of low perceived control on everyday memory. PMID:24597768
Hahn, Elizabeth A; Lachman, Margie E
2015-01-01
The present study examined the role of long-term working memory decline in the relationship between everyday experiences of memory problems and perceived control, and we also considered whether the use of accommodative strategies [selective optimization with compensation (SOC)] would be adaptive. The study included Boston-area participants (n = 103) from the Midlife in the United States study (MIDUS) who completed two working memory assessments over 10 years and weekly diaries following Time 2. In adjusted multi-level analyses, greater memory decline and lower general perceived control were associated with more everyday memory problems. Low perceived control reported in a weekly diary was associated with more everyday memory problems among those with greater memory decline and low SOC strategy use (Est. = -0.28, SE= 0.13, p = .036). These results suggest that the use of SOC strategies in the context of declining memory may help to buffer the negative effects of low perceived control on everyday memory.
Binding in visual working memory: the role of the episodic buffer.
Baddeley, Alan D; Allen, Richard J; Hitch, Graham J
2011-05-01
The episodic buffer component of working memory is assumed to play a central role in the binding of features into objects, a process that was initially assumed to depend upon executive resources. Here, we review a program of work in which we specifically tested this assumption by studying the effects of a range of attentionally demanding concurrent tasks on the capacity to encode and retain both individual features and bound objects. We found no differential effect of concurrent load, even when the process of binding was made more demanding by separating the shape and color features spatially, temporally or across visual and auditory modalities. Bound features were however more readily disrupted by subsequent stimuli, a process we studied using a suffix paradigm. This suggested a need to assume a feature-based attentional filter followed by an object based storage process. Our results are interpreted within a modified version of the multicomponent working memory model. We also discuss work examining the role of the hippocampus in visual feature binding. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhang, Ding; Zhang, Zheyu; Liu, Yayun; Chu, Maoquan; Yang, Chengyu; Li, Wenhao; Shao, Yuxiang; Yue, Yan; Xu, Rujiao
2015-11-01
Reduced graphene oxide (rGO), a carbon-based nanomaterial, has enormous potential in biomedical research, including in vivo cancer therapeutics. Concerns over the toxicity remain outstanding and must be investigated before clinical application. The effect of rGO exposure on animal behaviors, such as learning and memory abilities, has not been clarified. Herein, we explored the short- and long-term effects of orally administered rGO on mouse behaviors, including general locomotor activity level, balance and neuromuscular coordination, exploratory and anxiety behaviors, and learning and memory abilities using open-field, rotarod, and Morris water maze tests. Compared with mice administered buffer-dispersed mouse chow or buffer alone, mice receiving a high dose of small or large rGO nanosheets showed little change in exploratory, anxiety-like, or learning and memory behaviors, although general locomotor activity, balance, and neuromuscular coordination were initially affected, which the mechanisms (e.g. the influence of rGO exposure on the activity of superoxide dismutase in mouse serum) were discussed. The results presented in this work look to provide a deep understanding of the in vivo toxicity of rGO to animals, especially its effect on learning and memory and other behaviors. Copyright © 2015 Elsevier Ltd. All rights reserved.
The dynamics of access to groups in working memory.
Farrell, Simon; Lelièvre, Anna
2012-11-01
The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the temporal pattern at input merely suggesting a basis for the pattern of output buffering. Three experiments are presented here that disentangle input structure from output buffering in serial recall. In Experiment 1, participants were asked to recall a subset of visually presented digits from a temporally grouped list in their original order, where either within-group position or group position was kept constant. In Experiment 2, participants performed more standard serial recall of spoken digits, and input and output position were dissociated by asking participants to initiate recall from a post-cued position in the list. In Experiment 3, participants were asked to serially recall temporally grouped lists of visually presented digits where the grouping structure was unpredictable, under either articulatory suppression or silent conditions. The 3 experiments point to a tight linkage between implied memorial structures (i.e., the pattern of grouping at encoding) and the output structure implied by retrieval times and call into question a purely motoric account of the dynamics of recall.
Ravizza, Susan M; Hazeltine, Eliot; Ruiz, Sandra; Zhu, David C
2011-04-15
Patients with damage to the left temporoparietal junction (TPJ) have a low verbal span without concomitant deficits in speech perception. This pattern of cognitive impairment is taken as evidence for a dedicated phonological buffer that plays little role in perception (storage-specific account). In contrast, other research suggests that items are maintained and perceived in the same regions (sensory-specific account). In an fMRI study, we demonstrate that the left TPJ does not respond in a way predicted of a phonological buffer; that is, activity in this region is not sustained during encoding or maintenance. Instead, a region in the superior temporal gyrus that has been associated with both speech perception and production demonstrated the expected profile of a store: it was more active in the verbal condition than the object condition and was active during both encoding and maintenance. These results support the sensory-specific account of short term memory rather than the storage-specific account. Based on the pattern of activity in the left TPJ, we suggest that the impairment of verbal working memory observed in patients with TPJ damage may be due to diminished attentional processes rather than reduced storage capacity. Copyright © 2010 Elsevier Inc. All rights reserved.
Extended write combining using a write continuation hint flag
Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos
2013-06-04
A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.
Yan, Luchun; Liu, Jiemin; Qu, Chen; Gu, Xingye; Zhao, Xia
2015-01-28
In order to explore the odor interaction of binary odor mixtures, a series of odor intensity evaluation tests were performed using both individual components and binary mixtures of aldehydes. Based on the linear relation between the logarithm of odor activity value and odor intensity of individual substances, the relationship between concentrations of individual constituents and their joint odor intensity was investigated by employing a partial differential equation (PDE) model. The obtained results showed that the binary odor interaction was mainly influenced by the mixing ratio of two constituents, but not the concentration level of an odor sample. Besides, an extended PDE model was also proposed on the basis of the above experiments. Through a series of odor intensity matching tests for several different binary odor mixtures, the extended PDE model was proved effective at odor intensity prediction. Furthermore, odorants of the same chemical group and similar odor type exhibited similar characteristics in the binary odor interaction. The overall results suggested that the PDE model is a more interpretable way of demonstrating the odor interactions of binary odor mixtures.
An effective write policy for software coherence schemes
NASA Technical Reports Server (NTRS)
Chen, Yung-Chin; Veidenbaum, Alexander V.
1992-01-01
The authors study the write behavior and evaluate the performance of various write strategies and buffering techniques for a MIN-based multiprocessor system using the simple software coherence scheme. Hit ratios, memory latencies, total execution time, and total write traffic are used as the performance indices. The write-through write-allocate no-fetch cache using a write-back write buffer is shown to have a better performance than both write-through and write-back caches. This type of write buffer is effective in reducing the volume as well as bursts of write traffic. On average, the use of a write-back cache reduces by 60 percent the total write traffic generated by a write-through cache.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshika, Y.; Nihei, Y.; Muto, G.
1981-04-01
A simple circular odor chart is proposed for the explanation of the relationship between sensory responses (to odor quality and intensity) to odors and chemical analysis data of the odorants responsible for each odor discharged from thirteen odor sources. The odorants were classified into eight odorant groups and were analyzed by a systematic gas chromatographic (GC) technique. The characterization of the trace amounts of the odorants was carried out by using the values of a new proposed unit (pOU) based on the ratio of detected concentration to recognition threshold value. The calculated pOU values of the eight groups were plottedmore » in circular charts. It was found that the shape and size of each circular odor chart represent the quality and the intensity of each odor.« less
Odors: appetizing or satiating? Development of appetite during odor exposure over time.
Ramaekers, M G; Boesveldt, S; Lakemond, C M M; van Boekel, M A J S; Luning, P A
2014-05-01
Exposure to palatable food odors influences appetite responses, either promoting or inhibiting food intake. Possibly, food odors are appetizing after a short exposure (of circa 1-3 min), but become satiating over time (circa 10-20 min). To investigate the effect of odor exposure on general appetite and sensory-specific appetite (SSA) over time. In a cross-over study, 21 unrestrained women (age: 18-45 years; BMI: 18.5-25 kg m(-2)) were exposed for 20 min to eight different odor types: five food odors, two nonfood odors and no-odor. All odors were distributed in a test room at suprathreshold levels. General appetite, SSA and salivation were measured over time. All food odors significantly increased general appetite and SSA, compared with the no-odor condition. The nonfood odors decreased general appetite. All effects did not change over time during odor exposure. Savory odors increased the appetite for savory foods, but decreased appetite for sweet foods, and vice versa after exposure to sweet odors. Neither food odors nor nonfood odors affected salivation. Palatable food odors were appetizing during and after odor exposure and did not become satiating over a 20-min period. Food odors had a large impact on SSA and a small impact on general appetite. Moreover, exposure to food odors increased the appetite for congruent foods, but decreased the appetite for incongruent foods. It may be hypothesized that, once the body is prepared for intake of a certain food with a particular macronutrient composition, it is unfavorable to consume foods that are very different from the cued food.
Parallel-vector out-of-core equation solver for computational mechanics
NASA Technical Reports Server (NTRS)
Qin, J.; Agarwal, T. K.; Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.
1993-01-01
A parallel/vector out-of-core equation solver is developed for shared-memory computers, such as the Cray Y-MP machine. The input/ output (I/O) time is reduced by using the a synchronous BUFFER IN and BUFFER OUT, which can be executed simultaneously with the CPU instructions. The parallel and vector capability provided by the supercomputers is also exploited to enhance the performance. Numerical applications in large-scale structural analysis are given to demonstrate the efficiency of the present out-of-core solver.
Working memory capacity of biological movements predicts empathy traits.
Gao, Zaifeng; Ye, Tian; Shen, Mowei; Perry, Anat
2016-04-01
Working memory (WM) and empathy are core issues in cognitive and social science, respectively. However, no study so far has explored the relationship between these two constructs. Considering that empathy takes place based on the others' observed experiences, which requires extracting the observed dynamic scene into WM and forming a coherent representation, we hypothesized that a sub-type of WM capacity, i.e., WM for biological movements (BM), should predict one's empathy level. Therefore, WM capacity was measured for three distinct types of stimuli in a change detection task: BM of human beings (BM; Experiment 1), movements of rectangles (Experiment 2), and static colors (Experiment 3). The first two stimuli were dynamic and shared one WM buffer which differed from the WM buffer for colors; yet only the BM conveyed social information. We found that BM-WM capacity was positively correlated with both cognitive and emotional empathy, with no such correlations for WM capacity of movements of rectangles or of colors. Thus, the current study is the first to provide evidence linking a specific buffer of WM and empathy, and highlights the necessity for considering different WM capacities in future social and clinical research.
de Valk, Josje M; Wnuk, Ewelina; Huisman, John L A; Majid, Asifa
2017-08-01
People appear to have systematic associations between odors and colors. Previous research has emphasized the perceptual nature of these associations, but little attention has been paid to what role language might play. It is possible odor-color associations arise through a process of labeling; that is, participants select a descriptor for an odor and then choose a color accordingly (e.g., banana odor → "banana" label → yellow). If correct, this would predict odor-color associations would differ as odor descriptions differ. We compared speakers of Dutch (who overwhelmingly describe odors by referring to the source; e.g., smells like banana) with speakers of Maniq and Thai (who also describe odors with dedicated, abstract smell vocabulary; e.g., musty), and tested whether the type of descriptor mattered for odor-color associations. Participants were asked to select a color that they associated with an odor on two separate occasions (to test for consistency), and finally to label the odors. We found the hunter-gatherer Maniq showed few, if any, consistent or accurate odor-color associations. More importantly, we found the types of descriptors used to name the smells were related to the odor-color associations. When people used abstract smell terms to describe odors, they were less likely to choose a color match, but when they described an odor with a source-based term, their color choices more accurately reflected the odor source, particularly when the odor source was named correctly (e.g., banana odor → yellow). This suggests language is an important factor in odor-color cross-modal associations.
Multivariate prediction of odor from pig production based on in-situ measurement of odorants
NASA Astrophysics Data System (ADS)
Hansen, Michael J.; Jonassen, Kristoffer E. N.; Løkke, Mette Marie; Adamsen, Anders Peter S.; Feilberg, Anders
2016-06-01
The aim of the present study was to estimate a prediction model for odor from pig production facilities based on measurements of odorants by Proton-Transfer-Reaction Mass spectrometry (PTR-MS). Odor measurements were performed at four different pig production facilities with and without odor abatement technologies using a newly developed mobile odor laboratory equipped with a PTR-MS for measuring odorants and an olfactometer for measuring the odor concentration by human panelists. A total of 115 odor measurements were carried out in the mobile laboratory and simultaneously air samples were collected in Nalophan bags and analyzed at accredited laboratories after 24 h. The dataset was divided into a calibration dataset containing 94 samples and a validation dataset containing 21 samples. The prediction model based on the measurements in the mobile laboratory was able to explain 74% of the variation in the odor concentration based on odorants, whereas the prediction models based on odor measurements with bag samples explained only 46-57%. This study is the first application of direct field olfactometry to livestock odor and emphasizes the importance of avoiding any bias from sample storage in studies of odor-odorant relationships. Application of the model on the validation dataset gave a high correlation between predicted and measured odor concentration (R2 = 0.77). Significant odorants in the prediction models include phenols and indoles. In conclusion, measurements of odorants on-site in pig production facilities is an alternative to dynamic olfactometry that can be applied for measuring odor from pig houses and the effects of odor abatement technologies.
The Influence of Gustatory and Olfactory Experiences on Responsiveness to Reward in the Honeybee
Ramírez, Gabriela P.; Martínez, Andrés S.; Fernández, Vanesa M.; Corti Bielsa, Gonzalo; Farina, Walter M.
2010-01-01
Background Honeybees (Apis mellifera) exhibit an extraordinarily tuned division of labor that depends on age polyethism. This adjustment is generally associated with the fact that individuals of different ages display different response thresholds to given stimuli, which determine specific behaviors. For instance, the sucrose-response threshold (SRT) which largely depends on genetic factors may also be affected by the nectar sugar content. However, it remains unknown whether SRTs in workers of different ages and tasks can differ depending on gustatory and olfactory experiences. Methodology Groups of worker bees reared either in an artificial environment or else in a queen-right colony, were exposed to different reward conditions at different adult ages. Gustatory response scores (GRSs) and odor-memory retrieval were measured in bees that were previously exposed to changes in food characteristics. Principal Findings Results show that the gustatory responses of pre-foraging-aged bees are affected by changes in sucrose solution concentration and also to the presence of an odor provided it is presented as scented sucrose solution. In contrast no differences in worker responses were observed when presented with odor only in the rearing environment. Fast modulation of GRSs was observed in older bees (12–16 days of age) which are commonly involved in food processing tasks within the hive, while slower modulation times were observed in younger bees (commonly nurse bees, 6–9 days of age). This suggests that older food-processing bees have a higher plasticity when responding to fluctuations in resource information than younger hive bees. Adjustments in the number of trophallaxis events were also found when scented food circulated inside the nest, and this was positively correlated with the differences in timing observed in gustatory responsiveness and memory retention for hive bees of different age classes. Conclusions This work demonstrates the accessibility of chemosensory information in the honeybee colonies with respect to incoming nectar. The modulation of the sensory-response systems within the hive can have important effects on the dynamics of food transfer and information propagation. PMID:20975953
Pautassi, Ricardo Marcos; Nizhnikov, Michael; Molina, Juan Carlos; Boehm, Stephen L.; Spear, Norman
2007-01-01
In infant rats, low doses of ethanol have been found to attenuate the aversive representation of an unconditioned stimulus (US) as assessed through a revaluation paradigm. This may be explained by early anxiolytic properties of EtOH. The present set of experiments was aimed at analyzing possible mechanisms of these putative anti-anxiety effects of EtOH. In a the first experiment, EtOH's effects upon the expression of citric acid-induced distress calls were compared with varying doses of midazolam (MDZ), a fast-acting GABAA agonist. Similar calming effects of 0.5 g/kg EtOH and 0.09 mg/kg MDZ were observed. Both drugs were then assessed in their capability to alter the expression of a conditioned aversion by devaluing the US. Aversive conditioning was conducted on postnatal day 14 (PD14) by pairing a lemon odor (conditioned stimulus, CS) with intraoral stimulation of citric acid (US). Control animals experienced both stimuli in an explicitly unrelated fashion. On PD 15 pups were briefly exposed to the citric acid solution under the effects of 0.5 g/kg EtOH, 0.09 mg/kg MDZ, or the respective vehicle for each drug. Pups were then tested in a two-way odor preference test (lemon vs. cineole). Both vehicle and MDZ-treated animals spent significantly less time near the lemon CS, thus expressing a citric-acid mediated odor aversion. This conditioned response was completely inhibited in pups that received 0.5 g/kg EtOH. Locomotor patterns at test were not affected by either EtOH or MDZ administration. A higher dose of MDZ (0.18 mg/kg, i.p) was also ineffective in attenuating the aversive memory. In summary, EtOH's devaluating capabilities are not shared by MDZ, indicating that these effects of EtOH may not be GABA-mediated. Appetitive motivational properties of EtOH or non-GABAA-mediated anti-anxiety effects (i.e, NMDA-related) could underlie this devaluation effect of ethanol. PMID:17936511
Unconditional room-temperature quantum memory
NASA Astrophysics Data System (ADS)
Hosseini, M.; Campbell, G.; Sparkes, B. M.; Lam, P. K.; Buchler, B. C.
2011-10-01
Just as classical information systems require buffers and memory, the same is true for quantum information systems. The potential that optical quantum information processing holds for revolutionizing computation and communication is therefore driving significant research into developing optical quantum memory. A practical optical quantum memory must be able to store and recall quantum states on demand with high efficiency and low noise. Ideally, the platform for the memory would also be simple and inexpensive. Here, we present a complete tomographic reconstruction of quantum states that have been stored in the ground states of rubidium in a vapour cell operating at around 80°C. Without conditional measurements, we show recall fidelity up to 98% for coherent pulses containing around one photon. To unambiguously verify that our memory beats the quantum no-cloning limit we employ state-independent verification using conditional variance and signal-transfer coefficients.
Characterizing odors from cattle feedlots with different odor techniques
USDA-ARS?s Scientific Manuscript database
Odors from cattle feedlots negatively affect local communities. The purpose of this study was to characterize odors and odorants using different odor sampling techniques. Odors were characterized with field olfactometers (Nasal Ranger®), sensory techniques (GC-O) and analytical techniques (sorbent t...
Olfactory Cued Learning Paradigm.
Liu, Gary; McClard, Cynthia K; Tepe, Burak; Swanson, Jessica; Pekarek, Brandon; Panneerselvam, Sugi; Arenkiel, Benjamin R
2017-05-05
Sensory stimulation leads to structural changes within the CNS (Central Nervous System), thus providing the fundamental mechanism for learning and memory. The olfactory circuit offers a unique model for studying experience-dependent plasticity, partly due to a continuous supply of integrating adult born neurons. Our lab has recently implemented an olfactory cued learning paradigm in which specific odor pairs are coupled to either a reward or punishment to study downstream circuit changes. The following protocol outlines the basic set up for our learning paradigm. Here, we describe the equipment setup, programming of software, and method of behavioral training.
Rihm, Julia S; Rasch, Björn
2015-07-01
Emotional memories are reprocessed during sleep, and it is widely assumed that this reprocessing occurs mainly during rapid eye movement (REM) sleep. In support for this notion, vivid emotional dreams occur mainly during REM sleep, and several studies have reported emotional memory enhancement to be associated with REM sleep or REM sleep-related parameters. However, it is still unknown whether reactivation of emotional memories during REM sleep strengthens emotional memories. Here, we tested whether re-presentation of emotionally learned stimuli during REM sleep enhances emotional memory. In a split-night design, participants underwent Pavlovian conditioning after the first half of the night. Neutral sounds served as conditioned stimuli (CS) and were either paired with a negative odor (CS+) or an odorless vehicle (CS-). During sound replay in subsequent late REM or N2 sleep, half of the CS+ and half of the CS- were presented again. In contrast to our hypothesis, replay during sleep did not affect emotional memory as measured by the differentiation between CS+ and CS- in expectancy, arousal and valence ratings. However, replay unspecifically decreased subjective arousal ratings of both emotional and neutral sounds and increased positive valence ratings also for both CS+ and CS- sounds, respectively. These effects were slightly more pronounced for replay during REM sleep. Our results suggest that re-exposure to previously conditioned stimuli during late sleep does not affect emotional memory strength, but rather influences the affective tone of both emotional and neutral memories. Copyright © 2015 Elsevier Inc. All rights reserved.
Focal plane infrared readout circuit with automatic background suppression
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Sun, Chao (Inventor); Shaw, Timothy J. (Inventor); Wrigley, Chris J. (Inventor)
2002-01-01
A circuit for reading out a signal from an infrared detector includes a current-mode background-signal subtracting circuit having a current memory which can be enabled to sample and store a dark level signal from the infrared detector during a calibration phase. The signal stored by the current memory is subtracted from a signal received from the infrared detector during an imaging phase. The circuit also includes a buffered direct injection input circuit and a differential voltage readout section. By performing most of the background signal estimation and subtraction in a current mode, a low gain can be provided by the buffered direct injection input circuit to keep the gain of the background signal relatively small, while a higher gain is provided by the differential voltage readout circuit. An array of such readout circuits can be used in an imager having an array of infrared detectors. The readout circuits can provide a high effective handling capacity.
Sun, Huabin; Wang, Qijing; Li, Yun; Lin, Yen-Fu; Wang, Yu; Yin, Yao; Xu, Yong; Liu, Chuan; Tsukagoshi, Kazuhito; Pan, Lijia; Wang, Xizhang; Hu, Zheng; Shi, Yi
2014-01-01
Ferroelectric organic field-effect transistors (Fe-OFETs) have been attractive for a variety of non-volatile memory device applications. One of the critical issues of Fe-OFETs is the improvement of carrier mobility in semiconducting channels. In this article, we propose a novel interfacial buffering method that inserts an ultrathin poly(methyl methacrylate) (PMMA) between ferroelectric polymer and organic semiconductor layers. A high field-effect mobility (μFET) up to 4.6 cm2 V−1 s−1 is obtained. Subsequently, the programming process in our Fe-OFETs is mainly dominated by the switching between two ferroelectric polarizations rather than by the mobility-determined charge accumulation at the channel. Thus, the “reading” and “programming” speeds are significantly improved. Investigations show that the polarization fluctuation at semiconductor/insulator interfaces, which affect the charge transport in conducting channels, can be suppressed effectively using our method. PMID:25428665
Walking patterns induced by learned odors in the honeybee, Apis mellifera L.
Yamashita, Toshiya; Haupt, S Shuichi; Ikeno, Hidetoshi; Ai, Hiroyuki
2016-01-01
The odor localization strategy induced by odors learned via differential conditioning of the proboscis extension response was investigated in honeybees. In response to reward-associated but not non-reward-associated odors, learners walked longer paths than non-learners and control bees. When orange odor reward association was learned, the path length and the body turn angles were small during odor stimulation and greatly increased after stimulation ceased. In response to orange odor, bees walked locally with alternate left and right turns during odor stimulation to search for the reward-associated odor source. After odor stimulation, bees walked long paths with large turn angles to explore the odor plume. For clove odor, learning-related modulations of locomotion were less pronounced, presumably due to a spontaneous preference for orange in the tested population of bees. This study is the first to describe how an odor-reward association modulates odor-induced walking in bees. © 2016. Published by The Company of Biologists Ltd.
Petrulis, A; Peng, M; Johnston, R E
1999-03-01
Removal of the vomeronasal organ (VNX) did not eliminate the ability of female hamsters to discriminate between individual male's flank gland or urine odors in a habituation/discrimination task nor did it impair preference for male odors over female odors from a distance. Vomeronasal organ removal did reduce overall levels of investigation of flank gland odor in the habituation/discrimination task. Although VNX females did not show severe impairments in the frequency of either flank or vaginal marking in response to odors, they did show an abnormal pattern of marking. VNX females, unlike shams, did not flank mark more to female odors than to male odors, nor did they vaginal mark more to male odors than to female odors. Thus, the vomeronasal organ in female hamsters appears to be important for differences in scent marking toward male and female odors, but is not essential for discrimination of individual odors or for preferences for male over female odors.
Eight microprocessor-based instrument data systems in the Galileo Orbiter spacecraft
NASA Technical Reports Server (NTRS)
Barry, R. C.
1980-01-01
Instrument data systems consist of a microprocessor, 3K bytes of Read Only Memory and 3K bytes of Random Access Memory. It interfaces with the spacecraft data bus through an isolated user interface with a direct memory access bus adaptor, and/or parallel data from instrument devices such as registers, buffers, analog to digital converters, multiplexers, and solid state sensors. These data systems support the spacecraft hardware and software communication protocol, decode and process instrument commands, generate continuous instrument operating modes, control the instrument mechanisms, acquire, process, format, and output instrument science data.
Low latency, high bandwidth data communications between compute nodes in a parallel computer
Blocksome, Michael A
2014-04-01
Methods, systems, and products are disclosed for data transfers between nodes in a parallel computer that include: receiving, by an origin DMA on an origin node, a buffer identifier for a buffer containing data for transfer to a target node; sending, by the origin DMA to the target node, a RTS message; transferring, by the origin DMA, a data portion to the target node using a memory FIFO operation that specifies one end of the buffer from which to begin transferring the data; receiving, by the origin DMA, an acknowledgement of the RTS message from the target node; and transferring, by the origin DMA in response to receiving the acknowledgement, any remaining data portion to the target node using a direct put operation that specifies the other end of the buffer from which to begin transferring the data, including initiating the direct put operation without invoking an origin processing core.
Low latency, high bandwidth data communications between compute nodes in a parallel computer
Blocksome, Michael A
2014-04-22
Methods, systems, and products are disclosed for data transfers between nodes in a parallel computer that include: receiving, by an origin DMA on an origin node, a buffer identifier for a buffer containing data for transfer to a target node; sending, by the origin DMA to the target node, a RTS message; transferring, by the origin DMA, a data portion to the target node using a memory FIFO operation that specifies one end of the buffer from which to begin transferring the data; receiving, by the origin DMA, an acknowledgement of the RTS message from the target node; and transferring, by the origin DMA in response to receiving the acknowledgement, any remaining data portion to the target node using a direct put operation that specifies the other end of the buffer from which to begin transferring the data, including initiating the direct put operation without invoking an origin processing core.
Low latency, high bandwidth data communications between compute nodes in a parallel computer
Blocksome, Michael A
2013-07-02
Methods, systems, and products are disclosed for data transfers between nodes in a parallel computer that include: receiving, by an origin DMA on an origin node, a buffer identifier for a buffer containing data for transfer to a target node; sending, by the origin DMA to the target node, a RTS message; transferring, by the origin DMA, a data portion to the target node using a memory FIFO operation that specifies one end of the buffer from which to begin transferring the data; receiving, by the origin DMA, an acknowledgement of the RTS message from the target node; and transferring, by the origin DMA in response to receiving the acknowledgement, any remaining data portion to the target node using a direct put operation that specifies the other end of the buffer from which to begin transferring the data, including initiating the direct put operation without invoking an origin processing core.
Luauté, Jacques; Dubois, Anne; Heine, Lizette; Guironnet, Chloé; Juliat, Ariane; Gaveau, Valérie; Tillmann, Barbara; Perrin, Fabien
2018-05-18
After a coma, one major challenge is the detection of awareness in patients with disorders of consciousness. In some patients, the only manifestation indicative of awareness is an appropriate emotional response. Preferred music is a powerful medium to elicit emotions and autobiographical memory. Furthermore, music has been shown to improve cognitive functions both in healthy subjects and patients with neurological impairment. We hypothesized that signs of awareness could be enhanced in some patients with disorders of consciousness under appropriate emotional stimulation such as preferred music and also probably preferred odors. To investigate an objective, easily recordable marker of emotions at the patients' bedside, electrodermal activity (skin conductance level, SCL) was assessed with stimulations in auditory and olfactory modalities, notably with preferred music, neutral sound, preferred odors, and neutral odors. The study was conducted in 11 patients with disorders of consciousness (DOC) and 7 healthy participants. In healthy subjects, the mean amplitude of the SCL was increased during exposure to preferred music as compared to neutral sounds (respectively: 0.00037±0.0004 vs. - 0.00004±0.00019μS). No significant difference between conditions was detected in patients. The results of this study suggest that electrodermal activity could be a useful marker of emotions induced by music in healthy controls. However, it failed to show any significant difference between conditions in patients with DOC. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Individual Differences in Learning Talker Categories: The Role of Working Memory
Levi, Susannah V.
2016-01-01
The current study explores the question of how an auditory category is learned by having school-age listeners learn to categorize speech not in terms of linguistic categories, but instead in terms of talker categories (i.e., who is talking). Findings from visual-category learning indicate that working memory skills affect learning, but the literature is equivocal: sometimes better working memory is advantageous, and sometimes not. The current study examined the role of different components of working memory to test which component skills benefit, and which hinder, learning talker categories. Results revealed that the short-term storage component positively predicted learning, but that the Central Executive and Episodic Buffer negatively predicted learning. As with visual categories, better working memory is not always an advantage. PMID:25721393
Cook, Stephanie; Fallon, Nicholas; Wright, Hazel; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej
2015-01-01
Odors can alter hedonic evaluations of human faces, but the neural mechanisms of such effects are poorly understood. The present study aimed to analyze the neural underpinning of odor-induced changes in evaluations of human faces in an odor-priming paradigm, using event-related potentials (ERPs). Healthy, young participants (N = 20) rated neutral faces presented after a 3 s pulse of a pleasant odor (jasmine), unpleasant odor (methylmercaptan), or no-odor control (clean air). Neutral faces presented in the pleasant odor condition were rated more pleasant than the same faces presented in the no-odor control condition, which in turn were rated more pleasant than faces in the unpleasant odor condition. Analysis of face-related potentials revealed four clusters of electrodes significantly affected by odor condition at specific time points during long-latency epochs (600-950 ms). In the 620-640 ms interval, two scalp-time clusters showed greater negative potential in the right parietal electrodes in response to faces in the pleasant odor condition, compared to those in the no-odor and unpleasant odor conditions. At 926 ms, face-related potentials showed greater positivity in response to faces in the pleasant and unpleasant odor conditions at the left and right lateral frontal-temporal electrodes, respectively. Our data shows that odor-induced shifts in evaluations of faces were associated with amplitude changes in the late (>600) and ultra-late (>900 ms) latency epochs. The observed amplitude changes during the ultra-late epoch are consistent with a left/right hemisphere bias towards pleasant/unpleasant odor effects. Odors alter evaluations of human faces, even when there is a temporal lag between presentation of odors and faces. Our results provide an initial understanding of the neural mechanisms underlying effects of odors on hedonic evaluations.
Cook, Stephanie; Fallon, Nicholas; Wright, Hazel; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej
2015-01-01
Odors can alter hedonic evaluations of human faces, but the neural mechanisms of such effects are poorly understood. The present study aimed to analyze the neural underpinning of odor-induced changes in evaluations of human faces in an odor-priming paradigm, using event-related potentials (ERPs). Healthy, young participants (N = 20) rated neutral faces presented after a 3 s pulse of a pleasant odor (jasmine), unpleasant odor (methylmercaptan), or no-odor control (clean air). Neutral faces presented in the pleasant odor condition were rated more pleasant than the same faces presented in the no-odor control condition, which in turn were rated more pleasant than faces in the unpleasant odor condition. Analysis of face-related potentials revealed four clusters of electrodes significantly affected by odor condition at specific time points during long-latency epochs (600−950 ms). In the 620−640 ms interval, two scalp-time clusters showed greater negative potential in the right parietal electrodes in response to faces in the pleasant odor condition, compared to those in the no-odor and unpleasant odor conditions. At 926 ms, face-related potentials showed greater positivity in response to faces in the pleasant and unpleasant odor conditions at the left and right lateral frontal-temporal electrodes, respectively. Our data shows that odor-induced shifts in evaluations of faces were associated with amplitude changes in the late (>600) and ultra-late (>900 ms) latency epochs. The observed amplitude changes during the ultra-late epoch are consistent with a left/right hemisphere bias towards pleasant/unpleasant odor effects. Odors alter evaluations of human faces, even when there is a temporal lag between presentation of odors and faces. Our results provide an initial understanding of the neural mechanisms underlying effects of odors on hedonic evaluations. PMID:26733843
Honeybees Learn Odour Mixtures via a Selection of Key Odorants
Reinhard, Judith; Sinclair, Michael; Srinivasan, Mandyam V.; Claudianos, Charles
2010-01-01
Background The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. Methodology/Principal Findings This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant's volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants. Conclusions/Significance Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees. PMID:20161714
Impaired social recognition memory in Recombination Activating Gene 1-deficient mice
McGowan, Patrick O.; Hope, Thomas A.; Meck, Warren H.; Kelsoe, Garnett; Williams, Christina L.
2012-01-01
The Recombination Activating Genes (RAGs) encode two enzymes that play key roles in the adaptive immune system. RAG1 and RAG2 mediate VDJ recombination, a process necessary for the maturation of B- and T-cells. Interestingly, RAG1 is also expressed in the brain, particularly in areas of high neural density such as the hippocampus, although its function is unknown. We tested evidence that RAG1 plays a role in brain function using a social recognition memory task, an assessment of the acquisition and retention of conspecific identity. In a first experiment, we found that RAG1-deficient mice show impaired social recognition memory compared to mice wildtype for the RAG1 allele. In a second experiment, by breeding to homogenize background genotype we found that RAG1-deficient mice show impaired social recognition memory relative to heterozygous or RAG2-deficient littermates. Because RAG1 and RAG2 null mice are both immunodeficient, the results suggest that the memory impairment is not an indirect effect of immunological dysfunction. RAG1-deficient mice show normal habituation to non-socially derived odors and habituation to an open-field, indicating that the observed effect is not likely a result of a general deficit in habituation to novelty. These data trace the origin of the impairment in social recognition memory in RAG1-deficient mice to the RAG1 gene locus and implicate RAG1 in memory formation. PMID:21354115
What's that smell? An ecological approach to understanding preferences for familiar odors.
Schloss, Karen B; Goldberger, Carolyn S; Palmer, Stephen E; Levitan, Carmel A
2015-01-01
How do odor preferences arise? Following Palmer and Schloss's (2010, PNAS, 107, 8877-8882) ecological valence theory of color preferences, we propose that preference for an odor is determined by preferences for all objects and/or entities associated with that odor. The present results showed that preferences for familiar odors were strongly predicted by average preferences for all things associated with the odors (eg people liked the apple odor which was associated with mostly positive things, such as apples, soap, and candy, but disliked the fish odor, which was associated with mostly negative things, such as dead fish, trash, and vomit). The odor WAVEs (weighted affective valence estimates) performed significantly better than one based on preference for only the namesake object (eg predicting preference for the apple odor based on preference for apples). These results suggest that preferences for familiar odors are based on a summary statistic, coding the valence of previous odor-related experiences. We discuss how this account of odor preferences is consistent with the idea that odor preferences exist to guide organisms to approach beneficial objects and situations and avoid harmful ones.
Autonomic nervous responses according to preference for the odor of jasmine tea.
Inoue, Naohiko; Kuroda, Kyoko; Sugimoto, Akio; Kakuda, Takami; Fushiki, Tohru
2003-06-01
The effect of jasmine tea odor on the autonomic nervous system was investigated by a power spectral analysis of the heart rate variability. We assigned eight volunteers to two groups with either a predilection for or antipathy toward the jasmine tea odor. We tested both high- and low-intensity jasmine tea odors. The low-intensity odor was produced by diluting 20-fold the jasmine tea used for the high-intensity odor test. The low-intensity odor produced an increase in parasympathetic nervous activity in both the predilection and antipathy groups. The high-intensity odor produced an increase in parasympathetic nervous activity in the predilection group, but an increase in sympathetic nervous activity in the antipathy group. The odor of Chinese green tea, a basic ingredient of jasmine tea, produced no effects similar to those of the jasmine tea odor. These results suggest that the jasmine tea odor activated the parasympathetic nerve, whereas the higher-intensity odor activated the sympathetic nerve in those subjects who disliked the odor.
Jebreili, Mahnaz; Neshat, Hanieh; Seyyedrasouli, Aleheh; Ghojazade, Morteza; Hosseini, Mohammad Bagher; Hamishehkar, Hamed
2015-09-01
The main purpose of this study was to investigate the calming effects of breastmilk odor and vanilla odor on preterm infants during and after venipuncture. One hundred thirty-five preterm infants were randomly selected and divided into three groups: control, vanilla odor, and breastmilk odor. Infants in the breastmilk group were exposed to breastmilk odor, and infants in the vanilla group were exposed to vanilla odor from 5 minutes before the start of sampling until 30 seconds after sampling. The Premature Infant Pain Profile was used for calculating quality of pain in infants during and after sampling. Statistical analyses showed that both vanilla and breastmilk odors had calming effects on premature infants during sampling, but just breastmilk odor had calming effects on infants after the end of sampling. Compared with vanilla odor, breastmilk odor has more calming effects on premature infants. Breastmilk odor can be used for calming premature infants during and after venipuncture.
PCM synchronization by word stuffing
NASA Technical Reports Server (NTRS)
Butman, S.
1969-01-01
When a transmitted word, consisting of a number of pulses, is detected and removed from the data stream, the space left by the removal is eliminated by a memory buffer. This eliminates the need for a clock synchronizer thereby removing instability problems.
Yan, Luchun; Liu, Jiemin; Jiang, Shen; Wu, Chuandong; Gao, Kewei
2017-07-13
The olfactory evaluation function (e.g., odor intensity rating) of e-nose is always one of the most challenging issues in researches about odor pollution monitoring. But odor is normally produced by a set of stimuli, and odor interactions among constituents significantly influenced their mixture's odor intensity. This study investigated the odor interaction principle in odor mixtures of aldehydes and esters, respectively. Then, a modified vector model (MVM) was proposed and it successfully demonstrated the similarity of the odor interaction pattern among odorants of the same type. Based on the regular interaction pattern, unlike a determined empirical model only fit for a specific odor mixture in conventional approaches, the MVM distinctly simplified the odor intensity prediction of odor mixtures. Furthermore, the MVM also provided a way of directly converting constituents' chemical concentrations to their mixture's odor intensity. By combining the MVM with usual data-processing algorithm of e-nose, a new e-nose system was established for an odor intensity rating. Compared with instrumental analysis and human assessor, it exhibited accuracy well in both quantitative analysis (Pearson correlation coefficient was 0.999 for individual aldehydes ( n = 12), 0.996 for their binary mixtures ( n = 36) and 0.990 for their ternary mixtures ( n = 60)) and odor intensity assessment (Pearson correlation coefficient was 0.980 for individual aldehydes ( n = 15), 0.973 for their binary mixtures ( n = 24), and 0.888 for their ternary mixtures ( n = 25)). Thus, the observed regular interaction pattern is considered an important foundation for accelerating extensive application of olfactory evaluation in odor pollution monitoring.
It's time to fear! Interval timing in odor fear conditioning in rats
Shionoya, Kiseko; Hegoburu, Chloé; Brown, Bruce L.; Sullivan, Regina M.; Doyère, Valérie; Mouly, Anne-Marie
2013-01-01
Time perception is crucial to goal attainment in humans and other animals, and interval timing also guides fundamental animal behaviors. Accumulating evidence has made it clear that in associative learning, temporal relations between events are encoded, and a few studies suggest this temporal learning occurs very rapidly. Most of these studies, however, have used methodologies that do not permit investigating the emergence of this temporal learning. In the present study we monitored respiration, ultrasonic vocalization (USV) and freezing behavior in rats in order to perform fine-grain analysis of fear responses during odor fear conditioning. In this paradigm an initially neutral odor (the conditioned stimulus, CS) predicted the arrival of an aversive unconditioned stimulus (US, footshock) at a fixed 20-s time interval. We first investigated the development of a temporal pattern of responding related to CS-US interval duration. The data showed that during acquisition with odor-shock pairings, a temporal response pattern of respiration rate was observed. Changing the CS-US interval duration from 20-s to 30-s resulted in a shift of the temporal response pattern appropriate to the new duration thus demonstrating that the pattern reflected the learning of the CS-US interval. A temporal pattern was also observed during a retention test 24 h later for both respiration and freezing measures, suggesting that the animals had stored the interval duration in long-term memory. We then investigated the role of intra-amygdalar dopaminergic transmission in interval timing. For this purpose, the D1 dopaminergic receptors antagonist SCH23390 was infused in the basolateral amygdala before conditioning. This resulted in an alteration of timing behavior, as reflected in differential temporal patterns between groups observed in a 24 h retention test off drug. The present data suggest that D1 receptor dopaminergic transmission within the amygdala is involved in temporal processing. PMID:24098277
Influence of Body Odors and Gender on Perceived Genital Arousal.
Alves-Oliveira, Patrícia; Carvalho, Joana; Ferreira, Jacqueline; Alho, Laura; Nobre, Pedro; Olsson, Mats J; Soares, Sandra C
2018-04-01
Olfaction is often linked to mating behavior in nonhumans. Additionally, studies in mating behavior have shown that women seem to be more affected by odor cues than men. However, the relationship between odor cues and sexual response-specifically, sexual arousal-has not been studied yet. The aim of this study was to evaluate the impact of the exposure to human body odors (from individuals of the opposite gender) on perceived genital arousal, while these were presented concomitantly to sexually explicit video clips. Eighty university students (40 women) rated their perceived genital arousal (perceived degree of erection/genital lubrication) in response to an audiovisual sexual stimulus, while simultaneously exposed to a body odor from an opposite-gender donor or no odor. Participants also rated each odor sample's (body odor and no odor) perceived pleasantness, intensity, and familiarity. Findings indicated that odor condition had an effect on women's (but not men's) perceived genital arousal, with women showing higher levels of perceived genital arousal in the no odor condition. Also, results showed that women rated body odors as less pleasant than no odor. Notwithstanding, the odor ratings do not seem to explain the association between body odor and perceived genital arousal. The current results support the hypothesis that women, rather than men, are sensitive to odors in the context of sexual response. The findings of this study have relevance for the understanding of human sexuality with respect to chemosensory communication.
Boers, D; Geelen, L; Erbrink, H; Smit, L A M; Heederik, D; Hooiveld, M; Yzermans, C J; Huijbregts, M; Wouters, I M
2016-04-01
Odor annoyance is an important environmental stressor for neighboring residents of livestock farms and may affect their quality of life and health. However, little is known about the relation between odor exposure due to livestock farming and odor annoyance. Even more, the relation between odor exposure and odor annoyance is rather complicated due to variable responses among individuals to comparable exposure levels and a large number of factors (such as age, gender, education) that may affect the relation. In this study, we (1) investigated the relation between modeled odor exposure and odor annoyance; (2) investigated whether other factors can affect this relation; and (3) compared our dose-response relation to a dose-response relation established in a previous study carried out in the Netherlands, more than 10 years ago, in order to investigate changes in odor perception and appreciation over time. We used data from 582 respondents who participated in a questionnaire survey among neighboring residents of livestock farms in the south of the Netherlands. Odor annoyance was established by two close-ended questions in a questionnaire; odor exposure was estimated using the Stacks dispersion model. The results of our study indicate a statistically significant and positive relation between modeled odor exposure and reported odor annoyance from livestock farming (OR 1.92; 95 % CI 1.53-2.41). Furthermore, age, asthma, education and perceived air pollution in the environment are all related to odor annoyance, although they hardly affect the relation between estimated livestock odor exposure and reported odor annoyance. We also found relatively more odor annoyance reported among neighboring residents than in a previous study conducted in the Netherlands. We found a strong relation between modeled odor exposure and odor annoyance. However, due to some uncertainties and small number of studies on this topic, further research and replication of results is recommended.
Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder
Best, Mary; Williams, J. Michael; Coccaro, Emil F.
2002-01-01
Humans with lesions to the orbital/medial prefrontal cortex and interconnected areas display impulsive aggressive behavior. To examine further the relationship between impulsive aggression and orbital/medial prefrontal dysfunction, we measured the behavioral performance of psychiatric patients with a disorder characterized by impulsive aggression, Intermittent Explosive Disorder (IED). Presently, no evidence exists for a localized brain lesion in IED subjects. However, on the basis of the location of brain lesions that produce acquired impulsive aggression, we hypothesized that IED subjects would exhibit test performance similar to patients with lesions to the orbital/medial prefrontal cortex. Subjects with IED and controls were administered three tests sensitive to lesions of the orbital/medial prefrontal circuit: the Iowa Gambling Task, facial emotion recognition, and odor identification, and two control tests of working memory. On the gambling task, IED subjects continued to make disadvantageous decisions throughout the 100 trials, whereas controls learned to avoid disadvantageous decisions. On the facial recognition test, IED subjects were impaired at recognizing “anger,” “disgust,” and “surprise,” and they were biased to label neutral faces with “disgust” and “fear.” On odor identification, IED subjects were mildly anosmic and were impaired relative to controls. However, on the working memory control tests, both groups performed similarly. Across tests, the performance of IED subjects resembles the performance of patients with orbital/medial prefrontal lesions in previous studies. These results extend the link between dysfunction of the orbital/medial prefrontal circuit and impulsive aggressive behavior. PMID:12034876
Development switch in neural circuitry underlying odor-malaise learning.
Shionoya, Kiseko; Moriceau, Stephanie; Lunday, Lauren; Miner, Cathrine; Roth, Tania L; Sullivan, Regina M
2006-01-01
Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.
Martinec Nováková, Lenka; Plotěná, Dagmar; Roberts, S. Craig; Havlíček, Jan
2015-01-01
Hedonic ratings of odors and olfactory preferences are influenced by a number of modulating factors, such as prior experience and knowledge about an odor’s identity. The present study addresses the relationship between knowledge about an odor’s identity due to prior experience, assessed by means of a test of cued odor identification, and odor pleasantness ratings in children who exhibit ongoing olfactory learning. Ninety-one children aged 8–11 years rated the pleasantness of odors in the Sniffin’ Sticks test and, subsequently, took the odor identification test. A positive association between odor identification and pleasantness was found for two unpleasant food odors (garlic and fish): higher pleasantness ratings were exhibited by those participants who correctly identified these odors compared to those who failed to correctly identify them. However, we did not find a similar effect for any of the more pleasant odors. The results of this study suggest that pleasantness ratings of some odors may be modulated by the knowledge of their identity due to prior experience and that this relationship might be more evident in unpleasant odors. PMID:26029143
Graded Encoding of Food Odor Value in the Drosophila Brain
Beshel, Jennifer
2013-01-01
Odors are highly evocative, yet how and where in the brain odors derive meaning remains unknown. Our analysis of the Drosophila brain extends the role of a small number of hunger-sensing neurons to include food-odor value representation. In vivo two-photon calcium imaging shows the amplitude of food odor-evoked activity in neurons expressing Drosophila neuropeptide F (dNPF), the neuropeptide Y homolog, strongly correlates with food-odor attractiveness. Hunger elevates neural and behavioral responses to food odors only, although food odors that elicit attraction in the fed state also evoke heightened dNPF activity in fed flies. Inactivation of a subset of dNPF-expressing neurons or silencing dNPF receptors abolishes food-odor attractiveness, whereas genetically enhanced dNPF activity not only increases food-odor attractiveness but promotes attraction to aversive odors. Varying the amount of presented odor produces matching graded neural and behavioral curves, which can function to predict preference between odors. We thus demonstrate a possible motivationally scaled neural “value signal” accessible from uniquely identifiable cells. PMID:24089477
Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.
Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei
2016-07-01
The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.
Combinatorial effects of odorants on mouse behavior
Saraiva, Luis R.; Kondoh, Kunio; Ye, Xiaolan; Yoon, Kyoung-hye; Hernandez, Marcus; Buck, Linda B.
2016-01-01
The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another’s behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors. PMID:27208093
Masaoka, Yuri; Kawase, Akiko; Homma, Ikuo
2013-01-01
No previous report has described whether information regarding an odor used in aromatherapy has placebo effects. We investigated whether placebo analgesia was engendered by verbal information regarding the analgesic effects of an odor. Twelve of 24 subjects were provided with the information that a lavender odor would reduce pain (informed), whereas the other 12 subjects were not (not-informed). Concurrent with respiration recording, the subjects were administered a lavender-odor or no-odor treatment during application of painful stimulation to the forefinger. The subjects reported their experience of pain and its unpleasantness on a visual analogue scale after the painful stimulation. The lavender-odor treatment significantly alleviated pain and unpleasantness compared with the no-odor treatment in the informed (P < 0.01) and not-informed groups (P < 0.05). The no-odor treatment in the informed group significantly alleviated pain and unpleasantness compared with both the no-odor and lavender-odor treatments in the not-informed group (P < 0.05). Rapid and shallow breathing induced by the painful stimulation became slow and deep during the lavender-odor and no-odor treatments in both groups. Information regarding a lavender odor, the lavender odor itself, and slower breathing contributed to reduced perceptions of pain and unpleasantness during painful stimulation, suggesting that placebo effects significantly contribute to analgesia in aromatherapy. PMID:23840270
Novel cell-based odorant sensor elements based on insect odorant receptors.
Mitsuno, Hidefumi; Sakurai, Takeshi; Namiki, Shigehiro; Mitsuhashi, Hiroyuki; Kanzaki, Ryohei
2015-03-15
Development of cell-based odorant sensor elements combined not only high degree of sensitivity and selectivity but also long-term stability is crucial for their practical applications. Here we report the development of a novel cell-based odorant sensor element that sensitively and selectively detects odorants and displays increased fluorescent intensities over a long period of time. Our odorant sensor elements, based on Sf21 cell lines expressing insect odorant receptors, are sensitive to the level of several tens of parts per billion in solution, can selectively distinguish between different types of odorants based on the odorant selectivity intrinsic to the expressed receptors, and have response times of approximately 13s. Specifically, with the use of Sf21 cells and insect odorant receptors, we demonstrated that the established cell lines stably expressing insect odorant receptors are able to detect odorants with consistent responsiveness for at least 2 months, thus exceeding the short life-span normally associated with cell-based sensors. We also demonstrated the development of a compact odorant sensor chip by integrating the established insect cell lines into a microfluidic chip. The methodology we established in this study, in conjunction with the large repertoire of insect odorant receptors, will aid in the development of practical cell-based odorant sensors for various applications, including food administration and health management. Copyright © 2014 Elsevier B.V. All rights reserved.
77 FR 22381 - Odorant Fade in Railroad Tank Cars
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... can lead to the loss of odorant. 4. Facilities that load odorized LPG into tank cars take any other... diminished levels of odorant or no odorant present, represents significant safety risks. Absent sufficient... the LPG in the storage tanks at the construction site had virtually no odorant present, explaining why...
USDA-ARS?s Scientific Manuscript database
Livestock facilities have historically generated public concerns due to their emissions of odorous air and various chemical pollutants. Odor emission factors and identification of principal odorous chemicals are needed to better understand the problem. Applications of odor emission factors include i...
ERIC Educational Resources Information Center
Raineki, Charlis; Shionoya, Kiseko; Sander, Kristin; Sullivan, Regina M.
2009-01-01
Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1sec)--both of which…
Factors affecting the water odor caused by chloramines during drinking water disinfection.
Wang, An-Qi; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Gao, Ze-Chen; Liu, Zhi; Cao, Tong-Cheng; Gao, Nai-Yun
2018-10-15
Chloramine disinfection is one of the most common disinfection methods in drinking water treatment. In this study, the temporal variability of water odors during monochloramine auto-decomposition was investigated to elucidate the characteristics of odor problems caused by adopting chloramine disinfection in tap water. Odor intensities and dominant odorant contributions were determined using the flavor profile analysis (FPA) and odor active value (OAV), respectively. During auto-decomposition of monochloramine, Cl 2 /N molar ratio, pH, temperature, and the presence of NOM all affected odor intensity and odor temporal variation in drinking water. In general, decreasing pH from 8.5 to 6.0 led to increasing perceived odor intensity due to the formation of dichloramine. The major odorants responsible for chlorinous odor under acidic and non-acidic conditions were dichloramine and monochloramine, respectively. Chloraminated water with a Cl 2 /N molar ratio of 0.6 or NOM concentration <2 mg-C L -1 inhibited odor intensity. Furthermore, the influence of rechlorination on chlorinous odor intensity for chloraminated water should not be neglected. The results of this study will be beneficial for the control of chlorinous odors caused by chloramine disinfection in drinking water. Copyright © 2018 Elsevier B.V. All rights reserved.
Determination of urine-derived odorous compounds in a source separation sanitation system.
Liu, Bianxia; Giannis, Apostolos; Chen, Ailu; Zhang, Jiefeng; Chang, Victor W C; Wang, Jing-Yuan
2017-02-01
Source separation sanitation systems have attracted more and more attention recently. However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid-gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition, this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective. Copyright © 2016. Published by Elsevier B.V.
Maras, Pamela M; Petrulis, Aras
2008-07-05
Rodent reproductive behavior relies heavily on odor processing, and evidence suggests that many odor-guided sexual behaviors are shaped by prior experience. We sought to determine if exposure to male odors during development is required for the adult expression of proceptive sexual behavior toward male odors in female Syrian hamsters. Exposure to male odors was restricted in naïve subjects by removing all male siblings from the litter at three to five days of age. Control litters were also culled, but included equal numbers of male and female pups. As adults, naïve females displayed investigatory preferences toward male odors in a Y-maze that were comparable to control females; this preference was observed whether contact with the odor stimuli was prevented of allowed. In contrast, naïve females vaginal scent-marked equally toward male and female volatile odors, suggesting an inability to target behavior toward sexually relevant odors. However, naïve females marked preferentially toward male odors when allowed to contact the odor stimuli. These results provide evidence for the experience-dependent development of vaginal marking behavior toward volatile components of sexual odors. Furthermore, they suggest that distinct mechanisms regulate the development of odor preferences and vaginal marking behavior in this species.
Optimizing TLB entries for mixed page size storage in contiguous memory
Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Kriegel, Jon K.; Ohmacht, Martin; Steinmacher-Burow, Burkhard
2013-04-30
A system and method for accessing memory are provided. The system comprises a lookup buffer for storing one or more page table entries, wherein each of the one or more page table entries comprises at least a virtual page number and a physical page number; a logic circuit for receiving a virtual address from said processor, said logic circuit for matching the virtual address to the virtual page number in one of the page table entries to select the physical page number in the same page table entry, said page table entry having one or more bits set to exclude a memory range from a page.
Individually identifiable body odors are produced by the gorilla and discriminated by humans.
Hepper, Peter G; Wells, Deborah L
2010-05-01
Many species produce odor cues that enable them to be identified individually, as well as providing other socially relevant information. Study of the role of odor cues in the social behavior of great apes is noticeable by its absence. Olfaction has been viewed as having little role in guiding behavior in these species. This study examined whether Western lowland gorillas produce an individually identifiable odor. Odor samples were obtained by placing cloths in the gorilla's den. A delayed matching to sample task was used with human participants (n = 100) to see if they were able to correctly match a target odor sample to a choice of either: 2 odors (the target sample and another, Experiment 1) and 6 odors (the target sample and 5 others, Experiment 2). Participants were correctly able to identify the target odor when given either 2 or 6 matches. Subjects made fewest errors when matching the odor of the silverback, whereas matching the odors of the young gorillas produced most errors. The results indicate that gorillas do produce individually identifiable body odors and introduce the possibility that odor cues may play a role in gorilla social behavior.
NASA Astrophysics Data System (ADS)
Ranzato, Laura; Barausse, Alberto; Mantovani, Alice; Pittarello, Alberto; Benzo, Maurizio; Palmeri, Luca
2012-12-01
Unpleasant odors are a major cause of public complaints concerning air quality and represent a growing social problem in industrialized countries. However, the assessment of odor pollution is still regarded as a difficult task, because olfactory nuisance can be caused by many different chemical compounds, often found in hard-to-detect concentrations, and the perception of odors is influenced by subjective thresholds; moreover, the impact of odor sources on air quality is mediated by complex atmospheric dispersion processes. The development of standardized assessment approaches to odor pollution and proper international regulatory tools are urgently needed. In particular, comparisons of the methodologies commonly used nowadays to assess odor impacts on air quality are required. Here, we assess the olfactory nuisance caused by an anaerobic treatment plant for municipal solid waste by means of two alternative techniques: the field inspection procedure and the atmospheric dispersion model CALPUFF. Our goal was to compare rigorously their estimates of odor nuisance, both qualitatively (spatial extent of odor impact) and quantitatively (intensity of odor nuisance). To define the impact of odors, we referred to the German standards, based on the frequency of odor episodes in terms of odor hours. We report a satisfying, although not perfect agreement between the estimates provided by the two techniques. For example, they assessed similar spatial extents of odor pollution, but different frequencies of odor episodes in locations where the odor nuisance was highest. The comparison highlights strengths and weaknesses for both approaches. CALPUFF is a cheaper methodology which can be used predictively, but fugitive emissions are difficult to model reliably, because of uncertainty regarding timing, location and emission rate. Field inspection takes into account the role of human perception, but unlike the model it does not always characterize precisely the extent of the odor nuisance caused by a single source when other odors are present, because only the most unpleasant odor is reported. We conclude that these two assessment methods provide reasonable estimates of odor nuisance.
Dynamical Origin of the Effective Storage Capacity in the Brain's Working Memory
NASA Astrophysics Data System (ADS)
Bick, Christian; Rabinovich, Mikhail I.
2009-11-01
The capacity of working memory (WM), a short-term buffer for information in the brain, is limited. We suggest a model for sequential WM that is based upon winnerless competition amongst representations of available informational items. Analytical results for the underlying mathematical model relate WM capacity and relative lateral inhibition in the corresponding neural network. This implies an upper bound for WM capacity, which is, under reasonable neurobiological assumptions, close to the “magical number seven.”
Odor and odorous chemical emissions from animal buildings: Part 3 - chemical emissions
USDA-ARS?s Scientific Manuscript database
This study was an add-on study to the National Air Emission Monitoring Study (NAEMS). The objective of this study was to measure odor emissions and corresponding concentrations and emissions of target odorous gases. Odor and odorous gas measurements at four NAEMS sites (dairy barns in Wisconsin-WI5B...
Odor and odorous chemical emissions from animal buildings: Part 3. Chemical emissions
USDA-ARS?s Scientific Manuscript database
The objective of this study was to measure the long-term odor emissions and corresponding concentrations and emissions of 20 odorous volatile organic compounds (VOCs). This study was an add-on study to the National Air Emission Monitoring Study (NAEMS). Odor and odorous gas measurements at four NAEM...
USDA-ARS?s Scientific Manuscript database
Livestock facilities have received numerous criticisms due to their emissions of odorous air and chemicals. Hence, there is a significant need for odor emission factors and identification of principle odorous chemicals. Odor emission factors are used as inputs to odor setback models, while chemica...
The effect of meat consumption on body odor attractiveness.
Havlicek, Jan; Lenochova, Pavlina
2006-10-01
Axillary body odor is individually specific and potentially a rich source of information about its producer. Odor individuality partly results from genetic individuality, but the influence of ecological factors such as eating habits are another main source of odor variability. However, we know very little about how particular dietary components shape our body odor. Here we tested the effect of red meat consumption on body odor attractiveness. We used a balanced within-subject experimental design. Seventeen male odor donors were on "meat" or "nonmeat" diet for 2 weeks wearing axillary pads to collect body odor during the final 24 h of the diet. Fresh odor samples were assessed for their pleasantness, attractiveness, masculinity, and intensity by 30 women not using hormonal contraceptives. We repeated the same procedure a month later with the same odor donors, each on the opposite diet than before. Results of repeated measures analysis of variance showed that the odor of donors when on the nonmeat diet was judged as significantly more attractive, more pleasant, and less intense. This suggests that red meat consumption has a negative impact on perceived body odor hedonicity.
Functional identification and reconstitution of an odorant receptor in single olfactory neurons
Touhara, Kazushige; Sengoku, Shintaro; Inaki, Koichiro; Tsuboi, Akio; Hirono, Junzo; Sato, Takaaki; Sakano, Hitoshi; Haga, Tatsuya
1999-01-01
The olfactory system is remarkable in its capacity to discriminate a wide range of odorants through a series of transduction events initiated in olfactory receptor neurons. Each olfactory neuron is expected to express only a single odorant receptor gene that belongs to the G protein coupled receptor family. The ligand–receptor interaction, however, has not been clearly characterized. This study demonstrates the functional identification of olfactory receptor(s) for specific odorant(s) from single olfactory neurons by a combination of Ca2+-imaging and reverse transcription–coupled PCR analysis. First, a candidate odorant receptor was cloned from a single tissue-printed olfactory neuron that displayed odorant-induced Ca2+ increase. Next, recombinant adenovirus-mediated expression of the isolated receptor gene was established in the olfactory epithelium by using green fluorescent protein as a marker. The infected neurons elicited external Ca2+ entry when exposed to the odorant that originally was used to identify the receptor gene. Experiments performed to determine ligand specificity revealed that the odorant receptor recognized specific structural motifs within odorant molecules. The odorant receptor-mediated signal transduction appears to be reconstituted by this two-step approach: the receptor screening for given odorant(s) from single neurons and the functional expression of the receptor via recombinant adenovirus. The present approach should enable us to examine not only ligand specificity of an odorant receptor but also receptor specificity and diversity for a particular odorant of interest. PMID:10097159
Text Processing and Formatting: Composure, Composition and Eros.
ERIC Educational Resources Information Center
Blair, John C., Jr.
1984-01-01
Review of computer software offering text editing/processing capabilities highlights work habits, elements of computer style and composition, buffers, the CRT, line- and screen-oriented text editors, video attributes, "swapping,""cache" memory, "disk emulators," text editing versus text processing, and UNIX operating…
Nilsson, Sara; Sjöberg, Johanna; Amundin, Mats; Hartmann, Constanze; Buettner, Andrea; Laska, Matthias
2014-01-01
Only little is known about whether single volatile compounds are as efficient in eliciting behavioral responses in animals as the whole complex mixture of a behaviorally relevant odor. Recent studies analysing the composition of volatiles in mammalian blood, an important prey-associated odor stimulus for predators, found the odorant trans-4,5-epoxy-(E)-2-decenal to evoke a typical "metallic, blood-like" odor quality in humans. We therefore assessed the behavior of captive Asian wild dogs (Cuon alpinus), African wild dogs (Lycaon pictus), South American bush dogs (Speothos venaticus), and Siberian tigers (Panthera tigris altaica) when presented with wooden logs that were impregnated either with mammalian blood or with the blood odor component trans-4,5-epoxy-(E)-2-decenal, and compared it to their behavior towards a fruity odor (iso-pentyl acetate) and a near-odorless solvent (diethyl phthalate) as control. We found that all four species displayed significantly more interactions with the odorized wooden logs such as sniffing, licking, biting, pawing, and toying, when they were impregnated with the two prey-associated odors compared to the two non-prey-associated odors. Most importantly, no significant differences were found in the number of interactions with the wooden logs impregnated with mammalian blood and the blood odor component in any of the four species. Only one of the four species, the South American bush dogs, displayed a significant decrease in the number of interactions with the odorized logs across the five sessions performed per odor stimulus. Taken together, the results demonstrate that a single blood odor component can be as efficient in eliciting behavioral responses in large carnivores as the odor of real blood, suggesting that trans-4,5-epoxy-(E)-2-decenal may be perceived by predators as a "character impact compound" of mammalian blood odor. Further, the results suggest that odorized wooden logs are a suitable manner of environmental enrichment for captive carnivores.
Lenochová, Pavlína; Vohnoutová, Pavla; Roberts, S. Craig; Oberzaucher, Elisabeth; Grammer, Karl; Havlíček, Jan
2012-01-01
Cross-culturally, fragrances are used to modulate body odor, but the psychology of fragrance choice has been largely overlooked. The prevalent view is that fragrances mask an individual's body odor and improve its pleasantness. In two experiments, we found positive effects of perfume on body odor perception. Importantly, however, this was modulated by significant interactions with individual odor donors. Fragrances thus appear to interact with body odor, creating an individually-specific odor mixture. In a third experiment, the odor mixture of an individual's body odor and their preferred perfume was perceived as more pleasant than a blend of the same body odor with a randomly-allocated perfume, even when there was no difference in pleasantness between the perfumes. This indicates that fragrance use extends beyond simple masking effects and that people choose perfumes that interact well with their own odor. Our results provide an explanation for the highly individual nature of perfume choice. PMID:22470479
Lenochová, Pavlína; Vohnoutová, Pavla; Roberts, S Craig; Oberzaucher, Elisabeth; Grammer, Karl; Havlíček, Jan
2012-01-01
Cross-culturally, fragrances are used to modulate body odor, but the psychology of fragrance choice has been largely overlooked. The prevalent view is that fragrances mask an individual's body odor and improve its pleasantness. In two experiments, we found positive effects of perfume on body odor perception. Importantly, however, this was modulated by significant interactions with individual odor donors. Fragrances thus appear to interact with body odor, creating an individually-specific odor mixture. In a third experiment, the odor mixture of an individual's body odor and their preferred perfume was perceived as more pleasant than a blend of the same body odor with a randomly-allocated perfume, even when there was no difference in pleasantness between the perfumes. This indicates that fragrance use extends beyond simple masking effects and that people choose perfumes that interact well with their own odor. Our results provide an explanation for the highly individual nature of perfume choice.
Addition of Olfactory Stimuli to Virtual Reality Simulations for Medical Training Applications
1996-11-01
surveyed and a working set of odorants were indentified or developed in sufficient quantities to support further testing. Extensive studies were performed...Olfactory Displays for HMD Systems 8 Ambulatory Olfactory HMD Display 11 Odor Display--Booth Environment 19 Odor Display in CAVE 20 Odor Survey and Odor...HMDs, it may be welcome in some scenarios such as those that might be used for training medics. Odorant Survey and Odor Development A second area of
Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors".
Chen, S; Lane, A P; Bock, R; Leinders-Zufall, T; Zufall, F
2000-07-01
Vertebrate olfactory receptor neurons (ORNs) transduce odor stimuli into electrical signals by means of an adenylyl cyclase/cAMP second messenger cascade, but it remains widely debated whether this cAMP cascade mediates transduction for all odorants or only certain odor classes. To address this problem, we have analyzed the generator currents induced by odors that failed to produce cAMP in previous biochemical assays but instead produced IP(3) ("IP(3)-odors"). We show that in single salamander ORNs, sensory responses to "cAMP-odors" and IP(3)-odors are not mutually exclusive but coexist in the same cells. The currents induced by IP(3)-odors exhibit identical biophysical properties as those induced by cAMP odors or direct activation of the cAMP cascade. By disrupting adenylyl cyclase to block cAMP formation using two potent antagonists of adenylyl cyclase, SQ22536 and MDL12330A, we show that this molecular step is necessary for the transduction of both odor classes. To assess whether these results are also applicable to mammals, we examine the electrophysiological responses to IP(3)-odors in intact mouse main olfactory epithelium (MOE) by recording field potentials. The results show that inhibition of adenylyl cyclase prevents EOG responses to both odor classes in mouse MOE, even when "hot spots" with heightened sensitivity to IP(3)-odors are examined.
Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang
2015-01-01
Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. PMID:25904854
USDA-ARS?s Scientific Manuscript database
Simultaneous chemical and sensory analyses using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for air samples collected at barn exhaust fans were used for quantification and ranking of odor impact of target odorous gases. Fifteen target odorous VOCs (odorants) were selected. Air sampl...
Salinas, J A; Introini-Collison, I B; Dalmaz, C; McGaugh, J L
1997-07-01
These experiments examined the effects of posttraining intraamygdala administration of the muscarinic agonist, oxotremorine, and the beta-noradrenergic antagonist, propranolol, on memory for reduction in reward magnitude. Male Sprague-Dawley rats (175-200 g) implanted with bilateral intraamygdala cannulae were food deprived (maintained at 80% of body weight) and trained to run a straight alley (six trials/day) for either ten 45-mg food pellets (high reward) or one 45-mg food pellet (low reward) for 10 days. In Experiment One, the animals in the high-reward group were than shifted to a one-pellet reward and immediately given intraamygdala infusions (0.5 microliter/side) of either oxotremorine (10 ng) or phosphate buffer. Shifted training continued for 4 more days and no further injections were given. Shifted animals given the buffer solution displayed an increase in runway latencies but returned to preshift latencies by the fifth day of shifted training. In contrast, animals given oxotremorine exhibited increased latencies through the fifth day. In Experiment Two, rats were trained as in Experiment. One but immediately following the shift received intraamygdala infusions of oxotremorine (10 ng), propranolol (0.3 microgram), both, or phosphate buffer. Shifted vehicle-injected rats returned to preshift performance by the fifth day of shifted training. Shifted propranolol rats returned to preshift latencies by the third day of shifted training. In contrast, the shifted oxotremorine and the shifted oxotremorine/propranolol rats displayed longer latencies than unshifted controls through 5 days of shifted training. The findings indicate that the muscarinic cholinergic and beta-noradrenergic systems within the amygdala interact in regulating memory and support the view that noradrenergic influences are mediated through cholinergic activation.
Mustard, Julie A; Alvarez, Valerie; Barocio, Sofy; Mathews, Jamie; Stoker, Alexander; Malik, Kashif
Honey bees will learn to respond to an odor when their antennae are stimulated with sucrose, even if they are not fed during the conditioning phase. However, if they are not fed, the memory of this association is significantly reduced 24 h after conditioning. These results suggest that stimulation of proboscis with sucrose and/or the nutritional quality of the reward plays an important role in establishing a long lasting memory. Three sugars, xylose, sorbitol and mannitol, are used to investigate the relationship among learning, sensory perception and nutritional value. The proboscis extension reflex is used to show that honey bees cannot taste these sugars, whereas mortality data suggest that bees can metabolize all three sugars. Feeding with sorbitol or xylose during olfactory associative conditioning restores robust 24 h memories. However, when given a free choice between consuming sucrose alone or sucrose supplemented with these nutritional sugars, bees did not show a preference for food containing the higher nutritional content. Furthermore, bees did not ingest solutions containing only the tasteless sugar even when it was the only food source. Together, these results suggest that nutritional content and not just sensory information is important for establishing long term memories, but that bees may not be able to assess nutritional content when it is disassociated from taste. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Shicheng; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433; Cai Lingshuang
2009-05-23
Characterization and quantification of livestock odorants is one of the most challenging analytical tasks because odor-causing gases are very reactive, polar and often present at very low concentrations in a complex matrix of less important or irrelevant gases. The objective of this research was to develop a novel analytical method for characterization of the livestock odorants including their odor character, odor intensity, and hedonic tone and to apply this method for quantitative analysis of the key odorants responsible for livestock odor. Sorbent tubes packed with Tenax TA were used for field sampling. The automated one-step thermal desorption module coupled withmore » multidimensional gas chromatography-mass spectrometry/olfactometry system was used for simultaneous chemical and odor analysis. Fifteen odorous VOCs and semi-VOCs identified from different livestock species operations were quantified. Method detection limits ranges from 40 pg for skatole to 3590 pg for acetic acid. In addition, odor character, odor intensity and hedonic tone associated with each of the target odorants are also analyzed simultaneously. We found that the mass of each VOCs in the sample correlates well with the log stimulus intensity. All of the correlation coefficients (R{sup 2}) are greater than 0.74, and the top 10 correlation coefficients were greater than 0.90.« less
Capelli, Laura; Sironi, Selena; Rosso, Renato Del
2013-01-01
Sampling is one of the main issues pertaining to odor characterization and measurement. The aim of sampling is to obtain representative information on the typical characteristics of an odor source by means of the collection of a suitable volume fraction of the effluent. The most important information about an emission source for odor impact assessment is the so-called Odor Emission Rate (OER), which represents the quantity of odor emitted per unit of time, and is expressed in odor units per second (ou·s−1). This paper reviews the different odor sampling strategies adopted depending on source type. The review includes an overview of odor sampling regulations and a detailed discussion of the equipment to be used as well as the mathematical considerations to be applied to obtain the OER in relation to the sampled source typology. PMID:23322098
[Perception of odor quality by Free Image-Association Test].
Ueno, Y
1992-10-01
A method was devised for evaluating odor quality. Subjects were requested to freely describe the images elicited by smelling odors. This test was named the "Free Image-Association Test (FIT)". The test was applied for 20 flavors of various foods, five odors from the standards of T&T olfactometer (Japanese standard olfactory test), butter of yak milk, and incense from Lamaism temples. The words for expressing imagery were analyzed by multidimensional scaling and cluster analysis. Seven clusters of odors were obtained. The feature of these clusters were quite similar to that of primary odors which have been suggested by previous studies. However, the clustering of odors can not be explained on the basis of the primary-odor theory, but the information processing theory originally proposed by Miller (1956). These results support the usefulness of the Free Image-Association Test for investigating odor perception based on the images associated with odors.
Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.
Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen
2017-11-07
Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.
Capelli, Laura; Sironi, Selena; Del Rosso, Renato
2013-01-15
Sampling is one of the main issues pertaining to odor characterization and measurement. The aim of sampling is to obtain representative information on the typical characteristics of an odor source by means of the collection of a suitable volume fraction of the effluent. The most important information about an emission source for odor impact assessment is the so-called Odor Emission Rate (OER), which represents the quantity of odor emitted per unit of time, and is expressed in odor units per second (ou∙s-1). This paper reviews the different odor sampling strategies adopted depending on source type. The review includes an overview of odor sampling regulations and a detailed discussion of the equipment to be used as well as the mathematical considerations to be applied to obtain the OER in relation to the sampled source typology.
Caffrey, Martha K; Febo, Marcelo
2014-01-01
Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and -Cue). The BOLD response to +Cue and -Cue was measured in dams on postpartum days 2-4. Odor cues were delivered to dams in the absence and then the presence of pups. Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus -Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Caffrey, Martha K.; Febo, Marcelo
2013-01-01
BACKGROUND Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. METHODS Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and −Cue). The BOLD response to +Cue and −Cue was measured in dams on postpartum days 2–4. Odor cues were delivered to dams in the absence and then the presence of pups. RESULTS Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus −Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. CONCLUSIONS Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. PMID:24183499
NASA Astrophysics Data System (ADS)
Yang, Chen; Liu, LeiBo; Yin, ShouYi; Wei, ShaoJun
2014-12-01
The computational capability of a coarse-grained reconfigurable array (CGRA) can be significantly restrained due to data and context memory bandwidth bottlenecks. Traditionally, two methods have been used to resolve this problem. One method loads the context into the CGRA at run time. This method occupies very small on-chip memory but induces very large latency, which leads to low computational efficiency. The other method adopts a multi-context structure. This method loads the context into the on-chip context memory at the boot phase. Broadcasting the pointer of a set of contexts changes the hardware configuration on a cycle-by-cycle basis. The size of the context memory induces a large area overhead in multi-context structures, which results in major restrictions on application complexity. This paper proposes a Predictable Context Cache (PCC) architecture to address the above context issues by buffering the context inside a CGRA. In this architecture, context is dynamically transferred into the CGRA. Utilizing a PCC significantly reduces the on-chip context memory and the complexity of the applications running on the CGRA is no longer restricted by the size of the on-chip context memory. Data preloading is the most frequently used approach to hide input data latency and speed up the data transmission process for the data bandwidth issue. Rather than fundamentally reducing the amount of input data, the transferred data and computations are processed in parallel. However, the data preloading method cannot work efficiently because data transmission becomes the critical path as the reconfigurable array scale increases. This paper also presents a Hierarchical Data Memory (HDM) architecture as a solution to the efficiency problem. In this architecture, high internal bandwidth is provided to buffer both reused input data and intermediate data. The HDM architecture relieves the external memory from the data transfer burden so that the performance is significantly improved. As a result of using PCC and HDM, experiments running mainstream video decoding programs achieved performance improvements of 13.57%-19.48% when there was a reasonable memory size. Therefore, 1080p@35.7fps for H.264 high profile video decoding can be achieved on PCC and HDM architecture when utilizing a 200 MHz working frequency. Further, the size of the on-chip context memory no longer restricted complex applications, which were efficiently executed on the PCC and HDM architecture.
OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.
Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M
2007-01-01
Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.
Choi, Il; Lee, Hyunjoo; Shin, Joungdu; Kim, Hyunook
2012-01-01
Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01). PMID:23223148
An odor interaction model of binary odorant mixtures by a partial differential equation method.
Yan, Luchun; Liu, Jiemin; Wang, Guihua; Wu, Chuandong
2014-07-09
A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE) method. Based on the measurement method (tangent-intercept method) of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture's odor intensity to the individual odorant's relative odor activity value (OAV). Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors) also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.
Recruits of the stingless bee Scaptotrigona pectoralis learn food odors from the nest atmosphere.
Reichle, Christian; Jarau, Stefan; Aguilar, Ingrid; Ayasse, Manfred
2010-05-01
The ability to learn food odors inside the nest and to associate them with food sources in the field is of essential importance for the recruitment of nestmates in social bees. We investigated odor learning by workers within the hive and the influence of these odors on their food choice in the field in the stingless bee Scaptotrigona pectoralis. During the experiments, recruited bees had to choose between two feeders, one with an odor that was present inside the nest during the recruitment process, and one with an unknown odor. In all experiments with different odor combinations (linalool/phenylacetaldehyde, geraniol/eugenol) a significant majority of bees visited the feeder with the odor they had experienced in their nest (chi (2)-tests; p < 0.05). By contrast, the bees showed no preference for one of two feeders when they were either baited with the same odor (linalool) or contained no odor. Our results clearly show that naïve workers of S. pectoralis can learn the odor of a food source during the recruitment process from the nest atmosphere and that their subsequent food search in the field is influenced by the learned odor.
Odor compounds in waste gas emissions from agricultural operations and food industries.
Rappert, S; Müller, R
2005-01-01
In the last decades, large-scale agricultural operations and food industries have increased. These operations generate numerous types of odors. The reduction of land areas available for isolation of agricultural and food processing industrial operations from the public area and the increase in sensitivity and demand of the general public for a clean and pleasant environment have forced all of these industries to control odor emissions and toxic air pollutants. To develop environmentally sound, sustainable agricultural and food industrial operations, it is necessary to integrate research that focuses on modern analytical techniques and latest sensory technology of measurement and evaluation of odor and pollution, together with a fundamental knowledge of factors that are the basic units contributing to the production of odor and pollutants. Without a clear understanding of what odor is, how to measure it, and where it originates, it will be difficult to control the odor. The present paper reviews the available information regarding odor emissions from agricultural operations and food industries by giving an overview about odor problems, odor detection and quantification, and identifying the sources and the mechanisms that contribute to the odor emissions. Finally, ways of reducing or controlling the odor problem are discussed.
Recruits of the stingless bee Scaptotrigona pectoralis learn food odors from the nest atmosphere
NASA Astrophysics Data System (ADS)
Reichle, Christian; Jarau, Stefan; Aguilar, Ingrid; Ayasse, Manfred
2010-05-01
The ability to learn food odors inside the nest and to associate them with food sources in the field is of essential importance for the recruitment of nestmates in social bees. We investigated odor learning by workers within the hive and the influence of these odors on their food choice in the field in the stingless bee Scaptotrigona pectoralis. During the experiments, recruited bees had to choose between two feeders, one with an odor that was present inside the nest during the recruitment process, and one with an unknown odor. In all experiments with different odor combinations (linalool/phenylacetaldehyde, geraniol/eugenol) a significant majority of bees visited the feeder with the odor they had experienced in their nest ( χ 2-tests; p < 0.05). By contrast, the bees showed no preference for one of two feeders when they were either baited with the same odor (linalool) or contained no odor. Our results clearly show that naïve workers of S. pectoralis can learn the odor of a food source during the recruitment process from the nest atmosphere and that their subsequent food search in the field is influenced by the learned odor.
The effects of predator odors in mammalian prey species: a review of field and laboratory studies.
Apfelbach, Raimund; Blanchard, Caroline D; Blanchard, Robert J; Hayes, R Andrew; McGregor, Iain S
2005-01-01
Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding.
NASA Astrophysics Data System (ADS)
Nedic, Stanko; Tea Chun, Young; Hong, Woong-Ki; Chu, Daping; Welland, Mark
2014-01-01
A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ˜16.5 V, a high drain current on/off ratio of ˜105, a gate leakage current below ˜300 pA, and excellent retention characteristics for over 104 s.
Multiprocessor shared-memory information exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoline, L.L.; Bowers, M.D.; Crew, A.W.
1989-02-01
In distributed microprocessor-based instrumentation and control systems, the inter-and intra-subsystem communication requirements ultimately form the basis for the overall system architecture. This paper describes a software protocol which addresses the intra-subsystem communications problem. Specifically the protocol allows for multiple processors to exchange information via a shared-memory interface. The authors primary goal is to provide a reliable means for information to be exchanged between central application processor boards (masters) and dedicated function processor boards (slaves) in a single computer chassis. The resultant Multiprocessor Shared-Memory Information Exchange (MSMIE) protocol, a standard master-slave shared-memory interface suitable for use in nuclear safety systems, ismore » designed to pass unidirectional buffers of information between the processors while providing a minimum, deterministic cycle time for this data exchange.« less
An area model for on-chip memories and its application
NASA Technical Reports Server (NTRS)
Mulder, Johannes M.; Quach, Nhon T.; Flynn, Michael J.
1991-01-01
An area model suitable for comparing data buffers of different organizations and arbitrary sizes is described. The area model considers the supplied bandwidth of a memory cell and includes such buffer overhead as control logic, driver logic, and tag storage. The model gave less than 10 percent error when verified against real caches and register files. It is shown that, comparing caches and register files in terms of area for the same storage capacity, caches generally occupy more area per bit than register files for small caches because the overhead dominates the cache area at these sizes. For larger caches, the smaller storage cells in the cache provide a smaller total cache area per bit than the register set. Studying cache performance (traffic ratio) as a function of area, it is shown that, for small caches, direct-mapped caches perform significantly better than four-way set-associative caches and, for caches of medium areas, both direct-mapped and set-associative caches perform better than fully associative caches.
Perceptual chunking and its effect on memory in speech processing: ERP and behavioral evidence
Gilbert, Annie C.; Boucher, Victor J.; Jemel, Boutheina
2014-01-01
We examined how perceptual chunks of varying size in utterances can influence immediate memory of heard items (monosyllabic words). Using behavioral measures and event-related potentials (N400) we evaluated the quality of the memory trace for targets taken from perceived temporal groups (TGs) of three and four items. Variations in the amplitude of the N400 showed a better memory trace for items presented in TGs of three compared to those in groups of four. Analyses of behavioral responses along with P300 components also revealed effects of chunk position in the utterance. This is the first study to measure the online effects of perceptual chunks on the memory trace of spoken items. Taken together, the N400 and P300 responses demonstrate that the perceptual chunking of speech facilitates information buffering and a processing on a chunk-by-chunk basis. PMID:24678304
Perceptual chunking and its effect on memory in speech processing: ERP and behavioral evidence.
Gilbert, Annie C; Boucher, Victor J; Jemel, Boutheina
2014-01-01
We examined how perceptual chunks of varying size in utterances can influence immediate memory of heard items (monosyllabic words). Using behavioral measures and event-related potentials (N400) we evaluated the quality of the memory trace for targets taken from perceived temporal groups (TGs) of three and four items. Variations in the amplitude of the N400 showed a better memory trace for items presented in TGs of three compared to those in groups of four. Analyses of behavioral responses along with P300 components also revealed effects of chunk position in the utterance. This is the first study to measure the online effects of perceptual chunks on the memory trace of spoken items. Taken together, the N400 and P300 responses demonstrate that the perceptual chunking of speech facilitates information buffering and a processing on a chunk-by-chunk basis.
Drago, Ilaria; Davis, Ronald L
2016-09-06
The uptake of cytoplasmic calcium into mitochondria is critical for a variety of physiological processes, including calcium buffering, metabolism, and cell survival. Here, we demonstrate that inhibiting the mitochondrial calcium uniporter in the Drosophila mushroom body neurons (MBn)-a brain region critical for olfactory memory formation-causes memory impairment without altering the capacity to learn. Inhibiting uniporter activity only during pupation impaired adult memory, whereas the same inhibition during adulthood was without effect. The behavioral impairment was associated with structural defects in MBn, including a decrease in synaptic vesicles and an increased length in the axons of the αβ MBn. Our results reveal an in vivo developmental role for the mitochondrial uniporter complex in establishing the necessary structural and functional neuronal substrates for normal memory formation in the adult organism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Zucco, Gesualdo M; Bollini, Fabiola
2011-12-30
Olfactory deficits, in detection, recognition and identification of odorants have been documented in ageing and in several neurodegenerative and psychiatric conditions. However, olfactory abilities in Major Depressive Disorder (MDD) have been less investigated, and available studies have provided inconsistent results. The present study assessed odour recognition memory and odour identification in two groups of 12 mild MDD patients (M age 41.3, range 25-57) and 12 severe MDD patients (M age, 41.9, range 23-58) diagnosed according to DSM-IV criteria and matched for age and gender to 12 healthy normal controls. The suitability of olfactory identification and recognition memory tasks as predictors of the progression of MDD was also addressed. Data analyses revealed that Severe MDD patients performed significantly worse than Mild MDD patients and Normal controls on both tasks, with these last groups not differing significantly from one another. The present outcomes are consistent with previous studies in other domains which have shown reliable, although not conclusive, impairments in cognitive function, including memory, in patients with MDD, and highlight the role of olfactory identification and recognition tasks as an important additional tool to discriminate between patients characterised by different levels of severity of MDD. Copyright © 2011 Elsevier Ltd. All rights reserved.
2017-01-01
Abstract Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB. PMID:28955723
SPARC: Demonstrate burst-buffer-based checkpoint/restart on ATS-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldfield, Ron A.; Ulmer, Craig D.; Widener, Patrick
Recent high-performance computing (HPC) platforms such as the Trinity Advanced Technology System (ATS-1) feature burst buffer resources that can have a dramatic impact on an application’s I/O performance. While these non-volatile memory (NVM) resources provide a new tier in the storage hierarchy, developers must find the right way to incorporate the technology into their applications in order to reap the benefits. Similar to other laboratories, Sandia is actively investigating ways in which these resources can be incorporated into our existing libraries and workflows without burdening our application developers with excessive, platform-specific details. This FY18Q1 milestone summaries our progress in adaptingmore » the Sandia Parallel Aerodynamics and Reentry Code (SPARC) in Sandia’s ATDM program to leverage Trinity’s burst buffers for checkpoint/restart operations. We investigated four different approaches with varying tradeoffs in this work: (1) simply updating job script to use stage-in/stage out burst buffer directives, (2) modifying SPARC to use LANL’s hierarchical I/O (HIO) library to store/retrieve checkpoints, (3) updating Sandia’s IOSS library to incorporate the burst buffer in all meshing I/O operations, and (4) modifying SPARC to use our Kelpie distributed memory library to store/retrieve checkpoints. Team members were successful in generating initial implementation for all four approaches, but were unable to obtain performance numbers in time for this report (reasons: initial problem sizes were not large enough to stress I/O, and SPARC refactor will require changes to our code). When we presented our work to the SPARC team, they expressed the most interest in the second and third approaches. The HIO work was favored because it is lightweight, unobtrusive, and should be portable to ATS-2. The IOSS work is seen as a long-term solution, and is favored because all I/O work (including checkpoints) can be deferred to a single library.« less
Natural gas odor level testing: Instruments and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, E.H.
1995-12-01
An odor in natural and LP gases is necessary. The statistics are overwhelming; when gas customers can smell a leak before the percentage of gas in air reaches a combustible mixture, the chances of an accident are greatly reduced. How do gas companies determine if there is sufficient odor reaching every gas customers home? Injection equipment is important. The rate and quality of odorant is important. Nevertheless, precision odorization alone does not guarantee that customers` homes always have gas with a readily detectable odor. To secure that goal, odor monitoring instruments are necessary.
Lübke, Katrin T; Hoenen, Matthias; Pause, Bettina M
2012-03-17
On an individual level, human body odors carry information about whether a person is an eligible mate. The current studies investigate if body odors also transmit information about individuals being potential partners in more general terms, namely in regards to gender and sexual orientation. In study 1, 14 gay and 14 heterosexual men were presented with body odors obtained from potential partners (gay male and heterosexual female body odors, respectively) and heterosexual male body odor as a control. In study 2, 14 lesbian and 14 heterosexual women were presented with lesbian female and heterosexual male body odors representing body odors of potential partners, and heterosexual female body odor as a control. Central nervous processing was analyzed using chemosensory event-related potentials and current source density analysis (64-channel EEG recording). Gay and heterosexual men responded with shorter P2 latencies to the body odors of their preferred sexual partners, and lesbian women responded with shorter P2 latencies to body odors of their preferred gender. In response to heterosexual male body odors, lesbian women displayed the most pronounced P3 amplitude, and distinct neuronal activation in medial frontal and parietal neocortical areas. A similar pattern of neuronal activation was observed in gay men when presented with heterosexual male body odor. Both the early processing advantage (P2) for desirable partners' body odors as well as the enhanced evaluative processing (P3, CSD) of undesirable partners' body odors suggest that human body odors indeed carry information about individuals being potential partners in terms of gender and sexual orientation. Copyright © 2011 Elsevier B.V. All rights reserved.
Descriptive epidemiology of indoor odor complaints at a large teaching institution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boswell, R.T.; DiBerardinis, L.; Ducatman, A.
1994-04-01
Investigation of indoor odor complaints consumes a substantial portion of the time and resources of many industrial hygiene offices, yet very little information has been published on the subject. We examined 3 years of data on indoor odor complaints at the Massachusetts Institute of Technology in Cambridge, Massachusetts in order to identify factors that may trigger complaints of odors. Plumbing and maintenance accounted for the majority of activities responsible for the identified sources (35% of calls), while research and teaching activities accounted for only 11 percent of calls. A larger number of calls were received during the winter months whenmore » windows are closed and school is in session. There was generally good correlation between the description of an odor by a complainant and the actual source. Offices/secretarial areas/office support rooms accounted for almost half of the calls, while laboratory facilities accounted for 19 percent of the calls. Despite the fact that the chemistry department was responsible for the most number of calls, the odor sources from these complaints were related primarily to plumbing (dried sink and floor drains) and not the chemicals used for research and teaching. Four types of abatement measures were used when odor sources could be identified: natural dissipation of the odor (23%), advice for prevention of future odors (11%), controlling an odor source (16%), and correction of the odor source (33%). We conclude that the majority of sources of indoor odors which trigger complaints are related to the maintenance of the physical plant, and that complaints are likely to be generated by unfamiliarity with certain odors. Recommendations are given to help reduce indoor odors and the time-consuming investigations into complaints from these odors. 10 refs., 4 figs.« less
Effect of fragrance use on discrimination of individual body odor.
Allen, Caroline; Havlíček, Jan; Roberts, S Craig
2015-01-01
Previous research suggests that artificial fragrances may be chosen to complement or enhance an individual's body odor, rather than simply masking it, and that this may create an odor blend with an emergent quality that is perceptually distinguishable from body odor or fragrance alone. From this, it can be predicted that a new emergent odor might be more easily identified than an individual's body odor in isolation. We used a triangle test paradigm to assess whether fragrance affects people's ability to distinguish between individual odors. Six male and six female donors provided axillary odor samples in three conditions (without fragrance, wearing their own fragrance, and wearing an assigned fragrance). In total, 296 female and 131 male participants selected the odd one from three odor samples (two from one donor, one from another; both of the same sex). We found that participants could discriminate between the odors at above chance levels in all three odor conditions. Olfactory identification ability (measured using Sniffin' Sticks) positively predicted discrimination performance, and sex differences in performance were also observed, with female raters being correct more often than men. Success rates were also higher for odors of male donors. Additionally, while performance was above chance in all conditions, individual odor discrimination varied across the three conditions. Discrimination rate was significantly higher in the "no fragrance" condition than either of the fragranced conditions. Importantly, however, discrimination rate was also significantly higher in the "own fragrance" condition than the "assigned fragrance" condition, suggesting that naturally occurring variance in body odor is more preserved when blended with fragrances that people choose for themselves, compared with other fragrances. Our data are consistent with the idea that fragrance choices are influenced by fragrance interactions with an individual's own body odor.
Effect of fragrance use on discrimination of individual body odor
Allen, Caroline; Havlíček, Jan; Roberts, S. Craig
2015-01-01
Previous research suggests that artificial fragrances may be chosen to complement or enhance an individual’s body odor, rather than simply masking it, and that this may create an odor blend with an emergent quality that is perceptually distinguishable from body odor or fragrance alone. From this, it can be predicted that a new emergent odor might be more easily identified than an individual’s body odor in isolation. We used a triangle test paradigm to assess whether fragrance affects people’s ability to distinguish between individual odors. Six male and six female donors provided axillary odor samples in three conditions (without fragrance, wearing their own fragrance, and wearing an assigned fragrance). In total, 296 female and 131 male participants selected the odd one from three odor samples (two from one donor, one from another; both of the same sex). We found that participants could discriminate between the odors at above chance levels in all three odor conditions. Olfactory identification ability (measured using Sniffin’ Sticks) positively predicted discrimination performance, and sex differences in performance were also observed, with female raters being correct more often than men. Success rates were also higher for odors of male donors. Additionally, while performance was above chance in all conditions, individual odor discrimination varied across the three conditions. Discrimination rate was significantly higher in the “no fragrance” condition than either of the fragranced conditions. Importantly, however, discrimination rate was also significantly higher in the “own fragrance” condition than the “assigned fragrance” condition, suggesting that naturally occurring variance in body odor is more preserved when blended with fragrances that people choose for themselves, compared with other fragrances. Our data are consistent with the idea that fragrance choices are influenced by fragrance interactions with an individual’s own body odor. PMID:26300812
Restrained eaters show altered brain response to food odor.
Kemmotsu, Nobuko; Murphy, Claire
2006-02-28
Do restrained and unrestrained eaters differ in their brain response to food odor? We addressed this question by examining restrained eaters' brain response to food (chocolate) and non-food (geraniol, floral) odors, both when odor was attended to and when ignored. Using olfactory event-related potentials (OERPs), we found that restrained eaters and controls responded similarly to the non-food odor; however, unlike controls, restrained eaters showed no increase in brain response to the food odor when they focused attention on it. Rather, restrained eaters showed attenuated OERP amplitudes to the food odor in both attended and ignored conditions, suggesting that the brain's response to attended food odor was abnormally suppressed.
Cognitive Facilitation Following Intentional Odor Exposure
Johnson, Andrew J.
2011-01-01
This paper reviews evidence that, in addition to incidental olfactory pollutants, intentional odor delivery can impact cognitive operations both positively and negatively. Evidence for cognitive facilitation/interference is reviewed alongside four potential explanations for odor-induced effects. It is concluded that the pharmacological properties of odors can induce changes in cognition. However, these effects can be accentuated/attenuated by the shift in mood following odor exposure, expectancy of cognitive effects, and cues to behavior via the contextual association with the odor. It is proposed that greater consideration is required in the intentional utilization of odors within both industrial and private locations, since differential effects are observed for odors with positive hedonic qualities. PMID:22163909
Radiation-Hardened Solid-State Drive
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.
2010-01-01
A method is provided for a radiationhardened (rad-hard) solid-state drive for space mission memory applications by combining rad-hard and commercial off-the-shelf (COTS) non-volatile memories (NVMs) into a hybrid architecture. The architecture is controlled by a rad-hard ASIC (application specific integrated circuit) or a FPGA (field programmable gate array). Specific error handling and data management protocols are developed for use in a rad-hard environment. The rad-hard memories are smaller in overall memory density, but are used to control and manage radiation-induced errors in the main, and much larger density, non-rad-hard COTS memory devices. Small amounts of rad-hard memory are used as error buffers and temporary caches for radiation-induced errors in the large COTS memories. The rad-hard ASIC/FPGA implements a variety of error-handling protocols to manage these radiation-induced errors. The large COTS memory is triplicated for protection, and CRC-based counters are calculated for sub-areas in each COTS NVM array. These counters are stored in the rad-hard non-volatile memory. Through monitoring, rewriting, regeneration, triplication, and long-term storage, radiation-induced errors in the large NV memory are managed. The rad-hard ASIC/FPGA also interfaces with the external computer buses.
Robust and Rapid Air-Borne Odor Tracking without Casting1,2,3
Bhattacharyya, Urvashi
2015-01-01
Abstract Casting behavior (zigzagging across an odor stream) is common in air/liquid-borne odor tracking in open fields; however, terrestrial odor localization often involves path selection in a familiar environment. To study this, we trained rats to run toward an odor source in a multi-choice olfactory arena with near-laminar airflow. We find that rather than casting, rats run directly toward an odor port, and if this is incorrect, they serially sample other sources. This behavior is consistent and accurate in the presence of perturbations, such as novel odors, background odor, unilateral nostril stitching, and turbulence. We developed a model that predicts that this run-and-scan tracking of air-borne odors is faster than casting, provided there are a small number of targets at known locations. Thus, the combination of best-guess target selection with fallback serial sampling provides a rapid and robust strategy for finding odor sources in familiar surroundings. PMID:26665165
Olfactory receptor antagonism between odorants
Oka, Yuki; Omura, Masayo; Kataoka, Hiroshi; Touhara, Kazushige
2004-01-01
The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist–OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality. PMID:14685265
Hot and Cold Smells: Odor-Temperature Associations across Cultures
Wnuk, Ewelina; de Valk, Josje M.; Huisman, John L. A.; Majid, Asifa
2017-01-01
It is often assumed odors are associated with hot and cold temperature, since odor processing may trigger thermal sensations, such as coolness in the case of mint. It is unknown, however, whether people make consistent temperature associations for a variety of everyday odors, and, if so, what determines them. Previous work investigating the bases of cross-modal associations suggests a number of possibilities, including universal forces (e.g., perception), as well as culture-specific forces (e.g., language and cultural beliefs). In this study, we examined odor-temperature associations in three cultures—Maniq (N = 11), Thai (N = 24), and Dutch (N = 24)—who differ with respect to their cultural preoccupation with odors, their odor lexicons, and their beliefs about the relationship of odors (and odor objects) to temperature. Participants matched 15 odors to temperature by touching cups filled with hot or cold water, and described the odors in their native language. The results showed no consistent associations among the Maniq, and only a handful of consistent associations between odor and temperature among the Thai and Dutch. The consistent associations differed across the two groups, arguing against their universality. Further analysis revealed cross-modal associations could not be explained by language, but could be the result of cultural beliefs. PMID:28848482
Ventilation/odor study, field study. Final report, Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffee, R.A.; Jann, P.
1981-04-01
The results are presented of field investigations in schools, hospitals, and an office building on the relation between ventilation rate and odor within the buildings. The primary objective of the study was to determine: the reduction in ventilation rates that could be achieved in public buildings without causing adverse effects on odor; the sources of odor in public buildings; and the identity of the odorants. The variables of particular interest include: type of odor, occupant density, odorant identity and concentration, differences in impressions between occupants adapted to prevailing conditions and visitors, and the influence of temperature and humidity on bothmore » the generation and perception of common contaminants. Sensory odor measurements, chemical measurements, fresh air ventilation measurements, and acceptability evaluations via questionnaires were made. Sensory odor levels were found to be quite low in most buildings tested. A three-to-five-fold reduction in the fresh air ventilation in schools, hospitals, and office buildings can be achieved without significantly affecting perceived odor intensities or detectability. Tobacco smoking was found to be the most significant, pervasive contributor to interior odor level. Total hydrocarbon content of indoor air varies directly with ventilation rates; odor, however, does not. The complete set of reduced data are contained in Volume II. (LEW)« less
Elaborated Odor Test for Extended Exposure
NASA Technical Reports Server (NTRS)
Buchanan, Vanessa D.; Henry, Emily J.; Mast, Dion J.; Harper, Susana A.; Beeson, Harold D.; Tapia, Alma S.
2016-01-01
Concerns were raised when incidental exposure to a proprietary bonding material revealed the material had an irritating odor. The NASA-STD-6001B document describes a supplemental test method option for programs to evaluate materials with odor concerns (Test 6, Odor Assessment). In addition to the supplemental standard odor assessment with less than 10 seconds of exposure, the NASA White Sands Test Facility (WSTF) Materials Flight Acceptance Testing section was requested to perform an odor test with an extended duration to evaluate effects of an extended exposure and to more closely simulate realistic exposure scenarios. With approval from the NASA Johnson Space Center Industrial Hygienist, WSTF developed a 15-minute odor test method. WSTF performed this extended-duration odor test to evaluate the odor and physical effects of the bonding material configured between two aluminum plates, after the safety of the gas was verified via toxicity analysis per NASA-STD-6001B Test 7, Determination of Offgassed Products. During extended-duration testing, odor panel members were arranged near the test material in a small room with the air handlers and doors closed to minimize dilution. The odor panel members wafted gas toward themselves and recorded their individual assessments of odor and physical effects at various intervals during the 15-minute exposure and posttest. A posttest interview was conducted to obtain further information. Testing was effective in providing data for comparison and selection of an optimal offgassing and odor containment configuration. The developed test method for extended exposure is proposed as a useful tool for further evaluating materials with identified odors of concern if continued use of the material is anticipated.
Body Odor Based Personality Judgments: The Effect of Fragranced Cosmetics
Sorokowska, Agnieszka; Sorokowski, Piotr; Havlíček, Jan
2016-01-01
People can accurately assess various personality traits of others based on body odor (BO) alone. Previous studies have shown that correlations between odor ratings and self-assessed personality dimensions are evident for assessments of neuroticism and dominance. Here, we tested differences between assessments based on natural body odor alone, without the use of cosmetics and assessments based on the body odor of people who were allowed to use cosmetics following their daily routine. Sixty-seven observers assessed samples of odors from 113 odor donors (each odor donor provided two samples – one with and one without cosmetic use); the donors provided their personality ratings, and the raters judged personality characteristics of the donors based on the provided odor samples. Correlations between observers’ ratings and self-rated neuroticism were stronger when raters assessed body odor in the natural body odor condition (natural BO condition; rs = 0.20) than in the cosmetics use condition (BO+cosmetics condition; rs = 0.15). Ratings of dominance significantly predicted self-assessed dominance in both conditions (rs = 0.34 for natural BO and rs = 0.21 for BO+cosmetics), whereas ratings of extraversion did not predict self-assessed extraversion in either condition. In addition, ratings of body odor attractiveness and pleasantness were significantly lower in natural BO condition than in BO+cosmetics condition, although the intensity of donors’ body odors was similar under both conditions. Our findings suggest that although olfaction seems to contribute to accurate first impression judgments of certain personality traits, cosmetic use can affect assessments of others based on body odor. PMID:27148138
Olfactory cortical adaptation facilitates detection of odors against background.
Kadohisa, Mikiko; Wilson, Donald A
2006-03-01
Detection and discrimination of odors generally, if not always, occurs against an odorous background. On any given inhalation, olfactory receptor neurons will be activated by features of both the target odorant and features of background stimuli. To identify a target odorant against a background therefore, the olfactory system must be capable of grouping a subset of features into an odor object distinct from the background. Our previous work has suggested that rapid homosynaptic depression of afferents to the anterior piriform cortex (aPCX) contributes to both cortical odor adaptation to prolonged stimulation and habituation of simple odor-evoked behaviors. We hypothesize here that this process may also contribute to figure-ground separation of a target odorant from background stimulation. Single-unit recordings were made from both mitral/tufted cells and aPCX neurons in urethan-anesthetized rats and mice. Single-unit responses to odorant stimuli and their binary mixtures were determined. One of the odorants was randomly selected as the background and presented for 50 s. Forty seconds after the onset of the background stimulus, the second target odorant was presented, producing a binary mixture. The results suggest that mitral/tufted cells continue to respond to the background odorant and, when the target odorant is presented, had response magnitudes similar to that evoked by the binary mixture. In contrast, aPCX neurons filter out the background stimulus while maintaining responses to the target stimulus. Thus the aPCX acts as a filter driven most strongly by changing stimuli, providing a potential mechanism for olfactory figure-ground separation and selective reading of olfactory bulb output.
Martinez, Luis A.; Petrulis, Aras
2013-01-01
Precopulatory behaviors that are preferentially directed towards opposite-sex conspecifics are critical for successful reproduction, particularly in species wherein the sexes live in isolation, such as Syrian hamsters (Mesocricetus auratus). In females, these behaviors include sexual odor preference and vaginal scent marking. The neural regulation of precopulatory behaviors is thought to involve a network of forebrain areas that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). Although MA and BNST are necessary for sexual odor preference and preferential vaginal marking to male odors, respectively, the role of MPOA in odor-guided female precopulatory behaviors is not well understood. To address this issue, female Syrian hamsters with bilateral, excitotoxic lesions of MPOA (MPOA-X) or sham lesions (SHAM) were tested for sexual odor investigation, scent marking, and lordosis. MPOA-X females did not investigate male odors more than female odors in an odor preference test, indicating that MPOA may be necessary for normal sexual odor preference in female hamsters. This loss of preference cannot be attributed to a sensory deficit, since MPOA-X females successfully discriminated male odors from female odors during an odor discrimination test. Surprisingly, no deficits in vaginal scent marking were observed in MPOA-X females, although these females did exhibit decreased overall levels of flank marking compared to SHAM females. Finally, all MPOA-X females exhibited lordosis appropriately. These results suggest that MPOA plays a critical role in the neural regulation of certain aspects of odor-guided precopulatory behaviors in female Syrian hamsters. PMID:23415835
Ritter, Simone M; Strick, Madelijn; Bos, Maarten W; van Baaren, Rick B; Dijksterhuis, Ap
2012-12-01
Both scientists and artists have suggested that sleep facilitates creativity, and this idea has received substantial empirical support. In the current study, we investigate whether one can actively enhance the beneficial effect of sleep on creativity by covertly reactivating the creativity task during sleep. Individuals' creative performance was compared after three different conditions: sleep-with-conditioned-odor; sleep-with-control-odor; or sleep-with-no-odor. In the evening prior to sleep, all participants were presented with a problem that required a creative solution. In the two odor conditions, a hidden scent-diffuser spread an odor while the problem was presented. In the sleep-with-conditioned-odor condition, task reactivation during sleep was induced by means of the odor that was also presented while participants were informed about the problem. In the sleep-with-control-odor condition, participants were exposed to a different odor during sleep than the one diffused during problem presentation. In the no odor condition, no odor was presented. After a night of sleep with the conditioned odor, participants were found to be: (i) more creative; and (ii) better able to select their most creative idea than participants who had been exposed to a control odor or no odor while sleeping. These findings suggest that we do not have to passively wait until we are hit by our creative muse while sleeping. Task reactivation during sleep can actively trigger creativity-related processes during sleep and thereby boost the beneficial effect of sleep on creativity. © 2012 European Sleep Research Society.
High efficiency Raman memory by suppressing radiation trapping
NASA Astrophysics Data System (ADS)
Thomas, S. E.; Munns, J. H. D.; Kaczmarek, K. T.; Qiu, C.; Brecht, B.; Feizpour, A.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.
2017-06-01
Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble needs both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over 99.5 % in caesium vapour at high optical depths of up to ˜ 2× {10}5; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.
Learning Non-Local Dependencies
ERIC Educational Resources Information Center
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
Odor and odorous chemical emissions from animal buildings: Part 2. Odor emissions
USDA-ARS?s Scientific Manuscript database
This study was an add-on project to the National Air Emissions Monitoring Study (NAEMS) and focused on comprehensive measurement of odor emissions considering variations in seasons, animal types and olfactometry laboratories. Odor emissions from four of 14 NEAMS sites with nine barns/rooms (two dair...
Odor and odorous chemical emissions from animal buildings: Part 6.Odor activity value
USDA-ARS?s Scientific Manuscript database
There is a growing concern with air and odor emissions from agricultural facilities. A supplementary research project was conducted to complement the U.S. National Air Emissions Monitoring Study (NAEMS). The overall goal of the project was to establish odor and chemical emission factors for animal...
[Odor pollution from landfill sites and its control: a review].
Hu, Bin; Ding, Ying; Wu, Wei-Xiang; Hu, Bei-Gang; Chen, Ying-Xu
2010-03-01
Landfill sites are the major sources of offensive odor in urban public facilities. With the progress of urbanization and the residents' demands for a higher living environment quality, the odor emission from landfill sites has become a severe pollution problem, and the odor control at landfill sites has been one of the research hotspots. This paper summarized the main components and their concentrations of the odor from landfill sites, and expatiated on the research progress in the in-situ control of the odor. The further research directions in in-situ control of the odor from landfill sites were prospected.
Functional neuronal processing of body odors differs from that of similar common odors.
Lundström, Johan N; Boyle, Julie A; Zatorre, Robert J; Jones-Gotman, Marilyn
2008-06-01
Visual and auditory stimuli of high social and ecological importance are processed in the brain by specialized neuronal networks. To date, this has not been demonstrated for olfactory stimuli. By means of positron emission tomography, we sought to elucidate the neuronal substrates behind body odor perception to answer the question of whether the central processing of body odors differs from perceptually similar nonbody odors. Body odors were processed by a network that was distinctly separate from common odors, indicating a separation in the processing of odors based on their source. Smelling a friend's body odor activated regions previously seen for familiar stimuli, whereas smelling a stranger activated amygdala and insular regions akin to what has previously been demonstrated for fearful stimuli. The results provide evidence that social olfactory stimuli of high ecological relevance are processed by specialized neuronal networks similar to what has previously been demonstrated for auditory and visual stimuli.
Subliminal smells can guide social preferences.
Li, Wen; Moallem, Isabel; Paller, Ken A; Gottfried, Jay A
2007-12-01
It is widely accepted that unconscious processes can modulate judgments and behavior, but do such influences affect one's daily interactions with other people? Given that olfactory information has relatively direct access to cortical and subcortical emotional circuits, we tested whether the affective content of subliminal odors alters social preferences. Participants rated the likeability of neutral faces after smelling pleasant, neutral, or unpleasant odors delivered below detection thresholds. Odor affect significantly shifted likeability ratings only for those participants lacking conscious awareness of the smells, as verified by chance-level trial-by-trial performance on an odor-detection task. Across participants, the magnitude of this priming effect decreased as sensitivity for odor detection increased. In contrast, heart rate responses tracked odor valence independently of odor awareness. These results indicate that social preferences are subject to influences from odors that escape awareness, whereas the availability of conscious odor information may disrupt such effects.
Maternal prefrontal cortex activation by newborn infant odors.
Nishitani, Shota; Kuwamoto, Saori; Takahira, Asuka; Miyamura, Tsunetake; Shinohara, Kazuyuki
2014-03-01
Mothers are attracted by infant cues of a variety of different modalities. To clarify the possible neural mechanisms underlying maternal attraction to infant odor cues, we used near-infrared spectroscopy to examine prefrontal cortex (PFC) activity during odor detection tasks in which 19 mothers and 19 nulliparous females (nonmothers) were presented with infant or adult male odors. They were instructed to make a judgment about whether they smelled an odor during each task. We estimated the PFC activity by measuring the relative oxyhemoglobin (oxyHb) concentrations. The results showed that while detecting the infant odors, bilateral PFC activities were increased in mothers but not in nonmothers. In contrast, adult male odors activated the PFC similarly in mothers and nonmothers. These findings suggest that maternal activation of the PFC in response to infant odors explains a part of the neural mechanisms for maternal attraction to infant odors.
Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources.
Gao, Xiang; Acar, Levent
2016-07-04
This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors' data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.
Human Odorant Reception in the Common Bed Bug, Cimex lectularius.
Liu, Feng; Liu, Nannan
2015-11-02
The common bed bug Cimex lectularius is a temporary ectoparasite on humans and currently resurgent in many developed countries. The ability of bed bugs to detect human odorants in the environment is critical for their host-seeking behavior. This study deciphered the chemical basis of host detection by investigating the neuronal response of olfactory sensilla to 104 human odorants using single sensillum recording and characterized the electro-physiological responses of bed bug odorant receptors to human odorants with the Xenopus expression system. The results showed that the D type of olfactory sensilla play a predominant role in detecting the human odorants tested. Different human odorants elicited different neuronal responses with different firing frequencies and temporal dynamics. Particularly, aldehydes and alcohols are the most effective stimuli in triggering strong response while none of the carboxylic acids showed a strong stimulation. Functional characterization of two bed bug odorant receptors and co-receptors in response to human odorants revealed their specific responses to the aldehyde human odorants. Taken together, the findings of this study not only provide exciting new insights into the human odorant detection of bed bugs, but also offer valuable information for developing new reagents (attractants or repellents) for the bed bug control.
Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius.
Liu, Feng; Chen, Zhou; Liu, Nannan
2017-04-06
As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs.
Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb
Gschwend, Olivier; Beroud, Jonathan; Vincis, Roberto; Rodriguez, Ivan; Carleton, Alan
2016-01-01
Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness). PMID:27824096
Peripheral and Central Olfactory Tuning in a Moth
Ong, Rose C.
2012-01-01
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain. PMID:22362866
Human Odorant Reception in the Common Bed Bug, Cimex lectularius
Liu, Feng; Liu, Nannan
2015-01-01
The common bed bug Cimex lectularius is a temporary ectoparasite on humans and currently resurgent in many developed countries. The ability of bed bugs to detect human odorants in the environment is critical for their host-seeking behavior. This study deciphered the chemical basis of host detection by investigating the neuronal response of olfactory sensilla to 104 human odorants using single sensillum recording and characterized the electro-physiological responses of bed bug odorant receptors to human odorants with the Xenopus expression system. The results showed that the D type of olfactory sensilla play a predominant role in detecting the human odorants tested. Different human odorants elicited different neuronal responses with different firing frequencies and temporal dynamics. Particularly, aldehydes and alcohols are the most effective stimuli in triggering strong response while none of the carboxylic acids showed a strong stimulation. Functional characterization of two bed bug odorant receptors and co-receptors in response to human odorants revealed their specific responses to the aldehyde human odorants. Taken together, the findings of this study not only provide exciting new insights into the human odorant detection of bed bugs, but also offer valuable information for developing new reagents (attractants or repellents) for the bed bug control. PMID:26522967
Odor Perception by Dogs: Evaluating Two Training Approaches for Odor Learning of Sniffer Dogs.
Fischer-Tenhagen, Carola; Johnen, Dorothea; Heuwieser, Wolfgang; Becker, Roland; Schallschmidt, Kristin; Nehls, Irene
2017-06-01
In this study, a standardized experimental set-up with various combinations of herbs as odor sources was designed. Two training approaches for sniffer dogs were compared; first, training with a pure reference odor, and second, training with a variety of odor mixtures with the target odor as a common denominator. The ability of the dogs to identify the target odor in a new context was tested. Six different herbs (basil, St. John's wort, dandelion, marjoram, parsley, ribwort) were chosen to produce reference materials in various mixtures with (positive) and without (negative) chamomile as the target odor source. The dogs were trained to show 1 of 2 different behaviors, 1 for the positive, and 1 for the negative sample as a yes/no task. Tests were double blind with one sample presented at a time. In both training approaches, dogs were able to detect chamomile as the target odor in any presented mixture with an average sensitivity of 72% and a specificity of 84%. Dogs trained with odor mixture containing the target odor had more correct indications in the transfer task. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Elsharif, Shaimaa; Banerjee, Ashutosh; Buettner, Andrea
2015-10-01
Linalool 1 is an odorant that is commonly perceived as having a pleasant odor, but is also known to elicit physiological effects such as inducing calmness and enhancing sleep. However, no comprehensive studies are at hand to show which structural features are responsible for these prominent effects. Therefore, a total of six oxygenated derivatives were synthesized from both 1 and linalyl acetate 2, and were tested for their odor qualities and relative odor thresholds (OTs) in air. Linalool was found to be the most potent odorant among the investigated compounds, with an average OT of 3.2 ng/L, while the 8-hydroxylinalool derivative was the least odorous compound with an OT of 160 ng/L; 8-carboxylinalool was found to be odorless. The odorant 8-oxolinalyl acetate, which has very similar odor properties to linalool, was the most potent odorant besides linalool, exhibiting an OT of 5.9 ng/L. By comparison, 8-carboxylinalyl acetate had a similar OT (6.1 ng/L) as its corresponding 8-oxo derivative but exhibited divergent odor properties (fatty, greasy, musty). Overall, oxygenation on carbon 8 had a substantial effect on the aroma profiles of structural derivatives of linalool and linalyl acetate.
Identification of pleasant, neutral, and unpleasant odors in schizophrenia
Kamath, Vidyulata; Turetsky, Bruce I.; Moberg, Paul J.
2010-01-01
Recent work on odor hedonics in schizophrenia has indicated that patients display abnormalities in hedonic judgments of odors in comparison to healthy comparison participants. In the current study, identification accuracy for pleasant, neutral, and unpleasant odors in individuals with schizophrenia and healthy controls was examined. Thirty-three schizophrenia patients (63% male) and thirty-one healthy volunteers (65% male) were recruited. The groups were well matched on age, sex, and smoking status. Participants were administered the University of Pennsylvania Smell Identification Test, which was subsequently divided into 16 pleasant, 15 neutral, and 9 unpleasant items. Analysis of identification z-scores for pleasant, neutral, and unpleasant odors revealed a significant diagnosis by valence interaction. Post-hoc analysis revealed that schizophrenia participants made more identification errors on pleasant and neutral odors compared to healthy controls, with no differences observed for unpleasant odors. No effect was seen for sex. The findings from the current investigation suggest that odor identification accuracy in patients is influenced by odor valence. This pattern of results parallels a growing body of literature indicating that patients display aberrant pleasantness ratings for pleasant odors and highlights the need for additional research on the influence of odor valence on olfactory identification performance in individuals with schizophrenia. PMID:21239063
Soh, Zu; Nishikawa, Shinya; Kurita, Yuichi; Takiguchi, Noboru; Tsuji, Toshio
2016-01-01
To predict the odor quality of an odorant mixture, the interaction between odorants must be taken into account. Previously, an experiment in which mice discriminated between odorant mixtures identified a selective adaptation mechanism in the olfactory system. This paper proposes an olfactory model for odorant mixtures that can account for selective adaptation in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral layer obtained from model simulations to predict the perceptual similarity between odors. Measured glomerular activity patterns are used as input to the model. The neural interaction between mitral cells and granular cells is then simulated, and a dissimilarity index between odors is defined using the activity patterns of the mitral layer. An odor set composed of three odorants is used to test the ability of the model. Simulations are performed based on the odor discrimination experiment on mice. As a result, we observe that part of the neural activity in the glomerular layer is enhanced in the mitral layer, whereas another part is suppressed. We find that the dissimilarity index strongly correlates with the odor discrimination rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the perceptual similarity of odorant mixtures. In addition, the model also accounts for selective adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral layer may be related to this selective adaptation.
NASA Astrophysics Data System (ADS)
Martins, L.; Ventura, J.; Ferreira, R.; Freitas, P. P.
2017-12-01
Due to their high tunnel magnetoresistance (TMR) ratios at room temperature, magnetic tunnel junctions (MTJs) with a crystalline MgO insulating barrier and CoFeB ferromagnetic (FM) layers are the best candidates for novel magnetic memory applications. To overcome impedance matching problems in electronic circuits, the MgO barrier must have an ultra-low thickness (∼1 nm). Therefore, it is mandatory to optimize the MTJ fabrication process, in order to prevent relevant defects in the MgO barrier that could affect the magnetic and electrical MTJ properties. Here, a smoothing process aiming to decrease the roughness of the buffer surface before the deposition of the full MTJ stack is proposed. An ion beam milling process was used to etch the surface of an MTJ buffer structure with a Ru top layer. The morphologic results prove an effective decrease of the Ru surface roughness with the etching time. The electrical and magnetic results obtained for MTJs with smoothed buffer structures show a direct influence of the buffer roughness and coupling field on the improvement of the TMR ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuey, C.
1994-12-31
Contaminant releases from E&P waste management facilities located near residences in three communities in the Four Corners Area -- two in New Mexico and one in Utah -- spurred vocal concern among local residents in recent years. Noxious odors, including hydrogen sulfide, were present in all cases and releases of production wastes and oil spills were prevalent in two of the cases. In all three, residents said they felt powerless to change operator or agency decisions about siting of facilities close to places where people congregate. These cases illustrate the need for regulators to consider facility locations in permitting decisions.more » They also demonstrate the need for creation of statutorily recognized buffer zones around new oil and gas production and processing facilities where releases of pollutants to the air, land and water can reasonably be expected, regardless of the level of pollution control. Buffer zones may be especially important in states where local governments have not elected to adopt land use and zoning requirements that affect the siting of E&P facilities. Agency and corporate sensitivity to siting concerns will engender public confidence in permitting decisions and avoid the needless waste of public and private resources.« less
Tillerson, Jennifer L; Caudle, W Michael; Parent, Jack M; Gong, C; Schallert, Timothy; Miller, Gary W
2006-09-15
Previous pharmacological studies have implicated dopamine as a modulator of olfactory bulb processing. Several disorders characterized by altered dopamine homeostasis in olfaction-related brain regions display olfactory deficits. To further characterize the role of dopamine in olfactory processing, we subjected dopamine transporter knockout mice (DAT -/-) and dopamine receptor 2 knockout mice (D2 -/-) to a battery of olfactory tests. In addition to behavioral characterization, several neurochemical markers of olfactory bulb integrity and function were examined. DAT -/- mice displayed an olfactory discrimination deficit, but did not differ detectably from DAT wildtype (DAT +/+) mice in odor habituation, olfactory sensitivity, or odor recognition memory. Neurochemically, DAT -/- mice have decreased D2 receptor staining in the periglomerular layer of the olfactory bulb and increased tyrosine hydroxylase immunoreactivity compared to DAT +/+ controls. D2 -/- mice exhibited the same olfactory deficit as the DAT -/- mice, further supporting the role of dopamine at the D2 synapse in olfactory discrimination processing. The findings presented in this paper reinforce the functional significance of dopamine and more specifically the D2 receptor in olfactory discrimination and may help explain the behavioral phenotype in the DAT and D2 knockout mice.
Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress
Belnoue, Laure; Malvaut, Sarah; Ladevèze, Elodie; Abrous, Djoher Nora; Koehl, Muriel
2016-01-01
Maternal stress is associated with an altered mother-infant relationship that endangers offspring development, leading to emotional/behavioral problems. However, little research has investigated the stress-induced alterations of the maternal brain that could underlie such a disruption of mother-infant bonding. Olfactory cues play an extensive role in the coordination of mother-infant interactions, suggesting that motherhood may be associated to enhanced olfactory performances, and that this effect may be abolished by maternal stress. To test this hypothesis, we analyzed the impact of motherhood under normal conditions or after gestational stress on olfactory functions in C57BL/6 J mice. We report that gestational stress alters maternal behavior and prevents both mothers’ ability to discriminate pup odors and motherhood-induced enhancement in odor memory. We investigated adult bulbar neurogenesis as a potential mechanism of the enhanced olfactory function in mothers and found that motherhood was associated with an increased complexity of the dendritic tree of newborn neurons. This motherhood-evoked remodeling was totally prevented by gestational stress. Altogether, our results may thus provide insight into the neural changes that could contribute to altered maternal behavior in stressed mothers. PMID:27886228
How the brain assigns a neural tag to arbitrary points in a high-dimensional space
NASA Astrophysics Data System (ADS)
Stevens, Charles
Brains in almost all organisms need to deal with very complex stimuli. For example, most mammals are very good at face recognition, and faces are very complex objects indeed. For example, modern face recognition software represents a face as a point in a 10,000 dimensional space. Every human must be able to learn to recognize any of the 7 billion faces in the world, and can recognize familiar faces after a display of the face is viewed for only a few hundred milliseconds. Because we do not understand how faces are assigned locations in a high-dimensional space by the brain, attacking the problem of how face recognition is accomplished is very difficult. But a much easier problem of the same sort can be studied for odor recognition. For the mouse, each odor is assigned a point in a 1000 dimensional space, and the fruit fly assigns any odor a location in only a 50 dimensional space. A fly has about 50 distinct types of odorant receptor neurons (ORNs), each of which produce nerve impulses at a specific rate for each different odor. This pattern of firing produced across 50 ORNs is called `a combinatorial odor code', and this code assigns every odor a point in a 50 dimensional space that is used to identify the odor. In order to learn the odor, the brain must alter the strength of synapses. The combinatorial code cannot itself by used to change synaptic strength because all odors use same neurons to form the code, and so all synapses would be changed for any odor and the odors could not be distinguished. In order to learn an odor, the brain must assign a set of neurons - the odor tag - that have the property that these neurons (1) should make use of all of the information available about the odor, and (2) insure that any two tags overlap as little as possible (so one odor does not modify synapses used by other odors). In the talk, I will explain how the olfactory system of both the fruit fly and the mouse produce a tag for each odor that has these two properties. Supported by NSF.
Odor composition analysis and odor indicator selection during sewage sludge composting
Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua
2016-01-01
ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities. PMID:27192607
Fujiwara, Masaya; Nitta, Asano; Chiba, Atsuhiko
2016-06-01
Our previous study in male rats demonstrated that bilateral administration of flutamide, an androgen receptor (AR) antagonist, into the posterodorsal medial amygdala (MePD) increased the time sniffing male odors to as high as that sniffing estrous odors, eliminating the preference for estrous odors over male odors. This made us speculate that under blockade of AR in the MePD, testosterone-derived estrogen acting on the same brain region arouses interest in male odors which is otherwise suppressed by concomitant action of androgen. In cyclic female rats, endogenous androgen has been thought to be involved in inhibitory regulation of estrogen-activated sexual behavior. Thus, in the present study, we investigated the possibility that in female rats the arousal of interest in male odors is also normally regulated by both estrogen and androgen acting on the MePD, as predicted by our previous study in male rats. Implantation of either the estrogen receptor blocker tamoxifen (TX) or a non-aromatizable androgen 5α-dihydrotestosterone (DHT) into the MePD of ovariectomized, estrogen-primed female rats eliminated preference for male odors over estrous odors by significantly decreasing the time sniffing male odors to as low as that sniffing estrous odors. The subsequent odor discrimination tests confirmed that the DHT and TX administration did not impair the ability to discriminate between male and estrous odors. These results suggest that in estrous female rats estrogen action in the MePD plays critical roles in the expression of the preference for male odors while androgen action in the same brain region interferes with the estrogen action. Copyright © 2016 Elsevier Inc. All rights reserved.
Isarida, Takeo; Sakai, Tetsuya; Kubota, Takayuki; Koga, Miho; Katayama, Yu; Isarida, Toshiko K
2014-04-01
The present study investigated context effects of incidental odors in free recall after a short retention interval (5 min). With a short retention interval, the results are not confounded by extraneous odors or encounters with the experimental odor and possible rehearsal during a long retention interval. A short study time condition (4 s per item), predicted not to be affected by adaptation to the odor, and a long study time condition (8 s per item) were used. Additionally, we introduced a new method for recovery from adaptation, where a dissimilar odor was briefly presented at the beginning of the retention interval, and we demonstrated the effectiveness of this technique. An incidental learning paradigm was used to prevent overshadowing from confounding the results. In three experiments, undergraduates (N = 200) incidentally studied words presented one-by-one and received a free recall test. Two pairs of odors and a third odor having different semantic-differential characteristics were selected from 14 familiar odors. One of the odors was presented during encoding, and during the test, the same odor (same-context condition) or the other odor within the pair (different-context condition) was presented. Without using a recovery-from-adaptation method, a significant odor-context effect appeared in the 4-s/item condition, but not in the 8-s/item condition. Using the recovery-from-adaptation method, context effects were found for both the 8- and the 4-s/item conditions. The size of the recovered odor-context effect did not change with study time. There were no serial position effects. Implications of the present findings are discussed.
Guidobaldi, F; Guerenstein, P G
2016-07-01
Triatomines, vectors of Chagas Disease, are hematophagous insects. Efforts have been made to develop synthetic attractants based on vertebrate odor-to lure them into traps. However, because those lures are not practical or have low capture efficiency, they are not in use in control programs. Therefore, more work is needed to reach a practical and efficient odor lure. Recently, a three-component, CO 2 -free, synthetic blend of vertebrate odor (consisting of ammonia, l-(+)-lactic acid, and hexanoic acid), known as Sweetscent (Biogents AG, Regensburg, Germany), was shown to attract and capture triatomines in the laboratory. In this study, using a trap olfactometer and an odor blend with constituents similar to those of Sweetscent (delivered from low-density polyethylene sachets) we found that the odorant ratios of the mixtures have a strong effect in the capture of triatomines. The blend with the most efficient combination of odorant ratios evoked ca. 81% capture in two relevant triatomine species. In the case of the most effective odor mixtures, we measured the odor mass emission for the three components of the mixture and therefore were able to estimate the odorant ratios emitted that were responsible for such a high capture performance. Thus, in those mixtures, pentanoic acid was the main component (ca. 65 %) followed by ammonia (ca. 28%) and, l(+)-lactic acid (ca. 7 %). Our results are encouraging as efficient, practical, and cheap odor baits to trap triatomines in the field would be within reach. The odor-delivery system used should be improved to increase stability of odor emission. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Odor composition analysis and odor indicator selection during sewage sludge composting.
Zhu, Yan-Li; Zheng, Guo-di; Gao, Ding; Chen, Tong-Bin; Wu, Fang-Kun; Niu, Ming-Jie; Zou, Ke-Hua
2016-09-01
On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities.
Martinez, Luis A; Petrulis, Aras
2013-04-01
Precopulatory behaviors that are preferentially directed towards opposite-sex conspecifics are critical for successful reproduction, particularly in species wherein the sexes live in isolation, such as Syrian hamsters (Mesocricetus auratus). In females, these behaviors include sexual odor preference and vaginal scent marking. The neural regulation of precopulatory behaviors is thought to involve a network of forebrain areas that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). Although MA and BNST are necessary for sexual odor preference and preferential vaginal marking to male odors, respectively, the role of MPOA in odor-guided female precopulatory behaviors is not well understood. To address this issue, female Syrian hamsters with bilateral, excitotoxic lesions of MPOA (MPOA-X) or sham lesions (SHAM) were tested for sexual odor investigation, scent marking, and lordosis. MPOA-X females did not investigate male odors more than female odors in an odor preference test, indicating that MPOA may be necessary for normal sexual odor preference in female hamsters. This loss of preference cannot be attributed to a sensory deficit, since MPOA-X females successfully discriminated male odors from female odors during an odor discrimination test. Surprisingly, no deficits in vaginal scent marking were observed in MPOA-X females, although these females did exhibit decreased overall levels of flank marking compared to SHAM females. Finally, all MPOA-X females exhibited lordosis appropriately. These results suggest that MPOA plays a critical role in the neural regulation of certain aspects of odor-guided precopulatory behaviors in female Syrian hamsters. Copyright © 2013 Elsevier Inc. All rights reserved.